116 research outputs found

    Comparative Analysis Based on Survey of DDOS Attacks’ Detection Techniques at Transport, Network, and Application Layers

    Get PDF
    Distributed Denial of Service (DDOS) is one of the most prevalent attacks and can be executed in diverse ways using various tools and codes. This makes it very difficult for the security researchers and engineers to come up with a rigorous and efficient security methodology. Even with thorough research, analysis, real time implementation, and application of the best mechanisms in test environments, there are various ways to exploit the smallest vulnerability within the system that gets overlooked while designing the defense mechanism. This paper presents a comprehensive survey of various methodologies implemented by researchers and engineers to detect DDOS attacks at network, transport, and application layers using comparative analysis. DDOS attacks are most prevalent on network, transport, and application layers justifying the need to focus on these three layers in the OSI model

    Large scale data analysis using MLlib

    Get PDF
    Recent advancements in the internet, social media, and internet of things (IoT) devices have significantly increased the amount of data generated in a variety of formats. The data must be converted into formats that is easily handled by the data analysis techniques. It is mathematically and physically expensive to apply machine learning algorithms to big and complicated data sets. It is a resource-intensive process that necessitates a huge amount of logical and physical resources. Machine learning is a sophisticated data analytics technology that has gained in importance as a result of the massive amount of data generated daily that needs to be examined. Apache Spark machine learning library (MLlib) is one of the big data analysis platforms that provides a variety of outstanding functions for various machine learning tasks, spanning from classification to regression and dimension reduction. From a computational standpoint, this research investigated Apache Spark MLlib 2.0 as an open source, autonomous, scalable, and distributed learning library. Several real-world machine learning experiments are carried out in order to evaluate the properties of the platform on a qualitative and quantitative level. Some of the fundamental concepts and approaches for developing a scalable data model in a distributed environment are also discussed

    TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE INTRUSION DETECTION SYSTEM USING NEWLY GENERATED HETEROGENEOUS DATASETS

    Get PDF
    With the exponential growth of network-based applications globally, there has been a transformation in organizations\u27 business models. Furthermore, cost reduction of both computational devices and the internet have led people to become more technology dependent. Consequently, due to inordinate use of computer networks, new risks have emerged. Therefore, the process of improving the speed and accuracy of security mechanisms has become crucial.Although abundant new security tools have been developed, the rapid-growth of malicious activities continues to be a pressing issue, as their ever-evolving attacks continue to create severe threats to network security. Classical security techniquesfor instance, firewallsare used as a first line of defense against security problems but remain unable to detect internal intrusions or adequately provide security countermeasures. Thus, network administrators tend to rely predominantly on Intrusion Detection Systems to detect such network intrusive activities. Machine Learning is one of the practical approaches to intrusion detection that learns from data to differentiate between normal and malicious traffic. Although Machine Learning approaches are used frequently, an in-depth analysis of Machine Learning algorithms in the context of intrusion detection has received less attention in the literature.Moreover, adequate datasets are necessary to train and evaluate anomaly-based network intrusion detection systems. There exist a number of such datasetsas DARPA, KDDCUP, and NSL-KDDthat have been widely adopted by researchers to train and evaluate the performance of their proposed intrusion detection approaches. Based on several studies, many such datasets are outworn and unreliable to use. Furthermore, some of these datasets suffer from a lack of traffic diversity and volumes, do not cover the variety of attacks, have anonymized packet information and payload that cannot reflect the current trends, or lack feature set and metadata.This thesis provides a comprehensive analysis of some of the existing Machine Learning approaches for identifying network intrusions. Specifically, it analyzes the algorithms along various dimensionsnamely, feature selection, sensitivity to the hyper-parameter selection, and class imbalance problemsthat are inherent to intrusion detection. It also produces a new reliable dataset labeled Game Theory and Cyber Security (GTCS) that matches real-world criteria, contains normal and different classes of attacks, and reflects the current network traffic trends. The GTCS dataset is used to evaluate the performance of the different approaches, and a detailed experimental evaluation to summarize the effectiveness of each approach is presented. Finally, the thesis proposes an ensemble classifier model composed of multiple classifiers with different learning paradigms to address the issue of detection accuracy and false alarm rate in intrusion detection systems

    A Novel Cryptography-Based Multipath Routing Protocol for Wireless Communications

    Get PDF
    Communication in a heterogeneous, dynamic, low-power, and lossy network is dependable and seamless thanks to Mobile Ad-hoc Networks (MANETs). Low power and Lossy Networks (LLN) Routing Protocol (RPL) has been designed to make MANET routing more efficient. For different types of traffic, RPL routing can experience problems with packet transmission rates and latency. RPL is an optimal routing protocol for low power lossy networks (LLN) having the capacity to establish a path between resource constraints nodes by using standard objective functions: OF0 and MRHOF. The standard objective functions lead to a decrease in the network lifetime due to increasing the computations for establishing routing between nodes in the heterogeneous network (LLN) due to poor decision problems. Currently, conventional Mobile Ad-hoc Network (MANET) is subjected to different security issues. Weathering those storms would help if you struck a good speed-memory-storage equilibrium. This article presents a security algorithm for MANET networks that employ the Rapid Packet Loss (RPL) routing protocol. The constructed network uses optimization-based deep learning reinforcement learning for MANET route creation. An improved network security algorithm is applied after a route has been set up using (ClonQlearn). The suggested method relies on a lightweight encryption scheme that can be used for both encryption and decryption. The suggested security method uses Elliptic-curve cryptography (ClonQlearn+ECC) for a random key generation based on reinforcement learning (ClonQlearn). The simulation study showed that the proposed ClonQlearn+ECC method improved network performance over the status quo. Secure data transmission is demonstrated by the proposed ClonQlearn + ECC, which also improves network speed. The proposed ClonQlearn + ECC increased network efficiency by 8-10% in terms of packet delivery ratio, 7-13% in terms of throughput, 5-10% in terms of end-to-end delay, and 3-7% in terms of power usage variation

    Deep Learning for Cyber Security Intrusion Detection: Approaches, Datasets, and Comparative Study

    Get PDF
    The file attached to this record is the author's final peer reviewed version.In this paper, we present a survey of deep learning approaches for cyber security intrusion detection, the datasets used, and a comparative study. Specifically, we provide a review of intrusion detection systems based on deep learning approaches. The dataset plays an important role in intrusion detection, therefore we describe 35 well-known cyber datasets and provide a classification of these datasets into seven categories; namely, network traffic-based dataset, electrical network-based dataset, internet traffic-based dataset, virtual private network-based dataset, android apps-based dataset, IoT traffic-based dataset, and internet-connected devices-based dataset. We analyze seven deep learning models including recurrent neural networks, deep neural networks, restricted Boltzmann machines, deep belief networks, convolutional neural networks, deep Boltzmann machines, and deep autoencoders. For each model, we study the performance in two categories of classification (binary and multiclass) under two new real traffic datasets, namely, the CSE-CIC-IDS2018 dataset and the Bot-IoT dataset. In addition, we use the most important performance indicators, namely, accuracy, false alarm rate, and detection rate for evaluating the efficiency of several methods

    Network anomalies detection via event analysis and correlation by a smart system

    Get PDF
    The multidisciplinary of contemporary societies compel us to look at Information Technology (IT) systems as one of the most significant grants that we can remember. However, its increase implies a mandatory security force for users, a force in the form of effective and robust tools to combat cybercrime to which users, individual or collective, are ex-posed almost daily. Monitoring and detection of this kind of problem must be ensured in real-time, allowing companies to intervene fruitfully, quickly and in unison. The proposed framework is based on an organic symbiosis between credible, affordable, and effective open-source tools for data analysis, relying on Security Information and Event Management (SIEM), Big Data and Machine Learning (ML) techniques commonly applied for the development of real-time monitoring systems. Dissecting this framework, it is composed of a system based on SIEM methodology that provides monitoring of data in real-time and simultaneously saves the information, to assist forensic investigation teams. Secondly, the application of the Big Data concept is effective in manipulating and organising the flow of data. Lastly, the use of ML techniques that help create mechanisms to detect possible attacks or anomalies on the network. This framework is intended to provide a real-time analysis application in the institution ISCTE – Instituto Universitário de Lisboa (Iscte), offering a more complete, efficient, and secure monitoring of the data from the different devices comprising the network.A multidisciplinaridade das sociedades contemporâneas obriga-nos a perspetivar os sistemas informáticos como uma das maiores dádivas de que há memória. Todavia o seu incremento implica uma mandatária força de segurança para utilizadores, força essa em forma de ferramentas eficazes e robustas no combate ao cibercrime a que os utilizadores, individuais ou coletivos, são sujeitos quase diariamente. A monitorização e deteção deste tipo de problemas tem de ser assegurada em tempo real, permitindo assim, às empresas intervenções frutuosas, rápidas e em uníssono. A framework proposta é alicerçada numa simbiose orgânica entre ferramentas open source credíveis, acessíveis pecuniariamente e eficazes na monitorização de dados, recorrendo a um sistema baseado em técnicas de Security Information and Event Management (SIEM), Big Data e Machine Learning (ML) comumente aplicadas para a criação de sistemas de monitorização em tempo real. Dissecando esta framework, é composta pela metodologia SIEM que possibilita a monitorização de dados em tempo real e em simultâneo guardar a informação, com o objetivo de auxiliar as equipas de investigação forense. Em segundo lugar, a aplicação do conceito Big Data eficaz na manipulação e organização do fluxo dos dados. Por último, o uso de técnicas de ML que ajudam a criação de mecanismos de deteção de possíveis ataques ou anomalias na rede. Esta framework tem como objetivo uma aplicação de análise em tempo real na instituição ISCTE – Instituto Universitário de Lisboa (Iscte), apresentando uma monitorização mais completa, eficiente e segura dos dados dos diversos dispositivos presentes na mesma

    Traffic microstructures and network anomaly detection

    Get PDF
    Much hope has been put in the modelling of network traffic with machine learning methods to detect previously unseen attacks. Many methods rely on features on a microscopic level such as packet sizes or interarrival times to identify reoccurring patterns and detect deviations from them. However, the success of these methods depends both on the quality of corresponding training and evaluation data as well as the understanding of the structures that methods learn. Currently, the academic community is lacking both, with widely used synthetic datasets facing serious problems and the disconnect between methods and data being named the "semantic gap". This thesis provides extensive examinations of the necessary requirements on traffic generation and microscopic traffic structures to enable the effective training and improvement of anomaly detection models. We first present and examine DetGen, a container-based traffic generation paradigm that enables precise control and ground truth information over factors that shape traffic microstructures. The goal of DetGen is to provide researchers with extensive ground truth information and enable the generation of customisable datasets that provide realistic structural diversity. DetGen was designed according to four specific traffic requirements that dataset generation needs to fulfil to enable machine-learning models to learn accurate and generalisable traffic representations. Current network intrusion datasets fail to meet these requirements, which we believe is one of the reasons for the lacking success of anomaly-based detection methods. We demonstrate the significance of these requirements experimentally by examining how model performance decreases when these requirements are not met. We then focus on the control and information over traffic microstructures that DetGen provides, and the corresponding benefits when examining and improving model failures for overall model development. We use three metrics to demonstrate that DetGen is able to provide more control and isolation over the generated traffic. The ground truth information DetGen provides enables us to probe two state-of-the-art traffic classifiers for failures on certain traffic structures, and the corresponding fixes in the model design almost halve the number of misclassifications . Drawing on these results, we propose CBAM, an anomaly detection model that detects network access attacks through deviations from reoccurring flow sequence patterns. CBAM is inspired by the design of self-supervised language models, and improves the AUC of current state-of-the-art by up to 140%. By understanding why several flow sequence structures present difficulties to our model, we make targeted design decisions that improve on these difficulties and ultimately boost the performance of our model. Lastly, we examine how the control and adversarial perturbation of traffic microstructures can be used by an attacker to evade detection. We show that in a stepping-stone attack, an attacker can evade every current detection model by mimicking the patterns observed in streaming services
    • …
    corecore