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ABSTRACT 

Current Alzheimer’s disease (AD) clinical diagnostic criteria rely on symptoms, which do not 

precisely reveal the underlying AD biological changes. Therefore, the criteria lack the ability to 

identify preclinical cases and quantify the disease severity objectively. I proposed new methodologies 

which use morphological markers to improve diagnostic accuracy. The rationale is that neuroimaging 

provides a gateway of integrating molecular and clinical markers.  

My first study summarized the latest findings to outline AD biological mechanisms. We presented 

identified associations of neuroimaging features with clinical symptoms, and then molecular markers 

related anatomical and functional changes.  

In my first experiment, I developed a classifier based on brain morphological markers enhanced with 

pathological information to identify individuals who are asymptomatic but at risk for clinical AD. This 

automated classifier was built using structural MRI of clinically and pathologically diagnosed 

subjects. This classifier was applied to predict pathology on cognitive normal (CN) subjects from two 

independent cohorts. Subjects predicted to have pathology showed significantly greater chance in 

clinical conversion to mild cognitive impairment or clinical AD, compared with those predicted 

negatively in both cohorts. Such difference was detected after taking into account of effects of other 

AD risk factors, like genetic variants. Among identified AD genetic variants, only APOE-ε4 showed 

significant association with the clinical conversion. At the group level, predicted positive pathology 

group had significant atrophy in areas preferentially affected by AD except the hippocampus. Atrophy 

expanded to the hippocampus at a later stage. 

My second project tested whether a latent trait estimated based on morphological markers can be used 

to quantify disease severity. MRI scans from two independent cohorts were used and their regional 

volumes were extracted. A latent variable model was implemented to estimate the latent trait based on 

the estimated regional volumes. The estimated latent trait had significantly different distributions 

between the clinical diagnosed groups and significantly associated with clinical conversion, from 

asymptomatic to symptomatic. The estimated latent trait significantly correlated with CSF proteins 

levels, hypometabolism and APOE-ε4 genotype.  

In conclusion, our results supported that morphological markers can identify cases at preclinical stages 

and quantify disease severity. Our methods might be useful to improve diagnostic accuracy in clinical 

decision-making.  



IV 

 

RÉSUMÉ             

Aujourd’hui, les critères du diagnostic clinique de la maladie d'Alzheimer (MA) sont basés sur des 

symptômes qui ne révèlent pas précisément de changements biologiques. Par conséquent, ces critères 

ne peuvent pas être utilisés pour identifier les patients précliniques et quantifier objectivement le stade 

de la maladie. Je proposés les nouvelles méthodes qui utiliser des marqueurs morphologiques pour 

améliorer la précision du diagnostic. La raison sous-jacente est que la neuro-imagerie fournit une porte 

pour d'intégration des marqueurs moléculaires et cliniques.   

Mon premier projet a résumé les dernières découvertes soulignant les mécanismes de MA. Nous 

avions présenté des liens établis entre les caractéristiques neuro-imageries et des symptômes cliniques, 

mais aussi de ceux-ci sur des modifications anatomiques et fonctionnelles relations avec les marqueurs 

moléculaires.  

Dans ma première expérience, j’ai développé une classification automatique basée sur les marqueurs 

morphologiques cérébraux avec l’information de cette pathologie pour identifier les individus 

asymptomatiques, mais à risque.  Cette classification automatique a été construite en utilisant 

l’Imagerie par Résonnance Magnétique (IRM) structurelle de sujets cliniquement sains ou de patients 

atteints de MA. Cette classification a été appliquée pour prédire cette pathologie sur des sujets sans 

symptômes cognitifs de deux cohortes différentes. Les sujets qui ont été prédits comme pathologiques 

ont une probabilité plus grande d’avoir la MA, en comparaison des autres sujets. De tels différences 

ont été détectés après avoir pris en considération les effets d’autres facteur de risques de la MA, 

comme différents effets génétiques. Parmi les effets génétiques seulement APOE-ε4 montra une 

association significative avec le développement clinique. Les sujets qui ont été prédits comme 

pathologiques ont une atrophie significative dans l’aire affectée préférentiellement par la MA mais pas 

dans l’hippocampe. Cette atrophie s’étend à l’hippocampe à un stade plus avancé. 

Ma second expérience a montré une variable latente estimée extraite des marqueurs morphologiques 

qui peut être utilisée pour quantifier le stade de la MA.  J’ai utilisé les IRMs des deux différentes 

cohortes pour extraire ces marqueurs morphologiques. Un modèle multivarié a été mise en œuvre pour 

estimer la variable latente basée sur marqueurs morphologiques. La variable latente estimée a une 

distribution différente entre les différents groupes et est associée de façon significative au changement 

de diagnostic clinique, comme de passer du groupe asymptomatique au groupe symptomatique. Cette 

variable latente est en corrélation avec le niveau de protéines dans le liquide céphalo-rachidien, 

l'hypométabolisme neuronal et APOE-ε4 génotype, de façon significative. 

En conclusion, nos résultats appuient que les marqueurs morphologiques peuvent identifier les cas 

précliniques  et quantifier le stade de la MA. Notre méthode peut être utile pour améliorer la précision 

du diagnostic dans la prise de décision clinique.  
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1. Introduction 

1.1 Motivation 

With an increasing worldwide aging population, it has been predicted that a growing number of 

elderly people are going to be affected by neurodegenerative disease. The World Health Organisation 

(WHO) has reported that the number of people having neurodegenerative disease will reach 75 million 

by 2030 and 131 million by 2050. This increase will effect particularly low to middle income 

countries (Prince M, Wimo A, Guerchet M, 2015). Amongst the neurodegenerative cases, 50%-70% 

will be Alzheimer’s Disease (AD) patients (Winblad et al., 2016). As a result, AD will become the 

most common neurodegenerative disorder. It is becoming a high socio-economic burden for global 

economies.  

Since the understanding of AD mechanism is limited, there is currently no cure to stop the progression 

of the disease. Several medications such as cholinesterase and acetylcholinesterase inhibitors have 

been demonstrated to be useful in delaying AD symptoms for a limited period of time (Scheltens et 

al., 2016).  

The above drugs can delay the progression but they cannot stop it. New drugs are aiming to either 

increase the clearance rate of suspected neurotoxic markers or to reduce their neurotoxicity. The 

neurotoxic markers (such as amyloid-β, Tau and phosphorylated Tau (pTau)) are proteins that can 

form plaques and neurofibrillary tangles in the brain of patients (see Figure 1) and they have been long 

been the prime suspect for causing the disease (Jucker and Walker, 2013). Ongoing research and 

development of a cure is focusing on anti-amyloid drugs such as the antibody aducanumab (Sevigny et 

al., 2016). Aducanumab has been recently shown to benefit patients by reducing amyloid levels in the 

brain in an ongoing clinical trial. Such anti-amyloid drugs have been considered to be most effective 

in patients with early Alzheimer’s disease (Scheltens et al., 2016). The detection of Alzheimer’s 

disease at early or even preclinical stages becomes key to provide the patient with early treatments to 

sustain their quality of life.  

Current clinical AD diagnostic criteria mainly rely on symptoms and lack the power to reveal 

pathological brain changes. It is necessary to identify people at risk of developing clinical AD, 

which is when the symptoms (memory loss, decline in cognitive performance) manifest themselves 

and dementia is present.  

Several markers have been tested for their diagnostic usage. Such markers include proteins levels from 

cerebrospinal fluid (CSF) / cortical regions (extracted from molecular neuroimaging). The drawback 

of the above methods is that they are expensive (molecular neuroimaging) and invasive (CSF). The 
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main difficulty faced by researchers is to integrate low-cost and non-invasive methods in a convenient 

way to enable clinicians to diagnose AD, especially at the preclinical stages.  

 

Figure 1 Representation of pathology in normal and AD patients. 

This illustration shows tissues from normal and AD patient brains. Compare to normal brains, The 

patients have propagations of proteins (tangles inside of brain cells and plaques in between the brain 

cells).This figure was extracted from (Silbert, 2007). 

 

 
Identifying preclinical cases is important for early prevention but a continuous disease severity trait is 

more useful to quantify disease stages.  A continuous estimation of disease severity is more useful 

since Alzheimer’s disease, like other types of neurodegenerative diseases, is a progressive brain 

disorder. An estimator of disease severity should have the ability to quantify different stages and 

monitor dementia onset. The definite staging of the disease can only be confirmed in an autopsy 

examination. The difficulty is to be able to estimate AD severity in vivo that best reveal the 

pathological changes in the brain using low-cost, convenient and non-invasive measurements. 

1.2 Main goal, methodology and challenges 

The main goal of this thesis is to build disease models based on the features derived from MRI and 

interacting information from other biomarkers and clinical phenotypes. The objectives are to improve 

to accuracy of AD, to predict cognitive normal subjects who are at risk to develop clinical AD and 

quantify AD severity in vivo. 

To reach this goal, in this thesis, we develop a methodological framework based on 3 principles: 

computational anatomy, disease modeling and biomarkers interaction used for construction and 

validation models. The 3 principles and related challenges are explained in the paragraphs below. 
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Principle 1: Computational anatomy  

In my experiments, I relied on computational anatomy methods developed for neuroimaging research. 

Computational anatomy extracts morphological features from MRI scans, by estimating volumes of 

brain tissues in an automated way (Ashburner, 2009). Computational anatomy has been widely used to 

identify atrophy patterns of mild cognitive impairment (MCI) and AD (Chételat et al., 2005; Karas et 

al., 2004; Krasuski et al., 1998) to identify diseases linked anatomical structures differences. 

However, there are still several challenges associated with this method for building a reliable 

individual-based disease model. 

Challenges:  

 Limitations of group comparison and unreliable diagnosis: The applications of the previous 

methods for identifying AD atrophy often rely on labels from clinical diagnosis. However, 

clinical diagnoses are known to be unreliable in neurodegenerative diseases (Sperling et al., 

2011). Therefore, group comparison between clinical diagnosed cases and controls does not 

precisely reveal disease atrophy, especially at early stages. Moreover, the results are 

informative at group level but not at individual levels.  The reason is not only due to the 

method itself but also because there is remarked inter-individual variability in gyral volume 

(Alexander-Bloch et al., 2013). 

 Univariate: Univariate methods analyze one variable at a time, such as one voxel or region-of-

interest. For example, several studies used regional volumetric features, such as hippocampal 

volumes (Coupé et al., 2015; Jack et al., 2014; Stephan et al., 2015). The drawback of only 

using regional volumetric features is that the spatial interaction of different regions is ignored 

and therefore the information is insufficient (Frisoni et al., 2010).   

 Confounder: There are several factors that can affect the estimation of volumetric features, 

including intrinsic factors like age and brain size and technical factors like recruiting 

procedure. Their effects can be reduced by integrating those confounders in a statistical model. 

But it is not possible to control their effects in a multivariable model, for instance in 

differentiating groups (Klöppel et al., 2008).  

Principle 2: Disease modeling 

I have constructed disease models using machine learning algorithms. In contrast to univariate method 

which focuses on only one variable, multivariable model can integrate all volumetric features or 

multiple variables of interest. Such a model is useful to predict outcomes or detect disease-related or 

outcome-related variables at the individual level. Through a multivariable model, effect of one 

variable of interest can be determined after taking into account sother confounding variables. Thus, 
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confounder effects can be modeled and adjusted. Disease models built to predict outcomes have been 

shown in several studies of neurodegenerative diseases (Bron et al., 2014; Klöppel et al., 2008; 

Lillemark et al., 2014; Peters et al., 2014).  

Challenges:  

 High dimensionality: Neuroimaging data has high dimensionality as the number of 

volumetric features is numerous. The number of subjects is much smaller than the number of 

dimension in most of the studies. A strategy that avoid over-fitting can be helpful.  

Principle 3: Biomarkers interaction used for construction and validation models 

As mentioned above clinical diagnoses are unreliable and univariate methods are insufficient for AD. 

Integrating information from other modalities can increase the reliability of a disease model. In my 

experiments, I integrated information from other modalities for constructing and validating my disease 

models. Using them as inputs of my model, I have integrated the “gold standards” diagnosis with 

clinical diagnosed information to overcome the limitation of clinical diagnosis. In validation, a good 

disease model is suspected to represent the biological process of the disease. Since AD pathology is 

inaccessible in vivo and the mechanism is unknown, the validation of my models can be based on 

discovered interactions identified. 

For the validation of given volumetric features, its interactions with AD pathology are based on 

identified evidence. Volumetric features correlate strongly with the distribution of neurofibrillary 

tangles (Frisoni et al., 2010; Braak and Braak, 1995; Giannakopoulos et al., 2003; Whitwell et al., 

2008, 2012).  

In vivo, accessible proteins levels (CSF protein levels, molecular imaging detected cortical protein 

burden) may be useful, as several studies have demonstrated their correlations AD pathology (Buerger 

et al., 2006; Strozyk et al., 2003; Tapiola et al., 2009). Validating a model can be done by testing its 

relation with these accessible markers to examine whether such a model mirrors biological changes. In 

addition, the model can be tested for its predictive power of clinical AD beyond these accessible 

markers. Such markers include proteins mentioned above and genetic variants associated with clinical 

AD, which termed AD genetic risk factors.  

Challenges: 

 Small effect variables: For some variables, their impacts on disease are difficult to be proven. 

Such as single nucleotide polymorphism (SNP), the effect size of each variable is mildest. 

There is a need to increase their ability for disease prediction. 
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1.3 Contribution 

In this thesis, we bring to light three contributions:   

1.3.1 Brain neuroimaging provides a gateway for linking molecular and clinical markers 

My first work reviewed identified associations between different modalities to understand AD disease 

mechanisms from currently published studies (published on Current Opinion in Neurology, 2015)(Cui 

et al., 2015). This work provides evidence for the 1
st
 and 3

rd
 principles, “computational anatomy” and 

“biomarkers interaction used for construction and validation models”. We demonstrated that 

neuroimaging can be used as a gateway of linking molecular markers and cognitive symptoms. 

1.3.2 Identification of asymptomatic individuals at risk of AD conversion  

My 1
st
 experimental project was based on the 3 principles from the methodological framework 

described in section 1.2. I applied a classifier (2
nd

 principle), which is capable of predicting AD 

pathology, on cognitive normal subjects and identify asymptomatic individuals at risk of developing 

AD (3
rd

 principle).  Pathology-related volumetric features were extracted from MRI scans as the input 

of a supervised learning algorithm to construct this classifier to predict pathology (1
st
 principle). 

Before constructing this model, the volumetric features were normalized and then the effects of a set 

of confounders have been modeled and removed. These steps were done to overcome challenge 

“confounder”. The integration of pathology information and volumetric features provides a solution to 

two challenges described above, “limitations of group comparison and unreliable diagnosis” and 

“univariate”. In the process of constructing the model, I have used a linear kernel to overcome the 

“high-dimension” challenge. The classifier was used to predict pathology among cognitive normal 

subjects. The predicted pathological states showed a significantly association with clinical conversion 

in the follow-up study. For variables with small effect size (“small effect variables” challenge), like 

SNP, a genetic score has been calculated based on SNPs of interest to test an overall effect.  

This is the first study to apply a classifier to predict pathology on cognitive normal participants to 

identify a group of healthy people who are at risk to develop clinical AD. The results provided further 

evidence that pathology-related volumetric change occurs before the symptoms, even among cognitive 

normal people. Such changes significantly associated with clinical AD conversion. The application of 

this experiment may improve clinical decision-making to detect the group might be benefited most 

from early treatment.  

1.3.3 Estimation of disease severity based on biological data 
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The 2
nd

 experiment is an extension of the 1
st
 one. Learning that Alzheimer’s disease is a progressive 

disorder and pathology occurs before symptoms onset, I extracted a continuous index from brain 

anatomical features (1
st
 principle) by applying a data-driven method (2

nd
 principle). Before using the 

data-driven method, I applied a scaling method and then the effects of a set of confounders have been 

modeled and removed. These methods can be used as an alternative solution to challenge 

“confounder”. Because the data-driven method used in this experiment does not require the group 

labels of each subject, therefore such method provides an alternative solution to the same challenges 

mention in section 1.3.2, “limitations of group comparison and unreliable diagnosis” and “univariate”. 

The extracted continuous index demonstrated that it can be used to quantify disease severity and 

monitor symptoms onset, after comparing with pathology-related markers level and clinical 

measurements at baseline and follow-up study (3
rd

 principle). 

This experiment is the first one applied to a data-driven method using continuous measurements to 

detect disease-related traits. These disease-related traits have been shown to be significantly correlate 

with pathology-related proteins, extracted from CSF and cortical regions. This method can be used in 

clinical practice to assist the quantification of disease severity and monitor the risk of symptoms onsite 

for cognitive normal and MCI people.  

1.4 Thesis outline 

The thesis is structured according to the three main contributions outlined in section 1.3. Each 

comprising a chapter and the following sections give an outline of each chapter.  

Chapter 2 Current Understanding of AD and Analytical Methods 

In this chapter, we first introduce the proposed disease mechanisms, including amyloid-β and Tau 

hypotheses, from previous studies. Then, AD clinical and research criteria are compared and the 

main difficulties we are facing in the experiments are listed. Machine learning algorithms and 

statistical methods used in my experiments as well as methods relevant are all explained. The last 

section presents Hill’s causality criteria, which will be used in Chapter 6.  

Chapter 3 In-vivo brain neuroimaging provides a gateway for integrating molecular and 

clinical markers of Alzheimer's disease  

In this chapter, recently identified interactions between multiple modalities are summarized. 

Modalities include genetic variants, proteins, brain anatomy / function and clinical measurements. 

This review covers interactions between modalities.  

Chapter 4 Automated detections of asymptomatic individuals at risk for dementia 

due to Alzheimer's disease 
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In this chapter, we present the steps we took to build an automated classifier using volumetric 

features extracted from MRI of clinically and pathologically diagnosed subjects. We summarize 

the results of applying this classifier which predicts pathology on cognitive normal subjects from 

two independent cohorts. We list results from testing the relative risk of developing clinical AD 

between predicted positive and negative pathology groups, compared with other AD risk factors, 

such as age and genetic variants. Anatomical differences between the two predicted groups 

compared at baseline and in the follow-up study are illustrated.  

Chapter 5 A data-driven model of estimation a trait to quantify sporadic Alzheimer's 

disease severity 

In this chapter, we extend the idea of chapter 4 to estimate a continuous trait rather than a binary 

classification for each subject. We describe a data-driven method using volumetric features to 

estimate a continuous trait for two independent cohorts. By utilizing markers, including clinical 

measurements (at baseline and in follow-up) and molecular markers, we demonstrate this trait can 

be used to quantify disease severity. Meanwhile, we show relations between the estimated trait and 

grey matter regions.  

Chapter 6 General Discussion 

We conclude by providing a holistic summary of our work. The causal inference of our models 

and symptoms onset is explained. For the challenges mentioned in section 1.2, the solutions and 

the interpretations are provided. We draw attention to the current open problems and directions for 

future work in the field of understanding the neurodegenerative diseases.  

 

 

  



8 

 

2. Current Understanding of AD and Analytical Methods 

2.1 Pathological mechanisms of disease 

Alzheimer’s disease, named after the German doctor Alois Alzheimer, is defined as a disease with 

memory impairment prior to death and a dramatic shrinkage in the brain with abnormal deposits, 

revealed at autopsy.  These abnormal deposits are known to be amyloid plaque and neurofibrillary 

tangles. 

Two hypotheses, amyloid and Tau hypothesis have been proposed as the mechanism of Azheimer’s 

disease. 

The amyloid hypothesis, proposed for more than ten years, considers the deposition of amyloid-β in 

amyloid plaques in brain tissue as the cause of the neurodegeneration in Alzheimer’s disease (Hardy 

and Selkoe, 2002). The 42-residue-long amyloid-β (Aβ42) peptide rapidly aggregates to form 

oligomers, which are the main components of plaques (Ahmed et al., 2010). Aggregated Aβ42 affects 

neurons and induces neurofibrillary tangle formation that leads to neuronal death and impairment of 

synaptic plasticity (Querfurth and LaFerla, 2010; Takashima, 2009). Aβ42 peptides are derived from 

amyloid precursor protein (APP) by beta-site amyloid precursor protein–cleaving enzyme 1 and γ-

secretase (Querfurth and LaFerla, 2010). Experimental application shows that high concentrations of 

Aβ42 oligomers suppress basal synaptic transmission by facilitating endocytosis of receptors of 

neurotransmitters. In severe late stage AD, patients have a reduced level of neurotrophin receptors due 

to the binding of Aβ42. 

In recent research Tau hypothesis shows a closer correlation between the loss of neuronal function and 

the degree of neurofibrillary tangle (NFT) rather than the degree of senile plaque accumulation (Cripps 

et al., 2006). It has been recently shown that hyperphosphorylated Tau is the major protein component 

of NFTs in AD (Cripps et al., 2006). The abnormal phosphorylation of Tau leads to its dissociation 

from microtubules and the formation of NFTs (Giannakopoulos et al., 2003). These NFTs are highly 

accumulated in the entorhinal and hippocampal neurons and correlate with the memory impairment 

observed in AD (Giannakopoulos et al., 2003). The onset of Tau modification leads to sequential 

neuronal dysfunction, starting with synaptic loss and impairment in axonal transport which leads to 

NFTs formation and neuronal loss, see Figure 2 (Jack and Holtzman, 2013; Takashima, 2009). 

AD can be either in dominantly inherited or sporadic form with different age of onset. Less than 1% of 

AD cases are autosomal dominant AD, referred to as familial AD, due to the mutation of 3 genes, 

APP, presenilin-1 and presenilin-2. Most of familial AD cases occur before 65 years old. Mutated Tau 

evolves into multiple neurodegenerative diseases, such as frontotemporal dementia. In Alzheimer’s 

disease, Tau mutations do not occur (Goedert and Jakes, 2005). The life-time risk for sporadic AD is 
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appearing from the age of 65 on average and leads to death after about 10-15 years (Dubois et al., 

2016). 

 

Figure 2 Biomarkers temporal evolution 

This figure shows hypothetical typical AD biomarkers change sequence. The x axis represents time 

and y axis represents a change from normal to abnormal levels. The grey line indicates the detection 

threshold level for biomarkers. In typical AD, Aβ is supposed to change first and then followed by CSF 

Tau protein. MRI features and hypometabolism change afterward. Cognitive symptoms appear at the 

end. This figure is adapted from (Jack and Holtzman, 2013).  

 

 
AD progression has been divided into six stages by Braak and Braak. Stages I-II show alterations 

virtually confined to the transentorhinal region (temporal lobe) and named as “transentorhinal stages”. 

At these stages, NFTs slowly build up at their predilection sites, but is asymptomatic. Stages III-IV are 

charecterised by an important involvement of both the entorhinal and transentorhinal regions and the 

hippocampus accompanied by large numbers of Preα projection cells carrying NFTs. These two stages 

are also called “limbic stages” and clinical protocols can be used. At the neucortical stages, stages V-

VI, there is destruction of the inferior temporal and lateral temporal cortex and other neocortical 

association areas. This explains the impairment of other cognitive domains apart from episodic 

memory (personally experienced events in a particular temporal and spatial context) such as language 

problems, disorientation in time and place as well as motor dysfunction in the end stage of the disease 

(Braak and Braak, 1995). 
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2.2 Clinical diagnostic criteria 

The current clinical Alzheimer's disease diagnostic criteria mainly rely mainly on symptoms 

(Scheltens et al., 2016). The mostly applied criteria are NINCDS-ADRDA Alzheimer's Criteria 

(National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's 

Association) (Mckhann et al., 1984). They specify eight cognitive domains that may be impaired in 

AD, including memory, language, perceptual skills, attention, constructive abilities, orientation, 

problem solving and functional abilities. In addition, two other measurements of cognitive 

performance are the mini–mental status examination (MMSE) and clinical dementia rating (CDR). 

Where the diagnosis is based on clinical measurements the patients are probable AD or possible AD. 

The definite diagnosis requires a further histopathological confirmation of AD by biopsy or autopsy.  
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Biomarkers Measurements Summary (References) 

Aβ42 

CSF 

 Low Aβ42 was the strongest predictor of clinical progression in patients with subjective complaints (Van Harten 

et al., 2013) 

 Aβ42 oligomers levels in CSF  is  clearly  associated  with  AD, the overlap is too large (Hölttä et al., 2013) 

 The prevalence of amyloid pathology increase with age among normal cognitive participants, subjective 

cognitive impairment and mild cognitive impairment patients. (Jansen et al., 2015) 

Cortical 

 The likelihood of amyloid positivity decrease with age among AD patients  (Ossenkoppele, Jansen, et al., 2015) 

but increase with age among non-AD dementias, like frontotemporal dementia, vascular dementia and Lewy 

bodies patients (Ossenkoppele, Jansen, et al., 2015) 

Total Tau CSF 
 CSF total tau and pTau correlate with AD. Total tau increases in traumatic brain injury, stroke and in Creutzfeldt-

Jakob disease, but not elevated CSF pTau levels (Jack et al., 2016).  

pTau Cortical 

 18
F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution 

of hyperphosphorylated tau protein among patients with MAPT R406W mutation (Smith et al., 2016) 

 the pattern of increased [
18

F]AV-1451 highly overlapped with regions that showed decreased [
18

F] 

Fludeoxyglucose (FDG) uptake (hypometabolism), [
11

C] Pittsburgh compound B (PIB) binding (cortical Aβ42) 

showed no correlation with [
18

F]FDG uptake (Ossenkoppele, Schonhaut, et al., 2015) 

CSF Aβ42 and tau concentrations and a 

memory composite score 

 Preclinical Alzheimer's disease exits in 30%cognitively normal elderly people and it associated with future 

cognitive decline and mortality (Vos et al., 2013) 

Table 1 Recent findings about AD pathology-related biomarkers 
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2.3 Research diagnostic criteria 

Pathology related biomarkers are the measurements of protein Aβ42 and Tau levels in CSF and in the 

brain.  The cortical amyloid burden can be directly detected by positron emission tomography (PET) 

imaging. Currently the most widely used tracer to image cortical Aβ42 is 11C-labeled Pittsburgh 

compound B (PIB) PET and florbetapir F 18 (also known as [18F] AV-45) PET. Apart from 

measuring cortical Aβ42 burden using PET imaging directly, cerebrospinal fluid (CSF) Aβ42 levels 

(Strozyk et al., 2003) and phosphorylated Tau (pTau) protein at threonine 231 (pTau231) and 

threonine 181 (pTau181) have been demonstrated to reflect pathologic changes in the brain (Tapiola et 

al., 2009),(Buerger et al., 2006) and are associated with longitudinal clinical conversion (Dubois et al., 

2016). Although pTau231 protein shows a better correlation with neurofibrillary tangle burden at 

autopsy(Buerger et al., 2007), pTau181 is widely studied so far. The ratio between CSF 

phosphorylated Tau threonine 181 and Aβ42 (pTau181/Aβ42) has been proposed as one of the best 

biomarkers to predict cognitive decline in nondemented older adults (Fagan et al., 2007) and AD 

conversion risk in MCI group (Buchhave et al., 2012). Latest findings of these biomarkers are 

summarized in Table 1. 

As clinical diagnostic criteria of AD are unable to reveal the pathology, especially at an early stage, in 

2007, Dubois et al proposed new criteria to better define Alzheimer's disease (Dubois et al., 2007). 

Similarly, new criteria have also been proposed by National Institute on Aging–Alzheimer's 

Association (NIA–AA) in 2011 (Sperling et al., 2011). Both research diagnostic criteria integrate 

biomarkers into the diagnostic process and therefore covered the full span of the disease, from 

preclinical to severe AD. The two diagnostic criteria differ in which are the selected biomarkers for 

different stages. At preclinical stage, only the NIA–AA criteria include MRI markers, IWG do not. In 

2016, both criteria were merged for the preclinical stage and in the new version, only the pathology-

related biomarkers are considered. However, this version has some issues when applied to identify 

from the general population those who are at preclinical stage of AD. 

2.4 Analytical methods 

2.4.1 Genome-wide association study 

Three billion base pairs of genetic information in human are 99.9% identical between individuals. 

Among the 3 billion base pairs, there are around 10 million single nucleotide polymorphisms (SNP), 

which is one type of genetic variants. A SNP is a single DNA base-pair change at a specific base 

position in the human genome, with the possibility of presenting one of the 4 possible nucleotides (A, 

T, C and G). A nucleotide that presents at a SNP is called an allele (i.e G allele). Each person has two 

copies of the same gene inherited from each parent, one SNP has two alleles. A genotype for this SNP 

is defined by the alleles which one person has at this position.  
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When parents pass on their genetic information to their children there are blocks of nucleotides that 

are always inherited with little recombination forming linkage disequilibrium (LD) blocks, which 

contains dependent allelic variants, and give rise to haplotypes. As a result, from the original 10 

million SNP variants there are in fact only 300,000-1,000,000 distinctive clusters (Hafler and Jager, 

2005). Genome-wide association studies (GWAS) aim at identifying SNPs whose alleles correlate 

with traits or diseases in various groups of human subjects.   

 

Figure 3 One example of a SNP from one subject 

This figure shows an example of one SNP (i.e rs1801280) from one subject. SNP is a single base 

change in a DNA sequence. The two sequences represent the two transmitted copies inherited from the 

subject’s parents. The genotype of the subject at this SNP is G/A. The subject has a minor allele (i.e G 

in green) inherited from the mother (for rs1801280), and a major allele A (same as the reference) 

from the father (in orange). 

 

 

In GWAS, subjects and SNPs which do not fulfill specific quality criteria are removed in the different 

preprocessing steps (Anderson et al., 2010). Subjects passing the following criteria are retained for 

analysis: no discordance between genetic and self-reported sex, low missing genotype rate (<5%), 

reasonable heterozygous rate (~25-30%) and unrelated to other samples. All subjects which do not 
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fulfill these conditions are not considered during the GWAS. Sexual discordant individuals have a 

mismatched sex according to their genotype data. Subjects with a high missing genotype or 

heterozygosity rate may arise be due to fabrication error of the chip or sample mixing, poor DNA 

quality, etc.   

QC criteria for SNPs include: high call rate (>98%) and no differential missingness, >1% minor allele 

frequency and Hardy-Weinberg equilibrium (HWE) test (p<0.0001).  

SNPs with very low frequency of the minor allele should be removed as genotype clustering 

algorithms tend to be less reliable when some clusters have too little individuals. HWE is based on 

Hardy-Weinberg law that in a large random mating population, for a given SNP and its minor allele 

(a) frequency ( ), the expected frequencies of the three unordered genotypes frequencies (aa, aA and 

AA) can be calculated (                 ). Deviation from HWE can be caused by several 

reasons. But most studies suggest it is an indication of population stratification rather than genotyping 

error (Cox and Kraft, 2006). SNPs show significantly deviations from the expected genotype 

frequencies are removed. To avoid disease bias, HWE test is normally done using a control group. 

Once the two preprocessing steps are done (removing subjects and SNPs which do not meet the 

conditions outlined above), we proceed to the GWAS. 

To identify disease-related genetic risks such as the risk of Alzheimer’s the most wildly used model is 

logistic regression which is a probabilistic binary linear classifier (Bush and Moore, 2012; Hastie et 

al., 2009). Using Alzheimer’s disease as an example, the probability of a subject having the disease 

                        , where                     are the phenotypes,   indicates the 

predictors (age, gender, SNP genotype and the first few principal components which corrects for the 

population structure) and   are the parameters of the model to be estimated. Logistic regression 

assumes that the logit of the disease probability,                         , is a linear function of 

the predictors, see equation (2.1).  

                               

 

     
                     

                       
  

=                                                         

 

 

 

 

(2.1) 

The genetic variable                            is numeric. The small b represents the 

reference allele and capital B represents the coded allele. The first letter in bb (as an example) 

represents the genotype one inherited from his or her mother and the second letter is from his or her 

father. The parameters of the logistic regression are learned via maximizing the log-likelihood. 
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There are three main options for encoding the genetic information     : additively, dominantly and 

recessively, depending on the different assumptions of the risk allele affecting the phenotype. The 

additive method assumes that the more risk allele a subject has, the greater the effect will be observed. 

For the additive method, the three types of allele (bb, bB, BB) are coded as 0, 1 and 2, as the number 

of risk allele increase,                        .  The dominant method assumes that the 

effect of the phenotype can be seen already when one risk allele appears,               

        . In contrast, the recessive model requires the two copies of the risk allele to be present to 

take an effect,                       .  

The last three predictors in the logistic model (              ) represent divergent ancestry, where 

        is the first principal component score whilst      and      are the scores of the second and 

third principal component of the genetic kinship matrix. The idea is to use the genotypic features to 

estimate genetic kinship and through principal component analysis (PCA) identify clusters of subjects 

coming from the same ancestry. Individuals that are outliers (>3SD away from the mean) in terms of 

principal component loadings are removed from further analysis. The first few (typically 2-10) 

principal components are included in the logistic model as covariates to reduce confounding due to 

population structure.   

The GWAS method described above identifies novel genetic risk factors (SNPs) that are related to a 

given disease phenotype. This is achieved by learning a logistic regression model over the entire 

genome to detect the most discriminative SNPs.  

2.4.2 Genetic risk score  

Given a list of SNPs associated to a disease (identified in GWAS) one can calculate their weighted 

average, termed Genetic Risk Score (GRS), where the weights are essentially effect sizes obtained 

from the study. 

For a complex disease several factors (predictors) may be involved such as genetic and environmental 

factors. For neurodegenerative disease sporadic cases, the observed phenotypes are likely to be the 

results of a mixture of different factors. Since the effect sizes of individual genetic variants are rather 

small it is reasonable to combine a set of identified disease related SNPs into one score. 

There are two solutions to combine a set of SNPs.  The first is to calculate the total number of risk 

allele each subject has. Equation (2.2) shows the calculation of GRS for subject   with   risk SNPs 

where     is the number of risk allele of subject   at SNP  . The second solution is to weight each SNP 

effect and then sum them up. The weights are the log (odd ratios) of the SNPs identified from previous 
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studies. As shown in equation (2.3),     is the odds ratio of the  th SNP. This method has been tested 

among diseases, such as psoriasis (Chen et al., 2011). 

 
         

 

   

 

 

(2.2) 

 
           

 

   

            

 

(2.3) 

 

2.4.3 Neuroimaging preprocessing 

Morphometrics is a study of the variability of the form of organisms or objects (Ashburner, 2009). To 

be able to compare two brain MRI images, it is necessary to map them into one standard space. 

Statistical Parametric Mapping (SPM) is a software which is widely used in computational anatomy to 

perform voxel-based morphometrics (VBM) (Ashburner, 2009). This software extracts volumetric 

features from the shapes of MRI images. VBM requires several preprocessing steps. The 

preprocessing starts by assigning each voxel from T1-weighted MR scans into a particular tissue type: 

grey matter, white matter or cerebrospinal fluid, based on its intensity. This step is done via a rigid-

body algorithm to roughly align the subject to a common anatomical space known as the tissue 

probability map. Then, each of the voxel is assigned into a tissue type with the highest probability 

estimated through a mixture of Gaussians model, which represents the intensity distributions of 

different tissue classes. Using grey matter is an example, the grey matter probability maps of all 

subjects will be used in an inter-subject registration algorithm, named as Dartel. Dartel starts by 

averaging all subjects’ grey matter maps to generate a template and it is followed by an iterative 

procedure of minimizing the mean squared difference between the individual’s image and the 

template. The outputs of Dartel are the warped images that align with the average-shaped template and 

flow field maps that encode how each grey matter probability map deformed to best match the 

template. However, the coordinates of the outputs of this step cannot be compared with other studies. 

One more spatial transformation step is needed so that the grey matter tissue class image of each 

individual can be aligned with the Talairach and Tournoux, or MNI space. To preserve the volume of 

each voxel, the deformed images are multiplied with the Jacobian determinants of the deformations 

from flow fields. It works in a way that if one region is expanded or shrinked compared to its original 

volume during deformation, and then the intensity would be reduced or enlarged to keep the signal of 

that region conserved. The Jacobian-corrected, warped tissue class images would then be smoothed to 

increase the signal to noise ratio. The smoothing step is done by convolving with an isotropic 

Gaussian kernel. The results of all the steps represent the regional volume of tissue and can be used for 

further statistical analysis in VBM.  
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Figure 4 Pipeline of neuroimaging preprocessing 

This figure shows all steps used in preprocessing structural neuroimaging data. It begins with 

segmentation, assigning each voxel of the scan to a tissue type, i.e grey matter. The segmented grey 

matter probability maps are then warped to a common space. The volume of each voxel is preserved at 

the mean time through modulation. The outputs are then spatially smoothed with a Gaussian kernel to 

increase the signal to noise ratio. The final results can be used in voxel-to-voxel statistical analysis. 
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VBM is a mass-univariate voxel-based morphometry method to investigate topographical, grey matter 

volume, difference at voxel level using the framework of the general linear model. The estimated 

volumes of all grey matter voxels are compared independently between the case and the control 

groups. In a general linear model, disease related factors are normally used as cofounders to be 

adjusted. For one voxel, the model is fitted through finding the coefficients of the covariates that 

minimize the residuals. To answer a question, such as what regions are significantly different between 

patients and controls, statistical tests (t test and F test) can be used to test whether the disease effect is 

significant from zero and proportion of total variance explained by the model is significantly different 

from zero.   

2.4.4 Family-wise error rate  

In both GWAS and VBM studies, genome-wide and voxel-wise models are built to identify 

phenotype-related markers. In a simple case of testing the association between a trait and one SNP or 

one voxel, the null hypothesis (  ) is that there is no association between this SNP or this voxel and 

the trait. The alternative hypothesis is the complement of the null hypothesis. A statistical test can be 

performed and the test statistic with a corresponding p-value can be calculated. The p-value represents 

the probability of obtaining a more extreme test statistic than the observed value under the null 

hypothesis. Small p-value represents evidence against   . If the probability is small and below a 

predefined threshold, then the null hypothesis can be rejected in favor of the alternative hypothesis. 

Each significance threshold, α, can be translated into a type I error rate, i.e. the probability of a null 

model being falsely rejected. If the significance level α is set as 5% for each single test, in total, 

around 5% of the SNPs or voxels will be considered to be associated with the phenotype by chance. 

For example, in a VBM analysis, if 10K of voxels are tested for significant association and none of 

them are actually associated, 500 voxels will be incorrectly identified.  Such SNPs or voxels are also 

called false positives (Brett et al., 2003).  

To reduce the chance of having too many false positives, a method of setting the significance 

threshold to control the Family-wise Error Rate (FWER) is needed. FWER is probability that, under 

the null, one or more tests will be rejected. To control FWER, several methods are available, such as 

Bonferrroni correction. The idea is to replace the significance level α with α/P for each single test, 

where P is the number of SNPs or voxels tested. However, this method gives very little chance of 

detecting real effects and it has an assumption that the markers are independent.  The assumption is 

unlikely to be true neither in GWAS nor in VBM. Most GWASs use 5 × 10
− 8 

as a threshold that 

controls FWER at 5% (Clarke et al., 2011). For VBM studies, the most popular method is random 

field theory. The idea of RFT is to transform related voxels from the smoothed statistical maps into 

independent resolution elements or “resels”. A resel is a block of voxels that has the same size as the 

smoothing kernel full width at half maximum. The smoothed statistical maps with resels can be 
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thresholded. The Euler characteristic (EC) can be considered the number of blobs after the 

thresholding. When the threshold is high, the expectation of EC is either zero or one. The expected EC 

approximately corresponds to the probability of observing a or more blob above a given threshold 

(FWER probability) (Brett et al., 2003). The expected EC can be calculated using equation (2.4), 

where R is the number of resels and    is the Z score threshold.  

 
                     

 
    

 
 
 
  

 

 
 

(2.4) 

2.4.5 Supervised learning 

1) Support vector machine for classification  

Linear support vector machine (L-SVM) is a popular supervised classification algorithm as it performs 

generally well in high-dimensional spaces (Hastie et al., 2009). A classification problem can be either 

a separable or a non-separable case. In the linearly separable case, the SVM algorithm searches for a 

decision boundary that maximizes the margin between the two classes. The SVM’s margin is a 

function of a subset of the data points known as Support Vectors SVs. The optimization process is 

convex. When the two classes are non-separable slack variables are introduced which allow 

misclassifications to occur. This leads to the introduction of hyper-parameters which dictate how much 

penalty is occurred in the SVM’s objective function if misclassifications occur.  

 

 

 

Figure 5 Illustration of support vector machine algorithm  

This figure shows a separable case of two classes (+1 in blue and -1 in red). The idea of support 

vector machine is to search a boundary that maximizes the margin between the two classes. The 



20 

 

decision boundary (the classifier, it will be a hyperplane in high-dimensional spaces) is the solid line, 

while the broken lines bound the margin that maximized in the algorithm. The points with black circle 

are support vectors which define the boundary.  

2) Statistical Methods for predicting patient survival 

For survival problems, Kaplan-Meier (KM) method and Cox’s proportional hazards (PH) regression 

model are widely used (Fox and Weisberg, 2011; Hastie et al., 2009). In survival studies, the outcome 

variable is the survival time. Survival time is defined as the time from the starting point to the 

occurrence of an event of interest. It can be partly observed for some participants (censored data). For 

example, in a clinical trial, all participants register on the first day and start to receive the same 

treatment (Figure 6). The clinical trial is supposed to last for 365 days. One participant might 

experience the event, such as death, after 100 days and the observed survival time of this subject is 

100 days. Other participants that survived without having the event occurred until the end of the trail 

are called “right censored”. Although the exact survival time is unknown, the time that the subject 

survived is still informative.  

 

Figure 6 Example of survival data 

This figure shows 3 individuals as an example of censored data in survival analysis. Three subjects 

registered for a clinical trial at the same and received the same treatment. Subject 1 suffered the event 

(i.e death) before the end of the study. Subject 2 dropped out in the follow-up study. Subject 3 survived 

until the end of the study and the event occurred afterwards, but his or her exact survival time is 

unknown. Since subject 2 and subject 3 have no exact survival time, therefore they are the participants 

whose data are censored. 
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The Kaplan-Meier method estimates a survival function      (or survival curve). The survival curve 

represents the probability of surviving beyond a given time  . KM method is useful to compare the 

outcomes of two groups under different conditions, i.e 2 types of treatment. When a survival analysis 

examines the relationship between the survival time and the covariates, Cox PH model is preferred. 

Cox PH model involves hazard function, which measures the instantaneous rate of a subject suffering 

the event at time  , given that the event has not occurred before. Hazard function is specific to the 

distributions of survival time, such as the exponential, Weibull and Gompertz distributions (Fox and 

Weisberg, 2011). If the risk of having the event occurring at a given time   depends on a set of 

predictors           , the hazard function can be written as follows: 

                                  (2.5) 

, where      is the expected hazard at time  ,       represent the baseline hazard when all predictors 

value are zero. For two subjects,   and  , the hazard ratio of these two subjects  

      

      
 

                             

                             
 

                                                          

 

(2.6) 

is independent of time  . Cox PH model assumes that the effects of covariates,           are 

constant over time and independent of the exact form of     . Therefore Cox PH model is a 

semiparametric model.  

2.4.6 Unsupervised algorithm 

Popular unsupervised algorithm, such as principal component analysis (PCA) and k-means, have been 

used in many studies to identify patterns among the input measurements. The advantage of such 

methods is that they do not rely on the outcomes and therefore could avoid the usage of low accurate 

clinical diagnosis of neurodegenerative disease.  

Event-based model (EBM) is recently developed algorithm and has been used to identify the 

biomarker changes in Alzheimer’s disease progression (Young et al., 2014b). This algorithm learns 

the sequence of biomarker changes from large cross-sectional data. One event ( ) is defined as the 

switch of one biomarker from normal, which relates to non-pathology, to abnormal state that caused 

by disease. For each biomarker, the data from all subjects are used to fit two normal distributions 

correspond to normal and abnormal states. The candidate sequences are generated by Markov chain 

Monte Carlo algorithm. EBM tests all candidate sequences and identifies a sequence of biomarkers 

change to maximize data likelihood. 
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2.5 Hill’s causality inference 

The identification of the cause of a complex disease is not unified. The Bradford Hill criteria are the 

most practical and widely accepted guidance for causal inference (Swaen and van Amelsvoort, 2009). 

In Table 2, each individual criterion will be explained with an example from a smoking and lung 

cancer study.  

 

 Definition Example 

Temporal 

Relationship 

The causal exposure should precede 

the caused disease in time. 

 

Most of the lung cancer patients have 

started smoking before having lung 

cancer. 

Strength 
The stronger the association the more 

likely that the association is causal. 

The smoker group has bigger portion 

cancer patients then non-smoker group. 

Dose-response 
When a level of exposure increases, 

risk of disease increases. 

There is a positive, linear relationship 

between the amount cigarette smoked 

and the incidence of lung cancer. 

Consistency 

If more studies find similar results, it 

is more likely that the association is 

causal. 

Previously published studies agree with 

the conclusion that smoking causes lung 

cancer. 

Independent cohorts can replicate the 

results. 

Plausibility Biological experiments 
Evidence of biological experiment that 

smoking causing tissue damage. 

Analogy 
Consideration about other potential 

factors which showing similar effects   

Smoking is the most significant 

predictor for cancer onset after 

adjustment of other cofounders, like 

demographic factors. 

Coherence 
The conclusion does not against 

current knowledge. 

Smoking can cause lung cancer has been 

long accepted. 

Experiment evidence 

The elimination of the causal agent 

can decrease disease rates. 

 

After quitting smoking, the amount of 

specific toxic products decreases in 

blood. 

Specificity 
The exposure associated with a 

specific outcome. 

Lung cancer is a complex disease, not 

caused by a single agent. 

Table 2 Explaination of Hill's criteria with smoking study as an example  
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3. In-vivo brain neuroimaging provides a gateway for integrating 

molecular and clinical markers of Alzheimer's disease  

Alzheimer’s disease (AD) - the most common neurodegenerative disorder is becoming a high socio-

economic burden for the Western world. As a response to this challenge, we witness a steadily 

expanding research in biomarkers aiming at accurate early diagnosis and a reliable prediction of 

disease progression. The newly proposed diagnostic criteria of the International Working Group for 

AD describe new phenotypes in AD by integrating novel and established biomarkers with clinical 

features to further expand the spectrum from the asymptomatic stage to very advanced phase of 

dementia (Dubois et al., 2014). However, the remaining key challenges are not only to establish the 

contribution of each biomarker separately, but more importantly to identify how the different 

biomarkers interact. Understanding the complexity of the biological data and facilitating their 

interpretation in relationship to the clinical symptoms requires a framework that enables the 

integration of the existing multiple biomarkers - clinical features, genetic variants, proteins, etc.   

In this review, we put forward the hypothesis of using imaging as endophenotype of AD enabling a 

straightforward interpretation of the high-dimensional genomic and proteomic data (Figure 7). We 

present the findings from the recent literatures that support this hypothesis and demonstrate bridges 

between biological data and the clinical manifestation of the disease. In the first section we review 

papers which illustrated that neuroimaging features are sensitive biomarkers to predict clinical 

symptoms. In the second and the third sections, we highlight recent studies that go beyond this link 

and bring evidence for complex interactions between clinical symptoms and biological features, such 

as particular protein levels and genetic variants. In the last section we explain the current 

characterization of the process of “healthy” aging to differentiate these from changes associated with 

abnormal functioning. 
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Figure 7 Multiple data modalities in Alzheimer’s disease 

The relationships between different data modalities have been studied in Alzheimer’s disease. These 

modalities include genetic variants, proteomics, brain anatomy / function and symptoms. Section 3.1 

presents the latest findings between brain anatomy / function and symptoms. Section 3.2 presents the 

associations found between brain anatomy / function and proteomics. Section 3.3 shows the effects of 

genetic variants on brain anatomy / function. Section 3.4 summarizes aging effects in cognitive normal 

populations.  

 

 

3.1 Bridging neuroimaging biomarkers and clinical diagnostic 

Recent advances in neuroimaging methods provide an unbiased assessment of brain anatomy that 

offers a diagnostic window in early stages of AD. Currently, biomarkers are derived from different 

brain imaging techniques - T1-, diffusion-weighted and functional MRI, Pittsburgh Compound B 

positron emission tomography (PIB-PET), [18F] 2-fluoro-2-deoxyglucose (FDG) PET. One of the 

MRI-derived features – the pattern of grey matter (GM) volume loss, has been established as reliable 

biomarker showing strong correlation with clinical disease staging and neuropathology findings 

(Braak and Braak, 1995). The atrophy rate of the medial temporal lobe volume is not only closely 

linked to the individual’s cognitive deficits, but has also predictive value for the progression from mild 

cognitive impairment (MCI) to AD. However the association between neuroiaging biomarkers and 

clinical diagnosis is far from being complete, this is mainly due to the high level of intersubject 

variability in both brain changes and clinical measurements.  To increase the accuracy of prediction, 

two approaches have been applied. The first approach is to improve the clinical measurements, for 

example the inclusion of neuropsychiatric factors such as depression, apathy, anxiety and sleep 

disturbance (Belleville et al., 2014). The second approach is to introduce novel neuroimaging features, 
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such as besides assessment of brain anatomy. An example of new neuroimaging feature is to use 

cerebral blood flow (CBF) based on arterial spin labeling (ASL). 

ASL showed a reasonable predictive power to discriminate between dementia patients and  healthy 

controls (Bron et al., 2014). Compared to the diagnostic accuracy of biomarkers using estimates of 

GM volume, CBF showed a similar performance. An independent analysis, which compared FDG-

PET, MRI volumetric variables and PIB-PET for the prediction of conversion from MCI to AD, 

showed MRI provided the highest predictive accuracy and PIB-PET demonstrated the best sensitivity 

(Trzepacz et al., 2014). 

Althought we can improve the prediction accuracy using these two approaches, they are still limited in 

discovering the biological mechanisms. In the following sections, we focus on studies that bridging 

biological measurements (genetic and proteomic) and brain anatomy and function under the frame of 

Alzheimer’s disease. 

3.2 Bridging protein changes and brain anatomy and function 

There is a large body of evidence of the role of misfolded Aβ42 plaques and microtubule-associated 

protein tau neurofibrillary tangles. In vivo, pathological changes can be detected in amyloid burden 

and CSF protein levels.  

The cortical amyloid burden can be directly detected by PET imaging.  Currently the most widely used 

tracer to image cortical Aβ42 is 11C-labeled Pittsburgh compound B (PIB) and florbetapir F 18 (also 

known as [18F] AV-45). Apart from measuring cortical Aβ42 burden using PET imaging directly, 

cerebrospinal fluid (CSF) Aβ42 levels (Strozyk et al., 2003) and phosphorylated tau (pTau) protein at 

threonine 231 (pTau231) and threonine 181 (pTau181) have been demonstrated to reflect pathologic 

changes in the brain (Buerger et al., 2006; Tapiola et al., 2009). Although pTau231 protein showed 

better correlation with neurofibrillary tangle burden at autopsy (Buerger et al., 2007), pTau181 is 

widely studied so far. 

We highlight below the studies that demonstrate the interaction between protein measures and 

regionally specific changes in brain anatomy and function. 

3.2.1 Interaction between Cortical Aβ42 peptides and anatomo- functional dysfunction 

Aβ42 deposition, in healthy old adults, has been shown to modulate the blood-oxygen-level dependent 

(BOLD) activity in entorhinal regions measured with functional MRI during an episodic memory task. 

However there was no modulation effect of the BOLD activity in the hippocampus (Huijbers et al., 

2014). The authors also showed that that entorhinal regions demonstrating amyloid-β-related 

dysfunction are directly connected to the neocortical regions of the default network. This result is in 
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contradiction with another study in an independent cohort across all subjects, including Alzheimer’s 

patients, MCI and healthy elderly (Adriaanse et al., 2014). The latter study found no association 

between amyloid deposition and the functional connectivity of the default mode network.  However, 

other study support the link between amyloid deposits, tau toxicity (potentiated by Aβ42 deposit) and 

lateral entorhinal cortex dysfunction, see Figure 8 (Khan et al., 2014).  

 

Figure 8 Cerebral blood volume reductions patterns 

To determine whether Tau and APP relate to entorhinal cortex dysfunction, mouse models with 

mutations in Tau or / and APP genes expressed in the entorhinal cortex were scanned with a high-

resolution functional MRI to map metabolic defects. Only mouse model with both mutations showed 

reliable cerebral blood volume reductions (results shown in rendered three-dimensional volumes, left 

figure) in lateral entorhinal cortex (yellow), perirhinal cortex (red), posterior parietal cortex (green). 

These patterns overlap with patterns with patterns observed in preclinical AD. Among the regions 

affected in the human preclinical group (right figure), dysfunction was observed in entorhinal cortex 

(yellow),parahippocampal gyrus (red) and precuneus (green). Adapted from (Khan et al., 2014).  

 

 
 In term of prediction of amyloid status (amyloid-positive or –negative measured by AV45 

(florbetapir) PET), basal forebrain cholinergic system volume has been found to be a better anatomical 

biomarker than hippocampus (Teipel et al., 2014).  

3.2.2 Interaction between CSF proteins and anatomo- functional dysfunction 

The ratio between CSF phosphorylated tau threonine 181 and Aβ42 (pTau181/Aβ42) has been 

proposed as one of the best biomarkers to predict cognitive decline in nondemented older adults 

(Fagan et al., 2007) and AD conversion risk in MCI group (Buchhave et al., 2012). In a recent study, a 

significant difference has been found in white matter between MCI low / high ratio groups.  The low 

ratio group showed a significant increase in radial diffusivity in both sides of the corpus callosum and 
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the superior and inferior longitudinal fasciculus.  However, the high-ratio group did not show any 

difference when compared to a normal group (J.-S. Lim et al., 2014).  

CSF tau proteins, including pTau181 and tTau, can be regulated by CSF Apo-E protein, which is the 

product of apolipoprotein E gene and its level is modulated by apolipoprotein E (APOE) ε4 allele. 

Baseline CSF Apo-E protein showed a positive association with tTau and pTau181 levels, but not with 

CSF Aβ42.  Individuals with low baseline CSF Apo-E levels and high CSF tTau/Aβ42 ratio showed 

higher brain atrophy rate in the fusiform, inferior parietal, inferior temporal, superior frontal, 

precuneus, middle frontal, and entorhinal areas (Toledo et al., 2014). The effect was independent from 

APOE-ε4 status.  

Similar results have been found with CSF clusterin which interact with CSF Aβ42 , pTau181 and tTau 

(total Tau) peptides (Desikan et al., 2014). CSF clusterin predicts brain structure differences between 

cognitively normal elder participants and MCI in the entorhinal cortex but not in the hippocampus. 

pTau181 showed an independent additive effect on volume loss in the same brain regions. 

3.2.3 Interaction between TDP-43 proteins and anatomo- functional dysfunction 

TAR DNA-binding protein of 43 kDa (TDP-43), previously related to frontotemporal dementia has 

been found to be present in autopsy examinations among pathologically diagnosed AD. A recent study 

with 342 pathologically diagnosed AD evaluated the effect of TDP-43 on brain structure change. 

Positive association has been found between TDP-43 burden and medial temporal atrophy and 

cognitive impairment, see Figure 9 (Desikan et al., 2014). This result suggests a new potential 

therapeutic target for the treatment of AD. However, more studies are required to understand its 

mechanism and interaction with other biomarkers. 
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Figure 9 Regional patterns of TDP-associated grey matter volume loss across Braak stages IV to VI 

This figure shows atrophy patterns of AD TDP-positive and AD TDP-negative groups diagnosed 

within Braak stages IV, V and VI, compared with control (pathologically diagnosed between Braak 0-

III). Adapted from (Josephs et al., 2014).  

 

 

3.3 Bridging genetic variants and brain anatomy and function 

Up to now, more than 20 common AD genetic risk factors have been found with genome-wide 

association studies (GWAS). However, apart from APOE-ε4 allele, the effects of these single 

nucleotide polymorphisms (SNPs) on late onset AD (LOAD) progression have been found to be 

limited (Carrasquillo et al., 2015). Recent investigations propose to measure the SNPs risk for 

dementia using neuroimaging features as phenotype by investigating the association between SNPs or 

SNP-SNP interaction with the brain structure. 

3.3.1 Interaction between APOE-ε4 and anatomo-functional dysfunction 

The effects of APOE-ε4 on brain structure have been observed not only among LOAD, but also in 

infant carriers between 2 to 25 months. Risk allele carriers had lower myelin water fraction (MWF) 

and grey matter volume in areas preferentially affected by AD but greater volume in extensive frontal 

regions. Infants with ε4 also showed a reduced MWF during development in posterior white matter 

regions (Dean et al., 2014). Among LOAD  “stable” and LOAD “progressors” MCI, ε4 carriers 

showed a higher hippocampal volume atrophy rate compared to non-carriers, even adjusted for whole 

brain atrophy rate (Manning et al., 2014; Shi et al., 2014). Among the cross-sectional group (LOAD, 

MCI and cognitively normal), carriers were found to have significant morphological differences 
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compared to non-carriers. This result was more significant in homozygotes than heterozygotes (Shi et 

al., 2014). A voxel based analysis showed a reduction of fractional anisotropy (FA) in the genu of the 

corpus callosum and the brain stem regions (Newlander et al., 2014). In the TOMM40 gene, the 

rs10524523 (“523”) variable length poly-T repeat polymorphism has been found to be associated with 

white matter integrity, regardless of the presence of the APOE-ε4 allele. The main effect of TOMM40 

523 has been observed in the right rostral cingulum and the left ventral cingulum FA. The result 

proved that the short/long repeat length in the genotype of TOMM40 523 was associated with a lower 

white matter integrity compared with pooled long repeat length groups (Lyall et al., 2014). Clusterin 

related gene variants (CLU, rs11136000 and rs1532278) have been recently identified for significant 

combined effects with APOE on both volumetric expansion and lateral ventricle surface morphology 

in a longitudinal study. However, rs1532278, showed slightly stronger association with ventricular 

expansion than that of rs11136000 (Roussotte et al., 2014).  

3.3.2 Interaction between other common genetic variants and anatomo- functional 

dysfunction 

The genetic variant of one neurotrophic factor (brain-drived neurotrophic factor (BDNF) rs6265), 

replacing guanine with adenine resulting in a valine (val) to methionine (met) amino acid substitution 

at codon 66 (val66met), has been proposed to be an indirect moderator of Aβ42 neurotoxicity as 

BDNF is involved in synaptic excitation and neuronal plasticity. Indeed, this hypothesis has been 

proved among amnestic MCI (aMCI) with high cortical Aβ42 load and being met carriers to have 

greater rate of decline in episodic memory and reduction in hippocampal volume over 36 months (Y. 

Y. Lim et al., 2014). However, linear met-dose effect was not supported in this analysis of global and 

local gray and white matter structure. Compared to  homozygous groups (val/val and met/met), the 

val/met group showed an “inverted-U” shaped profile of cortical changes (Forde et al., 2014).  

One common variant in the gene encoding the receptors (OPRD1, rs678849), known to be associated 

with drug addiction and protecting neurons against hypoxic and ischemic stress,  has been identified 

for its association with reduced brain volumes in AD (Roussotte et al., 2014). 

SNPs identified with GWAS have a small effect size for explaining clinical changes; therefore more 

studies are looking at pathway-derived SNP-SNP pairs for investigating genetic effects on brain 

structure. For example, a gene pair SYNJ2-PI4KA from the inositol phosphate metabolism and the 

phosphatidylinositol signaling system pathways in KEGG was significantly associated with the rates 

of change in right and left inferior lateral ventricles volume (Koran, Hohman, Meda, et al., 2014). 

3.3.3 Interaction between autosomal dominant Alzheimer disease and anatomo- functional 

dysfunction 
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Several studies have been done to study the similarity between autosomal dominant Alzheimer’s 

disease (ADAD) and LOAD of CSF protein levels, amyloid imaging and brain volumetric change. 

Higher levels of amyloid deposition were detected in basal ganglia in ADAD than in LOAD and 

increased level of CSF Aβ42 appears earlier in ADAD than in LOAD (Fleisher et al., 2012). A recent 

study compared the two groups in terms of brain functional connectivity and found no differences. For 

both groups, clinical dementia rating scores correlated negatively with measures of functional 

connectivity (Thomas et al., 2014). 

3.3.4 Genetic variants regulate cortical amyloid burden 

Cortical amyloid burden can be measured with PIB-PET and is considered as an endophenotype to 

evaluate the effects of polymorphism. APOE-ε4 has been found to have positive association with the 

cortical Aβ42 burden level among healthy controls and MCI (Drzezga et al., 2009; Rowe et al., 2010). 

But this genotype effect on the probable AD group was not consistent between studies (Drzezga et al., 

2009; Rowe et al., 2010). By studying a population of probable AD, comparing APOE-ε4 non carriers 

with ε4 carriers, significantly higher levels of Aβ42 burden were found in the right lateral 

frontotemporal regions and greater hypometabolism in the cortical areas (Lehmann et al., 2014).  

One polymorphism upstream of butyrylcholinesterase (BCHE) on chromosome 3 has been found to 

have a novel modulating effect with cortical amyloid load, independently from APOE-ε4 genotype 

(Ramanan et al., 2014). A polymorphism in GSK-3 (glycogen synthase kinase 3), implicated in both 

Tau and amyloid pathology, was found to be involved in 3 pairs of SNP-SNP interaction with baseline 

cortical amyloid deposition, independently from APOE genotype (Hohman et al., 2014). Similar SNP-

SNP interaction in anyloidogenesis has revealed the effect of the calcium channels pathway on 

amyloid deposition (Koran, Hohman and Thornton-Wells, 2014). 

3.4 Aging related biomarker changes 

Several studies have been performed to characterize normal aging effects on the human brain, 

especially on task related activation, age-related volumetric and morphometric changes to separate 

effects due to the disease from normal ageing. Most of these studies show a significant effect of 

normal ageing on the same regions (e.g. hippocampus, entorhinal cortex) that were highlighted 

previously as being involved in AD.   

Cognitively normal older adults showed significant lower hippocampal volume and thinner entorhinal 

cortices compared to young adults and reduced activation during an episodic memory task (Huijbers et 

al., 2014).  

The age-related structural change was also observed in a longitudinal study performed over 2 years. 

Compared to other regions, including hippocampus, bilateral transverse temporal regions showed the 
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fastest atrophy, with a decrease in thickness of 4.6% and 4.9% per year in the left and right 

hemispheres. Regions like the entorhinal cortices, the right hippocampus and the right precentral area 

showed a age-related change in the rate of atrophy (Jiang et al., 2014). Sex-related cortical atrophy 

rate differences have also been identified among these non-demented elder people, see Figure 10 

(Jiang et al., 2014).  

 

Figure 10 Cortical atrophy over 2 years in non-demented elderly adults 

Cortical thickness between baseline and follow-up has been found based on non-demented aging 

population. The most significant change was found in transverse temporal region. Adapted from 

(Jiang et al., 2014). 

 

 
A separate longitudinal study, over 4 years, among middle-aged healthy participants has been done to 

study the normal aging effect on white matter. Significant shrinkage in white matter volume has been 

found in frontal, temporal, and cerebella regions (Ly et al., 2014).  

3.5 Conclusion 

There is no doubt that neuroimaging based biomarkers are useful endophenotypes that can bring 

together information from other modalities and bridge the gaps between different scales of 
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observations in the brain. However, neuroimaging biomarkers still suffer several limitations, which are 

mainly due to the high degree of variability between multi-centers (Marchewka et al., 2014), cohorts 

and individuals. New techniques based on tissue properties and quantitative MRI (e.g., myelin, iron, 

and water content) are now providing compelling alternatives (Draganski et al., 2014).  By combining 

different biomarkers, we can observe apparent discrepancies which can be seen at first as a lack of 

accuracy but it can also reflect the existence of different subtypes of Alzheimer’s disease (Young et 

al., 2014a). The identification of pathological subtypes which are not clinical subtypes is a hard 

challenge. But methods that decompose the individual differences to create patients stratification can 

be applied (Kherif et al., 2009). One example is the evaluation of APOE genotype’s impact on Aβ42 

burden between subtypes of pathological defined Alzheimer’s disease may reveal the true APOE 

genotype effect on Alzheimer’s disease. 



33 

 

4. Automated detections of asymptomatic individuals at risk for dementia 

due to Alzheimer's disease  

4.1 Motivation 

Symptoms can appear decades after the biological change (Dubois et al., 2016). To provide early 

treatment and therapy to patients to stop the disease’s progression requires a diagnostic tool to identify 

asymptomatic individuals. The issues with applying research criteria in clinical practice are twofold: 

firstly, the pathology-related biomarkers are not easily obtainable: collecting CSF samples are invasive 

and amyloid PET is expensive. To overcome these issues, easy accessible biomarkers, such as blood-

based biomarkers or pathology-related structural MRI markers that are able to identify subjects at 

preclinical stage of AD, are urgently required. Secondly, the mechanism of pathological biomarkers’ 

association with neuronal loss and memory decline is still unclear. Therefore, specific designs of 

clinical trials with Intervention outcomes still need to be fully studied.  

To identify cognitive normal people who are at risk of developing MCI or AD, several studies (Jack et 

al., 2014) used regional volume obtained from MRI and set a threshold to split subjects at risk (Coupé 

et al., 2015; Jack et al., 2014; Stephan et al., 2015), such as entorhinal cotex and hippocampus 

volume. However, regional volumes in hippocampus or entorhinal cortex are not specific to AD as 

other neurodegenerative diseases, like tauopathy, can cause volumetric change in these regions. Other 

machine learning methods, like classification based on a clinical diagnosed training set, have been 

proposed as well to predict subjects who are at risk (Davatzikos et al., 2009; Vemuri et al., 2009). The 

main drawback of this method is that the training step still relies on clinical diagnosis, which only 

appears decades after the biological change. Therefore, the circular argument remains. Recent studies 

have focused on subjects who have biological change, like Aβ42 and Tau proteins, and have 

investigated the transition pathways from cognitive normal to clinical appearance (Jack et al., 2014). 

As mentioned previously, this method is invasive and expensive, therefore being difficult to apply in 

the preclinical stage among general populations. 

4.2 Introduction 

Current criteria for clinical diagnosis of Alzheimer’s disease (AD) lack the power to reveal 

pathological brain changes that identify asymptomatic individuals at risk, before the stage at which 

symptoms become manifest and progress first to mild cognitive impairment (MCI) then dementia 

(Dubois et al., 2014). AD pathology, like that of Parkinson’s disease, precedes up to 20 years before 

the onset of cognitive symptoms (Dubois et al., 2016), testifying again to the significant redundancy of 

brain organization with a resulting capacity for reorganization in the face of pathology (Jack et al., 

2013). In the light of this fact, it is preferable to propose a diagnostic strategy that uses pathological 
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information. A unified conception as evidence of Aβ42 or Tau pathology from cerebrospinal fluid 

(CSF) or molecular neuroimaging has been proposed in defining individuals who are ASymptomatic 

but at Risk (ASR) for AD in the latest version of preclinical AD research criteria in 2016 (Dubois et 

al., 2016). In parallel, there is a growing interest in using topographical markers (TM) in terms of 

atrophy pattern derived from structural MRI, which has the advantages of being non-invasive and 

sensitive to early changes in AD (Coupé et al., 2015).  

This study proposes a novel classifier that uses TM from structural data to predict AD pathology. TM 

alone has been criticised for being insufficient to identify the presence of preclinical AD (Dubois et 

al., 2016). To improve the usage of TM in preclinical stage, we need to go beyond regional measures 

(Stephan et al., 2015) and enhance TM to predict pathology (TMPP). In contrast to other studies in 

which the classifiers were built based on symptoms only (Davatzikos et al., 2009; Vemuri et al., 

2009), we construct a classifier trained using clinically and pathologically confirmed cases (Klöppel et 

al., 2008) to predict pathology. The use of this class of individuals with both diagnostic criteria is 

novel because, as pointed out by Sperling et al (2011), AD pathophysiology is “necessary but not 

sufficient to produce the clinical manifestations of AD” (Sperling et al., 2011). Our approach 

circumvents the circular argument that is implicit in identifying pathological, hence diagnostic and 

prognostic biomarkers of a disease by correlation with clinical diagnosis alone.  

The classifier was used to stratify new study participants from two independent data sets, categorized 

clinically as either cognitively normal (CN) or AD. We then make a direct comparison between 

clinical diagnoses and the classifier predictions (pathology label indicated by “P+” or “P-,” 

respectively). Such a comparison could result in up to 4 groupings: those individuals with matched 

diagnoses between clinical and prediction (CN_P- cognitively normal predicted negative pathology 

and AD_P+ clinically probable AD predicted positive pathology) and those in whom there is a 

mismatch (CN_P+ cognitively normal with a predicted positive pathology and AD_P- clinically 

probable AD with predicted negative pathology).  

In this study, we sought to test whether the predicted AD pathology of CN individuals (CN_P+ and 

CN_P-) correlates to having risk to develop MCI or clinical AD later in life. Our hypothesis was that 

the CN_P+ group has a higher risk and proportion of clinical conversion than CN_P-. We also 

examined risk factors such as apolipoprotein E ε4 (APOE-ε4) genotype (Roses, 2006) and other single 

nucleotide polymorphisms (SNPs) (Carrasquillo et al., 2015; Sleegers et al., 2015) associated with 

AD, to identify additional prognostic factors for clinical conversion. In addition, we expected the 

patterns of neuronal loss of CN_P+ individuals at baseline are closer to AD_P+ and they had a 

progressive change over time compare with CN_P-. To further characterize the predicted groups, we 

reported AD-related biomarkers levels, glucose metabolic reductions and cognitive performance. 
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4.3 Method 

4.3.1 Data and Materials 

We used three independent cohorts: i) pathologically proven by post-mortem examination (PPG), ii) 

Alzheimer's Disease Neuroimaging Initiative (ADNI) data and iii) the French population-based Three-

City (3C), Dijon cohort.(Glymour et al., 2012; Klöppel et al., 2008) 

1) Pathologically proven group (PPG) 

The group with pathologically confirmed diagnoses comprised 18 AD patients and 15 age and gender 

matched CN controls.(Klöppel et al., 2008) Cognitive normal were examined either by no evidence of 

cognitive decline on extended clinical follow-up or via autopsy confirmation, when available. T1 

weighted MR images were acquired on three different 1.5 Tesla scanners (Table 3) on average 3.5 

years (mean) prior to death. Details are described in Klöppel et al (group 2 in the study, Dementia 

Research Centre, University College London).(Klöppel et al., 2008) 

 

Pathologically Proven group ADNI Cohort 3C Cohort 

CN 

(N=15) 

AD 

(N=18) 

Clinical CN 

(N=356) 

Clinical AD 

(N=283) 

Clinical CN 

(N=1448) 

Age – yr 64.4±11.1 65.9±8.7 75.1± 5.7 75.0 ± 7.6 72.3 ± 4.1 

Male sex – no. 

(%) 
9 (60.0) 12 (66.6) 179 (50.3) 151 (53.3) 560 (38.7) 

Baseline MMSE 

score 
b
 

  29.1 ± 1.1 23.2 ± 2.1 28.2 ± 1.2 

Education – yr   16.2 ± 2.7 15.1 ± 3.0  

APOE-ε4 carrier   95 (27.0) 175 (67.8) 319 (22.2) 

APOE-ε4 1 copy   84 (23.9) 123 (47.7)  

APOE-ε4 2 copy   11 (3.1) 
52 (20.2) 

 

Table 3 PPG, ADNI and 3C cohors baseline demographic information 

a Plus-minus values are means ± SD. 

b Scores on the Mini-Mental State Examination (MMSE) range from 1 to 30, with higher scores 

indicating greater cognitive function. 

 

 

2) Alzheimer's Disease Neuroimaging Initiative 

Data used in the preparation of this article were obtained from the ADNI database 

(www.adni.loni.usc.edu). ADNI was launched in 2003 as a public-private partnership, led by Principal 
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Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure progression of MCI and 

early AD. 

We used T1-weighted MRI from clinically diagnosed subjects, 283 clinical AD and 356 CN, 

downloaded on 1 August 2013. Diagnoses in these individuals were based on the mini-mental state 

examination (MMSE), clinical dementia rating scale (CDR) and NINCDS/ADRDA criteria.(Mckhann 

et al., 1984) Exclusion criteria are defined in the ADNI procedures manual(‘ADNI procedures 

manual’, n.d.). Demographic information is listed in Table 3 for case and control groups, diagnosed at 

baseline. There is no difference between the two groups in age or gender but there is a difference in 

years of education (P<0.001 by Wilcoxon rank-sum test). 

ADNI T1 weighted MR images were acquired at multiple occasions. The first scan of each subject 

was used as baseline. The final MR scans were collected mean 3.1 years after baseline. Genotyping 

was performed on 499 subjects. CSF examinations included assays of Aβ42, total Tau, and 

phosphorylated Tau (pTau) proteins at baseline (Shaw et al., 2009). Cortical Aβ42 burden was 

measured by florbetapir F 18 (also known as [18F] AV45) (‘ADNI procedures manual’, n.d.). The 

level of Aβ42 burden is the average AV45 standard uptake value ratio of frontal, anterior cingulate, 

precuneus, and parietal cortex relative to the cerebellum at baseline. The severity of hypometabolism 

from [18F]2-fluoro-2-deoxyglucose (FDG) PET was the average FDG-PET of angular, temporal, and 

posterior cingulate at baseline (‘ADNI procedures manual’, n.d.). MMSE and other clinical scores 

were downloaded from the ADNI website at baseline and for the following 4 years.  

3) Three-City 

We used the first recorded MRI from the 1463 aged CN from Dijon cohort of the French 3C study, 

who were clinically diagnosed at baseline (Table 3) (Alpérovitch et al., 2002). In contrast to ADNI, 

the 3C study does not include any criteria for MCI diagnosis. Therefore, subjects are considered as 

cognitively normal until conversion to dementia. We excluded 15 subjects who developed symptoms 

related to non-AD types of dementia in the follow up study. Study details are described in Stephan et 

al (Stephan et al., 2015).   

4.3.2 Data Processing 

1) Image processing 

Grey matter volumes were calculated in all study individuals using SPM12, an open source software 

package written in Matlab (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Neuroimaging 

processing steps are explained in section 2.4.3 with more details. 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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2) Genetic variant processing 

Single nucleotide polymorphisms (SNP) were typed for ADNI subjects and all samples underwent 

quality control using PLINK software, passing the following criteria: call rate higher than 90%, 

inbreeding coefficient (< =0.2), concordant sex.(Purcell et al., 2007)  

APOE-ε4 genotype status, defined by rs429358 and rs7412 were measured (more details in 

Supplementary material). In addition, we selected 20 AD associated SNPs, in addition to APOE, from 

previous studies (Harold et al., 2009; Hollingworth et al., 2011; Lambert et al., 2009, 2013; Naj et al., 

2011; Seshadri et al., 2010). In total, 16 high quality, well-tagged SNPs were used in further analysis 

(see Table 6 and the Supplementary material for more details). 

4.3.3 Statistical Analysis 

1) Classifier training 

To avoid cohort bias, before training a classifier to predict pathology, we first applied two-sample T-

test and identified regions with different distributions in grey matter volume between the PPG and 

ADNI cohorts, adjusting for age, gender and total intracranial volume (TIV). We excluded these 

regions in the training and prediction process. In total, 492448 voxels from grey matter were used. We 

conducted within-subject standardization with mean zero and standard deviation one in all individuals 

from the three cohorts. Standardized images were adjusted for the effects of age and total intracranial 

volume (TIV) using pathologically verified cognitively normal controls with a linear model.  

A library for support vector machines (SVM), libsvm (Chang and Lin, 2011), was used for training the 

classifier. We trained a linear SVM on the scans from the PPG. One parameter of the classifier, cost C, 

was selected based on the estimated performance, accuracy, of the models by a line search, using 

leave-one-out cross-validation. 

2) Classifier prediction 

The constructed classifier was then used on ADNI and 3C cohorts in order to predict the presence of 

AD associated pathology of CN individuals at baseline. Clinically diagnosed CN and AD were 

stratified based on predicted AD pathology into subgroups. 

3) Survival analysis 

CN individuals at baseline were stratified based on predicted AD pathology into two groups: CN with 

positive (CN_P+) and negative group (CN_P-). The event-free survival curves of these two groups in 

the follow-up were estimated by Kaplan-Meier method. Event-free survival is defined as the time from 

baseline until the first clinical diagnosis of MCI, when available, or AD. Log-rank tests were used to 

compare the survival curves for the two groups. We used Cox’s proportional hazards regression to 
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estimate the relative risk of developing MCI or AD-type dementia between CN_P+ and CN_P- 

groups. The relative risk was calculated after adjusting for several disease-related confounders, 

including age, gender, APOE-ε4 genotype and years of education. In addition to APOE-ε4, other AD-

related common genetic risk variants (16 SNPs) were tested for their association with clinical 

conversion to MCI or dementia due to AD, separately and in combination by calculating a weighted 

genetic risk score (wGRS, more details are explained in section 2.4.2) (Carrasquillo et al., 2015). 

Kaplan-Meier curves and Cox’s proportional hazards regression were constructed with the R package 

survival (Therneau and Lumley, 2016). 

4) Group level grey matter volume difference 

SVM classifier predicted AD pathology for CN on individual basis. As subjects may be classified due 

to different atrophy patterns, to reveal a common atrophy pattern at group level, we compared 

subgroups (AD_P+, AD_P-, CN_P+ and CN_P-), using mass-univariate voxel-based morphometry 

(VBM) to investigate topographical, grey matter volume, difference at voxel level. Between-group 

analyses were done in SPM12.  

We hypothesised that CN_P+ atrophied in regions similar to that of PPG AD group compared with 

CN_P- , affected preferentially at early stage of AD. Affected regions then expanded during the 

disease progression. To test these two hypotheses, we characterized atrophy patterns at baseline and 

follow-up. A reference atrophy pattern generated using the PPG was adjusted for age, gender and total 

intracranial volume (TIV). For comparisons between the subgroups, age, gender, TIV and magnetic 

field strength were used as covariates, except for the 3C, Dijon cohort as in that a 1.5-T Magnetom 

was used exclusively. 

5) Biomarkers, glucose metabolic levels and cognitive performance 

We assessed the differences between predicted groups: in cortical Aβ42 burden from AV45; in 

glucose metabolism levels from FDG-PET; in CSF measures of Aβ42, pTau and total tau. We 

hypothesized that AD_P- and CN_P+ groups show intermediate values between AD_P+ and CN_P- 

groups. To assess cognitive differences between predicted subgroups, we used total score of each 

clinical test measured at baseline and a follow up study. For all the comparisons between subgroups, 

Wilcoxon rank-sum test was applied. 

4.4 Results 

4.4.1 Classifier training 
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We used all 33 PPG subjects to train and validate a SVM classifier to discriminate between AD and 

CN. We achieved 87% accuracy using leave one out cross-validation (cost=1e-4, sensitivity=88.8%, 

specificity=86.6%). 

4.4.2 Classifier prediction 

The classifier was then used on each ADNI and 3C subject to predict pathology based on anatomical 

patterns of atrophy. ADNI subjects fell into 4 groups: 313 CN_P-; 180 AD_P+; 103 clinically 

diagnosed AD subjects were classified as AD pathology negative (AD_P-); 43 clinically diagnosed 

CN subjects with an AD specific atrophy pattern who were judged to be pathologically positive 

(CN_P+). The demographic information is shown in Table 4. AD_P+ group is younger than AD_P- 

groups (P=0.002 by Wilcoxon rank-sum test). This difference in age was not observed between 

CN_P+ and CN_P-. Among 1448 CN subjects from the 3C cohort, we predicted 523 subjects to be 

CN_P+. The CN_P- group is significantly younger than the CN_P+ group, indicating a mild age effect 

in the classifier (P=0.004 by Wilcoxon rank-sum test). This observation suggests a non-linear method 

can be applied when the training sample size is big enough.  

4.4.3 Survival analysis 

We assessed whether the classifier prediction was associated with the development of clinical 

symptoms by comparing the event-free survival rates of CN_P- and CN_P+ subjects, where the event 

was defined as clinical conversion to MCI, when available, or AD. The event-free survival rate was 

compared after five years in ADNI and ten years in 3C, due to the difference in mean follow-up time 

in the two cohorts (3.7 and 7.2 years respectively). In ADNI, the five-year event-free survival rate was 

higher in CN_P- (82% [95% CI, 76-88%]) than CN_P+ (63% [95% CI, 43-92%]). Similar results were 

found in the 3C data, where the ten-year event-free survival of CN_P- was 95% [95% CI, 93-97%]; 

while in CN_P+ it was 62% [95% CI, 42-93%]. The overall event-free survival rate was significantly 

higher in CN_P- than in CN_P+ subjects in both cohorts (Figure 11, P<0.001 by Log-rank test). This 

difference remained significant when considering only conversion to MCI in ADNI (P<0.001 by Log-

rank test, MCI diagnosis was unavailable in 3C data). 

Multivariate analyses using Cox proportional hazards models (adjusted for age, gender, education and 

genotypes) showed that CN_P+ subjects had a significantly higher risk of developing MCI or clinical 

AD than those who were CN_P-, 3.16 times higher risk in ADNI (MCI or clinical AD conversion) and 

2.37 times in the 3C study (dementia conversion, Table 5, model 1, 3). APOE-ε4 showed significant 

impact on conversion with an effect size equal to 2.27 using 3C data ([95% CI, 1.40-3.70] P=0.001 by 

Wald test, Table 5, model 3). This effect was only observed in APOE-ε4 2 copy carriers in ADNI data 

(P<0.001 by Wald test, Table 5, model 1). We noticed a trend that the genetic risk score, wGRS based 

on 16 AD-related SNPs, had a positive association with conversion from CN to MCI or clinical AD 
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but not significantly (P=0.08 by Wald test, Table 5, model 2). Further, each SNP (apart from APOE-

ε4) was examined individually but none showed prognostic power for conversion (uncorrected P>0.05 

by Wald test, Table 6). Among AD-related confounders, age and education showed significant 

association with clinical AD conversion in 3C (P<0.001 and P=0.03 for age and education 

respectively, by Wald test). 

 

4.4.4 Group level grey matter volume difference 

Comparison between the pathologically validated AD and CN groups (Figure 12 A left) revealed 

atrophy restricted to amygdala, parahippocampal gyrus, superior, middle and inferior temporal gyri, 

inferior and middle occipital lobes, thalamus and median cingulate regions. The atrophy pattern of 

clinically diagnosed AD compared with CN groups from ADNI study occurred mainly in 

hippocampus, amygdala, entorhinal cortex and parahippocampal gyrus (Figure 12 A right). 

 

Compared with CN_P-, AD_P+ showed significant atrophy in both mesial temporal lobe regions 

(Figure 12 B left). Only the hippocampal regions showed significantly difference when comparing 

AD_P+ with CN_P+ (Figure 12 B right). 

CN_P+ group when compared with CN_P- was characterised by significantly lower grey matter 

volume in both mesial temporal lobe regions comprising the fusiform gyri and the entorhinal cortex as 

well as the inferior, middle and superior temporal gyri that nevertheless was less marked than in 

AD_P+ (Figure 12 C left). A difference in atrophy over time between CN_P+ and CN_P- was 

identified using subjects’ latest MR scans. Atrophy in the CN_P+ group extended over time into 

hippocampi and mesial temporal areas in both hemispheres next to the anterior insula and thalamus 

(Figure 12 C right, the MR scans of CN_P+ and CN_P- mean (±SD) durations are 2.3 ± 1.5 and 3.2 ± 

2.1). 

In the 3C cohort, grey matter volume differences in the CN_P+ compared with CN_P- (Figure 13 A) 

were mostly observed in both temporal lobes especially (hippocampi, entorhinal cortices, 

parahippocampal gyri, fusiform gyri) and also extended to limbic areas (insulae, anterior and posterior 

cingulate cortices) as well as ventromedial and orbitofrontal cortices. 

The AD_P- group from the ADNI cohort showed less atrophy predominantly in both lateral temporal 

lobes, excluding the hippocampal regions, when compared with AD_P+. Additionally, higher volumes 

were estimated in limbic regions including the posterior insula, posterior cingulate cortex abutting the 

parietal cortices and in both thalami. However, the AD_P- group showed significant atrophy in both 

mesial temporal lobe regions including the hippocampus, amygdala, entorhinal cortex and 

parahippocampal gyrus compared with CN_P- (Figure 13 B, C). 
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 ADNI Cohort 3C Cohort 

Clinical diagnostic Clinical AD (n=283) Clinical CN (n=356) Clinical CN (n=1448) 

Prediction P+ (n=180) P- (n=103) P+ (n=43) P- (n=313) P+ (n=523) P- (n=925) 

Age – yr 74.0 ± 7.6 76.9 ± 7.3 75.2 ± 5.8 75.1 ± 5.7 72.7 ± 4.1 72.0 ± 4.0 

Male sex – no. (%) 118 (65.5) 33 (32.0) 29 (67.4) 150 (47.9) 315 (60.2) 245 (26.5) 

Baseline MMSE score 
b
 23.1 ± 2.1 23.4 ± 2.1 29.1 ± 1.0 29.1 ± 1.1 28.1 ± 1.2 28.2 ± 1.2 

APOE-ε4 – no. (%) 110 (68.3) 65 (67.0) 13 (31.0) 82 (26.5) 122 (23.4) 197 (21.5) 

# conversion   11 (25.6) 47 (15) 40 (7.6) 32 (3.4) 

AV45
 c
 

1.4 ± 0.22 

(n=71) 

1.35 ± 0.2 

(n=24) 

1.11 ± 0.18 

(n=25) 

1.12 ± 0.2 

(n=102) 
  

FDG 
d
 

5.2 ± 0.67 

(n=135) 

5.77 ± 0.63 

(n=57) 

6.35 ± 0.6 

(n=34) 

6.54 ± 0.54 

(n=198) 
  

CSF tau
 e
 110.53±48.3 137.15±66.8 87±25.98 68.92±30.6   

CSF pTau
 e
 41.54

 
±20.2 42.07±19.8 27±6.8 24.83±14.9   

CSF Aβ42
e
 136.71

 
±34.9 151.83±47.8 211.4±66.5 205.9±54.7   

Table 4 Predicted groups of ADNI and 3C cohorts baseline demographic information a  

a
 Plus-minus values are means ± SD. 

b 
Scores on the Mini-Mental State Examination (MMSE) range from 1 to 30, with higher scores indicating greater cognitive function.  

c
 Average AV45 SUVR of frontal, anterior cingulate, precuneus, and parietal cortex relative to the cerebellum at baseline 

d
 Average FDG-PET of angular, temporal, and posterior cingulate at baseline 

e
 The unit of CSF tau, Aβ42 and pTau is pg/mL; subjects the number of subjects in each group is 59, 41, 5, 108 (ordered as AD_P+, AD_P-, CN_P+ and CN_P-)
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 ADNI cohort 3C cohort 

 Model 1 Model 2 Model 3 

Variable 
Hazard Ratio 

(95% CI) 
P Value 

Hazard Ratio 

(95% CI) 
P Value 

Hazard Ratio 

(95% CI) 
P Value 

Clinical CN, Classified P+ (CN_P+) 3.16 (1.58-6.32) 0.001 3.21 (1.50-6.88) 0.003 2.37 (1.45-3.89) <0.001 

Female 0.6 (0.35-1.06) 0.07 0.54 (0.29-1.0) 0.05 1.08 (0.64-1.81) 0.78 

Education, per 1-yr increase 0.92 (0.84-1.02) 0.10 0.92 (0.83-1.01) 0.1 0.84 (0.71-0.98) 0.03 

Age, per 1-yr increase 1.03 (0.98-1.09) 0.19 1.07 (1.01-1.13) 0.02 1.17 (1.10-1.24) <0.001 

APOE-ε4 dose 

2 

1 

1 or 2
 a
 

 

7.09 (2.46-20.47) 

1.51 (0.85-2.68) 

 

<0.001 

0.15 

 

8.73 (2.53-30.0.5) 

1.41 (0.76-2.66) 

 

<0.001 

0.28 

 

 

 

2.27 (1.40-3.70) 

 

 

 

0.001 

Genetic risk score (16 SNPs) - - 2.21 (0.92-5.30) 0.08   

Table 5 Effect of risk factors on conversion from cognitive normal to MCI/AD in ADNI and 3C cohorts 

a
 3C cohort has no information about the number of APOE-ε4 allele 
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Gene & SNP & Risk Allele & OR * Hazard Ratio (95% CI) P Value 

APOE 
rs429358 

rs7412 
ε4 2.53   

CLU rs11136000 G 1.22 0.97 (0.64-1.48) 0.90 

PICALM rs3851179 G 1.25 1.33 (0.86-2.06) 0.20 

CR1 rs3818361 A 1.19 1.33 (0.74-2.40) 0.33 

BIN1 rs744373 G 1.15 0.97 (0.64-1.47) 0.90 

ABCA7 rs3764650 G 1.22 0.96 (0.49-1.88) 0.89 

MS4A6A rs610932 C 1.15 1.14 (0.74-1.76) 0.56 

EPHA1 rs11767557 A 1.15 1.60 (0.97-2.64) 0.07 

CD33 rs3865444 C 1.09 1.30 (0.83-2.04) 0.25 

SLC24A4-RIN3 rs10498633 G 1.07 1.32 (0.77-2.24) 0.31 

FERMT2 rs17125944 C 1.17 0.91 (0.38-2.18) 0.84 

CD2AP rs9349407 C 1.07 0.99 (0.61-1.61) 0.97 

PTK2B rs28834970 C 1.11 0.90 (0.60-1.35) 0.61 

MEF2C rs190982 A 1.07 0.74 (0.47-1.16) 0.19 

ZCWPW1 rs1476679 T 1.12 1.52 (0.96-2.42) 0.07 

CELF1 rs10838725 C 1.09 1.01 (0.66-1.54) 0.98 

CASS4 rs7274581 T 1.12 1.36 (0.61-3.00) 0.45 

Table 6 Effect of each SNP on conversion from cognitive normal to MCI/AD in ADNI cohort 

Hazard ratio (HR) and 95% CI were estimated for the genetic variants. 

* Hazard ratios correspond to and additional allele and the full models were adjusted for predicted 

groups, gender, age, and years of education. 
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Figure 11 KM survival curves of predicted CN groups to MCI or AD in ADNI and 3C cohorts 

A Kaplan-Meier plot with the time after baseline at conversion to MCI or clinical AD for cognitive 

normal individuals at baseline prediction who were predicted to have pathology (CN_P+, n = 43 in 

ADNI and n = 523 in 3C) and those predicted to have non-pathology (CN_P-, n = 313 in ADNI and n 

= 925 in 3C).  Panel A and B show Kaplan-Meier curves in ADNI cohort and 3C cohort respectively. 

 

4.4.5  Biomarkers, glucose metabolic levels and cognitive performance 

Aβ42 burden measured from AV45 were higher in AD subjects with no difference between P- and P+. 

Glucose metabolism levels from FDG-PET were lower in AD subjects, AD_P+ having a significantly 

lower level than AD_P-. CSF levels of both total tau and pTau were significantly higher in both 

AD_P- and AD_P+ than in CN_P-, with intermediate values in CN_P+. Although pTau levels were 

similar in AD_P- and AD_P+, total tau was significantly higher in AD_P- than AD_P+. CSF levels of 

Aβ42 were lower in AD than in CN, with no significant difference between classifier-predicted 

groups. Mean values are shown in Table 4, for the descriptive statistics see Figure 14.  

Total MMSE scores collected from baseline till 48 months later were compared between each of the 

four groups (Figure 15). The AD_P+ group showed the lowest values throughout follow up. The 

AD_P- group showed intermediate values between AD_P+ and the two clinically CN groups. CN_P+ 

individuals had values significantly lower than CN_P- at 48 months. This difference in MMSE is 

evidence which supports prognostic value of our stratification. Other clinical scores were compared 

between predicted groups (Supplementary Figure 2).  
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Figure 12 Atrophy pattern across groups from PPG and ADNI cohorts 

Panel A shows atrophy pattern of AD compared with CN from pathologically proven group (PPG) 

and clinically diagnosed ADNI cohort (from left to right). 
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Panel B shows atrophy pattern of AD_P+ at baseline compared with predicted positive and negative 

pathology groups of cognitive normal group (CN_P- and CN_P+, from left to right respectively) from 

ADNI cohort. 

Panel C shows atrophy pattern in CN_P+ than in CN_P- from ADNI cohort at baseline (left) and with 

final scans (right). 

Results are shown on three-dimensional renderings of the brain after adjusting of age, gender, TIV 

(total intracranial volume) and MR strength if available, with p< 0.001. Colors show T-score: yellow 

represents greater volume loss than red. AD=Alzheimer’s disease. CN=cognitive normal individuals. 

AD_P+ = clinical AD predicted pathologically positive. AD_P- = clinical AD predicted 

pathologically negative. CN_P+ = cognitively normal subjects predicted pathologically positive. 

CN_P-= cognitively normal predicted pathologically negative. 

 

 

 

Figure 13 Atrophy pattern across groups from ADNI and 3C cohorts 

Panel A shows atrophy pattern of CN_P+ compared with CN_P- from 3C study.(T>=15) 

Panel B shows relative preservation in ADNI AD_P- compared to ADNI AD_P+. However, this group 

shows significant atrophy compared with ADNI CN_P- (panel C).  

Results are shown on three-dimensional renderings of the brain after adjustment for age, gender, TIV 

(total intracranial volume) and MR strength, with p< 0.001. Colors show T-score: yellow represents 
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greater volume loss than red. AD_P+ = clinical AD predicted pathologically positive. AD_P- = 

clinical AD predicted pathologically negative. 

 

 

 

 

Figure 14 Distributions of biomarkers at baseline between ADNI predicted groups. 

Each pair of groups were compared with Wilcoxon rank-sum tests and significant distributions were 

indicated by a horizontal bar above the relevant groups (p<0.05). For FDG and AV45 examination, 

the subject numbers are shwon in Table 4. For CSF examination, the number of subjects in each 

group is 57, 41, 5, 108 (ordered as AD_P+, AD_P-, CN_P+ and CN_P-). 
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Figure 15 MMSE distributions in follow-up study between ADNI predicted group 

Total MMSE scores collected from baseline till 48 months later that are compared between each pair 

of groups. The statistical test was applied using Wilcoxon rank-sum test and distributions with 

significant differences were indicated by a horizontal bars above the relevant groups (p<0.05). 

 

 

4.5 Discussion  

This study has demonstrated two important results. Firstly, our automated classifier trained from a 

clinically and pathologically proven group was able to predict CN_P+ subjects individually from 

cognitively normal people (CN_P-) in general populations. We showed that this group of individuals 

are asymptomatic at risk of clinical AD (ASR). Secondly, we detected two groups from clinically 

diagnosed AD patients (AD_P+ and AD_P-). We observed that they have different atrophy patterns 

and profiles of biomarkers. 

Our results showed that asymptomatic people identified by a pathology based classifier have at least 

2.3 times higher risk of clinical conversion with the emergence of symptoms and a fall in MMSE at 4 

years after presentation than CN_P- (Figure 15). Therefore, we label this group as ASR. The atrophied 

regions characterising ASR were replicated in two independent cohorts. These regions include the 

entorhinal cortex, a region initially affected by Alzheimer’s disease according to Braak (stage 

I).(Braak and Braak, 1995; Khan et al., 2014) At this stage, such individuals are “clinically silent” 

based on their behavioural symptoms and so not clinical patients, nevertheless significant anatomical 

change predictive of pathology, is found with MRI-based morphological measurements. At a later 
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stage, using follow up data from the same individuals, we observed a progression of hippocampal 

atrophy (Supplementary Figure 1). Therefore, our results match prevalent theories of disease 

development along limbic stages (Braak stages III and IV), during which many individuals develop 

impaired cognition and personality changes (Braak and Braak, 1995). This result provides anatomical 

evidence in vivo that helps understand why ASR (CN_P+) subjects show higher rates of disease 

conversion. For the AD pathology-related proteins, especially total Tau and pTau from CSF, CN_P- 

group showed the lowest levels, while CN_P+ group showed notably greater levels. However, the 

trend did not reach significance due to the small number of subjects (CN_P+ has only 5 subjects). 

The proportion of  ASR (CN_P+) in both cohorts, 12% of ADNI diagnosed CN and 36% in the 3C 

study, are comparable to reported clinical misdiagnosis rates that range from 30% to 13%.(Beach et 

al., 2012) However, the difference between ADNI and 3C populations could be due to differences in 

diagnostic criteria generating group recruitment biases. The ADNI exclusion criteria were done to 

exclude participants having no diseases expected to interfere with AD. Compare with ADNI predicted 

subgroups, 3C CN_P+ is significantly older than CN_P-, indicating that a mild age effect remained 

even with linear age correction, due to the small sample size in training set. In other words, CN_P+ in 

3C might be a mixture of preclinical AD and normal aging. There may also be an effect of known 

epidemiological differences between enriched research cohorts ADNI and general population 3C 

studies (Pimouguet et al., 2015).  

Among GWAS identified SNPs from previous studies(Carrasquillo et al., 2015; Sleegers et al., 2015), 

similar to previous results (Carrasquillo et al., 2015; Vivot et al., 2015), none except APOE-ε4 

showed significant association with progressive MCI or clinical AD conversion in clinically diagnosed 

CN. However, we argue that neuroimaging should be used as an endophenotypic marker for genetic 

association analysis.(Cui et al., 2015) The main advantage of using brain structural changes in this 

way is that grey matter volume, according to previous studies, accurately predicts Alzheimer’s 

pathology and correlates with Braak stages.(Frisoni et al., 2010; Klöppel et al., 2008) 

Compared with AD_P+, AD_P- patients performed better in cognition tests, had higher MMSE score, 

and showed less grey matter atrophy except in the hippocampus. However, they have significantly 

higher levels of CSF total tau and glucose metabolism (Figure 14). This intermediate group shows a 

similar atrophy pattern to a subtype of AD called “limbic-predominant AD” (Whitwell et al., 2012), 

suggesting a different distribution of neurofibrillary tangles than is usual in typical AD.  The atypical 

AD_P- pattern could be driven by the specificity of our training cohort or be due to a different 

pathology (for example, primary age-related tauopathy (PART), medial temporal tauopathy or 

hippocampal sclerosis). A similar group pattern has been found in another study, similar to SNAP 

(suspected non-Alzheimer disease pathophysiology - Clifford et al (Sperling et al., 2011)), in which it 

has been argued that the cause may be due to a non-AD degenerative processes.  
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In summary, the advances of our research rest on two factors. Experimentally, our classifier is trained 

on data from clinically diagnosed individuals who have that diagnosis confirmed by disease defining 

pathology. Analytically, we used a multivariate whole-brain voxel-wise approach, which allows the 

identification of a set of brain regions differentially and specifically affected by AD. This approach 

differs from a recent study (Stephan et al., 2015), where only 3 global MRI variables were used to 

predict clinical AD (total white matter lesion volume, total hippocampal volume and total brain 

volume).  

As a preliminary study, our project is limited by its small training set with a risk of having over 

estimated accuracy. However, the cross-validation accuracy was high (87%) and can be compared 

with the accuracy from a larger cohort (Klöppel et al., 2008). Our training cohort is special in being 

closer to the “ground truth” of pathological characterization. It must be admitted there is some way to 

go before the “ground truth” of cause is identified. As the pathologically verified AD patients were of 

younger age, the anatomical patterns are less affected by normal aging. Finally, to reduce the chance 

of over-fitting to our data, we used a linear kernel to generate a simple but sensitive model to identify 

disease pathology. Other prediction algorithms which go beyond binary answers with a probability of 

the class assignment of a new subject, like logistic regression, might be more informative and can be 

tested in the future.  

Our findings have significant implications. Our results provide evidence for the appearance of AD-

pathophysiology at a preclinical stage before the emergence of clinical symptomatology and speak to 

the theory of compensatory mechanisms in mature brains, align with fact that pathology precedes by 

decades before symptoms onset. Our machine-learning based classifier, informed as it was by 

pathology, could potentially be used in clinical practice to supplement visual rating of hippocampal 

atrophy and so to improve clinical decision-making and cohort construction for clinical AD trials. We 

showed evidence of our prediction at baseline and its association with later conversion in CN to 

clinical Alzheimer’s disease. In reality, the prediction could be done for elderly people regularly to 

have up-to-date estimation. This can be helpful for providing early treatment. The method may appear 

complex because it is high dimensional, but applying the classifier to new data is in fact very trivial. 

Prediction can be obtained by multiplication of the classifier’s weight image by an individual’s MR 

image. We will make our classifier weight image available so that the method can be applied in 

clinical practice. It is to be expected that the sensitivity and accuracy of the classifier, which is in 

principle generic for AD versus non-AD, will increase as more pathologically confirmed AD and CN 

individuals without AD pathology are added.   

We have focused on the ASR group, detected using pathology related topographical markers. Previous 

studies suggested that CSF markers are more sensitive to early changes than MRI markers. However, 

the protein levels can vary due to different laboratories and assays (Olsson et al., 2016). Future studies 
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should compare the sensitivity and specificity of our classifier by using different types of biomarkers, 

such as Tau imaging (Villemagne et al., 2015). Subgroups like AD_P+ and CN_P- are useful for 

clinical trials or research studies that need to identify typical AD cases and controls. For AD_P-, 

further studies with serial clinical observations will be needed with measures of genetic, proteomic 

and other factors, finally supplemented by pathological examination, to characterize individuals from 

this atypical AD group. 

In conclusion, we provide a prognostic marker for preclinical AD research diagnosis criteria. Among 

the range of available biomarkers, the choice of a clinically useful ASR subset should be based on 

discriminative value, cost, the ease and practicality of any procedures involved. In the future, a better 

model, which reveals the differential causes of subpopulations leading to a common clinical 

presentation that improve clinical response to a variety of treatments, could be built. To achieve this 

goal, more data will be needed and could be provided by initiatives such as the medical informatics 

platform of the Human Brain Project, Dementia Platform UK or aspects of the Innovative Medicines 

Initiative (IMI2). 
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5. A data-driven model of estimation a trait to quantify sporadic 

Alzheimer's disease severity 

5.1 Motivation 

Alzheimer’s disease is a continuous progressive disease. A binary classification is useful in clinical 

practice but it does not reveal how the brain changes during the disease progression. The benefits of 

using disease severity quantification are twofold. The estimated severity can be used in clinical 

practice to supplement visual rating of hippocampal atrophy and so improve clinical decision-making. 

In addition, the disease severity can be used as an endophenotype, which does not rely on symptoms 

and has a biological meaning to identify molecular targets for drug development.  

To achieve this goal, many solutions have been proposed. A supervised classification method has been 

tested (Davatzikos et al., 2009; Spulber et al., 2013) over the past seven years. The idea of this method 

is to determine the brain atrophy features that best distinguish Alzheimer's disease patients from CN in 

the ADNI study (for example, using support vector machine algorithm detailed in section 2.4). To 

extract the disease severity, new subjects can be projected onto the weight space. However, this 

method relies on clinically diagnosed subjects to extract the atrophy features. As introduced in section 

3.4 that normal aging has significant confounding effects and affects regions known to shrink in AD 

patients, therefore the features are not necessarily associated with disease. To reduce age-related 

effects in modeling neurodegenerative brain disease, particular attention needs to be paid to the sample 

selection in terms of age between controls and cases.  

A data driven method has been recently proposed (Young et al., 2014a) which integrates an event-

based model and Markov chain Monte Carlo algorithm to estimate a sequence of events that 

maximizes the data likelihood. More details are explained in section 2.4.6. The event is defined as a 

switch of one biomarker from normal to abnormal. The input of the algorithm includes a list of 

biomarkers and risk factors, such as Aβ42 and Tau proteins from CSF, grey matter volume of 

hippocampus and entorhinal cortex and clinical measurements such as the MMSE score. The stage 

will be assigned which maximizes the probability of the data given the maximum likelihood event 

sequence.  

There are two limitations to this method. Firstly, the algorithm is designed in a way that the input 

requires a list of risk factors. These risk factors can be identified from previous studies. Therefore the 

selection of the risk factors influences the evaluation of the staging estimation. The second limitation 

is the calculation of each event: a risk factor switch from normal to abnormal state. The algorithm 

integrates a Gaussian mixture model on each risk factor to stratify the subjects into two states. 

However, this step ignores the fact that Alzheimer’s disease and related risk factors progress 
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continuously rather than switching from one state to another. Therefore, an extension of such a model 

by using continuous variables is a step closer to reality in the quantification of disease severity. 

5.2 Introduction 

Several methods are used to estimate Alzheimer’s disease (AD) severity in vivo. The most widely used 

indicators of disease severity include The Mini–Mental State Examination (MMSE) and the Global 

Score of the Clinical Dementia Rating Scale (CDR) (Morris, 1993). However, clinical tests do not 

reveal the biological change in the brain (Dubois et al., 2014).  

Alzheimer’s disease severity and Braak stages are defined with respect to the distribution of 

neurofibrillary tangles in the brain (Braak and Braak, 1995). This can only be confirmed through a 

post-mortem examination. Dubois has proposed in IWG-2 in 2014 by to use topographical or 

downstream markers to indicate clinical severity (Dubois et al., 2014). Topographical or downstream 

markers measure Alzheimer’s pathology-related metabolic changes or neuronal loss. Therefore they 

identify downstream brain changes indicative of the regional distribution of Alzheimer’s pathology, 

for example medial temporal lobe atrophy on MRI (Dubois et al., 2014). The benefits of using an 

estimated continuous severity are two-fold, to monitor dementia onset and to quantify disease stages 

across Alzheimer’s disease spectrum.  

The grey matter loss patterns detected by MR scans correlate with neurofibrillary tangles (Braak and 

Braak, 1995; Whitwell et al., 2008). Medial temporal atrophy was considered to be the best MRI 

marker for further clinical progression at a prodromal (preclinical) stage, and hippocampal atrophy has 

been proposed to be the most robust (Dubois et al., 2014). But the MRI biomarker of hippocampal 

atrophy has been criticized as its volumetric change can be caused in several non-AD conditions.  

An alternative idea of summarizing biomarkers into one trait to quantify disease severity has been 

investigated in several studies. Two types of algorithms have been studied to estimate disease severity. 

These approaches are based on classification algorithms using atrophy pattern (Davatzikos et al., 

2009) or unsupervised algorithms, such as the event-based model (Young et al., 2014b). However, 

these methods rely on clinically diagnosis to detect disease-related regions or on a set of selected 

biomarkers.  

In this study, we propose to extract a latent variable based on MRI-measured atrophy patterns to 

quantify the disease severity for each subject by applying item response theory (IRT). IRT has been 

well used in psychological tests to identify latent traits, such as personality and mood traits (Ferrando, 

2002). To improve on the limitations of previous studies, we propose to apply an IRT model for 

continuous data, continuous response model, based on factor analysis using grey matter volumes to 

identify a disease-related latent trait or a disease-related latent factor and its relation with grey matter 
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regions. The main advantage of this method is that it does not completely rely on the supervision of 

clinical diagnosis to identify disease-related regions.  

The aim of this study is to test whether the estimated latent trait can be used to quantify the disease 

stage and predict the risk of disease onset. Its relevance to AD has been demonstrated though several 

lines of evidences. We showed that the latent trait associates with clinical diagnosis, the performance 

of clinical tests at baseline and longitudinal clinical conversion. It strongly correlates with CSF / 

cortical A , CSF Tau and phosphorylated Tau levels, which have been found to associate with cortical 

amyloid deposition, intensity of neurodegeneration and neurofibrillary pathological changes 

(Scheltens et al., 2016). In addition, we also compared the latent trait to the A /Tau ratio from CSF, 

which has been tested in several studies for its predictive power in longitudinal AD development (Jack 

et al., 2013). The estimated latent trait’s associations with glucose metabolic reductions and APOE-ε4 

were also reported.  

5.3 Method 

5.3.1 Data 

Two independent cohorts have been used in this study i) Alzheimer's Disease Neuroimaging Initiative 

(ADNI) (Petersen et al., 2010) data , ii) the French population-based Three-City (3C) Study, Dijon 

cohort. (3C Study Group, 2003; Alpérovitch et al., 2002). 

1) ADNI  

Data used in the preparation of this article were obtained from the Alzheimer’s disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has 

been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined to measure 

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-

date information, see www.adni-info.org . 

The data used from ADNI database, 28
th
 of Nov, 2014, comprises T1-weighted MR scans from 

clinically diagnosed individuals acquired at baseline, including 322 cognitive normals (CN), 62 

subjective memory complaints (SMC), 693 mild cognitive impairments (MCI, 217 early MCI (EMCI) 

and 476 late MCI (LMCI)) and 252 AD. Images with artifacts due to motion were removed in visual 

quality control. Baseline clinical tests information, including MMSE (Mini-Mental State Examination, 

1267 subjects), CDR-SB (Clinical Dementia Rating scale Sum of Boxes, 1267 subjects) and ADAS 

(Alzheimer's Disease Assessment Scale, 1257 subjects) was downloaded. Longitudinal diagnostic 

http://www.adni-info.org/
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information of CN and MCI subjects were collected. CSF markers of Alzheimer's pathology, such as 

Tau, Aβ42 and pTau concentrations measured at baseline, were downloaded. In total, 369 subjects had 

Tau protein information; 374 had Aβ42 and 375 had pTau. The log transformation with natural base 

was applied on the clinical tests and the proteins to improve normality. Cortical Aβ42 burden was 

measured by florbetapir F 18 (also known as [18F] AV45) (‘ADNI procedures manual’, n.d.). The 

level of Aβ42 burden is the average AV45 standard uptake value ratio of frontal, anterior cingulate, 

precuneus, and parietal cortex relative to the cerebellum at baseline. The severity of hypometabolism 

from [18F]2-fluoro-2-deoxyglucose (FDG) PET was the average FDG-PET of angular, temporal, and 

posterior cingulate at baseline (‘ADNI procedures manual’, n.d.). APOE-ε4 genotype, defined by 

rs429358 and rs7412, were measured for 1322 subjects.   

2) 3C 

This study uses the first recorded MR images from the clinically diagnosed 1447 aged CN of the 

French 3C study at baseline, Dijon cohort (Table 1). All subjects’ longitudinal diagnostic information 

were downloaded. CN subjects who developed symptoms related to other clinical types of dementia in 

the follow up study were excluded. Study details are described in Stephan et al.(Stephan et al., 2015). 

5.3.2 Preprocessing 

Grey matter volumes were measured in all study individuals using SPM12, an open source software 

package written in Matlab (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).  

The T1-weighted images were automatically segmented into 114 anatomical structures using the 

Neuromorphometrics atlas (the full list of the structures can be found in Supplementary Material). The 

volumetric data is M x N, where ‘M’ rows represent the number of subjects, and ‘N’ the number of 

anatomical structures. In short, the methodology consists of two main steps. Firstly, each individual 

T1-weighted image is normalized to MNI (Montreal Neurological Institute) space using non-linear 

image registration Shoot toolbox (SPM12). Additionally, in this step the individual images are 

segmented in three different brain tissues (cerebral spinal fluid, gray matter and white matter). 

Secondly, each individual gray matter voxel is labeled based on Neuromorphometrics atlas 

(constructed by manual segmentation for a group of subjects) and the transformation matrix obtained 

in the previous step. ‘Neuromorphometrics’ maximum probability tissue labels were derived from the 

‘MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling’ 

(https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details). These data were 

released under the Creative Commons Attribution-Non- Commercial (CC BY-NC) with no end date. 

The MRI scans originate from the OASIS project (http://www.oasis-brains.org/) and the labelled data 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details


56 

 

was provided by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) under academic 

subscription. 

5.3.3 Statistical analysis 

1) Feature scaling 

To avoid inter-subject and inter-cohort variance, each regional volume (       ) was scaled by the 

total grey matter volume (                ) (equation (5.1)). This step corresponds to the first step in 

item response theory, which determines the proportion of items that each respondent answered 

correctly (Baker, 2001). The ratios between         and                  were used as limited 

responses.  

 
              

       

                
 (5.1) 

To apply a continuous response model, the ratios were firstly transformed with a logit function:  

 
                                    

             

               
  

(5.2) 

into continuous-unlimited responses (Lesaffre et al., 2007). Secondly, a linear regression model was 

constructed to remove the effects of a number of covariates. The covariates included age, gender, total 

intracranial volume (TIV) and magnetic resonance strength field in ADNI cohort. In 3C cohort, 

magnetic resonance strength field was ignored as all subjects were scanned with 1.5 tesla scanners. 

The adjusted logit transformed ratios ( ) were then used in linear factor analysis to estimate the latent 

trait. 

2) Linear factor analysis (FA) and item characteristic function 

In psychometric studies, item response theory is widely used to estimate a latent trait or a latent factor, 

which cannot be measured directly by psychometric tests. When the responses are in continuous 

formats, factor analysis, a congeneric model can be applied (Ferrando, 2002; Ghahramani and Hinton, 

1997). In this model, a latent trait and the responses can be expressed as:  

         , (5.3) 

where   is a     matrix of the observed responses, in our case the adjusted ratios of regional 

volumes.   denotes the number of brain regions and   the number of subjects.   has the same 

dimension as   with each row the mean of one brain region across   subjects.   is termed as the 

factor loading matrix, where each row is a response variable and each column is a factor with   factors 
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in total.   represents the relation between the latent traits and the observed responses (shown in (8.1)). 

Matrix  , with dimension    , represents   latent factors for   subjects and each factor is assumed 

to be       . Each row of the residual term,  , is assumed to be normally distributed with a diagonal 

covariance matrix  . Thus, the observed data   follows the distribution of           , where 

     is one column of  . The goal of factor analysis is to estimate     and   that best model  . 

Expectation maximization algorithm was used to estimate   and  . This algorithm was finding 

parameters,   and  , that maximize the (log) likelihood of data   through an iterative procedure. The 

initial guess of the parameters was estimated using principal component analysis. Steps are shown in 

Supplementary Material. For a given  ,   can be estimated through the least squares fitting technique, 

which is most commonly applied in linear regression.  

Item characteristic function (ICF) is defined as the regression of the item response score,   in this 

project. In continuous response model, ICF is the conditional distribution of   for fixed  . In this 

project, ICF represents the change of the ratios of regional volume across the estimated latent trait 

which we expect it to quantify disease severity. Details are shown in Supplementary Material.  

3) Linear FA estimation 

Using linear FA on the adjusted transformed ratios, we obtained the first three underlying factors and 

their loadings through the EM algorithm. Due to the fact that ADNI data is composed of cognitive 

controls, MCI and AD subjects, we assumed that the biggest variance of the data relates to 

Alzheimer’s disease and the first factor is a disease-related latent trait. After applying linear FA on 

ADNI cohort, the estimated factor loadings were used for estimating the factors for the 3C subjects by 

with the least-square approach. 

4) Association with baseline clinical diagnosis, follow-up clinical conversion and 

biomarkers 

All statistical tests were performed in R. To determine whether the estimated latent factor is useful in 

quantifying disease severity, its associations were compared with clinical and biological 

measurements. The Wilcoxon rank-sum test was used to compare the association with baseline clinical 

diagnosis. Cox proportional hazards regression models were used to identify the association between 

AD risk factors (such as the estimated latent trait and age) and event-free survival time in follow-up 

studies of ADNI and 3C cohorts. Event-free survival is defined as the time of CN from baseline until 

the first clinical diagnosis of MCI, when available, or AD. For MCI group diagnosed at baseline, the 

event-free survival is the time until the first clinical diagnosis of AD. As the relation between SMC 

and Alzheimer’s disease has not been fully understood (Sajjad et al., 2015), SMC group was not used 

for comparison with clinical conversion but was used to compare with other markers. The latent trait 
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was tested for its association by calculating the Spearman's correlation coefficients with: CSF 

biomarkers, including three CSF proteins (Aβ42, Tau and pTau) and Aβ42/Tau ratio; cortical Aβ42 

burden measured from AV45 PET; glucose metabolic reductions estimated from FDG PET; three 

baseline clinical tests, MMSE, CDRSB and ADAS scores. Cox proportional hazards regression 

models were constructed with the R package survival (Therneau and Lumley, 2016). 

5) Factor loadings and item characteristic function 

To identify whether the grey matter regions affected by Alzheimer’s disease have higher correlation 

with the estimated latent trait than other regions, all grey matter regions were ranked according to their 

factor loadings. A linear model, using each of the grey matter voxels as a dependent variable, was built 

in order to visualize which regions associate with the estimated latent trait. This model was adjusted 

for the covariates: age, gender, TIV and MR strength. The expected regional ratios given latent traits 

were estimated using an item characteristic function (details are shown in Supplementary Material and 

(Ferrando, 2002)). The item characteristic curves for the top 6 highly associated grey matter regions 

are given.   

5.4 Results 

5.4.1 The estimated latent trait and its association with clinical diagnosis  

Figure 16 A shows the latent trait of all ADNI subjects ranked based on their latent trait. The 

probability density distribution and cumulative density distribution of the estimated latent trait of all 

subjects from ADNI cohort is given in Figure 16 B. The probability density distribution shows the 

probability that the estimated latent trait has a given value. The cumulative density distribution shows 

the probability that the estimated latent trait has a value smaller than a given value. The density 

distribution for each clinical group in box plot is given in Figure 16 C. A significant association was 

observed between the estimated latent trait and the baseline clinical diagnosis (CN vs EMCI, p= 

4.855e-11; EMCI vs LMCI, p= 0.01252; LMCI vs AD, p<2.2e-16, Wilcoxon rank-sum test). The 

Spearman's correlation coefficients between the estimated latent trait and the clinical tests are 0.43 

(p=6.73e-59, through Fisher’s Z-transformation), 0.4 (p=1.4e-49, through Fisher’s Z-transformation) 

and 0.47 (p=1.68e-69, through Fisher’s Z-transformation) for CDR-SB, MMSE and ADAS scores 

(Figure 16 D, E, F).  

In addition, a significant association was found between the estimated latent trait and the event-free 

survival time in follow-up studies, after adjusting for the potential confounders, including APOE-ε4, 

age and education, in a Cox model (Table 8). For ADNI CN group, two types of event-free survival 

time were tested. The first type was defined as the time of CN from baseline until the first clinical 

diagnosis of MCI, when available, or AD (model 1, HR=1.61, 95% CI 1.1 to 2.3, p=0.009, Wald test). 
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The second type was defined as the time of CN from baseline until the first clinical diagnosis of MCI 

(CN subjects converted to AD were excluded) (model 2, HR=1.52, 95% CI 1.04 to 2.22, p=0.03, Wald 

test). For 3C cohort, the event was defined as clinical AD (model 3, HR=1.59, 95% CI 1.1 to 2.2, 

p=0.0069, Wald test). For ADNI MCI group, including EMCI and LMCI, the event was defined as 

clinical AD (model 4, HR=1.75, 95% CI 1.5 to 2, p=2.32e-14, Wald test). Pathology related variables, 

CSF proteins level, were added in an independent Cox model for testing whether the latent trait can 

predict AD beyond CSF proteins. The latent trait showed significant association with MCI-free 

survival for CN group and clinical AD-free survival for MCI group (results are shown in 

Supplementary Table 1). 

5.4.2 The estimated latent trait and its association with protein, metabolism levels and 

APOE-ε4 genotype 

The estimated latent trait significantly associated with three CSF proteins, pathology related 

biomarkers in Alzheimer’s disease. Spearman's correlation coefficients were: 0.34 (p=1.47e-11, 

through Fisher’s Z-transformation), -0.33 (p=6.28e-11, through Fisher’s Z-transformation) and 0.32 

(p=2.1e-10, through Fisher’s Z-transformation), for Tau, Aβ42 and pTau separately. Apart from the 

three CSF proteins, the correlation between the estimated latent trait and a ratio between Aβ42 and 

Tau was tested, since in previous studies this ratio has been found to be predictive to longitudinal AD 

development. The result shows a higher correlation to the ratio than to each single CSF protein (-0.38, 

p=3.35e-14, through Fisher’s Z-transformation) (Figure 17 A, B, C, D). Cortical Aβ42 burden levels 

measured by AV45 PET significantly associated with the estimated latent trait with a correlation 

coefficient equals to 0.21 (p=2.6e-06, through Fisher’s Z-transformation) (Figure 17 E). A significant 

correlation was also observed between the latent train and the blood glucose level (ρ=-0.35, p=7.94e-

27, through Fisher’s Z-transformation) (Figure 17 F). For subjects carrying different copies of APOE-

ε4, their latent traits showed significantly different distributions (p=1.825e-08 and 0.0002 for 0 vs 1 

and 1vs 2 respectively, Wilcoxon rank-sum test) (Figure 18).  
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Figure 16 Association between the latent trait and clinical measurements in ADNI cohort 

Panel A shows the ranked latent trait values of ADNI subjects  

Panel B shows probability density and cumulative distributions of the estimated latent trait from ADNI 

Panel C shows the distributions of the latent trait of all clinical diagnosed groups 

Panel D, E and F are scatter plots for the log transformed clinical test scores with the latent trait, 

using subject samples from ADNI cohort. Spearman correlation is calculated. The fitted regression 

line from simple linear model is plotted in blue, and the standard error is shown in grey. P-value 

indicates whether the correlation coefficient is significant.  
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ADNI cohort 3C cohort 

 Cognitive Normal 
Subjective Memory 

Complaints 

Early Mild Cognitive 

Impairment 

Late Mild Cognitive 

Impairment 
Alzheimer’s Disease Cognitive Normal 

 N=322 N=62 N=217 N=476 N=252 N=1447 

Age– yr
a
 75.04±5.66 71.67±5.57 70.44±7.26 73.89±7.66 75.1±7.72 72.62±4.09 

Male sex – no. 

(%) 
159(49%) 26(42%) 116(53%) 285(60%) 130(52%) 561(38.8%) 

Education – yr
a
 16.27±2.66 16.73±2.61 15.99±2.68 15.89±2.91 15.14±2.94 3.95±1.57 

APOE-ε4 carrier 

(%) 
90(28%) 20(33%) 93(44%) 248(53%) 169(68%) 323(22%) 

APOE-ε4 1 copy 

(%) 
79(25%) 20(33%) 83(39%) 183(39%) 115(46%)  

APOE-ε4 2 copy 

(%) 
11(3%) 0 10(5%) 65(14%) 54(22%)  

Table 7 ADNI and 3C studies baseline demographic information 

a
 Plus-minus values are means ± SD. 

 

 

 



62 

 

 
Model 1

b
 

ADNI 

CN to MCI or AD 

Model 2
c
 

ADNI 

CN to MCI 

Model 3 

3C 

CN to AD 

Model 4 

ADNI 

MCI to AD 

variables 
Hazard Ratio 

(95% CI) 
P Value 

Hazard Ratio 

(95% CI) 
P Value 

Hazard Ratio 

(95% CI) 
P Value 

Hazard Ratio 

(95% CI) 
P Value 

Latent Trait 1.61 (1.13-2.31) 0.009 1.52 (1.04-2.22) 0.03 1.59 (1.14-2.22) 0.007 1.75 (1.51-2.01) p<0.0001 

Female 0.74 (0.43-1.26) 0.264 0.76 (0.43-1.34) 0.341 0.77 (0.47-1.26) 0.298 1.02 (0.78-1.33) 0.886 

Age 1.02 (0.97-1.07) 0.396 1.01 (0.96-1.06) 0.758 1.2 (1.13-1.28) p<0.0001 1.02 (1-1.04) 0.044 

APOE-ε4 dose 

2 6.43 (2.23-18.51) 0.001 1.96 (1.09-3.53) 0.024 
  

2.19 (1.48-3.23) p<0.0001 

1 1.83 (1.05-3.17) 0.032 7.24 (2.49-21.09) 0.0003 
  

1.92 (1.45-2.54) p<0.0001 

1 or 2 
a
     2.57 (1.6-4.12) p<0.0001 

  

Education 0.91 (0.82-1.01) 0.081 0.93 (0.83-1.04) 0.187 0.84 (0.72-0.98) 0.024 0.99 (0.95-1.03) 0.588 

Table 8 Effect of risk factors on conversion from cognitive normal to MCI/AD and from MCI to AD in ADNI and 3C cohorts 

a
 3C cohort has no information about the number of APOE-ε4 allele 

b
Event-free survival is defined as the time of CN from baseline until the first clinical diagnosis of MCI, when available, or AD. 

c
Event-free survival is defined as the time of CN from baseline until the first clinical diagnosis of MCI. 
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Figure 17 Association between the latent trait and biomarkers in ADNI cohort 

Panel A, B and C scatter plots for the log transformed CSF protein levels with the latent trait, using 

subject samples in ADNI cohort. Spearman correlation is calculated.  

Panel D is a scatter plot of the ratio between log transformed CSF protein levels, Aβ42 and Tau, as a 

function of the latent trait (Spearman correlation), for subject samples in ADNI cohort. 

Panel E shows the correlation between cortical Aβ42 burden and the latent trait, for subjects from 

ADNI 

Panel F shows the correlation between glucose uptake level and the latent trait, for subjects from 

ADNI 

The fitted regression line from simple linear model is plotted in blue, and the standard error is shown 

in grey. P-value indicates whether the correlation coefficient is significant. 
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Figure 18 Box plot of the estimated latent trait for APOE-ε4 groups 

This figure shows the distributions of the estimated latent trait for subjects with 0, 1, and 2 APOE-ε4 

alleles. Groups 0, 1 and 2 in APOE-ε4 have significantly different distributions (p=1.825e-08 and 

0.0002 for 0 vs 1 and 1vs 2 respectively, Wilcoxon rank-sum test). 

 

 

5.4.3 Item response theory to estimate regional change 

The grey matter regions were ranked based on their correlation with the latent trait, indicated as F 

(equation (8.1), Supplementary Figure 3). The highly associated regions are from both temporal lobes 

especially (amygdalae, entorhinal cortices, hippocampi and parahippocampal gyri) (Supplementary 

Figure 4, one voxel example is shown in Supplementary Figure 5). These regions showed significant 

negative association with the latent trait, after adjustment for disease related confounders such as age, 

gender, TIV and MR strength (Figure 19). Regions affected by Alzheimer’s disease monotonically 

decreased across the latent trait in ratio of volume to the total grey matter volume. However, the 

regions which are not expected to be affected by Alzheimer’s disease, such as frontal pole areas, 

inferior, medial and superior frontal gyri showed a monotonically increase across the latent trait in 

ratio of volume to the total grey matter volume (Supplementary Figure 6). 
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Figure 19 Regions strongly associated with the estimated latent trait 

Results are shown on three-dimensional renderings of the brain, the association was tested after 

adjustment of age, gender, TIV (total intracranial volume) and MR strength, with p< 0.05 (FWER). 

Colors show T-score: yellow represents greater volume loss than red. 

 

 

5.5 Discussion 

This is the first study adapts the continuous response model to estimate a latent trait based on neuronal 

loss. The latent trait significantly associates baseline clinical diagnosis and tests, follow-up clinical 

conversion in two independent cohorts, protein levels from CSF and cortical regions, metabolism and 

APOE-ε4 genotype. Regions affected by Alzheimer’s disease are highly associated with the latent 

trait. Overall, the results provide evidence in support of using the latent trait in quantifying disease 

severity.  

The estimated disease severity showed a significant association with baseline clinical diagnosis. 

However, the different clinical groups show largely overlapping latent trait values (Figure 17 C). Our 

interpretation is that the clinical labels were assigned mainly based on symptoms, which do not 

necessarily reveal the biological change in the brain. Many studies have shown that the disease 
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precedes clinical symptoms and there is a long asymptomatic period (Braak and Braak, 1995; Dubois 

et al., 2016; Jack et al., 2014). Several variables have been identified to have influence on brain 

structure or clinical symptoms. Disease-related cofounders, such as normal aging, have shown a 

significant effect on regions affected by AD (e.g. hippocampus, entorhinal cortex) (Huijbers et al., 

2014). In this study, we did not observe any linear or non-linear correlation between age and the 

estimated disease severity in both cohorts. In the ADNI cohort no correlation between age and the 

disease related trait has been identified. Education has been found to reduce the influence of the 

pathology on the clinical expression of symptoms (Brayne et al., 2010). The exact roles of these 

variables on Alzheimer’s disease are still unclear. These variables can bring variations into the data 

even though the covariates were adjusted before the linear FA.  

We have shown that the estimated disease severity associates with disease conversion and pathology-

related markers. The proportional hazards of clinical conversion among cognitive normal groups are 

consistent from two independent cohorts, ADNI and 3C, with HR values around 1.5. From a 

biological mechanism point of view, the estimated disease severity has strong correlations with 

pathology-related protein levels from CSF and cortical regions. These proteins are the hallmarks of 

Alzheimer’s disease in autopsy examinations and have been shown to correlate with AD amyloid / 

neurofibrillary pathology in autopsy examination (Buerger et al., 2006; Doraiswamy et al., 2014; 

Strozyk et al., 2003). Due to the high accessing complexity and cost reasons, our method could be 

used as a surrogate of the proteomic measurements in clinical practice. In addition, the regions with 

higher loadings are those affected by Alzheimer’s disease, according to several previous studies 

(Braak and Braak, 1995; Huijbers et al., 2014; Sperling et al., 2011). These results support the 

hypothesis that the estimated disease severity can be used to quantify disease severity.  

Summarizing, this study advances the research on two fronts. The method we propose to quantify the 

disease severity is based on brain topographical markers, which indicate regional distribution of 

Alzheimer’s pathology. Therefore it has biological meaning and is not biased by symptoms. 

Analytically, a multivariate whole-brain approach was used, which allows the identification of a set of 

brain regions without relying on the disease status of the participants.   

As a preliminary study, our project is limited by its dataset, the ADNI study, which still relies on 

clinical diagnosis. Although our method requires the input data set are related to AD, nevertheless it is 

unlike the supervised algorithms which completely rely on the clinical diagnosis to identify the 

disease-related regions. To improve the specificity of the data, subjects who had significant 

neurological disease other than Alzheimer's disease were excluded during the acquisition procedure. 

This study has only focused on Alzheimer’s disease. Other types of neurodegenerative diseases with 

similar atrophy patterns during a specific period, such as tauopathy, are undistinguishable. This 

drawback can be solved in the future when MRI data on multiple neurodegenerative diseases become 
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available. Then the severity and relationship between the atrophy patterns via multiple latent factors, 

each of which indicating the severity of a particular disease, can be quantified.   

Our findings have significant implications. Our method evaluates the severity of each subject in the 

AD spectrum to supplement the visual rating of hippocampal atrophy and assign each participant into 

a clinical group. For those who are at a prodromal (preclinical) stage, the severity can also provide a 

relative risk of clinical conversion to symptomatic stages. In clinical practice, the severity can be used 

to improve clinical decision-making and cohort construction for clinical AD trials. The estimated 

disease severity could also be used to identify transcriptomic biomarkers associated with disease 

progression.  

In conclusion, this study provides an unsupervised method, which uses a continuous response model to 

estimate a disease-related latent trait. Clinically diagnosed subjects from ADNI were used to identify 

the correlation between observed atrophy pattern and the estimated disease severity. In the future, this 

model can be expanded by integrating other types of markers for estimating the disease-related latent 

trait. In the mean time, this model can be expanded to other types of neurodegenerative diseases using 

the corresponding pathologically proven cases. Such multiple-disease model would be closer to reality 

since mixed pathology, such as Lewy bodies or vascular disease, have been found in autopsy among 

many clinically diagnosed AD patients (Pao et al., 2011). Such a model can reveal the underlying 

pathologic changes of each single patient and could be helpful for personalized treatment.  
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6. General Discussion 

6.1 Findings of the projects 

6.1.1 Summary of biomarker interaction 

In this review, we presented evidences that neuroimaging (structural, molecular, diffusion-weighted 

and functional neuroimaging) can be used as endophenotypes to identify biomarkers that change 

anatomical and functional dysfunction. As a summary, pathology-related proteins have been shown 

their effects on brain anatomy and function: cortical Aβ42 burden modulate functions in regions 

involved in early AD; CSF pTau/Aβ42 ratio correlates with diffusivity differences and brain atrophy 

rate; coexist pathological marker TDP-43 showed correlations with atrophy and cognitive impairment. 

Sporadic AD-related genetic variant, APOE, have demonstrated its association with volumetric 

differences in infants and elderly people. Normal aging-related changes have been observed in regions 

affected at early stage of AD.  

6.1.2 Summary of identification of ASR-AD 

A classifier based on topographical markers extracted from clinically and pathologically proven 

subjects was built using a support vector machine algorithm. The classifier had a high accuracy and is 

comparable to a previous study published in 2008 (Klöppel et al., 2008). This classifier was used to 

predict pathology. The classifier predicted pathology from cognitively normal people, namely CN_P+ 

(cognitive normal with positive pathology) subjects individually in two independent cohorts. This 

group of individuals was shown to be asymptomatic at risk of clinical AD (ASR-AD). Secondly, two 

groups, AD_P+ and AD_P-, were detected from clinically diagnosed AD patients. These groups were 

shown to have differences in atrophy patterns, probability of clinical conversion in follow-up study, 

CSF proteomic profiles and cognitive performance. 

6.1.3 Summary of disease severity  

To estimate a disease-related latent trait and the corresponding loadings, factor analysis model was 

applied to grey matter regional volumes. The expectation maximization algorithm was used to 

estimate the parameters of the factor analysis model. The first latent trait estimated from ADNI and 3C 

cohorts showed significant association with the longitudinal clinical conversion. The corresponding 

loadings estimated from ADNI were then used to estimate the latent trait in 3C cohort which also 

showed a significant association with clinical conversion. Within ADNI study, the latent trait showed 

significant correlations with the CSF proteomic profiles and the cognitive performance. In addition, 

the expected regional changes have been estimated across the whole disease spectrum. 
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6.2 Causality inference 

In these two projects, MRI-based prediction and quantification have been constructed to provide 

objective measurements about Alzheimer’s disease for clinical practice. Although the MRI-based 

predictions have shown significant associations with clinical conversion, it needs more evidence to 

claim that the atrophy causes clinical Alzheimer’s disease. When two items are associated, three 

relations can be true: item A causes item B, vice versa or both of them are caused by a third item 

(confounding variable) independently.  

This causal relationship between atrophy and clinical Alzheimer’s disease still needs to be supported 

by other evidence. In this thesis, Hill's criteria were used to examine the causal relation. Among the 

conditions of the Hill’s criteria, the most important one is the temporal relationship. To conclude that 

item A causes item B, A has to have happened before B.  

In both studies, we observed that those cognitive normal subjects who have specific atrophy patterns 

(CN_P+ group from ASR-AD project or subjects with higher level of the estimated disease severity) 

are much more likely to develop clinical Alzheimer’s disease. These observations support our 

hypothesis.  

On the other hand, in both projects, we observed cognitive normal subjects predicted to have no 

pathology (CN_P-) or with low level of the estimated disease severity converted to clinical MCI or 

AD. One interpretation can be that those subjects had already the disease but not sever enough to be 

classified as CN_P+ or with a higher value of the estimated severity. Atrophy progressed in those 

subjects over time. Symptoms appeared when the stage of the destruction of the inferior temporal and 

lateral temporal cortex reached. Another explanation is that those subjects suffered from other 

neurodegenerative diseases therefore they did not have typical AD-pathology related atrophy. But the 

symptoms were similar to AD and since clinical diagnostic criteria cannot discriminate Alzheimer’s 

disease from other types of neurodegenerative disease (Beach et al., 2012), they were diagnosed as AD 

in the follow-up study. 

In contract to CN_P- subjects converting to AD, there are subjects predicted to have pathology-related 

atrophy (CN_P+), who have not converted to clinical AD. The possible reasons are : previous studies 

have shown factors, such as education, which can reduce the influence of pathology on the clinical 

expression of symptoms (Brayne et al., 2010). Other factors, like lifestyle, can slow down the progress 

of symptoms (Khalsa, 2015).  
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 Identification of ASR-AD Estimation of disease severity 

Temporal Relationship Clinical conversion to MCI (or 

AD) in follow-up of CN_P+ and 

CN_P- were examined.  

Clinical conversion in follow-up of 

cognitive normal (to MCI of AD) 

and MCI groups (to AD) were 

examined. 

Strength CN_P+ had significantly higher 

risk (hazard ratio) than CN_P- to 

convert to MCI or clinical AD.  

In cognitive normal / MCI group, 

subjects with higher values in the 

estimated severity were more likely 

to proceed to clinical diagnosis.  

Dose-response  The estimated severity correlated 

with cognitive performance and 

clinical diagnosis. 

Consistency 1) The results from the two disease models (chapter 4 and 5) were 

correlated, see in Supplementary Figure 7;  

2) both results have been replicated using an independent cohort 

Plausibility Results from the two disease models correlated with pathological 

markers. 

Consideration of Alternate 

Explanations (Analogy) 

APOE, SNPs, age, gender 

(adjusted confounders) 

APOE, age, gender, CSF proteins 

(adjusted confounders) 

Coherence Cognitive performance correlates atrophy patterns have been found in 

several studies (Braak and Braak, 1995; Ossenkoppele, Schonhaut, et 

al., 2015). 

Experiment This criterion is not applied, due to the fact that there is no cure to 

reduce the level of exposure. 

Specificity This criterion is not applied. Outcomes are likely to have multiple 

factors influencing them. It is highly unlikely that we will find a one-to-

one cause-effect relationship in sporadic AD.  

Table 9 Summary of two experiments results for testing a causility relation between atrophy and 

clinical AD conversion 

Each of Hill's criteria was used to test a causality relation between atrophy and clinical AD 

conversion.  

 

 
Apart from temporary relationship, other criteria were tested as well (summarized in Table 9). Due to 

the characteristics of Alzheimer’s disease, only a subset of criteria can be (partially) tested. Several 

studies have been published to provide evidence between brain volumetric change and its relation with 

memory deficits as mentioned in chapter 0 (coherence criterion). According to the theory of Aβ42 and 

Tau, it is more accepted that Aβ42 and/or Tau trigger the neuron death. We demonstrated the relation 
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between the results from our disease models and these pathology markers to test the plausibility. For 

consistency, we applied different methods in these two projects and the predicted results are 

significantly correlated (shown in Supplementary Figure 7). In both projects, results could be 

consistently replicated in different cohorts collected among different populations (a research cohort 

ADNI from America, an epidemiological cohort 3C from France). In the project of estimating disease 

severity two criteria, strength and dose-response, have been demonstrated by comparing the estimated 

severity with clinical diagnosis and cognitive measurements. These criteria could not be shown in the 

project of identification of ASR-AD, because clinical measurements within cognitive normal subjects 

have small variances.  

Some of the criteria cannot be tested with current technology. As Alzheimer’s disease is irreversible, 

the Hill’s experiment evidence criterion cannot be satisfied. The Hill’s specificity criterion cannot be 

tested due to the fact that sporadic Alzheimer’s disease is a complex disease and it is likely to have 

multiple factors causing the clinical symptoms, rather than a one-to-one cause-effect relationship.  

6.3 Methodological discussion 

6.3.1 Normalization within feature or within subject 

Throughout both projects, data from multiple sources have been combined, different cohorts and 

studies. The estimated grey matter volumes can be influenced by several data recruiting factors, 

especially when data are collected from multisite research centres, using different scanner types, MR 

strength and imaging protocols. These factors introduce bias by affecting the intensity of the images. 

Apart from recruiting bias, imaging preprocessing steps, such as Dartel normalization, can also 

introduce artefacts to voxels near meninges and white matter.  

Using “within feature scaling”, as suggested by SVM package (Chang and Lin, 2011), each of the 

voxels needs to be scaled to the range [0, 1]. Due to the scaling, voxels near the boundaries are 

attributed within the same range as disease-related informative voxels, thus amplifying the noise. The 

results showed that voxels near meninges in the frontal lobe were significantly different between the 

predicted groups. A second problem with within feature scaling is its sensitivity to outliers: removing 

one subject can bring significant change to the prediction labels. 

Since many factors that can influence the estimated grey matter volume (Marchewka et al., 2014), 

such as scanner types and field strength, the estimated data cannot be compared directly between 

subjects. Normalization within subject is used to set the estimated volumes of all voxels from one 

subject to a mean of 0 and a standard deviation of 1. For example, in training AD subjects, voxel A 

from frontal lobe has a larger volume than voxel B from temporal lobe. But this relation is not 
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observed in healthy group. New subjects having this pattern will be classified as AD patients. So 

within subject scaling is robust to artifacts and outliers. 

Another type of normalization calculates the ratio of each region or voxel to the total estimated grey 

matter volume. By doing so, a regional volume (in litter) can be replaced by the proportion of this 

region to a whole. However, this step requires that the volume be transformed into an unlimited 

continuous variable. Many models, such as linear regression, assumed that the response should be a 

continuous unbounded variable. 

These normalization steps are very important as different cohorts are integrated in a single project for 

the purposes of increasing statistical power and replicating the results. By using normalization 

methods, the biases due to multi-centers and study protocols can be reduced. 

6.3.2 Correction for covariates’ effects  

As previously stated, bias due to study centers can be reduced by applying normalization methods. 

However, bias can be introduced between subjects by other factors, such as age, TIV and gender. Most 

studies use age, TIV and gender as covariates, to identify regions with significantly different volumes 

between cases and controls (Mori et al., 2014). However, many studies do not correct volumes before 

building a classifier (Klöppel et al., 2008). To identify ASR-AD subjects, the data used in this study 

was corrected for the effects of age and TIV by using linear regression.  The effects of age and TIV 

were assumed to be linear, since all subjects were above 50 years. The results showed no aging bias in 

the prediction of ASR-AD in ADNI subjects, but a minor effect remained in the 3C cohorts.  

A future study could look at other situations, such as brain changes across lifespan. Brain regions grow 

rapidly at early childhood and decrease slowly from around 40 years old. A quadratic age effect would 

be a better choice to fit the change of brain volume. 

6.3.3 Feature dimension or subject dimension 

In machine learning, high dimensionality tends to bring an over-fitting problem during the classifier 

training procedure. This was avoided by building a dot product kernel and using it to train a classifier. 

This dot product kernel represents the similarities between subjects. When the support vector machine 

algorithm was applied on the similarity matrix, a hyperplane was obtained which can best separate the 

cases from controls in the subject similarity space.  

6.3.4 PCA or ML estimation 

The factor analysis model can be estimated by a PCA-based method or by expectation maximization 

(EM). Both methods estimate the factor loadings resulting in the covariance of the observed variables, 
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which are the grey matter regional volumes. The PCA-based method relies on the eigen-

decomposition or the singular value decomposition to construct eigenvectors along which the data set 

has the maximum variance. The EM-based method finds the factor loadings which maximize the data 

likelihood. The results have suggested that the estimated factors based on the combination of the two 

methods are more correlated to clinical diagnosis. In this project, the PCA-based method was applied 

to initialize the factor loadings and then maximize the data likelihood by an iterative procedure.  

6.3.5 Common genetic variants  

In the last decade several studies have focused on GWAS to identify the genetic risk factors for 

neuronal disorder diseases, such as mood disorders and psychotic disorders. However, these neuronal 

disorder diseases are mainly diagnosed based on symptoms. The GWAS method relies on precise 

phenotypes which should be not replaced by symptoms. Several common genetic variants, SNPs, 

identified in the neuronal disorder diseases could not be replicated by other studies (Freitag, 2007). 

Most neuronal disorder diseases, including Alzheimer’s, are complex and multigenic. In the project of 

identification of ASR-AD, 16 SNPs were identified from previous studies have been tested 

individually for their associations on longitudinal clinical conversions. These results agreed with the 

findings of previous studies. Genetic risk score (GRS) was proposed to test a list of SNPs’ effects 

when using a relatively small number of subjects, by combining several SNPs together. In the project 

of identifying ASR-AD, a weighted GRS (wGRS) was built based on 16 SNPs. In addition to this 

wGRS, another wGRS was calculated using the 16 SNPs and the APOE genotype. This new wGRS 

demonstrated a significant association with longitudinal clinical conversion, suggesting that the 

wGRS’s effect was driven by APOE. 

In addition to the 16 SNPs, one SNP (rs3785883) from the MAPT gene has been shown to have 

effects on longitudinal memory decline and disease onset (Cruchaga et al., 2010; Kauwe et al., 2008; 

Peterson et al., 2014). In order to identify this gene’s effect on grey matter rate of change, two years of 

T1-weighted MRI scans were collected for subjects carrying different rs3785883 genotypes.  All scans 

went through standard preprocessing steps using SPM12.  No region showed a significant difference 

in the rate of change of volume that is associated with MAPT genotypes, after adjustment of age, 

gender and APOE-ε4. Two cohorts, ADNI and 3C, were used and results were consistent.  

These results could be due to the fact that the number of subjects, 23 were carrying two risk alleles and 

203 were carrying one risk allele (out of 716), was small or that the effect on memory decline is not 

related to grey matter volumetric change but occurs via another pathway, such as iron accumulation or 

connectome properties.  
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6.4 The extension of the three principles 

Structural neuroimaging is easily performed and less expensive than molecular imaging. In previous 

chapters, the usage of T1-weighted neuroimaging in Alzheimer’s disease has been shown. However 

building a classifier for each type of neurodegenerative disease is not practical in clinical routine. 

Although several neurodegenerative diseases have specific pathology patterns, such as neurofibrillary 

tangles, amyloid plaques in Alzheimer’s disease and Lewy bodies in Parkinson’s disease and Lewy 

body dementia, comorbidity is common in patients, as most of the cases have a mixture of different 

types of pathophysiologies (Harper et al., 2014). Progressive neuronal loss appears in all types of 

neurogenerative disease with specific atrophy patterns. However, in many of these diseases, 

overlapped atrophy patterns at certain stages can be observed. Such characteristics of brain structure 

and molecular markers suggest a usage of multiclass classification or clustering in neuroimaging and 

molecular measurements. As an extension to the challenges mentioned in section 1.2, this section will 

discuss the optional algorithms, methods and new technologies that can be useful in clinical practice 

and the discovery of the underlying mechanisms. 

6.4.1 Principle 1: computational anatomy  

Different modalities for studying neurodegenerative disease 

To identify the cause of neuronal loss in neurodegenerative disease, several types of molecular 

markers are worth exploring. Enzymes and proteins are essential in forming the components of 

neurons and glials and involved in cellular functions. As mentioned in the introduction chapter, in 

several neurodegenerative diseases, soluble protein oligomers have been found to confer synaptic 

structure and plasticity (Querfurth and LaFerla, 2010). Therefore, disease-related protein structural 

features and sequential changes can be identified using brain morphological patterns as 

endophenotypes.  Such change might include quantitative (levels) and qualitative (structures) changes. 

Based on the identified disease related proteins, the corresponding genetic transcription and translation 

pathways can be revealed. At this level, both genetic and epigenetic markers should be studied.  

Calcium and iron are essential but toxic at high levels to neurons (Singh et al., 2014). The iron levels 

can be directly measured using structural neuroimaging techniques (R2 star). Iron load is one of the 

most developed markers in Parkinson’s disease, as it accumulates in the substantia nigra and the cortex 

(Reeve et al., 2014). Whether such accumulation exists in other types of neurodegenerative disease 

and its temporal relation with neuronal loss and clinical conversion still need to be examined.  

New technologies, like tau PET, are emerging and could be useful for research. F-18 T807 (
18

F-AV-

1451) is the best developed tau pathology PET tracer and can be potentially used as a diagnostic tool 

in vivo. F-18 T807 has been found to strongly associate with tau neuropathology in MAPT mutation 
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carriers (Smith et al., 2016). Since MAPT mutation causes one subtype of frontotemporal lobe 

dementia (Van Der Zee and Broeckhoven, 2014), the propagation of tau protein can be compared with 

the neuronal loss in the corresponding regions. Such comparisons can be performed through all stages 

of the disease and therefore a temporal relationship between tau pathology and atrophy and memory 

decline can be determined. 

6.4.2 Principle 2: Disease modeling 

Multiclass classification and semi-supervised clustering 

When manifold pathologically proven data is available, classification algorithms, like support vector 

machine or logistic regression, can be used to build a multiclass classifier. Algorithms, such as logistic 

regression, provide probabilities of each class when assigning a new data point. The application of this 

type of classifier can help clinicians to make a diagnosis with a measure of the reliability. Such 

classifiers can constructed and tested using different types of modalities of data, like neuroimaging 

and molecular markers or a combination of them. 

In reality, pathology proven data is rare. Most studies about neurodegenerative disease rely on clinical 

diagnosis. As explained above, the clinical diagnoses are not precise. Semi-supervised clustering may 

be useful to solve this problem. Unlike unsupervised clustering algorithms, semi-supervised methods 

use labeled data points (pathology proven data) as seeds to build the initial prototypes and / or set the 

constraints. With the initial probability distributions of all groups, then algorithms like K-means can 

be applied to iteratively assign the unlabelled data, clinical diagnosed subjects. Mismatched labels 

from clinical and clustering can be obtained due to the fact that many diseases have similar symptoms.  

Applying a semi-supervised clustering algorithm on all types of neurodegenerative disease, can reveal 

the structure between different diseases and subpopulations. In addition, a clustering of all diseases 

based on brain structures and molecular markers can be compared. For example, Lewy bodies, as 

pathological markers which are mainly composed of α-synuclein, exist in multiple neurodegenerative 

diseases, such as Lewy body dementia, Parkinson disease and multiple system atrophy. Recent studies 

have shown that subgroups of Parkinson’s brains have different α-synuclein structural characteristics 

(Bousset et al., 2013; Guo et al., 2013). Based on such findings, one hypothesis could be that diseases 

can be differentiated by using different modalities of data such as brain structural features and protein 

sequences and structural information. Such comparisons may identify subpopulations, like the three 

subtypes of Alzheimer’s disease (Whitwell et al., 2012).   

Applying a clustering algorithm to all types of neurodegenerative disease requires a consideration 

about the usage of the method. For example, the PCA method requires that the principal components 
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are orthogonal, which means all diseases are independent. Semi-supervised learning algorithm makes 

the assumption that the unlabeled data are carrying the information related to the disease.   

When performing a multiclass classification or clustering, matched aging healthy subjects should be 

involved for the following reason. As explained in previous sections, normal aging is the main 

confounder in neurodegenerative diseases. Therefore a group of healthy subjects is necessary to model 

the normal aging effects.  

Modular approach for integrative analysis 

Investigating one type of data set at a time may miss potential interactions between multiple types of 

measurement. For a complex disease, like Alzheimer’s disease, clinical diagnosed groups are not 

homogeneous as explained in previous chapters. Identify those clusters or co-modules can reduce the 

complexity of studying the disease mechanism. Such modules should have coherent patterns across 

two data sets from the same subjects. In one of my collaborative study, we used rates of regional 

atrophy and gene expression to identify co-modules using a Ping-Pong algorithm (Kutalik et al., 

2008). Through this experiment, a set of genes showed significant association with longitudinal brain 

atrophy. Moreover, the expression of this set of genes showed significant association with longitudinal 

clinical conversion among cognitive normal and MCI group. Their roles in neurodegenerative are still 

under investigation.  

6.4.3 Principle 3: Biomarkers interaction used for construction and validation models 

Disease prevention factors 

Several factors have been found to protect against the development of Alzheimer’s disease. As 

mentioned in previous sections, high education levels have shown to reduce the impact of pathology 

on the symptoms’ expression. Other studies have shown that healthy diet and sport activities have 

protective roles on cardiovascular factors which significantly associate with Alzheimer’s disease (Pase 

et al., 2016). The mechanisms of these factors might be involving the change of brain structure, such 

as preventing the shrinkage of the neurons, increasing the plasticity of the brain or the compensation 

by other regions. These questions still need to be addressed in future studies and be useful in 

understanding the brain and preventing disease in the general population.  

Coexisting symptoms 

Some symptoms related to depression can be observed among a subset of Alzheimer’s disease patients 

(Steinberg et al., 2004). It has been shown that bipolar disorder patients have progressive loss in 

hippocampal and fusiform gyri (Moorhead et al., 2007), which are important regions significantly 
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affected by Alzheimers’ disease. Bipolar disorder can increase the risk of dementia onset (Almeida et 

al., 2016). It is still unclear what the link is between bipolar disorder and Alzheimer’s disease, for 

instance whether they share the same biological mechanism. Future studies can focus on the 

identification of pathways of these two diseases and compare the similarities and differences between 

them.  

Another common co-existing symptom in Alzheimer’s disease is sleep disorder, including sleep–wake 

cycle and circadian rhythms (Musiek et al., 2015). It has been reported that sleep can increase the 

volume of extracellular fluid in the brain and therefore metabolites and proteins can be “washed out” 

(Xie et al., 2013). The proposed functions of sleep in Alzheimer’s disease involve reducing the 

production and enhancing the clearance of Aβ42 (Musiek et al., 2015). Therefore, sleep disorder is 

considered to conceivably facilitate the formation of amyloid plaques, from small plaques to large 

plaques (Musiek et al., 2015). Future research is needed to clarify the function of sleep in 

“transporting” the propagated proteins and this understanding might be helpful to develop a new 

treatment strategy. 
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8. Appendix 

8.1 MRI preprocessing 

Image pre-processing consisted of a number of steps including unified segmentation, deformation with 

the Dartel algorithm. Images from ADNI and 3C were normalized into a template generated from the 

PPG to allow comparisons with that cohort. This step was followed by Jacobian modulation, 

smoothing (with an 8mm half-width Gaussian kernel) and spatial registration to MNI space. All pre-

processed images passed through a visual quality control step before further analysis.  

We first applied two-sample T-tests and identified regions with different distributions in grey matter 

volume between the 33 PPG and ADNI cohorts, adjusted by age, gender and total intracranial volume 

(TIV). To avoid cohort bias, we excluded these regions in the training and prediction process. We 

conducted within-subject standardization with mean zero and standard deviation one in all individuals 

from the three cohorts. Standardized images were adjusted for the effects of age and TIV using 

pathologically verified cognitively normal controls with a linear model. 

8.2 Genetic variant processing 

Among 20 AD related SNPs, 11 SNPs were successfully genotyped by the Illumina Human610 array 

in ADNI1 and 12 SNPs by the Omni 2.5M array in ADNI 2. SNPs unavailable in the genotyping 

panels used were replaced by the best available proxy SNPs whenever the r
2
 was greater than 0.8 in 

1000 Genomes Pilot 1 using SNAP, Broad (http://www.broadinstitute.org/mpg/snap/index.php). All 

SNPs showed a > 90% genotyping call rate, minor allele frequency >1% and Hardy-Weinberg 

Equilibrium P-value >1E-5. Measurements with missing values were imputed by the MACH 

algorithm. 

 

8.3 Linear FA with expectation maximization (EM) algorithm 

From equation (5.3), the cross-covariance between   and   can be identified: 

                                      (8.1) 

Based on equation (8.1), the joint distribution between   and   is: 

           
 
 
      

 
 
   

 
 
      

      
   (8.2) 

, where   is one column of  . The EM algorithm contains E step (expectation) and M (maximization) 

step. In the E step we calculate the conditional value of   using the joint distribution between   and 

 . Based on equation (8.2), the expected mean and variance of   can be expressed: 

http://www.broadinstitute.org/mpg/snap/index.php
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The values of   and   can be initialized with random values. To avoid local maximum, the values of 

the two parameters were initialized with the results from principal component analysis. The M step is 

to maximize the likelihood of data. The likelihood of   is : 

 
                 

 

   

 (8.6) 

For computational continence, the maximization of equation (8.6) can be done by maximization of the 

log of the likelihood of  . 
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To maximize equation (8.7), the values of   and  can updated by setting the derivative of equation 

(8.7) to zero with respect to   and   respectively. Therefore, the updated   and   are: 

 
                    

            
  

 

   

 

   

 (8.8) 

 
     

 

 
                                   

 

   

 (8.9) 

An iterative procedure was implemented until the log likelihood of   is converged. 

8.4 Item characteristic function 

From equation (5.2), for the ratio of region  ,        can be expressed as: 

 
       

   

     
 

(8.10) 

The expectation of       , is: 
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       , (8.11) 

where      is a standard normal density function and    represents the standard deviation of    in 

equation (5.3) and     indicates the  th row of the hidden factor matrix (the  th factor). The 

continuous distribution of   was approximated by a finite number of points from a discrete 

distribution. 

 

 

8.5 Supplementary Figure  

 

Supplementary Figure 1Volumetric difference between subgroups in hippocampal regions and 

entorhinal gyri 

Average volume difference with standard error, after adjustment of age, gender and TIV, between 

predicted subgroups in ADNI. Four voxels are from left / right hippocampi and entorhinal cortexes. 

CN_P- and CN_P+ were compared at baseline and with longitudinal scans.  

Coordinates: Left Hippocampus [-28.5,-31.5,-10.5], Left Entorhinal [-22.5,3,-27], Right Hippocampus 

[-32.3,-15,-16.9], Right Entorhinal [-30,3,-27] 
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Supplementary Figure 2 Clinical score distributions in follow-up study between ADNI predicted group 

Clinical scores collected in ADNI study from baseline till 72 months later that are compared between each pair of groups. TOTALMOD: Alzheimer’s Disease 

Assessment Scale-Cognitive (ADAS-Cog) Total Mod. AVLT Delayed: Auditory Verbal Learning Test. Category Fluency Test: Total number of animals and 

vegetables named. WAIS-R: Wechsler Adult Intelligence Scale–Revised (WAIS-R) Digit symbol substitution score. The statistical test was applied using 

Wilcoxon rank-sum test and distributions with significant differences were indicated by a horizontal bars above the relevant groups (p<0.05).
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Supplementary Figure 3 Values of 114 regions in factor loading matrix 

The factor loading matrix values of 114 regions indicate the covariance between the brain regions and 

the latent trait. The variable names are written on the vertical axis. 
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Supplementary Figure 4 Expected regional ratios as a function of the latent trait values 

This figure shows the conditional regional ratios distribution for give latent trait. Regions of this 

figure are with lowest factor loadings (top 8 in Supplementary Figure 3). 
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Supplementary Figure 5 Adjusted volume of one voxel of amygdale across the estimated latent trait 
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Supplementary Figure 6 Expected regional ratios as a function of the latent trait values 

This figure shows the conditional regional ratios distribution for give latent trait. Regions of this 

figure are with lowest factor loadings (bottom 8 in Supplementary Figure 3). 
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Supplementary Figure 7 The estimated severity from FA compared with SVM predictions for ADNI 

subjects 

 
This figure shows the distributions of estimated severity using FA algorithm among the predicted 

subgroups from SVM classifier (identification of ASR-AD project). Clinical diagnosed mismatched 

predicted groups, CN_P- vs CN_P+ and AD_P- vs AD_P+, have significantly different distributions 

(p=0.0005 and p=0.004, respectively by Wilcoxon rank sum test).  
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8.6 Supplementary Table
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Model 1

a
 

ADNI 

CN to MCI or AD 

Model 2
b
 

ADNI 

CN to MCI 

Model 3 

ADNI 

MCI to AD 

 
Hazard Ratio 

(95% CI) 
P Value 

Hazard Ratio 

(95% CI) 
P Value 

Hazard Ratio 

(95% CI) 
P Value 

Latent Trait 1.95(1.03-3.67) 0.04 2.15(1.09-4.22) 0.026 1.47(1.12-1.94) 0.006 

Female 0.9(0.32-2.51) 0.833 0.78(0.26-2.3) 0.654 1.05(0.66-1.66) 0.838 

Age 0.97(0.89-1.07) 0.579 0.98(0.89-1.08) 0.723 1.02(0.99-1.05) 0.315 

APOE-ε4 

2 2.14(0.73-6.26) 0.164 2.51(0.87-7.25) 0.089 1.38(0.82-2.32) 0.228 

1 7.67(1.18-49.73) 0.033 5.89(0.72-48.2) 0.099 1.12(0.55-2.3) 0.753 

Education 0.89(0.74-1.07) 0.205 0.89(0.73-1.08) 0.226 0.96(0.89-1.03) 0.243 

Tau 1.61(0.33-7.81) 0.553 1.88(0.4-8.84) 0.426 0.88(0.46-1.67) 0.696 

pTau 1.64(0.35-7.8) 0.532 1.39(0.28-6.94) 0.687 1.61(0.81-3.22) 0.177 

Aβ 0.6(0.16-2.27) 0.451 0.35(0.05-2.35) 0.282 0.66(0.31-1.41) 0.28 

Supplementary Table 1 Effect of risk factors including CSF proteins on conversion from cognitive normal to MCI/AD and from MCI to AD in ADNI and 3C 

cohort 
a
Event-free survival is defined as the time of CN from baseline until the first clinical diagnosis of MCI, when available, or AD. 

b
Event-free survival is defined as the time of CN from baseline until the first clinical diagnosis of clinical AD. 


