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ABSTRACT

VEHICLE MAKE AND MODEL RECOGNITION

FOR INTELLIGENT TRANSPORTATION MONITORING AND SURVEILLANCE

Faezeh Tafazzoli

April 24, 2017

Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject

of study due to its importance in numerous Intelligent Transportation Systems (ITS), such

as autonomous navigation, traffic analysis, traffic surveillance and security systems. A

highly accurate and real-time VMMR system significantly reduces the overhead cost of

resources otherwise required. The VMMR problem is a multi-class classification task with

a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity

among various vehicles makes and models, which need to be solved in an efficient and

reliable manner to achieve a highly robust VMMR system.

In this dissertation, facing the growing importance of make and model recognition of

vehicles, we present a VMMR system that provides very high accuracy rates and is robust to

several challenges. We demonstrate that the VMMR problem can be addressed by locating

discriminative parts where the most significant appearance variations occur in each category,

and learning expressive appearance descriptors. Given these insights, we consider two data

driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted

features and an extended application of deep neural networks using MIL. Our approach

requires only image level class labels, and the discriminative parts of each target class are

selected in a fully unsupervised manner without any use of part annotations or segmentation
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masks, which may be costly to obtain. This advantage makes our system more intelligent,

scalable, and applicable to other fine-grained recognition tasks.

We constructed a dataset with 291, 752 images representing 9, 170 different vehicles

to validate and evaluate our approach. Experimental results demonstrate that the local-

ization of parts and distinguishing their discriminative powers for categorization improve

the performance of fine-grained categorization. Extensive experiments conducted using our

approaches yield superior results for images that were occluded, under low illumination,

partial camera views, or even non-frontal views, available in our real-world VMMR dataset.

The approaches presented herewith provide a highly accurate VMMR system for realtime

applications in realistic environments.

We also validate our system with a significant application of VMMR to ITS that involves

automated vehicular surveillance. We show that our application can provide law inforce-

ment agencies with efficient tools to search for a specific vehicle type, make, or model, and

to track the path of a given vehicle using the position of multiple cameras.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Nowadays, dealing with large amounts of data is a very active research topic. The

world is continuously generating countless data. Processing and extracting information

from these data has become a challenging task. Images and videos make up a large portion

of this data. This is due in part to the fact that there are over one billion smart phone

users around the world who take photos and videos every day. Consequently, on Facebook

alone, more than 250 billion photos have been uploaded and, on average, it receives over

350 million new photos every day [1]. Similarly, YouTube reports that 400 hours of video

are uploaded every single minute [2]. Additionally, there is the data that have not made it

into the Internet (yet), such as the 24/7 video feeds from millions of surveillance cameras

in parking lots, convenience stores, ATMs, airports, etc. How to effectively understand and

use this data is a critical task.

As one of the fundamental topics in computer vision, image classification serves as

a basic way to organize images in an unsupervised way. It involves determining whether or

not an image contains some specific class of objects. The high intra-class variability and the

changes in global appearance of the objects within the same category have been the main

challenges in basic recognition tasks. Ideally, a category model should be able to represent

all the objects within the category, and be flexible enough to accommodate their intra-class

variability.

Recently, driven by real-life applications, subordinate-level categories, such as identification

of different species of birds [3–5], flowers [6, 7], leaves [8], breeds of dogs [9] and models of

aircraft [10], has become an important direction of research in image classification. These
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problems which directly address the intra-class variability are regarded as a fine-grained

visual classification task which attempt to classify same-category objects with only subtle

distinctions [11]. In essence, the main difference between basic-level and fine-grained visual

classification is the level of difference between different categories. Distinguishing a bird

from an airplane is a relatively easy task as there are plenty of helpful visual cues. However,

this is not the case when we want to differentiate between two species of birds with a minute

appearance difference such as different colors of beak. The latter problem requires methods

that are more discriminative than those used for general image classification.

Two major challenges need to be tackled in fine-grained classification. First, differen-

tiating subtle details in appearance which would define the target fine-grained classes. This

calls for an appearance feature representation that retains details critical for discrimination

and discards unnecessary information. Another challenge is in discovering and locating the

parts that contain discriminative details. In such applications, a reliable classifier would

amplify the differences while suppressing the common features in the representation of dif-

ferent categories. Despite these challenges, however, fine-grained tasks can be very useful

when properly addressed. It can be considered as one of the cornerstones in computer vi-

sion due to its potential to make computers rival human experts in visual understanding in

many real-world applications.

A very interesting and challenging category of images with considerable intra-class

variability and inter-class similarity are vehicles. Cars are now indispensable from our mod-

ern life which has made their classification an appealing problem because it is a well-defined

fine-grained recognition task that plays an important role in many potential applications.

1.1.1 Intelligent Transportation Systems

Over the recent years, a deluge of innovative technologies and solutions are bringing

Intelligent Transportation Systems (ITS) closer to reality. The development of digital image

sensors and computer vision techniques offer a great deal of advantages in enabling many

important ITS applications and components such as Advanced Driver Assistance Systems

2



(ADAS), Automated Vehicular Surveillance (AVS), traffic and activity monitoring, traffic

behaviour analysis, traffic management, intelligent parking, and self-guided vehicle systems.

Other deployments are found both in public and commercial sphere. Identification and

classification of vehicles is of great interest in these applications, due to elevated security

concerns in ITS and demanding areas such as targeted advertisement or surveillance for

crime prevention and safety.

In 2014, there were 907 million passenger vehicles and 329 million commercial vehicles

registered worldwide, in comparison with 2006 statistics which had 678 and 248 million

passenger vehicles and commercial vehicles, respectively [12]. This shows an increase of

33.7% in passenger vehicle numbers and 32.6% in commercial vehicles. If this trend increases

with the same pace, in 2035 there will be approximately 1.7 billion registered vehicles on

road worldwide. This brings up a need to implement a system which can identify the vehicles

effectively and accurately and employed in different scenarios of incident detection, behavior

analysis and understanding. Generally, the problems of vehicle detection, identification,

classification, and tracking can all be defined in form of AVS. By applying fine-grained

classification of vehicles in transportation and public security, we can acquire more meta

information like vehicle make, model, logo, production year, max speed, acceleration, etc.

Over the years, significant research has been done to solve challenges in these areas [13,14].

However, classifying vehicles into fine categories such as makes and models, has gained

attention only recently, and many challenges remain yet to be addressed [15–17].

The focus of this dissertation is on developing novel approaches to address the chal-

lenges in automated Vehicle Make and Model Recognition (VMMR), utilizing state of the

art computer vision-based techniques.

1.1.2 Automated Vehicular Surveillance

The need for vehicle identification and classification has become prevalent in recent

years as a result of the increase in security awareness for access control systems in parking

lots, buildings, and restricted areas. In such highly vulnerable areas, an AVS system run-
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ning over surveillance video footage can greatly assist the security personnel in verifying

vehicle from appearance given certain types, makes, models, or colors, and track it across a

multiple camera network. Moreover, in post-event investigations of vehicle-related crimes,

law enforcement agencies usually require searching and monitoring a suspicious vehicle from

millions of traffic images based on general descriptions of car features from a victim. In

such scenario, taking advantage of VMMR technology would save considerable amount of

time, resources and manpower, thereby speeding up the event of crime capture. In addition,

for applications such as electronic toll collection, vision-based AVS systems could serve as

a complementary tool in improving efficiency of existing systems to apply different rates

to different types of vehicles inexpensively and automatically. In traffic control or traffic

monitoring, statistics of vehicle flow, associated with vehicle models, is more helpful in an

intelligent transportation system. Travel time between monitored points can be estimated

to provide the detailed traffic status during peak traffic hours.

Traditional vehicle identification systems recognize makes and models of vehicles

relying on manual human observations or automated license plate recognition (ALPR) sys-

tems [18–20]. Both approaches are failure-prone and have several limitations. It is prac-

tically difficult for human observers to remember and efficiently distinguish between the

wide variety of vehicle makes and models. On the other hand, the AVS systems that rely

on license plates suffer from several limitations. First, most surveillance cameras are not

installed for license plate capturing, thus, plate recognition performance drops dramatically

on images/video data captured by these cameras. Furthermore, license plates are easy to be

forged, damaged, modified, occluded, or invisible due to uneven lighting conditions. More-

over, in some areas, it may not be required to have the license plate at the front or rear of

vehicle. Thus, if the ALPR system is not equipped to check for license plates at both views

of the vehicle, it could fail. This could lead to retrieving the wrong information regrading

make or model of the vehicle from the registry [21].

To overcome the above shortcomings in traditional vehicle identification and classification

systems, the make and model of the vehicle recognized by the VMMR system can comple-
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ment the license plate recognition systems by providing a higher level of robustness against

fraudulent use of license plates or poor image quality and consequently further enhance

security.

1.2 Vehicle Make and Model Recognition

The problem of vision-based automated vehicle classification into makes and mod-

els is an important task for AVS and other ITS applications which can be considered as

a challenging multi-class fine-grained image classification problem, in which a “class” is a

particular vehicle manufacture, model and year. Most works first adopt a vehicle detection

step which produces Regions of Interest (ROIs) containing the vehicle's front or rear view-

point, segmented from the background. The Vehicle classification systems then work on the

features extracted from these ROIs.

1.2.1 Challenges and Issues

Vehicles offer several unique properties compared to other objects. They provide a

more diverse and challenging set of issues and facilitate a range of novel research topics in

fine-grained image classification. There are two broad categories of challenges in VMMR:

(1) Multiplicity, and (2) Ambiguity [22].

The multiplicity problem stems from one vehicle model of the same make having different

shapes and/or appearances in different years. Most of the time, a vehicle's shape is re-

modeled at different times to fit market requirements. Figure 1.1 displays the multiplicity

problem in sample images from the VMMRdb dataset introduced in section 5.1. For in-

stance, the differences between images of Honda Civic in years between 1986 to 2015 are in

changes in the shape of tail lights, bumper or an optional addition of rear spoiler in some

cases.

The ambiguity problem can be further classified into two types: (a) Inter-class similar-

ity, and (b) Intra-class variability. The former ambiguity refers to the issue of vehicles

of different manufactures having visually similar shape or appearance, i.e., two different
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make-model classes have similar front or rear views. For example, “Ford Escape 2010” and

“Mazda Tribute 2008” have visually similar back-view appearance (Figure 1.2). The latter

kind of ambiguity is a result of similarity between different models of the same make. For

example, the “Altis” and “Corolla” models of “Toyota” are visually very similar (Figure

1.2).

Another major challenge can arise when features are computed from the background. This

can affect the learning mechanism. Although many other fine-grained applications might

face similar issues, the considerably large number of car models, including different car

manufactures and models depending on the year has made VMMR one of the most chal-

lenging fine-grained classification problems. This application, thus, can potentially foster

more sophisticated and robust computer vision models and algorithms.

Figure 1.1: Multiplicity Problem with sample classes in VMMRdb dataset (section 5.1)

Figure 1.2: Ambiguity Problem with sample classes in VMMR dataset (section 5.1)
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For humans, recognizing the makes and models of the cars might be a straightforward

task, especially for car enthusiasts. In fact, cars can usually be identified by the human

eye due to certain key aspects, such as logos, hood ornaments, or lettering. However,

since most vehicles have similar global shapes, un-textured regions and their appearances

are often dominated by environmental reflections and highlight lines, this has traditionally

been a hard task for computers. In some cases, differentiating visually between some models

of a specific manufacturer, from certain viewpoints, is quite difficult even for humans. Cars,

generally, yield large appearance differences in their unconstrained poses, which demands

viewpoint-aware analyses and algorithms. Thus, for an algorithm to be reliable and robust,

it should only rely on fine differences in local appearance, and retain discriminative details

that are highly domain-specific. Additionally, a robust object category recognition system

needs to tackle varying imagery conditions that exists in different applications. Traditional

methods for image classification need effective descriptors and machine learning algorithms

to obtain good accuracy levels. The descriptors are used to represent an object with specific

features and a classifier learns the image label based on these features. These feature

representations require a significant amount of domain knowledge and typically, they do not

generalize well to new domains. Additionally, these methods work under the assumption

that all of the extracted features are useful for classification.

For fine-grained recognition tasks, specifically, the challenge is in discovering and locating

the regions that contain these discriminative details. It has been proven in cognitive research

studies [11] that basic-level recognition is based on comparing the shape of the objects and

their parts, whereas subordinate-level recognition is based on comparing appearance details

of certain object parts [3]. If irrelevant parts are used, it is virtually impossible to distinguish

between two models of a vehicle. However, if we know the location of the discriminative

regions, the recognition task becomes easier. Thereby, one important common feature of

many existing fine-grained methods is that they rely heavily on annotations of an object

or even object parts to learn a model that can depict the object as precisely as possible

and build the correspondence between object parts [23]. This approach is clearly costly and

7



may be difficult to scale up to handle many different types of fine-grained classes. This can

impose limitations to the application of these methods to real-world problems.

In this dissertation, we hypothesize that an efficient, yet robust solution to such

fine-grained recognition tasks should entail both localizing important regions within the

image with minimal supervision, and effectively describing each salient region by a feature

vector. For this problem we consider two data driven frameworks: a Multiple Instance

Learning-based system and a deep neural network.

1.3 Overview of Proposed Solution

In traditional supervised learning, the training set is defined by D = {< xi, yi >}ni=1,

where xi ∈ Rd is an instance vector that characterizes object oi. A label yi ∈ Y = {1 . . . C}

is associated with each xi, where C is the number of classes. The goal is to learn a classifier

g : Rd → Y, that can predict yt, the label of an unseen test sample xt.

For this type of learning, domain knowledge is not required, but all the labels should be

carefully provided to achieve a good performance, acceptable robustness, and generalization

capabilities. However, for most applications, either the data is labeled ambiguously and at

a coarse level, or a tedious manual process is needed to label the data. In the latter case,

only a small set of labeled samples may be available. For example, in image annotation,

large amounts of data are available and could be used for learning. Typically, only tags are

provided and could be used as indicators of the existence of an object of interest within

the images (e.g. vehicle, airplane, or bird). Unfortunately, despite the scalability of many

recent machine learning algorithms, they still require the full engaged cognition of a human

being to assign labels at a finer level, e.g. label regions within images. However, the

exact location and boundary of those objects within the image is not available and is too

tedious to extract for large collection of images. Thus, in this application, it is not easy

to overcome the ambiguity of labeled data even by including humans in the loop to either

label or identify regions of interest [24]. This is because even though with crowd-sourcing,

labels can be assigned to data points quickly, easily, and cheap [25], this strategy yields
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noisier data than traditional annotation since high-quality manual outlining is intrinsically

ambiguous, subjective, and prone to errors (e.g. difficulty to select discriminative parts of

an object within an image).

Unsupervised learning methods [26,27], on the other hand, ease the burden of manual

annotation, but often at the cost of decreased performance.

In the middle of the spectrum is the weakly supervised learning scenario. The idea is to use

coarse-grained annotations to aid automatic exploration of fine-grained information. One

particular form of weakly supervised learning is Multiple Instance Learning (MIL). MIL is

a relatively new framework that can learn with partially labeled data [28].

1.3.1 Multiple Instance Learning

Multiple instance learning differs from the traditional scenario in the way learning

examples are encoded and represented. In the traditional supervised learning scenario,

as mentioned earlier, each example is represented by one feature vector of fixed length.

However, in MIL, the classifier must be designed and trained on a set of bags instead of

feature vectors. Each bag consists of a collection of feature vectors called instances. Each

such bag is labeled, but the label of the individual instances are unknown. In fact, instance

labels can be indirectly inferred from the bag labels. MIL problems are often considered to

be two-class problems, i.e., a bag can belong either to the positive or the negative class. In

the standard MIL setting, a bag is labeled positive if at least one of its instances is positive,

and a negatively labeled bag contains all negative instances. An MIL classifier seeks an

optimal labeling scheme for unknown bags based on the above information.

More formally, in MIL, the training set is given by D = {< Bi, yi >}mi=1, where bag Bi =

{xi,j}|Bi|
j=1, xi,j ∈ Rd is an instance and |Bi| is the number of instances in Bi. Let yi,j ∈

{0, 1} be the latent variable of instance xi,j ∈ Bi; then the label of Bi is known as yi =

max{yi,j}|Bi|
j=1. In other words, yi = 1 if and only if at least one xi,j in Bi is a positive instance

of the underlying concept; otherwise, yi = 0. The training algorithm then automatically

explores instance-level and bag-level models to find the one that best fits the given bag
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labels and generalizes it to predict the labels of new bags or new instances [28].

The MIL problem was first proposed by Dietterich et al. [28] to solve the drug activity

prediction. Ever since, it has increasingly been applied to a wide variety of tasks. In fact,

many problems in computer vision and machine learning can be naturally cast in an MIL

setting. The applications include but not limited to drug discovery [29], text classification

[30, 31], computer-aided medical diagnosis [32], segmentation [33], image annotation [34],

visual tracking [35,36], human detection [37], image classification [38–40] and content-based

image retrieval (CBIR) [41–43].

In the context of image classification, MIL is needed when images are coarseley

labeled at the image level and not at the region level. In such setting, an image is represented

by a bag of instances where each instance corresponds to a feature vector extracted from

different regions within the image. For instance, an image labeled as vehicle would contain

at least an instance representing a vehicle, whereas images with other labels would not depict

any vehicles-related region. Thus, a positive bag would include at least one instance that

represents one of the image categories under consideration. The MIL approach attempts

to use the labeled bags to model the concept object of interest in the instance space.

Basically, in all of the image-based applications, the goal is to learn concepts from partially

labeled images that can characterize each class. For instance, in basic image classification

[38, 44] each image contains many objects, but only those representing information about

target object/category are of interest. In other words, a positive instance can either be

representative of a target object in the scene or the context of target class. Other instances

may be shared across different classes and therefore have no discriminative information. To

tackle the issue of intra-class variability, using MIL, we treat each image as a set of patches,

but only those regions/instances that potentially carry category-specific information will be

considered for classification.
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1.3.2 Deep Learning

Over many years, image classification in computer vision has been relying on hand-

crafted features such as SIFT [45], HOG [46] and Fisher vector (FV) [47] in conjunction

with shallow discriminatively trained models. However, these features can only capture low-

level edge information. The design of features to effectively capture mid-level information

such as edge intersections or high-level representation like object parts becomes much more

difficult.

In contrast with shallow learning algorithms, deep learning aims to extract hierarchical

representations from large-scale data by using deep architecture models with multiple layers

of non-linear transformations. With such feature representations, instead of raw pixel values

or hand-crafted features, a better performance becomes more achievable. A deep neural

network (DNN) is simply a feed-forward, artificial neural network that has more than one

layer of hidden units between its inputs and outputs. The principle behind their success,

however, is that they attempt to automatically unfold hierarchies of abstraction embedded

in observed data in both unsupervised and supervised manners, by elaborately designing

the layers depth and width, and accordingly selecting features that are beneficial for the

learning task [48].

Deep learning architectures have different variants such as Convolutional Neural Net-

works (CNN) [49], Deep Belief Networks (DBN) [50], Deep Boltzmann Machines (DBM)

[51], etc. Among them, CNN has been the most attarctive model which has been employed

on large labelled datasets such as ImageNet [52], and has produced the best results on the

most challenging image classification and detection datasets [53] by a huge margin. Ad-

ditionally, CNN learns powerful generic image representations [54, 55] which can be used

off-the-shelf to solve many visual recognition problems [55]. In contrast to hand-designed

features used in previous methods, CNN is able to extract different levels of complex vi-

sual features from large-scale dataset using its multi-layer feed-forward structure. This

approach provides a certain degree of simplification for Big Data analytics tasks, especially

for analyzing massive volumes of data and discriminative tasks performing classification and
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recognition. Most impressively, these approaches are capable of producing state of the art

performance on tasks that the model was not explicitly trained for. This good generaliza-

tion in performance on new tasks and datasets indicates that CNNs may provide a general

and universal visual feature learning framework applicable to all tasks.

There are still some shortcomings in current deep learning practices. First, while

we know that bigger models offer more potential capacity, in practice, the learned model is

often limited by either too little training data or very limited time for running experiments,

which can lead both to overfitting or underfitting. In essence, deep learning shares other

machine learning methods's tendency to overlearn the training data. This means that the

algorithm memorizes characteristics of the training data that may or may not generalize

to the production environment where the model will be used. However, as mentioned

earlier, this problem is not unique to deep learning, and there are ways to avoid it through

independent validation.

Training deep architectures is difficult because the large number of parameters to be tuned

necessitates an enormous amount of labeled training data that is often unavailable. Thereby,

they require a great deal of computing power to build. While the cost of computing has

declined dramatically, computing is still not free. For simpler problems with small data sets,

deep learning may not produce sufficient added benefit over simpler methods to justify the

cost and time. In other words, having enough amount of labelled training data, is essential

to learning with CNN.

In this dissertation, we attempt to focus on the feature learning advantages of deep networks

and employ it in our multiple instance learning framework.

1.4 Contributions

In this dissertation we address the VMMR application as an example of within-

category object class recognition. VMMR presents a more diverse and challenging set

of issues than in other fine-grained image classification problems (Refer to section 1.2.1).

Thus, we need to focus on finer details of each class and instead of considering the whole
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image/object, we use more distinctive patches/parts. In such scenario, we definitely need

more than one visually discriminative region per class to be able to identify both the make

and model. Our proposed approach will address both feature learning and part discovery

simultaneously.

To tackle the above-mentioned challenges and issues, we propose and investigate

an MIL-based algorithm for VMMR where each sample image is represented by a bag of

instances. Let us suppose that we have assembled a training dataset with images labeled

as positive if they contain Toyota Camry, and negative otherwise. Using an MIL approach,

we can regard each training image weakly labelled with data as a bag containing a set of

instances. The instances in a particular bag are various sub images each corresponding

to a region of interest (ROI). If a bag is labeled as Toyota Camry, we know that at least

one of the ROIs contains part of the vehicle. If a bag is labeled as non-Toyota Camry,

we know that none of the sub images contain a vehicle with that make and model. In

other words, the regions of interest (i.e. possible locations of the distinctive vehicle parts)

in each image are considered as positive instances, and the rest are as negative instances.

These regions could be obtained by segmenting the image into homogenous regions or by

simply dividing the image into fixed-size blocks. Clearly, the data is ambiguously labeled

(i.e. labels are available only at the bag level, and individual patches representing the

vehicle are not labeled). We could just follow most existing MIL approaches and divide

the image into n regions, and label all of them as positive if in the positive class. This

way, most of these positive regions may belong to the background or non-discriminative

parts of the vehicle which would result in many ambiguities in MIL. Additionally, using a

very large dataset, we will be confronted with a very large feature space that could result

in considerable computational overload. In this study, we focus only on a few ROIs as

instances. In particular, we use saliency detection to capture more discriminative regions

of the object as potential ROIs while limiting the number of instances.

Furthermore, we investigate the integration of CNN features in our proposed MIL

framework and compare its performance with hand-crafted features. Specifically, we rely

13



on CNNs to learn appearance descriptors. By learning the features that are appropriate

to describe the object categories in question, we let the data determine which features are

effective for discrimination, which helps avoid losing information useful for categorization.

By keeping part discovery completely unsupervised with respect to part annotations, we

aim to make our algorithm scalable to a variety of fine-grained domains, including ones for

which it is not known a priori which parts are discriminative.

The considered VMMR application requires a large and diverse dataset. To validate

the proposed approach appropriately, we have created a very large dataset that includes im-

ages that were taken by different users, assorted imaging devices, and multiple view angles,

ensuring a wide range of variations to account for various scenarios that could be encoun-

tered during testing. The data covers most makes and models that were manufactured after

1950.

The major contributions of this dissertation are summarized as follows:

1. We propose and evaluate unexplored representation and classification approaches for

VMMR, based on the MIL and Deep Learning paradigms, and prove their effectiveness

in realistic scenarios.

2. We develop an unsupervised method to select instances based on intrinsic features

extracted from different regions. The instances are chosen regardless of the prior class

information or viewpoint changes. This process leads to maximizing the number of

relevant instances while minimizing the number of irrelevant negative instances in the

process of multiple-instance learning.

3. We address an essential question of MIL: which instances indeed contribute to the

semantic meaning of the bag-level labels?

4. To learn the key characteristics and features from all classes of makes and models in

an optimised manner, we evaluate the potency of CNN features compared to hand-

designed features.

5. The proposed VMMR approaches are compared to state of the art methods and are
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evaluated using a comprehensive dataset that we have collected. This VMMR dataset

is the largest public vehicle dataset available.

6. We evaluate our VMMR system on a real-life scenario, in a traffic multiple camera

network. The unique challenge in traffic-image based MMR is due to various image

qualities, having multiple vehicles, occlusion and the change in illuminance conditions

and viewpoints.

1.5 Thesis Outline

The remainder chapters of this dissertation are structured as follows.

• Chapter 2 provides a review of multiple instance learning, instance selection and

regional proposal techniques. It also, presents an extensive literature review showing

how representative works in vehicle identification and classification have evolved over

the years. Additionally, it illustrates the concept of deep learning and lays out different

successful architectures in the context of content-based image understanding.

• Chapter 3 introduces our end-to-end multiple instance pipeline.

• Chapter 4 presents our second MMR scheme using a multiple instance CNN-based

learning framework.

• Chapter 5 evaluates the performance and efficiency of the proposed VMMR approaches

on existing benchmarks. It, also, presents the experimental results and analysis on

the selected discriminative instances.

• Finally, chapter 6 concludes by summarizing the work, and outlines possible future

directions of research.
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CHAPTER 2

BACKGROUND

In this chapter, we review existing approaches in areas that are highly relevant to our

proposed research. First, we outline the Single Instance Learning problem in the context of

fine-grained recognition. Then, we describe the Multiple Instance Learning paradigm and

illustrate its advantages over Single Instance Learning for certain tasks. Next, we provide

literature review on region selection methods with a focus on saliency detection techniques.

Then, we outline the concept of deep learning and lay out different successful architectures

in the context of content-based image understanding. Finally, we review the literature in

the area of Vehicle Make and Model Recognition.

2.1 Single Instance Learning for Fine-grained Classification

Fine-grained recognition is the task of discriminating between similar objects with

subtle differences. A straightforward idea to solve such problems is to simply apply meth-

ods used for generic classification tasks regardless of the granularity of the class differences.

However, classification algorithms for basic-level tasks and fine-grained-level tasks are quite

different.

For basic level classification, the difference between classes is significant and can be com-

puted by one global feature vector. For instance, the Bag-of-Words model [56] has been

used frequently to accumulate features extracted from different parts of the object. This

strategy does not scale well with respect to the number of classes and the number of sub-

ordinate classes in fine-grained classification problems is usually very large. In fact, subtle

differences between classes could be missed because of the relatively large number of similar

features. Thus, for fine-grained classification, commonly used methods focus on extracting
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more detailed features from various parts of the image to improve the chance of capturing

information that discriminate between classes [57].

For supervised learning, class labels are needed and are used to learn the recognition

models using statistical machine learning techniques. First, features that capture intrinsic

properties of the objects are extracted. Then, a decision function is learned to map the

constructed descriptors to their category labels. The learned decision function is then used

to predict the label of a novel test object.

Let xi be the feature vector extracted from object oi. xi lies in some input space Rd and

has a label yi in a label space Y. Given the the training data D = {< xi, yi >}ni=1 with n

samples, drawn from a (unknown) distribution P(x, y), the goal of the classifier is to learn

a hypothesis g : Rd → Y, such that g(x) approximates y for new samples (x′, y′) ∼ P. The

first decision to make pertains to the hypothesis class (or model) G from which to select

g. A wide range of options are available and the best choice often depends on assumptions

about the data (linear separability, presence of outliers, amount of data, prior knowledge).

If G is too large, the model might overfit the training data. On the other hand, if G is too

small the model will underfit and may result in poor generalization.

In fine-grained classification approaches, features are typically extracted from differ-

ent parts of the object in an attempt to capture more detailed and potentially more dis-

criminative information. Object parts are either manually identified and annotated [58,59],

or discovered by a set of object detectors [4]. For the former, the annotation quality is

good but the annotation process does not scale with the number of images in the training

dataset and with the number of classes. This process remains challenging even when the

labeling task is crowd-sourced. Ideally, members of the crowd should be able to recognize

and accurately annotate the objects in question. However, in reality workers have different

levels of competency and attention. Moreover, while these selected parts are guaranteed

to be human-understandable (which suffices for human-in-the-loop classification applica-

tions [60]), they may not be machine-detectable and hence may not work well in automated

systems.
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For the automated object detection approach, an accurate registration is almost impossi-

ble because of the variations of the image structures across different classes. Also, a local

attribute might correspond to features at different unknown positions and scales across im-

ages. Usually, a set of object component detectors can be pre-defined for a specific domain.

This can make the approach more reliable. However, it makes it more difficult to adopt

to other domain or even other datasets. Missing parts for registration is another obstacle

of these approaches. Therefore, there is need to develop new algorithms for fine-grained

tasks to make them suitable for wide deployments. The aforementioned problems can be

alleviated using weakly supervised localization which can learn with partially labeled data.

2.2 Multiple Instance Learning

Multiple Instance Learning (MIL) is a supervised learning framework that aims

at handling ambiguously labeled data in classification and regression problems [61]. As

opposed to traditional supervised learning, where the learning procedure works over fixed-

length vector of features as instances and their corresponding labels, MIL operates over

bags of instances, where each bag is composed of multiple instances. Each bag can contain

a different number of instances. This form of learning is referred to as weakly supervised,

since the labels of bags are known but not those of individual instance. The key assumption

of MIL is that a bag is labeled as positive, if at least one of the instances within the bag

is known to be positive, whereas it is labeled as negative, if all the instances are known

to be negative. Positive bags can encode ambiguity since the instances themselves are not

labeled. Given a training set of labeled bags, the goal of MIL is to learn a concept that

predicts the labels of training data and generalizes to predict the labels of testing bags [28].

Figure 2.1 depicts the differences between these paradigms of learning.

Existing methods in solving MIL problem fall into two categories, generative models

and discriminative models.
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Figure 2.1: Differences between traditional supervised learning and multiple instance learn-

ing for the case of two-class problem. A representation based on [28]

2.2.1 Generative Models for MIL

Generative model-based algorithms attempt to learn a single target distribution to

generate instances and/or bags and their labels in a joint manner. They represent the target

concept by a region in the instance space which covers as many instances from positive

bags as possible while excluding as many instances from negative bags as possible. Axis

parallel hyper-rectangle [28], Diverse Density (DD) [29] and Expectation Maximization DD

(EM-DD) [62] are examples of algorithms that fall into this category. In many generative

algorithms, the bag label is predicted by first estimating the hidden labels of its instances.

2.2.1.1 Axis-parallel Rectangle

The axis-parallel rectangle (APR) method [28] attempts to find a hyper-rectangle

in the feature space to represent the area of the true positive instances. Intuitively, this

rectangle is identified as a region in the instance feature space that includes at least one

instance from each positive bag and excludes all instances from the negative bags.
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Dietterich et al. [28] suggested three algorithms to find such a hyper-rectangle; a “standard”

algorithm finds the smallest APR that bounds all the instances from positive bags; an

“outside-in” algorithm constructs the smallest APR that bounds all the instances in positive

bags and then shrink the APR to exclude false positives; an “inside-out” algorithm starts

from a seed point and then grows a rectangle from it with the goal of finding the smallest

APR that covers at least one instance per positive bag and no instances from negative bags.

These algorithms were employed to solve the problem of drug activity prediction, where the

potency of a drug is determined by its binding degree with a target molecule and binding

strength of a drug is determined by the shape of the drug molecules. This is a MIL problem

since the molecules may adopt many possible shapes by simple rotation of internal bonds.

A drug is classified as active if at least one of its instances is inside the APR, otherwise, it

is classified as inactive [28].

Although APR works well for some problems, in other applications, such as image

classification, it is quite possible that no APR could be found to satisfy the criteria. More-

over, APR is very sensitive to labeling noise. For instance, having only one mislabeled

negative bag would force the algorithm to include at least one instance from this bag. This

would result in an APR that contains many negative instances and it cannot represent the

area of true positive instances [63].

2.2.1.2 Diverse Density

The Diverse Density (DD) algorithm is another common MI learning framework.

In [29], Maron and Lozano-Perez proposed the DD measure with the objective to find a

“soft” region that describes the intersection of the positive bags minus the union of the

negative bags. To achieve this, DD uses a gradient search algorithm, with multiple starting

points selected from a set of instances in positive bags, to find the target concept. The

target concept is defined as a point in the instance feature space that is “close” to at least

one instance from every positive bag but “far” from instances in the negative bags. In other

words, the target concept describes a region that is densely populated by instances from
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positive bags. Thus, the task of MIL is transformed to the search for this prototype point

in the feature space which holds the maximal DD value.

Formally, let {B+
i }ni=1 and {B−i }mi=1 denote the n positive and m negative bags in the

training dataset respectively. The diverse density of a given target concept t is defined as

the probability that t is the correct concept over the feature space.

DD(t) = Pr(t | B+
1 , B

+
2 , . . . , B

+
n , B

−
1 , B

−
2 , . . . , B

−
m) (2.1)

Using Bayes rule and assuming uniform prior over the target concept location, this is equiv-

alent to maximizing the following likelihood:

DD(t) = Pr( B+
1 , B

+
2 , . . . , B

+
n , B

−
1 , B

−
2 , . . . , B

−
m|t ) (2.2)

Under the assumption that all bags are conditionally independent, given the concept point

t, (2.2) can be decomposed into:

DD(t) =
∏

1≤i≤n
Pr(B+

i | t)
∏

1≤i≤m
Pr(B−i | t) (2.3)

Using Bayes’ rule further and assuming uniform priors, Maron and Lozano-Perez [29] showed

that optimizing DD in (2.3) is equivalent to optimizing D̂D, defined as:

D̂D(t) =
∏

1≤i≤n
Pr(t | B+

i )
∏

1≤i≤m
Pr(t | B−i ) (2.4)

In (2.4), Given the fact that boolean label of a bag is the result of “logical-OR” of the labels

of its instances, Pr(t | Bi) is defined using the noisy-or model [64], i.e.
Pr(t | B+

i ) = 1−
∏
j(1− Pr(t | B

+
i,j)),

P r(t | B−i ) =
∏
j(1− Pr(t | B

−
i,j))

(2.5)

where Pr(t | B+
i,j) (or Pr(t | B−i,j)) can be estimated by a Gaussian-like distribution

Pr(t | B+
i,j) = exp(−‖B+

i,j − t‖
2
) = exp(−

∑
k

wk(B
+
i,j − tk)

2
) (2.6)

where wk is a non-negative scaling factor that reflects the degree of relevance of features.

The target concept t can be found by maximizing (2.4).
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The DD method has been widely used for different MIL applications such as drug activity

estimation [29] and image retrieval [65]. However, it is sensitive to labeling noise.

The EM-DD [62] is another algorithm that seeks an optimal target concept. It uses

the Expectation Maximization (EM) algorithm to maximize D̂D(t) in (2.4).

In the MIL definition, the label of a bag is determined by the “most positive” instance in

the bag. The problem, however, comes from the ambiguity of not knowing which instance

is the most likely one. The EM-DD attempts to model the instance labels using hidden

variables. It starts by taking an initial guess from positive instances as a target concept t

(which can be obtained using DD algorithm). Then it alternates between two steps: in the

E-step, the current hypothesis of concept t is used to pick one instance from each bag which

is most likely responsible for the bag label; in the M-step, it finds a new target concept t′ by

maximizing the likelihood over all negative and positive instances identified in the E-step.

These steps are repeated until the algorithm converges.

EM-DD turns the multi-instance problem to a single-instance definition by removing the

noisy-or part of the DD algorithm. This modification, highly reduces the complexity of the

optimization function and computational time.

The above methods are quite efficient in learning, but they are based on the as-

sumption that all positive instances form a tight cluster in the feature space [30]. It means

that they consider mainly the information of only one or a limited number of prototypes

to represent the target concepts in the positive bags. This kind of assumption might not

be necessarily true for many real-life applications with diversified positive instances. There

are, in fact, more than one instances from the concept in many positive bags and much of

the information contained in these instances is lost this way. Moreover, the true positives

may not follow a Gaussian distribution. Indeed, the distribution of positive instances can

be multi-modal or even random, and the single target distribution learnt by these methods

may fail to cover the whole instance space [39].

To tackle this problem, in [66], Karem and Frigui proposed a method to identify multiple

target concepts simultaneously. They addressed the ambiguities arising from not having
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any information on the relevance of each feature and ending up with only a few relevant

instances, they employed a fuzzy approach. They extended the DD model using a fuzzy

clustering approach to introduce a fuzzy Multi-target concept Diverse Density (MDD) met-

ric, assuming that each bag Bi belongs to each target concept tk with a membership degree

uki.

MDD(T,U) =

N∏
i=1

K∏
k=1

umkiPr(tk|Bi) (2.7)

where U = [uki] for k = 1, . . . , T , i = 1, . . . , N , and m is a fuzzifier that controls the fuziness

of each partition. The MDD is maximized when the target concepts correspond to dense

regions in the feature space with maximal correlation to instances from positive samples,

and minimal correlation to instances from negative samples.

2.2.2 Discriminative Models for MIL

Discriminative model-based methods, including DD-SVM [67], MI-SVM [68], MI-

Kernel [69], MIO [70], MILES [38] and Citation-kNN [71], focus on modeling data and/or

bag labels given features of data instances or bags. Some of these methods extend stan-

dard SIL approaches to the MIL setting. Other methods map bag features into a simple

high dimensional feature vector, then, apply standard classifiers. Using many benchmark

datasets, it has been shown that these discriminative methods tend to be more robust and

accurate than generative algorithms [72].

As mentioned earlier, using the standard MI assumption, if a bag contains at least

one positive instance it is labeled as positive, otherwise, it is labeled as negative. This as-

sumption is suitable for some problems such as drug activity estimation [28]. This is because

one of the molecules shapes is sufficient to infer if the drug has potency. However, recent

work has applied MIL to other domains that require alternative MIL assumptions. Conse-

quently, new MIL techniques with more relaxed assumptions have emerged. For instance,

in image classification applications, negative bags may contain parts of positive category

instances.

Chen and Wang [67] proposed a MIL framework named DD-SVM, where a bag label is
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not determined by the standard assumption, instead by the number of instances satisfying

certain properties. In their method, initially, using the DD function, a set of instances

are selected. These instances are more likely to appear in positive bags than negative ones.

Then, based on the feature space constructed from a mapping defined by the local maximiz-

ers and minimizers of the DD function, a Support Vector Machine (SVM) in combination

with radial basis function (RBF), is trained to discriminate between positive and negative

bags. In essence, DD-SVM converts MIL to a standard supervised learning problem through

feature mapping. Ray et al. [30] extended the DD framework by using a Logistic Regres-

sion algorithm to estimate the equivalent probability for an instance. They employed a soft

max function to combine instance-level information to predict the bag label. Weidmann et

al. [73] considered a generalization where the presence of a combination of instance types

determines the label of the group. Xu and Frank [74] assumed that all instances contribute

equally and independently to a group's class label. These types of solutions are typically

application dependent and tailored to handle specific assumptions about the whole-part

relationship between groups and instances.

2.2.2.1 MI-SVM

Andrews et al. [68] proposed mi-SVM and MI-SVM methods as modifications to the

standard SVM for instance-level and bag-level classification, respectively. Both of these

approaches, formulate the learning problem as a mixed integer problem and attempt to

maximize the margin of the instance classifier.

The objective of mi-SVM is to maximize the instance margin jointly over unknown hidden

instance labels and the kernel parameters. Hence the same formulation is used as SVM,

but the minimization is done over the individual labels as well, subject to the constraint

that in a positive bag, at least one instant should have a positive label and all instances

should have negative labels in a negative bag. In mi-SVM, instance labels yi are considered

as unobserved hidden variables subject to constraints imposed by their bag labels YI . In

case of a linear discriminant function f(x) = wTx+ b, the weight vector w ∈ Rd and offset
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b ∈ R are estimated to find integer values yi ∈ {+1,−1}:

min
{yi}

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi,

s.t. ∀i : yi(< w, xi > +b) >= 1− ξi, ξi >= 0

(2.8)

In (2.8), C is a regularization parameter and ξ is the slack variable.

Inferring the latent labels and training jointly the instance classifier is a hard mixed integer

problem that is typically solved by alternating optimization. It consists of two main steps:

inferring the labels, and classifier learning. Given the discriminant function, the algorithm

finds the integer variables yi that correspond to the unknown instance labels in the training

bags. Then, given the inferred instance labels from the previous step, it finds the optimal

parameters (w, b) of the discriminant function. These two steps are performed on the same

training bags sequentially, which means that the same instances are used for both training

the discriminant function and assigning the missing labels. However, inferring the latent

labels with the classifier which has been evaluated on the same data as the one it was trained

on makes the MIL procedure very susceptible to overfitting.

In comparison, the objective of MI-SVM is to maximize the bag margin, where the

bag margin is defined by the margin of the most positive instance of each positive bag, or

the margin of the least negative instance in case of negative bags [68]. The algorithm solves

the following non-convex optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

∑
I

ξI ,

s.t. ∀I : YI max
i∈I

(< w, xi > +b) >= 1− ξI , ξI >= 0

(2.9)

MIL-SVM learns in two loops: the outer loop sets the values of the selector variables by

assigning the average of all instances feature values in that bag for initialization. The inner

loop trains a standard SVM, in which the variables are tuned and the selected positive

instances are used to replace the positive bags. The re-labeling process continues until

selected instances for bag representation do not change significantly.

In the mi-SVM algorithm, the margin of every instance matters. In MI-SVM, however,

only one instance per bag matters since it determines the margin of the bag. The former
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is suitable for tasks where individual instance labels are important, while the latter is used

for tasks where only the bag labels are concerned.

2.2.2.2 MILES

MILES [38] converted the MIL problem into a standard supervised single instance

learning problem by mapping each bag into a feature space defined by the similarity between

its instances and a set of target concepts. Unlike most earlier DD-based methods, MILES

assumes that multiple target concepts may exist, and therefore assigns a probability to each

instance to represent a target concept given a bag. Formally, for a given bag Bi of instances

xi,j , j = 1, . . . ,m, its similarity to a given instance x, is given by:

Pr(x|Bi) ∝ s(x,Bi) = max
j

{
exp
(
− ||xi,j − x||

2

σ2

)}
, (2.10)

where σ is a scaling factor.

In other words, each instance in the training bags can be a candidate for a target concept.

The candidates are represented as features in an instance-space feature space. Using (2.10),

each bag in the training set is mapped into this space induced by the similarity values. i.e.

a bag is represented by the coordinates m(Bi) as following:

m(Bi) = [s(x1, Bi), s(x2, Bi), . . . , s(xC , Bi)] (2.11)

where xi ∈ C is an instance from the set of all instances in the training bags.

Considering a binary MIL classification problem, with bag labels of +1 and −1, MILES

uses the 1-Norm SVM [75] to learn a linear classifier on the mapped space and perform

instance selection. i.e.,

yi = sign(

C∑
k=1

wks(x,Bi) + b) (2.12)

where wk is a weight associated with s(x,Bi) and b a bias parameter.

2.2.2.3 Citation k-Nearest Neighbors

In the standard k-Nearest Neighbors (k-NN) classifier, to classify a given instance,

the k nearest instances are retrieved using a distance measure on the instance space (e.g.
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Euclidian distance), then an output label is computed from the labels of the k nearest

instances. Using the same approach, Wang and Zucker [71] adapted k-NN for the case of

having multiple instances. To determine the nearest neighbors for a given bag, they used

the Hausdorff metric (2.13) instead of the Euclidian distance. They found that the majority

vote method, used by the standard k-NN, often produced sub-optimal results in the multiple

instance setting, since it would easily get confused by the false positive instances in positive

bags [76]. To improve the multiple instance k-NN, they proposed a variation called Citation-

kNN [76], where a bag is labeled through analyzing not only its neighboring bags (known

as references) but also the bags that regard the bag being tested as a neighbor (known as

citers).

Formally, given two bags B1 and B2 of instances {x1,j}m1
j=1 and {x2,j}m2

j=1, respectively, the

Hausdorff metric between B1 and B2 is defined as

H(B1, B2) = min
x1,j∈B1,x2,j∈B2

{
dist(x1,j , x2,j)

}
(2.13)

where dist is a distance measure between instances (e.g. Euclidian distance).

Citation-kNN is motivated by the notion of citation from library and information science.

Under this view, the authors defined a C-nearest citers measure for a given bag. This

measure is defined as following:

• For two given bags, B and B′, let Rank(B′, B) equal n if B is the nth nearest neighbor

of B′.

• Then, the C-nearest citers of B are the C bags that return the lowest neighbor ranking

for B. i.e.,

Citers(B,C) = {Bi |Rank(Bi, B) ≤ C, Bi ∈ B} (2.14)

where B is the set of all training bags.

The decision of Citation-kNN relies on the K-nearest bags (references) as well as the C-

nearest citers. Specifically, a bag is classified as positive if and only if there are strictly more

positive bags than negative bags in the combined K-nearest bags and C-nearest citers. C is
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usually set to K+2. It should be noted, however, that unlike the DD method, Citation-kNN

is unable to predict the labels of instances.

2.2.3 Instance Selection for MIL

In MIL, each object is represented by a bag of instances. Negative bags should

include only negative instances and positive bags should contain at least one positive in-

stance. Thus, in addition to learning the classifier, the selection and representation of

instances plays an important role in MIL. For instance, in image classification an image can

be represented as a bag of smaller image patches. Several methods have been used to select

the instances of an image. For example, an image can simply be represented by a collection

of fixed-size blocks [43, 65] or even regions obtained from image segmentation [67]. During

training, MIL would find those patches that lead to best classification results and leave out

the others.

However, not all image regions are related to the object/subject of interest. Another prob-

lem is that in the process of image patch generation, many discriminative regions might split

over multiple instances. Also, an image patch might be too large that it contains multiple

targets of concept. All these issue would cause the positive instances to lose their discrim-

inative properties. Additionally, the number of instances per bag should be large enough

to make sure that it capture all the discriminative regions in the image. Thus, another po-

tential problem that hinders the efficiency of MIL is the possible large number of instances

encountered in real-world applications. In other words, the high-dimensional instance space

results in high complexity for both the feature computation and the classification process.

To overcome these limitations, alternative modeling assumptions have been adopted

for MIL algorithms. For example, a bag's label is determined by a classifier taking into

account part of its instances [31,77]. DD-SVM [67] learns the multiple instance prototypes

using the start values defined by local extrema estimated by the EM-DD cost function within

each training bag. The algorithm's performance is highly affected by the labeling noise since

a negative bag close to a positive instance reduces the DD value of the instance considerably,
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and as a result its chance to be selected as a prototype. The other problem, is that EM-

DD optimization should be applied to all training instances to find the local extrema.

MILES [38], on the other hand, as a more efficient approach, does not explicitly select

the instance prototypes. It maps every bag into an instance space whose dimensionality

is given by the total number of instances across all bags. Having the new feature map, it

employs the 1-Norm SVM [75] to select concepts and train classifiers. This will result in

the main drawback of MILES which is a high-dimensional bag-level feature vector which

leads to high complexity for both bag mapping and SVM optimization, and containing too

many irrelevant features [38]. Although these methods are very robust and achieve a higher

performance than the aforementioned category, they are considerably time consuming for

large datasets.

To address this problem and achieve acceptable performance with much less com-

plexity, we need to refine the instances and reduce the false positives as much as possible. It

is also important that instance selection, as a preprocessing step, should be done efficiently

especially for large-scale datasets. Different perspectives on this issue has led to different

MIL approaches.

MILD [63] proposes an instance selection mechanism based on a conditional probability

model developed to identify the true positive instance in a positive bag. To achieve this

goal, a decision function is formulated whose accuracy on predicting the labels of the train-

ing bags is used to measure true positiveness of the corresponding instance. MILIS [44]

addresses the high-dimensionality issue by initially selecting an instance prototype from

each bag and all the selected prototypes are iteratively optimized by an EM-like frame-

work. A kernel density estimator is first learned from all the negative instances in negative

bags to reduce the number of positive candidates. Based on the distribution estimate, the

most positive (i.e. the least negative) instance per positive bag is selected to represent the

concept. Linear SVM is then applied to train the classifier based on the feature space for the

bag-level embedding constructed by these instance prototypes. Although it is much more

efficient, MILIS becomes vulnerable to labeling noise and often learns too few concepts [78].
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2.3 Region Proposal

In the context of image classification, the global description of a whole image is too

coarse to achieve good classification and retrieval accuracy. Thus, to fit this problem into

the MIL setting, each labeled image can be a bag of pixels/patches which are modeled as

instances. A label is assigned to the whole image aggregating the information gathered from

instance level [44], based on which the target concept representing the target object can be

learned through MIL algorithms. Loosely speaking, if an image patch repeatedly occurs in

different positive bags, it would be called a concept. Then, the weight of each concept is an

indicator of its frequency in positive bags.

To illustrate, consider the task of classifying images that contain vehicle. In this applica-

tion, given an input image we want to determine whether it contains a vehicle. Using an

MIL approach, each instance corresponds to a ROI. These regions could be obtained by

segmenting the image into homogenous regions or by simply dividing the image into blocks.

A multiple instance representation is well suited for this purpose because only few regions

may contain the object representing the target vehicle. This representation is illustrated in

Figure 2.2.

Figure 2.2: Example of an image represented as a bag of 24 instances.

Inducing concepts correctly is a very important part of MIL algorithms. But, the

hidden nature of the instance labels poses great challenges for MIL. As mentioned in section

2.2.3, depending on the relative size of the object of interest, many of these regions may

be background or not representative of the object of interest, or the segmentation methods
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may cut the object of interest into multiple components, all resulting in many irrelevant

instances to the target class.

A default assumption in many MIL algorithms is that a positive bag must contain at least

one true positive instance, whereas a negative bag contains negative instances only. Due to

subjective labeling, existence of image distortions such as changes of scale, or illumination

and view angle, some positive bags may not contain true positive instances. Similarly, some

true positive instances could be included in some negative bags [78].

Additionally, we will be confronted with too many instances for even average-scale real-world

datasets. Considering all possible patches in each positive image, an exhaustive search for

object locations would have to consider a very large number of hypotheses [44].

Furthermore, in many cases, negative instances extracted (from patches that correspond

to background) may be even more persistent in positive bags, which leads to a decrease in

performance [44].

One approach towards alleviating these issues is to design efficient instance pruning

techniques to speed up the training process without compromising the performance. Some

methods have attempted to decrease the complexity by sampling the patches in positive

images. Crandall et al. [79] took a random sample of patch descriptors from training im-

ages and initialized the training with the most discriminative subset. Several part-based

models were then initialized from descriptor pairs and subsequently optimized through EM.

In [80], Chum et al. followed a clustering approach by starting from visual words of a BoW

representation and proceeded with the MIL approach. Random initialization can also be

avoided by filtering patch candidates in positive images. Deselaers et al. [81] applied a

trained generic object detector to guide initialization of 100 random samples in each train-

ing image. By assuming that there is only one object in each positive image they trained a

Conditional Random Field (CRF) which simultaneously optimizes object locations and the

classification model.

Another approach is to initialize positive object locations to entire (or almost entire) pos-

itive images and then attempt to gradually zoom into correct locations through iteration.
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Cinbis et al. [82] expressed this iteration in terms of bottom-up location proposals. In their

proposed method, called multi-fold MIL learning, the first classification model is trained

on Fisher vectors of entire positive and negative images. In each subsequent iteration the

negative locations are chosen as (false) positives of the current classification model on the

negative training dataset. On the other hand, the positive locations are set to the top-

scored bottom-up location proposals. They avoided a bias towards the locations from the

last iteration by performing the training and selection steps on different folds of the training

set of positive images.

Some methods attempt to reduce the number of irrelevant instances and select subset of

patches by choosing the ones invariant to certain geometric transformations [56, 83, 84].

Csurka et al. [56] proposed a bag-of-keypoints model for object classification, in which each

bag was represented by a collection of affine invariant patches. A predetermined number of

clusters was generated by quantizing descriptors of all image patches. Each image was then

transformed to an integer-valued feature vector indicating the number of patches assigned

to each cluster. CkNN-ROI [85] and KI-SVM [86] were proposed to locate regions of interest

(ROI) in image analysis. In these approaches, the most positive instance in a bag would be

identified as the best ROI.

2.3.1 Region Selection in Fine-grained Classification

In fine-grained image classification, many approaches have tackled this issue by rep-

resenting parts of objects as instances. In [87], over-segmented regions in images were used

as parts and linear discriminant analysis (LDA) was employed to learn the most discrim-

inative ones for scene recognition. Gavves et al. [88] segmented images via GrabCut [89],

and then roughly aligned objects by parameterizing them as an ellipse. In [90], discrimina-

tive parts were selected through the mean shift method on local patches in images for each

class. All these methods attempt to evaluate each part, which may be very computationally

expensive when the part number is very large.

Some works consider a more practical setup when part annotations are missing in the test-
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ing phase. They learn part detectors from annotated parts in the training images and apply

them on testing images to detect parts. For example, in [3], the poselet [91] was used to

detect object parts. Then, each object was represented with a bag of poselets and the top

matchings among poselets (parts) were found to match objects. Zhang et al. [92] used the

deformable part models (DPM) [93] for object part detection. DPM was learned from the

annotated object parts in training objects, which was then applied on testing objects to

detect the head and body in birds. The candidate yielding the highest response to a certain

part detector was used as the detected part in the object. In [94], Chai et al. performed

a joint segmentation and DPM model fitting, extracting features around each DPM part.

Some works [95] transfer the part annotations from objects in training images to those

sharing similar shapes in testing images instead of applying object/part detectors.

Recently, [96] proposed to use object and part detectors with powerful Convolutional Neu-

ral Network (CNN) feature representations [97]. The outputs from the inner convolutional

(CONV) layers can be seen as the feature representations of sub-regions in the image. When

CNN is used on an object proposal, the outputs from the inner convolutional layers can be

seen as the part representations. Simon and Rodner [98] first generated a pool of parts by

using the outputs from all layers in CNN. Then, they selected useful ones for categorization.

They considered two ways of selection: one was to randomly select some parts; the other was

to select a compact set by considering the relationship among them. These parts were con-

catenated to represent the image. Jaderberg et al. [99] learned to detect and align objects

in an end-to-end system. This system includes two parts: one is an object detector, which

is followed by a spatial transformer. The spatial transformer is learned to align the detected

objects automatically to make the parts match accurately. Recently, CNN aided by region

proposal methods, has become popular in object recognition/detection, e.g., RCNN [100],

faster-RCNN [101], and RCNNminus-R [102]. All these methods focus on the supervised

object detection, where object bounding boxes in training images are necessary to learn the

object detectors.

Most of the above approaches may completely miss small objects at the initialization step.
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Due to that, MIL refinement may easily get trapped in a local optimum, and the training

is likely to fail. Additionally, MIL optimization is computationally very intensive making

training on large datasets not practical.

When compared to traditional sliding window based object detection paradigm

[46, 93], however, estimating region proposals in a pre-processing stage has three major

advantages: it better follows human mental recognition behavior which quickly perceives

distinct regions before identifying objects [103]; by reducing the search locations (e.g., from

typically a few millions to less than a few thousands), it speeds up the computation consid-

erably, especially when the number of object classes that need to be detected is high; and

finally it improves the detection accuracy by employing more discriminative features during

classification [104].

One of the main objectives of this dissertation is to address the aforementioned issues

and investigate methods to select more potential representative instances to improve the

MIL accuracy while keeping the number of instances reasonable.

2.3.2 Saliency Detection

Saliency intuitively characterizes some parts of a scene, which could be objects or

regions, that appear to an observer to stand out relative to their neighboring parts [105].

Visual saliency endeavors to identify these visually distinctive parts in an image. Humans

are able to effortlessly and rapidly perform this task [106]. After filtering these regions,

they perceive and process them in finer details to extract high-level information. Many

computer vision applications have employed visual attention models that focuses on finding

locations of images that capture early-stage human fixations to find the objects or regions

that efficiently represent a scene; such as object recognition [107,108], image segmentation

[109,110], video summarization [111,112], content-aware image resizing [113] and ,content-

based image retrieval and image collection browsing [114,115].

As visual attention is specific to salient objects, all the fixations on the salient

object are generally not restricted to a specific region. Instead, fixations tend to cluster
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around regions of interest within the salient object. The effects of this mechanism can be

represented by a saliency map that topographically records the level of visual attention

priority. Cognitive scientists have been doing extensive research on this capability for a

long time. Some studies, to contribute to perception, understanding, and representation of a

scene, have focused more on the distinctive regions and suggest that they are mostly related

to uniqueness, rarity, contrast [106, 116] and sudden changes, characterized by primitive

features like color, texture, shape, etc. [117,118]. Elazary and Itti [119], demonstrated that

human annotators tend to consider more salient objects first. In [120] Masciocchi et al.,

using the mouse clicking data from a large observer population, found out that interest

selections are correlated with eye movements, and both of them correlate with saliency.

Assume K subjects have viewed a set of N images I = {Ii}Ni=1. Let Lki = {pkij , tkij}
nk
i
j=1

be the vector of eye fixation pkij = (xkij , y
k
ij) and their corresponding occurrence time tkij for

the kth subject over image Ii; and let the number of fixations of this subject over the ith

image be nki . The goal of attention modeling is to find a function f ∈ F which minimizes

the error on eye fixation prediction, i.e.,

K∑
k=1

N∑
i=1

m(f(Iki ), Lki ) (2.15)

where m ∈M is a distance measure [117].

Salient object detection can be performed either in a bottom-up fashion using low-

level features based on characteristics of a visual scene, including gradient information

and curvedness [121], local contrast and rarity features [122, 123], symmetry [124] and

frequency-domain information [125], or in a top-down fashion via the incorporation of high

level knowledge, expectations and task demands [113,126,127].

2.3.2.1 Bottom-up Approaches

To measure the saliency of regions, uniqueness, usually in the form of global/local

regional contrast, is the most frequently used feature. In [128], a region-based saliency

algorithm is introduced by measuring the global contrast between the target region with

respect to all other regions in the image. The input image is first segmented into N regions
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{ri}Ni=1. The saliency value of region ri can be measured as:

s(ri) =
N∑
j=1

wijDr(ri, rj) (2.16)

where Dr(ri, rj) captures the appearance contrast between regions ri and rj . Regions with

large global contrast will have higher saliency scores. In (2.16), wij is a weight term between

two regions, which can serve as a spatial weighting by giving farther regions less contribu-

tions to the saliency score than close ones. In some cases, wij might be used to account for

the irregular size of the target region depending on the segmentation approach.

Jiang et al. proposed a multi-scale local region contrast based approach [129], which calcu-

lates saliency values across multiple segmentations to boost robustness, and combines these

regional saliency values s(rni ) to get a saliency map for each pixel x:

s(x) =

Ns∑
n=1

N(n)∑
i=1

s(rni )c(x, rni )δ(x ∈ rni ) (2.17)

where Ns is the number of different segmentation sets, N(n) is the number of regions in the

nth segmentation, and c(x, rni ) is the color similarity of region rni and its contained pixel x.

As the salient object usually lies near the center of the image, they embedded a Gaussian

weight in their saliency score calculations to emphasize regions around the image center. In

addition to internsity/color contrast uniqueness, some methods have also employed other

distinctiveness cues such as texture and structure to form the saliency map [130].

Some methods have considered spatial distribution prior to detecting the salient objects

[131]. They start with the assumption that the wider a color is distributed in the image,

the less likely a salient object contains this color. In such approaches the pixels in the

input image, I, are quantized by a Gaussian Mixture Model (GMM) {ωc, µc,Σc}Cc=1, where

{ωc, µc,Σc} are the weight, mean color and the covariance matrix of the cth component.

Each pixel x is assigned to a color component with probability:

P (c|Ix) =
ωcN (Ix|µc,Σc)∑
c ωcN (Ix|µc,Σc)

(2.18)

This way, the saliency of each pixel would be defined as:

s(x) =
∑
c

P (c|Ix)(1− V (c)).(1−D(c)) (2.19)
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where V (c) is the spatial variance of component c and D(c) is a center-weighted normaliza-

tion term to balance the border cropping effect.

A few approaches to facilitate the detection of salient objects have leveraged object-ness

framework [132] without the need of category information. Jia and Han [133] computed the

saliency of each region by taking into consideration the overall agreement between salient

regions over the whole image, with an explicit emphasis on nodes that are more likely to be

foregrounds according to the object-ness criterion. They estimated their regional saliency,

called diverse density, as:

DD(ri) =
N∑
j=1

Dr(ri, rj)o(rj) + (1−Dr(ri, rj))(1− o(rj)) (2.20)

where o(ri) is the object-ness score of region ri computed as spatially weighted average

object-ness score of all the enclosed pixels.

Another set of methods in this category consider boundary connectivity in selecting the

salient regions [134]. Intuitively, salient objects are much less connected to the image border

than the ones in the background. Zhu et al. [134], computed the boundary connectivity

score of a region according to the ratio between its length along the image border and the

spanning area of this region.

2.3.2.2 Top-down Approaches

These models adopt extrinsic cues to assist the detection of salient objects. In

addition to the visual cues observed from the single input image, extra information can be

derived from other sources such as ground truth annotations of the training images, similar

images, a set of input images containing the common salient objects, depth maps, etc.

The supervised approaches attempt to map the feature vector extracted from each element

(e.g., a pixel or a region) to a saliency score s ∈ R+ using a learned function f : RD → R+,

where D is the feature dimension. Assuming a linear mapping function s = wT f , Liu et

al. [122] proposed to learn the weights w with the Conditional Random Field (CRF) model

trained on the rectangular annotations of the salient objects. They employed a set of features

including the local multi-scale contrast, regional center-surround histogram distance, and
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global color spatial distribution. Marchesotti et al. [135] described each image Ik similar to

the input image I by a pair of feature descriptors (f+Ik , f
−
Ik

) representing annotated salient

and non-salient regions, respectively. To compute the saliency map, the input image is

represented as a set of patches {px}Px=1, each of which described by a fisher vector fx. The

saliency score for a neighborhood Nx of px is estimated as:

s(Nx) = ‖fNx − fBG‖1 − ‖fNx − fFG‖1 (2.21)

where fNx =
∑

px∈Nx
fx, fFG =

∑K
k=1 f

+
Ik

and fBG =
∑K

k=1 f
−
Ik

. Finally, the saliency map

for pixel x in Nx is estimated using:

s(x) =
∑
Nx

wNx.s(Nx) (2.22)

where wNx is a normalized Gaussian weight measuring the spatial distance of x to the

center of region Nx.

Instead of concentrating on computing saliency on a single image, some algorithms focus on

discovering the common salient objects shared by multiple input images. In [136], Chang et

al. defined a co-saliency score for each pixel as the multiplication of its traditional saliency

score and its repeatedness likelihood over the input images. The repeatedness property was

assessed across multiple images that contained some objects in common.

2.3.2.3 Eye Fixation Prediction Models

Salient object detection models aim to detect and segment the most salient ob-

ject(s) as a whole by drawing pixel-accurate silhouettes, while fixation prediction models

are employed to understand human visual attention and eye movement prediction during

free-viewing of static natural scenes or dynamic scenes/vidoes [137]. These methods mostly

employ motion, optical flow, or spatiotemporal interest points learned from image regions

at fixated locations [137,138].

It is believed that at early stages of free-viewing (first few hundred milliseconds), mainly

image-based distinct features direct eye movement and later on, high-level factors (e.g., ac-

tions and events in scenes) [106]. These high-level factors, however, may not necessarily be
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the same as bottom-up saliency. A human's head in an image, for instance, may not stand

out from the rest of the scene but may attract attention. Therefore, some recent approaches

have combined these high-level concepts and low-level attributes to scale up current models

and reach the human performance.

2.4 Deep Learning

Recent advances in Deep learning [139] have tremendously affected various image-

related learning tasks. Deep learning models are based on the idea that representations of

observed data are the results of hierarchical abstraction at many different levels [49]. As

level moves further up, more abstract information is generated by building on lower level

features. The success of these algorithms, in essence, is mainly due to this powerful feature

representations which is based on their excellent capability to discover sophisticated struc-

tures in high-dimensional data.

Among the most significant highlights of the improvements in image classification due to

advances in large neural networks, are achievements such as the large scale image classifi-

cation record with the ImageNet database [49] and the DeepFace face recognition method

by Facebook [140].

2.4.1 Convolutional Neural Networks (CNN)

Billions of parameters are involved in the deep networks, which requires a large scale

dataset for training. To this end, convolutional structure is usually adopted to reduce the

number of parameters, such as CNN, whereby small portions of an image share the weights

with respect to the spatial relation between adjacent pixels. It is an end-to-end system, in

which the input is a raw image, while the output is a prediction through the distinctive

features extracted via intermediate layers. With different designs of network architecture,

CNN is able to learn various presentation of original input image.

Compared with many traditional methods which depend on hand-engineered features or

separately trained by machine learning algorithms, CNN exhibits its powerful ability of
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extracting features automatically and optimizing the whole system conveniently.

Many advanced techniques have been coupled into the CNN structure, such as dropout,

maxout and max-pooling. The architecture of CNNs usually is a stack of convolutional,

non-linear, pooling and fully-connected layers, followed by a loss function layer. This ar-

chitecture is displayed in Figure 2.3 and outlined in the following subsections. A CNN's

learnable parameters are located in the convolutional and fully-connected layers and are

tuned through gradient descent. The pooling and Relu layers do not have any parameters

because they perform fixed functions.

Figure 2.3: Basic structure of CNN

2.4.1.1 Convolutional Layers

Convolutional layer is a core building block of CNN, which differs CNN from tradi-

tional artificial neural networks, by defining a kernel to filter the input data. They are used

to convolve the input data with multiple filter masks (kernels) to extract features and feed

the activation function to generate the output feature maps, which are also the input of the

next layer. There are two important concepts: local connectivity and parameter sharing.

Local connectivity means that each filter will convolve only a local region of the input vol-

ume in order to decrease the number of the weight parameters. It is inspired by biological

systems. The spatial extent of local connectivity is a hyper-parameter called the receptive

field.

Parameter sharing means that weights connecting neurons to receptive fields are the same,

namely, using the same filter to convolve the entire feature map. One reasonable assumption
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is that if one feature patch is useful for a region of an image, it will have the same impact

on another region. So parameter sharing not only dramatically reduces the number of pa-

rameters but also leads to translation invariance which capture statistics in local patches,

e.g., similar edges may appear at different locations.

Let xi
l denote the ith input feature map of l layer, kij

l the kernel connecting the jth feature

map of the output layer to ith feature map of the input layer and blj an additive bias.

Hence, we have

xj
l = f(

∑
i

xi
l−1 ∗ kij l + blj) (2.23)

where f is an activation function, usually a rectified linear function.

Through layer by layer convolutional operation, we are able to learn progressive

levels of features. For example, the first layer is low-level features, such as edges, lines and

corners.

2.4.1.2 Pooling Layers

In order to increase the robustness of CNN to handle translations, pooling layers

are usually used after the convolutional layers. They spatially combine convolution layer's

outputs, which is related to classical spatial pyramid matching [141]. Its function is to dra-

matically reduce the spatial size of the feature maps as well as the amount of the parameters

leading to efficiently computation in the network, and therefore also control overfitting. The

max value or the average value of a local feature map is widely used as a pooling technique.

It is formally denoted as

xj
l = down(xj

l−1) (2.24)

where down(.) is a sub-sampling function.

2.4.1.3 Relu Layers

The Relu layer is used to gain the non-linearity of the network. This layer uses the

non-saturating function as f(x) = max(0, x), which has the non-linear property and has no

affection of the receptive fields of the convolution layer.
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2.4.1.4 Normalization Layers

Normalization layers give better generalization. Denoting by ai the single value of

ith feature map, the response-normalized activity bi is given by

bi =
ai

(k + a
∑min(N−1,i+n/2)

j=max(0,1−n/2) a
2
j)β

(2.25)

where the constants k, n, a, and β are hyper-parameters.

2.4.1.5 Fully Connected Layers

Several fully connected layers at the end act as nested linear classifiers. The dif-

ference between a fully connected layer and a convolution layer is that the perceptrons in

the convolution layer are connected only to a local region in the input, whereas all the

perceptrons in the fully connected layer are connected to all the perceptrons of the input

(input to the fully connected layer).

The classifier most used in the final layer is softmax. The input of the softmax classifier

is the feature vector with fixed dimensions, which is the output of the previous layers, and

the output of softmax are the probabilities of the mutually exclusive categories, in which

the highest one is corresponding to the predicted category.

2.4.1.6 CNN Loss and Optimization

A CNN has the same options as a traditional neural network when selecting a loss

function; SVM and cross-entropy loss functions are comparable choices. CNN represents a

single differentiable function for which gradient descent is performed during optimization.

A key difference is that nodes in a depth slice of a convolutional layer, share parameters.

As such, they compute and combine their individual gradients to update the shared param-

eters. In addition, CNNs that contain pooling layers must keep track of which pixels they

downsample in order to backpropagate the gradient.
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2.4.2 CNN Architectures

By going deeper with the convolutional networks, CNN dominates the performance

in various applications such as image classification and pattern recognition. Architerctures

like AlexNet [49], Overfeat [142], GoogLeNet [143], and ResNet [144] attempt to press the

limits of what can be fit into a GPU memory and acceptable training time to maximize

classification accuracy.

AlexNet is a large, deep convolutional neural network proposed by Krizhevsky et

al. [49] which won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

with top 5 test error rate of 15.4%. This was the first time a model performed so well

on a historically difficult ImageNet dataset. The network was made up of 5 convolutional

layers, max-pooling layers, dropout layers, and 3 fully connected layers, and was used for

classification with 1000 possible categories.

Figure 2.4: AlexNet architecture [49]

Overfeat model [142] shows that by training a network to perform classification,

detection and localization simultaneously, the accuracy of each task will be improved. Also

it proposed a novel method to localize and detect by accumulating predicted bounding

boxes.

The classification architecture used for OverFeat network is similar to that of AlexNet

[49], maintaining an 8 layer design of which 5 layers are convolutional and 3 layers are

fully connected. The first two convolutional layers and the last convolutional layer are a

combination of convolution and max pooling layer, the other two convolutional layers are
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without sub-sampling steps. Overlapping of sub-sampling steps are abandoned for faster

implementation and the fact that it does not increase classification result by a great lot.

Larger feature maps are, also, built in the first two convolutional layers with a smaller

stride, this is a trade off between accuracy over training time.

GoogLeNet In order for a convolutional neural network to have better recogni-

tion and classification result, a most straightforward way is to enlarge the network. Here

enlarging the network refers to increasing the depth of the network by integrating more

layers of convolution and also the width by having more units within each convolutional

layer. But larger size of a network means much more internal parameters to train which can

lead into overfitting and higher computational cost. Faced with this dilemma, Szegedy et

al. [143] modified the architecture from fully connected to sparsely connected, both on layer

level and inside the convolutional layer level. GoogLeNet is essentially a CNN architecture

with Inception modules (Figure 2.5) composed of multiple convolutional filters in 1×1, 3×3

and 5×5 sizes alongside each other. The Inception module provides the option to make the

choice of having a pooling or conv operation in a parallel form.

GoogLeNet is a 22-layer network consisting of Inception modules stacked upon each other,

Figure 2.5: Inception module [143]

with occasional max-pooling layers with stride 2 to halve the resolution of grid. This archi-

tecture was the winner of ILSVRC 2014 with a top 5 error rate of 6.7%.

44



ResNet is a network that is up to 152 layers deep, and uses “shortcut connections”

between layers in the network to prevent vanishing or exploding gradients, a problem that

arises during backpropagation in large-scale networks. He et al. [144] tackled these problems

by modifying the architecture leaving the network to learn only a residual mapping (Figure

2.6), and add the input to this output to recover the original mapping. In other words, with

this structure there are two possible cases during learning in the optimization of weights:

if the identity is the optimal mapping, it is easy to set weights to zero, or if the optimal

mapping is closer to identity, it is easier to find small perturbations. This makes a good

optimization of weights also with a deeper architecture.

Aside from the new record in terms of number of layers, ResNet won ILSVRC 2015 with

an incredible error rate of 3.6%.

Figure 2.6: Normal CNN vs. CNN with residual learning [144]

2.4.3 Transfer Learning

A deep learning framework usually needs huge amounts of data to train in order

for the cost function to converge to a good local minimum point and avoid overfitting on

the training set. For some tasks such as fine-grained classification where the size of the

dataset is significantly small, a process known as transfer learning [145] can be used as a

powerful tool to enable training a large target network without overfitting. Additionally,

it can be employed for repurposing learned classifiers for new tasks [146]. A typical way

to perform transfer learning or domain adaptation is to train a network from a general

large-scale dataset, in which it is believed that features learned are fairly general, and then

fine-tuning the network parameters on the target dataset, by retraining a subset of the base
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network's learned weights and features. The overall effect is a classifier that fits the new

dataset with significantly less work than retraining a new network.

2.5 Vehicle Recognition and Classification

For the vehicle recognition tasks in ITS, there are three important subjects being

researched: Vehicle Detection, Vehicle Type Classification, and Vehicle Make and Model

Recognition. Although these three categories have different goals, they share certain similar-

ities related to their corresponding level of granularity, and researchers have done numerous

works in these areas.

2.5.1 Vehicle Detection

With the development of computer image processing technologies, the problem of

detecting vehicles, often from fixed viewpoints, has been well investigated by many re-

searchers. It has become, along with detecting people, bicycles, and other objects, a central

component of the PASCAL VOC (Visual Object Category) challenge [53]. The objective

of vehicle detection approaches is to find a vehicle ROI over the given image, such that it

outlines the vehicle (or vehicle's front/rear face) by filtering out the background regions.

This process forms the first step in video-based analysis of different ITS applications and

highly affects the accuracy of future tasks mentioned earlier (section 1.1.2). The research

efforts in this field can be divided into motion-based and appearance-based techniques.

Motion-based techniques use motion cues to distinguish moving vehicles from static

background. Those methods are generally based on frame differencing [147], background

subtraction [148] or optical flow [149]. Faro et al. used a background subtraction technique

to separate possible vehicle pixels from roads and then applied a segmentation scheme to

remove partial and full occlusions among candidate vehicle blobs [150]. Temporal difference

is highly adaptive and efficient. However, it cannot cope with noise, rapid illumination

variations, or periodic movements in background. Also its performance degrades on slow

and fast motion and it cannot extract all the relevant motion pixels. Additionally, the main
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drawback of some background subtraction techniques is that they cannot handle complex

environments with multiple objects of variable motion. Optical flow-based methods, on the

other hand, are less susceptible to occlusion. They can provide accurate sub-pixel motion

vectors that are best suited in presence of camera motion, light variation and complex or

noisy background. However, the iterative calculations lead to computationally complex

methods.

The second approach to vehicle detection uses coded descriptions to characterize

the visual appearance of the vehicles. In [151], Jia and Zhang used edge features to model

roads and vehicles and then detected possible vehicle candidates by maximizing the posterior

probability via the Markov Chain Monte Carlo method. Tzomakas and Seelen suggested

that the shadows of vehicles are an effective clue for vehicle detection [152]. Teoh and

Bräunl [153], used a multi-sized symmetry searching window to extract each symmetrical

region, which was then verified to be a vehicle by an Adaboost classifier. In [154], Wu et

al. used wavelet to extract texture features to localize candidate vehicles. These candidate

vehicles were verified by a principle component analysis (PCA) classifier. In [155], Ozuysal

et al. employed an initial bounding box of a car to select a view-specific classifier to refine

the hypothesis. Haar-like and motion features have also been used to detect vehicles in

highway [156], and in urban environment [157].

Some approaches combine object detection with pose estimation; they aim to get car con-

figurations with detailed output to describe a more meaningful car shape rather than a

bounding box [21,158]. Li et al. [159] proposed a system to learn the appearance of features

located at key points (wheels, corners) of a car. This system used an elastic shape model to

detect both the location and pose of cars in street images. Sivaraman et al. introduced the

idea of vehicle detection by independent parts (VDIP) in [160] for urban driver assistance.

In [161], Buch et al. proposed a 3D model-based method for vehicle detection.
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2.5.2 Vehicle Type Recognition

Vehicle Type Classification focuses on recognizing vehicles in categories such as Bus,

Micro-bus, Mini-van, Sedan, SUV, Bicycle, and Truck. This application finds its utilization

in traffic monitoring, restrictions of access, etc. Image-based approaches addressing this

task roughly fall into two categories. The first category of methods extract appearance

features [162,163], whereas in the latter, they compute the vehicle's 3D parameters such as

size, silhouette dimension and aspect ratio, to recover the 3D model of the vehicle [164,165].

Oriented-contour point model was proposed in [166] to represent vehicle type. The

authors used the edges in the four vehicle orientations from the front view together with

a voting algorithm and Euclidean edge distance and achieved classification rate of 93.1%.

Thakoor et al. [167] used a Structural Signatures feature that captures the relative orien-

tation of vehicle surfaces and the road surface to classify passenger vehicles into sedans,

pickups, and minivans/sport utility vehicles in highway videos with 90% accuracy. Ma and

Grimson [168] introduced a rich representation for vehicle classes based on edge points and

modified SIFT descriptors to classify vehicles into two classes, i.e., cars vs. mini-vans and

sedans vs. taxis using a constellation model. This broad classification is useful for counting

but very limited for high-security applications.

Kafai et al. [169] presented a Bayesian network for the vehicle type classification,

with features extracted from images of the rear of the car. The resulting feature vector con-

sists of a collection of geometric parameters of the vehicle; including simple features such as

the vehicle width, height and more complex features, such as the distance from the license

plate to the tail lights. The authors report 10-fold cross-validated classification accuracy

of 95.7% for a database of 177 vehicles from four categories of Bus, Truck, Van and Small

car. In [170], Matos et al. used a neural network with a collection of image-based features,

such as width, height, perimeter and fractal dimension, as inputs. The actual classification

was done in two stages using two neural networks, which could achieve an accuracy of 69%

on a database with 100 vehicles. Leotta et al. [171] proposed a deformable vehicle model

with more details, represented by a polygon mesh with a body and four wheels. They were
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able to detect vehicle parts, including the windows, headlights, taillights, grilles, hubcaps,

and license plates, using this deformable model. Then the vehicles were classified based

on the recovered shape information. Chen et al. [172] proposed to use SVM and random

forests to classify vehicles on the road into four classes, namely, sedan, van, bus, and bicy-

cle/motorcycle.

Generally, the advantage of model-based approaches is a reduction in view-point depen-

dency; however, they remain limited to the basic classes and producing simple 3D models

accurate enough to distinguish between the many makes and models or subtypes of differ-

ent models seems unlikely to have high success. Additionally, in vehicle type classification

applications, the inter-classes difference is quite large, while regarding the car make and

model recognition, the appearances of various models are very similar.

2.5.3 Vehicle Make and Model Recognition

The task of Vehicle Make and Model Recognition (VMMR) is the most advanced

use case of cars understanding, with high sensitivity on details, environment changes, rapid

variations in manufacturer production and maintenance. However, the amount of relevant

scientific literature is relatively small.

The general technique for VMMR contains two parts: feature extraction and classification.

The existing approaches cover traditional classification methods (e.g. discriminant analysis

[173], Bayesian methods [174], and Support Vector Machines [175]), as well as tools from the

computational intelligence area (e.g. neural networks [176], and systems based on various

combinations of neural networks, fuzzy sets and genetic algorithms [177]).

In Table 2.1 we have provided a summary of some existing works with details on vehicle

view, features, classifier ensemble, number of samples, number of classes and recognition

performance. Generally, the literatures fall into three major classes: appearance-based,

feature-based, and model-based methods.

Appearance-based Approaches identify cars by their inherent features includ-

ing dimensions, shapes, and textures. These methods rely on the pose and position of the
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cameras.

Gu et al. claimed that the recognition of car models could be improved based on shape

information and used it to recover the vehicle pose [178]. They evaluated their method on

a dataset of 6000 images for 2 target models (Figure 2.7(a)). In [179], Betke et al. utilized

symmetry properties and rear lights to detect and track multiple vehicles using a moving

camera. A shape based approach was presented in [180], where cars were identified using

features extracted from the car back lights and measurements from the car global shape.

Llorca et al. [181] proposed the use of geometry and the rear-view image of a vehicle for this

purpose. Their approach achieved 93.7% accuracy on 1342 images of 52 makes and models

(Figure 2.7(b)).

Feature-based Approaches classify car models using local or global invariant

features, and hence their performance depends on the reliability of these features. In

such approaches low-level features such as edge-based features [182, 183], contour point

features [166], contourlet transform features [176] and corner features are used in the pro-

cess as well as high-level features, such as, Scale Invariant Feature Transform (SIFT) [184],

Speeded Up Robust Features (SURF) [185,186], Histogram of Gradient (HoG) [187], Pyra-

mid Histogram of Gradient (PHOG), and Gabor features.

In [183], Munroe and Madden used edge features with K-means to distinguish between 5 ve-

hicle classes with 97% accuracy. The algorithm proposed in [188], works by creating an edge

map for images present in the reference database. The authors incorporated the appearance

and local shape descriptors, calculated for local edge points, to recognize 10 car models,

and were able to obtain 70% correct recognition rate. In the method proposed in [189],

cars make and model were identified from frontal images. Different types of features were

extracted from ROIs extracted relative to the license plate location, and compared to cars

the database. Experimentally, square mapped gradients, which are gradients formed from

vertical and horizontal sobel edge responses, showed to have a better performance com-

pared to other features on a simple kNN classifier. Their selected discriminative mechanism

provided a 93% recognition rate using 1132 images from 77 distinct models. Pearce and
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(a) Shape features estimation through Active Shape Model [178]

(b) Incorporation of geometry and the rear-view appearance features [181]

Figure 2.7: System layouts of some appearance-based approaches addressing the vehicle

make and model recognition task

Pears [182] examined and compared feature extraction approaches of Canny Edge, Square

mapped gradients and Harris corners, and proposed an improved version of Harris corners

named as Locally Normalized Harris Strengths (LNHS). In their proposed method, an image

is recursively divided into quadrants in which all edges are hierarchically summed and nor-

malized, which achieved a correct classification rate of 96% with the Näıve Bayes classifier,

on a dataset of 74 different makes and models. Clady et al. [176] presented a framework for

multi-class vehicle type identification based on oriented contour points. In their framework,

three voting algorithms and a distance error allowed to measure the similarity between an
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input instance and the database classes, which can be combined to design a discriminant

function. They attempted to cope with partially corrupted data (car images containing

noise caused by barrier), collected in uncontrolled environment, containing 830 images of

50 classes of frontal car images. Their method was able to identify these vehicles with

93.1% accuracy. Negri at al. [166] proposed feature arrays containing contour information,

as maps modelling different classes of cars in their MMR scheme. These oriented-contour

points matrices, were obtained as a results of a complex process which starts from Sobel

filtering and ends with special iterative voting procedure to find such contour points which

are invariable for all the training images of a given class. Kazemi et al. investigated three

different transform domain feature extractors in their MMR scheme [190], and showed that

the best recognition rate on a standard kNN algorithm can be obtained using Curvelet

Transform [191].

In [187], a ROI was first extracted based on the license plate using a character detection

algorithm connected with outer extraction of outer rectangle and symmetry. HOG was used

as feature descriptor with kNN and SVM tested as classifiers. This method achieved 100%

of positive recognition rate on a dataset of 40 classes and 400 images (Figure 2.8(a)). Baran

et al. [186] used local features like SURF to build a dictionary, which was then used to

represent vehicle images as sparse vectors of occurrence counts of the words of a dictionary.

They utilized a simple multi-class SVM trained over the sparse occurrence vectors. On

a dataset containing images of cars front views grouped into 17 classes (one for each car

model), their method could get a correct recognition rate of 97.2%. Jang et al. [192], also,

attempted to tackle the problem by combining SURF features and bag-of-words model [56]

to efficiently search a database of toy car imagery containing 20 car types with 8 side-view

images in each category. The matches, were then re-ranked with a structural verification

technique. In [193], Fraz et al. formed a lexicon comprised of all training image's fea-

tures as words. These words were Fisher Encoded Mid-Level-Representation (MLR) of

image features such as SIFT, classified using and Euclidean distance based similarity (Fig-

ure 2.8(b)). Zhang [194] studied two feature extraction methods for description of frontal
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images of vehicles, and found that the Pyramid Histogram of Oriented Gradients (PHOG)

has the superiority in its description of more discriminating information, on a dataset of

600 images of 21 vehicle brands, achieving 98.6% classification accuracy. Sarfraz et al. [195]

proposed the use of Local Energy based Shape Histogram (LESH) features to represent the

class of vehicle. LESH features were computed on ROIs taken from the front view of the

vehicles. These features were modeled in a similarity feature space using a probabilistic

Bayesian framework. Using Bayes rule, the posterior over possible matches was computed

and the highest score was selected as the top matched make and model class. A similar

technique was presented in [196], where a local LESH description was extracted for only

salient regions.

In some techniques, both low-level and high-level features are combined, such as

integration of wavelet and contourlet features [197] or PHOG and Gabor features [194].

Model-based Approaches Recently, model-based methods have achieved high

precision in vehicle identification. This category of approaches take a different route, and

follow the intuition that distinctive features of a fine-grained category, such as the charac-

teristic of the grille of car, are most naturally represented in 3D object space, comprising

both the appearance of the features and their location with respect to an object.

A view-independent model-based, top-down approach, proposed by Prokaj and Medioni

[198], focuses on pose estimation. The authors suggested to use 3D models of vehicles,

fit them to the recognized pose, project them to 2D and use SIFT-like features for the

comparison of the vehicles. Their method showed to be 90% accurate on a dataset of 36

classes. Krause et al. [199] improved two state of the art 2D object representations, spatial

pyramid matching [141] and BubbleBank [58], to be applicable to 3D with respect to both

the appearance and location of local features (Figure 2.9(a)). Additionally, instead of em-

ploying annotated training data, they leverage existing 3D CAD models for the basic-level

object class of interest, without the need for any manual intervention. They performed

their experiments on 196 car models achieving 94.5% accuracy. Hsiao et al. [16] represented

each car model by a set of non-parametric 3D curves. They constructed these space curves
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(a) LP detection and image rectification using symmetry features [187]

(b) Mid-level representation-based lexicon [193]

Figure 2.8: System layouts of some feature-based approaches addressing the vehicle make

and model recognition task

using 2D training images, and then matched the 3D curves to 2D image curves using a 3D

view-based alignment technique. In order to align the 3D curve model to a new test image,

they found the closest training image and then aligned the corresponding partial 3D curve

model to the edges in the test image by estimating a rigid 3D perspective image transforma-

tion. This approach makes their system capable of verifying a type from an arbitrary view.

They performed their experiments on a datset of 8 classes with 87% Correct Recognition

Rate. In [200], Lin et al. optimized 3D model fitting and fine-grained classification jointly,

to obtain positions of landmarks and achieve much better results than other methods on
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their own dataset, FG3DCar, consisting of 300 images with 30 disserent car models. they

could obtain 90% classification accuracy in their selected setting (Figure 2.9(b)).

(a) 3D geometry along with 3D SPM and BB features [199]

(b) Simultaneous optimization of 3D model fitting and fine-grained classification [200]

Figure 2.9: System layouts of some model-based approaches addressing the vehicle make

and model recognition task

Many of the above methods have good performance when dealing with the clas-

sification of a few number of vehicle makes or models, resulting in a tight limitation of

application [181]. But when it comes to a large number of vehicle makes, their performance

usually cannot meet the requirements in realistic applications. Moreover, most of these

works heavily rely on hand-crafted low-level features which might not be saliently distinc-

tive among different subordinate-level categories that have extremely similar appearance.

Deep learning-based Approaches To address the fine-grained recognition prob-

lem more specifically, recently deep networks are being used to extract discriminative hier-
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archical features from large-scale datasets for VMMR [201].

Sochor et al. [202] trained a CNN with 3D vehicle bounding box, its rasterized low-resolution

shape, and information about the 3D vehicle orientation besides the vehicle image, to boost

the recognition performance on low-resolution surveillance images (Figure 2.10). Their

experiments on a dataset of 63750 surveillance images of 27 different makes showed that

adding such information achieves an average precision of 80%. Gao and Lee [203] proposed

an approach based on deep learning of principal components. They transformed the frontal

view of a car to its feature mapping using PCA. They, then used a deep network with three

layers of restricted Boltzmann machines to recognize the car make and model. Their system

obtained 100% accuracy with regard to the detection accuracy on 107 car models with 30

images for each class. In [204], they proposed a framework in which the frontal views of

vehicle images are first extracted and fed into a local tiled convolutional neural network

(LTCNN) for training and testing. Their proposed architecture provided the translational,

rotational, and scale invariance as well as locality. Yu et al. [205] integrated a CNN model

and joint bayesian network to tackle the fine-grained vehicle classification problem to do

both vehicle detection and meta information extraction. They achieved a classification ac-

curacy of 89% on a dataset of 208 car models with 200,000 images. In [206], Fang et al.

presented a coarse to fine CNN for fine-grained vehicle model recognition, in which the most

discriminant parts are automatically detected via feature maps generated by the network.

They extracted features from both the global and local regions, respectively for implying

holistic cues and describing subordinate-level variation. Based upon the learned features,

an one-versus-all SVM classifier is applied for classification, achieving 98.29% accuracy over

281 vehicle makes and models (Figure 2.11). Yang et al. presented a large dataset for

fine-grained vehicle detection, and then exploited a CNN model to validate the usefulness

of the dataset [21]. They demonstrated several applications including car model classifi-

cation and verification and achieved a Top-1 and Top-5 classification accuracy of 76.7%

and 91.7% respectively. They could achieve a good result on fine-grained vehicle detection,

using their manually-collected dataset of 163 car models and 136,727 images. However, for
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deep learning networks, this number of images is not enough. Furthermore, the images fed

into their model contain only single vehicle, while in reality, images usually have cluttered

background.

Figure 2.10: BoxCars as input to CNN architecture [202]

Figure 2.11: CNN-based part detection [206]
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Part-based Approaches Recently, some works have focused on the importance

of the role of object parts and explored the idea that features extracted from a few important

parts may infer more discriminative information than the ones from the whole vehicle image.

Liao et al. [207] used Strongly Supervised DPM (SSDPM) to categorize frontal images

of vehicles and classification based on discriminative power of different parts of SSDPM

(Figure 2.12). They used a dataset of 1482 vehicle images of 8 classes for the verification

of their hypothesis, on which they could reach 90% precision. He et al. [208] proposed

a recognition framework, which used a part-based detection model to detect frontal view

cars and designed an ensemble classifier of neural networks to recognize car models. Their

method was tested on a single traffic-camera and could obtain 92.4% classification accuracy

on a dataset consisiting of 30 models. In [209], Siddiqui et al. proposed an approach based

on the Bag-of-Features paradigm for representing vehicle's front/rear parts.

Figure 2.12: DPM-base vehicle part localization [207]

The parts are often localized manually and the part detectors are trained in a su-

pervised manner. To tackle this problem, in [210], Zhang et al. employed an efficient

multi-max pooling strategy to generate multi-scale part proposals by using the internal

outputs of CNN on object proposals in each image. Then top part proposals were selected

at different scales separately, by exploring useful information in part clusters. Finally, the

selected part proposals were encoded into a global image representation for fine-grained

categorization. This way they automatically detected the key parts of objects in different

classes, which have intuitive visualization results and match the rules used by human an-

notators. They evaluated their method on a dataset of 40 makes and models, and were

able to increase the baseline performance of 25.93% for the whole image classification to
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40.58% using their part proposals. In [211], Krause et al. proposed to learn discriminative

parts of vehicles with CNN and use the parts for fine-grained classification (Figure 2.13). In

recognition time, they detected parts and represented their appearances using the learned

features, leading to an “Ensemble of Localized Learned Features” (ELLF) representation.

This process resulted in 73.9% accuracy on a dataset having 16,185 images of 196 classes

of cars.

In another direction, duan et al. [212] presented an approach for make and model recog-

nition that uses MIL to discover local attributes conditioned on viewpoint. To encourage

discovered regions to be semantically meaningful, additional constraints on the positions

of image regions were applied to the MI-SVM model. To determine viewpoints, an initial

set of viewpoints labels was generated with K-means using global image gradient features.

These labels were then iteratively updated using a voting scheme which obtains votes from

discovered regions in a given image according to the viewpoint of the detector that identified

the region.

Figure 2.13: Ensemble of Localized Learned Features representation [211]

In the context of vehicle make and model recognition, a few other applications have

been addressed in the literature with either to take advantage of various vehicle properties

to boost the VMMR system reliability or perform higher level tasks than pure identification.
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TABLE 2.1

Summary of previous VMMR works
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2004 [189] Yes Front Square Mapped

Graphs

kNN 1132 77 93

2005 [183] Yes Front Canny edges kNN 180 5 97

2008 [176] Yes Front Oriented contours kNN 830 50 93

2009 [198] Yes 3D free SIFT Feature matching 400 36 90

2011 [184] No Front SIFT NN 90 10 54

2011 [182] Yes Front Harris corners NB 262 74 96

2012 [188] No Rear Shape context

descriptors

kNN 400 10 70

2014 [16] Yes 3D free 3D curves 3D curve matching 190 8 87

2014 [22] Yes Front SURF, HOG SVM 6936 29 98

2014 [181] No Rear HOG set of linSVM 1342 52 94

2.5.3.1 Vehicle License Plate Recognition

Automatic License plate recognition systems (ALPR) save time in vehicle-related

applications by effectively recognizing the ROI and providing useful information about the

vehicle. Since different countries have varied regulations in the format of their license plate,

ALPR has been profusely worked on both by individuals as well as institutions around the

world. It is generally performed in three major steps: license plate localization, character

segmentation and recognition.

Most available algorithms for license plate localization are based either on edge detec-

tion or morphological approaches. In [213,214], edge extraction approaches were employed

to detect boundaries of license plate (LP). In [215], a hybrid LP extraction algorithm based

on edge statistics and morphology for monitoring highway ticketing systems was proposed.
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This approach consists of the following procedures: vertical edge detection, edge statistical

analysis, hierarchical-based LP location, and morphology-based LP extraction. In [216],

Dubey attempted to improve the results by employing a heuristic approach instead of con-

ventional methods. Local Binary Pattern (LBP) features were employed in [217] to train

a boosting classifier for detection of vehicle license plate. An adaptive image segmenta-

tion technique using sliding concentric windows (SCW) was considered for LP localization

in [218]. The SCW method was developed to describe “local” irregularity in the image,

using statistics such as the standard deviation and the mean value as a heuristic for pos-

sible plate location. A wavelet transform (WT)-based method was used in [219] for the

extraction of important contrast features to be incorporated as guide in searching for LPs.

While these algorithms are excellent for the set of images with a knowledge of the LP loca-

tion, they tend to fail miserably when implemented on other vehicular plates. To implement

them successfully on such vehicles, significant alterations are required. In addition, ALPR

algorithms should operate fast enough to fulfill the needs of ITS.

2.5.3.2 Vehicle Color Recognition

Color of vehicle is another important attribute that can serve as a useful and reliable

cue in a wide range of applications in ITS. However, identifying vehicle color in uncontrolled

envirenments is a challenging task due to numerous interference factors, such as haze, snow,

rain, illumination or viewpoint variations.

Several methods have employed hand-crafted features such as color sift [220] and

feature context [221] to obtain a good performance but are far from producing satisfactory

results, particularly in complex real-world scenarios. In [221], Chen et al. proposed a bag of

words approach to select region of interest for color recognition. They used feature context

(FC) with selected configuration to divide the images into subregions, create histogram for

each subregion, and learned it using linear SVM. Some approaches have tackled the problem

by classifying vehicle color using 2D histogram features. Baek et al. used 2D histogram

of HSV channels to classify colors to 5 classes with SVM [222]. Son et al. [223] proposed
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another approach for color recognition using similarity method. They used a convolutional

kernel to extract a similarity score estimated based on hue and saturation channels of HSV

color space between positive and negative images. These scores were then fed into a SVM

classifier. In [224], Hu et al. presented a deep-learning-based algorithm for vehicle color

recognition. They combined the CNN architecture with the Spatial Pyramid (SP) strategy

to naturally capture the variations in vehicle images while making full use of the structural

information of vehicles.

2.5.3.3 Vehicle Logo Recognition

Most work accomplished in the area of vehicle make recognition (VMR) has been

through Vehicle Logo Recognition (VLR). This may be viewed as an auxiliary problem to the

license plates recognition, as well as to determination of a car type. Research works, mostly,

use a knowledge about the location of logo with respect to the license plate and propose

various local feature extraction techniques to build discriminative feature representations

of logo images. However, it is still a challenge due to difficulties in precisely segmenting

the vehicle logo in an image and the requirement for robustness against various imaging

situations.

Local Binary Patterns (LBP) [225], Scale-Invariant Feature Transform (SIFT) [45],

Edge Histogram descriptors (EHD) [226] and HOG [46] have been studied as features to

represent the vehicle logo [184,227,228].

Psyllos et al. [229,230] presented an enhanced SIFT feature-matching technique for vehicle

logo recognition. They applied a merged feature matching (MFM) scheme in SIFT to

increase feature keypoints. This scheme seems promising but suffers from illumination and

viewpoints variations. Yu et al. [231] proposed a system for VLR based on the Bag-of-

Words model, which uses a dense SIFT to extract stable features, quantize features by soft

assignment, and compute a histogram with spatial information to improve performance.

Vehicle logo images are represented as histograms of visual words and then classified by a

support vector machine (SVM). Wang et al. [232] detected vehicle logos using edge features,
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and then, employed template matching and edge orientation histograms to complete the

recognition process. Despite an acceptable reported accuracy, their approach is still limited

in realistic environments with shadows and light reflections. Llorca et al. [228] presented

a HOG/SVM framework using the gradient distribution as image features. In [233], Liu

et al. brought up the Sharpness Histogram Features to calculate sharpness values in the

edge map. In [234], ad Spatial Pyramid Matching approach was used to detect logo in

natural scenes. Kai et al. [235] proposed hybrid scheme for vehicle-logo localization using

appearance features and symmetric property. In [236], Huang et al. introduced a PCA-

based pretraining strategy for a CNN logo recognition model.

2.5.3.4 Vehicle re-Identification

Vehicle re-Identification (re-Id) is an important yet frontier topic, which not only

faces the challenges of enormous intra-class and subtle inter-class differences of vehicles

in multicameras, but also suffers from the complicated environments in urban surveillance

scenarios. Unquestionably, license plate is a significant cue for vehicle Re-Id. Nonetheless,

it may not work well in unconstrained surveillance scenes due to the various illuminations,

viewpoints, and occlusions.

Liu et al. in [237], proposed a Deep Relative Distance Learning (DRDL) model to

address the vehicle re-identification problem. The network projects raw vehicle images into

an Euclidean space where the L2 distance can be used directly to measure the similarity

of arbitrary two vehicles. The input of DRDL are two image sets: one positive set (images

of the same vehicle identity) and one negative set (images of other vehicles). In their

framework, a coupled cluster loss function pulls the positive images closer and push those

negative ones far away. Feris et al. [238] proposed a vehicle detection and attribute-based

retrieval system, in which vehicles are searched by attributes like colors and types coarsely.

Zapletal and Herout [239] tackled the re-identification problem by using color histograms

and histograms of oriented gradients by a linear regressor. They projected and combined the

side and front of the 3D bounding boxes of detected vehicles. Then, splitted the combined
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image into a grid and calculated the color histogram values for each of the RGB channels

and histogram of oriented gradients for each grid cell. In [240], Liu et al. proposed a system

for vehicle Re-Id, which fuses the vehicle's color, texture, and high-level semantic features

extracted by a fine-tuned deep CNN.
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CHAPTER 3

MULTIPLE INSTANCE LEARNING APPROACH TO VMMR

Vehicle Make and Model Recognition (VMMR) plays an important role in Intelligent

Transportation Systems (ITS), attempting to incorporate computer vision technologies into

vehicles and roadways for monitoring traffic conditions and measurement of traffic param-

eters such as vehicle count, speed, flow, congestion, etc. We propose two frameworks for

VMMR in video sequences. The first one is based on Multiple Instance Learning (MIL) and

the second one is based on Convolutional Neural Networks (CNN). The proposed methods

can offer valuable situational information for law enforcement units in a variety of civil

infrastructures. The proposed systems have the following major components:

Training- This block uses a collection of coarsely labeled images to learn charac-

teristics of each car manufactured per make, model and year.

Testing- This component employs the trained VMMR model to localize and iden-

tify different classes of vehicles in query video sequences.

In this framework, a MI classifier is first trained using a comprehensive vehicle make

and model dataset. In this process, a set of regions are extracted from each training image

as potential discriminant parts of the target vehicle. These regions of interest are image

patches with various saliency cues. The ROIs extracted from each class might represent

different parts of vehicle such as tail lights, tailgate, bumper, side mirrors, rear window,

license plate, etc. Then, some low-level visual features are extracted from the selected image

patched. The final feature vectors will be fed into a MIL framework as the instances forming

bags. The bags generated from all training images are used to train a MIL classifier.

In a parallel process, an ROI containing the vehicle logo is extracted in each training image.
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The process involves a license plate location module, followed by coarse to fine identification

of the logo area. Then, another classifier is trained based on the features extracted from

these regions.

The resultant model can be used to label the vehicles in each frame of query video with

their corresponding make and model by integrating the outputs of logo and MI classifiers.

The following steps outline the general process:

1. Identify regions of interest from each image;

2. Extract and fuse features from selected regions;

3. Feed the extracted regions per image as instances of a bag to a MI classifier.

An overview of the system is depicted in Figure 3.1.

Figure 3.1: Overview of the proposed MIL-based system for VMMR

3.1 Objectives

Compared to generic image classification, fine-grained recognition benefits more from

learning critical parts of the objects that can help align objects of the same class and

discriminate between neighboring classes. Current state-of-the-art results are, therefore,

from models that require part annotations as part of the supervised training process. This

poses a problem for scaling up fine-grained recognition to an increasing number of domains,
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not to mention it is very unreliable and subjective in a large scale. Vehicles, specifically,

own enormous number of designs and model makes that most other categories do not have,

enabling a more sophisticated and challenging fine-grained task. In addition, cars yield

large appearance differences in their unconstrained poses, which demands viewpoint-aware

analysis. Automatically annotating such weakly-labelled training data can be posed as a

MIL problem. To achieve a trade-off between efficiency and performance, we need to refine

the instances and select a set of instance prototypes from the positive and negative training

bags.

3.2 Vehicle Representation

Within MIL framework for VMMR, we can regard each training image as weakly

labelled with data such as Toyota Camry as a bag containing a set of instances, or possible

locations of the vehicle parts. The instances in a particular bag are various sub-images.

These sub-images can be segmented regions or image blocks. Objects of interest are con-

sidered as positive instances, and the rest are considered as negative instances. If a bag is

labeled as Toyota Camry, we know that at least one of the sub images contains a salient

part of the vehicle. If a bag is labeled as non-Toyota Camry, we know that none of the sub

images contains a vehicle with that make and model. Each of the instances, or sub images

is described as a point in some n-dimensional feature space.

The goal is to find a description which will correctly classify new images as Toyota Camry

or non-Toyota Camry. This can be done by finding what is in common between the positive

training images and their differences with the non-positive training images. In other words,

from a collection of labeled bags, the discriminative/generative MI learner attempts to in-

duce a concept that will label unseen bags or instances correctly. In addition to learning

bag distributions, we expect MIL to infer the label of instance to find distinctive parts of the

object of interest (Toyota Camry). Figure 3.2 displays a diagram of such MIL framework.

1Figure based on [29].
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Figure 3.2: MIL system diagram1

3.2.1 Instance Selection

Most conventional sub-image retrieval frameworks partition the training and query

images into a fixed number of blocks as grids in order to simplify the instance retrieval

process and/or take advantage of the spatial information [43, 65]. The positive aspect of

these approaches is having control over the number of instances per bag which is fixed

for all images. These methods, however, implicitly assume that at least one of the blocks

includes the target object. This clearly cannot be the case having objects with various

sizes and different resolutions in the dataset. In fact, a rigid partitioning often breaks an

object into several blocks or puts different objects into a single block. In case of fine-grained

classification, where we need to focus on finer details of the target object, these approaches

suffer from noise due to having blocks containing irrelevant background. Also, there is a

high chance of having blocks capturing only part of discriminant regions of the object of

interest. Considering the limited spectrum of variance between many makes and models,

using instances partially representing parts of the target vehicle, would result in a very poor

classifier. Figure 3.3(a) displays an example of grid-based sub-image extraction to map an

image to a bag with 16 instances. This approach has resulted in splitting parts of vehicle

between multiple regions which would override the discriminating power of those regions.

To tackle these issues, more recently, many algorithms [241, 242] have proposed to
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partition the image into different regions (that can vary in size and shape) by applying

a bottom-up segmentation algorithm [89, 243, 244]. These algorithms aim at capturing

local characteristics of each bag by assigning image segments to visually coherent objects

and learn the models for the common object and its background. To find the correct

correspondence between an image region and the keyword Toyota Camry, for instance, a

learner must be able to differentiate Toyota Camry regions from other noisy regions at the

first place. In other words, if the segmentation is ideal, regions will correspond to vehicle

parts. But, in general, semantically accurate image segmentation by a computer program is

still an ambitious long-term goal for computer vision researchers. In fact, segmentation from

low-level cues is often unable to provide semantically correct segments. Such methods may

cut the object of interest into multiple components. Therefore, this representation highly

depends on the quality of the segmentation because small areas of incorrect segmentation

might make the representation very different from that of the real object. A few examples

of sub-images generated using different segmentation methods are shown in Figures 3.3(b),

3.3(c) and 3.3(d).

(a) Fixed partitioning (b) K-means [243] (c) Mean shift [244] (d) Gabor Filters [245]

Figure 3.3: Different approaches towards instance representation

The approach we propose does not rely on unreliable segmentation methods for rep-

resentation. Instead, it captures generic knowledge regarding the typical size and location

of distinctive object parts in images, or expresses a relationship between the strength of

image edges and the location of object bounding boxes. We use this method to prune the

space of discriminant object region locations a priori, allowing us to consider a reduced set

of possible regions as positive instances. Our work can also be viewed as a variation of

69



feature selection methods, in which different features are selected for each example. Given

an arbitrary set of unlabeled images, our goal is to discover a relatively small number of

discriminative patches at arbitrary resolution which can capture the essence of that data

and serve as a fully unsupervised mid-level visual representation. Many semantic entities

are just not discriminative enough visually to act as good features. For example in a car,

“door” is a well-defined semantic category, but it makes a lousy detector simply because

doors are usually plain with similar shape in many makes and models and thus not easily

discriminable. The desired patches need to satisfy two requirements. First, they need to

be good representatives, meaning that they need to occur frequently enough in the visual

world. Second, they need to be discriminative, i.e., they need to be different enough from

the rest of the visual world. These patches could correspond to parts, regions, objects,

visual phrases, etc. but are not restricted to be any one of them.

3.2.1.1 Salient Region Selection

In this work, we propose to generate parts which can be detected in novel images and

learn which parts are useful for recognition. This is done by extracting pertinent, attention

grabbing regions of the scene without conscious awareness [246]. We use a model that can

handle both eye fixation prediction and saliency detection to identify more discriminative

regions instead of the traditional grid or segmentation-based patches. Instead of employing

local image properties such as contrast and rarity which have limited ability to model some

global perceptual phenomena, it makes use of figure-ground segregation [247].

Based on the Gestalt principles of grouping, humans tend to organize a cluttered image

through a process of figure–ground segregation without focal attention, i.e., by identifying

those regions of the retinal images that are object-related (figures) for further processing,

and assign other regions to the background [248]. It basically relies on the detection of

feature discontinuities that signal boundaries between the figures and the background and

on a complementary region-filling process that groups together image regions with similar

features. Examples of such features include continuity, convexity, symmetry, parallelism and
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surroundedness [248, 249]. The method makes use of simple image processing operations

to leverage the topological structural information which is scale invariant, and also has a

strong influence on visual attention [247].

In this bottom-up Boolean Map-based Saliency model (BMS) [250], based on the fact that

an observer's momentary conscious awareness of a scene can be represented by a Boolean

Map [251], each image I is first decomposed into a set of Boolean maps B = (B1,B2, . . . ,Bn).

These maps are generated by sampling from a prior distribution function F (B|I) conditioned

on the image, over the feature map φ(I) and the threshold θ:

Bi = THRESH(φ(I), θ),

φ ∼ Fφ, θ ∼ F φθ
(3.1)

Fφ and F φθ denote the prior distribution of feature channel sampling and threshold sam-

pling θ on the feature channel φ respectively. The feature channels can represent one or a

combination of features like color, intensity, orientation, motion, etc.

For each Boolean map, an attention map A(B) is computed to represent its influence on

the visual attention. To compute the map, first an activation map M(B) is generated by

applying binary image processing techniques to activate regions with closed outer contours

(unsurrounded regions) on B. Intuitively, a white (black) pixel in B is surrounded if and

only if it is enclosed by the black (white) set. Formally, the surroundedness can be defined

based on a pixel's connectivity to the image border pixels.

Then, to further emphasize the regions with rare topographic features, the resultant activa-

tion maps are normalized to create the attention map. To do so, each activation mapM(B)

is split into two sub-activation maps M+(B) and M−(B). These sub-activation maps are

responsible for activating the surrounded peaks above and below the corresponding thresh-

old. Then, for eye-fixation prediction, an L2-normalization is applied to emphasize attention

maps with small active area. Finally, attention maps are averaged into a mean attention

map Ā over generated boolean maps:

Ā =

∫
A(B) dF (B|I) (3.2)
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Ā is further post-processed to localize the regions people are likely to look at and output a

saliency map S. This process is summarized in Figure 3.4.

The output of both eye-fixation prediction and saliency detection for a few sample images

are displayed in Figure 3.5. The red rectangles in third row are the selected image patches

after thresholding both maps.

Figure 3.4: Salient region detection

Figure 3.5: Few sample images with their instances selected based on saliency map and

eye-fixation prediction

When dealing with noisy images, although salient detection and segmentation meth-

ods cannot guarantee robust performance on individual images, their efficiency and sim-
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plicity makes it possible to automatically process a large number of images, which can then

be further filtered for reliability and accuracy, thus enabling many applications to run ro-

bustly [137] and even supports unsupervised learning in the case of our application. Also,

by leveraging the surroundedness cue for figure-ground segregation, BMS is less responsive

to the edges and cluttered areas in the background. More importantly, with this approach

there is no need for spectral transformations, off-line training or multi-scale processing.

3.2.2 Instance Representation

Each image patch is represented by a feature vector and becomes an instance of the

bag. Various features have been employed in the literature [46, 252]. The most common

features include HOG [46], LLC features [253], Fisher vectors (FV) [47] and deep-learning

features [97]. In the current framework, we represent the instances using the FV encoding

method which has proven to be very effective in various image recognition tasks [47].

Given a set of T training images, we denote by Itd a salient region d extracted

from image It. For each region, first, local features are extracted using a variation of

SIFT descriptors, known as dense SIFT [47]. Standard SIFT descriptors are extracted at

local points of interest, usually referred to as key-points. The locations of key-points are

determined around corners, areas with high magnitudes, and salient regions in general. If

key-points can be extracted correctly from an image, then, a global feature can encode the

concept effectively. However, if the key-points do not capture the object of interest within

the image, the effectiveness of the SIFT feature can be reduced significantly. To alleviate

this weakness, we use SIFT descriptors from a dense multi-scale grid covering the entire

extracted patch. Let DSFIT (Itd) = (xt
d1, . . . ,x

t
dN) be the set of all extracted dense SIFT

features for patch Itd, where xt
di is a standard 128-D SIFT descriptor, d is the index of

salient region in image It and N is the number of descriptors per image patch. Figure 3.6

illustrates grid partitioning and an example of dense SIFT extraction on a generic image

patch.

Given the set of extracted dense SIFT features from all selected patches in training
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Figure 3.6: An example of Dense SIFT extraction

data, (xt
di, t = 1, . . . , T, d = 1, . . . , Dt, i = 1, . . . , N), a generative model, such as Gaussian

Mixture Model (GMM) with K components, is learned using the EM algorithm [47]. It

can be regarded as a probabilistic visual vocabulary. Let Θ = (µk,Σk, πk : k = 1, . . . ,K) be

the parameters of the GMM fitting the distribution of descriptors, where πk , µk, and Σk

are respectively the mixture weight, mean, and covariance matrix of Gaussian component

k. The Fisher Kernel characterizes a local feature of a sub patch by its deviation from

the generative model. The deviation is the gradient of the sub patch log-likelihood with

respect to the generative model parameters. The GMM associates each feature vector xt
di

to mixture component k with a strength given by the posterior probability:

qik =
exp

[
−1

2(xt
di − µk)TΣ−1k (xt

di − µk)
]∑K

t=1 exp
[
−1

2(xt
di − µt)TΣ−1k (xt

di − µt)
] (3.3)

To simplify the notation, let xij be the jth dimension of xt
di. For each component k, we

compute the mean and covariance deviation vectors:

ujk =
1

N
√
πk

N∑
i=1

qik
xji − µjk
σjk

, (3.4)

vjk =
1

N
√

2πk

N∑
i=1

qik[(
xji − µjk
σjk

)2 − 1] (3.5)

where j = 1, 2, . . . , F spans the vector dimensions.

The FV of a given salient region d of an image It is the vectorial representation of all

74



the deviation, estimated through concatenation of uk and vk for each of the K Gaussian

components, i.e.,

Φ(Itd) = [u11 · · ·uF1 · · ·u1K · · ·uFK ,

v11 · · · vF1 · · · v1K · · · vFK ]

(3.6)

Thus, each image It is mapped to a bag with Dt instances. Each instance is represented by

a feature vector Φ(Itd) as defined in (3.6). The instance features are FVs extracted from

regions detected through a saliency detection model based on figure-ground segregation.

3.3 Vehicle Classification

This data can be fed into any MIL framework. Many MIL approaches were discussed

in section 2.2.2. Generative models are based on a strong assumption that all true positive

instances form a compact cluster in the feature space. This is, however, not necessarily

the case in our application, as the distributions of positive instances can be arbitrary and

most likely multi-modal. Hence, learning a single target distribution to represent positive

instances is inadequate in capturing their distributions. On the other hand, large margin

discriminative methods are much more robust and achieve an improved performance. In

this context, with the current assumptions of the method, we can employ various classifiers

with no embedded instance selection such as DD-SVM [67], MI-SVM, mi-SVM [68] and

Citation-kNN [71].

Once a classifier is trained, we can use it for labeling incoming instance prototypes.

One promising aspect of MIL is that it allows for the automatic model learning and instance-

level label prediction at the same time. In the end, a discriminative classifier is learned with

the simultaneous label predictions on the selected instances. This way we can identify the

distinctive regions per image in another level and employ this information later to boost the

designed classifier. In mi-SVM [68], for instance, the labels of instances in positive bags are

initialized as positive, and then the SVM classifier is trained repeatedly until each positive

bag has at least one instance which is classified as positive by the classifier.
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3.4 Vehicle Make Recognition Based on Logo

Additional vehicle attributes can contribute to improving the accuracy of VMMR.

Vehicle manufacturer logo is a remarkable characteristic of vehicles. The attention mech-

anism of a human vision system performs in a way that given an image/video containing

vehicles, it quickly focuses on certain objects like logos if no prior knowledge of vehicle is

available [254]. In fact, logos are widely used visually-salient symbols serving as remarkable

identifiers of related organization. The vehicle manufacture's logo is a small object that

should be a unique identifier of the car make. It could be found in several parts of the

car especially in front and rear areas. Mostly, car logo shape is unique in terms of color,

texture, and geometry which make the logo easy to be noted or seen by human. With

logos accurately detected, the manufacturer recognition can become straightforward. This

can efficiently narrow the search space for VMMR and can boost the reliability of VMMR

system.

However, due to the ever-changing road environments, vehicle images are usually captured

with great variabilities, caused by different backgrounds and lighting conditions. Motion

and varying shooting angles of surveillance camera will cause distortions to the logo shapes.

The tiny portion of logo area in a captured image adds extra difficulty to the task.

The majority of the approaches concerning vehicle logo recognition (VLR) make use

of license plate (LP) location in either front or rear view images of vehicle, followed by

a coarse-to-fine approach to identify the logo ROI. The texture of license plate region is

steady-going and fixed in size [255]. If it can be detected quickly and coarsely, it could help

in giving a rough position of the vehicle logo in the vertical direction. The layout of logos

and other parts of the frontal/rear region of a vehicle are similar in almost all different

vehicles. A sliding window technique is then applied in a ROI defined above the detected

LP. In this process a classifier function is subsequently applied to the ROIs provided by

the sliding window stage, for template matching. Finally, a majority vote approach is

implemented to recognize the logo using the binary outputs given by the classifier [228].
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3.4.1 Logo Feature Representation

We have employed an enhanced SIFT matching module for detecting and extracting

the points of interest in the query logo image [229]. The whole process is fine-tuned by

clustering the matched keypoints, using Generalised Hough Transform [256], and geometric

verification by means of an affine transformation. In this process we extract SIFT points

from all training logo images. For each SIFT feature fqi in query image Iq, the descriptors

are used to find the total number of its Nearest-Neighbor (NN) matches among all features

in the training database using L-2 Euclidean metric:

NNi = cardinality(arg{‖Dqi −Dji‖ < γ}) (3.7)

where Dqi is the ith descriptor for the query image, and Dji (i.e. Dj1, Dj2, . . . , DjN ) is the

ith descriptor for image Itj and N = 128. Therefore, the number of NNs in the training

database depends on the selection of threshold γ. This parameter is varied to keep the ratio

of NNs to the total keypoints fixed:

τ =
NNi

KPq.KPt
(3.8)

where KPq is the total number of keypoints detected in query image q, and KPt is the total

number of keypoints in the training database.

Not all of the extracted keypoints in each image are important in the matching process. In

fact, we have several irrelevant features extracted due to ambient illumination reflections,

shadows or noise. Thus, in the next step, the reasonable NN matches are determined

to verify whether the query image represents a logo image stored in the database. NN

features are clustered using Generalised Hough Transform (GHT) [256], in order to define

the parameters for a similarity transformation between the query and the database features.

GHT identifies clusters of features with a consistent interpretation by using each feature

to vote for all the logo images that are consistent with the feature. Therefore, when the

NN distance between a pair of query and database feature is less than a certain threshold,

this pair participates in a Hough similarity transformation and a vote is added to the

77



corresponding cell in the Hough array. The database logo image with the highest number

of votes is considered to be the most similar with the query image.

3.4.2 Logo Matching

In the next step, the locations of the keypoints in the query and the database image

are verified for geometrical consistency. Those keypoints that fit well to an affine geometrical

transformation are called inliers, while those that are inconsistent to it are called outliers.

In order to select which candidate points should be used for affine transformation, the

RANSAC method [257] is applied to a pair of images by randomly choosing three pairs of

matched points of interest. These three pairs of points of interest are fitted to an affine

transformation, which is then applied to the rest of the keypoints of the two images. This

procedure is repeated for all clusters found in the GHT and the database image with the

maximum number of inliers is selected as the matched logo. Figure 3.7 displays sample

logos extracted based on the location of license plate matched with a logo in the training

dataset. The column on the right illustrates the frequency of images matched from each

cluster of GHT.

Figure 3.7: The process of logo matching
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CHAPTER 4

INCORPORATING MULTIPLE INSTANCE LEARNING INTO DEEP

LEARNING FOR VMMR

Feature learning is a promising approach that can generate powerful appearance rep-

resentations. Much work has focused on encoding low-level features such as SIFT or HOG

(section 2.5.3) or mining discriminative templates [4]. The recent success of convolutional

neural networks (CNNs) [49] on large-scale classification demonstrates that powerful fea-

tures can be learned directly from pixels. This inspires us to adopt CNNs for fine-grained

recognition of vehicles. In particular, we use a convolutional neural network that accepts

pixels as its input and outputs probabilities of classes. The key benefit of employing such

deep network is that this enables the classifier to learn higher lever structures within the

image. For our particular problem, the network might have the ability to learn the ap-

pearance of the headlights on the first layer, their relative positions and distance on the

second layer, and their relative location with respect to the car license plate on the third

convolutional layer. In other words, the key to success is that the network can learn the

feature extraction step in an optimal manner and can avoid the need for manual feature

engineering.

4.1 Objectives

The CNNs capability in modeling complex non-linear functions and inferring the

context information of neighboring pixels in the input data, has resulted in their state-of-

the-art performance on many computer vision tasks focusing on global learning. However,

in fine-grained classification, distinctive information comes from local patches which are

distributed inconsistently in different classes at various positions and scales. Thus, learn-
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ing such combination of discriminative parts could conflict with the CNN traditional global

learning scheme and limit its performance in fine-grained classification. Additionally, CNNs

require costly supervision; i.e. human annotations is still a key part of many popular frame-

works [258]. As mentioned before, fine-grained labeled data is very expensive to acquire,

and our goal is to find the subset of regions that are discriminative and use them to train a

model. Detailed manual annotations are time-consuming and intrinsically ambiguous. An

alternative is to learn local concepts using global annotations, which is the main idea of

Multiple Instance Learning (MIL) (refer to chapter 3). In such weakly supervised learning

framework, the training set contains labeled bags that are composed of unlabeled instances,

and the task is to predict the labels of unseen bags and instances.

In this chapter, we aim to counter the shortcomings of CNN for fine-grained image

classification by simultaneously learning the representation to infer the most distinctive in-

stances. We propose a weakly supervised framework for vehicle make and model recognition

by combining multiple instance learning loss and deep residual networks.

4.2 Traditional CNN

As a supervised learning method, CNNs take pairs of data-label for training a model.

In its supervised learning process, the optimization is done by minimizing the total cost L:

L =
N∑
i=1

Li =
N∑
i=1

floss(yi, F (W,xi)) (4.1)

where yi = {0, 1}1×C are the training data labels for C classes, W represents the set of

adjustable parameters in the CNN architecture, and xi is the input matrix. F indicates

a set of functions in CNN, depending on the selected architecture, such as convolutional,

pooling and fully-connected functions. The output of F (W,xi) is hi ∈ R1×C which can be

interpreted as the class label of input or probabilities associated with each class.

A very common loss function in convolutional neural networks is softmax, which provides

a way of assigning probabilities to each class, with cross-entropy loss function. Let CNN

output hi = F (W,xi), hi = {hi1, hi2, . . . , hiC}, the predicted label for training input xi is
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max value of hi:

ŷi = argmaxCj=1(h
i
j) (4.2)

with the cross-entropy to measure the prediction loss of the network for softmax activations

of pj :

floss = −
C∑
j=1

yjlog(pj), (4.3)

pj =
exp(hj)∑C
l=1 exp(hl)

, j = 1, 2, . . . , C (4.4)

The gradient of softmax with cross-entropy loss with respect to the output is

∂floss
∂hk

=

C∑
j=1

∂floss
∂pj

∂pj
∂hk

=
∂floss
∂pk

∂pk
∂hk

+
∑
j 6=k

∂floss
∂pj

∂pj
∂hk

(4.5)

Computing the partial derivatives yields

∂floss
∂pj

= −yj
pj
, (4.6)

∂pj
∂hk

=


exp(hj)∑C
l=1 exp(hl)

− (
exp(hj)∑C
l=1 exp(hl)

)
2

= pj(1− pj) j = k

− exp(hj)exp(hk)

(
∑C

l=1 exp(hl))
2 = −pjpk j 6= k

(4.7)

Thus, the gradient will be

∂floss
∂hk

= −yk(1− pk) +
∑
j 6=k

yjpk

= −yk + pk

C∑
j=1

yj

(4.8)

The gradients for weights is thus

∂floss
∂W

=
∂floss
∂h

∂h

∂W
(4.9)

Finally, the weight parameters will be updated as

Wnew = Wold − λ
∂floss
∂W

(4.10)

where λ is the learning rate.
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We have used a Residual Network (ResNet) [144] (section 2.4.2), which follows the

same procedure in its architecture, but with shortcut connections that skip several layers,

to prevent vanishing or exploding gradients. Shortcut connections simply pass through the

inputs as outputs and merge them into the ones from the skipped layers. The layers with

shortcut connections learn residual and the outputs merged with shortcut connection are

y = F ({Wi},x) + x (4.11)

where x and y are the layer's input and output vectors, and F (.) represents the residual

mapping to be learned.

Our goal is to model deep CNNs in a weakly supervised learning framework. Instead

of assigning labels to all generated images, we treat the generated images as a bag and the

original label as bag-level label. For binary MIL, a bag is labeled positive if the bag contains

at least one positive instance, and it is labeled negative if all its instances are negative.

4.3 Multiple Instance Learning Based CNN

Instead of extracting CNN features, disjointly selecting discriminative parts and then

learning a classifier, jointly learning distinctive regions with features would likely bring

improvements to both distinctive region discovery and feature learning. MIL would also

enable us to further take advantage of instance labeling, since the cost of part detection

makes it impractical to train part detectors on a significant number of classes. Therefore

we define a new CNN structure called Multiple Instance Learning Convolutional Neural

Networks in order to further free the power of deep learning, which is currently constrained

by the limited amount of well labeled data. Specifically, we use CNNs to learn appearance

descriptors, and perform unsupervised discovery of discriminating regions in a supervised

multi-instance fashion.

Instead of feeding the training image into the network and following the global learn-

ing approach, we formulate each image into a bag consisting of multiple instances. Let's

denote each input as a bag Bi, where within each bag we have a number of instances
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Bi = {xik}mk=1. Labels yi = {0, 1}1×C are only available at the bag level, while labels of

instances (yik ∈ {0, 1}) are unknown. In such formulation, all instances in each bag share

the same label as bag.

Instances are local image patches selected at various locations and scales, and form the

inputs to the deep network. For each training image Bi only the local image patch that has

the highest response contributes to the loss function and drives the update of network coef-

ficients W during the backward propagation. Accordingly, the learned CNN is expected to

have high responses on discriminative local patches. In other words, the most discriminative

local patches for each image class are automatically discovered after the CNN training.

We reformulate the CNN loss function (4.3) for MIL as

floss = −
C∑
j=1

yjlog(p(cj |B)) (4.12)

where p(cj |B) represents the probability of bag B being classified as jth class. Following

the MIL settings and the noisy-or model (2.5) [64], we have

p(cj |B) = 1−
m∏
k=1

(1− p(cj |xk)) (4.13)

where p(cj |xk) is the probability that the kth region is classified as the jth class, and based

on (4.4) equals

p(cj |xk) =
exp(hkj)∑C
l=1 exp(hkl)

, j = 1, 2, . . . , C, k = 1, 2, . . . ,m (4.14)

where hkj is the jth output of the CNN model before loss layer for kth region.

However, there is a drawback in (4.13); when all instance probabilities of a bag (4.14) for a

certain class are small, and the number of instances mi is large, p(cj |B) will be close to 1.

This way, the model distinguishes the bag as positive, but considering the low probabilities

of all instances, it should be classified as a negative bag.

In such scenario, reformulating the probability as

p(cj |B) = max
k

p(cj |xk) (4.15)

would solve the issue and classify the bag as negative when all instance probabilities are

close to 0, and positive when at least one instance has a probability close to 1.
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However, in case of fine-grained classification, there are usually more than one instance

contributing to the bag label. Therefore, we employ the following weighted probability to

highlight the importance of the most positive instance while assigning more weights to the

cases where multiple positive instances exist.

p(cj |B) = p(cj |xkj )
m∑
k=1

p(cj |xk)2

kj = arg max
k

p(cj |k)

(4.16)

After estimating p(cj |B), the cross-entropy and parameter updating will be performed as

discussed in section 4.2.

Figure 4.1: Overview of the proposed MIL-based CNN for VMMR

We propose a CNN similar to the ResNet [144], in which convolutional layers mostly

have 3 × 3 filters and down-sampling is directly done by convolutional layers that have a

stride of 2. The network ends with a global average pooling layer and a fully-connected

layer without softmax. We modify the last layer for MIL. The proposed architecture is

illustrated in Figure 4.1.

The following steps outline the general process:

1. Generating randomly cropped regions of each training image;

2. Feeding each set of regions as a bag to the Multiple-instance CNN;
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3. Inferring the bag labels based on the network predictions for instances;

4. Training the network with the updated gradients calculated using probability of each

bag.
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CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSIONS

5.1 Dataset Description

Most research efforts on VMMR so far have been focused on medium-scale datasets,

which are often defined as datasets that can fit into the memory of a desktop. There are

two main reasons for the limited effort on large-scale image based vehicle classification.

First, there is almost no publicly available large-scale benchmark data for VMMR. This is

mostly because class labels are expensive to obtain. In fact, most existing fine-grained image

classification benchmark datasets only consist of a few thousands (or less) of training images.

As of existing vehicle datasets, they either cover a subset of makes and models [182,259,260],

or only categorize vehicles at a high level (i.e., SUV, Truck, Sedan) [168, 261], and those

usable mainly for vehicle detection, pose estimation, and other tasks [53, 200, 262–264].

Second, large-scale classification is hard because it poses more challenges than its medium-

scale counterparts. Having the appropriate set of training data can improve the performance

of designed classifiers. Indeed, it is necessary to have a very large number of images for

each class to cover the wide range of variations of view angles, lighting, as well as the fairly

wild appearance difference within the same class. In addition, the large number of vehicles

makes, models and years make the number of classes very large.

The lack of public and standard datasets has moved researchers to use their own

databases. Accordingly, it is very complicated to establish a performance comparison be-

tween the different approaches. A very recently published example is CompCars dataset [21]

collected by The Chinese University of Hong Kong. This dataset consists of web-nature and

surveillance-nature parts. The former is made of 136, 727 vehicles from 153 car makes with

1, 716 car models, taken from different viewpoints, covering most of the commercial car
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models in the recent ten years, and the latter contains 44, 481 frontal images of vehicles

taken from surveillance cameras. CompCars dataset was originally used for fine-grained car

classification, car attribute prediction and car verification. Sochor et al. collected and anno-

tated the BoxCars dataset [202] containing vehicle images taken from surveillance cameras

accompanied with their 3D bounding boxes. This dataset is composed of 21, 250 vehicles

(63, 750 images in diverse viewpoints) of 27 different makes, 102 make-model classes, 126

make-model-submodel classes, and 148 make-model-submodel-year classes. Lin et al. [200]

published FG3DCar dataset including 300 images of 30 classes. The data provided in FG-

Comp [199] includes 8, 144 images of cars, covering only 196 makes and models out of which

60% are 2012 models. A vehicle re-identification dataset, VehicleID, collected from multiple

real-world surveillance cameras and includes over 200, 000 images of about 26, 000 vehicles,

was introduced in [237]. Almost 90, 000 images of 10, 319 vehicles in this dataset have been

labeled with the vehicle model information.

Despite the ongoing research and practical interests, car make and model analysis

only attracts few attentions in the computer vision community. We believe the lack of

high quality datasets greatly limits the exploration of the community in this domain. To

this end, we collected and organized a large-scale and comprehensive image database called

VMMRdb, where each image is labeled with the corresponding make, model and production

year of the vehicle. The dataset used in our experiments contains images that were taken by

different users, different imaging devices, and multiple view angles, ensuring a wide range

of variations to account for various scenarios that could be encountered during testing,

in a real-life scenario. The cars are not well aligned, and some images contain irrelevant

background. The data was gathered by crawling web pages related to vehicle sales on

craigslist.com, including 712 areas covering all 412 sub-domains corresponding to US. metro

areas. We developed a semi-automated process to partially prune the data and remove the

undesired images belonging to interior parts of vehicles.

The VMMR dataset is much larger in scale and diversity compared with the existing car

image datasets, containing 9, 170 classes consisting of 291, 752 images, covering models
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manufactured between 1950 to 2016. The distribution of images in different classes of the

dataset is illustrated in Figure 5.1. Each circle is associated with a class, and its size

represents the number of images in the class. The classes with labels are the ones including

more that 100 images.

Figure 5.1: Distribution of images per class in VMMRdb
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5.1.1 Experimental Subsets

In our experiments, we have used three different versions of our dataset: VMMR-14,

VMMR-51 and VMMR-3036. The first dataset, VMMR-14, has 14 classes and for each

class, we use 20 images for training and 10 images for testing. For this dataset, we identify

regions of interest in two different ways. First, we manually select 6 ROIs within each im-

age. These regions mainly include the tail lights, tailgates and bumpers. We, also, identify

another set of ROIs using the saliency detection method as described in section 3.2.1.1.

The second dataset, VMMR-51, is larger. It has 51 classes and for each class we split the

images into halves for train and test. These classes are specifically chosen based on the

available classes in the CompCars dataset [21] for comparison purposes. In this subset of

VMMRdb, we only extract the salient ROIs.

VMMR-3036 is the largest subset which we used for CNN experiments and surveillance

application. In this dataset we considered only the classes from VMMRdb with more than

20 images to be able to train the network properly.

Table 5.1 summarizes statics of different versions of dataset that we have used in our ex-

periments. The distribution of the number of images per class is illustrated in Figure 5.2

for the VMMR-51 and VMMR-3036 datasets.

TABLE 5.1

Summary of the VMMR datasets

Dataset Number of Classes # Train # Test

VMMR-14 14 20 10

VMMR-51 51 50% 50%

VMMR-3036 3036 70% 30%
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(a) VMMR-51 (b) VMMR-3036

Figure 5.2: Distribution of number of images per class

5.2 Region-based Image Classification

5.2.1 Settings

In our experiments, we have resized all images to 450× 600 pixels. All image pixels

are represented in the CIE Lab color space, which is known for its perceptual uniformity.

We assume that the three channels of Lab space play equally important roles.

For extracting salient regions, the Boolean maps are sampled by thresholding the color

channels only from a distribution over [0, 255]. The threshold sample step δ from the color

values is set to 8, to create a uniform sampling. An inverted copy of each Boolean map is also

considered to justify the inverted region selection. The saliency map has been estimated by

applying Gaussian blurring with standard deviation σ = 20 on the L2-normalized attention

maps. The ROIs are then selected by filtering the connected components with the saliency

probability and eye-fixation values above 0.3 and 80 respectively. Very large and very small

regions are also filtered out. On average, 6 patches were extracted per image.

In all experiments, we follow the same feature extraction process. We sample image patches

on a regular spatial grid, with step-size equal to the patch-size, considering only one scale.

We compute SIFT descriptors, and in order to decrease the size of feature vector, we reduce

the dimensionality from 128 to 80 using PCA, when using FVs to code the appearance.

To model the training data, on the experiments on VMMR-14 we use a mixture of K = 150

Gaussian components learned from 1000 samples per each. This process results in feature

vectors of size 24000. We increase the number of components to K = 1000 for the larger
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datasets, and thereby the size of FVs equals 160000.

5.2.2 Verification of Selected Instances

Our first experiment was designed to provide some intuition on the validity of choos-

ing regions which are target of human attention based on their saliency as the only instances

in each bag. We asked human annotators to choose certain number of regions in each im-

age as the distinctive parts of the vehicle. In order to keep the complexity consistent, the

number of image patches was chosen to be equal to the average value achieved by the auto-

mated method. Therefore, for each image we have regions manually annotated with labels

from 1 to 6 defining areas representing left and right tail lights, bumper, left and right rear

areas of the vehicle including the corresponding tail light and license plate area including

the logo respectively. In our proposed saliency-based instance selection process, however,

the number of regions per image is not fixed and changes by varying the thresholds applied

on saliency and eye-fixation maps. The variance of the salient regions per image with the

current setting, is very low. The experiment was performed on VMMR-14 with 6 salient in-

stances selected on average. Figure 5.3 displays the regions selected through each approach

for sample images.

We compare the accuracy of the multiple instance (MI) representation when the ROIs

are selected manually and when they are selected using the saliency detection algorithm. We

also compare the results of the MI representation to those obtained using single instance (SI)

representation. For the latter, the entire image is represented by one global feature vector

that is extracted in the same way. For the SI learning, we used the standard SVM classifier,

and we will refer to this as SI-SVM. For the MI case, we experimented with two MIL

algorithms, the instance-level MI-SVM [68] and Citation-kNN [71] (CkNN) classifiers. Let

MI-SVMmn and CkNNmn refer to the MIL classifier when n ROIs are selected manually,

and MI-SVMs and CkNNs refer to the classifier when the ROIs are identified using the

saliency detection algorithm. The value of n can vary between 2 and 6.

In order to see the effect of varying the number of selected instances on the performance of

91



Figure 5.3: Examples of regions selected through manual annotation and saliency detection

for sample images from VMMR-14

MI-classifier, we chose different subsets of the annotated regions. The results are depicted

in Figure 5.4. As we can see, certain sets of regions are more discriminative in certain

classes. However, on average the accuracy does not change a lot by increasing the number

of instances. Therefore, in the rest of our experiment, to keep the complexity consistent

with our proposed instance selection process, we have employed all 6 manually selected

regions. For the sake of simplicity, from here on, we are going to refer to MI-SVMm6 and

CkNNm6 with MI-SVMm and CkNNm respectively.

Figure 5.5 compares the results of SI-SVM, MI-SVMm and MI-SVMs on the VMMR-

14 data. As it can be seen, the performance of our automatic saliency-based method

is comparable to the method with manually selected instances. The accuracy of both

experiments, however, are significantly better than the case where the model has been

trained for one global instance per image.

5.2.3 Comparison of SI and MI Learners

In a second experiment, we compare the performance of SI-SVM with MI-SVMs, and

CkNNs on VMMR-14 and VMMR-51 datasets. The results are depicted in Figure 5.6 for
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Figure 5.4: Classification results using MI-SVM with different subsets of manually selected

regions (MI-SVMm) on VMMR-14

Figure 5.5: Classification results using single instance learning (SI-SVM), MI-SVM with

manually selected regions (MI-SVMm) and MI-SVM with ROIs selected using saliency de-

tection algorithm (MI-SVMs) on VMMR-14

VMMR-14. As it can be seen, the MI representation outperforms the SI representation for

most of the classes. The improvement in accuracy can exceed 40% in some cases. The MI

classifiers have comparable accuracies for all classes. This indicates that the improvement
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in accuracy is due mainly to the MI representation and not the specific MIL algorithm.

Considering the slightly better performance of MI-SVM we have used this classifier for the

experiments on the larger datasets.

Table 5.2 summarizes the classification accuracy of the discussed experiments. The confu-

sion matrix of the performance of VMMR-51 with respect to SI-SVM is depicted in Figure

5.7.

Figure 5.6: Classification results using single instance learning (SI-SVM), MI-SVM (MI-

SVMs) and CkNN (CkNNs) with ROIs selected using saliency detection algorithm on

VMMR-14

TABLE 5.2

Classification Accuracy(%) of SI vs. MI Experiments

Dataset SI-SVM MI-SVMm MI-SVMs CkNNs

VMMR-14 72.14 96.43 93.57 88.57

VMMR-51 37.53 N/A 73.81 N/A

Figure 5.8 displays three sample bags from various classes misclassified by SI-SVM,

but classified correctly using MI-SVM and CkNN. Each image includes a subset of the

ROIs representing the instances with label probability greater than 0.4. The red and white
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Figure 5.7: Confusion matrix of SI-SVM on VMMR-51

regions identify the instances classified correctly and incorrectly, respectively. The number

displayed on top of each bounding box identifies the corresponding instance classification

probability. As we can see, the missclassified examples of SI are mainly suffering from

circumstances such as poor lighting, partial occlusion, open trunk, etc. For instance, the

image including BMW X5 with open trunk was a missclassified item in SI where it was

classified correctly using MI-SVM since one of its instances (tail light ROI) was assigned a

high probability.

5.2.4 Analysis of Discriminative Regions

In this part of experiments, we would like to address an essential question of MIL:

Which instances indeed contribute to the semantic meaning of the bag-level labels?
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Figure 5.8: Sample images misclassified by SI-SVM, but correctly classified using MI-SVM.

For each image we show the ROIs that have high probability in the class under consideration.
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Although the instances based on the saliency map and eye-fixation prediction are supposed

to represent the most distinctive parts of the object, we performed another study to interpret

the selected instances and see if the top regions vary per class. In other words, we wanted

to find the most semantic instances in each make and model. In Figure 5.9 the instances

with the highest probability in some sample classes of VMMR-14 are shown. It is clear that

the back lights in almost all of the classes are always among the top regions. In certain

classes such as Ford and Volkswagen, the make logo is listed among the top instances due to

their visually different shape. Another interesting interpretation is that depending on the

viewpoint, the distinctive instances vary. This proves another advantage of the proposed

method over existing solutions for VMMR, which makes it robust to view-point changes.

Figure 5.9: Top 5 instances retrieved for sample classes from VMMR-14
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5.3 Impact of Diverse Data

In the next experiment, we analyze the importance of having diversity in data to

handle real-world surveillance applications. We commence our evaluations by comparing

the performance of our dataset with the CompCars dataset employing the same settings as

the ones used in [21], using CNN learners.

Despite having hierrarchical labels of make, model and year in their datase, Yang et al. [21]

have merged all production years of each model to the same class in their experiments. This

has resulted in 431 classes, many of which are chinese manufacturers. To have a proper

comparison, we choose only those classes existing in our dataset (125 classes) and following

their approach, we use the labels at the make-model level only. We pick the exact year for

which any image is included in CompCars. In the resulting 51 classes we divide the images

into 50% for training and 50% for testing. Table 5.3 details the number of images in each

dataset.

TABLE 5.3

Specifications of the overlap data between CompCars and VMMR datasets

Dataset Number of Classes # Train # Test

CompCars-51 51 1527 1506

VMMR-51 51 1986 1984

5.3.1 Model Perspective

We analyzed the effect of network architecture, comparing VGG and ResNet consid-

ering their state of the art performance in several fine-grained classification problems (refer

to section 2.4.2). In all cases, using a ResNet significantly improves results, so we present

the remainder of the experiments using a ResNet for feature extraction. In this section, we

compare the recognition performance of each datset on Resnet-50. Our baseline convolu-

tional neural network consists of a Conv-ReLU-Pool set, followed by a fully-connected layer

with softmax loss.
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Despite using modern GPUs, training a full CNN from scratch for a large scale problem can

take a week or two, which is too slow for many research areas. Moreover, training a CNN of

a similar size requires a tremendous amount of training data, which is not available for many

tasks, where data collection poses a challenge itself. Several works have experimented with

using the outputs of a pre-trained CNN as an image/patch descriptor for a new task other

than the data the CNN was trained on. It is assumed that the bottom layers, especially

the convolutional layers, correspond to generic image representations while the top layers

are task-specific. Therefore, in our experiments we use networks pre-trained on ImageNet,

and fine-tuned on the datasets under experiment with the same mini-batch size, epochs,

and learning rates.

There are several software platforms, where training and classification of a deep

neural network are straightforward engineering tasks, such as Torch [265], Theano [266],

and Caffe [267], to name a few. In our work, we used Torch to construct, train, and test

our networks.

We investigate the classification accuracy of networks trained on each dataset in

confronting with samples from other datsets. The nature of images provided in CompCars

are very different from VMMRdb images in the sense that they are mostly captured in more

controlled environment with much higher resolution. The purpose of these experiments is

to see how well the model performs given images collected in more challenging scenarios.

We, also, generate a third dataset which we refer to as CompCarVMMR-51, by merging the

discussed datasets. The performances of these experiments are summarized in Table 5.4. We

report the “Top-1” and “Top-3” accuracies of car make-model classification, which denote

the classification accuracy considering the first and up to three top matches, respectively,

for each pair of train and test set.

As we expected, the model trained on CompCars, despite its significant performance

on the test set with images of similar nature, degardes considerably on the test images se-

lected from VMMR-51. The performance of the model trained on VMMR-51 is just slightly

better with respect to non-VMMR images. The merged dataset, however, outperforms
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TABLE 5.4

Classification results for the models trained on different datasets

Test

Train CompCars-51 VMMR-51 CompCarVMMR-51

CompCars-51
96.88

97.88

36.10

50.05

62.23

70.69

Top-1

Top-3

VMMR-51
40.28

52.85

90.26

93.48

68.22

75.93

Top-1

Top-3

CompCarVMMR-51
96.61

97.48

94.10

96.47

95.16

96.91

Top-1

Top-3

both previous cases, proving the fact that employing additional training data can boost

classification results by increasing data diversity in training examples.

5.4 Fine-grained VMMR

We extended the CNN-based experiments to train a model for classification of vehi-

cles make, model and production year on VMMMR-3036. We set the parameters to learning

rate 0.01, and 200 epochs. The learning rate decay was applied after initial 30 epochs. In

training, all inputs were color-normalized with the mean and standard deviation from Im-

ageNet images after scale, aspect ratio, color, and horizontal flip augmentations. During

the test phase, all detections were center-croped and color-normalized by the system. We

trained the models with a minibatch size of 32 within 110 hours on a NVIDIA GeForce

GTX 1080 GPU using ~8 Gb of memory. Table 5.5 lists the accuracy of different deep

architectures. Considering the superior validation accuracy achieved by ResNet-50 with

respect to having less parameters, we choose this model for the AVS application.

Figure 5.10 illustrates some predictions, indicating that the model accounts for data vari-

ations in different viewpoints and lighting conditions. Each image is represented with its

ground truth label along with the top-5 probabilities. The images in the first and second
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row display samples correctly and incorrectly classified by the ResNet-50 model, respec-

tively. As we can see, many of the misclassified examples have been categorized as the

same and model as ground truth, but different year. Figure 5.11 displays the vehicle images

that trigger high responses with respect to each neuron in the last fully-connected layer of

the model trained with ResNet-50 architecture. As we can see, different neurons capture

car images of specific car models across different viewpoints; showing that CNN model is

capable of learning discriminative representation across different views.

To observe the learned feature space of the model, we projected the features extracted from

the last fully connected layer to a two-dimensional embedding space using t-Distributed

Stochastic Neighbor Embedding (t-SNE) [268]. The projections are displayed in Figure

5.12 for few images from sample classes. We can see that features from the same model are

closer to each other compared to the ones visually very different.

TABLE 5.5

The classification accuracies of different deep models on VMMR-3036

Model VGG ResNet-50 ResNet-101

Top-1 44.39 51.76 50.74

Top-5 91.88 92.90 93.07

5.4.1 Multiple-Instance CNN

In our implementation of the model represented in 4.1, we extracted 24 instances

per image by randomly cropping each input bag. We used the Resnet-50 model pretrained

on CompCars-51 and fine-tuned it on CompCarsVMMR-51. Table 5.6 summarizes the

performance of the model.

5.5 Vehicular Surveillance

Our proposed methods can offer valuable situational information for law enforcement

units in a variety of civil infrastructures. Because of the natural environments and uncon-
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Figure 5.10: Top-5 predicted classes of the CNN model for sample images from VMMR-3036.

Below each image is the ground truth class and the probabilities for the top-5 predictions

with the matched class in the top bar.

TABLE 5.6

Performance comparison of proposed approaches on the CompCarVMMR-51 dataset

MIL CNN MIL-CNN

Top-1 72.16 95.16 88.16

Top-5 N/A 99.12 95.27

strained image settings, our dataset can be used as a baseline for training a robust model.

In this section, we conduct a cross-modality experiment, where the CNN model fine-tuned

by the web-nature data is evaluated on the surveillance video streams. To demonstrate

the effectiveness of our proposed approaches for VMMR, we target an important real-life

surveillance application where our system would be able to analyze video data acquired from

multiple surveillance cameras to monitor vehicles under varying environment and capture
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Figure 5.11: Images with the highest response from sample neurons of the FC layer of

ResNet-50. Each row corresponds to a specific neuron.

Figure 5.12: Features of sample car models projected to a 2D embedding using multi-

dimensional scaling

conditions.

The benefits are multi-fold: Cameras are prevalent and cost-efficient tools for moni-
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toring, and they often have other surveillance uses simultaneously. Using the data acquired

this way, our system could also search for a target vehicle in the CCTV feeds and perform

vehicle re-identification, in case of security related investigations, using only the meta infor-

mation extracted while detection. A reliable traffic monitoring system would not only make

the roads safer but can also potentially disrupt criminal activities. Most technology solu-

tions for vehicular monitoring involve significant human supervision or are passive forensic

tools. These systems allow many cameras to be observed by a small number of trained

human operators but suffer from potential operator fatigue and lack of attention due to

the large amount of information provided by cameras which can distract the operator from

focusing on important events. Therefore, automated methods are needed to screen traffic

in a non-obstructive manner and detect anomalies. Additionally, the data gathered in a

certain period of time can be analyzed further for traffic evaluations or marketing purposes.

5.5.1 Target Environment

In our experiments, the cameras are fixed and the input to the algorithm would

typically consist of rear view images, such as those shown in Figure 5.13. In countries such

as the USA, it is not usually required for drivers to display license plates on both ends

of their vehicles. In fact, in most states, it is common to display license plates only on

the rear-end of vehicles. Given this insight, video traffic surveillance systems are typically

deployed in a way that allows capture of license plates. The focal length is fixed to maximize

the size of the rear part of each vehicle projected into the image plane, assuring that large

vehicles are totally visible. Figure 5.14 depicts the position of the cameras on a map in

our experimental setup. Vehicles may be occluded by pedestrians or other objects (images

in the second row of Figure 5.13). The images were captured in one day under different

lighting conditions.
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Figure 5.13: Sample frames of the video footages used in the surveillance experiment

Figure 5.14: Camera positions in the vehicle surveillance experiment

5.5.2 Vehicle Re-Identification

The pipeline of our vehicular surveillance application is illustrated in Figure 5.15.

We deploy the model trained on the VMMR dataset (section 5.4) in the aforementioned

AVS system to detect, track and identify vehicles.

In our implementation, the testing time is 52 FPS for vehicle boundingbox detection and

112 FPS for make/model/year recognition.
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Figure 5.15: AVS pipeline

5.5.2.1 Vehicle Detection

In our experiments, we extracted bounding boxes using YOLOv2 [269] trained on

train and validation sets of MS COCO dataset [270]. Out of the existing 80 classes in

the MS COCO dataset, we used the model to extract the regions only containing classes

corresponding to cars, trucks and buses. Separating the vehicle detection and VMMR

blocks allows us to considerably reduce the VMMR complexity and modify the classification

module according to the desired classification goals.

5.5.2.2 Meta Information Extraction

A typical access control setup extracts individual frames from a video stream for

vehicle identification. We compute the likelihoods for each car make and model for all the

frames where a vehicle is detected. A set of frames are associated with a vehicle based on

the overlap ratio of the bounding boxes in the consecutive frames and the variation of its

size with respect to its speed. Computing the average (or maximum) of these likelihoods

per vehicle, tends to improve the accuracy of recognition, since a larger number of frames

has a higher probability of a good rear view of the vehicle (avoiding e.g, cases with car

shown only partially, blocked by another vehicle or changing the lane).
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Additionally, we extract the license plate, if available, as the second part of the

vehicle identification stage. In order to localize the plate, the vertical edges are first detected

to generate edge density map, and then binarization and dilation are performed on such a

map, and finally the license plate will be located through connected component analysis.

In this phase we take advantage of the prior information on the approximate location and

size of the license plate with respect to the vehicle's bounding box.

Another block of the feature extraction process is assigned for recognition of vehicle

color which is an important verification property and provides visual cues to boost the

system's accuracy. It is a very challenging task due to several factors such as weather

condition, illumination variation, vehicle speed, and difficulty in discriminating between

certain colors in uncontrolled environments. To reduce the over exposure problem, we

convert the image to other color spaces that separate illumination and color, such as CIE

Lab or HSV. The vehicle color is classified based on the distances of the values of multiple

color spaces between the region of interest (ROI) and those of training samples.

Figure 5.16 illustrates the extracted information from sample frames containing ve-

hicles in two different cameras used in our experimental setup. Given the information of

target vehicle in camera #1, we search for the matching candidates in the second camera in

the next phase of algorithm. Top-3 candidates with their corresponding meta-information

are displayed in the second row of Figure 5.16.

5.5.2.3 Vehicle Matching

With the recorded meta information of each vehicle, at the time of retrieval, we search

for all the possible matches in a specific time interval. We match the license plate against

the car make, model and color, and track the target vehicle between multiple cameras. We

assign different weights to the dominant make and model, color and similarity of license plate

matching for the matched vehicles. Figure 5.17 shows some sample frames with vehicles

correctly matched between two cameras. The first row represent the target vehicle and the

next 3 rows display the top-3 matches for the target vehicle in the second camera along
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Figure 5.16: Meta-information extraction for sample frames captured in two different cam-

eras. The top image shows the current frame in camera #1 on the map, and the images in

the second row represent candidate matching frames from camera #2.

with its confidence value calculated by the algorithm.

The system, however, matches the target vehicle with an incorrect vehicle in some

cases due to several changes such as blurred license plate, illumination changes affecting

vehicle color, and incorrect labeling of VMMR system. Figure 5.18 depicts some of these

examples. We can observe that in most of these cases the incorrect matches are visually very

similar. The system, however, assigns much lower confidence value to these cases compared

to the samples from Figure 5.17.
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Figure 5.17: Sample vehicles detected in the first camera matched with the vehicles from

the second camera. Below each frame top-3 matches are displayed with their corresponding

confidence value.

Figure 5.18: Sample vehicles detected in the first camera, incorrectly matched with the

vehicles from the second camera.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation two schemes for fine-grained vehicle classification are studied and

evaluated to address the multiplicity and ambiguity problems of VMMR.

Traditionally, fine-grained classification methods rely on detailed manual annotations

which are intrinsically ambiguous, time-consuming and very costly even for average-scale

real-world datasets. An alternative is to learn local concepts using global annotations.

This approach is specially designed for fine-grained categorization in weakly-supervised

scenario, because distinctive parts have been shown to play an important role in the existing

annotation dependent works.

We have introduced an MIL-based framework for VMMR to categorize fine-grained images

without using any object/part annotation either in the training or in the testing stage. In

multiple instance problems, instances are grouped into bags, labels of bags are known but

not those of individual instances. In this scenario, a bag is a full size image and an instance

is a distinguishable patch. The bag is labeled positive if and only if there is at least one

positive instance in the bag, i.e. some part of the image, but maybe not the whole image

include a vehicle. In our approach, the high-dimensional feature space generated by having

several random instances extracted from the image in traditional methods, is considerably

shrunk by filtering the instances using a Boolean map-based saliency model. By exploiting

the surroundedness cue for eye fixation prediction, we prune the instances to more semantic

ROIs, while keeping a reasonable number of instances per bag. The resultant salient patches

in each image are presented to MIL by extracting FV which has proven to be very effective

in image classification.
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We, also, incorporated deep learning into a weakly supervised learning framework to enhance

the feature representation in the first approach while taking advantage of distinct part

discovery to accomplish high-level tasks such as VMMR. We modified the architecture and

the loss function of CNN to make it adaptable to the MIL settings and fed randomly cropped

patched of each input image as instances to the network.

We collected a comprehensive dataset, VMMRdb, to help experiments in this direc-

tion by providing sufficient amount of data enriched by information automatically extracted

to define each vehicle'make, model and production year. The effectiveness and superiority of

our approaches over the baseline classifiers are validated on different subsets of this dataset.

In experiments, the proposed approach consistently outperforms single instance-based clas-

sifiers. The results are also comparable to the instances extracted by human annotators

from distinctive regions. Our experiments prove the idea that one of the key points for

fine-grained categorization is to find the most distinctive parts describing the object. Using

those patches for categorization is also able to save the computation complexity, especially

in the case of large number of categories.

As a drawback of the deep neural network, however, there is a need to define the hyper-

parameters of the network. The choices of the number of layers, number of nodes, sizes of

convolutional kernels, etc. all have a crucial importance on the resulting accuracy.

The presented methods have the potential to improve the functionality of current

traffic camera systems. We, as humans, are also not very good at reading cars license plates

unless they are quite near us, nor are we very good at remembering all the characters.

However, we are good at identifying and remembering the appearance of cars, and therefore

their makes and models, even when they are speeding away from us.

Thus, we organized our system in form of a real-life application with surveillance and

security purposes. We stored the results of our VMMR system estimated over a period of

time for the footage recorded from security cameras mounted around the campus. This

data can be beneficial for both transportation as well as businesses authorities.

111



6.2 Potential Future Work

Despite the significant progress that have been made in vehicle surveillance during

the recent years, many challenging issues still need further research and development es-

pecially in urban traffic scenarios such as road sections and intersection in which dense

traffic, vehicle occlusion, pose and orientation variation and camera placement highly affect

their performance. In road sections vehicles usually travel in a uni-direction in which heavy

traffic and congestion may affect vehicle detection due to slow or temporary stopped vehi-

cles. Vehicle's pose and orientation with respect to the camera often varies while moving

within intersections due to lane change and turn left, right and round. This will vary the

appearance and scale of vehicle within consecutive frames affecting tracking and classifica-

tion dramatically. Nighttime is, also, a dramatic challenge for traffic surveillance, in which

headlight and taillights are used to represent the vehicle.

Additionally, the proposed approaches for VMMR can be easily applied to other scenarios

in which the camera is not fixed, e.g., an on-board camera on a mobile surveillance vehicle,

etc.

In another direction, enhancing the process of logo recognition can considerably

contribute to the performance of VMMR system. A reliable logo detection algorithm must

not only meet the challenge of variations in a logo's visual appearance but also distinguish

logos from other small visual patterns that may appear on the vehicles. Although the

classification of vehicle brand by using logo information has been a subject of interest for

several years, the bottleneck of logo detection has remained largely unsolved.
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