9 research outputs found

    Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes.

    Get PDF
    Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime. In this paper we report on time-integrated photoluminescence measurements on individual polymer wrapped semiconducting carbon nanotubes. An ultra narrow linewidth we observed demonstrates intrinsic exciton dynamics. Furthermore, we identify a state filling effect in individual carbon nanotubes at cryogenic temperatures as previously observed in quantum dots. We propose that each of the CNTs is segmented into a chain of zero-dimensional states confined by a varying local potential along the CNT, determined by local environmental factors such as the amount of polymer wrapping. Spectral diffusion is also observed, which is consistent with the tunneling of excitons between these confined states

    The role of photonics and natural curing agents of TGF-β1 in treatment of osteoarthritis

    Get PDF
    YesOsteoarthritis (OA) is a degenerative disease leading to the breakdown of the hyaline cartilage between a varieties of diarthrodial joints such as the knee joint, carpals of the wrist and etc. When the cartilage is affected by trauma or wear and tear, Osteolysis may occur; broken debris of cartilage found within the synovial fluid may be recognised as a pathogen and therefore, the body’s autoimmune response will directly target the cartilage for destruction. Cytokines are proteins/peptides of glycoproteins that are secreted by cells and are involved in interaction and communication between cells. Transforming Growth Factors Beta 1 (TGF-β1) is one of well-known cytokines and had shown many effects on cellular biology including simulation or inhibition of cell proliferation, differentiation, production of extracellular matrix (ECM), remodelling, and producing both hormones and growth factors. On the other hand, Photonics recently play an important role for treatment of OA. The main aim of this review article is to investigate the effect of TGF-β1 in treatment of OA. Other important aim of this work is to explore the broad applications of optics and photonics in biomedical applications including treatment of OA. Biomedical applications of photonics have broad aspects including laser, carbon nanotubes (CNTs), quantum dots (QDs) and graphene and photodynamic therapy (PDT) which discussed in this review paper

    Signatures of correlations and interactions in the optical spectra of localized excitons in carbon nanotubes

    Get PDF
    Kohlenstoffnanoröhren sind Nanostrukturen, deren Form einer einatomigen Lage Graphit, aufgerollt zu einem Hohlzylinder, entspricht. Die Ladungsträger in halbleitenden Kohlenstoffnanoröhren bilden stark gebundene Elektron-Loch-Paare (Exzitonen), die Photolumineszenz vom Rand des sichtbaren Spektrums bis in das Telekom-Band emittieren. Häufig sind Exzitonen in Kohlenstoffnanoröhren lokalisiert, z. B. an künstlichen Kristalldefekten. Ihre physikalischen Eigenschaften werden dann durch die Gesetze der Quantenmechanik bestimmt, was sie in Verbindung mit ihrer variablen Wellenlänge zu vielversprechenden Kandidaten für Anwendungen in der Quanteninformationsverarbeitung macht. Lokalisierte Exzitonen sind starken Wechselwirkungen mit ihrer Umgebung ausgesetzt, die einen Einblick in ihre physikalischen Eigenschaften erlauben. Die vorliegende Dissertation erarbeitet ein tieferes Verständnis dieser Wechselwirkungen, das auch hilfreich für technische Anwendungen ist. Dafür wurden sowohl schwach gebundene Exzitonen in flachen Potentialmulden als auch an künstlichen Defekten lokalisierte Exzitonen untersucht. Kohlenstoffnanoröhren werden häufig mit Tensidmolekülen ummantelt, die eine chemische Aufbereitung erlauben. Die spektrale Linienform von schwach lokalisierten Exzitonen in Kohlenstoffnanoröhren mit Tensidhülle ist oft auffallend asymmetrisch. In dieser Arbeit wurde ein quantenmechanisches Modell entwickelt, um die Holstein-Wechselwirkung zwischen dem Dipolmoment des lokalisierten Exzitons und Molekülschwingungen des Tensids zu beschreiben. Charakteristika der relevanten Molekülschwingungen wurden anhand von Dichtefunktionaltheorie berechnet und Photolumineszenzspektren durch die Kombination mit dem Modell simuliert. Simulation und Messdaten stimmten über einen weiten Bereich von Probentemperaturen und Anregungslaserleistungen hervorragend überein. In kovalent funktionalisierten Kohlenstoffnanoröhren sind Exzitonen an künstlichen Kristalldefekten stark lokalisiert. Zwar ist die Photolumineszenz dieser Zustände ungewöhnlich intensiv, aber zwischen einzelnen Kohlenstoffnanoröhren variieren die Spektren erheblich. Magnetophotolumineszenzmessungen zeigten, dass diese Unterschiede, anders als für freie Exzitonen, nicht durch dunkle Zerfallskanäle erklärbar sind. Durch Photonenkorrelationsspektroskopie wurden zwei Arten von Emittern mit starken bzw. schwachen Korrelationen zwischen den beiden Ladungszuständen der lokalisierten Exzitonen identifiziert. Dieses Resultat ergab Niveauschemata zur Beschreibung der exzitonischen Besetzungsdichte und zeigte, dass häufig mehrere Defektstellen in unmittelbarer Nachbarschaft auftreten und durch Coulomb-Abstoßung miteinander korreliert sind. Die Ergebnisse dieser Arbeit identifizierten dipolare und elektrostatische Wechselwirkungen als bedeutende Kopplungsmechanismen lokalisierter Exzitonen in Kohlenstoffnanoröhren. Dies bietet eine Orientierung für das Design künftiger Techniken zur Funktionalisierung und Tensidumhüllung von Kohlenstoffnanoröhren, um deren nächste Generation von Anwendungen in der Photonik zu verbessern.Carbon nanotubes are a one-dimensional allotrope of carbon that can be imagined as a single-atomic layer of graphite rolled up to a hollow cylinder. The charge carriers in semiconducting carbon nanotubes form strongly bound electron-hole pairs (excitons) that support photoluminescence emission ranging from the edge of the visible spectrum into the telecom band. Frequently, the excitons are localized, e. g. at intentional defect sites, and their photophysical properties are then dominated by the laws of quantum mechanics. Along with their wavelength tunability, this feature makes localized excitons in carbon nanotubes promising candidates for quantum information processing applications. Localized excitons in carbon nanotubes are subject to strong interactions with their environment that provide insights into their fundamental physical properties. This thesis is aimed at providing a deeper understanding of these couplings that is also beneficial for the improvement of carbon nanotube technologies. Both weakly confined excitons in shallow potential minima and excitons localized intentionally at covalent defect sites were studied. Carbon nanotubes are frequently wrapped with surfactant molecules that enable wet-chemical purification processes. The photoluminescence lineshapes of weakly localized excitons in surfactant-wrapped carbon nanotubes often feature a peculiar asymmetry. In this work, a quantum-mechanical model was developed that describes the Holstein-like interaction between the dipole moment of localized excitons and molecular vibrations of the surfactant. Photoluminescence spectra were simulated by combining this model with the characteristics of the relevant molecular vibrations that were calculated by means of density functional theory. An excellent agreement between the simulations and the data was obtained over a broad range of sample temperatures and excitation laser irradiances. Covalently functionalized carbon nanotubes host strongly localized excitons confined at intentional lattice defects. While photoluminescence emission from these states is exceptionally bright, the spectral response shows significant variations on the level of individual carbon nanotubes. Magneto-photoluminescence experiments established that in contrast to diffusive excitons these variations cannot be attributed to the presence of nonradiative decay channels. Photon correlation measurements identified two classes of emitters with strongly and weakly pronounced correlations between the two possible charge states of the localized excitons. This finding guided the formulation of level schemes describing the exciton population dynamics and revealed the frequent presence of multiple proximal defect sites that are correlated by repulsive Coulomb interactions. Both studies in this work identified dipolar and electrostatic interactions as important coupling mechanisms of localized excitons in carbon nanotubes. These results provide guidance in the design of future carbon nanotube functionalization techniques and surfactant wrappings to improve the next generation of carbon nanotube-based photonics applications

    Environmental effects in the photophysics of cryogenic carbon nanotubes

    Get PDF

    Signatures of correlations and interactions in the optical spectra of localized excitons in carbon nanotubes

    Get PDF
    Kohlenstoffnanoröhren sind Nanostrukturen, deren Form einer einatomigen Lage Graphit, aufgerollt zu einem Hohlzylinder, entspricht. Die Ladungsträger in halbleitenden Kohlenstoffnanoröhren bilden stark gebundene Elektron-Loch-Paare (Exzitonen), die Photolumineszenz vom Rand des sichtbaren Spektrums bis in das Telekom-Band emittieren. Häufig sind Exzitonen in Kohlenstoffnanoröhren lokalisiert, z. B. an künstlichen Kristalldefekten. Ihre physikalischen Eigenschaften werden dann durch die Gesetze der Quantenmechanik bestimmt, was sie in Verbindung mit ihrer variablen Wellenlänge zu vielversprechenden Kandidaten für Anwendungen in der Quanteninformationsverarbeitung macht. Lokalisierte Exzitonen sind starken Wechselwirkungen mit ihrer Umgebung ausgesetzt, die einen Einblick in ihre physikalischen Eigenschaften erlauben. Die vorliegende Dissertation erarbeitet ein tieferes Verständnis dieser Wechselwirkungen, das auch hilfreich für technische Anwendungen ist. Dafür wurden sowohl schwach gebundene Exzitonen in flachen Potentialmulden als auch an künstlichen Defekten lokalisierte Exzitonen untersucht. Kohlenstoffnanoröhren werden häufig mit Tensidmolekülen ummantelt, die eine chemische Aufbereitung erlauben. Die spektrale Linienform von schwach lokalisierten Exzitonen in Kohlenstoffnanoröhren mit Tensidhülle ist oft auffallend asymmetrisch. In dieser Arbeit wurde ein quantenmechanisches Modell entwickelt, um die Holstein-Wechselwirkung zwischen dem Dipolmoment des lokalisierten Exzitons und Molekülschwingungen des Tensids zu beschreiben. Charakteristika der relevanten Molekülschwingungen wurden anhand von Dichtefunktionaltheorie berechnet und Photolumineszenzspektren durch die Kombination mit dem Modell simuliert. Simulation und Messdaten stimmten über einen weiten Bereich von Probentemperaturen und Anregungslaserleistungen hervorragend überein. In kovalent funktionalisierten Kohlenstoffnanoröhren sind Exzitonen an künstlichen Kristalldefekten stark lokalisiert. Zwar ist die Photolumineszenz dieser Zustände ungewöhnlich intensiv, aber zwischen einzelnen Kohlenstoffnanoröhren variieren die Spektren erheblich. Magnetophotolumineszenzmessungen zeigten, dass diese Unterschiede, anders als für freie Exzitonen, nicht durch dunkle Zerfallskanäle erklärbar sind. Durch Photonenkorrelationsspektroskopie wurden zwei Arten von Emittern mit starken bzw. schwachen Korrelationen zwischen den beiden Ladungszuständen der lokalisierten Exzitonen identifiziert. Dieses Resultat ergab Niveauschemata zur Beschreibung der exzitonischen Besetzungsdichte und zeigte, dass häufig mehrere Defektstellen in unmittelbarer Nachbarschaft auftreten und durch Coulomb-Abstoßung miteinander korreliert sind. Die Ergebnisse dieser Arbeit identifizierten dipolare und elektrostatische Wechselwirkungen als bedeutende Kopplungsmechanismen lokalisierter Exzitonen in Kohlenstoffnanoröhren. Dies bietet eine Orientierung für das Design künftiger Techniken zur Funktionalisierung und Tensidumhüllung von Kohlenstoffnanoröhren, um deren nächste Generation von Anwendungen in der Photonik zu verbessern.Carbon nanotubes are a one-dimensional allotrope of carbon that can be imagined as a single-atomic layer of graphite rolled up to a hollow cylinder. The charge carriers in semiconducting carbon nanotubes form strongly bound electron-hole pairs (excitons) that support photoluminescence emission ranging from the edge of the visible spectrum into the telecom band. Frequently, the excitons are localized, e. g. at intentional defect sites, and their photophysical properties are then dominated by the laws of quantum mechanics. Along with their wavelength tunability, this feature makes localized excitons in carbon nanotubes promising candidates for quantum information processing applications. Localized excitons in carbon nanotubes are subject to strong interactions with their environment that provide insights into their fundamental physical properties. This thesis is aimed at providing a deeper understanding of these couplings that is also beneficial for the improvement of carbon nanotube technologies. Both weakly confined excitons in shallow potential minima and excitons localized intentionally at covalent defect sites were studied. Carbon nanotubes are frequently wrapped with surfactant molecules that enable wet-chemical purification processes. The photoluminescence lineshapes of weakly localized excitons in surfactant-wrapped carbon nanotubes often feature a peculiar asymmetry. In this work, a quantum-mechanical model was developed that describes the Holstein-like interaction between the dipole moment of localized excitons and molecular vibrations of the surfactant. Photoluminescence spectra were simulated by combining this model with the characteristics of the relevant molecular vibrations that were calculated by means of density functional theory. An excellent agreement between the simulations and the data was obtained over a broad range of sample temperatures and excitation laser irradiances. Covalently functionalized carbon nanotubes host strongly localized excitons confined at intentional lattice defects. While photoluminescence emission from these states is exceptionally bright, the spectral response shows significant variations on the level of individual carbon nanotubes. Magneto-photoluminescence experiments established that in contrast to diffusive excitons these variations cannot be attributed to the presence of nonradiative decay channels. Photon correlation measurements identified two classes of emitters with strongly and weakly pronounced correlations between the two possible charge states of the localized excitons. This finding guided the formulation of level schemes describing the exciton population dynamics and revealed the frequent presence of multiple proximal defect sites that are correlated by repulsive Coulomb interactions. Both studies in this work identified dipolar and electrostatic interactions as important coupling mechanisms of localized excitons in carbon nanotubes. These results provide guidance in the design of future carbon nanotube functionalization techniques and surfactant wrappings to improve the next generation of carbon nanotube-based photonics applications

    Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes

    No full text
    Understanding and controlling exciton–phonon interactions in carbon nanotubes has important implications for producing efficient nanophotonic devices. Here we show that laser vaporization-grown carbon nanotubes display ultranarrow luminescence line widths (120 μeV) and well-resolved acoustic phonon sidebands at low temperatures when dispersed with a polyfluorene copolymer. Remarkably, we do not observe a correlation of the zero-phonon line width with <sup>13</sup>C atomic concentration, as would be expected for pure dephasing of excitons with acoustic phonons. We demonstrate that the ultranarrow and phonon sideband-resolved emission spectra can be fully described by a model assuming extrinsic acoustic phonon localization at the nanoscale, which holds down to 6-fold narrower spectral line width compared to previous work. Interestingly, both exciton and acoustic phonon wave functions are strongly spatially localized within 5 nm, possibly mediated by the copolymer backbone, opening future opportunities to engineer dephasing and optical bandwidth for applications in quantum photonics and cavity optomechanics
    corecore