3,438 research outputs found

    Maximizing information for evaluation of incident management systems with an emphasis on secondary accidents

    Get PDF
    DissertationIncident management is the process of mitigating the effects of traffic incidents via quick and effective response, thus reducing the congestion and the potential for secondary accidents. The evaluation of incident management system (IMS) is challenging and data intensive since incident occurrence and location cannot be predicted. But secondary accidents which occur due to the primary incident offer a window into how effective the incident management system is working. Lower the number of secondary incidents indicates an effective IMS. This research shows by maximizing the incident information i.e. traffic volumes, travel times, roadway capacity, incident progression curves; one can accurately understand the impact of incidents and the number of secondary incidents. This research will help government agencies in fine tuning their IMS policies and components by their returned value

    Vehicle Engine Classification Using of Laser Vibrometry Feature Extraction

    Full text link
    Used as a non-invasive and remote sensor, the laser Doppler vibrometer (LDV) has been used in many different applications, such as inspection of aircrafts, bridge and structure and remote voice acquisition. However, using LDV as a vehicle surveillance device has not been feasible due to the lack of systematic investigations on its behavioral properties. In this thesis, the LDV data from different vehicles are examined and features are extracted. A tone-pitch indexing (TPI) scheme is developed to classify different vehicles by exploiting the engine’s periodic vibrations that are transferred throughout the vehicle’s body. Using the TPI with a two-layer feed-forward 20 intermediate-nodes neural network to classify vehicles’ engine, the results are encouraging as they can consistently achieve accuracies over 96%. However, the TPI required a length of 1.25 seconds of vibration, which is a drawback of the TPI, as vehicles generally are moving whence the 1.25 second signals are unavailable. Based on the success of TPI, a new normalized tone-pitch indexing (nTPI) scheme is further developed, using the engine’s periodic vibrations, and shortened the time period from 1.25 seconds to a reasonable 0.2 seconds. Keywords: LDV, Machine Learning, Neural network, Deep learning, Vehicle classificatio

    Applied aerodynamics: Challenges and expectations

    Get PDF
    Aerospace is the leading positive contributor to this country's balance of trade, derived largely from the sale of U.S. commercial aircraft around the world. This powerfully favorable economic situation is being threatened in two ways: (1) the U.S. portion of the commercial transport market is decreasing, even though the worldwide market is projected to increase substantially; and (2) expenditures are decreasing for military aircraft, which often serve as proving grounds for advanced aircraft technology. To retain a major share of the world market for commercial aircraft and continue to provide military aircraft with unsurpassed performance, the U.S. aerospace industry faces many technological challenges. The field of applied aerodynamics is necessarily a major contributor to efforts aimed at meeting these technological challenges. A number of emerging research results that will provide new opportunities for applied aerodynamicists are discussed. Some of these have great potential for maintaining the high value of contributions from applied aerodynamics in the relatively near future. Over time, however, the value of these contributions will diminish greatly unless substantial investments continue to be made in basic and applied research efforts. The focus: to increase understanding of fluid dynamic phenomena, identify new aerodynamic concepts, and provide validated advanced technology for future aircraft

    Vehicle classification in intelligent transport systems: an overview, methods and software perspective

    Get PDF
    Vehicle Classification (VC) is a key element of Intelligent Transportation Systems (ITS). Diverse ranges of ITS applications like security systems, surveillance frameworks, fleet monitoring, traffic safety, and automated parking are using VC. Basically, in the current VC methods, vehicles are classified locally as a vehicle passes through a monitoring area, by fixed sensors or using a compound method. This paper presents a pervasive study on the state of the art of VC methods. We introduce a detailed VC taxonomy and explore the different kinds of traffic information that can be extracted via each method. Subsequently, traditional and cutting edge VC systems are investigated from different aspects. Specifically, strengths and shortcomings of the existing VC methods are discussed and real-time alternatives like Vehicular Ad-hoc Networks (VANETs) are investigated to convey physical as well as kinematic characteristics of the vehicles. Finally, we review a broad range of soft computing solutions involved in VC in the context of machine learning, neural networks, miscellaneous features, models and other methods

    Video foreground extraction for mobile camera platforms

    Get PDF
    Foreground object detection is a fundamental task in computer vision with many applications in areas such as object tracking, event identification, and behavior analysis. Most conventional foreground object detection methods work only in a stable illumination environments using fixed cameras. In real-world applications, however, it is often the case that the algorithm needs to operate under the following challenging conditions: drastic lighting changes, object shape complexity, moving cameras, low frame capture rates, and low resolution images. This thesis presents four novel approaches for foreground object detection on real-world datasets using cameras deployed on moving vehicles.The first problem addresses passenger detection and tracking tasks for public transport buses investigating the problem of changing illumination conditions and low frame capture rates. Our approach integrates a stable SIFT (Scale Invariant Feature Transform) background seat modelling method with a human shape model into a weighted Bayesian framework to detect passengers. To deal with the problem of tracking multiple targets, we employ the Reversible Jump Monte Carlo Markov Chain tracking algorithm. Using the SVM classifier, the appearance transformation models capture changes in the appearance of the foreground objects across two consecutives frames under low frame rate conditions. In the second problem, we present a system for pedestrian detection involving scenes captured by a mobile bus surveillance system. It integrates scene localization, foreground-background separation, and pedestrian detection modules into a unified detection framework. The scene localization module performs a two stage clustering of the video data.In the first stage, SIFT Homography is applied to cluster frames in terms of their structural similarity, and the second stage further clusters these aligned frames according to consistency in illumination. This produces clusters of images that are differential in viewpoint and lighting. A kernel density estimation (KDE) technique for colour and gradient is then used to construct background models for each image cluster, which is further used to detect candidate foreground pixels. Finally, using a hierarchical template matching approach, pedestrians can be detected.In addition to the second problem, we present three direct pedestrian detection methods that extend the HOG (Histogram of Oriented Gradient) techniques (Dalal and Triggs, 2005) and provide a comparative evaluation of these approaches. The three approaches include: a) a new histogram feature, that is formed by the weighted sum of both the gradient magnitude and the filter responses from a set of elongated Gaussian filters (Leung and Malik, 2001) corresponding to the quantised orientation, which we refer to as the Histogram of Oriented Gradient Banks (HOGB) approach; b) the codebook based HOG feature with branch-and-bound (efficient subwindow search) algorithm (Lampert et al., 2008) and; c) the codebook based HOGB approach.In the third problem, a unified framework that combines 3D and 2D background modelling is proposed to detect scene changes using a camera mounted on a moving vehicle. The 3D scene is first reconstructed from a set of videos taken at different times. The 3D background modelling identifies inconsistent scene structures as foreground objects. For the 2D approach, foreground objects are detected using the spatio-temporal MRF algorithm. Finally, the 3D and 2D results are combined using morphological operations.The significance of these research is that it provides basic frameworks for automatic large-scale mobile surveillance applications and facilitates many higher-level applications such as object tracking and behaviour analysis

    FULLY AUTONOMOUS SELF-POWERED INTELLIGENT WIRELESS SENSOR FOR REAL-TIME TRAFFIC SURVEILLANCE IN SMART CITIES

    Get PDF
    Reliable, real-time traffic surveillance is an integral and crucial function of the 21st century intelligent transportation systems (ITS) network. This technology facilitates instantaneous decision-making, improves roadway efficiency, and maximizes existing transportation infrastructure capacity, making transportation systems safe, efficient, and more reliable. Given the rapidly approaching era of smart cities, the work detailed in this dissertation is timely in that it reports on the design, development, and implementation of a novel, fully-autonomous, self-powered intelligent wireless sensor for real-time traffic surveillance. Multi-disciplinary, innovative integration of state-of-the-art, ultra-low-power embedded systems, smart physical sensors, and the wireless sensor network—powered by intelligent algorithms—are the basis of the developed Intelligent Vehicle Counting and Classification Sensor (iVCCS) platform. The sensor combines an energy-harvesting subsystem to extract energy from multiple sources and enable sensor node self-powering aimed at potentially indefinite life. A wireless power receiver was also integrated to remotely charge the sensor’s primary battery. Reliable and computationally efficient intelligent algorithms for vehicle detection, speed and length estimation, vehicle classification, vehicle re-identification, travel-time estimation, time-synchronization, and drift compensation were fully developed, integrated, and evaluated. Several length-based vehicle classification schemes particular to the state of Oklahoma were developed, implemented, and evaluated using machine learning algorithms and probabilistic modeling of vehicle magnetic length. A feature extraction employing different techniques was developed to determine suitable and efficient features for magnetic signature-based vehicle re-identification. Additionally, two vehicle re-identification models based on matching vehicle magnetic signature from a single magnetometer were developed. Comprehensive system evaluation and extensive data analyses were performed to fine-tune and validate the sensor, ensuring reliable and robust operation. Several field studies were conducted under various scenarios and traffic conditions on a number of highways and urban roads and resulted in 99.98% detection accuracy, 97.4782% speed estimation accuracy, and 97.6951% classification rate when binning vehicles into four groups based on their magnetic length. Threshold-based, re-identification results revealed 65.25%~100% identification rate for a window of 25~500 vehicles. Voting-based, re-identification evaluation resulted in 90~100% identification rate for a window of 25~500 vehicles. The developed platform is portable and cost-effective. A single sensor node costs only $30 and can be installed for short-term use (e.g., work zone safety, traffic flow studies, roadway and bridge design, traffic management in atypical situations), as well as long-term use (e.g., collision avoidance at intersections, traffic monitoring) on highways, roadways, or roadside surfaces. The power consumption assessment showed that the sensor is operational for several years. The iVCCS platform is expected to significantly supplement other data collection methods used for traffic monitoring throughout the United States. The technology is poised to play a vital role in tomorrow’s smart cities

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras

    Aeronautical engineering: A continuing bibliography with indexes (supplement 304)

    Get PDF
    This bibliography lists 453 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    • …
    corecore