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Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non-invasive imaging
method, which can be used to investigate neural tracts in the white matter (WM) of the
brain. Significant partial volume effects (PVEs) are present in the DW signal due to relatively
large voxel sizes. These PVEs can be caused by both non-WM tissue, such as gray matter
(GM) and cerebrospinal fluid (CSF), and by multiple non-parallel WM fiber populations. High
angular resolution diffusion imaging (HARDI) methods have been developed to correctly
characterize complex WM fiber configurations, but to date, many of the HARDI methods
do not account for non-WM PVEs. In this work, we investigated the isotropic PVEs caused
by non-WM tissue in WM voxels on fiber orientations extracted with constrained spherical
deconvolution (CSD). Experiments were performed on simulated and real DW-MRI data. In
particular, simulations were performed to demonstrate the effects of varying the diffusion
weightings, signal-to-noise ratios (SNRs), fiber configurations, and tissue fractions. Our
results show that the presence of non-WM tissue signal causes a decrease in the precision
of the detected fiber orientations and an increase in the detection of false peaks in
CSD. We estimated 35–50% of WM voxels to be affected by non-WM PVEs. For HARDI
sequences, which typically have a relatively high degree of diffusion weighting, these
adverse effects are most pronounced in voxels with GM PVEs.The non-WM PVEs become
severe with 50% GM volume for maximum spherical harmonics orders of 8 and below,
and already with 25% GM volume for higher orders. In addition, a low diffusion weighting
or SNR increases the effects. The non-WM PVEs may cause problems in connectomics,
where reliable fiber tracking at the WM–GM interface is especially important. We suggest
acquiring data with high diffusion-weighting 2500–3000 s/mm2, reasonable SNR (∼30)
and using lower SH orders in GM contaminated regions to minimize the non-WM PVEs
in CSD.
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INTRODUCTION
Diffusion-weighted (DW) magnetic resonance imaging (MRI) is
a non-invasive imaging method to investigate tissue microstruc-
ture via the measurement of the displacement of water molecules
(Stejskal and Tanner, 1965; Jones, 2010). Diffusion in white mat-
ter (WM) neural tracts is anisotropic: it is larger parallel to the
tract than in the perpendicular direction. In liquid, such as cere-
brospinal fluid (CSF), diffusion is isotropic, i.e., equal in all
directions. This diffusion property can be exploited to extract
fiber orientations from DW data and investigate neural tracts in
the brain WM using fiber tractography algorithms (Conturo et al.,
1999; Basser et al., 2000; Mori and van Zijl, 2002; Jones, 2008;
Tournier et al., 2010; Jeurissen et al., 2011).

The image resolution in DW-MRI is typically about 2–3 mm in
all directions. Thus, significant partial volume effects (PVEs) are
present in the measured signal (Alexander et al., 2001; Vos et al.,
2011). These may be caused by multiple non-parallel neural tracts
passing through a voxel (Vos et al., 2011; Jeurissen et al., 2013),

or several tissue types present in a voxel (Pasternak et al., 2009;
Metzler-Baddeley et al., 2012a).

Currently, the most common method in the analysis of DW-
MRI data is diffusion tensor imaging (DTI; Basser et al., 1994a,b;
Jones and Leemans, 2011; Tournier et al., 2011). The shortcom-
ing of DTI is the inability to identify complex fiber configurations
consisting of multiple fiber orientations (Alexander et al., 2001;
Frank, 2001, 2002), present in 60–90% of WM voxels (Jeurissen
et al., 2013). To overcome this, high angular resolution diffusion
imaging (HARDI) methods (Tuch et al., 2002; Jansons and Alexan-
der, 2003; Tournier et al., 2004, 2007; Tuch, 2004; Dell’Acqua et al.,
2007; Descoteaux et al., 2007; Behrens et al., 2007) and methods
based on diffusion spectrum imaging (DSI; Wedeen et al., 2005,
2008) have been developed. However, although able to identify
complex fiber configurations, most of the HARDI methods do
not account for PVEs caused by non-WM tissue, such as gray
matter (GM) and CSF (Dell’Acqua et al., 2010; Metzler-Baddeley
et al., 2012a).
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The presence of non-WM PVEs is known in DW-MRI (Alexan-
der et al., 2001; Pasternak et al., 2009; Dell’Acqua et al., 2010;
Metzler-Baddeley et al., 2012a), but their effects in HARDI
methods have not been widely studied. Diffusion in non-
WM tissue is mostly isotropic within the resolution of DW-
MRI (Dell’Acqua et al., 2010). Isotropic non-WM PVEs have
been shown to affect DTI (Alexander et al., 2001; Pasternak
et al., 2009) and tensor-derived measures (Metzler-Baddeley et al.,
2012a). Pasternak and coworkers used constrained optimiza-
tion of a bi-tensor model for “free water elimination” (FWE)
in DTI (Pasternak et al., 2009), but they did not investigate GM
PVEs. Metzler–Baddeley and coworkers used FWE to correct for
CSF-contamination in tensor-derived measures in constrained
spherical deconvolution (CSD) based tractography (Metzler-
Baddeley et al., 2012a). Both fractional anisotropy (FA) and
mean diffusivity (MD) were shown to increase in the presence
of CSF-contamination (Pasternak et al., 2009). Moreover, diffu-
sivity metrics were shown to be more sensitive to PVEs than
anisotropy metrics (Metzler-Baddeley et al., 2012a). However,
FWE-based approaches are not suitable for GM-contaminated
regions.

In HARDI methods, very few studies account for the non-WM
PVEs. The “ball and stick” model is the only method, which ini-
tially included an isotropic compartment and could be extended
into multiple fiber orientations (Behrens et al., 2003, 2007; Jbabdi
et al., 2012). In another study involving HARDI methods, isotropic
PVEs were dampened by using adaptive regularization in the
iterative Richardson–Lucy deconvolution algorithm (Dell’Acqua
et al., 2010). Other methods that also account for isotropic com-
partments include diffusion basis spectrum imaging (Wang et al.,
2011) and diffusion decomposition (Yeh et al.,2011; Yeh and Tseng,
2013). However, the non-WM PVEs are not taken into account
and have not been studied earlier in CSD, one of the most popular,
clinically feasible and readily available HARDI methods (Leemans
et al., 2009; Tournier et al., 2012).

In this work, we perform simulations to assess non-WM PVEs
in CSD (Tournier et al., 2004, 2007). This kind of comprehensive
analysis has not been performed before, although the method is
widely used and the consequences may be significant when study-
ing the connectivity between GM regions. In addition, we analyze
the proportion of voxels affected by isotropic PVEs, and present the
fiber orientation distribution functions (fODFs) estimated with
CSD in real data affected by non-WM PVEs.

MATERIALS AND METHODS
We investigated the isotropic PVEs caused by non-WM tissue
on fODFs estimated with CSD. DW signals were simulated with
varying diffusion weightings, signal-to-noise ratios, fiber config-
urations, and tissue fractions. In addition, experiments with real
data were performed.

ESTIMATION OF FIBER ORIENTATIONS WITH CONSTRAINED
SPHERICAL DECONVOLUTION
In CSD, the full fODF is deconvolved from the DW signal using a
kernel constructed from the single-fiber response function (RF),
which can be estimated from the data (Tournier et al., 2004; Tax
et al., 2014). During the deconvolution procedure, constraints are

imposed to suppress the negative peaks in the fODF (Tournier
et al., 2007, 2008). The number of distinct gradient directions
limits the maximum order of the spherical harmonics (SH)
decomposition, which can be used in the estimation in the fODF.
However, the constraints used to suppress the negative peaks in
the fODF can be exploited to estimate higher order solutions and
thus, describe more complex fODFs. This is called super-resolved
CSD (Tournier et al., 2007).

To find the peaks of the fODF estimated with CSD, a New-
ton optimization algorithm was used to extract the local maxima
of the fODF directly based on the SH decompositions (Jeurissen
et al., 2013). Optimization was initialized on a dense set of uni-
formly distributed spherical sample points. A threshold of 33% of
the maximum amplitude of the fODF was used to discard small
peaks. A maximum of six of the highest peaks were identified. The
peaks were clustered around the peaks of the average fODF cal-
culated over all simulation repetitions performed with the same
parameter configuration. Peaks further away than half of the cross-
ing angle (with an upper limit of 35◦) from any of the peaks of
the average fODF were not included in the clusters. A mean dyadic
tensor was then used to derive the mean orientation for each of
the identified fiber clusters (Basser and Pajevic, 2000; Jones, 2003).
This orientation was then compared to the true orientations of
the fiber bundles. Peaks in clusters that were less than half of the
crossing angle (with an upper limit of 35◦) from the true orien-
tations were defined as true, and rest of the peaks, also if they
were not assigned to a cluster, as false. From the true clusters,
accuracy and precision (95th percentile confidence interval, CI)
with respect to the orientation of the mean dyadic tensor were
calculated.

SIMULATION OF THE DW SIGNAL WITH PVES
Two crossing WM fiber configurations were simulated with equal
weights. The orientation of the first fiber bundle was randomly
selected, after which the orientation of the second fiber bundle
was calculated in spherical coordinates with the defined crossing
angle. The resulting angle was verified to be correct in each case.

Then, the DW signal was simulated separately for different
tissue types, and the resulting signals were combined assuming
no exchange between the compartments (Leemans et al., 2005).
The number of gradient directions uniformly distributed on the
unit hemisphere was 64 (Jones et al., 1999). To eliminate any bias
caused by the gradient orientations, a different gradient set was
used for each simulated DW signal. Signal from the specific WM
fiber configurations was combined with isotropic CSF and GM
compartments. In addition, air compartments were simulated to
investigate only the effect of reduced signal of the WM compart-
ment without any isotropic diffusion. Derived based on Basser and
Jones (2002), the combined simulated DW signal S is:

S = (1 − fisot)
(

ffibere−Trace(bDfiber1) + (1 − ffiber)e−Trace(bDfiber2)
)

+ fisote
−Trace(bDiost), (1)

where fisot is the fraction of isotropic volume, ffiber is the fraction
of the first fiber compartment with respect to the WM compart-
ment, b is the b-matrix summarizing the attenuation in all three
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directions of the diffusion tensor (including information of the
diffusion-weighting and the gradient orientations; Mattiello et al.,
1997), and Dfiber1, Dfiber2 and Disot are the diffusion tensors of the
two WM fibers and the isotropic compartment respectively (Basser
et al., 1994b). The diffusion tensors were created with the follow-
ing values. The MD for the simulation of different tissue types was
0.002 mm2/s for CSF, 0.0007 mm2/s for WM and GM (Dell’Acqua
et al., 2010), and for air the signal was assumed to be zero. The
FA was 0.8 for the WM signal and 0 for other tissue types. Rician
noise was added to the combined DW signal. Finally, the DW
signals were decomposed into an eighth-order series of SH (max-
imum possible order with the number of gradient orientations
used).

SIMULATION EXPERIMENTS
We performed simulation experiments to investigate the PVEs
with different tissue compartments. Simulations and analyses
of the simulation experiments were performed in Matlab (The
MathWorks, Inc., Natick, MA, USA), by using dedicated software
programmed by the authors.

The fraction of isotropic GM, CSF or air volume was varied
from 0.00 to 0.95 with intervals of 0.05. We analyzed angles
between the fiber populations in configurations ranging from
40◦ to 90◦ and with diffusion weightings (b-values) from 1000
to 3500 s/mm2. Signal-to-noise ratio (SNR) was calculated with
respect to the non-diffusion weighted signal and simulated from
10 to 60, also generating a noiseless version of the DW signal.
We performed 1000 repetitions with different noise realizations
(resulting in Rician distributed data) for each parameter configu-
ration. The fODFs were estimated from the simulated DW signals
with CSD or super-resolved CSD using maximum orders of the
SH from 4 to 14.

In addition to the isotropic volume fraction (VF) and PVE type
(GM, CSF, or air) only one parameter at a time was investigated.
The default values for the non-varying parameters were: b-value:
3000 s/mm2; angle between the crossing fiber configurations: 70◦;
SNR: 30. The default maximum order of the SH was 8 for CSD
and 12 for super-resolved CSD.

ACQUISITION AND ANALYSIS OF REAL DATA
High angular resolution DW data were acquired on a 3T MRI
system with a 32-channel head coil. The subject gave written
informed consent to participate in this study under a protocol
approved by the local ethics committee. A single-shot echo-planar
imaging (EPI) sequence was used with TR = 8100 ms, TE = 116 ms
and 2.5 mm × 2.5 mm × 2.5 mm voxel size. The field of view
(FOV) was 240 × 240 mm2 with a 96 × 96 acquisition matrix
and the number of excitations (NEX) was 1. Fifty-four axial
slices were imaged with 2.5 mm thickness and no gap. Diffu-
sion sensitizing gradients with a b-value of 2800 s/mm2 were
applied along 75 non-collinear directions. Ten images without
diffusion weighting (b = 0 s/mm2) were acquired, of which one
was acquired with reverse phase-encoding, for the purpose of EPI
distortion correction. High-resolution anatomical T1-weighted
images were acquired using a 3D magnetization-prepared rapid
gradient-echo (MPRAGE) sequence (Mugler and Brookeman,
1990) with TR = 1900 ms, TE = 2.52 ms, TI = 900 ms and

1 mm × 1 mm × 1 mm voxel size (flip angle = 9◦ and NEX = 1).
FOV was 250 mm × 250 mm × 176 mm with a 256 × 256 × 176
acquisition matrix.

The DW data were corrected for subject motion and
eddy current induced distortions (Leemans and Jones, 2009;
Andersson et al., 2012), and TOPUP was used to correct for
EPI distortions (Andersson et al., 2003). The MRtrix package
(J-D Tournier, Brain Research Institute, Melbourne, Australia,
http://www.brain.org.au/software/; Tournier et al., 2012) was used
for visualization of the real data. Tissue VFs for the DW data were
estimated from the T1-weighted images, using a similar approach
as presented by Smith et al. (2012).

The percentage of WM voxels affected by significant non-WM
PVEs was estimated from real data. WM voxels were defined
using a threshold of 25% WM tissue. The voxels with PVEs were
estimated by using two threshold values: 25 and 10% non-WM
volume.

RESULTS
First, results of the simulation experiments are presented. Figure 1
shows the effects of isotropic non-WM VF in CSD (Figures 1A–D)
and super-resolved CSD (Figures 1E,H). The bias and the 95%
CI of the fiber orientations extracted with CSD are presented in
Figures 1A,B. We also studied the effects on the number of cor-
rectly and falsely identified peaks (Figures 1C,D). The number of
falsely identified peaks increased and the precision of the identi-
fied fiber orientations decreased, when the isotropic VF increased.
The effects were stronger in GM than in CSF or air. However,
the accuracy of the identified fiber orientations and the number
of true peaks identified did not change until very high non-WM
fractions. The similar performance with CSF and air PVEs using
a high b-value indicates that the effect in CSF is mostly an SNR
effect, which is clearly not the case in GM. Default values were
used for the other parameters as specified in the methods section.
The non-WM PVEs in super-resolved CSD, using up to 12th-order
SH, started to affect the precision and the number of false peaks
(Figures 1F,H) with lower fractions than when using up to eight-
order SH. Accuracy remained high and was similar to the results
when using SH up to eight-order. However, the ability to detect
the two correct fiber orientations stayed higher with high isotropic
fractions than while using SH up to eight order.

An illustration of the estimated fODFs based on only one noise
realization per fraction is shown in Figure 2. The false peaks
became more numerous and the correct peaks lost precision, when
the isotropic VF increased. Next, the effects of varying maximum
SH orders, diffusion weightings, SNRs, and angles between the
two crossing fiber configurations were analyzed, while keeping the
isotropic non-WM fraction constant at 0.5.

In Figure 3, the effects of maximum SH order on the non-
WM PVEs are shown. The 95% CI and the number of false peaks
increased when higher maximum SH orders were used. Bias was
low with all orders except for the lowest maximum order 4 with
GM PVEs. However, the correct peaks could be found properly
with GM PVEs even with the lowest order, but not with CSF or air
PVEs.

In Figure 4, the effects of varying diffusion weightings to the
non-WM PVEs are shown. The 95% CI and the number of false
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FIGURE 1 | Effect of isotropic volume fraction with CSF, GM, and air to bias, 95% confidence interval (CI), and the number of correct and false peaks

estimated with CSD using up to eighth-order SH (A–D) and super-resolved CSD using up to 12th-order SH (E–H; with diffusion weighting

3000 s/mm2, angle 70◦, and SNR 30).

FIGURE 2 | An illustration of fODFs estimated with CSD with GM

partial volume increasing from 0 to 75% (with up to eighth-order SH,

diffusion weighting 3000 s/mm2, angle 70◦, and SNR 30). The blue lines
correspond to the correct fiber orientations.

peaks increased when diffusion weighting decreased. The number
of false peaks was high and the precision of the correct peaks
was low under GM PVEs compared to CSF, air, or 100% WM
regardless of the diffusion weighting. The difference between CSF
and air PVEs was visible only with very low diffusion weightings
of 1000–1500 s/mm2.

The effects of SNR on the non-WM PVEs are presented in
Figure 5. Figures 5A–D show effects with 50% non-WM fractions
and Figures 5E–H with 75% non-WM fractions. With 50% PVEs,
increasing SNR improved the precision and reduced the number
of false peaks identified. However, with 75% non-WM fractions,
increasing SNR could not improve the situation with GM PVEs,
and there were problems with precision also with high SNRs under
CSF PVEs.

Figure 6 shows the effects of varying angle between the two
crossing fiber configurations. With an angle of 40◦ between the
two fiber configurations, the correct peaks could not be properly
identified. However, with an angle of 50◦, they could still be reliably
detected without isotropic PVEs, but any type of non-WM volume
caused a decrease in the fraction of the correct peaks identified
(Figure 6C). With higher angles, the correct peaks were identified
correctly and without more bias than in pure WM (Figure 6A).

The precision of the identified fiber orientations and the number
of false peaks identified improved when the angle between the
fiber configurations increased (Figures 6B,D).

From real data, we estimated that 35.7% of WM voxels, defined
to have at least 25% WM volume, had significant PVEs with non-
WM tissue, also defined to be more than 25% VF. Lowering the
non-WM tissue threshold to 10%, the proportion of WM voxels
affected by PVEs increased to 46.8%. Of these voxels with non-
WM PVEs, 96.0% were affected by PVEs with GM and 5.3% with
CSF.

Figure 7 shows the fODFs estimated with CSD, using up to
eight order SH, from real data overlaid on the WM tissue proba-
bility map of corona radiata extending towards cortical GM. The
areas where WM interfaces with GM were affected both with CSD
and super-resolved CSD. A large amount of voxels in the area had
significant PVEs (gray-colored voxels), and perpendicular or spu-
rious peaks appeared in the voxels with no apparent anatomical
origin.

Figure 8 shows the effect of CSF PVEs on the estimation of
fODFs at the interface between the corpus callosum and CSF. Spu-
rious orientations can be noticed, but they are much smaller in
amplitude and the principal fiber orientation can still be clearly
distinguished.

DISCUSSION
We studied the effects of isotropic non-WM partial volume on the
fiber orientations estimated with CSD and super-resolved CSD by
performing extensive simulations and real data experiments. CSD
is a widely used method and knowledge about the implications of
non-WM PVEs should be augmented.

Our results demonstrate that although CSD is efficient in the
detection of PVEs caused by complex fiber configurations within
a voxel, problems arise in the detection of the fODFs in the case of
non-WM PVEs, which we estimated to be present in 35–50% of
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FIGURE 3 |The effect of varying maximum SH orders with 50% non-WM partial volume (CSF, GM, and air) to bias (A), 95% confidence interval (CI) (B),

and the number of correct (C) and false peaks (D) estimated with CSD (with diffusion weighting 3000 s/mm2, angle 70◦, and SNR 30). For
comparison, 100% WM measures are provided.

FIGURE 4 |The effect of varying diffusion weightings with 50% non-WM partial volume (CSF, GM, and air) to bias (A), 95% confidence interval (CI) (B),

and the number of correct (C) and false peaks (D) estimated with CSD (with up to eighth-order SH, angle 70◦, and SNR 30). For comparison, 100% WM
measures are provided.
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FIGURE 5 |The effect of varying SNRs with 50% (A–D) and 75%

(E–H) non-WM partial volume (CSF, GM, and air) to bias, 95%

confidence interval (CI), and the number of correct and false peaks

estimated with CSD (with up to eighth-order SH, angle 70◦, and

diffusion weighting 3000 s/mm2). For comparison, 100% WM
measures are provided.

FIGURE 6 |The effect of varying angle between the two crossing fiber

configurations with 50% non-WM partial volume (CSF, GM and air) to

bias (A), 95% confidence interval (CI) (B), and the number of correct (C)

and false peaks (D) estimated with CSD (with up to eighth-order SH,

diffusion weighting 3000 s/mm2, and SNR 30). For comparison, 100%
WM measures are provided.
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FIGURE 7 | Illustration of the effects of isotropic non-WM PVEs with

GM in superior corona radiata with real data. WM tissue probability map
estimated from high-resolution anatomical MRI is visualized in the
background, and fODFs estimated with CSD using up to eighth-order SH
are overlaid.

FIGURE 8 | Illustration of the effects of isotropic non-WM PVEs with

CSF in corpus callosum with real data. WM tissue probability map
estimated from high-resolution anatomical MRI is visualized in the
background, and fODFs estimated with CSD using up to eighth-order SH
are overlaid.

the WM voxels. As shown in Figure 1, the precision of the detected
fiber orientations decreases and false peaks appear in the fODFs.
This effect is most prominent for GM PVEs. The increase in bias
with very high isotropic fractions may be at least partly caused
by the inability to distinguish reliably both of the correct fiber
orientations.

Part of these effects is due to the reduction of relative SNR in the
WM tissue, which is caused by the decreased WM volume in the
voxel, and not the isotropic diffusion properties of the non-WM
tissue. PVEs with CSF tissue are mostly due to this effect, as shown
by the similarity to air PVEs (Figure 1). Another part of the effects
is caused by the isotropic diffusion, which invalidates the single
fiber RF originally designed for pure WM. The more prominent
PVEs in GM than in CSF or air are caused by this effect.

In addition, we showed that the PVEs increased when the max-
imum SH order increased. Therefore, the high maximum SH
orders, although able to improve the angular resolution (Tournier
et al., 2007), should be used with caution in the estimation of
the fODFs under significant non-WM PVEs. Although the maxi-
mum angular frequency in the DW data is relatively low (Tournier
et al., 2013), the fODFs contain higher angular frequencies, so a
higher maximum SH order could still be useful in the estimation
of the fODFs within pure WM regions. The use of lower diffusion
weighting than generally used in HARDI sequences (i.e., less than
3000 s/mm2) increased the PVEs. Larger crossing angles could be
detected with higher precision. With higher SNRs, moderate PVEs
could be handled better, but high PVEs continued to decrease
precision and increase the number of false peaks especially
in GM.

Based on these results, we provide the following advice on how
to operate CSD to maintain reasonable precision and number of
false peaks under non-WM PVEs. Conditions with 95% CI lower
than 20◦ and less than one identified false peak were considered
reasonable. Thus, we suggest acquiring data with a high diffusion-
weighting 2500–3000 s/mm2, and a reasonable SNR (∼25–30). To
extract the fiber orientations with CSD in regions with GM PVEs,
we suggest using relatively low, from 6 to 8, maximum SH orders
to minimize the loss in precision and the increase in the number of
identified false fiber orientations. Nevertheless, the identified fiber
orientations should be considered unreliable with higher than 60%
GM and higher than 80% CSF VFs.

The isotropic PVEs, present in a significant proportion of WM
voxels, lead to decreased precision and a high number of false peaks
in the fODFs estimated with CSD, which in turn affects subsequent
tractography algorithms, and may introduce false positives and
hinder tract propagation into the cortex or near subcortical GM
tissue. An algorithm already exists to discard tracts based on their
anatomical feasibility and thus, only accept tracts that correctly
propagate to the cortex (Smith et al., 2012). However, enabling the
tracts to propagate properly into the cortex or adjacent to subcor-
tical GM tissue would reduce the time needed for tracking and
improve the precision of anatomically feasible tracts. Especially
in connectomics, where reliable reconstruction of the fiber orien-
tations profiles at the GM–WM interface is required to compute
connectivity matrices, taking isotropic PVEs into account will be
valuable.

Limitations of this study include the restriction to only one
HARDI method, although it is one of the most commonly used
ones (Metzler-Baddeley et al., 2012b; Emsell et al., 2013; Forde
et al., 2013; Kristo et al., 2013; McGrath et al., 2013a,b; Reijmer
et al., 2013a,b; Thompson et al., 2014). Previous studies indi-
cate that the non-WM PVEs are present in DW-MRI in general
(Alexander et al., 2001; Pasternak et al., 2009; Dell’Acqua et al.,
2010; Metzler-Baddeley et al., 2012a). While some of the analysis
methods already acknowledge or account for these PVEs (Behrens
et al., 2003, 2007; Pasternak et al., 2009; Dell’Acqua et al., 2010;
Wang et al., 2011; Yeh et al., 2011; Jbabdi et al., 2012; Yeh and
Tseng, 2013), many of the currently used methods do not. For
example, in CSD they have not yet been taken into account,
and no detailed investigation about these effects had been per-
formed previously. It is likely that also other methods which do
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not appropriately account for the non-WM PVEs will suffer from
similar consequences. An additional limitation of this study is
that there is no ground truth available in real data. Considering
the clear effects demonstrated in the simulations, it is reasonable
to assume that the spurious fiber orientations visible at the tis-
sue interfaces are in fact false peaks also in real data. However,
further experiments with real data are still necessary to com-
pletely understand the phenomenon and its effects in tractography.
This would in turn help in the development of improvements
for the fODF estimation with CSD, applicable also in real data,
and thus allow improved tracking especially in the WM–GM
interface.

In conclusion, we studied the effects of isotropic non-WM PVEs
in CSD and found decreased precision and increased number of
false peaks in the estimated fODFs. The effect was more pro-
nounced with GM tissue. Considering the clear effects present in
real and simulated data and the large proportion of WM voxels
affected, it is important to take the non-WM PVEs into account
in the extraction of fiber orientations with CSD. Therefore, we
provide simple recommendations for the parameters used in the
acquisition and the analysis, but acknowledge the need for more
sophisticated methods to account for non-WM tissue in CSD.
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