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Abstract

The multidisciplinary of contemporary societies compel us to look at Information Tech-

nology (IT) systems as one of the most significant grants that we can remember. However,

its increase implies a mandatory security force for users, a force in the form of effective

and robust tools to combat cybercrime to which users, individual or collective, are ex-

posed almost daily. Monitoring and detection of this kind of problem must be ensured in

real-time, allowing companies to intervene fruitfully, quickly and in unison.

The proposed framework is based on an organic symbiosis between credible, afford-

able, and effective open-source tools for data analysis, relying on Security Information and

Event Management (SIEM), Big Data and Machine Learning (ML) techniques commonly

applied for the development of real-time monitoring systems. Dissecting this framework,

it is composed of a system based on SIEM methodology that provides monitoring of data

in real-time and simultaneously saves the information, to assist forensic investigation

teams. Secondly, the application of the Big Data concept is effective in manipulating and

organising the flow of data. Lastly, the use of ML techniques that help create mechanisms

to detect possible attacks or anomalies on the network. This framework is intended to

provide a real-time analysis application in the institution ISCTE – Instituto Universitário

de Lisboa (Iscte), offering a more complete, efficient, and secure monitoring of the data

from the different devices comprising the network.

Keywords: Data monitoring, Anomaly detection, Attack detection, SIEM, Big Data, ML

algorithms.
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Resumo

A multidisciplinaridade das sociedades contemporâneas obriga-nos a perspetivar os sis-

temas informáticos como uma das maiores dádivas de que há memória. Todavia o seu

incremento implica uma mandatária força de segurança para utilizadores, força essa em

forma de ferramentas eficazes e robustas no combate ao cibercrime a que os utilizadores,

individuais ou coletivos, são sujeitos quase diariamente. A monitorização e deteção deste

tipo de problemas tem de ser assegurada em tempo real, permitindo assim, às empresas

intervenções frutuosas, rápidas e em uníssono.

A framework proposta é alicerçada numa simbiose orgânica entre ferramentas open

source credíveis, acessíveis pecuniariamente e eficazes na monitorização de dados, recor-

rendo a um sistema baseado em técnicas de Security Information and Event Management

(SIEM),Big Data eMachine Learning (ML) comumente aplicadas para a criação de sistemas

de monitorização em tempo real. Dissecando esta framework, é composta pela metodo-

logia SIEM que possibilita a monitorização de dados em tempo real e em simultâneo

guardar a informação, com o objetivo de auxiliar as equipas de investigação forense. Em

segundo lugar, a aplicação do conceito Big Data eficaz na manipulação e organização do

fluxo dos dados. Por último, o uso de técnicas deML que ajudam a criação de mecanismos

de deteção de possíveis ataques ou anomalias na rede. Esta framework tem como objetivo

uma aplicação de análise em tempo real na instituição ISCTE – Instituto Universitário

de Lisboa (Iscte), apresentando uma monitorização mais completa, eficiente e segura dos

dados dos diversos dispositivos presentes na mesma.

Palavras-chave:Monitorização de dados, Deteção de anomalias, Deteção de ataques, sis-

temas SIEM, Big Data, algoritmos ML.
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1

Introduction

1.1 Motivation

With the proliferation of the internet in a wide variety of products, from a computer to a

simple sensor, the topic of cybersecurity becomes increasingly discussed. There is a rise

in the frequency of reports of organizations that have suffered from cyber-attacks. This

issue influences the operation of devices and the trust of users in a corporation [4, 60].

It has been reported that attacks can only be detected by correlating events and logs

from different security components [35]. Using a component operating individually,

such as Intrusion Detection Systems (IDS) does not bring a holistic view to a system.

Organizations need to put themselves in the attackers’ heads and reflect on the different

layers that can be affected, correlating them andmaking the system amore comprehensive

and effective solution for detecting possible attacks [81].

Systems based on Security Information and Event Management (SIEM) methodology

[52, 18] receives data from various security devices, normalizes into a common represen-

tation for correlation purposes. They collect data to a repository for analysis: provides

Security Information Management (SIM) methodology, log-term storage, analysis and re-

porting for forensic needs and Security Event Management (SEM) methodology, real-time

monitoring, correlation, notifications and console views [35] allowing the evaluation of

various messages and alerts from different components of Information Technology (IT)

which is useful for the development of systems to detect possible intrusions or anomalies.

There are several types of attacks. A very popular class are stealth attacks [26], which

are often undetected by conventional attack detection systems and subtly consume re-

sources of a device over time to fulfil their aim. For example, some attacks scan the data

stored on the disks to discover sensitive information about the target. Therefore, it is

relevant to study new ways of analysing networks by supplementing the classic approach

of using network traffic data. To disseminate attacks, it is usually essential to exploit the

components of the victim’s device. Perform a system assessment to get a holistic view of

the current behaviour, which may be affected by the attack.

For this reason, the exploration of techniques to collect and analyse component system

1



CHAPTER 1. INTRODUCTION

metrics data to enhance the detection of attacks is an interesting factor to evidence new

ways of providing security systems within a network. The proposed framework extends

the work carried out by Dias et al. [37] with the introducing of system metrics data. This

data provides an insight into the health of the devices, allowing the analyser to act more

quickly on the detection of abnormal behaviour that may indicate the presence of attacks

not detected by conventional attack detection systems.

As predicted by several authors, such as by Chen [29], the increasing number of

diverse devices on the Internet has created an exponential number of data traffic. Thus, it

is important to create systems capable of collecting and ingesting a large amount of data.

The topic Big Data arises with the purpose of presenting techniques capable of processing

large amounts of data. The incorporation of Big Data tools in systems based on SIEM

methodology has demonstrated several benefits, bringing a more distributed and efficient

implementation [25].

We propose a framework based on SIEM methodology and Big Data tools to analyse

network and system metrics data from different security components in a network in

real-time. We developed on a Plug-in-and-play concept, that is, one where each individual

component can be easily replaced and based on open-source tools. In our implementa-

tion, we used open-source tools studied in the related work to create independence from

commercial tools.

The Serviços de Infraestruturas Informáticas e de Comunicações (SIIC), the IT depart-

ment of ISCTE – Instituto Universitário de Lisboa (Iscte), have the objective of imple-

menting a framework capable of monitoring possible attacks and anomalies in network

systems in real-time. At the moment of this research, there was only a framework in

place that verified the health of a device by its response times. This framework doesn’t

deliver many insights about the health of the network, since it only shows that there was

a failure in the response time, and it is not possible to analyse what might have caused

this problem.

1.2 Research Goals

To conduct this research, we formulate the following questions:

1. What type of techniques for the development of a network analysis framework in real-time

should be applied in this research?

2. Are there any advantages in implementing a network analysis framework for simultane-

ous attack and anomaly detection?

3. How to measure the results obtained in the proposed framework deployed on the Iscte

network?

4. Are there benefits in the implementation of the proposed framework on the Iscte network?

2



1.3. METHODOLOGY

Question 1 establishes the basis of this research. First is necessary to identify what

techniques should be applied to develop this type of framework. This is followed by

Question 2 which will help appraise the advantages of having a framework that takes

both attacks and anomalies into consideration. Question 3 intend to understand how to

measure the results obtained in the application of the proposed framework on the Iscte

network. We finalise with question 4 to discuss the benefits of the deployment on the

Iscte network.

The goal of this work is by the end of the research conducted to be able to answer

all the research questions proposed above. The aim is to understand the importance

of network analysis systems, what are the best practices, how to implement them and

evaluate the results. The objective is to apply the knowledge acquired during the research,

implement an network analysis framework on the Iscte network. At the end, evaluate the

results to understand if it has added benefit for the institution.

1.3 Methodology

The methodology of this research follows the Design Science Research Methodology

(DSRM) which relies on a problem-solving paradigm [83]. It seeks to extend the bound-

aries by creating innovative artifacts focused on “utility”, i.e., at the construction and

evaluation of generic means and relations [99]. Design Research complies six activities

[80]:

1. Problem identification and motivation

2. Define the objectives for a solution

3. Design and development

4. Demonstration

5. Evaluation

6. Communication

This work relies on a client/context-initiated solution, based on observing a practical

solution that worked or as a result of a consulting experienced [80]. In this case, the DSRM

process will start at activity 4, since the SIIC proposed the deployment of a network

analysis system after observed other implementations in this area experimented and

worked. As the solution suggests, we need to go back to previous activities to apply

rigour.

We start with activity 1 where we define the research problem and the motivation of a

solution. The problem will serve to produce an artefact that can provide a solution. This

activity comprises the state of the art of the problem and the motivation for its solution.

Once that is completed, we need to infer the objectives for a solution and what is feasible.
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The next activity includes the design and development of the artefact. Afterwards, the

artefact is deployed to solve one or more instances of the problem. After deployment, we

need to measure how well the artefact provides a solution to the problem. This activity

can be a comparison of the artefact’s functionality with the objectives of the solution. If

the results are not as desired, we may go back to activity 2 and reformulate the objectives

of the solution and perform a new iteration of the research. When the artefact achieves

the expected, the results should be communicated.

For this dissertation, Section 1.1 defines the motivation for a solution. The research

questions established in the previous section outline the research problems and the ob-

jectives for a solution. The network analysis system introduced on the Iscte network will

be considered the artefact. Research questions 4, 5, 6 aim to evaluate the results. After

achieving the expected, the results will be communicated.

The research started with keywords like "SIEM", "Network Analysis", "Anomaly de-

tection", "Attack detection", and "Zero-day attacks detection". This initial search aimed at

identifying the current systems and tests carried out on them due to the non-existence

knowledge on the subject. From this preliminary review, it was possible to identify the

essential components for the development of a network analysis framework. Following

this step, the investigation was divided into topics.

Firstly, the different types of data used in network analysis were identified. After-

wards, the algorithms applied in these scenarios were reviewed, comparing the results

achieved in the different types of algorithms. Once these topics were studied, the current

tools employed for the building of these systems, such as, for example, systems based

on SIEM methodology, were also discussed. Bearing the idea that it is important to cre-

ate a framework with the ability to process large amounts of data if necessary, research

on the application of "Big Data"tools in analysis systems was carried out to provide a

scalable artefact. Last but not least, it is very pertinent that the system offers a user-

friendly interface, creating a simple but informative visualisation that delivers a good

user experience(Table 1.1 describes the Literature review divided by the different topics).

To achieve the objectives of this research, Google Scholar and Mendeley were used as

search engines. Recent works published in IEEE, ACM and Springer were given greater

importance. However, while reading a paper, it may arise the interest to read a referenced

paper, which makes the age of the papers increase. At the end of the research, the window

of articles ranges from 2021 to 2005 (Table 1.2 depicts the Literature review divided by

range of years).

1.4 Main Contributions

This thesis provided the following contributions:

• The creation of a Plug-in-and-play framework, based on data streaming, that is, a

network analysis framework working in real-time, from edge to edge, where the
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Table 1.1: Literature Review per topic.

Topics Number of documents
Network Analysis Frameworks 5
Data Collection 41
Big Data Toolkits 8
Network Analysis Techniques 15
Data Visualization 1

Total 70

Table 1.2: Literature Review per date.

Date Number of documents
2021-2018 42
2017-2014 21
2013-2010 5
2009-2005 2

Total 70

result of Machine Learning (ML) models are visualised on a dashboard.

• The deployment of a network analysis framework on the Iscte network.

• Extension of the work developed by Dias et al. [37] with the addition of the impor-

tance of metrics data in the development of a robust network analysis framework.

• A scientific article to be published in a conference.

1.5 Thesis Structure

The dissertation is divided into 6 chapters. Chapter 1 introduces the thesis by high-

lighting the motivation, the questions, and the contributions of the research. Chapter 2

investigates the work carried out in the development of a network analysis framework.

Chapter 3 starts by making a short motivation to the proposed Framework. During the

chapter, it is described how the framework was designed. In chapter 4 the framework

proposed is implemented. Chapter 5 discuss the results of some experiments in order to

evaluate the deployment. Chapter 6 presents the conclusions of the work conducted in

this thesis and the future work suggested.
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2

Related Work

As mentioned in Chapter 1, we pursuit two intertwined goals: (1) to implement a network

analysis and anomaly detection system and (2) to use open-source tools in the ISCTE –

Instituto Universitário de Lisboa (Iscte) network but targeting mainly anomalies and

attacks.

In this chapter, we review work that relates to those goals. Hence, Section 2.1 intro-

duces work on collection of data of interest, such as databases used in certain applications

and use cases, as well as existing tools for the purpose.

Then, Section 2.2 refers to Big Data tools and the idea of implementing a system based

on Security Information and Event Management (SIEM) methodology. In Section 2.4 it is

presented some analysis techniques but different algorithms, in particular the assessment

of their suitability to the problem we are dealing with.

Then, Section 2.5 discusses the importance of data visualisation for this type of sys-

tems, alongside some tools of interest. Finally, Section 2.6 presents some frameworks that

are available for different types of environments.

2.1 Data Collection

Not surprisingly, the data collected from network systems is critical to understand and

analyze its own functioning. Indeed, discovery of behaviors and health of the systems

are paramount. In that respect, there are different features to be considered: about flow,

content and time, the basic plus the generated ones, as well as labeling [67]. Also, the

protocols to be deployed in the network are important to gather the crucial data, and also

the tools we may have at our disposal helping us to carry out the tasks.

In the following sections we will discuss these issues.

2.1.1 Attack Detection Data Features

Considering that data is being collected over time, when an attack occurs on a network, it

is interesting to explore a possible association between this attack and the data collected

in order to recognise the potential influence of that type of attack on the data.
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For example, an Denial-of-Service (DoS) attack causes too many requests to a server in

a short period of time, which causes the server to become overloaded and no longer have

services available to respond to the rest of the clients. From data collected, it is possible

to verify that this type of attack influences server response times. Like this example, all

attacks influence certain data.

This allows the creation of datasets that represent how different attacks can influence

the values of the network data. From these datasets, it is possible to start developing

several studies in order to identify possible attacks.

Table 2.1: Datasets used in previous research.

Paper Dataset Year

[48] CICIDS2017 and NSL-KDD 2020
[84] CIDD (DoS attacks) 2020
[42] CSE-CIC-IDS-2018 2020
[17] CSE-CIC-IDS-2018 2020
[2] Kaggle Website 2019

[86] NSL-KDD 2019
[56] KDD Cup’99 and NSL-KDD 2018
[46] NSL-KDD and UNSW-NB15 2018
[87] KDD Cup’99 and NSL-KDD 2018
[41] KDD Cup’99 2018
[65] Self-collected 2018
[34] KDD Cup’99 2018
[74] NSL-KDD 2016
[1] NSL-KDD 2015

From this idea, several databases have emerged:

• KDD99 dataset was established as dataset standard used on attack detection studies.

This dataset includes a diverse number of attack simulations on a military network

environment.

• NSL-KDD dataset is based on KDD99, was created by DARPA within 7 weeks (com-

pressed raw TCP dump). This dataset contains nearly 4.900.000 single connection

connections and 43 features [36].

• UNSW-NB15 dataset was created by Cyber Range Lab do Australian Centre for

Cyber Security (ACCS). This dataset contains 257.673 network traffic records and

49 features. Was used the IXIA tool to generate benign and attack traffic and Bro-

IDS and Argus tools for monitoring the traffic [68].

• CICIDS2017 dataset contains benign and malign updated traffic, similar to real

network flow (PCAPs). This dataset includes network analysis, transforming PCAPs

flow in CSV instances. The search is within 5 days [57].
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• CICIDS2018 [42] is composed of 50 attack machines and the victim structure with

5 departments with 420 machines and 30 servers. Includes the capture of network

traffic and 80 features. The Database consists of two classes of profiles:

– B Profiles – Encapsulate user entity behaviors using various machine learning

and statistical analysis techniques (such as K-Means, Random Forest (RF), Sup-

port Vector Machines (SVM), and J48). Protocols simulated in the test environ-

ment: HTTPS, HTTP, SMTP, POP3, IMAP, SSH, and FTP. “CIC-BenignGenerator”

is the tool to generate benign traffic.

– M profiles – attempt to describe an attack scenario. In the simplest case, hu-

mans can interpret these profiles and then execute them. Ideally, standalone

agents along with compilers would be employed to interpret and execute these

scenarios. It is composed of seven different scenarios: Botnet, Brute-Force,

DoS, Distributed Denial-of-Service (DDoS), Heartbleed, Web attacks, and In-

filtration of the network from inside.

2.1.1.1 Anomaly Detection Protocols

The process of collecting data to detect anomalies requires that devices in the network

are properly managed. By devices we mean cable modems, routers, switches, servers,

workstations, printers, Internet of Things (IOT), etc. In that respect, the Simple Network

Management Protocol (SNMP) is the standard protocol to manage those devices.

We also need protocols to transmit log messages over Internet Protocol (IP) networks.

Hereafter we describe some of those protocols.

SNMP [64]. The communication is done through a manager that has the role of monitor-

ing a group of agents. An agent is characterised by a device in which the SNMP protocol is

active whose function is to send information to the manager. This agent can interact with

its different objects through the Object Identifier (OID) . Each OID identifies a unique

object that can be read or changed via SNMP. The different OID of an agent are stored in

a Management Information Base (MIB) file that organises the data in a hierarchical tree

structure.

SNMP operates at the application layer, messages are transported via User Datagram

Protocol (UDP). The protocol allows active management of tasks such as configuration

changes, via remote modification of variables.

However, there are several disadvantages [89]. For example:

• It is possible to use SNMP to attack the network. Can be used to penetrate the

network. A significant number of software tools can scan the entire network using

SNMP and from there discover flaws in the read-write mode configuration, being

susceptible to attacks. It is important to be careful to configure which IP addresses
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are accepted for messages. However IP address spoofing (pretends to be another IP

source) remains a security concern.

• SNMP authentication: security depends on the SNMP version. SNMP is not being

fully used by several systems, because most of the devices have the SNMPv3 version

which is the only one that guarantees security and several devices are not able to be

configured via individual MIB.

• SNMP Autodiscovery: Many SNMP implementations include a type of autodiscov-

ery where a new network component, such as a switch or router, is automatically

discovered and grouped.

• There can be correlation problems when joining information from different devices

that may not have the same indexing scheme.

Several papers study the use of SNMP data to detect network anomalies (See Table 2.2).

The results shows that Interface and IP groups are the most affected by attacks.

Table 2.2: Research on SNMP messages.

Paper Dataset Year

[72] Interface, IP, TCP, UDP e ICMP groups 2018

[73] Interface group 2018

[5] Interface, IP, TCP, UDP e ICMP groups 2019

[63] IP group 2019

[71] Interface, IP, TCP, UDP e ICMP groups 2019

Syslog. This protocol is used to transmit log messages over IP networks. The server

allows the log information of all network devices to be centralized on a single machine.

The information is usually sent via UDP. It is possible to manage, search and archive all

message logs.

Log information is very important for troubleshooting and for further analysis since

network devices have a low memory capacity, which causes device history to be erased

after a certain time.

A log message is made up of several parts, as shown in Figure 2.1.

Figure 2.1: Structure of a Syslog message.
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In that respect, the meaning of the parts are:

• The timestamp indicates when the message occurred.

• The facility indicates the origin of the message, represents the process that gener-

ated the message.

• The severity indicates how urgent the log message is.

• The mnemonic which is the code to identify the message.

• The description that describes the log message.

Table 2.3: Syslog facilities.

Code Keyword Description

0 kern Kernel messages

1 user User-level messages

2 mail Mail system

3 daemon System deamons

4 auth Security/authorization messages

5 syslog Messages generated internally by syslogd

6 lpr Line printer subsystem

7 news Network news subsystem

8 uucp UUCP subsystem

9 cron Clock daemon

10 authpriv Security/authorization messages

11 ftp FTP daemon

12 ntp NTP subsystem

13 security Log audit

14 console Log alert

15 solaris-cron Clock daemon

16-23 local Local use

Table 2.4: Syslog severity.

Code Severity Description

0 Emergency System is unusable

1 Alert Action must be taken immediately

2 Critical Critical conditions

3 Error Error conditions

4 Warning Warning conditions

5 Notice Normal but significant conditions

6 Informational Informational messages

7 Debug Debug-level messages

11
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The most relevant parts of a log message are facility and severity. It can be defined

on network devices that only send messages with a certain severity, in order to avoid

overloading with irrelevant messages.

Several researches studied the usefulness and efficiency of Syslog messages for detect-

ing anomalies in the network. (Described on Table 2.5)

He et al. [47] presents a detailed review and evaluation of six state-of-the-art: log-

based anomaly detection methods, including three supervised methods and three un-

supervised methods and also presents an open-source toolkit allowing ease of reuse.

Baseman et al. [13] study an anomaly detection framework that combines graph analysis,

relational learning, and kernel density estimation to detect unusual Syslog messages. Du

et al. [38] approach “DeepLog”, a log-based anomaly detection using Long short-term

memory (LSTM) to model a system log as a natural language sequence. This allows au-

tomation of learn log patterns from normal execution and detect anomalies when log

patterns deviate from the model trained. It is possible to update incrementally in an on-

line fashion to adapt to new log patterns over time. Wang et al. [96] presents combination

of feature extraction methods from natural language processing (Word2vec, TF-IDF) and

anomaly detection methods from deep learning (LSTM). Vaarandi et al. [95] presents a

novel data-mining based framework for detecting anomalous log messages from Syslog:

patterns from the last N days and W weeks (so called mining windows) are then used for

creating rules that match messages reflecting normal system activity. Nourtel et al. [75]

approach an unsupervised deep degenerative model, after trained on a sufficiently large

corpus, the generative model shall capture the “normal” behaviour of the system, and

deviations from these predicted logs may be tagged as anomalies.

Table 2.5: Scientific research on Syslog messages.

Paper Dataset Year

[47]
HDFS log dataset from Amazon EC2 platform.

BGL log dataset recorded by the BlueGene/L supercomputer.
2016

[13]
Syslog messages from a VM.

Syslog messages from trinity supercomputer.
2016

[38]
HDFS log dataset from 200 Amazon’s EC2 nodes.
OpenStack log dataset with one control node,
one network node and eight compute nodes.

2017

[96]
Thunderbird supercomputer.

ALERT, FATAL and FAILED as anomalies.
2018

[95] OS level Syslog messages from 543 Linux servers. 2018

[75]
Bull-ATOS HPC logs files dataset

from Deutsches Klimarechenzentrum Supercomputer.
2019
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2.1.2 Tools

In real environments, tools are essential as they provide flexibility in the types of data

to be collected, and according to the needs of the organization. Among many publicly

available, three tools should be pointed out: Wireshark, CICFlowMeter and Beats.

Wireshark

It is the most popular tool used as a network protocol analyser (online and offline) [100].

It allows an extensive analysis of what is happening on the network using different pro-

tocols. Runs on multiple platforms. It can be used in a GUI or by the command line

(Tshark). Allows reading and writing to different types of files. Decryption is available

with different protocols. It has an intuitive analysis.

CICFlowMeter

It is the network traffic flow generator and analyser used by the CICIDS2018 dataset [30].

The tool takes network capture files (such as Wireshark generated files) as input and

generates bidirectional flowmetrics where the first packet of each flow represents forward

and backward. 80 statical network features such as Duration, Number of packets, Number

of bytes, Length of packets, etc. are generated. The evaluation depends on the protocol

to be used: A TCP connection, the end of the flow is considered when a FIN packet is

received, if it is a UDP connection, the timeout will indicate the end of the flow.

Beats

It is a free and open-source ecosystem of data agents. Allows automation of data collec-

tion [14]. It works as an agent installed on a particular machine that has the function of

analysing: files (Filebeat), metrics (Metricbeat), network data (Packetbeat), logs (Winlog-

beat, Auditbeat), availability (Heartbeat) and cloud services (Functionbeat). Beats accept

many types of log formats from such widespread systems as MySQL, Apache, NGINX,

etc. The data collected by Beats can be sent to diverse systems.

2.2 Big Data Toolkits

The data under consideration is generated in real-time so clearly it fits in the so-called

big data category. The volume is big, that is, there are large scale data sets to deal with

and therefore it is quite challenging to analyse them. Other characteristics to consider in

the theme of big data are speed, variety, value, and veracity. And recall that the human

brain is not really good at making assumptions about huge amounts of data [6].

That being said, fortunately, several tools have emerged. Some of them will be intro-

duced below.
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2.2.1 Apache Kafka

It is an open-source distributed event streaming platform used to process data pipelines,

streaming analysis data integration, and mission-critical applications [55]. Kafka is used

by many enterprises in different areas.

Kafka’s structure is described on Figure 2.2 lies on a cluster distributed by n brokers,

each broker works as a server that has its own local storage. Kafka consists of Producers

who produce data for Kafka and Consumers who consume data from Kafka. The Producer

and the Consumer are decoupled, i.e., they do not know of each other’s existence.

The strong point of Kafka is to be composed of several topics. Topics are sets of the col-

lection of events/messages with similar characteristics. For example, a set of information

from twitters and another set of information from viewing videos on YouTube.

A topic has a structure identical to a logs file, it consists of a queue of messages over

time. Every time it is received a new message, it is placed at the end of the queue.

Topics can be divided into several partitions that can be spread over several brokers,

which allows for a distribution of information for faster processing.

Each Consumer / Producer can link to a topic. Being a queue system there can be n

Producers connected to the same topic.

Consumers only read the information, i.e., the information remains in the partition

even after being read, which allows the existence of n Consumers. Kafka is responsible

for keeping the offset of each consumer. The time Kafka stores messages can be adjusted.

To prevent the possible failure of a system, it is possible to replicate the information.

It is possible to have a leader partition and secondary partitions distributed by other

brokers that will safeguard the information of the leader partition.

Figure 2.2: Apache Kafka’s architecture.
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2.2.2 Apache Spark

It is a data processing tool [33]. Spark distributes tasks across several nodes. It is a driver

program that runs the main function and distributes the tasks across the different nodes

described on Figure 2.3. It is possible to work in batch or real time. It was created due to

the limitations of map reduce which takes time to process, it is not suitable for operations

such as filtering, it is not made for large data because it takes time to process, and it does

not fit in iterative executions like k-means that need to process the data several times.

Apache Spark addresses all the limitations of map reduce, it’s about 100x faster on

memory and 10x faster on disk which is best suited for big data and machine learning. Is

composed by several models such as: Spark core and RDDS, Spark SQL, Spark Streaming,

ML Lib, Graph X.

Advantages of Apache Spark:

• Speed – extends the map reduce model to support computation such as stream

computation and interactive queries.

• Programming languages – programming can be done in several languages such as

Java, Python, Scala, etc.

• Hadoop support – it is possible to integrate Spark with Hadoop, so allowing to

create distributed datasets with Hadoop Distributed File System (HDFS) files.

Figure 2.3: Apache Spark’s architecture.

2.2.3 Hadoop Distributed File System

It is an open-source framework for large-scale data processing. Hadoop has a cluster ar-

chitecture. It works like a set of machines that work together. Allows for high availability,
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computational load balancing, and parallel processing. Its architecture offers horizontal

scalability, that is, a set of several small server nodes.

HDFS [88] is a Hadoop‘s distributed storage system that deals with subjects such as

volume, speed, and variety of data, creating a scalable system. Data is distributed over

several servers. Hadoop divides files into blocks and distributes them across nodes. To

be fault-tolerant, blocks are replicated so that they are not just on one server.

2.3 SIEM

SIEM methodology is the state-of-practice used on network security that allow a holistic

view of the security management [85]. SIEM is a combination of Security Information

Management (SIM), which provides long-term storage, analysis and reporting of log

data, and Security Event Management (SEM), real-time monitoring, correlation of events,

notifications, and console views. The purpose of SIEM is to allow the creation of an

organized and proactive network system in that it implements techniques that allow the

evaluation of data in real time but also important forensic research to disassemble a

problem. Besides these factors there is the possibility of adding proactive reactions when

problems are identified such as alerts when something is wrong.

Systems based on this methodology provide collection, normalization, and evaluation

of messages from different data sources. Their capability to correlate data from different

source provides a meaningful data to analyse anomaly patterns.

A system base on SIEMmethodology uses data from end user devices, network devices,

servers, firewalls and intrusion detection and prevention systems. The data is forwarded

to a central unit that normalize and correlate the data. Annually, Gartner [54] provide

the magic quadrant from SIEM, where different systems based on SIEM methodology are

meticulously evaluated for their qualities and cautions. Among the entire report, Splunk

and Elastic, Logstash and Kibana (ELK) stand out.

2.3.1 Splunk

It is a set of products for Enterprise and Cloud supported by Splunk Search Processing

Language [78], provide searching, correlation, visualization, and alerting. It can show

alerts from an in-depth device perspective, has efficiency in sort and filter data, big data

architecture. It’s an all-in-on product, fast installation, strong visualization, flexible

searches, and reports.

However, the free version being limited with only 500MB per day, which makes it

impossible to use this version to analyse the network of an organisation.

2.3.2 ELK

The combination of Elasticsearch, Logstash and Kibana [39], free and open source, pro-

vide an engine for easily storing data in a cloud or in the server. Uses Apache Lucene
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database to index, can retreat much faster. It can filter, process, correlate and generally

enhance any log data that it encounters. It has an UI with reports, analytics, configure

stats, configure data, reports, dashboards and so on. It has the possibility of integrating

machine learning algorithms to analyse the data.

2.4 Network Analysis Techniques

As we witness more and more network attacks, it is challenging to identify such attacks.

The analysis can be divided into three different types [102], as follows:

• Misuse-based, which consists on detecting known attacks by using signatures. It

does not have many false alarms. However, since the rules are fixed, zero-day

attacks can’t be detected.

• Anomaly-based, where it identifies anomalies as deviations from normal behavior.

It has the capacity to zero-day attack detection. The results can then be used to

create new signatures on Misuse-based.

• Hybrid, a combination of misuse and anomaly detection. Most ofMachine Learning

(ML) and Deep Learning Deep Learning (DL) methods are categorized as hybrids.

As a large portion of analysis relies on ML and DL methods to some extent, in the

following sections we discuss their underlying concepts.

2.4.1 Machine Learning

The critical aspect of ML is to generate predictions automatically. In general, the process

starts by choosing features engineering, an algorithm to process data, using a training

dataset and to evaluate the model itself. Then, it follows the prediction of unknown

data, that is, the classification of data of interest, based on the using the trained models

previously built. There are three major approaches [102, 3, 19]:

• Supervised learning, that relies on training via labeled data. Typically, it learns

a function that predicts if an output from the selected features is considered a

normal or an anomaly class. The training data has usually fewer attack instances

compared to normal instances, which may disrupt this approach. There are several

algorithms available like SVM, K-Nearest Neighbor (KNN), Decision Tree (DTREE),

Naïve Baeyesian (NB) and Multi-Layer Perception (MLP).

• Semi-supervised, which trains the data assuming that only normal classes have

labelled instances, so reducing efforts and achieving high accuracy. It learns a

model for normal behaviour and use it to identify anomalies.
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• Unsupervised learning, which does not require label data. It assumes that nor-

mal instances are much larger than anomaly instances and the algorithm discovers

patterns in data to create rules. There are several algorithms available such as

clustering, which splits similar data into groups. Furthermore, clustering can be

divided in two groups, regular clustering (row cluster) and co-clustering (row and

columns cluster).

Belavagi & Muniyal [15] evaluate the performance of supervised ML classification

algorithms, Logistic Regression (LR), Gaussian NB, SVM and RF on NSL-KDD dataset

for intrusion detection. As for evaluation, it is used true positive (TP) rate, false positive

(FP) rate, precision, recall, F1-score and accuracy. Experimental results show that RF

outperforms and SVM under performs (due to large number of features).

Several clustering algorithms have evolved over the time. Ahmed et al. [3] presented

an evaluation table with different clustering algorithms: k-means, improved k-means,

k-medoids, Expectation Maximization (EM) clustering, distance-based anomaly detection

from the investigation of Syarif et al. [92]. Distance-based anomaly detection reached

80,15% of accuracy, while the straightforward k-means clustering has 57,81% of accu-

racy. The authors also mention the benefits of using co-clustering for DoS attacks. It is

compared the purity (percent of the total number of data points that were classified cor-

rectly) of normal and attack instances of Ahmed andMahmood (2014b) [10] approach (co-

clustering detection for DoS Attacks) and Papalexakis et al. [77] approach (co-clustering

detection for all types of network attacks). The results show an improvement on Ahmed

and Mahmood (2014b) approach.

Arunraj et al. [9] presented a comparison between supervised (LR and Lasso Logistic

Regression (LLR)), semi-supervised (One Class Support Vector Machines (OCSVM)) and

unsupervised learning (IsolationForest (IF)). In the test training period, LLR is faster

than LR without sacrificing much of its performance. IF performance is poorer regarding

OCSVM performance but has a better computational time during test. Although the

main challenge of an algorithm to anomaly detection is to minimize as good as possible

false negatives, which is when the anomaly was not detected. The results show that

OCSVM algorithm has a low number of false negatives while it has an acceptable number

of false positives. The experiment also shows that when the test contains no unknown

data, supervised outperform unsupervised learning. However, when the test contains

unknown data, the performance of unsupervised will not degraded whereas supervised

will.

Zamani & Movahedi [105] approach the Laskov et al. [61] experimental framework

of supervised (KNN, MLP, SVM) and unsupervised (y-algorithm, k-means and linkage

clustering) learning techniques comparison. The test was divided in two scenarios: firstly,

the train and test data come from the same unknown distribution; secondly, the test

data came from a new malicious pattern. The results showed that in the first scenario,

supervised algorithms have a better accuracy (decision tree reaching 95% TP and 1% FP).
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However, in the second scenario, the performance of supervised algorithms decreased sig-

nificantly while unsupervised algorithms were weakly affected. The experiment demon-

strates that usually unsupervised algorithms have better performance than supervised

algorithms.

Almseidin et al. [8] analyses the performance of most common ML methods (J48, RF,

Random Tree (RT), Decision Table (DTA), MLP, NB and Bayes Network (BN)) based on

KDD dataset. The evaluation is focus on false negative (FN) and FP metrics. The results

have showed that there is no single perfect ML algorithm. RT algorithm has achieved the

higher FN rate of 0.093, meaning that a large number of attacks are classified as normal

instance. On other way, DTA algorithm achieved the lowest FN rate of 0.002 but also

achieved the FN rate of 0.073. Therefore, there is no balance between FN rate and FP rate.

So high accuracy rates are not enough to create a good intrusion detection approach.

Table 2.6 briefly summarizes the ML algorithms described above.

Table 2.6: Brief comparison of ML algorithms.

Paper ML methods ML metrics Observations

[15]
Supervised:

LR, NB, SVM and RF

TP rate, FP rate,
Precision,
Recall,
F1-score

and Accuracy

RFC outperforms.
SVM underperforms

due the fact of
the large number

of features.

[9]

Supervised:
LR,
LLR

Semi-supervised:
OCSVM

Unsupervised:
Isolation Forest

FN

OCSVM has a low number
of FP while has

an acceptable number
of false positives.

When the test contains
no unknown data,

supervised outperform
unsupervised learning.
When the test contains

unknown data,
the performance

of unsupervised will not
degraded while
supervised will.

[105]

Supervised:
(KNN, MLP, SVM)

Unsupervised
(y-algorithm, k-means
and linkage clustering)

TP, FP
Unsupervised: algorithms
have better performance

than supervised algorithms.

[8]
J48, RF, RT, DTA, MLP,

NB and BN
FN, FP

There is no single perfect
ML algorithm.

There is no balance between
FN rate and FP rate.
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2.4.2 Deep Learning

DL is a branch of ML that mimics the human brain [102], and it is composed by linear and

non-linear transformations. DL focus on classification and learning multiple layers. The

major differences between DL and ML are described in Table 2.7.

Table 2.7: Major differences between DL and ML.

DL ML

Data dependencies
Amount
of data

Don’t

Hardware dependencies
Optimized performance

with GPU
Don’t

Feature processing Don’t
Depends on the accuracy

of features

Problem solving method End-to-end
Subset

the problem

Execution time (train)
Takes time
(weeks)

Seconds to hours

Execution time (test) Stay stable
Time was affected by
the amount of data

Interpretability
Results are difficult

to explain
Clear rules

The most used DL algorithms are Restricted Bolzmann Machines (RBM), Deep Belief

Network (DBN), Deep Neural Network (DNN), Auto Encoder (AE), Recurrent Neural

Networks (RNN) and Convolutional Neural Networks (CNN) [3, 59].

Naseer et al. [70] present a research about suitability of DL approaches for anomaly-

based intrusion detection system, such as LSTM, CNN, AE and RNN. For the study, they

have used ML methods like SVM, KNN, DTREE, RF, Quadratic Discriminant Analysis

(QDA) and Extreme Learning Machine. The test is divided in two datasets, NSLKDDTest+

and NSLKDDTest21 (that contains unknown attack instances for test phase). The evalua-

tion is done via classification metrics, area under RoC curve, accuracy, precision-recall,

mean average precision, as well as test and training timings. From the results, Deep

Convolutional Neural Networks (DCNN) is the best algorithm in AuC an mAPmetrics, as

shown in Tables 2.8 and 2.9. As for training and time, Decision-tree is the best algorithm.

DCNN model took 109 seconds for training, two seconds for NSLKDDTest+ and one

second for NSLKDDTest21 dataset. Therefore, the results show that DL is a promising

methodology for network security.

Yin et al.[103] proposed a DL approach for an IDS (RNN-IDS). This study was per-

formed with most common ML learning methods such as J48, NB, RF, MLP, SVM based

on NSL-KDD dataset. The testing was carried out in binary and multi-class classification.

As for binary classification, RNN-IDS have been mapped with different hidden nodes
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Table 2.8: Top five area under RoC curve results of models in relation to NSLKDDplus
and NSLKDD21 datasets (Table from [70]).

Model Name AuC for NSLKDDPlus Model Name AuC for NSLKDD21

DCNN 0.955 DCNN 0.916
LSTM 0.953 Convolutional AE 0.894
AE 0.937 Contractive AE 0.891
DTREE 0.937 DTREE 0.860
Contractive AE 0.920 KNN 0.825

Table 2.9: Top 6 mean average precision results from IDS models (Table from [70]).

Model Name maP for NSLKDDPlus Model Name maP for NSLKDD21

DCNN 0.97 DCNN 0.98
LSTM 0.97 LSTM 0.97
DTREE 0.96 Convolutional AE 0.97
Contractive AE 0.95 Contractive AE 0.97
KNN 0.95 KNN 0.96
AE 0.95 DTREE 0.95

and learning rate. In the experiment, the higher accuracy (83.28%) is achieved by 80 hid-

den nodes and 0.1 learning rate. And DL approach outperforms regarding ML methods.

On the other hand, in multi-class (five) classification, RNN-IDS was mapped with

80 hidden nodes and 0.5 learning rate and it outperforms again with 81,29% accuracy,

regarding ML methods. RNN-IDS also have a better performance than Artificial Neural

Network (ANN) approach [51] which offers an accuracy of 79.9%. In addition, the authors

have compared RNN-IDS with reduced-size RNN method applied to the KDD CUP 1999

dataset [51]. The results have shown an accuracy of 97,09% for RNN-IDS and an accuracy

of 94,1% for the reduced-size RNN method. But we should notice that, without GPU,

RNN-IDS takes 382 seconds more. Therefore, this highlights the growing importance of

DL methods for both binary and multi-class classification.

2.5 Data Visualization

Data visualization is a powerful and simple way to get insight from complex and diverse

data. As expected, various data visualization tools have emerged overtime to keep up

with the growing amount of data collected. These tools have been constantly evolving

and improving their ability to analyse a wide variety of data, even large scale data set.

One of the features is to figure out interesting patterns and correlations in the data.

It is important to achieve a balanced and accurate representation of the data under

analysis. In that respect, many aspects have to be taken into account. For example,

visual noise, loss of information, large image perception, high rate of image changing,

high-performance requirements, etc. [44]
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On the other hand, big data itself has been a challenge for visualization, mainly due

to scalability, functionality, and response time aspects. In order to face these challenges,

there are methods and toolkits that have been used to deal with data processing and

visualization all together.

One of the concerning aspects in a visualization tool is providing interactive visual-

ization, that is, allowing the user to interact with the visual representation (image), which

is successively adapting itself to the user’s actions. (zooming, filtering, etc.)

In the case of attack and anomaly analysis systems, visualization allows the user a

greater immersion and perception of what may have caused the detection of a problem.

The images that have been created should provide the user both an overview and a useful

detailed analysis, on-demand. At this point, the tools worth mentioning are the following:

Tableau

Tableau is one of the most popular tools used in business intelligence. It has user-friendly

drag-and-drop functionality that allows any type of user a simple way to analyse data. It’s

fast and flexible, has a wide variety of charts. Supports multiple data sources. For simple

tasks, it doesn’t need programming skills but for more complex tasks it needs knowledge

of the R language.

Power BI

Power BI is a data analysis service created by Microsoft that allows creating an interactive

visualization via a simple and intuitive interface, so users can create their own analyses.

It is also possible to use natural language for queries, therefore reducing the need for

programming. Still, one can use various programming languages like R and different

types of data sources.

Kibana

Kibana is an open-source tool that allows to create data visualizations from Elasticsearch

data. Besides the classic charts available, it is possible to uses different types of data and

to build a dashboard using natural language. Users are entitled to select how data is

visualized in a interactive mode.

Plotly

Plotly, also known as Plot.ly, is built using the programming language Python and Django,

a free framework suitable for creating web applications. Again, there is a large variety of

charts available and it can be used with permissions for data analysis with greater privacy.

The toolkit is available for Python, R, MATLAB and Julia APIs.
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2.6 Network Analysis Frameworks

Considering the different aspects concerning network security mentioned in previous

sections, it is important to build a framework capable of delivering a anomaly and attack

detection solution for an organisation. In that respect, there are some relevant work that

has been published. For example:

Babu et al. [11] presents the monitoring of logs generated by the Linux system and

network logs configured in a firewall together with the ELK tool. The Syslog-ng collects

all data, and it is sent to Filebeat, which works as an agent sending the collected data

to Elasticsearch (repository). The Kibana tool is implemented for visualization. The

collected sample is then analyzed in a controlled and isolated environment to determine

its behavior and actions taken in the infected system.

Harikanth and Rajarajeswari [45] proposes the collection of logs from a server con-

nected with endpoints. The Beats will send the log to Logstash and the output is given to

Elasticsearch. Logs are forwarded to Threat Intelligence, where logs are prioritized from

low to high. This classification is done by correlating the logs received in real-time with

the threat classification based on the threat intelligence trained by the sources.

Almohannadi et al. [7] collect over 500 MB of Honeypot for one year via an Amazon

Web Services (AWS) cloud. Two Honeypots called Kippo and Dionea were created, where

Kippo is a low-high and Dionea is a medium honeypot. Both Honeypots appear as real

operating systems, which attracts many hackers. Events are logged if someone tries to

interact with the honeypot. Then they were then forwarded to the ELK tool for further

analysis.

Teeraratchakarn and Limpiyakorn [93] create a virtual environment with Honeypot

to catch hackers. It is configured to look like a real system with vulnerabilities. The

difference is that it is isolated from the rest of the internet but monitored. It is evaluated

every hour if there was a new registration. The registration is in the format of logs

to discover attack patterns, which are discovered by rules created in scripts. Also, the

implemented VirusTotal, a free service for analyzing files or URL addresses, is used for

an extra malware assessment.

Dias et al. [37] presents an approach for network data analysis without training data in

real-time. The approach uses clustering techniques to group hosts with similar behavior.

Genetic zoom is introduced to identify the features that aremost relevant to build a cluster.

In order to detect stealth attacks, time stretching is implemented. For the testing phase, it

is used a dataset from Los Alamos National Laboratory (LANL) corporate network and a

dataset obtained from a large military infrastructure. As for deployment, big data toolkits

like Apache Kafka, Apache Spark and HDFS are used.
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2.7 Summary

This chapter presents a review of the state of the art focused on the topic in exercise. It

is subdivided into the different fundamental components in the development of the final

product. It begins by ascertaining what types of data are categorically used in network

security applications and what techniques are available to collect them. Next, some of

the various technologies used to apply the Big Data methodology are listed. Within these,

the most celebrated researches based on more recent studies have been surveyed.

Following this, the application of different types of machine learning algorithms

was investigated for the implementation of mechanisms for the detection of attacks and

anomalies, with the goal of a representation of the results obtained using, then, visualiza-

tion tools. Lastly, it was researched what kind of tools exist in the market with this same

purpose. In brief, different Network Analysis Frameworks published and referring to the

work we performed are evaluated.
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Proposed Framework

This chapter introduces the proposed framework, starting with a motivation for its im-

plementation and usage. Then it provides a more detailed explanation of its architecture,

including how it should be deployed and used. The architecture follows a standard

approach, partially mirroring the widely-used process CRISP-DM [28], but taken into

consideration that it should lead to a data streaming application. Indeed, its main pur-

pose is to analyse data in real-time. It also includes data modelling based on Machine

Learning (ML) concepts.

At its core, there are four modules – Data Collection, Data Ingestion, Data Modelling

and Data Visualization. Data flows through the modules, with processing alongside that

might change its nature (derived, filtered, enhanced, etc.). Therefore, the architecture

usability as far as data is concerned resembles a dataflow pipeline. The specificity of each

module is explained below, as well the rationale behind the choices that were made.

In respect to data, there are two main categories of data to be processed and analysed:

network data and system metrics data. Each one of these categories yields to specific

mechanics of implementation and usage, namely in relation to tools and workflows. That

is, it affects how the framework is implemented, deployed and used.

3.1 Motivation

While managing a network infrastructure, a general problem we face is to monitor de-

vice metrics so we can evaluate its health, as well as to detect possible anomalies in its

behaviour. It also means that the usefulness of network packet monitoring is relevant

and should be evaluated in order to enable detection of possible attacks.

As the current protocols in place at ISCTE – Instituto Universitário de Lisboa (Iscte)

regarding the management of anomalies and attacks to servers are far from optimal, there

was a need to study frameworks capable of filling in this gap. Indeed, this research was

motivated by the need to evaluate the importance of monitoring and detecting possible

anomalies and attacks on servers using open-source software, and taking advantage of

Big Data and Security Information and Event Management (SIEM) methodology to obtain
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results in real-time.

3.2 Proposed Architecture

The proposed framework holds two subjects of analysis: the network, where data is

analysed to detect possible attacks, and the system metrics, that allows the analysis of

possible anomalous behaviours, so aiming to indicate whether in a particular server

something is wrong or not.

Our work extends research work carried out by Dias et al. [37], but notice that, instead

of analysing only network data, we will deal with system data analysis as well.

Also, we consider that it is an advantage to favor as much as possible the concept of

Plug-in-and-Play. That is, to build a framework around the idea that a set of modules

individually implemented can work together but they can easily be replaced later on if

that seems to be appropriated. Hence, we achieve capacity and flexibility in accordance

to the deployment needs.

On the basis of previous considerations, the proposed architecture is mostly supported

by four distinct modules, as depicted in Figure 3.1.

Figure 3.1: Proposed modular architecture with an underlying Plug-in-and-Play concept
and its usability regarding data to resemble a dataflow pipeline.

First, there is the “Data Collection” module, where data is collected from certain data

source endpoints. Then we move to the “Data Ingestion” module, where data is ingested
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and selected and/or filtered. Next, data has to be evaluated. This evaluation implies data

correlation and modelling, a process that takes place in the "Data Modelling" module.

Finally, the results obtained will be analysed and visualized, a task that is carried out in

the module "Data Visualization".

A major aspect in this architecture is the use of tools, techniques and methods from

the areas of Big Data and SIEMmethodology. The use ofML algorithms for data modelling

and the importance of scalability is critically important as well.

Notice that the implementation of this architecture fits perfectly into the Plug-in-and-

play concept mentioned earlier on. Indeed, the design of the architecture was also driven

by making sure that further adjustments in the future are possible without too much

disruption. Hereafter, we will present these modules in more detail. As can be seen in

Figure 3.2, each module is supported by particular tools and techniques, described in the

following sections.

Figure 3.2: Mapping main tools and frameworks that support the proposed architec-
ture, which highlight the Plug-in-and-Play concept: Each block shown in Figure 3.1 is
supported by specific tools, also dependent on the type of data under consideration (net-
work/system metrics).

3.3 Data Collection

The data collection module is about collecting data of interest that will be further down

analysed. Basically there are endpoints supplying data, according to the category of data.
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For network data, we elect primarily tools like Wireshark [100] and CICFlowMeter [30] to

provide these data endpoints. As for system metrics data, we resort mainly on collection

tools like Metricbeat [14].

3.3.1 Network Data

In order to collect network data from a device, the TShark tool [94] we are using (it is a ter-

minal oriented version of Wireshark) captures network packets from the device’s network

interfaces in real-time. Once collected, the packets are analysed by the CICFlowMeter

tool, which then transforms the raw network data into bidirectional flow instances with

more than 83 statistical features.

The process to send data downstream to the Data Ingestion module implies to register

a new instance of CICFlowMeter with a Filebeat agent [14]. Listing 3.1 shows an example

of Filebeat output that will be sent downstream.

1 output.kafka:

2 # initial brokers for reading cluster metadata

3 hosts: ["10.83.30.31:9092"]

4

5 # message topic selection + partitioning

6 topic: 'cicflowmeter-events'

7 partition.round_robin:

8 reachable_only: false

9

10 required_acks: 1

11 compression: gzip

12 max_message_bytes: 1000000

Listing 3.1: Filebeat.yml file – setting a Filebeat output, which will be sent downstream.

3.3.2 SystemMetrics Data

System metrics data is collected using the Metricbeat agent, which gathers different types

of system data from a device. In the scope of different metrics that can be gathered, we

may find important features like: (i) CPU data, indicating the statistics of CPU usage in

the system; (ii) load statistic data, showing the amount of computational work done in

the system between one, five and 15 minutes; (iii) memory data, measuring the memory

used in the system; (iv) disk usage statistics; (v) system process state statistics such as idle,

running, etc. The data is collected in a chosen time interval and is sent downstream to

the Data Ingestion module. Listing 3.2 shows a Metricbeat output to be sent downstream.

1 output.kafka:

2 # initial brokers for reading cluster metadata

3 hosts: ["10.83.30.31:9092"]

4
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5 # message topic selection + partitioning

6 topic: 'metrics-events'

7 partition.round_robin:

8 reachable_only: false

9

10 required_acks: 1

11 compression: gzip

12 max_message_bytes: 1000000

Listing 3.2: Metricbeat.yml file – setting Metricbeat output, which will be sent

downstream.

3.4 Data Ingestion

A critical aspect of ingestion of data provided by the data endpoints referred to in the

previous section, relates to its ability to process large amounts of data without suffering

significant performance degradation. That is why data ingestion must be supported by

powerful tools and techniques. Hence, Big Data tools are suitable for that matter, as they

are very effective in handling large volumes of data. For the purpose, we have chosen

to rely on Apache Kafka [55], regardless of the category of data under consideration,

that is, suitable to both network and system metrics data. Notice that ultimately Apache

Kafka is a messaging system suitable for real-time data, centered around the idea of

publishing/subscribing topics, as mention on the related work in Section 2.2.

In this module it is also very important to evaluate not only the quantity but the

quality of data. Therefore, an analysis must be done to identify which data is relevant

and what added value they bring to the analysis. That is why tools or techniques capable

of measuring the usefulness of the data for analysis purposes are required in this context.

In our framework, data is ingested via an Apache Kafka instance, in real-time. It serves

as a channel between producers and consumers of data but somehow Apache Kafka will

behave like a buffer between them. Recall Apache Kafka can deal with several topics,

which generally are aiming to segregate different types of messages. In our case, network

data coming from the CICFlowMeter is saved as a certain topic ("cicflowmeter-events") and

metric systems data coming from Metricbeat is saved as another topic ("metrics-events").

Furthermore, it is possible to set retention time to safeguard data in case of possible

failure in the data consumers, as exemplified in Listing 3.3.

1 # Log Retention Policy

2

3 # The minimum age of a log file to be eligible for deletion due to age

4 log.retention.hours=48

5

6 # The maximum size of a log segment file. When this size is reached a new log

segment will be created.

7 log.segment.bytes=1073741824

8
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9 # The interval at which log segments are checked to see if they can be deleted

according to the retention policies

10 log.retention.check.interval.ms=300000

Listing 3.3: Example of a file setting certain server’s retention time properties.

The two topics mentioned above, for network data and system metrics data respec-

tively, are consumed by Apache Spark where the data is pre-processed. In this phase, it is

performed a removal of possible invalid options (Non applicable values) and evaluated

the relevant features of the message to be considered to use on Data Modelling. Then the

data is transformed into a dataframe.

In system metrics data, Metricbeat sends messages partitioned by the different com-

ponents of the device, i.e., the CPU information that occurred at time t is separated from

the load information at time t. Therefore, it is necessary to combine all the data into a

single dataframe.

3.5 Data Modelling

The data modelling module aims to analyse and model the data of interest that has

been gathered. It relies on state-of-the-art ML algorithms [102, 3, 19] implemented and

run in Apache Spark [33]. In particular, to detect anomalies (outliers) unsupervised

learning algorithms are applied to the system metric data, whereas supervised learning

algorithms are applied to network data in order to identify possible attacks since there

exists a knowledge base of common attacks [36, 68, 57, 42]. In both cases, the results

are saved in Hadoop Distributed File System (HDFS) [88] (which provides an effective

storage system capable of handling with volume, speed, and variety of data) and also sent

downstream for visualization purposes.

Notice that once a data model is created then it can be used later on at run-time. Next,

we will discuss the algorithms that were used.

Network data. As for ML to deal with network data, and consequently to detect

attacks, we have used the Random Forest algorithm [21] to classify the data, available in

the Apache Spark MLlib library [31]. It follows the in-workings of the library, namely

the need to assemble the data features into a vector (Apache Spark’s Vector Assembler

class [40]) that then goes through the classifier algorithm mentioned, yielding to values

as normal traffic or malicious traffic.

System metrics data. In respect to system metrics data, we have used two clustering

algorithms: Kmeans algorithm [90] and the Gaussian Mixture algorithm [82], both avail-

able in the Apache Spark MLlib library [32]. It follows the in-workings of the library,

namely the need to assemble the data features into a vector (Apache Spark’s Vector As-

sembler class) that then goes through the clustering algorithm mentioned, categorizing

to values as normal behaviour or outlier.
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3.6 Data Visualization

The derived data produced upstream, that is, the data modelling results, need to be clearly

understood by users. That is the main purpose of the Data Visualization module.

Needless to say, a good visualization is of utmost importance for the success of the

framework overall and for the understanding of what is going on in the computer network.

But visualization should strike a balance between simplicity so being effective and the

amount of essential information that is representing the data of concern.

Most of data visualization is created with the help of the Kibana tool [39], which al-

lows to build different graphical representations and enabling a user-friendly experience.

Figure 3.3 provides a glimpse of the dashboards that we can create on Kibana. This figure

depicts the values of the different features of the data collected overtime in association

with the results of the detection of outliers.

Hence, data is sent to an Elasticsearch instance [39] and then represented in the

Kibana tool. In addition to real-time visual analysis, the Elastic, Logstash and Kibana

(ELK) tool enables forensic searches by relying on SIEM methodology which offers log

storage, analysis, and reporting for forensic needs, as well as real-time monitoring, corre-

lation, notifications, and console views [35]. The time window can be adjusted according

to the user’s needs. Figure 3.4 describes the different feature values of the data collected

along with the results of the two clustering algorithms at the time window selected.

3.7 Data Model Workflows

The deployment and subsequent usage of an implementation of the proposed architecture

poses various challenges due to the dynamic nature of the data under consideration. One

should be aware that today’s data would be quite different from data to be collected in

the future. Therefore, for a framework to be successful, ML algorithms and data models

should be constantly improved and updated to keep up with the evolving data and the

needs of users.

For example, for system metric data, a constant peak detected at the same time every

day throughout the week can indicate that this event may not be an outlier but a normal

device behaviour. So, the data modelling algorithm should learn that such specific data

point is within the normal pattern of the system.

Another example could be that attacks are constantly evolving. For example, there

will be new ways of doing stealth attacks [26]. Therefore, in that case, it is important

to analyse the data, collect reports and re-train the algorithms regarding the new subtle

ways of attacks.

3.7.1 Data Model Training Workflow

In general, data models are initially created and then updated over time. That is, there

is an initial setup of the model, followed by continuous learning and adaptation to new
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Figure 3.3: Dashboard created in Kibana. Metrics Data on Storage server with a time
window of the last 1 hour. In this figure it is possible to observe the value of the dif-
ferent features of the data collected regarding the results of the detection of outliers
implemented. Image from 07/04/2022.
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Figure 3.4: Dashboard created in Kibana. Metrics Data on Storage server with a time win-
dow at 15:30h to 19:30h on 07/04/2022. In this figure it is possible to observe the value
of the different features regarding the results of the detection of outliers implemented
occurred during that time.
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collected data, which denotes an iterative tuning process in place. Not only affecting the

model itself but the algorithms as well. Indeed, updating and/or tuning algorithms as

well might the relevant to achieve enhanced data models.

In the following section, we will discuss the training of both network data models and

system metrics data models.

3.7.1.1 Network Data Models

Initial model. As we are aiming to figure out possible attacks, we have used the CI-

CIDS2018 [42] database for initial training of the model. This choice is due to its di-

versity of assessed attacks, which is corroborate by being widely used in most studies.

The database consists of seven different scenarios: Botnet, Brute-Force, DoS, DDos, Heart-

bleed, Web attacks and Infiltration of the network from inside. It comprises 50 attack

machines and a victim structure with five departments, 420 machines and 30 servers.

The information includes network traffic capture and extraction of 80 features from the

CICFlowMeter tool.

As mentioned in Section 3.5, the classification algorithm used is the Random Forest

algorithm available in Apache Spark, and following the in-workings of the library, like

assembling data features into a vector. But notice that before training it is necessary to

pre-process the data in order to remove possible invalid options (Non-applicable values).

It also follows the standard practice of splitting data into 70% for training and 30% for

testing.

The steps involved in creating the model are implemented using a Pipeline class of

the library [66]. Its runs a sequence of multiple stages of a specific ML workflow. Each

stage is either an Estimator or a Transformer. In our case, the pipeline is formed by the

Vector Assembler, followed by the Label Indexer, passing through the Random Forest (RF)

algorithm and finally the Label Converter that converts the index label – the classification

– to a string label.

The pipeline with the algorithm trained is stored in HDFS for future use. Figure 3.5

shows the in/out regarding HDFS. It is also used a MulticlassClassificationEvaluator

class [69] to evaluate the quality of the model created, which compares the labels ob-

tained by the algorithm using the testing data with the true labels of these instances.

Figure 3.5: In/out of initial training model: RF classifier algorithm trained with the
CICIDS2018 database to predict possible attacks.
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Updating model. As the stored model is deployed and used, new data coming along

can introduce unique values. It means data must be re-evaluated and eventually the

model has to be updated. Hence, the Apache Spark’s pipeline mentioned above that was

run previously will run again. On the other hand, in this context it is also important

to conduct active research on the status of cyber-attacks, therefore providing up-to-date

information to allow the categorization of potential new types of attacks either attacks

that are not in the initial database or new variants that emerge.

3.7.1.2 SystemMetrics Data Models

Initial model. Unlike the case of network data, where the publicly available CICIDS2018

database was used, there is a need to create a similar database but regarding system

metrics data. Hence, we setup an initial period for data collection on each server. As each

server holds a specific behaviour, the data collection has to be carried out on each device

we want to detect anomalies. To do so, a Metricbeat agent was installed on the servers

and each agent was sending system metrics regularly, every 10 seconds in this case. These

metrics were feed to an Apache Kafka instance.

On the other side, Apache Spark was subscribing the related Apache Kafka’s topic,

and consuming/collecting the last 30 minutes of system metrics every 30 minutes. The

collected metrics were saved by Apache Spark in HDFS. Figure 3.6 describes this collect-

ing process.

It is based on this amount of collected systemmetrics data that, for example, a feature-

by-feature analysis can be performed, after some pre-processing.

Figure 3.6: Data collection of servers metrics.

Notice that the initial gathered data from servers are separated by type of metrics. For

example, a device sends a message regarding CPU metrics, a message for load statistic

metrics, etc. It means that, in order to create a data model, it is necessary to previously
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combine different messages that occurred in the same timestamp into a single message.

Hence, to add timestamp values to anomaly detection, two new features were created:

"week" (weekend=0, week=1) and "labor_time", which considers working time from 8am

to 7pm. Listing 3.4 depicts the creation of "week" and "labor_time" features.

1 result = result.withColumn("week", (when ((dayofweek(col("Date")) === 1) || (

dayofweek(col("Date")) === 7), 0).otherwise(1)).cast(BooleanType))

2 .withColumn("labor_time", (when ((hour(col("Date")) < 8) || (hour(

col("Date")) > 19), 0).otherwise(1)).cast(BooleanType))

Listing 3.4: Creation of "week" and "labor_time" features.

Once the proper dataframe is created, the classic Apache Spark’s data modelling

process can proceed. In that respect, the algorithms used to create the system metrics

data model are the K-means algorithm [90] and the Gaussian Mixture algorithm [82], both

available in the Apache Spark MLlib library. The best value for the number of clusters to

be used in the K-means algorithm is figured out via a silhouette function [62]. It is also

calculated the cluster statistics which comprises the average distance and the standard

deviation of the points in a cluster to its center.

A similar model was also created but using the Gaussian Mixture algorithm instead.

Note that with the Gaussian Mixture model we expect to have a less sensitive approach

to outliers since the statistical data are approximated by a mixture of Gaussians that

describes the data better than distances to centroids [79, 58, 12]. Figure 3.7 points out

the in/out of the unsupervised training model.

Notice that, after the models being created, all of them are stored in HDFS for further

use.

Figure 3.7: In/out of unsupervised training models for system metrics data, based on two
clustering algorithms (K-means and Gaussian Mixture).

Updating model.

Similarly to the case of network data, and now because the behaviour of a machine can

change over time, with the possibility of certain outliers being perceived as a pattern, it

is essential to adjust the data model and eventually the underlying algorithm, according

to new data.

As expected, the clustering algorithms have to be tuned to improve the categorization

of machine behaviour. Again, the Apache Spark’s pipeline mentioned above regarding

the initial system metrics data model will run again.
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3.7.2 Data Streaming Workflow

Once data models are created and then available to be deployed, it is time to run and

feed theses models with data. In our case, the goal is to have the application running in

real-time, in particular most concerning the detection of network attacks and anomalies.

Hence, the workflow we envisage for the purpose is to have the data being constantly

streaming into an Apache Kafka instance, which acts as a buffer before Apache Spark.

Then, Apache Sparks consumes the buffered data from Apache Kafka and feeds the

running data models. It is up to these models to process the gathered data and provide

information about the subjects at stake, say both network attacks and system metrics.

The results obtained are stored for future analysis. But, importantly, they are sent to a

ELK platform to be displayed. It is with the help of the visualization tool Kibana, mostly

via dashboards, that results are properly visually processed by users. In the end, the

Kibana tool provides a wide range of different graphics aiming to deliver a user-friendly

visualization.

37





4

Implementation

In this chapter, we describe the deployment procedure regarding the framework proposed

in the previous chapter. First, the computational infrastructure developed is presented,

where we describe the specifications of the machine provided for this purpose. It also

detailed the construction of the different modules following the tools previously selected.

Not least, it is outlined the data flow through the infrastructure.

Proceeding with the implementation of data modelling, the data source used for this

purpose is outlined. Next, this data is subjected to the data preparation process, where we

describe the transformation of the data so that it can be applied to to train the algorithms.

Finally, the implementation of the data modelling algorithms is detailed. During its

implementation, we report on essential choices for the delivery of a functional algorithm.

In both cases, the sequence of procedures for data modelling are very similar – ultimately

it is all about following standard practices on using properly a Machine Learning (ML)

pipeline.

4.1 Computational Infrastructure

We have set up a computational infrastructure for the implementation of the proposed

framework described in the previous chapter 3 within Serviços de Infraestruturas Infor-

máticas e de Comunicações (SIIC) infrastructure. It is a testbed in a server located at the

the data centre of ISCTE – Instituto Universitário de Lisboa (Iscte), composed of 64 cores,

64GB of Random-access Memory (RAM) and seven Hard Disk Drive (HDD) disks, each

one with 1TB. Figure 4.1 shows the infrastructure.

To test our proposed framework for attack detection, we have decided to use our own

server since we did not want to interfere with the normal operation of the data centre as

attacks would be performed in order to test the performance of the proposed framework.

Thus, we have implemented a Virtual Machine (VM) called "Host". We have deployed in

this machine the free and open-source buggy web application (bWAPP) [22] with over 100

vulnerabilities. This app covers all major known web attacks. Notice that bWAPP allows

security developers to conduct various application attacks.
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Figure 4.1: Infrastructure in the Iscte data centre for the implementation of the proposed
framework.

As for deployment, we have used theXAMPP tool [101] to provide services likeApache

web server and MySQL database that are needed to build the application. Hence we can

produce network traffic data to be used for network analysis purposes.

To collect network traffic data, we create a service called “capture”, as described in

the bash script below (See code 4.1). This service performs a network analysis on the

machine every 30 seconds using T-shark [100]. The results are then passed through the

CICFlowMeter-v4 tool provided by the University New Brunswick [24], which transforms

the raw network data into bidirectional flow instances.

1 #!/bin/bash

2 while true

3 do

4 timestamp=$(date +%Y-%m-%d_%H-%M-%S)

5 tshark -i ens18 -w /home/gmczo/Documents/pcap/$timestamp.pcap -a duration:30

6 cd /home/gmczo/Documents/CICFlowMeter -4.0/bin/

7 ./cfm /home/gmczo/Documents/pcap/$timestamp.pcap /home/gmczo/Documents/csv/

8 done

Listing 4.1: Bash script to capture network traffic data.

To be able to generate attacks, a VM called "Kali" was also created. In this VM, it is

used the kali operating system [53], which contains several types of useful attacks to be

performed against the "Host" VM.

In relation to system metrics data, SIIC has provided three servers of the Fénix plat-

form: "Storage", "Sql" and "App", in which a Metricbeat agent was installed to send metric

data to the VM "Big Data". This platform is widely used by students of Iscte for various

kinds of operations: enrolling, requesting certificates, consulting their curriculum, etc.

So, there is high activity in this platform, which allows us to collect data from relevant

servers and to assess the importance of the usage of our framework in the academic

applications.
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Both network and system metrics data will be sent to the VM entitled "Big Data". As

its name implies, this VM is regarded as the whole Big Data processing part, where it

receives the data, ingests it, models it, and stores it for batch operations.

Finally, two more VMs were created for the analysis of modelled data in real-time:

"Data" and "Visualization", both including an implementation of the architecture of the

Elastic, Logstash and Kibana (ELK) tool [39]. The first machine represents the ingestion

and storage of the modelled data by the “Big Data” VM and the second machine deploys

the Kibana platform [39] that represents the data inputted in the previous machine in a

user-friendly interface.

The deployment of ELK provides the possibility of assessing the results of our frame-

work both in real-time and forensically. We have decided to decouple the tool into two

machines for security concerns. Since the Kibana interface communicates with Elastic-

search [39] to display the data, it is possible to limit user activity according to their status,

so not having access to certain data if that was defined. Notice that by splitting user

interface from storage, we create a security barrier around the data source.

4.2 Network Data Modelling

As presented in Section 3.3.1 in the previous chapter, one of the goals is to figure out

possible attacks on the network. It means the data under consideration in this case is

network data. So we have to create, update, and use a data model regarding network

data.

4.2.1 Source Data

First, let us consider the issue of source data for further training network data. Most of

related research done worldwide uses default databases to help the process. That is why

we have advocated in Section 3.3.1 the use of the popular CICIDS2018 database, which

is provided by the University New Brunswick [24]. This database contains 16,150,536

instances. Table 4.1 shows different labels (attacks) available in the database and the

number of instances per label.

4.2.2 Data Preparation

Prior to any training of a ML algorithm, the data to be used in the task requires to make

sure that it is well defined and with high quality. In this case, the process starts by

removing null values. Then, a feature-by-feature analysis is performed, where we remove

the timestamp. For the remaining features, temporal plots are created to analyse the data

behaviour over time.

From that analysis, features with constant values or with an infinite rise are eliminated.

After that, a correlation matrix is created to detect the existence of possible features with
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Table 4.1: CICIDS2018 database – number of instances per label.

Label Number of instances
Benign 13,403,145

DDOS attack-HOIC 686,012
DDoS attacks-LOIC-HTTP 576,191

DoS attacks-Hulk 461,912
Bot 286,191

FTP-BruteForce 193,354
SSH-Bruteforce 187,589

Infilteration 161,096
DoS attacks-SlowHTTPTest 139,890

DoS attacks-GoldenEye 41,508
DoS attacks-Slowloris 10,990

DDOS attack-LOIC-UDP 1,730
Brute Force -Web 611
Brute Force -XSS 230

SQL Injection 87

a high correlation, say, 90%. In this case, using one of the these features in the algorithm

is enough. The point is to have the set of features highly independent of each other.

In the end, we got 67 features to train the algorithm for attack detection in the network.

The features are shown in Figures I.1 and I.2 and I.3 in Annex I).

We notice that, while reviewing the state-of-art, several times in the case of CI-

CIDS2018 database only DoS attacks data was analysed. Moreover, some studies pre-

sented the feature selection task.

For example, Benayas de los Santos [16] applied feature selection to prevent dimen-

sionality issues. Based on the computed correlation matrix, the features that have shown

a correlation greater than 0.5 regarding the output feature ”label” were selected. The

higher this value, the more impact this feature exerts on the type of attack detected.In

our use case, we have decided to use all available features.

4.2.3 Data Modelling Algorithm

The problem to tackle here as far as data modelling is concerned suggests the use of a

supervised learning approach. As mentioned in Section 3.5, we have decided to use the

Random Forest algorithm [21] due to its easy application, higher accuracy and resilience

to overfit with more features. We have set several numbers of trees while training the

data, and then we chose the one showing the highest accuracy. Table 4.2 shows the results,

depicting the accuracy and the training time for each number of training trees.
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Table 4.2: Network data training stage – Random Forest.

ML Algorithm Training time (s) Accuracy
Random Forest with 10 trees 432 s 0.9496
Random Forest with 20 trees 411 s 0.9568
Random Forest with 50 trees 481 s 0.9488
Random Forest with 100 trees 591 s 0.9488

4.3 SystemMetrics Data Modelling

Another research goal mentioned in the previous chapter was to deal with anomalies in

the system, say the servers. In that respect, in Section 3.3.2 we have stated that system

metrics data will be used for that matter. Now we will be discussing in more detail the

creation, updating and use of a correspondent data model.

4.3.1 Source Data

The initial data to be used to create a data model consists of system metrics data col-

lected from the three servers in the period 22/09/2021 till 01/11/2021. But the week

25/09/2021 – 02/10/2021 was removed, as further explained in Section 5.2.1. In the

end, there are 33 days of collected data from the on the three servers provided by SIIC:

"Storage", "Sql" and "App" server for training purposes.

4.3.2 Data Preparation

Following similar procedures as in the case of network data mentioned above, we started

by removing errors from data. Indeed, sometimes during data collection, failures may

occur when the information is sent. Thus, we removed null values, records without

content or with unexpected content as such data is not suitable for training a model.

Then it was performed a more detailed analysis of the information contained in the

data. Recall that we have CPU usage data, disk data and data of different components

that are vital for a correct performance of a device.

Just to mentioning, the data is received by messages with several values, which are

usually called features. Each feature has a data type and a value. For example, we have a

feature called "CPU user", a double value, that indicates the percentage of CPU used by

a user inside that system, and a feature "processes running", an integer value, that shows

the number of processes running in that system. All these features must be evaluated

individually to gather the final features that contribute to the analysis of the system’s

behaviour.

Hence, from the data collected from the Iscte servers, it was performed a feature-

by-feature analysis. It starts by analysing if there are features in which the values are

constant or an infinite rise. In our case, these features do not produce useful information

for the creation of a clustering as they do not provide any pattern. Figure 4.2 shows a
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comparison of a temporal graph of a feature that varies its value vs. a temporal graph of

a feature with a constant value.

Figure 4.2: Feature with variance over time vs. feature with constant value.

Afterwards, the correlation between features was analysed. If the correlation between

these features has a value greater than 90%, it indicates that these features show similar

behaviour over time. Of these, only one should be considered to eliminate the repetition

of information that does not benefit the modelling process (clustering).

By the end of this process, in our case study, we have obtained 31 features for the "Sql"

and "Storage" servers and 57 features for the "App" server. The "App" server presents more

features since the system contains three fundamental disks for evaluating the system’s

behaviour, whereas in the other two only one disk is considered. The features are shown

in Figures I.4, I.5 and I.6 in the Annex I.

Once the features were chosen, we proceed to remove outliers from data. This step

was done in order to reduce the possibility of considering points that were not the usual

behaviour of the system. Notice that during the initial data collection, there was no

previous study of what would be considered as normal values in the system’s behaviour.

Therefore, if it was a dataset in which we had more information about the system be-

haviour, we should take into account that certain peaks can also be normal functioning

patterns.

This process of outlier removal was supported by a z-score function [104], which is

commonly used for this type of task. This function evaluates the number of standard

deviations that a given value is from the mean value in that dataset.

We have considered a value as an outlier when its z-score is greater than 3σ from the

mean. The value 3σ is commonly used in the literature, as it is the most stable value to

be considered for the limit of a set of values belonging to the same group [27].
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Table 4.3: Numbers of instances in the training data before and after applying peak
removal.

Initial data (#) Data after peak removal (#)
Storage server 280,338 237,850
Sql server 280,352 233,068
App server 280,190 249,802

4.3.3 Data Modelling Algorithms

As mentioned in Section 3.5, we have elected two clustering algorithms to create a system

metrics data model: K-means [90] and Gaussian Mixture [82]. We will compare their

performance and choose the best one. However, since we are dealing with anomaly

detection, we might go with both of them in order to not miss an event.

K-means Algorithm

The K-means algorithm is a classic clustering algorithm. Prior to its application, there are

two main issues to consider. Firstly, the number of clusters to be used, as it has to be set in

advance. Secondly, related to performance issues, whether or not dimensional reduction

techniques should be applied. Notice that, in general, if a dataset contains a very large

number of features, then the performance of a ML algorithm may be drastically affected.

Number of clusters. It was applied the silhouette method [62] in the context of the

K-means algorithm to get an appropriate number. Basically, this method evaluates the

similarity of a point to its cluster and the disparity to the other clusters. This value, the

closer to 1, the better the quality of the division of the points in space by the different

clusters. Table 4.4 shows the silhouette value for each number of clusters regarding the

three servers.

Looking at the results obtained, we can conclude that all three servers present a better

silhouette if considering two clusters.

Table 4.4: Silhouette evaluation per number of clusters using K-means.

Clusters Sql server Storage server App server
2 clusters 0.8802 0.9747 0.9234
3 clusters 0.8167 0.9620 0.6939

4 clusters 0.7146 0.9515 0.6330

Dimensionality Reduction. In the context of creating a model using the K-means algo-

rithm, we have used the Latent Dirichlet Allocation (LDA) model [20] available in Apache

Spark [32] to perform dimensional reduction in the training data of each server. The out-

come was a reduction to just 10 features (default value in the Spark code). Table 4.5

shows the comparison of silhouette value in both cases, with and without the applica-

tion of dimensional reduction. We can conclude that the clustering algorithm achieves
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a worse silhouette when dimensional reduction is applied. Therefore, the application of

LDA should be discarded.

Table 4.5: Silhouette evaluation after dimensional reduction with LDA, or not.

ML Algorithm Sql server Storage server App server
K-means 2 clusters with LDA 0.1184 0.4801 0.8931

K-means 2 clusters 0.8802 0.9747 0.9234

Gaussian Mixture Algorithm

We have also implemented the Gaussian Mixture clustering algorithm [82]. As mentioned

above, we were keen on comparing results from different unsupervised algorithms in

order to select the best one.

For this model, we set two gaussians to give more freedom of adaptation to see if the

results would improve over the K-means outcome, with the same number of classes.

In Table 4.6 we can be observed that the Gaussian Mixture algorithm can fit the data

more effectively. While K-means can distinguish two clusters with different sets of points,

Gaussian Mixture finds a higher difficulty in separating the points by two gaussians. This

happens since a gaussian can better aggregate the points scattered through space while

K-means has less flexibility and is more sensitive to data scattering.

Table 4.6: Comparison between models – points distribution per clusters/gaussians.

ML Algorithm Sql server Storage server App server
K-means: clusters

0 23,723 232,329 104,270
1 209,345 5,521 145,532

Gaussian Mixture: gaussians

0 233,068 32,913 249,802
1 0 204,937 0
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Evaluation

In this chapter, we lay out some experiments and tests we have carried out to evaluate

the proposed solution. As mentioned in previous chapters, we have two categories of

data to be processed and analysed – network data and system metrics data. Each one of

them relates to a particular type of experimental interest or use case. That is, respectively,

detection of anomalies in the system and of attacks on the network.

All the experiments regarding the two types mentioned were done using the compu-

tational infrastructure presented in the previous chapter, Section 4.1.

5.1 Network Attacks

As for detection of attacks on the network, we single out two experiments we have made:

one, via launching "slow HTTP test" attacks [50], and a second one related to "SQL injec-

tion" attacks. Next, both experiments are discussed.

But first, notice that in order to access the analysis of attack detection, it is impor-

tant to do it in a controlled environment, so it does not affect the institution’s servers.

Hence, we have used the "Kali" machine, which already contains several tools for net-

working purposes, and the attacks were created targeting the web app implemented in

the "Host" machine. The data generated was evaluated using the implemented Random

Forest classifier.

5.1.1 "Slow HTTP test" Attack

A "slow HTTP test" attack was carried out on the "Kali"machine terminal using the highly

configurable tool "SlowHTTPTest" [91] having as victim the web app. This attack consists

of sending several HTTP requests but slowly. The server waits until all data arrives,

which causes a congestion in the server. As result, the web app becomes impossible to

use. This attack is very simple to perform, and a poorly configured server will eventually

be affected.

When this type of attack is launched, a "DDoS-HOIC" and "SSH Brute Force" attacks

were detected in the "Host"machine. Figure 5.1 depicts the results of the attack detection
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when the "slow HTTP test" was performed. The "DDoS-HOIC" attack is an open-source

Denial-of-Service (DoS) attack that consists in flooding a web service with a large number

of "GET" and "POST" HTTP requests. As a consequence, the server becomes extremely

congested and ends up not being capable of responding to new client requests [76]. It is

also detected the presence of an attack "SSH Brute Force". This attack occurs when there

is a brute force attempt to authenticate in remote servers via SSH [49, 43], which is one

of the most common protocols for IT infrastructures.

After evaluating the attack performed, it should be noted that both consequential

attacks fit into the same group of DoS attacks. However, it was not reached a distinction

between them.

This outcome can be justified by the fact that, although the attack was considered

"slow HTTP test", it was executed in a burst, which causes immediate unavailability of the

web service. This sudden blocking of the service may end up being considered another

type of attack, but it is still considered a DoS attack. In other words, there is a proximity

between the type of attack triggered and the attack detected by the algorithm.

Figure 5.1: Result of network attack detection after launching a "Slow HTTP test" attack.

5.1.2 "SQL injections" Attack

A "SQL injections" attack consists of the exploitation of vulnerabilities in database queries,

with the purpose of discovering secret information stored in the servers [97].

In this second experiment regarding network attacks, we have launched several query-

based "SQL injections" into the application in order to access sensitive information stored

in the database [23]. As consequence, occasional "Bot" attacks were starting to be detected.

Figure 5.2 shows the results of the attack detection when a "Sql injection" is performed.

This "Bot" attack consists of small software that automates web requests for various

purposes without a human intervention, like scanning the content of a website. Notice
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that "Bot" attacks started as simple spam operations but have grown into complex attacks

on infrastructures of various companies [98].

Figure 5.2: Result of network attack detection after launching a "SQL injection" attack.

This type of attack can be summarized as any type of operation performed on a web-

site, i.e., the bot attack itself can contain a "SQL injection" attack inside. With the attacks

carried out, it is possible to see that the algorithm detects that an attack is occurring in the

network. However, this detection is not yet detecting the presence of the type of attack

launched in the network.

In brief, the attack detection is not yet optimally identifying the type of attacks

launched in the network. That should be taken into account so further research is needed

in that regard. For example, it is worth considering the introduction of new data and new

algorithms to achieve a more detailed analysis.

5.2 System Anomalies

In the context of detecting anomalies in the system, we have carried out several experi-

ments, and considering different timespans as far as collected data is concerned. Then

we have used these models to validate their quality and, at same time, to get insight into

the behaviour of the servers under consideration, during that period.

5.2.1 Models Creation

In total, there is an initial set of 12 models that were created, four for each server ("Stor-

age", "Sql" and "App"). For each server, we have two clustering algorithms available –

K-means and Gaussian mixture – and two datasets, with different time-spans, a shorter

one and a normal one. Let us call them datasets A and B respectively. The timespan for

dataset A is the period from 22/09/2021 to 01/11/2021, but excluding one week so there
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are 33 days in total. As for dataset B, the period is from 22/09/2021 to 03/04/2022, again

excluding one week, so there are 186 days in total.

The excluded week in both cases corresponds to the Enrolment Week, which runs from

25/09/2021 to 02/10/2021, and that is when all new students access the Fénix platform

at the same time. Such usage pattern can be considered as non-normal. That is why we

have excluded it. However, the data from that week still will be used for the purpose of

checking the quality of the models created. That is, the created models will be applied

specifically for the Enrolment Week.

Also, notice that by using a larger dataset we can check the impact of having more

data in the models we may create. Figure 5.3 illustrates the timespan for data collection.

The process of collecting system metrics data have followed the protocols set in Sec-

tions 4.1 and 4.3.1.

Figure 5.3: Period of time of each dataset according to the timeline used to collect system
metrics data.

An important aspect relates to the need of setting the threshold at which an anomaly

is considered to be the case. In the end, it is a decision function set in the clustering

models.

In our implementation, the models profile the new data. The Gaussian mixture model

calculates the probability of it belonging to a gaussian and assigns it to the one with the

highest score. The K-means model assigns it to the closest cluster. Afterwards, we use a

traditional approach of deeming an outlier when the distance to the centroid is greater

than three standard deviations (3σ) [27]. More specifically, in the K-means model, this

value is calculated in relation to the cluster centres, whereas for the Gaussian mixture

model, this value is estimated using the mean point of each gaussian.

5.2.2 Enrolment Week Use Case

Giving the models created, we will now be looking at the usage pattern in the servers

concerning specifically the Enrollment Week.

5.2.2.1 Models Based on Dataset A

When using the Enrollment Week in the models that were created relying on dataset A, we

realise that, regarding time for categorization (see Table 5.1), the two models, K-means

based and Gaussian Mixture based, have very efficient values. The difference is minimal.
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Table 5.1: System anomalies detection on the Enrollment Week (seconds). Models are
based on dataset A.

Machine Learning (ML) model Sql server Storage server App server
K-means 0.21 0.39 0.27
Gaussian Mixture 0.18 0.18 0.35

Table 5.2: System anomalies detection – number of outliers. Models are based on dataset
A.

MLmodel Sql server Storage server App server
K-means 3,188 1,350 1,545

Gaussian Mixture 2,986 737 1,190

Also, the K-means model detects more outliers than the Gaussian Mixture model. As

expected, this happens due to its higher sensitivity to outliers and the fact that a gaussian

can have more scattered data across the space.

We have built a dashboard in the Kibana tool to visualise the collected metrics data

in each server, as well as the results delivered by the anomaly detection models. Two bar

charts were created in this dashboard. Each one of then shows the number of outliers

detected in each model. We can set the window time we want since we’re on a Security

Information and Event Management (SIEM) based platform. By default, the platform

shows the data of the last 15 minutes.

With the help of these charts, we can figure out at which moments abnormal values

were detected, and if there is any relationship between the results of the two models.

Figure 5.4 represents the detection of outliers in the "App" server between 25/09/2021 at

00:00h to 27/09/2021 at 23:30h. From there, we conclude that the detection depends a

lot on the model used. The K-means model shows higher sensitivity, i.e. higher number

of outliers, when compared with the Gaussian Mixture model.

Since the new students’ enrolment began on the weekend of 25/09/2021 and

26/09/2021, it is expected that there will be higher affluence of traffic from this date

on, which will cause higher metrics values comparing to a normal day, so producing an

abnormal behaviour in the servers. Table 5.3 shows the hour of the day that the largest

outlier peak was registered in the Enrollment Week.

From this table, in most of the days, both models have detected the largest peaks at

the same time slots. This synchrony gives us an idea of reliability in the categorization of

abnormal behaviour compared to the normal operation of a device.

It is noticeable that the peaks detected in the "Sql" server occur consecutively at

the same hour of the day (05:00h). This indicates that these outliers have a pattern,

which means they may not be an anomaly but rather it is representing a normal system

behaviour, probably related to processes being executed at that time that are overloading

the server.

To explore in further detail the effectiveness of clustering models, we have decided
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Figure 5.4: Anomaly detection in the "App" server, with a time window from 25/09/2021
at 00:00h to 27/09/2021 at 23:30h.

to conduct a more in-depth analysis of what might have triggered a specific outlier peak.

Among the various peaks depicted in Table 5.3, we have selected the peak that occurred

on 27/09/2021 at 10:00h in the server registered, for the K-means model.

Based on the outliers detected in this peak, and the training data of the model, it is

possible to verify that the feature "memory actual used" presents values that are not part of

the pattern of any cluster. We can conclude that, in this hour, there was unusual behaviour

due to the abnormal value of memory normally used in that server (see Figure 5.5).

These peaks show that the model is successfully categorizing anomalous behaviour

during the week of system overload. This in-depth observation allows us to verify that

it is possible, with further and detailed analysis, to understand the results obtained by

anomaly detection we have implemented.
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Table 5.3: Hour of the biggest peak of outliers detected on a given day. Time window of
the last 24 hours of each day.

Model Sql server Storage server App server
K-means

25-Sep-2021 05:00 09:00 19:00
26-Sep-2021 05:00 22:00 16:00
27-Sep-2021 05:00 10:00 10:00
28-Sep-2021 05:00 16:00 17:00
29-Sep-2021 05:00 15:00 11:00
30-Sep-2021 05:00 10:00 08:00
01-Oct-2021 05:00 14:00 11:00
02-Oct-2021 05:00 12:00 17:00

Gaussian Mixture

25-Sep-2021 05:00 21:00 19:00
26-Sep-2021 05:00 12:00 16:00
27-Sep-2021 05:00 15:00 16:00
28-Sep-2021 05:00 14:00 17:00
29-Sep-2021 05:00 15:00 11:00
30-Sep-2021 05:00 10:00 08:00
01-Oct-2021 05:00 14:00 11:00
02-Oct-2021 05:00 12:00 17:00

Figure 5.5: Memory actual used vs. memory used in the "Storage" server. The red/blue
points represent the training points of each cluster whereas the black points represent
the outliers registered on 27/09/2021 at 10:00h.
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Table 5.4: Number of outliers detected on Enrollment Week on "Storage" server.

Storage server
K-means Gaussian Mixture

Dataset A 3,188 2,986

Dataset B 3,031 2,749

Model Tuning 1 14

Table 5.5: Number of outliers detected on Enrollment Week on "Sql" server.

Sql server
K-means Gaussian Mixture

Dataset A 1,350 737

Dataset B 1,171 459

Model Tuning 0 0

Table 5.6: Number of outliers detected on Enrollment Week on "App" server.

App server
K-means Gaussian Mixture

Dataset A 1,545 1,190

Dataset B 668 672

Model Tuning 29 27

Both models detect the same main events, which corroborates that the proposed solu-

tion can detect outliers. We notice however that the observed results are influenced by

the threshold set (3σ), which affects the detection of outliers.

The improvement of the models should be a continuous process parallel to real-time

anomaly detection. Therefore, it is important to carry out further study regarding the

threshold value and to retrain the learning algorithms according to the new data being

collected over time. Thus, for example, with the continuous tuning of the ML models.

5.2.2.2 Models Based on Dataset B

We are now repeating the analysis regarding the Enrolment Week, but using the models

that were created based on the normal dataset B. That is, models based on more data in

comparison to A. We want to figure out in particular if there is substantial influence of

the size of data on the clustering models.

When comparing both situations, in the dataset B situation there is in general a de-

crease in outliers. This is an expected result since the new models are re-trained with

more data, which is assumed to tune the categorization.

Tables 5.4, 5.5 and 5.6 show the number of outliers detected for each case. In general,

there was not a significant change, which is positive in a certain way, as it indicates that

our models were properly modelled in the first experiment (with dataset A).
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5.2.3 Model Tuning Experiment

Despite the reduction of outliers regarding the Enrollment Week in the situation men-

tioned in Section 5.2.2.2, we still think the number of outliers is quite substantial for

what we would expect. Thus, we have decided to further investigate on the possible rea-

son as to why there is such high number of outliers, and if that number was supposed to

be the case.

Thereafter, we proceeded to evaluating the models as a new use case, picking up

a random week of data but considered to be a normal one, as far as usage pattern is

concerned. It turns out we have used data from 12/03/2022 to 19/03/2022. The number

of outliers detected for this week is still considerable, which is not desirable for detection

as it looks like the models are very immature. These results can be justified by the removal

of relevant data when applying the z-score function in the training data, which contains a

fixed threshold of 3.

This value in the context of considerably small training data could remove important

data that would be a normal usage pattern. But, since relative to the majority of the data,

they are small amounts, they end up being removed with the z-score function. Therefore,

the z-score value should be re-evaluated in future research. To validate this assumption,

we have created new models using the dataset B from the experiment 5.2.2.2 but now

removing the z-score method from the ML pipeline.

After creating these models, we have used them in the Enrollment Week, and similarly

to what we have done in the previous experiments. We have concluded that the number

of outliers was reduced very significantly. This outcome highlights the importance of the

correct application of this technique, which will directly affect the categorization of the

models, both in terms of false positives and false negatives.

This new experiment also serves as verification that the constant spikes detected on

the "Sql" server were a usual pattern of the server and not outliers as we speculated.

Table 5.7 demonstrates that both the K-means model and Gaussian Mixture model do

not detect outliers on the "Sql" server.

Furthermore, it is noted that the peaks of outliers regarding the experiment 5.2.2.2

changed to a much lower number of occurrences, which is expected given the wider

coverage of the models. By analysing the results, we notice that the behaviour of the

"Storage" server is more unpredictable than the behaviour of the "App" server, which

presents greater conformity between the peaks detected by the different models. This can

be checked in Table 5.7.

However, we realise that this experiment is only an attempt to validate some theories

that were introduced throughout the study of the models. In a real case scenario, the

z-score function should not be abruptly removed, since the training data is not being

formalized and validated, and it may contain outliers and these outliers should not be

included in the training dataset. Therefore, the most appropriate thing to do is a more

meticulous study, such as calculating the best z-score for each feature, and comparing the
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Table 5.7: Hour of the biggest peak of outliers detected on a given day on the second
iteration without z-score function. Time window of the last 24 hours of each day.

Model Sql server Storage server App server
K-means

25-Sep-2021 — — 19:00
26-Sep-2021 — — 16:00
27-Sep-2021 — — —
28-Sep-2021 — 16:00 08:00
29-Sep-2021 — — 06:00
30-Sep-2021 — — 08:00
01-Oct-2021 — — —
02-Oct-2021 — — 06:00

Gaussian Mixture

25-Sep-2021 — 09:00 19:00
26-Sep-2021 — 12:00 16:00
27-Sep-2021 — — —
28-Sep-2021 — 16:00 08:00
29-Sep-2021 — 14:00 —
30-Sep-2021 — 11:00 08:00
01-Oct-2021 — 11:00 11:00
02-Oct-2021 — — —

results of the different training datasets in outlier detection.

Beyond these concerns, and since there is no previously studied database, more data

has to be collected for model creation. The larger the amount of data, the wider the

distribution of different types of data, and the better the ability of functions like z-score

not removing certain values that may be patterns rather than outliers. That said, the

whole process of creating models is a process that should be done wisely.

5.3 Data Visualization

Besides data visualization specifically related to network attacks and system anomalies

detection, we have also created a range of charts with different features collected. Fig-

ure 5.6 shows an example of the kind of visualization obtained, comprised of graphics of

cpu percentages, graphics of load values, graphics of memory and disk usage, and graph-

ics of the state of processes on the server. Also Figure 5.7 represents an example of the

visualization applied on network data, containing graphics of the source and destination

Internet Protocol (IP) of the network data collected on the device.

This type of dashboard allows the user not only to study the behaviour of the models,

but also to observe the evolution of the features in real-time, in a simply and pragmati-

cally way. Indeed, with the help of these graphics it is more perceptible to visualise the

variation of the features and how they may affect the results.
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Figure 5.6: Example of a dashboard in Kibana – metrics data with a time window of
25/09/2021 at 00:00h to 27/09/2021 at 12:00h.

57



CHAPTER 5. EVALUATION

Figure 5.7: Example of a dashboard in Kibana – network data with a time window of the
last 2 minutes, in real-time.

5.4 Summary

In this chapter, we evaluate the implementation of the proposed framework. This work

focused on building a data streaming framework, that is, a network analysis framework

working in real-time, based on the Plug-in-and-Play concept, where each module can be

separated and adapted to the case study.

Throughout this chapter, it is possible to see that the results we have, apparently may

not be surprising, but they are relevant and indicate that this approach has a future. All

the models created achieved results within expectations, however, the desired result was

not always delivered.

On the attack detection dimension, this evaluation serves as a proof of concept since

the attacks are typified in the dataset. In this initial phase of construction of the proposed

framework, the idea is also to show that these classic methods work in this architecture.

There were difficulties in classifying the appropriate attack. Nevertheless, it is assigned

an attack with properties similar to the real attack.

Regarding the outlier detection dimension, when analysing the data, there is a same-

ness in the models created regarding the two data sets used. Despite this, it is noticeable

that model tuning is a very relevant task to provide the user with a more reliable system.
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Besides the importance of studying attacks on the network, it is also essential to

develop techniques capable of monitoring the behaviour of devices to supplement the

attack detection work. This dimension is also relevant since it is also vital to monitor

metrics data to maintain the health of the device to provide a good user experience.
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6

Conclusions and Future Work

6.1 Conclusions

With the continuous growth of traffic over networks, attacks and anomalies incidents

have been rise in several organisations. Therefore, it is important to bear in mind that an

organisation must have mechanisms capable of providing cybersecurity in its network in

real-time.

In this scope, we proposed a Plug-in-and-play framework based on data streaming.

The framework was built around this concept so that all modules were split up so that the

tools used in them could be changed according to the use case. During the development,

we considered that it was important to create a system capable of corresponding to the

current data streaming growth. Therefore, it was relevant to apply Big data and Security

Information and Event Management (SIEM) methodology in our approach.

In addition to the different techniques applied for the development of the framework,

we introduce two data sources that can work together, improving the security assessment

of the network under study. In our proposal, we divided the topic into two dimensions,

an attack dimension and an anomaly dimension in order to obtain a product that con-

sidered not only typical attacks but also the good functioning of the system analysed, an

important factor in cybersecurity evaluation.

Moreover, it is always taken into consideration the classical CRISP-DM [28] process

that remits us to do a constant process of evaluation of our created models, operating in

parallel with the actual deployment, to deliver an up-to-date network analysis system

that can evolve and obtain more reliable results.

After the implementation, we proceeded to evaluate our artefact. We performed as-

sessment tests. Regarding attack detection, we produced controlled attacks. We analysed

that our attack model detected attacks in certain experiments, however, in certain cases,

we did not obtain the expected results.

Concerning anomaly detection, we decided to apply the categorization models devel-

oped in a specific week, Enrollment Week, a week with system data patterns considered

abnormal. We observed that anomaly detection did occur. However, there were certain
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data that after our analysis, we identified might not, in fact, be anomalies.

This work served as a proof of concept of the creation of a framework capable of

handling data streaming and presenting real-time results in a dashboard using all the

current techniques described above. This dissertation also served as a complement to

the work produced by Dias et al. [37] to introduce the importance of monitoring system

metrics data, since there are certain advanced attacks, stealth attacks [26], that can be

carried out at such a slow cadence that they may not be detected by monitoring network

data.

A goal of this research was also to answer the 5 research questions that initiated the

study of the implementation of an network analysis system in the ISCTE – Instituto

Universitário de Lisboa (Iscte) network. Those questions are now addressed below.

1. What type of techniques for the development of a network analysis framework in real-time

should be applied in this research?

As the initial knowledge on the subject was non-existent, it was necessary to re-

search the different techniques applied in the development of a system of this na-

ture. Throughout the research, different techniques such as system based on SIEM

methodology, Big Data, Machine Learning (ML) and Plug-in-and-play were under-

stood. The system based on SIEM methodology are an important and relevant

typology since it is vital to have a system that not only indicates the detection of

problems but also allows us to evaluate the data forensically.

Being a project that involves a large amount of data, it is important to bear in

mind Big Data techniques that allow the production of a scalable solution to extend

the framework to as many devices as required. For the detection of attacks and

anomalies, we need to apply ML techniques to analyse the collected data.

The conception of this system also had the purpose of gathering different open-

source tools in one ecosystem in which all could work in unison, but at the same

time be independent of each other. Thus, the importance of the Plug-in-and-play

concept emerges. With this notion of independence, it would be possible to change

various parts of the union if the case study demanded it, i.e., different devices or

types of data were added to the framework. Bearing this sensibility, it would be

possible to build a robust system.

2. Are there any advantages in implementing a network analysis framework for simultane-

ous attack and anomaly detection?

During the research of the related work, it was observed that many of the articles

concerning the development of real-time security strategies used only data from

network flows. However, when studying the topic, it was created the sensibility

that in terms of attacks, increasingly there are silent attacks, stealth attacks, which

consist of attacks that infect devices, but their proliferation is at a low cadence that
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they go unnoticed in the network flow data analysis. Normally these attacks are

hosted and use system resources for their objective.

Consequently, we thought it would be interesting to deploy a framework that could

be more complete than just flow data. Throughout the research, we sought to find

new data that could supplement it. Therefore, we realized that from system metrics

data such as CPU, disk, memory, etc. it is possible to create mechanisms capable of

learning the normal behaviour of a system.

From this behaviour, we could evaluate when unexpected behaviour occurs. This de-

tection is interesting since it may indicate certain types of attacks that attack detec-

tion system do not detect. Therefore, the idea of combining attacks and anomalies

detection in the same system serves to somehow add trust value to the framework.

3. How to measure the results obtained in the proposed framework deployed on the Iscte

network?

Based on the various articles reviewed in the related work, it is possible to verify

that the evaluation of the quality of detection of possible attacks or anomalies is

a challenging process. During the initial iterations of a framework, it is expected

that both false positives and false negatives will be detected, ie, detected attacks or

anomalies that are not and attacks or anomalies that may go unnoticed respectively.

So, this should be a continuous evaluation process.

The proposed framework keeps these aspects in mind by developing the notion of

Model Tunning. This notion enables the framework to be updated and improved

over time, i.e., constant improvement in the accuracy of the evaluation of the sys-

tem’s behaviour and constant monitoring of the emergence of new types of attacks.

To perform the improvement, regarding anomaly detection, the tuning of the im-

plemented models with the addition of new metrics data that will be collected over

time is essential. In terms of monitoring new attacks, there should be constant

research of articles and reports on the topic to keep up with current events.

4. Are there benefits in the implementation of the proposed framework on the Iscte network?

It was seen in the related work that measuring the benefits of a network analysis

framework is challenging. Particularly in the short-term as the use case of our

research. Therefore, the benefits cannot be quantified, however, it is possible to

qualify that this framework introduces new forms of network analysis, which until

now did not exist in the organisation. However, the benefits can be assessed in the

long-term with future studies in this area, evaluating the impact this framework

has achieved in the Iscte network. Nevertheless, the development of this study

already benefits the Iscte, highlighting the importance of the subject of security for

the future.
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6.2 Limitations

Concerning the results achieved in Chapter 5, we can note that there are certain limita-

tions in our models. When we ran our experiments, in some cases, the results were not

what we expected. It is noticeable that the applied models need improvement.

This is a problem that occurs naturally during the early stages of implementing ML

models. But the whole structure from data collection to results presentation is operational

and this aspect was already considered during the construction of our framework. It is a

matter of tuning models.

However, these limitations are relevant and necessary for this approach to be of inter-

est for future studies.

6.3 Future Work

As mentioned several times, the proposed framework is a proof-of-concept data stream-

ing monitoring system built with open-source tools. As such it will need continuous

improvement to become more reliable for users, but the important thing is that the con-

cept worked.

Our evaluation of the proposed framework has shown that there are several improve-

ment factors in the proposed framework, such as: (i) the adequate calculation of the

z-score function for data cleanup in training datasets; (ii) re-evaluate the number of clus-

ters and gaussians using adequate techniques when the models are re-trained with new

data (iii) re-evaluate the deeming of an outlier.

One way to further improve the data modelling could be the application of new types

of ML models. During the research, we saw several applications of deep learning. It

would be an interesting path to follow and evaluate its potential in the given context

against the models implemented in this dissertation.

Moreover, it would also be interesting to explore new types of devices in the network

as well as the introduction of new metrics that could be relevant for the assessment of a

system’s behaviour to make the detection even more sophisticated. For that, it is advised

the server used to implement the framework have more powerful hardware than the one

used in this dissertation.

Last but not least, it can be interesting for anomaly detection and even for attacks to

have both types of data combined. A third dimension that has not been explored but can

be implemented in the future.

In a conclusion, it would be worthwhile to make a long-term evaluation of the benefits

of this framework in the Iscte network.
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Annexes

Figure I.1: Attack Detection features provided by CICFlowMeter tool [30] (Part 1).
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Figure I.2: Attack Detection features provided by CICFlowMeter tool (Part 2).

Figure I.3: Attack Detection features provided by CICFlowMeter tool (Part 3).
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Figure I.4: Anomaly Detection features provided byMetricbeat agent [14] on the "Storage"
and "Sql" servers.

Figure I.5: Anomaly Detection features provided by Metricbeat agent on the "App" server
(Part 1).
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Figure I.6: Anomaly Detection features provided by Metricbeat agent on the "App" server
(Part 2).
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