
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

1-1-2021

TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE

INTRUSION DETECTION SYSTEM USING NEWLY GENERATED INTRUSION DETECTION SYSTEM USING NEWLY GENERATED

HETEROGENEOUS DATASETS HETEROGENEOUS DATASETS

Ahmed Mosbah Elsaeed Mahfouz

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Mahfouz, Ahmed Mosbah Elsaeed, "TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE INTRUSION
DETECTION SYSTEM USING NEWLY GENERATED HETEROGENEOUS DATASETS" (2021). Electronic
Theses and Dissertations. 2929.
https://digitalcommons.memphis.edu/etd/2929

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2929?utm_source=digitalcommons.memphis.edu%2Fetd%2F2929&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE

INTRUSION DETECTION SYSTEM USING NEWLY

GENERATED HETEROGENEOUS DATASETS

by

Ahmed Mahfouz

A Dissertation

Submitted in conformity with the requirements for the degree of

Doctor of Philosophy

in

Computer Science

The University of Memphis

2021

ii

Copyright ©2021 Ahmed Mahfouz

All rights reserved

 i

DEDICATION

This work is dedicated to my loving parents, my cherished wife, my sweet daughter, and my

faithful siblings for their endless love, support, and encouragement.

 ii

ACKNOWLEDGMENTS

I thank all who, in one way or another, contributed to the completion of this dissertation. First,

and foremost, I pledge allegiance to the Almighty Allah for the strength and protection he has

given me.

I express my sincere gratitude to my advisor, Dr. Sajjan Shiva, both for the trust he showed

me through our cooperation and for his valuable guidance during the elaboration of the thesis. His

guidance helped me throughout my time of study and research, leading up to writing this

dissertation. Through his supervision this work came into existence. I could not have had a better

mentor for my Ph.D. study.

Besides my advisor, I also warmly thank the rest of my dissertation committee: Dr. Robin

Poston, Dr. Deepak Venugopal, and Dr. Faruk Ahmed. Their support, insightful comments, and

encouragement were most gratifying.

Finally, gratefully thank my wife, whose unconditional encouragement and support afforded

my completing this work. I also express my heartfelt love to my daughter for coping with the

undue paternal deprivation during the course of my study. Moreover, I deeply thank my parents

and siblings for their support and prayers.

 iii

PUBLICATIONS

The following list presents all publications relating to this dissertation:

1. Mahfouz, Ahmed M., Abdullah Abuhussein, Deepak Venugopal, and Sajjan Shiva. "Ensemble

Classifiers for Network Intrusion Detection Using a Novel Network Attack Dataset." Future

Internet 12, no. 11 (2020): 180.

2. Mahfouz, Ahmed M., Abdullah Abuhussein, Deepak Venugopal, and Sajjan G. Shiva. "Network

Intrusion Detection Model Using One-Class Support Vector Machine." In Advances in Machine

Learning and Computational Intelligence, pp. 79-86. Springer, Singapore, 2021.

3. Mahfouz, Ahmed M., Deepak Venugopal, and Sajjan G. Shiva. "Comparative analysis of ML

classifiers for network intrusion detection." In Fourth international congress on information and

communication technology, pp. 193-207. Springer, Singapore, 2020.

4. Das, Saikat, Ahmed M. Mahfouz, and Sajjan Shiva. "A stealth migration approach to moving

target defense in cloud computing." In Proceedings of the Future Technologies Conference, pp.

394-410. Springer, Cham, 2019.

5. Das, Saikat, Ahmed M. Mahfouz, Deepak Venugopal, and Sajjan Shiva. "DDoS intrusion

detection through machine learning ensemble." In 2019 IEEE 19th international conference on

software Quality, Reliability and Security Companion (QRS-C), pp. 471-477. IEEE, 2019.

6. Mahfouz, Ahmed M., Md Lutfar Rahman, and Sajjan G. Shiva. "Secure live virtual machine

migration through runtime monitors." In 2017 Tenth International Conference on Contemporary

Computing (IC3), pp. 1-5. IEEE, 2017.

 iv

LIST OF TABLES

TABLE 1: COMPARISON OF INTRUSION DETECTION SYSTEM TYPES.. 23
TABLE 2: STATISTICS OF REDUNDANT RECORDS IN THE KDD TRAINING DATASET. ... 61
TABLE 3: THE FULL LIST OF NSL-KDD FEATURES. ... 62
TABLE 4: COMPREHENSIVE OVERVIEW OF MOST USED AVAILABLE DATASETS. ... 67
TABLE 5: NSL-KDD ATTACK TYPES AND CLASSES. .. 94
TABLE 6: NO OF SAMPLES FOR NORMAL AND ATTACK CLASSES. .. 95
TABLE 7: NSL-KDD SELECTED FEATURES. ... 96
TABLE 8: CLASSIFIER TRAINED MODEL ACCURACY METRICS OF PHASE 1. .. 101
TABLE 9: CLASSIFIER TRAINED MODEL ACCURACY METRICS ON THE TEST DATASET OF PHASE 1. ... 102
TABLE 10: CLASSIFIER TRAINED MODEL ACCURACY METRICS OF PHASE 2. .. 102
TABLE 11: CLASSIFIER TRAINED MODEL ACCURACY METRICS ON THE TEST DATASET OF PHASE 2. ... 103
TABLE 12: CLASSIFIER ACCURACY DETECTION FOR DIFFERENT CLASSES OF ATTACKS. ... 103
TABLE 13: FULL LIST OF GTCS-I EXTRACTED FEATURES. .. 112
TABLE 14: NO OF SAMPLES FOR NORMAL AND ATTACK CLASSES. .. 118
TABLE 15: PHASE 1 EXAMINATION RESULTS. ... 120
TABLE 16: PHASE 2 EXAMINATION RESULTS. ... 120
TABLE 17: CLASSIFIERS ACCURACY DETECTION FOR DIFFERENT CLASSES OF ATTACKS... 120
TABLE 18: INDIVIDUAL VS ENSEMBLE PERFORMANCES. ... 125
TABLE 19: GTCS-II COLLECTED DATA. ... 134
TABLE 20: THE FULL LIST OF GTCS-II EXTRACTED FEATURES. ... 135
TABLE 21: CRITICAL HYPERPARAMETERS. .. 150
TABLE 22: TWO-FOLD CLASSIFICATION RESULTS FROM THE GTCS-I DATASET. ... 152
TABLE 23: GTCS-I MULTI-CLASS CLASSIFICATION RESULTS. ... 152
TABLE 24: CONFUSION MATRIX OF THE 7 ATTACKS IN GTCS-II. .. 152
TABLE 25: PERFORMANCE METRICS FOR GTCS-II. ... 153

 v

LIST OF FIGURES

FIGURE 1: NUMBER OF INTERNET USERS IN THE WORLD AS OF JANUARY 2021 .. 2
FIGURE 2: NUMBER OF NEW SOFTWARE VULNERABILITIES REPORTED PER YEAR ... 4
FIGURE 3: SIMPLE CLASSIFICATION EXAMPLE. .. 29
FIGURE 4: GENERAL APPROACH FOR BUILDING A CLASSIFICATION MODEL. .. 30
FIGURE 5: A SIMPLE REGRESSION EXAMPLE. .. 31
FIGURE 6: A SIMPLE CLUSTERING EXAMPLE. .. 33
FIGURE 7: UNBOUNDED SUBSETS CLUSTERING EXAMPLE. .. 33
FIGURE 8: DECISION TREE CLASSIFICATION EXAMPLE. .. 37
FIGURE 9: DECISION TREE EXAMPLE FOR INTRUSION DETECTION [56]. ... 38
FIGURE 10: K-MEANS CLASSIFICATION EXAMPLE. ... 39
FIGURE 11: LINEAR REGRESSION MODEL. ... 40
FIGURE 12: SIMPLE ILLUSTRATION OF THE CONCEPT OF SVM [50] .. 43
FIGURE 13: NON-LINEARLY SEPARABLE VS LINEARLY SEPARABLE SET. ... 44
FIGURE 14: PERCEPTRON. .. 46
FIGURE 15: GEOMETRY INTERPRETATION OF THE ONE-CLASS SVM CLASSIFIER. ... 85
FIGURE 16: MODERN HONEY NETWORK IMPLEMENTATION. .. 87
FIGURE 17. OCSVM ANOMALY DETECTOR MODEL USING AML. ... 90
FIGURE 18: PER-CLASS COMPARISON BASED ON PRECISION, RECALL AND F1 SCORE. .. 91
FIGURE 19: TRAINING VS. TESTING ACCURACY OF PHASE 1. ... 98
FIGURE 20: TRAINING VS. TESTING ACCURACY OF PHASE 2. ... 99
FIGURE 21: TESTING ACCURACY OF PHASES 1 AND 2. .. 99
FIGURE 22: ROC CURVES FOR PHASE 1. ... 100
FIGURE 23: ROC CURVES FOR PHASE 2. ... 101
FIGURE 24: THE LAB SETUP FOR THE GTCS NETWORK. .. 108
FIGURE 25: CICFLOWMETER INTERFACE. ... 112
FIGURE 26: GTCS-I SELECTED FEATURES. ... 119
FIGURE 27: CLASSIFICATION ACCURACY IN THE TWO PHASES. ... 122
FIGURE 28: THE ACCURACY OF EACH CLASSIFIER IN CLASSIFYING DIFFERENT CLASSES IN GTCS-I. .. 123
FIGURE 29: ENSEMBLE CLASSIFIER MODEL FLOW. .. 124
FIGURE 30: ENSEMBLE VS SINGLE CLASSIFIERS ACCURACY. .. 125
FIGURE 31: TESTBED SUBSYSTEMS. .. 126
FIGURE 32: MHN SERVER ARCHITECTURE. ... 131
FIGURE 33. TESTBED SYSTEM ARCHITECTURE ... 133
FIGURE 34. DIONAEA TOP CAPTURED MD5BINARIES ... 139
FIGURE 35. SCANNING RESULTS FOR A MALWARE FILE .. 139
FIGURE 36. DIONAEA TOP ATTACKERS.. 140
FIGURE 37. DIONAEA TOP ATTACKS BY COUNTRIES. .. 140
FIGURE 38. DIONAEA TOP ATTACKED PORTS. .. 140
FIGURE 39. P0F TOP ATTACKERS. .. 141
FIGURE 40. P0F TOP ATTACKS BY COUNTRIES. ... 141
FIGURE 41. P0F TOP ATTACKED PORTS. ... 141
FIGURE 42. P0F TOP LINK TYPES. .. 142
FIGURE 43. P0F TOP OPERATING SYSTEMS. .. 142
FIGURE 44. AMUN TOP ATTACKERS AND THEIR COUNTRIES. ... 142
FIGURE 45. AMUN TOP ATTACKS BY COUNTRIES... 143
FIGURE 46. AMUN TOP ATTACKED PORTS. .. 143
FIGURE 47. COWRIE TOP URLS. ... 144
FIGURE 48. COWRIE TOP SSH VERSIONS. ... 144
FIGURE 49. COWRIE TOP USERS/PASSWORDS. .. 144
FIGURE 50. COWRIE TOP ATTACK COMMANDS. ... 145

 vi

FIGURE 51. COWRIE TOP ATTACKERS AND THEIR COUNTRIES. ... 145
FIGURE 52. COWRIE TOP ATTACKS BY COUNTRIES. ... 145
FIGURE 53. SNORT TOP ATTACKERS AND THEIR COUNTRIES.. 146
FIGURE 54. SNORT CAPTURED TOP ATTACKS BY COUNTRIES. .. 146
FIGURE 55. SNORT CAPTURED TOP ATTACKED PORTS. .. 147
FIGURE 56. CONPOT TOP ATTACKERS AND THEIR COUNTRIES. .. 147
FIGURE 57. CONPOT CAPTURED TOP ATTACKS BY COUNTRIES. .. 148
FIGURE 58. CONPOT CAPTURED TOP ATTACK TYPES. .. 148
FIGURE 59. TOP ATTACKERS AND THEIR COUNTRIES.. 148
FIGURE 60. TOP ATTACKS BY COUNTRIES. ... 149
FIGURE 61. MOST ATTACKED PORTS. ... 149
FIGURE 62: STACKING ENSEMBLE MODEL. .. 150
FIGURE 63: ROC CURVE FOR GTCS-II. .. 154

 vii

ABSTRACT

With the exponential growth of network-based applications globally, there has been a

transformation in organizations' business models. Furthermore, cost reduction of both

computational devices and the internet have led people to become more technology dependent.

Consequently, due to inordinate use of computer networks, new risks have emerged. Therefore,

the process of improving the speed and accuracy of security mechanisms has become crucial.

Although abundant new security tools have been developed, the rapid-growth of malicious

activities continues to be a pressing issue, as their ever-evolving attacks continue to create severe

threats to network security. Classical security techniques—for instance, firewalls—are used as a

first line of defense against security problems but remain unable to detect internal intrusions or

adequately provide security countermeasures. Thus, network administrators tend to rely

predominantly on Intrusion Detection Systems to detect such network intrusive activities. Machine

Learning is one of the practical approaches to intrusion detection that learns from data to

differentiate between normal and malicious traffic. Although Machine Learning approaches are

used frequently, an in-depth analysis of Machine Learning algorithms in the context of intrusion

detection has received less attention in the literature.

Moreover, adequate datasets are necessary to train and evaluate anomaly-based network

intrusion detection systems. There exist a number of such datasets—as DARPA, KDDCUP, and

NSL-KDD—that have been widely adopted by researchers to train and evaluate the performance

of their proposed intrusion detection approaches. Based on several studies, many such datasets are

outworn and unreliable to use. Furthermore, some of these datasets suffer from a lack of traffic

diversity and volumes, do not cover the variety of attacks, have anonymized packet information

and payload that cannot reflect the current trends, or lack feature set and metadata.

 viii

This thesis provides a comprehensive analysis of some of the existing Machine Learning

approaches for identifying network intrusions. Specifically, it analyzes the algorithms along

various dimensions—namely, feature selection, sensitivity to the hyper-parameter selection, and

class imbalance problems—that are inherent to intrusion detection. It also produces a new reliable

dataset labeled Game Theory and Cyber Security (GTCS) that matches real-world criteria,

contains normal and different classes of attacks, and reflects the current network traffic trends.

The GTCS dataset is used to evaluate the performance of the different approaches, and a detailed

experimental evaluation to summarize the effectiveness of each approach is presented. Finally, the

thesis proposes an ensemble classifier model composed of multiple classifiers with different

learning paradigms to address the issue of detection accuracy and false alarm rate in intrusion

detection systems.

 ix

Contents

1. INTRODUCTION ... 1

1.1. Overview ... 1

1.2. Problem Statement and Research Motivation .. 3

1.3. Thesis Contributions ... 7

2. THEORETICAL BACKGROUND .. 10

2.1. Cybersecurity ... 10
2.1.1. Types of Attackers ... 12
2.1.2. Internal and External Threats .. 14
2.2. Intrusion Detection Systems.. 16
2.2.1. Key Functions of an Ideal IDS .. 18
2.2.2. Intrusion Detection Analysis Methodologies ... 19
2.2.3. IDS Types ... 22
2.2.4. Limitations of Intrusion Detection Systems ... 25
2.3. Machine Learning (ML) .. 27
2.3.1. Supervised Learning .. 28
2.3.2. Unsupervised Learning ... 32
2.3.3. Reinforcement Learning ... 34
2.3.4. Semi-Supervised Learning .. 34
2.3.5. Aspects of ML Systems .. 35
2.3.6. Brief Description of Selected Popular ML Algorithms... 36
2.3.7. Hyperparameters Optimization ... 46
2.3.8. Ensemble Learning .. 47

3. DATASETS ... 51

3.1. Data Preprocessing .. 51
3.2. Popular Datasets and Its Issues .. 58
3.2.1. DARPA-Lincoln ... 58
3.2.2. KDD Cup 1999 ... 59
3.2.3. NSL-KDD ... 61

4. LITERATURE SURVEY .. 66

4.1. Network Attack Datasets ... 67
4.2. One-Class Classification .. 74
4.3. Feature Selection .. 76
4.4. ML Algorithms Comparison ... 77
4.5. Ensemble Models ... 77
4.6. Discussion ... 82

5. NETWORK INTRUSION DETECTION MODEL USING OCSVM .. 84

5.1. One-Class Support Vector Machine (OCSVM) .. 84
5.2. The MHN Dataset .. 85
5.2.1. Network Sensors and Honeypots .. 87
5.3. The Experimental Setup .. 89
5.4. The Experimental Results ... 90

 x

5.5. Discussion ... 91

6. COMPARATIVE ANALYSIS OF ML CLASSIFIERS USING NSL-KDD DATASET 93

6.1. Statistical Summary of NSL-KDD ... 93
6.2. Experimental Setup ... 95
6.3. Experimental Results ... 98
6.4. Conclusion .. 105

7. GTCS-I: NEW GENERATED DATASET ... 106

7.1. Lab Setup .. 107
7.2. Data Collection & Feature Extraction ... 109
7.3. Discussion ... 117

8. NEC-IDS: A HOLISTIC APPROACH FOR IDS USING ENSEMBLE ML CLASSIFIERS 118

8.1. Statistical Summary of GTCS-I .. 118
8.2. ML Algorithms Performance Comparison .. 119
8.3. NEC-IDS: A Holistic Approach for IDS Using Ensemble ML Classifiers 123
8.4. The Experimental Results ... 124

9. GTCS-II: NEW GENERATED DATASET FROM A REAL TRAFFIC .. 126

9.1. Lab Setup .. 126
9.1.1. The Sensors Subsystem (Honeynet) ... 126
9.1.2. The Collector Subsystem (MHN) ... 130
9.1.3. The Visualizer (Splunk) ... 132
9.2. Data Collection ... 133
9.3. Data Presentation and Analysis .. 133
9.4. Data Labeling ... 138
9.5. GTCS-II Interesting Facts .. 138
9.6. SNEC-IDS: Stacking ensemble IDS using Heterogeneous Datasets .. 149
9.7. Implementation Strategy ... 150
9.8. The Classification Process ... 150
9.9. Results and Discussion ... 151
9.10. Discussion ... 154

10. CONCLUSION ... 156

10.1. Future Work... 158

REFERENCES ... 159

 1

1. INTRODUCTION

1.1. Overview

The internet has become a key instrument for modern societies and economies by providing

quick and flexible information sharing among people and businesses. It has a set of support

technologies that provides several significant features, including usability, interoperability,

platform, and language independence, among others. This is extremely essential for enabling

cooperation between components of heterogeneous systems. The internet continues to evolve

quickly and adopt modern computational and communicating prototypes—such as cloud

computing services—that enable individuals to access remotely shared system components and

use them on-demand [1]. Besides individual usage, enterprises and governments have become

increasingly dependent on cyberspace for their daily activities. Different tasks, such as

communications and financial transactions, as well as management of essential infrastructure, can

now be conducted over the internet. Until very recently, in most cases, carefully restricted and

secured media were used to execute such tasks. There have been some concerns related to spying

and data loss. However, these were chiefly limited, as system infrastructures were usually

inaccessible externally. Now, however, most organizations are connected to the internet

permanently, and the majority of them are migrating their computing infrastructures to the cloud.

The multifaceted nature of the internet grows consistently, presenting new functionalities and

mixing technologies with incredible speed. For instance, web applications allow millions of users

to access abundant data and use different types of services in a diverse range of areas, including

financial services, e-commerce, education, entertainment, and communications, among others.

The Internet World Stats [2] have reported that internet users comprise over 55.1% of the world

 2

population. Shown in Figure 1 is the growth in the number of internet users globally as of January

2021. This unremitting increase denotes a rise in the amount of data generated online; as such, the

services that run over the internet have become major targets for cyber-attacks.

Figure 1: Number of Internet Users in the World as of January 2021

Cyber-attacks have become more widespread, as intruders employ system vulnerabilities for

theft of intellectual property, financial gain, and destruction of the entire network infrastructure

[3]. In fact, recently the Federal Bureau of Investigation (FBI) released a high-impact

cybersecurity warning in response to the increasing number of attacks on government targets.

Government officials have warned major cities that such hacks are a disturbing trend that is likely

to continue. The time to detect a security breach may be measured in days, as attackers are aware

of existing security controls and are continually improving their attacks. In many cases, a security

breach is inevitable, which makes early detection and mitigation the best defense for surviving an

attack.

 3

To reduce the risk of security breaches, security professionals use different prevention and

detection techniques. Prevention techniques such as applying complex configurations and

establishing a strong security policy try to make attacks more difficult. All security policies should

maintain the CIA triad—three principles, which are Confidentiality, Integrity, and Availability.

Detection techniques are either signature based, or anomaly based. Classical security

solutions—such as virus scanners, and firewalls—depend on a signature-based approach that

compares a hash of the payload to a database of known malicious signatures [4]. These techniques

provide a strong defense against known attacks but fail in detecting zero-day attacks. Moreover,

they are an inadequate guard against skilled attackers who use the latest attack techniques and can

easily bypass such security controls.

Anomaly detection techniques look for abnormal activities, including those that have not

occurred before, as they consider any unusual event as a potential attack. When routine activities

are detected to be irregular, false positives can occur [5]. Anomaly detection requires a system

trained with a model of normal system behavior.

1.2. Problem Statement and Research Motivation

Earlier, cyber attackers were usually a group of socially-isolated individuals [6] driven by

numerous motivations, including, but not limited to, inquisitiveness and the illicit thrill of

recognition for high-skilled hackers. Although such intruders tended to be highly talented, they

did not have the adequate financial means to produce more novel attacks. However, currently more

experienced attacks and motivations have been developed. For instance, Advanced Persistent

Threat (APT) attacks [7] can utilize diverse sophisticated techniques in particular zero-day exploits

with social engineering. This allows them to skip the security tools and preserve a presence on the

attacked system so as to control the system and collect data for a long period of time. Moreover,

 4

rather than independent, obsessed individuals, attackers have evolved into organized and well-

funded groups with different motives (economic or political), attacking high-profile infrastructure

from corporations to governments. The 2020 Crowd strike global threat report [8] revealed that

97% of the analyzed attacks have one or more motives. Cyberattacks have become highly diverse,

so security professionals have difficulty countervailing against the daily occurrence of threats,

vulnerabilities, and attacks. Depicted in Figure 2 is the number of common IT security

vulnerabilities and exposures discovered worldwide between 2009 and July 2021. In 2020, 18,325

new common IT vulnerabilities and exposures were discovered, the highest reported annual

number to date.

Figure 2: Number of New Software Vulnerabilities Reported per Year

Cybersecurity threats can be categorized as either active or passive attacks [9]. The main goal

of the attacker in the active attack is to terminate or disrupt the operations of the targeted network

 5

(e.g., create a denial of service). In a passive attack, though, the intruder stays unobserved trying

to obtain the exchanged data—such as in traffic analysis. In some cases, malware is installed to

monitor passively and leak information but with no intention of engendering an immediate

disruption.

Commercial network security appliances mainly perform misuse detection. They use

knowledge of previous attacks to create signatures that precisely identify new instances of such

attacks; unfortunately, they cannot identify novel attacks. A complementary anomaly detection

approach can identify novel attacks but at the expense of falsely identifying unusual activity as

malicious. These limitations result in a significant number of attacks being missed, hence leading

to theft of intellectual property and other information from vulnerable organizations. Meanwhile,

Machine Learning (ML) has the potential to overcome some weaknesses of an Intrusion Detection

System (IDS) [10]. Thus, security experts recently considered adopting ML to transcend the chaos

battling attackers. The main issue is that ML cannot be directly applied to network traffic, but

instead only to a fixed set of features constructed from network traffic. Creating these features (in

a process called feature engineering) is, therefore, a critical step that places a limit on the detector's

capabilities. However, feature engineering is often an ad-hoc process, using trial and error to find

which traffic features are most relevant to the detection problem. Such a process requires domain

knowledge and is time consuming when done iteratively. These difficulties in feature engineering

have inhibited the application of ML to network security. Additionally, due to the lack of sufficient

network traffic datasets, ML approaches for network intrusion detection suffer from absence of

accurate deployment, analysis, and evaluation. Although some datasets exist that researcher use to

build and evaluate their proposed IDS approaches, most of those datasets are outworn and

inaccurate to use. They are bereft of traffic diversity, do not address different types of attacks, and

 6

do not reflect current network traffic trends. Moreover, anomaly-based IDSs notably suffer from

high rates of false-positive alarms, but persistent efforts are being made to reduce of the large

number of false alarms.

Because intrusion detection is a data analysis process, it can be studied as a classification

problem. From this point of view, the efficiency of any classification system is subject to the data

presented to it as an input. Cleaner input data, as well as higher precise outcomes, is probably

going to be acquired. From the IDS standpoint, this implies that the false-positive rate can be

markedly decreased when the features that separate normal from abnormal data can be properly

extracted. Accordingly, this thesis proposes a new network intrusion detection model that trains

on real network traffic data and searches for abnormal behaviors that deviate from the normal

model.

Also, most classification approaches are based on familiar ML models, such as Support Vector

Machines [11], Decision Trees [12], and Neural Networks [13]. Those approaches study primarily

a set of data characteristics with an objective of calculating a category score. Therefore, this begs

the following question: How properly will they perform in network classification—particularly

when there is augmented noise, and the information structure is not homogenous? There is a need

to examine the accuracy of those methods in classifying the computer network traffic.

Accordingly, the thesis also provides an evaluation of the performance and efficiency of a set of

well-known ML classifiers that will help others wishing to use the approaches to learn about the

accuracy under certain conditions in an organizational network.

Moreover, there is a problem with the idea of applying ML classifiers, which entails building

a single classifier on a multi-class dataset. The problem is that a single classifier may not be strong

enough to classify the different classes with the same accuracy. Thus, researchers have derived the

 7

idea of constructing ensemble or hybrid classifiers. Scholars [e.g., 16, 17] have shown that a

system using ensemble model can produce better results in classification than one utilizing a single

classifier. A classifier ensemble was defined in [14] as “several classifiers are employed to make

a classification decision about the object submitted at the input, and the individual decisions are

subsequently aggregate.” The main goal of ensemble learning is to determine the best set of

classifiers and then the best method with which to combine them [15], rather than seeking the best

feature set or building a best single classifier. Likewise, there are limitations to employing a single

classifier in the classification of normal traffic and different attacks. These have led to the idea of

building an ensemble IDS model, which is more complicated but provides higher accuracy and a

lower false alarm rate. The main goal of this thesis is to improve the performance of IDS by using

ensemble methods and feature selection.

1.3. Thesis Contributions

This thesis contributes to the field of cybersecurity, with an emphasis on the application of

ML for intrusion detection. Specifically, the thesis offers the following contributions:

• The thesis proposes a new binary network intrusion detection model that trains

on normal network traffic data and searches for anomalous behaviors that

deviate from the normal model. It applies the One-Class Support Vector

Machine (OCSVM) algorithm to detect anomalous activities in network traffic.

The proposed approach models the regions where normal data have a high

probability density in n-dimensional feature-space and considers anomalous

data as those that do not occur in these regions. The method is capable of

detecting threats to the network without using any labeled data. Furthermore,

 8

by using kernel functions with OCSVMs, the proposed approach captures

complex, non-linear regions in the feature-space where the normal data are most

likely to reside—versus anomaly detectors that assume a specific shape/form

for the normal class.

• The thesis presents a testbed that could be a model for building real datasets, as

well as two versions of a new generated dataset for intrusion detection—namely

GTCS. The first version, GTCS-I, is an emulated dataset that overcomes most

shortcomings of the existing available datasets and addresses most of the

necessary criteria for common updated attacks, such as Botnet, Brute Force,

DDoS, and In-filtration. The second version, GTCS-II, is a dataset formulated

through real traffic and contains approximately a one-million record of a real

network traffic. The generated datasets are completely labeled with tens of

network traffic features extracted and calculated for all benign and intrusive

flows.

• The thesis provides a comprehensive analysis of six of the well-known ML

classifiers for identifying intrusions in network traffic. Specifically, it analyzes

the classifiers along various dimensions—namely, feature selection, sensitivity

to the hyper-parameter selection, and class imbalance problems inherent in

intrusion detection. The thesis provides a comprehensive evaluation of the

performance of each classifier over the NSL-KDD, the benchmark, and the

most used dataset in intrusion detection literature and the GTCS dataset. It

presents a detailed experimental evaluation to summarize the effectiveness of

each approach.

 9

• The thesis proposes an adaptive ensemble classifier model, NEC-IDS, which

integrates the advantages of different ML classifiers for different types of

attacks and achieves optimal results through ensemble learning. The advantage

of ensemble learning is combining the predictions of several base estimators to

improve generalizability and robustness over a single estimator.

• The thesis presents a stacking ensemble learning model that uses a meta-

classification method based on stacked generalization for network IDS. Two

contemporaries and heterogeneous datasets were utilized for the experiment,

and the experimental outcomes revealed that the proposed model was able to

produce superior results.

Hopefully, these contributions will advance the state-of-the-art in applying ML to the network

intrusion detection domain and facilitate the launch of more accurate ML applications to the

cybersecurity domain.

 10

2. THEORETICAL BACKGROUND

In this chapter, we explain what cybersecurity is and why the need for cybersecurity experts

is rising. We describe the online identity and data, how they are stored, and explain their

importance to cyber attackers. We also address organizational data and discuss why they must be

secured. Also, we briefly explicate cyber warfare and the role of cybersecurity professionals in

protecting their nations.

2.1. Cybersecurity

Different organizations, including medical, financial, and educational institutions, utilize

linked electronic information networks to operate successfully. These networks are composed of

devices and programs used to collect, process, store, and share huge volumes of digital data.

Keeping these data secure is a crucial task for national security and economic stability.

Cybersecurity is the continuous effort of protecting networks, devices, and data from unauthorized

access or illegal usage [16].

What are the Data That Need to be Secured?

Individuals have two identities that can affect their life: one is offline, and the other is online.

One’s offline identity is how s/he is known by the people with whom s/he interacts on a daily

basis—including workmates, friends, and family members. One’s online identity, though, is how

s/he presents himself/herself in cyberspace, which should not reveal much information about

his/her offline identity. Individuals should be careful in creating their online username. This

username should be appropriate, respectful, and not comprise any personal information. People

should ensure that their username will not drive a cybercriminal to think of them as an easy target.

 11

Some other kinds of data, such as individuals’ medical, education, employment, and financial

records, can be easily utilized to recognize them online.

Another kind of data is organizational data; these refer to corporate data that cover employees,

intellectual assets, financial reports, or any kind of information that allows a corporation to achieve

an economic advantage over its competitors. Such data need particular attention, especially with

the evolution of the Internet of Things (IoT), because the volume of data needs to be secured

increasingly.

Where are the Data?

When individuals visit their doctor, all information they share is recorded in their medical file.

Part of this medical file is being shared with their insurance company for billing purposes. Also,

different merchants use loyalty cards to create a profile of their patrons’ shopping behavior and

utilize those data for their own use; plus, they may share the data with their marketing partners to

target different offers to them.

People’s computing devices have become a gateway to their data, as they employ them for

online shopping, online banking, receipt of digital copies of credit card statements, and payment

of utility bills [17]. A copy of the photos one shares online with his/her family and friends may be

downloaded and stored on their own devices. Strangers also may acquire a copy of these pictures

if anyone shares them publicly. Moreover, a copy of the photos and data is being saved on servers

placed in several parts of the world.

With all of these online accessible data, people’s personal information has become valuable

and vulnerable to hackers [18]. The data may help a hacker obtain individuals’ online credentials

that give a hacker access to their accounts and take advantage of their social relationships. People

may be tricked into wiring money presumably to friends who are abroad, while the money is

 12

actually transferred to the hackers. Cybercriminals are very creative in tricking people into giving

them money [19]. Not only do such criminals steal individuals’ money, they also can purloin their

identities and have a detrimental impact on their life. Using stolen identities, cybercriminals can

establish credit card accounts and cause damage to users' credit ratings, hence creating major

difficulties in their obtaining future loans.

Confidentiality, Integrity, and Availability

Confidentiality, Integrity, and Availability—the CIA triad—is a well-known information

security model that organizations follow to develop their security policies. Confidentiality assures

data privacy [20]. Only authorized users and processes would be capable of accessing or modifying

the data. Integrity ensures data accuracy and trustworthiness. No one should have the ability to

improperly change the data, either accidentally or maliciously. Availability guarantees data

accessibility to solely authorized personnel. They should be able to access the data whenever

needed.

2.1.1.Types of Attackers

In cyberspace, an attacker is a person or a group of individuals who breaks into computer

systems and performs malicious actions to steal, damage, exploit, modify, disable, or gain access

to obtain unauthorized usage of an asset [21]. The attacker utilizes an array of tools and techniques

that help him/her exploit system vulnerabilities and obtain unauthorized access to system assets.

Generally, there are five types of attackers and are described below.

• Cybercriminals: A cybercriminal is an attacker who utilizes technology to

perform cybercrimes with the purpose of stealing private or sensitive data to

generate illicit funds [18]. Presently, cybercriminals are the most prevalent type

 13

of attacker.

• Hacktivists: This type of attacker engages in malicious activities to support a

political program, religious faith, or social ideology [22]. Such attackers are a

group of individuals who hack computer systems but regard themselves as

resisting injustice.

• State-sponsored Attackers: This category consists of a group of attackers with

particular goals that align with the military, commercial, or political objectives

of its country [22].

• Script Kiddies: These represent amateur attackers having limited or no

attacking skill. They usually use the directions and the basic tools found on the

internet to launch attacks [23]. Although they are amateurs, the results of their

attacks may be disastrous.

• Insider Security Threats: These threats impinge on a company's data from

within the company. They arise from current or former employees or third

parties—such contractors, temporary operators, or patrons [24]. The insider

threats can be categorized into malicious, accidental, and negligent threats.

Furthermore, based on their purpose for their hacking, hackers may be classified into white,

gray, or black hat hackers [25]. White hat hackers are ethical parties seeking to identify security

vulnerabilities of systems. They break in using previously sanctioned agreements and report the

vulnerabilities to the system developers so that problems are fixed before the system can literally

be threatened. Most communities award generous prizes for those white hat hackers when they

inform them of a vulnerability in their systems.

 14

Black hat hackers are those taking advantage of any system vulnerability to break into

computer systems to obtain illegal funds. Gray hat hackers are individuals who break into

computer systems, performing their crimes and engaging in unethical conduct; they do so not for

personal gain nor for purposes of destruction [26]. They may, however, publish the information

about the vulnerability they identified on the internet so that other hackers can exploit it.

2.1.2.Internal and External Threats

Threats can be from within or outside the organization. An internal threat may happen

intentionally or accidentally. In either case, however, there is the possibility that the damage will

extend beyond that engendered from the threat alone; after all, internal users have direct access to

system assets [27]. Moreover, internal users may have information about the organization's

confidential data, as well as the different levels of administrative privileges. Alternatively, external

threats depend on exploiting system vulnerabilities or using social engineering to gain

unauthorized access [28].

Cyberwarfare

Cyberwarfare is the use of digital attacks in a cyberspace battle to penetrate other nations'

computer systems. Attackers in cyberwarfare have abundant resources that assist them to engage

in extensive cyberattacks against other nations’ infrastructure, thus causing consequential damage

or disruption of critical services(e.g., shutting down a power grid) [29].

Analyzing Cyberattacks

In general, a security vulnerability is an error or weakness within the system which a hacker

can exploit to obtain an unauthorized login and perform unauthorized actions on the system. The

vulnerability could be a software or hardware defect allowing hackers to interpose malicious code;

access a system's memory; or steal, damage, or alter sensitive data.

 15

Software vulnerability mostly happens due to an error in the operating system or the

application code. An example is the SYNful Knock vulnerability in Cisco IOS that was discovered

in 2015. That vulnerability gave the hackers the ability to gain control of the enterprise-grade

routers, thus permitting them to see all communication in the network and to infect any network

device. Hardware vulnerability usually occurs due to a flaw in the design of the hardware. For

instance, capacitors of RAM memories are installed in proximity to each other; this closeness

could result in any constant modification in one capacitor to impact the other capacitors.

Rowhammer was designed based on this flaw [30]. It repeatedly rewrites the memory in the same

addresses, which permits the information to be retrieved from nearby address memory cells—even

if they are protected.

 Software Vulnerabilities

A software vulnerability falls under one of the following classes:

• Buffer overflow

• Missing function level access-control

• Weaknesses in security practices

• Race conditions

• Improper Input Validation

Malicious Software and Cyber-Attacks

Also known as malware, malicious software comprises any code that hackers use to

compromise a system from which to steal data or cause harm. The following are some popular

kinds of malware:

• Viruses

• Spyware

 16

• Worms

• Adware

• Ransomware

• Scareware

• Trojan horse

• Rootkit

• Bot

• Man-in-the-middle

• Denial-of-service (DoS)

• Distributed Denial of Service (DDoS)

• SQL injection

2.2. Intrusion Detection Systems

An intrusion is a malicious activity that aims to compromise the confidentiality, integrity, and

availability of network components in an attempt to disrupt the security policy of the network [31].

The National Institute of Standards and Technology (NIST) defines the intrusion detection process

as, "the process of monitoring the events occurring in a computer system or network and analyzing

them for signs of intrusions, defined as attempts to compromise the confidentiality, integrity,

availability, or to bypass the security mechanisms of a computer or network" [32]. An intrusive

detection system (IDS) is a tool that scans the network traffic for any harmful activity or policy

breaching. It is a system for monitoring network traffic for malicious activities and alerting

network administrators for such abnormal activities [33]. IDSs achieve this by gathering data from

several systems and network sources and analyzing the data for possible threats.

 17

Unlike firewalls—which are used at the perimeter of the network and play the role of the

gatekeeper by monitor incoming network traffic and determine whether it can be allowed into the

network or endpoint at all—IDSs monitor the internal network traffic and distinguish suspicious

and malicious activities. Consequently, an IDS not only can identify attacks that pass the firewall,

but also attacks that originate from within the network.

Importance of Intrusion Detection Systems to Cyber Security

The increasing number of daily network attacks patently reveals that there is no foolproof

firewall, and there is no impenetrable network. Intruders continuously develop new exploits and

design new attack techniques to bypass different network defenses. For instance, some of the

attacks use social engineering methods or other malware to gather users' credentials and gain

access to network data. Therefore, an IDS is essential for network security, as it enables network

administrators to detect and respond to such malicious traffic.

The primary goal of an IDS is to identify possible network intrusion incidents. For example,

it can detect when a system vulnerability has been successfully exploited to launch an attack or to

compromise the system. Then, the IDS model reports the incident to the network administrator,

who can quickly take the required actions to minimize the damage caused by the incident.

Additionally, an IDS can collect and log information that incident handlers can use. It also can be

configured to recognize traffic that violates the security policies. Moreover, IDSs can be used to

distinguish suspicious file transfer processes—for instance, copying a large database to a personal

laptop [34]. Furthermore, IDSs can recognize suspicious reconnaissance activities, which may

indicate that an attack is expected. Such activities include most attack tools and some forms of

malware, especially worms, which conduct reconnaissance actions (e.g., host and port scans, find

possible attack targets).

 18

Besides identifying incidents, IDSs can provide network administrators with information that

they can use to uncover the following:

• Violations to security policy (e.g., user attempts at running an application

against the security policy).

• Network misconfiguration (e.g., applications or systems with incorrect security

settings).

• Leakage of information (i.e., use of spyware or legitimate use).

• Infections from viruses or Trojan horses (i.e., those that try to gain full or partial

control of some of the internal systems and use them to attack other systems).

2.2.1. Key Functions of an Ideal IDS

Regardless of its mechanism, the goal of IDSs is to monitor the assets of the network and

report any unusual behavioral patterns in real-time or near real-time with high detection accuracy

[35]. Any ideal IDS should address the following issues below [36]:

• It should be reliable, fault-tolerant, and destruction resistant, as well as

operating continuously in the background without any human interaction.

• It should be a white box system (i.e., the internal workings can be examined

from outside).

• It should be able to identify network anomalies with high detection accuracy

and minimum or no prior knowledge of normal activities of the target system.

In addition, it should have ability to learn the expected behavior of the system

from observations.

 19

• It should perform consistently in identifying malicious activities for different

network scenarios with a minimum of false alarms.

• The number of input parameters should be minimal, and their influence should

be low.

• It should be capable of detecting not only isolated or burst attacks but also be

able to identify any rare class or carefully launched attacks.

• It should be able to identify unknown anomalous patterns.

2.2.2.Intrusion Detection Analysis Methodologies

IDSs use numerous methods to analyze data and identify incidents. This section summarizes

the primary classes of analysis methods: signature based, anomaly based, and stateful protocol

analysis. In most cases, IDSs use more than one detection method, either independently or in

combination, to provide more accurate results.

Signature-Based Systems: A signature in intrusion detection is defined as a pattern that

matches a well-known threat [34]. Consequently, signature-based detection can be defined as the

process of matching signatures with observed events in the network traffic to identify possible

incidents [37]. Signature-based intrusion detection is the basic technique used by almost all of the

popular IDS products and is extremely efficient in detecting known attacks with a low false

positive detection ratio. Examples of signature-based intrusion detection are as follows:

• An attacker using telnet with “root” as a username, which is against the

organization’s security policy.

• A phishing e-mail using a subject of “Important!” with an attachment filename

 20

of “imprtant.exe,” which are features of a perceived form of malware.

• Log entry of an operating system having "645" as a status code value, which

means that the auditing process has been disabled on the host.

Signature-based is considered the simplest detection process, as it simply matches the activity

units, for instance log entries, with a database of signatures. It is highly efficient at identifying

well-known threats, but inefficient at distinguishing previously unknown threats (i.e., those that

are disguised using evasion methods) and several modifications of known threats. For example, if

an attacker changed the malware in the earlier example to use a filename of “forms.exe” instead

of "important.exe," a signature looking for “important.exe” would not match it. Moreover,

signature-based techniques have limited understanding of various applications and network

protocols and are incapable of tracking or apprehending the state of complex communications. For

instance, they cannot pair network requests with their corresponding responses (e.g.,

comprehending that the request to a web server for a specific webpage produced the "403"

response status code, which means that the request has been refused from the server). Furthermore,

they lack the capability of remembering earlier requests when processing the current request; this

prevents them from identifying attacks that involve multiple events if none of the events includes

clear evidence of an attack [34].

Signature-based IDSs are programmed with well-defined decision rules that are coded in an

explicit manner for detecting intrusions. They are programmed into three main categories: state

modeling, expert systems, and string-matching [38]. In the state modeling category, each attack is

encoded to a finite set of distinct states in a finite automaton which has to be recognized in the

traffic profile to be recognized as an intrusion. In the expert system category, each attack scenario

 21

is described with a set of forward-chaining rules. The string-matching category involves matching

the patterns in the audit event generated by different attacks.

Anomaly-Based Systems: An anomaly-based intrusion detection process looks for deviations

from what is considered a normal activity. Anomaly-based IDSs usually have profiles for normal

behaviors of network components over a period of time (typically days, sometimes weeks) that are

called normal behavior baselines or thresholds. Consequently, any activity that deviates from these

baselines is considered a probable intrusion [39] and an alarm is generated.

An example of a behavior baseline might be a profile showing that web activities constitute

an average of 20% of the network’s total bandwidth at the internet border throughout regular

workday hours. The anomaly-based IDS uses different statistical approaches to compare the

features of current activity to the thresholds related to the profile (e.g., identifying when web

activity comprises significantly more bandwidth than expected). Based on how it specifies normal

profiles, an anomaly-based IDS is either self-learned or programmed IDS.

The major advantage of anomaly-based IDSs is their ability to detect previously unknown

threats, known as zero-day attacks, as they do not rely on an identified signature database, only

deviations from an established profile. Also, because of the uniqueness in the behavior of each

target network, the established profiles lead an attacker to have difficulty finding which activity

can be performed to initiate an attack without setting off an alarm. Nonetheless, these IDSs usually

generate a large number of false-positive alarms in view of the fact that normal users and network

behaviors can vary markedly. Moreover, when it is used in a new network for the first time, they

also require time to build the baseline behavior. Also, these IDSs are more complex and associating

an alarm with the particular incident that triggered that alarm is difficult [40].

 22

2.2.3.IDS Types

In general, there are three types of IDSs. These are network-based, host-based, and

application-based IDSs and are explained below.

Network-Based IDS: Unlike host-based, the network-based IDS is placed at particular points

on the network to capture and analyze packets traversing through the network [41, 42]. It collects

information from the target network and attempts to identify unauthorized and malicious access to

that network. Although many techniques exist, the most common one that a network-based IDS

employs entails monitoring inbound and outgoing packets and scrutinizes suspicious patterns. It

comes equipped with attack signatures and permits advanced users to add their own signatures

[43].

The main advantage of Network-based IDSs is that a single system can monitor the entire

network, thus reducing the time and cost of installing software on each host. However, it is still

vulnerable to intrusions targeting the network and originating from within the network itself.

Host-Based IDS: The first implemented IDS was a host-based type [44], which is a software

system monitoring features of a particular host and transactions happening within that host to

uncover suspicious activities [45]. The host-based IDSs mainly analyze the system’s logging and

audit trails, which help in detecting subtle patterns of misuse that would not be visible at a higher

level of abstraction [46]. Examples of the other types of features a host-based IDS might monitor

include host network traffic, application activity, running processes, modifications to file access,

and changes in applications and systems configurations.

Host-based IDSs are mostly used on significant hosts, such as servers that contain sensitive

information or those that are publicly accessible. They have the ability to detect threats from

within, as they scan traffic activities prior to sending or receiving data [47]. The main disadvantage

 23

of these systems is that they only monitor the host computer, meaning that a host-based IDS has

to be installed on each host [38].

Application-Based IDS: Application-based IDSs are similar to host-based IDSs, as they are

used to monitor specific applications: specifically, events occurring within those applications.

They usually identify attacks by analyzing the application’s log files and checking the effective

behavior of the protocols [48]. Application-based IDSs are considerably more accurate than Host-

based in identifying malicious activities within the applications they monitor, as they directly

interface with the applications and have significant application knowledge. Nonetheless, this type

of IDS may fail to identify attacks that are not particularly targeted at that application. The

advantages and the disadvantages of each of the three types of IDSs are summarized in Table 1.

Table 1: Comparison of Intrusion Detection System Types.

 Advantages Disadvantages

Network-based

A large network can be monitored

using merely a few well-placed

Network-based IDSs.

The performance of the monitored

network will be barely affected by

the deployment of the network-

based IDS.

Network-based IDSs do not

interfere with any of a network's

normal operations.

Misplaced Network-based IDSs may

fail to identify attacks during high

traffic periods in large networks.

Network-based IDSs do not perform

well when applied to modern switch-

based networks, as most switches do

not offer universal monitoring ports.

Network-based IDSs do not operate

well in encrypted networks, as they

cannot analyze encrypted data.

 24

 Advantages Disadvantages

Securing Network-based IDSs and

making them invisible to various

attackers is easy.

Minimal installation effort is

required to update the network to

include Network-based IDSs.

Host-based

Host-based IDSs are able to

identify attacks that network-based

IDSs fail to identify.

Host-based IDSs can run in an

encrypted network when the

encrypted data are decrypted on the

host that is being monitored.

Host-based IDSs can work in

switched networks.

A host-based IDS must be installed

on every host, thus relatively easily

affording an attack or disablement by

clever attackers.

Host-based IDSs often fail to detect

and operate in denial-of-service

(DOS) attacks.

Host-based IDSs affect the

performance of the hosts being

monitored, as they use the computing

resources of those hosts.

Application-

based

Application-based IDSs have the

ability to track unauthorized

activities of individual users.

They have the ability to operate in

encrypted environments.

Because application based IDSs

usually operate as applications on the

hosts, they may be attacked and

disabled by clever attackers.

 25

 Advantages Disadvantages

In most cases, distinguishing an

application-based IDS from a host-

based IDS is not easy.

As reflected in Table 1, using a combination of network- IDSs, host- IDSs, and application-

based IDSs to protect the network is preferable. The process should begin by deploying Network-

based IDSs, as they are usually simple to install and maintain. The next step should entail installing

a host-based IDS to protect the critical servers. Finally, application based IDSs should be utilized

as needed.

2.2.4.Limitations of Intrusion Detection Systems

Although IDSs are considered a key component of computer network security, they have

limitations of which to be cognizant prior to deploying intrusion detection products [36]. Some of

those limitations are as following:

• Most IDSs generate a high false positive rate; this wastes network

administrators’ time and may even impair automated responses.

• Although most IDSs are marketed as real-time systems, time is likely to be

incurred before they automatically report an attack.

• IDSs automated responses are sometimes inefficient against advanced attacks.

• Many IDSs lack user-friendly interfaces that allow users to operate them.

• To reach the maximum benefits of the deployed IDS, there should exist skilled

 26

IT security staff to monitor the IDS operations and respond as needed.

• Numerous IDSs are not failsafe, as they may not be well-protected from attacks

or impairment.

Rationale behind ML for IDSs

IDSs monitor network traffic for suspicious activities that could represent an intrusion.

Classical IDSs were built to detect known attacks but cannot recognize new or unknown threats.

Such systems use techniques that depend on pre-defined rules or behavioral analysis through

baselining the network. However, experienced attackers can easily bypass these techniques, so the

need for augmented intelligent IDSs is acute. Thus, researchers are trying to apply ML techniques

to this area of cybersecurity.

There are several reasons researchers consider the use of ML in network intrusion detection.

One is its ability to find similarities within a large amount of data. The main assumption of ML-

based approaches is that an intrusion creates distinguishable patterns within the network traffic

and that these patterns can be efficiently detected using ML approaches [49]. These approaches

promise automated data-driven detection that infers knowledge about malicious network traffic

from abundant available traffic traces. Furthermore, ML can discover anomalies from data,

without the need for prior knowledge about them. Combining the characteristics of ML techniques

and the capable computing units, a powerful weapon against network intrusion threats can be

derived. Moreover, the extent of data is prodigious, but human expertise is limited and expensive.

Therefore, utilizing ML can allow automatic discovery of patterns that humans cannot do due to

the scale of the data. In the absence of ML, human experts would need to define manually crafted

rules that are not scalable.

 27

2.3. Machine Learning (ML)

ML is an umbrella term used for computational methods that try to imitate human learning

activities through computers so as to discover automatically and acquire knowledge [50]. It is the

field of computer science that studies algorithms that improve automatically during training and

experience; as a result, a computer can make accurate predictions when provided data without

being explicitly programmed [51]. ML is a multidisciplinary research area, which includes

statistics, psychology, computer science, and neuroscience [50]. Today’s learning algorithms have

advanced significantly in practice, because of consequential improvements in processor speed and

big data [52]. ML algorithms employ a subset of the data known as training data or sample data to

build a mathematical model with which to make predictions or decisions based on a given problem.

ML algorithms are applied in a variety of application domains—such as spam filtering, internet

search engines, recommendation systems, voice recognition, and computer vision—where

conventional algorithms cannot achieve the required tasks. Moreover, in cybersecurity, several

ML methods have been proposed to monitor and analyze network traffic to recognize different

anomalies. Most of these methods identify anomalies by looking for variations from a basic regular

traffic model. Usually, these models are trained with a set of attack-free traffic data that are

collected over a long period.

The term “ML” is usually used in an extremely broad form to refer to general algorithms

utilized to extrapolate patterns from large sets of data or to produce predictions based on the

experience learned by analyzing the data. As such, this is a generic definition that involves too

many different techniques. ML approaches can be divided into three broad classes: supervised

learning, unsupervised learning, and reinforcement learning.

 28

2.3.1.Supervised Learning

 Supervised learning is the most popular class of ML approaches. It is designed to learn by

example from labeled datasets so as to infer learning algorithms to classify related un-labeled data.

Labeled datasets contain pre-classified data, while unlabeled datasets comprise data that have not

yet been classified. Supervised learning models adopt both input variables (X) and output variables

(Y) to provide a learning basis to support future judgments by learning the mapping function Y =

f(X).

Supervised learning uses training data that are a set of examples with paired input records and

their desired outputs. In this learning, the correct answer is known in advance, and the learner

algorithm iteratively makes predictions on the training data and stops only when an acceptable

level of performance is achieved. This process is appropriate when there is a specific target value

[53]. A supervised learning problem can be defined as either a classification problem or a

regression problem. The output variable of the classification problem is a category, such as "white

or black" or "disease or no disease." The output variable of the regression problem is a real value,

such as "the number of dollars" or "the height."

Classification: The classification problem can be described as the process of separating

different groups of data points. A classifier is a systematic mechanism from which to build

classification models from the input dataset. The role of the classification model is to assign new

input values the classes to which they belong.

The most well-known example of classification is the email spam filtration model. With two

classes from which to choose (ham or spam), the classification task is known as a binary

classification problem. The model is given a training dataset with emails that are pre-classified as

either ham or spam. The model uses this dataset to find features that are correlated to each class

 29

and generates the mapping function mentioned earlier. Later, when given a new email, the model

utilizes the mapping function to decide whether or not the email is spam. Although in a two-

dimensional case (as in Figure 3), the classification process may seem trivial, it can indeed be a

very complex process in problems having tens, hundreds, or even thousands of dimensions.

Figure 3: Simple Classification Example.

Based on the data type and the desired output, a various number of algorithms can solve a

classification problem. Some of the most popular classification algorithms are decision trees, k-

nearest neighbor, linear classifiers, random forest, and support vector machines.

Each classification approach utilizes a specific learning algorithm to generate a model that

best fits the relevance between the attribute set and the class label of the input data. The generated

model should fit the input data well and, simultaneously, predict with precision the class labels of

records it has never seen before. Therefore, a key objective of the learning algorithm is to build

models with good generalization capability (i.e., models that accurately predict the class labels of

previously unknown records).

Shown in Figure 4 is a general approach for solving classification problems. First, a training

set consisting of records whose class labels are known must be provided. The training set is used

 30

to build a classification model, which is subsequently applied to the test set, consisting of records

with unknown class labels.

Figure 4: General Approach for Building a Classification Model.

Regression: Regression is a statistical method where the model tries to determine the primary

relationship within dependent and independent variables. The output of regression models is a

continuous number, such as income, profit, or a test score. The basic linear regression

mathematical equation can be formulated as follows:

𝑦 = 𝑤[0] ∗ 𝑥[0] + 𝑤[1] ∗ 𝑥[1] + ⋯ + 𝑤[𝑖] ∗ 𝑥[𝑖] + 𝑏 (2.1)

 31

where 𝑥[𝑖] represents the data feature(s), and both 𝑤[𝑖] and b reflect parameters that are generated

during the training process. A formula for a simple model with only one data feature can be written

as follows:

y = 𝑤𝑥 + 𝑏 (2.2)

where w represents the slope, x embodies the single feature, and b portrays the y-intercept. The

predictions are represented by the line of best fit for one-feature data problems, while they are

reflected by a plane for two-feature data and a hyperplane for data with more than two features.

A simple regression example is a model that determines a student’s examination grade based

on the number of hours s/he studied during the week of the exam. Assume that the plotted data

with a line of best fit is portrayed in Figure 5. That diagram has a clear positive

Figure 5: A Simple Regression Example.

correlation between the dependent variable represented by the student’s final exam score and the

independent variable, which is represented by the hours s/he studied. The model predictions for

 32

new inputs can be given by drawing a line of best fit through the given data points that present the

known performance of the other students. The most common regression algorithms are linear

regression, logistic regression, and polynomial regression.

2.3.2.Unsupervised Learning

Unsupervised learning models take only the input data without any knowledge of the desired

output. In unsupervised learning, the ML model tries to group the unlabeled data according to their

similarities and differences, though there are no known categories provided [53]. The unsupervised

algorithm acts on the data without any prior training and depends on itself to discover and present

the structure of the data. An unsupervised learning problem can be defined as either an association

or a clustering problem. An association problem is present when someone has a large portion of

data, and s/he needs to identify a set of rules that can describe that portion of data—such as

customers buying product X who also will be interested in purchasing product Y. A clustering

problem is evident when the researcher tries to find the inherent groupings in his/her data—such

as grouping customers by their purchase behavior. The most famous unsupervised learning

algorithms include clustering and self-organizing map.

Clustering: Clustering is the most famous and simple unsupervised learning approach; it

separates the dataset into subsets called clusters. Generally, for clustering to be effective, the

intraclass similarity between the data in each cluster must be higher than the similarity with the

data in the other clusters. The idea of clustering approaches, such as k-means, is to divide the

original dataset into k-subsets whose elements are more related to each other. To do this requires

specifying what "more related" means: that is, to determine the metrics of the distance between

the dataset elements. Illustrated in Figure 6 is how a set of points can be classified into three

clusters.

 33

Figure 6: A Simple Clustering Example.

The clustering process need not produce finite subsets from the given dataset. In some cases,

it may form unbounded subsets, as shown in Figure 7.

Figure 7: Unbounded Subsets Clustering Example.

 34

2.3.3.Reinforcement Learning

A reinforcement learning approach learns by interacting with the environment by trial and

fault. It works similar to supervised learning by using the mapping between the inputs and outputs

but differs from it in employing the feedback element to improve its performance. In reinforcement

learning, the given feedback enables the model to correct the set of actions required to perform a

specific task; it uses rewards and fines as symbols for positive and negative performance [54].

Reinforcement learning differs from unsupervised learning in terms of goals. Although

unsupervised learning attempts to find relationships and variances between data points,

reinforcement learning seeks to identify a proper action model that maximizes the cumulative

reward in the process.

An example of reinforcement learning is when teaching a computer how to play chess. In this

example, the researcher would not initially classify the moves as good or bad; rather, the computer

would learn from the game feedback after each move. This type of algorithm tends to repeat the

actions used in the past that led to effective outcomes. Furthermore, when in an unknown territory,

it has to try new actions from which it will in-depth study and learn the game structure based on

the new results. Moreover, because the actions are inter-related, they cannot be generally evaluated

as "good" or "bad"; instead, the entire dynamics of the joint actions are valued.

2.3.4.Semi-Supervised Learning

Semi-supervised learning is a hybrid version of supervised learning and unsupervised

learning. Its models require a large amount of input data, and only part of that data is labeled [53,

55]. In this kind of learning, the algorithm can learn the structure of the data using the unsupervised

technique and then make the best predictions using the supervised method.

 35

2.3.5.Aspects of ML Systems

For any successful ML system, there are important steps that need to be well defined. These

are described as follows:

• Choosing the ML algorithm and the technique that will be used to solve a given

problem is necessary. There are numerous different ML algorithms that can be

employed for different learning problems. The choice of the algorithm is

crucial, as certain algorithms are better suited for different problems.

• Finding the raw dataset that will be used as the training data is requisite. Such

a dataset must be large enough for the model to understand the structure of the

problem. It can be unlabeled for unsupervised learning, but it must be labeled

if supervised learning will be applied.

• Defining clearly what are the expected results or the outcomes of the learning

problem is important. These include discerning how and what algorithms and

the representation to be used.

Moreover, with enhanced understanding and cleaning of the raw dataset before its

deployment, the ML model can achieve improved solutions for the problem. These can be realized

through utilizing the following three main steps:

• Data collection: The first step is to gather as much data as possible, which (as

noted earlier) can be unlabeled for unsupervised learning and labeled for the

supervised learning.

• Data processing: This step involves cleaning the collected data by removing

any redundant, unnecessary, or duplicate records; filling the missing data; and

 36

recognizing the features that will be used in defining the training data.

• Test case creation: Generally, the dataset can be split into two or three sets. The

first set is known as the "training dataset" and is used to train the ML model.

The second is known as the " test dataset" and can be utilized to test the accuracy

of the trained model. Finally, the third set (if necessary) is known as the

"validation dataset"; it is employed to validate the model after repeating the

procedure of training-testing as much as is needed.

2.3.6.Brief Description of Selected Popular ML Algorithms

• Decision Trees

One of the most widely used supervised ML algorithms in solving classification as well as

regression problems is the decision tree algorithm. It uses a flowchart (i.e., similar to a tree

structure) where each leaf node represents a class label, and each internal node represents an

attribute. A decision tree describes the rules that classify data according to the values of the

attributes; the tree learns by breaking the input data into smaller sets through testing those values.

There are three main components for any decision-tree model: nodes, leaves, and edges. Nodes

specify the attributes that partition the input data. For each node, there are a number of labeled

edges that connect the edge with either other nodes or a leaf. Each leaf is labeled with a class label

or a decision value representing the actual output of the model.

The decision-tree procedure starts with a collection of samples that are used to generate a tree

data structure for classifying new instances. The features or attributes describing each sample is

represented by a numeric or symbolic value, and each sample is associated with a label denoting

 37

the class name that to which it belongs. Each node holds a question and some answers that

determine what branch to follow from that node, and the class labels are held in the tree leaves.

Figure 8: Decision Tree Classification Example.

The root of the decision tree contains the most information gain (differences in entropy)

among all features; the root is used to split optimally all training data. The equation of information

gain utilized in a decision tree to split optimally instances in a tree-structured manner is as follows:

𝐺𝑎𝑖𝑛(𝑃, 𝑄) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) − ∑
|𝑃𝑉 |

|𝑃|
𝑣∈𝐷𝑄

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(|𝑃𝑉|) (2.3)

where Gain (P, Q) is the reduction in entropy to sort P on attribute Q. Features with increasing

information gaining value are chosen as nodes in a top-down manner. The advantage of a decision-

tree algorithm is that it is easy to implement and provides high classification accuracy. However,

its computational complexity is one of the main disadvantages of the decision-tree classifier.

Illustrated in Figure 9 is an example of a decision tree (DT) used for intrusion detection.

 38

Figure 9: Decision Tree Example for Intrusion Detection [56].

• K-means

K-means clustering is one of the simplest and most common unsupervised ML techniques.

Generally, unsupervised algorithms use only input vectors to make their inferences from the

training datasets without referring to any labeled data. The logic behind k-means techniques is to

cluster similar points in the dataset into k number of clusters and then uncover the underlying

patterns. Clusters are formed based on the similarity characteristics among all data points in the

dataset. First, k number of centroids is estimated among m data points. Next, based on Euclidean

distance measures (Equation (2.4)), m data points x1, x2,, xm are assigned to their nearest

centroids.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ 𝑑(𝑥𝑖 , 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑥𝑖))𝑚
𝑖=1 (2.4)

Here, centroid(xi) means the centroid to which xi data point belongs. In subsequent steps, the

centroids are recalculated based on the mean distance from all the data points assigned to those

centroids. These steps iterate throughout the algorithm until any data point cannot modify any

cluster centroids. The goal is to minimize the distance from each centroid to its corresponding data

points within a cluster.

 39

Although the k-means algorithm is straightforward, it must be able to identify a metric that

allows it to calculate the distance between the data points. Moreover, the initial choice of k plays

an essential role in how the k-means algorithm operates. So, repeating the clustering process with

different initial k choices is beneficial. Furthermore, there may be certain cases where some of the

centroids are not close enough to any of the points, thus reducing the number of clusters from k.

As a practical example of using k-means clustering, assume a food delivery shop decided to open

four new branches in another town. The problem now is how to choose the best location for the

four new branches; this can be efficiently solved using k-means clustering. The focus is on finding

geographical locations from where food currently is ordered from the delivery service’s

prospective competitors. Then, four random points are selected from where the branches will be

located. With k-means clustering procedures, the four best spots that reduce the distance to each

delivery point will ultimately be selected. This is a simple example of how k-means clustering can

be utilized to help solve business problems.

Figure 10: K-means Classification Example.

• Linear Regression

Regression in ML is a supervised algorithm that models a target value based on independent

predictors—for instance, the price of a home given specific features, such as type, location, size,

 40

number of rooms and bathrooms, age, and stories. The regression algorithm seeks the parameter

values that best fit the function that describes the input dataset. It is generally used to discover the

relationship between the input variables. Regression methods frequently differ based on the kind

of relationship linking the independent and dependent variables, as well as the number of

independent variables.

Figure 11: Linear Regression Model.

The goal of linear regression is to generate adequate parameters to minimize the cost function.

The cost function of a model, also known as the function of errors, is the mathematical equation

depicting how far the model is from achieving the right outcome. The mean squared error (MSE)

is a good example of a typical cost function. The MSE represents the sum of the square of the

difference between the values of the expected outcome and the actual result of all the input

examples.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

𝑛
∑ (𝑃𝑟𝑒𝑑𝑖 − 𝑦𝑖)

2𝑛
𝑖=1 (2.5)

 41

𝐽 =
1

𝑛
∑ (𝑃𝑟𝑒𝑑𝑖 − 𝑦𝑖)2𝑛

𝑖=1 (2.6)

For instance, assume that there are three different types of real estate properties represented

by numbers 1 for houses, 2 for apartments, and 3 for offices. Suppose that there exists a 150-square

meter house that was built ten years ago, with two bathrooms and two levels. Moreover, further

presuppose that the city is divided into five different areas, denoted with integers from 1 to 5, and

that the house is located in area number 5. That property can be parameterized with a 6-

dimensional vector x = (1, 150, 10, 2, 2, 5). Assume that the estimated value of this house is

$150,000. The researcher wishes to generate a function "f" such that f(x) = 150000. In linear

regression, this equal finding a vector v = (v1, v2, v3, v4, v5, v6) such that 1*v1 + 150*v2 + 10*v3

+ 2*v4 + 2*v5 + 5*v6 = 150000. If there are many real estate properties, the same process is

repeated for every real property, and, ideally, the researcher would like to find a vector v that can

predict the closest value for every property. If s/he initially selects some random value of the vector

v, s/he would not expect that f(x) = 1*v1 + 150*v2 + 10*v3 + 2*v4 + 2*v5 + 5*v6 is equal to

150000. Consequently, s/he could determine the squared error Δ = (150000 − f(x))2, which is the

squared error for one sample x. The cost is the mean of all the squared errors for all of the samples;

it represents how much f(x) differs from the actual value, and, therefore, the aim is to minimize

this error. This can be done by calculating the derivative δ of the cost function with respect to v.

• Naïve Bayes

Naïve Bayes classifiers [57] are simple probabilistic classifiers applying the Bayes theorem.

The name originates from the fact that the input features are assumed to be independent, whereas,

in practice, this is seldom true. The conditional probabilities, p (C|f1, f2, ..., fm), form the classifier

model, and the classifier assigns a class label as follows:

 (2.7)

 42

where m is the number of features, K is the number of classes, fi is the ith feature, Ck is the kth class,

p(Ck) is the prior probability of Ck, and P(fi | Ck) is the conditional probability of feature fi given

class Ck.

Naive Bayes classifiers can handle an arbitrary number of independent features—whether

continuous or categorical. They reduce a high-dimensional density estimation task to a one-

dimensional kernel density estimation, using the assumption that the features are independent [56].

Although the Naïve Bayes classifier has several limitations, it is an optimal classifier when the

features are conditionally independent given the true class. It is frequently one of the first

classifiers that is compared to more sophisticated algorithms. In addition, certain types of users

have expressed that they understand the classification model more intuitively compared to other

complex classifiers (e.g., support vector machine). One of the major advantages of the Naïve Bayes

classifier is that it is an online algorithm, and its training can be completed in linear time.

• Support Vector Machines

Support vector machine (SVM) is one of the most popular supervised ML algorithms. It is

mainly used in classification and aims to reduce the number of misclassification errors; however,

it can be also utilized for regression problems. SVM techniques are generally preferred over many

other ML techniques, as they can find a separating hyperplane that maximizes the margin

separating each point from the hyperplane. The hyperplane is chosen in such a way that the

distance between the hyperplane and its closest data point is maximized. For example, shown in

Figure 10 is a hyperplane b, where w is a weight, and b is a bias defined by N data points (x1, y1),

(x2, y2), …., (xn, yn). Here, x is an element of real values R and y = (1, -1) as labels. The goal of the

SVM is to classify correctly training data when y= +1 using wxi + b ≤ 1 and when y = + 1 using

wxi + b ≤ 1. So, for all i, yi (wxi + b) >= 1 using the distance measure.

 43

Figure 12: Simple Illustration of the Concept of SVM [50]

Moreover, SVMs can deal with problems where data are not linearly separable. Non-linearly

separable data can be dealt with by introducing either the soft margins or kernel trick. Soft margins,

also known as noisy linear SVM, allow the algorithm to make a few misclassifications; plus, they

keep the margin as wide as possible while retaining the maximum possible predictive ability of

the algorithm so that other points can be correctly classified. This can be done simply by relaxing

some of the SVM hypotheses.

However, the kernel trick maps the features space into a higher-dimensional space. It utilizes

the existing features and applies complex data transformations; then it discovers how to separately

the data based on the predefined labels in the dataset. The left part of Figure 13 presents a non-

linearly separable set before the kernel was applied; the right side illustrates the same dataset after

the kernel has been applied so the data can be linearly separated

 44

Figure 13: Non-linearly Separable vs Linearly Separable Set.

Cross-Entropy Method

The cross-entropy method is a reinforcement learning approach for solving optimization

problems; such problems attempt to identify the best parameters to minimize or maximize a

particular function. This method measures the variance between two probability distributions for

a random set of variables or events. The cross-entropy method utilizes feedback from different

runs to determine the best solution to a given problem in a standard reinforcement learning

process.

Generally, the cross-entropy method has five main phases, as follows:

1. Create a random sample from the variables that need optimization.

2. Execute the task and note the performance.

3. Recognize the most desirable runs and find the top-performing variables.

4. Using top-performing runs, compute new means and variances for each variable

and create a new sample.

5. Repeat the previous steps until the system stops improving or reaches a stop

condition.

 45

• Neural Networks

Neural networks (NNs) are a collection of ML algorithms inspired by human biology and

designed to simulate the human brain in identifying patterns. NNs adopt a network of functions to

interpret a data input of one form and translate it into the desired output, which is mostly in another

form.

The perceptron is the first model of NNs, which was invented in 1957 by Frank Rosenblatt. A

perceptron is a NN unit that performs specific computations to identify features in input data. The

perceptron is composed of a one-layer NN with four main components: namely, input values,

weights and bias, net sum, and step function. The perceptron starts the process by multiplying all

input values by their weights and adding all the multiplied values to create the weighted sum. Next,

the weighted sum is used with the step function to produce the perceptron's output.

The role of the step function is crucial, as it ensures that the perceptron's output is mapped

within the required values, such as (-1,1) or (0,1). Also, the weight of each input value is a

significant indication of how strong that node is. Likewise, the value of an input's bias can shift

the curve of the step function up or down.

In an NN, inputs (x1, x2,, xn) are given with output label y, where the information from the

input is weighted by a weight vector (w1, w2,, wn) during the learning process. Throughout the

learning process, the weights are adjusted so that they minimize learning error, E, where the error

is the difference between the desired output (di) and the actual output (yi) of the neuron. This

adjustment is done by a gradient algorithm referred to as back-propagation, where the learning

process iterates back and forth until the model obtains an error less than its threshold value. The

weight vector is adjusted according to the following equation:

𝑊𝑖,𝑗 ← 𝑊𝑖,𝑗 + ∆ 𝑊𝑖,𝑗 (2.8)

 46

where i is the input node, and j is the hidden node.

Figure 14: Perceptron.

2.3.7.Hyperparameters Optimization

Model parameters are the configuration variables set which are internal to the model and can

be learned from the historical training data. The value of those parameters is estimated from the

input data. Model hyperparameters are the configuration variables set which is external to the

model. They are the properties that govern the entire training process and cannot be directly trained

from the input data. The model parameters specify how input data are transformed into the desired

output, while the hyperparameters define the structure of the model.

Hyperparameter optimization (also known as hyperparameter tuning) is the process of finding

the optimal hyperparameters for the learning algorithm in ML. A set of different measures for a

single ML model can be used to generalize different data patterns. This set is known as the

hyperparameters set, which should be optimized such that the ML model can solve the assigned

problem as optimally as possible. The optimization process locates the hyperparameters tuple, then

 47

produces a model minimizing the predefined loss function on the given data. The objective

function takes the hyperparameters tuple and returns the associated loss [58]. The generalization

performance is often estimated using cross-validation [59]. Hyperparameter optimization

techniques mostly use one of the optimization algorithms—grid search, random search, or

Bayesian optimization.

2.3.8.Ensemble Learning

Ensemble approaches utilize collections of ML algorithms to produce higher predictive

performance than could be acquired from a single ML classifier [60]. The main idea of an

ensemble approach is to combine several ML algorithms to exploit the strengths of each employed

algorithm to obtain a more powerful classifier. Ensemble approaches are particularly helpful if a

problem can be split into subproblems so that each subproblem can be assigned to one module of

the ensemble. Depending on the structure of the ensemble approach, each module can include one

or more of the ML algorithms. In network attacks, because the signatures of different attacks are

distinct from each other, having different sets of features as well as different ML algorithms to

detect different types of attacks is typical. So, a single IDS cannot address all types of input data

or identify different types of attacks [61, 62]. Many researchers have shown that a classification

problem can be solved with high accuracy results when using ensemble models instead of single

classifiers [63].

Ensembles can be thought of as using various approaches to solve a specific problem. This is

somehow similar to the process in which a patient is diagnosed with a dangerous illness, such as

a tumor. The patient usually visits more than one doctor for different opinions on his/her case. This

is a kind of cross-validation that increases the probability of reaching an accurate diagnosis.

Likewise, the outputs of various ML classifiers in an intrusion detection problem can be combined

 48

to enhance the accuracy of the overall IDS. The main challenge in using ensemble approaches is

selection of the best set of classifiers comprising the ensemble model and the decision function

that will be used to combine the results of those algorithms [15].

Ensemble Methods

Bagging, boosting, and stacking are the most commonly used ensemble algorithms and are

explained below.

Bagging (short for bootstrap aggregating) is a way to decrease the variance of one’s

prediction. It is done by generating additional data for training from his/her original dataset using

combinations with repetitions to produce multisets of the same cardinality/size as his/her original

data. By increasing the size of the training set, one cannot improve the model predictive force but

just decrease the variance, thus narrowly tuning the prediction to the expected outcome. Algorithm

1 below contains a pseudocode for the bagging method.

ALGORITHM 1: Bagging.

Boosting is a two-step approach, where one first uses subsets of the original data to produce

a series of average-performing models and then "boosts" their performance by combining them

together using a particular cost function (= majority vote). Unlike bagging, in classical boosting,

 49

the subset creation is not random but depends on the performance of the previous models. As such,

every new subset contains the elements that were (likely to be) misclassified by previous models.

AdaBoost.M1 and AdaBoost.R are two frequently used variations of this category of

algorithms, as they are suitable for dealing with multi-class and regression problems, respectively.

AdaBoost produces a set of hypotheses and then utilizes weighted majority voting of the classes

determined by the particular hypotheses so as to combine decisions. A weak classifier is trained

to generate the hypotheses by drawing instances from a successively refreshed distribution of

training data. The updating of the distribution guarantees that it will be more likely to include in

the data set for training the subsequent classifier examples that were wrongly classified in the

preceding classifier. Thus, the training data of successive classifiers tend to advance towards

increasingly hard-to-classify instances. Pseudocodes for the general AdaBoost is shown in

Algorithm 2.

Stacking is similar to boosting. One applies several models to the original data. The difference

here is, however, that the researcher does not have just an empirical formula for his/her weight

function. Rather, s/he introduces a meta-level and uses another model/approach to estimate the

input together with outputs of every model to estimate the weights—or, in other words, to

determine which models perform well and which badly, given these input data.

 50

ALGORITHM 2: ADABOOST.

 51

3. DATASETS

One of the main challenges that face researchers in the area of intrusion detection is to find a

suitable dataset that they can use to train and evaluate their proposed IDSs [64]. Although there

exist a group of datasets used by researchers to train, test and evaluate their IDS approaches, most

of those datasets are outdated, suffer from the lack of attack diversity, and do not reflect the current

trends traffic variety. In this section, we analyze and evaluate some of the most used datasets and

show their deficiencies that indicate the actual need for a comprehensive and reliable dataset.

3.1. Data Preprocessing

Data preprocessing is the first step of the process collected data before it being used by any

ML-based model. It is usually used to transform the raw data into a structure that the ML model

can handle, and which also helps to improve the quality of the model.

Normalization

Normalization is a preprocessing method that is usually applied as part of data preparation for

the ML models. The goal of normalization is to adjust the values of numeric data in the dataset to

a range, which is usually the range between 0 and 1 using a common scale, without distorting

differences in the ranges of actual values or losing information. If the dataset contains a column

with values ranging from 0 to 1, and a second column with values ranging from 100,000 to

1,000,000. The huge variance in the scale of the numbers between the two columns could cause

some problems when you attempt to combine the values as features during modeling.

Normalization can help to bypass these problems by creating new values that maintain the general

distribution and ratios in the source data while keeping values within a scale applied across all

 52

numeric columns used in the model. The Pseudo code of the normalization process is shown in

Algorithm 3.

 Algorithm 3 Normalization

ALGORITHM 3: Normalization.

One Hot Encoding

Most ML models require all input and output data to be as numeric values. This means that if

the dataset includes categorical data, it must be encoded to numbers before it can be used by ML

models. One hot encoding is a process of converting categorical data into a form that ML

algorithms can use to do a better job in prediction.

Feature Selection

Feature selection (also called attribute selection) is the process of selecting attributes in the

dataset that are most relevant to the predictive modeling problem on which one is working [65].

The definition of relevance varies from method to method. Based on its notion of significance, a

feature selection technique mathematically formulates a criterion for evaluating a set of features

generated by a scheme that searches over the feature space. [66] define two degrees of relevance,

strong and weak. A feature s is called strongly relevant if removal of deteriorates the performance

 53

of a classifier. A feature s is called weakly relevant if it is not strongly relevant and removal of a

subset of features containing s deteriorates the performance of the classifier. A feature is irrelevant

if it is neither strongly nor weakly relevant. Feature selection techniques assist in the mission of

creating an accurate predictive model by choosing features that will give as better accuracy and

less complexity while requiring fewer data.

The feature selection techniques are generally divided into three categories, namely filter,

wrapper and embedded [67]. Filter method operates without engaging any information about

induction algorithm. By using some prior knowledge such as feature should have strong

correlation with the target class or feature should be uncorrelated to each other, filter method

selects the best subset of features by measuring the statistical properties of the subset to be

evaluated Alternatively, wrapper method employs a predetermined induction algorithm to find a

subset of features with the highest evaluation by searching through the space of feature subsets

and evaluating quality of selected features. The process of feature selection acts like “wrapped

around” an induction algorithm since wrapper approach includes a specific induction algorithm to

optimize feature selection; it often provides a better classification accuracy result than that of filter

approach. However, the wrapper method is more time consuming than the filter method because

it is strongly coupled with an induction algorithm with repeatedly calling the algorithm to evaluate

the performance of each subset of features. It thus becomes impractical to apply a wrapper method

to select features from a large data set that contains numerous features and instances [68].

Furthermore, the wrapper approach is required to re-execute its induction algorithm for selecting

features from a dataset while the algorithm is replaced with a dissimilar one. Some researchers

[69-71] have used a hybrid feature selection method. In supervised ML, an induction algorithm is

typically presented with a set of training instances, where each instance is described by a vector

 54

of feature (or attribute) values and a class label. For example, in medical diagnosis problems the

features might include the age, weight, and blood pressure of a patient, and the class label might

indicate whether or not a physician determined that the patient was suffering from heart disease.

The task of the induction algorithm is to induce a classifier that will be useful in classifying future

cases. The classifier is a mapping from the space of feature values to the set of class values. More

information about the wrapper methods and the inductive algorithm can be found in [72].

 Finally, the embedded approaches include feature selection in the training process, thus

reducing the computational costs due to the classification process needed for each subset. Some

of the most popular feature selection techniques are mentioned below.

Information Gain: This method maps how attribute values are distributed and measures the

pureness of attributes. In this method, the information gained from an attribute is calculated with

respect to the class by using the entropy measure [73]. The formula is as follows.

𝐼𝑛𝑓𝑜 𝐺𝑎𝑖𝑛(𝐶, 𝐴) = 𝐻(𝐶)– 𝐻(𝐶|𝐴) (3.1)

Where C is the class, A is the attribute and H is the Entropy which ranges from 0 to 1, and is

defined as:

𝐻 = ∑ 𝑃𝑖 𝑙𝑜𝑔2 𝑃𝑖𝑛
𝑖=0 (3.2)

Where p is the probability, for which a particular value occurs in a sample space S. This

algorithm ranks the attributes according to the average merit and the average rank. The cutoff point

to select the attributes is assigned either by the number of attributes or by the threshold value [73].

Information Gain Ratio: This is a normalized version of the Information Gain method [73].

The normalization is done by dividing the information gain with the entropy of the attribute with

respect to the class, which results in reducing the bias of the information gain towards the attributes

having many values. The formula for Gain Ratio is as follows.

 55

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜(𝐶, 𝐴) =
(𝐻(𝐶) –𝐻(𝐶 | 𝐴))

𝐻(𝐴)
 (3.3)

As in Information Gain, Information Gain Ratio ranks the attributes according to the average

merit and the average rank.

Correlation-based Feature Selection: This method looks for the best subset of attributes that

are highly correlated with the class attribute but uncorrelated to each other. It implements a greedy

forward search from an empty set of attributes or greedy backward search from a full set of

attributes. It adds/deletes attributes to the set until no longer any other attributes change the

evaluation performance [74].

Minimum Redundancy Maximum Relevance: This non-linear feature selection method

uses similarity and importance of features to iteratively select the subset of features that are

maximally relevant for the prediction task and minimally redundant with the set of already selected

features. It uses the mutual information between the feature and the class to indicate the importance

and the mutual information between the features to indicate the similarity [75].

Dataset Imbalance

The imbalanced dataset is a common problem in ML classification where there exists a

disproportionate ratio of examples in each class. It is essentially relevant to the context of

supervised ML that involves two or more classes. The imbalance means that the distribution of the

dataset examples across the recognized classes is biased or skewed. This distribution may vary

from a trivial bias to a significant imbalance where there are only a few examples in the minority

class and a large number of examples in the majority class or classes.

An imbalanced dataset poses a challenge for predictive modeling since the majority of the ML

classification algorithms are designed with the hypothesis that there is almost an equal number of

examples for each class. This results in an inaccurate prediction model with poor performance,

 56

particularly for the minority class. Therefore, a balanced dataset is essential for creating a good

prediction model [76].

Usually, real-world data are imbalanced, and this may be one of the main causes of the

decrease in ML algorithms generalization. If the imbalance is heavy, it will be difficult to develop

efficient classifiers with conventional learning algorithms. In many domains, the cost in

misclassifying minority classes is more expensive than that of the majority class for many class

imbalanced datasets; this is particularly so in IDSs domain where malicious traffic tends to be the

minority class. Consequently, there is a need for some sampling methods for handling the

imbalanced datasets.

Sampling techniques can be used to overcome the dataset imbalance dilemma by either

excluding some data from the majority class which is known as under-sampling or by adding some

artificially generated data to the minority class that is known as oversampling [77].

Over-sampling methods boost the number of samples in the minority class in the training

dataset. The main advantage is that there will be no loss in the data from the primary training

dataset as all samples from the minority and majority classes are kept. Yet, the drawback is that

the scope of the training dataset is significantly increased. The arbitrary over-sampling is the

simplest oversampling method, where randomly chosen samples from the minority class are

duplicated and combined with the new dataset [78]. SMOTE is another over-sampling method that

is proposed by Chawla [79] where synthetic data are created and added to the minority class rather

than just duplicating the examples. SMOTE generates synthetic data blindly without studying the

majority class data which may lead to an overgeneralization problem [80].

On the other hand, the under-sampling methods re used to decrease the number of examples

in the majority class. It reduces the size of the majority class data to balance the class distribution

 57

in the dataset. The random under-sampling is an example of the under-sampling methods which

randomly selects a subset of majority class samples and merge them with minority class sample

generating a new balanced dataset [81]. However, under-sampling a dataset by reducing the

majority class ends with a loss of data and result in overly general rules.

SMOTE Over Sampling: SMOTE is a shortcut for the Synthetic Minority Oversampling

Technique, which is the most widely used approach to synthesizing new samples of minority

classes in a dataset. SMOTE works by picking out samples that are close in the feature space,

drawing a line between those samples, and creating new samples at different points along that line.

The pseudocode of the SMOTE is shown in Algorithm 4.

Algorithm 4 SMOTE

ALGORITHM 4: SMOTE.

Cluster Based Under-Sampling: To reduce the drawbacks of the under-sampling method, a

cluster-based under-sampling approach was proposed based on unsupervised learning [80]. This

approach clusters the training dataset into K clusters with different K values and monitors the

 58

different outcomes to find adequate training samples from the derived clusters. By considering the

ratio of the number of the majority to the minority class samples, the approach selects an

appropriate number of majority class samples from each cluster. The full dataset is first clustered

into K clusters, then, an M number of majority class samples is being selected from each cluster.

3.2. Popular Datasets and Its Issues

To support the assessment of different intrusion detection methods, researchers have

introduced several network traffic datasets. These datasets are either public, private, or network

simulation dataset. Most of these datasets were generated using several tools that helped in

capturing the traffic, launching different types of attacks, and monitoring traffic patterns. Here, we

discuss some of the popular benchmark datasets, how they were generated and how they perform

in the domain of intrusion detection.

3.2.1.DARPA-Lincoln

One of the most widely used datasets for building and testing IDSs is the DARPA-Lincoln

dataset that was collected by The Cyber Systems and Technology Group of MIT Lincoln

Laboratory. The 99 DARPA-Lincoln dataset contains 5 weeks of network traffic, audit logs,

nightly file system snapshots, and directory listings collected from targets running four different

operating systems and attacked 244 times by a wide range of well-known exploits varying from

DoS attacks, probes to root shell exploits and backdoors. Traffic was generated using custom

software running on a small number of hosts to emulate hundreds of different users running

different operating systems and applications on thousands of hosts and websites [82].

The dataset consists of weeks one, two and three training data and weeks four and five test

data. In the training data, weeks one and three consists of normal traffic and week two consists of

 59

labeled attacks. The attacks fall into five main classes which are Denial of Service (DoS), Probe,

Remote to Local (R2L), User to Remote (U2R) and the Data attacks. The drawback of this dataset

is that it lacks the representation of the real network traffic as well as actual attacks simulations.

Moreover, it is outdated for the adequate evaluation of modern IDSs on current networks, with

regard to types of attacks and the network infrastructure [83].

Researchers criticized DARPA due to issues associated with the artificial injection of attacks

and benign traffic. DARPA includes activities such as send and receive mail, browse websites,

send and receive files using FTP, the use of telnet to log into remote computers and perform work,

send and receive IRC messages, and monitor the router remotely using SNMP. It contains attacks

like DOS, guesses the password, buffer overflow, remote FTP, syn flood, Nmap, and rootkit.

Unfortunately, it does not represent real-world network traffic and contains irregularities such as

the absence of false positives and is outdated for the effective evaluation of IDSs on modern

networks in terms of attack types and network infrastructure. Moreover, it lacks the actual attack

data records [83, 84].

3.2.2.KDD Cup 1999

The KDD dataset is a well-known benchmark in the research of Intrusion Detection

techniques. It has been the point of attraction for many researchers from the last decade [85]. Many

researchers have contributed their efforts to analyze the dataset by different techniques. This data

set is prepared by Stolfo et al. [86] and is built based on the data captured in DARPA’98 IDS

evaluation program. KDD training dataset consists of approximately 4,900,000 single connection

vectors each of which contains 41 features and is labeled as either normal a particular kind of

attack [87]. The simulated attacks fall in one of the following four categories: DoS, U2R, R2L,

 60

and Probing Attack. The dataset contains a complete number of 24 training attack types, with an

extra 14 types in the test data only. KDD’99 features can be classified into three groups:

• Basic: this category encapsulates all the attributes that can be extracted from a

TCP/IP connection.

• Traffic: this category includes features that are computed with respect to a

window interval.

• Content: features that can look for suspicious behavior in the data portion, e.g.,

number of failed login attempts.

KDD’99 is built based on the data captured in DARPA which has been criticized mainly

because of the characteristics of the synthetic data. As a result, some of the existing problems in

DARPA remain in KDD’99. In [88], Portnoy et al. partitioned the KDD dataset into ten subsets,

each containing approximately 490,000 instances and they observed that the distribution of the

attacks in the KDD dataset is very uneven which made cross-validation difficult. Many of these

subsets contained instances of only a single type. For example, the 4th, 5th, 6th, and 7th, 10%

portions of the full data set contained only smurf attacks, and the data instances in the 8th subset

were almost entirely Neptune intrusions. Similarly, the same problem with smurf and Neptune

attacks in the KDD training dataset is reported in [89]. The authors have mentioned two problems

caused by including these attacks in the data set. First, these two types of DoS attacks constitute

over 71% of the testing data set which completely affects the evaluation. Secondly, since they

generate large volumes of traffic, they are easily detectable by other means and there is no need of

using anomaly detection systems to find these attacks. The main criticism against the KDD dataset

is that it contains many redundant records as well as a large number of corrupted data that generate

skewed results.

 61

One of the most important deficiencies in the KDD data set is the huge number of redundant

records, which causes the learning algorithms to be biased towards the frequent records, and thus

prevent them from learning infrequent records which are usually more harmful to networks such

as U2R and R2L attacks. In addition, the existence of these repeated records in the test set will

cause the evaluation results to be biased by the methods which have better detection rates on the

frequent records [87]. Statistics of redundant records in the KDD training dataset are shown in

Table2.

Table 2: Statistics of Redundant Records in the KDD Training Dataset.

 Original records Distinct records Reduction rate

Attacks 3,925,650 262,178 93.32%

Normal 972,781 812,814 16.44%

Total 4,898,431 1,074,992 78.05%

3.2.3.NSL-KDD

The NSL-KDD dataset [90] is an offline refined version of the KDDcup99 dataset. Many

researchers have carried out different types of analysis on the NSL-KDD and have employed

different methods and tools to develop effective IDSs. The NSL-KDD dataset has 41 attributes

plus one class attribute as shown in Table 2. A full description of these attributes can be found in

[91]. The advantages of NSL KDD dataset over the KDD CUP for an ML classifier are

summarized in these three points:

• The training dataset has no biased results because it does not contain any

redundant records.

 62

• The test dataset has better reduction rates because it does not contain any

duplicate records.

• The selected records from each difficult level group are inversely proportional

to the percentage of records in the original KDD dataset.

Table 3: The Full List of NSL-KDD Features.

Feature Name Description

1 Duration Length of time duration of the connection

2 Protocol_type Protocol used in the connection

3 Service Destination network service used

4 Flag Status of the connection –Normal or Error

5 Src_bytes Number of data bytes transferred from source to destination in

single connection

6 Dst_bytes Number of data bytes transferred from destination to source in

single connection

7 Land if source and destination IP addresses and port numbers are equal

then, this variable takes value 1 else 0

8 Wrong_fragment Total number of wrong fragments in this connection

9 Urgent Number of urgent packets in this connection. Urgent packets are

packets with the urgent bit activated

10 Hot Number of “hot” indicators in the content such as: entering a system

directory, creating programs and executing programs

 63

Feature Name Description

11 Num_failed_login

s

Count of failed login attempts

12 Logged_in Login Status 1 if successfully logged in; 0 otherwise

13 Num_compromise

d

Number of ``compromised'' conditions

14 Root_shell 1 if root shell is obtained; 0 otherwise

15 Su_attempted 1 if ``su root'' command attempted or used; 0 otherwise

16 Num_root Number of ``root'' accesses or number of operations performed as a

root in the connection

17 Num_file_creation

s

Number of file creation operations in the connection

18 Num_shells Number of shell prompts

19 Num_access_files Number of operations on access control files

20 Num_outbound_c

mds

Number of outbound commands in an ftp session

21 Is_hot_login 1 if the login belongs to the ``hot'' list i.e., root or admin; else 0

22 s_guest_login 1 if the login is a ``guest'' login; 0 otherwise

23 Count Number of connections to the same destination host as the current

connection in the past two seconds

24 Srv_count Number of connections to the same service (port number) as the

current connection in the past two seconds

 64

Feature Name Description

25 Serror_rate The percentage of connections that have activated the flag (4) s0, s1,

s2 or s3, among the connections aggregated in count (23)

26 Srv_serror_rate The percentage of connections that have activated the flag (4) s0, s1,

s2 or s3, among the connections aggregated in srv_count (24)

27 Rerror_rate The percentage of connections that have activated the flag (4) REJ,

among the connections aggregated in count (23)

28 Srv_rerror_rate The percentage of connections that have activated the flag (4) REJ,

among the connections aggregated in srv_count (24)

29 Same_srv_rate The percentage of connections that were to the same service, among

the connections aggregated in count (23)

30 Diff_srv_rate The percentage of connections that were to different services,

among the connections aggregated in count (23)

31 Srv_diff_host_rat The percentage of connections that were to different destination

machines among the connections aggregated in srv_count (24)

32 Dst_host_count Number of connections having the same destination host IP address

33 Dst_host_srv_cou

nt

Number of connections having the same port number

34 Dst_host_same_sr

v_rate

The percentage of connections that were to the same service, among

the connections aggregated in dst_host_count (32)

35 Dst_host_diff_srv

_rate

The percentage of connections that were to different services,

among the connections aggregated in dst_host_count (32)

 65

Feature Name Description

36 Dst_host_same_sr

c_port_rate

The percentage of connections that were to the same source port,

among the connections aggregated in dst_host_srv_count (33)

37 Dst_host_srv_diff

_host_rate

The percentage of connections that were to different destination

machines, among the connections aggregated in dst_host_srv_count

(33)

38 Dst_host_serror_r

ate

The percentage of connections that have activated the flag (4) s0, s1,

s2 or s3, among the connections aggregated in dst_host_count (32)

39 Dst_host_srv_serr

or_rate

The percent of connections that have activated the flag (4) s0, s1, s2

or s3, among the connections aggregated in dst_host_srv_count (33)

40 Dst_host_rerror_r

ate

The percentage of connections that have activated the flag (4)

REJ,among the connections aggregated in dst_host_count (32)

41 Dst_host_srv_rerr

or_rate

The percentage of connections that have activated the flag (4)

REJ,among the connections aggregated in dst_host_srv_count (33)

Although the NSL-KDD still the most popular dataset that is used by researchers to train and

evaluate their proposed IDSs, some other researchers consider it out of date and unreliable to use

as it does not contain any modern attack and does not reflect the current networks infrastructure

[92].

 66

4. LITERATURE SURVEY

Anomaly-based IDS was firstly introduced by Anderson in 1980 [93]. After that, the topic of

anomaly detection has been the subject of many surveys and review articles. Lots of researchers

have tried ML algorithms and used different publicly available datasets for their research in order

to get better detection results [94]. Hodo et al. [95] have reviewed ML algorithms and their

performance in terms of anomaly detection. They have discussed and explained the role of feature

selection in ML-based IDS. Chandola et al., [96] presented a structured survey of research on

anomaly detection in different research areas and application fields, including network intrusion

detection systems. G. Meera Gandhi [97], used the DARPA-Lincoln dataset to evaluate and

compare the performance of four supervised ML classifiers in terms of detecting the four

categories; DoS, R2L, Probe, and U2R attacks. Their results show that the J48 classifier

outperforms the other three classifiers IBK, MLP, and NB in prediction accuracy. In [98], Nguyen

et al. performed an empirical study to evaluate a comprehensive set of ML classifiers on the

KDD'99 dataset to detect attacks from the four attack classes. Abdeljalil et al. [99] tested the

performance of three ML classifiers namely J48, NN, and SVM using the KDD'99 dataset and

found that the J48 algorithm outperformed the other two algorithms. Dhanabal, L et al. [94]

analyzed and used the NSL-KDD dataset to measure the effectiveness of ML classifiers in

detecting the anomalies in the network traffic patterns. In their experiment, 20% of the NSL-KDD

dataset has been used to compare the accuracy of three classifiers. Their results show that with

CFS is being used for dimensionality reduction, J48 outperforms SVM and NB in terms of

accuracy. In [100] Belavagi et al. tried to check the performance of four supervised ML classifiers

namely SVM, RF, LR and NB for an intrusion detection over the NSL-KDD dataset. From the

results, it was found that the RF classifier a 99% accuracy.

 67

4.1. Network Attack Datasets

Network attack datasets are constructed by system logs, network logs, network flows, memory

dumps. Also, a novel technique called generative adversarial networks is used to train a generator

to create the dataset [101]. The dataset could be built using real or simulated data. In [102], the

authors provided a comprehensive overview of the existing datasets by analyzing 715 research

articles. They focus on three aspects: (1) the origin of the dataset (e.g., real-world vs. synthetic),

(2) if datasets were released by researchers, and (3) the types of datasets that exist. They concluded

that 56.4% of the datasets are experiment generated while 36.7% are real data. Also, 54.4% of the

articles use existing datasets while the rest created their own, and only 3.8% of them released their

datasets. The effectiveness of any study or the accuracy of any algorithm that uses a dataset greatly

depends on the dataset quality in terms of both, being correctly labeled and being up to date to

capture the latest attacks. Also, the more the data instances in the dataset, the more the accuracy

of the experiments and the generalizability of the model. Table provides a comprehensive

overview of the most used available datasets.

Table 4: Comprehensive Overview of Most Used Available Datasets.

Dataset

Description/Year

Generated/

Published

Format Categories of Attacks Limitations

KDD Cup

1999 Dataset

(DARPA1998)

part of the data

collected from MIT

Lincoln Labs in

raw tcpdump

data and

Denial-of-Service

(DOS), user to-root

(U2R), Remote to Local

Compiled a decade

ago and have failed

to reflect the

 68

Dataset

Description/Year

Generated/

Published

Format Categories of Attacks Limitations

DARPA98 IDS

evaluation program

and prepared by

Stolfo et al.

BSM

list files

Attack (R2L) and

Probing

Attack

characteristics of

modern computer

systems.

Include redundant

records in the

training set, so the

classifiers will be

biased towards more

frequent records.

GureKDDcup generated with a

similar procedure

used in the original

Kddcup database in

2008 but it. also

includes the payload

of each connection

tcpdump files multiple attack

categories

Contains a large

number of duplicate

samples

NSL KDD enhanced version of

the KD

Dcup99 intrusion

dataset pre

pared by Tavallaee

et al.

tcpdump files multiple attack

categories

Testing set contains

some attacks which

are not present in the

training set.

 69

Dataset

Description/Year

Generated/

Published

Format Categories of Attacks Limitations

ECML-PKDD

2007

European

Conference on

Machine Learning

and Knowledge

Discovery in 2007

extensible

markup

language

(XML)

Cross Site Scripting,

SQL Injection, LDAP

Injection, XPATH

Injection, Path traversal,

Command Execution,

SSI

attack requests of this

dataset were

constructed blindly

and did not target any

real Web application

HTTP CSIC

2010 Dataset

Information Security

Institute

of CSIC (Spanish

Research

National Council) in

2010

web requests SQL injection, buffer

overflow, information

gathering, files

disclosure, CRLF

injection, XSS, server

side include, parameter

tampering

too old to evaluate a

modern detection

method or a system

that has been

developed recently

ISOT

(Information

Security

and Object

Technology)

Dataset

combination of

openly available

various botnets and

normal datasets that

contains 1,675,424

total traffic flow.

collected from

French chapter of

honeynet project,

traffic data malicious traffic: Storm

and Waledac botnets

non malicious traffic:

traffic from numerous

types of applications and

HTTP web browsing,

World of Warcraft

traffic, and traffic from

Azureus bittorent client

-

 70

Dataset

Description/Year

Generated/

Published

Format Categories of Attacks Limitations

Traffic

Lab Ericson

Research in

Hungary, Lawrence

Berkeley National

Lab (LBNL),

CTU-13

(Czech

Technical

University)

Dataset

real mixed botnet

traffic

packet data Bots : Neris, Rbot,

Virut,

Menti, Sogou, Murlo,

NSIS.ay

-

The ADFA

Datasets

In 2013, Australian

Defence

Force Academy

Linux Dataset

has been released by

the

Australian Defence

Force

Academy in

University of

New South Wale

web proxy

logs, DHCP,

DNS logs,

Endpoints

configured

for packet

captures

or NetFlow

cyber-attacks, i.e.,

Hydra-FTP, HydraSSH,

Adduser, Java

Meterpreter, Meter-

preter and Webshell, are

launched in turn

against the host, each of

which results in 8-20

abnormal traces

-

 71

Dataset

Description/Year

Generated/

Published

Format Categories of Attacks Limitations

UNSW-NB15

Dataset

created by the IXIA

Perfect Storm tool in

the Cyber Range

Lab of the

Australian Centre

for Cyber Security

(ACCS). This

dataset contains

approximately one

hour of anonymized

traffic traces from a

DDoS attack in

2007

configuring

settings for

logs

accordingly

for client

services and

applications

-

DEFCON

Dataset

contains network

traffic captured

during a hacker

competition called

Capture the Flag

(CTF)

traffic

captures

multiple categories of

attacks

contains only

intrusive traffic

without any normal

background traffic,

found useful only in

evaluating alert

correlation

techniques

 72

Dataset

Description/Year

Generated/

Published

Format Categories of Attacks Limitations

Digital

Corpora

Experiment

Generated 2008-

2016

pcap files certain case scenarios packet captures based

on certain case

scenarios only

available which are

raw captures without

labels

DFRWS 2009

Challenge

contains experiment

generated

PCAP files

generated in 2009

pcap files categories of attacks most of the traffic is

HTTP traffic on port

80

University of

New Haven

cFREG

created by Karpisek

et al. (2015)

pcap files unknown WhatsApp register

and call traffic only

Based on the above table, the main limitations of the current datasets can be summarized as

follows:

• Some of the datasets are old, so they do not help with the state-of-the-art types of attacks.

• The dataset is not labeled, making it useless for training supervised ML models, unless

manually labeled, which can be cumbersome.

 73

• The dataset is limited to specific types of attacks or targets specific applications, reducing

its generality.

• The dataset is small and does not contain enough amount of data to generalize the trained

model.

• The dataset contains redundant data, which could lead to biased models.

• The dataset is completely generated in the lab, making it less representative of the real-

world attacks.

• The dataset consists of an imbalanced amount of attack data and benign traffic.

In [103], the authors proposed a dataset approach CIDD for a type of attacks called

masquerade attacks where the attacker or masquerader impersonates another legal user after

stealing his credentials somehow. To build CIDD, the authors developed a log analyzer and

correlator system to parse and analyze the data from the network as well as from different operating

system host-based audits (Windows, Unix). The system is composed of a Solaris parser for parsing

the logs from the Solaris environment, a Windows parser for parsing the logs from the Windows

environment, and a network parser for parsing the logs from the network. All these parsed data are

fed to the log analyzer and correlator for processing and marking. The analyzer correlates the user

audits in network and host environment using user IP and audit time, then it assigns user audits to

a set of VMs according to their login sessions time and the characteristic of the user task. Finally,

it uses the attack and masquerade tables provided by MIT group to mark the malicious records.

The output from the analyzer is marked audit tables per user per environment (Unix, Windows,

and network). These tables are finally fed to a statistical component to build host and network-

based statistics, such as the number of login failures, logging times, logging source address(es), a

 74

list with common commands, services, and system calls used by the user, a list of network services

and protocols used, list of machines accessed, hours and days at which the IP becomes active, and

list of failures. The authors offer their dataset as two separate parts, one for Unix and the other for

Windows, each is divided into training and testing data. In [104],the authors developed a testbed

to generate their dataset. The testbed is composed of different machines in a Windows domain and

each machine has different types of agents to collect logs and send them to the logger. These

machines also have scripts to enable the simulation of some types of attacks, pushed by the logger

server, as well as the generation of the normal traffic. The logger server is equipped with the

necessary applications to play different roles, for instance, elastic search to collect logs from the

whole system, Mitre Caldera Server to simulate various types of attacks using the installed agents

on the hosts, IDS Suricata for identifying network attacks signatures in traffic that is used for

labeling the dataset.

4.2. One-Class Classification

Likewise, different one-class classification techniques have been utilized in solving the

intrusion detection problem. Giacinto et al., [105] proposed an intrusion detection model based on

an ensemble of one-class classifiers. In their model, they used v-SVM, k-means, and Parzen

density estimation to construct a modular approach where each single module models a group of

similar network protocols and services. They evaluated their model using the KDD 99 dataset and

concluded that a high detection rate and a lower false alarm rate can be achieved by dividing the

problem into different modules. Although the experimental results show that the proposed

anomaly IDS achieve a high attack detection rate and low false alarm rate, those results might be

biased and not accurate as the authors didn't perform any preprocessing for the dataset. In [106]

Nader et al., have employed two different one-class classification methods on SCADA networks

 75

that monitor and control different industrial and public service processes. Their results show that

both methods can tightly surround the normal flow behavior in the SVM hypersphere and also

detect intrusions. Many enhancements can be made to improve the performance of the algorithms

studied in this paper. They may consider the optimization of the free parameters to avoid the time-

consuming cross-validation step. They also may consider the use of more adapted kernels that

describes in a better way the behavior of a SCADA system.

Furthermore, the research of using OCSVM in intrusion detection for traditional TCP/IP

networks includes the following: In [107] Ghorbel has associated the coherence parameter with

the least-squares optimization problem to examine a new one-class classification model. He

applied his model to a wireless sensor network and obtained a good detection rate. Using the

OCSVM, Kaplantzis [108] has provided new centralized IDS that can detect black hole attacks

with high accuracy. The focus of the paper was on adapting a simple classification-based IDS to

detect a specific spectrum of malicious DoS attacks, that may be launched against a WSN.

Although the experimental results found out that the proposed system can detect black hole attacks

and selective forwarding attacks with high accuracy, the system needs to be expanded to detect

different types of attacks.

In order to improve the detection accuracy of OCSVM models, Xiao [109] proposed the DFN

and the DTL methods to select the model Gauss Kernel function. Similarly, M. Amer [110] tried

to reduce the effect of the outliers on the normal data boundary decision. He proposed two boosted

OCSVM models for the unsupervised based anomaly detection systems. By hierarchically

integrating both misuse and anomaly detection methods in a de-composition structure, Kim [111]

designed a hybrid intrusion detection model. In his model, Kim used multiple one-class methods.

Winter [112] used the OCSVM algorithm to propose an IDS model derived from inductive

 76

learning. All experimental on those papers were done using outdated datasets. An up-to-date

dataset needs to be used to test the effectiveness of the proposed systems.

Considering all these previous works, this thesis implemented a new network intrusion-

detection model based on integrating the OCSVM and the MHN (Modern Honey Networks). The

implemented model was able to get an overall accuracy of more than %97 which is better than

most of the previous proposed models.

4.3. Feature Selection

In terms of feature selection, Hota et al., [113] utilized different feature selection techniques

to remove irrelevant features in a proposed IDS model. Their experiment indicated that the highest

accuracy result can be achieved with only 17 features from the NSL-KDD dataset by using the

C4.5 algorithm along with information gain. In [114], Khammassi et al., have applied a wrapper

approach based on a genetic algorithm as a search strategy and logistic regression as a learning

algorithm to select the best subset of features of the KDD99 dataset and the UNSW-NB15 datasets.

They have used three different DT classifiers to measure and compare the performance of the

selected subsets of features. Their results showed that they can get a high detection rate with only

18 features for the KDDCup’99 and 20 features for the UNSW-NB15 dataset.

Abdullah et al., [115] also proposed a framework of IDS with selection of features within the

NSL-KDD dataset that are based on dividing the input dataset into different subsets and combining

them using Information Gain filter. Then the optimal set of features is generated by adding the list

of features that obtained for each attack. Their experimental results show that with fewer features,

they can make an improvement to the system accuracy while decreasing the complexity.

In general, feature selection can lead to better learning performance, i.e., higher learning

accuracy, lower computational cost, and better model interpretability. Recently, researchers from

 77

computer vision, text mining, and so on have proposed a variety of feature selection algorithms

and in terms of theory and experiment, show the effectiveness of their works. However, in the

cybersecurity domain, most feature selection methods have the common limitation of the

requirement of sufficient labeled data, which is very expensive to obtain in practice. The

performances of such methods, however, usually drop dramatically when the labeled training data

are unavailable. So, to overcome the limitations of noisy, redundant, and irrelevant dimensions in

network intrusion detection datasets, this thesis presents an up-to-date dataset.

4.4. ML Algorithms Comparison

Several articles have studied and investigated ML algorithms in terms of IDS applications.

Solanki et al., [116] compared the performance of the support vector machines (SVM) and the C

4.5 algorithm. The accuracy of the two algorithms was tested for four different computer network

attacks. The findings indicate that C 4.5 outperforms SVM. This finding agrees with the result we

obtained with the J48 tree which is a Weka implementation of the C 4.5 algorithm. Nguyen et al.,

[98] have investigated a set of classifier algorithms for DoS, R2L, U2R, and PROBE attacks. The

authors tried to determine the best algorithms for each attack category. The results show that Naïve

Bayes, Bayes Net, One-R are the best algorithms for PROBE, U2R, and R2L attacks, respectively.

Most of the algorithms were reported to have a significant performance for the DoS attack

category.

Unlike most researchers who focused on a single dimension in their comparison, this thesis

compares the performance of the classifiers along the following dimensions: Feature selection,

sensitivity to hyperparameter tuning, and data class imbalance.

4.5. Ensemble Models

 78

Besides selecting the relevant features that can represent intrusion patterns, the choice of the

ML classifier can also lead to better accuracy results. Moreover, the literature suggests that

assembling multiple classifiers can reduce false-positive rates and produce more accurate

classification results than single classifiers would [117]. Gaikwad et al. [118] used REPTree as a

base classifier and proposed a bagging ensemble method that provides higher classification

accuracy and lowers the false positives on the NSL-KDD dataset. Jabbar et al. [119] suggested a

cluster-based ensemble IDS model based on ADTree and KNN algorithms. The experimental

results show that their model outperforms most of the existing classifiers in terms of accuracy and

detection rate. Similarly, Paulauskas et al. [120] used an ensemble model of four different base

classifiers to build a stronger learner. Their results prove that the ensemble model produces more

accurate results for an IDS.

Gang Wang et al. [121] have utilized the ANN and fuzzy clustering to propose a new intrusion

detection approach to solve the problem of the low detection rate for the low-frequent attacks. The

general procedure is as follows: firstly, fuzzy clustering technique is used to generate different

training subsets. Subsequently, based on different training subsets, different ANN models are

trained to formulate different base models. Finally, a meta-learner, fuzzy aggregation module, is

employed to aggregate these results. Experimental results show that the proposed approach,

outperforms some well-known methods such as DT and naïve Bayes in terms of detection

precision and detection stability. The main weakness of this approach is using the KDDCUP which

contains many redundant records in the training set as well as many duplicate records in the test

set.

Min Seok Mok et al. [122] proposes an anomaly detection IDS based on random effects

logistic regression model. The proposed model was based on a sample of about 49,000 records

 79

randomly selected from the KDDCUPP dataset that contains ‘benign’ and ‘malicious’

connections. The experimental results show that the proposed approach has a classification

accuracy of 98.68%. Regardless of the high classification accuracy of the proposed model, it

suffers from some drawbacks as it is based on a statistical approach. One of the drawbacks is that

experienced attackers can be easily accustomed to the statistical model. Moreover, it is

complicated to determine the threshold that balance the likelihood of false positive to false

negative rates. furthermore, statistical procedures require precise statistical distributions, and not

all behaviors can be modeled using purely statistical methods.

Rahman et al. [123] introduce a new learning algorithm for adaptive intrusion detection using

boosting and naïve Bayesian classifier, which considers a series of classifiers and combines the

votes of each individual classifier for classifying a given example. The proposed algorithm uses

the naïve Bayesian classifier to generate the probability set for each round and updates the weights

of training examples based on the misclassification error rate produced by the training examples

in each round. This algorithm addresses the problem of classifying large intrusion detection

datasets, which improves the detection rates and reduces the false positives at an acceptable level

in intrusion detection. The authors tested the performance of the proposed algorithm using the

KDD99 dataset. Although the experimental results showed that the proposed algorithm achieved

high detection rates and significantly reduced the number of false positives for different types of

network intrusions, those results still inaccurate due to the huge number of redundant and duplicate

records founds in the KDD99 dataset.

Ming-Yang Su et al. [124] proposed a method to weight features of DoS/DDoS attacks and

analyzed the relationship between detection performance and number of features. The study used

a hybrid model of the Genetic and KNN algorithms to evaluate and weight 35 features from the

 80

KDD99 dataset. According to the experiments on DoS/DDoS attacks, the proposed method

achieved 97.42% accuracy for known attacks detection and 78% for the unknown attacks which

is still a little bit low detection rate. Regardless of the accuracy results, the authors claimed that

the method works for detecting DDoS attack which couldn't be proved as the KDD99 dataset

doesn't contain any DDoS attack instants.

Phurivit Sangkatsanee et al. [125] compared the performance of a set of well-known ML

algorithms to propose a supervised based real-time IDS. Their experimental results showed that

the DT technique can outperform other techniques. Therefore, they have developed a real-time

IDS using the DT algorithm to classify network data as normal or attack. They also have

identified 12 essential features of network data that are relevant to detecting network attacks

using the information gain as a feature selection criterion. Although the experimental results

showed that the proposed system was able to distinguish normal data from Probe and DoS

attacks with a detection rate higher than 98%, there is no proof that the system can detect modern

attacks with the same accuracy.

Z. Muda et al. [126] propose a hybrid learning approach for intrusion detection through the

combination of K-Means clustering and Naïve Bayes classification. The approach uses the K-

Means clustering is used to cluster all data into the corresponding group based on data behavior,

i.e., normal and attack, while the Naïve Bayes classifier is used to classify clustered data into

attack categories. Experiments have been carried out to evaluate the performance of the proposed

approach using the KDD Cup ’99 dataset. The results showed that the proposed approach

significantly improves the accuracy, detection rate up to 99.6% and 99.8%, respectively while

decreasing false alarms to 0.5%. But these results cannot be accurate as the authors didn't

consider the dataset imbalance problem.

 81

A.S. Aneetha and S. Bose [127] propose a new approach for anomaly intrusion detection

based on combining neural network and clustering algorithms. The proposed approach utilizes a

modified SOM algorithm which initially starts with a null network and grows with the original

data space as initial weight vector, updating neighborhood rules and learning rate dynamically in

order to overcome the fixed architecture and random weight vector assignment of simple SOM.

New nodes are created using distance threshold parameter and their neighborhood is identified

using connection strength and its learning rule and the weight vector updates is carried out for

neighborhood nodes. The K-means clustering algorithm is employed for grouping similar nodes

of Modified SOM into K clusters using similarity measures. Performance of the new approach

evaluated with KDDcup99 dataset. Although the evaluation results show a considerable increase

in the detection rate and 2% false alarm rate of the proposed approach compared with other

individual neural network methods, the approach needs to be compared to different algorithms

families in order to prove its efficiency.

Carlos A. Catania et al. [128] have proposed an autonomous labeling approach for dealing

with non-imbalanced class distributions, the idea behind this approach is to provide mechanisms

for excluding well-known attacks from the dataset. In particular, recognizing well-known attacks

is a common task done by traditional signature-based IDS. The authors claim that the use of IDS

as an autonomous labeling tool can provide a good mechanism for reducing the number of

attacks in the training dataset required for SVM for novelty detection algorithm. However, in

their case, the autonomous labeling process was made by SNORT, which is signature based,

which means that their claim cannot be accurate.

Shih-Wei Lin et al. [129] presented an intelligent algorithm with feature selection and

decision rules applied to anomaly intrusion detection. The key idea is to take the advantage of

 82

support vector machine (SVM), decision tree (DT), and simulated annealing (SA). In the

proposed algorithm, SVM and SA can find the best-selected features to elevate the accuracy of

anomaly intrusion detection. By analyzing the information from using the KDD’99 dataset, DT

and SA can obtain decision rules for new attacks and can improve the accuracy of classification.

In addition, the best parameter settings for the DT and SVM are automatically adjusted by SA.

The proposed algorithm outperforms other existing approaches. Although the simulation results

demonstrate that the proposed algorithm was successful in performs other existing approaches,

better accuracy results can be obtained by considering hyperparameter optimization.

Siva S. Sivatha Sindhu et al. [130] proposes lightweight IDS for multi-class categorization.

The system is aimed at making improvements to existing work from three perspectives. Firstly,

the input traffic pattern is pre-processed, and redundant instances are removed. Next, a wrapper-

based feature selection algorithm is adapted which has a greater impact on minimizing the

computational complexity of the classifier. Finally, a neuro-tree model is employed as the

classification engine which imparted a detection rate of 98.4% which is superior to NN⁄ and

extended C4.5. It could be observed that the proposed system is better even when the dataset is

presented with different number of classes. The proposed features and learning paradigm neuro-

tree can be a promising strategy to be applied to intrusion detection, but it needs to be tested on

an up-to-date dataset with modern attacks.

4.6. Discussion

Generally speaking, previous studies mainly focus on comparing different ML algorithms and

select those with best accuracy results to improve the overall detection effect. The main

optimization methods are feature selection and ensemble learning. However, there is still much

room to improve the results of these studies. Unlike the above studies, this thesis concentrates on

 83

evaluating and comparing the performance of a group of well-known, supervised ML classifiers

over the full NSL-KDD dataset for intrusion detection along the following dimensions: Feature

selection, sensitivity to hyperparameter tuning and class imbalance.

Moreover, most of the datasets that the researchers used to evaluate the performance of their

proposed intrusion detection approaches are out of date and unreliable to use. This thesis produces

a reliable dataset that contains benign and four common attack network flows, which meets real-

world criteria. Consequently, the thesis evaluates the performance of a comprehensive set of

network traffic features and ML algorithms to indicate the best set of features for detecting the

certain attack categories.

 84

5. NETWORK INTRUSION DETECTION MODEL USING OCSVM

This chapter proposes a new network intrusion detection model that trains on normal network

traffic data and searches for anomalous behaviors that deviate from the normal model. It applies

One-Class Support Vector Machine (OCSVM) algorithm to detect the anomalous activities in

network traffic. This approach models the regions where normal data has a high probability density

in n-dimensional feature space and considers anomalous data as those that do not occur in these

regions [131]. Thus, this approach is capable of detecting threats to the network without using any

labeled data. Further, by using kernel functions with OSVMs, this approach can capture complex,

non-linear regions in the feature-space where the normal data is most likely to reside as compared

to anomaly detectors that assume a specific shape/form for the normal class. For e.g., methods that

assume that the normal class follows a normal distribution and detect deviation from this

distribution [132, 133]. The experiment was done using a new generated dataset of real network

traffic collected using the Modern Honey Network (MHN).

5.1. One-Class Support Vector Machine (OCSVM)

One-class classification approaches are essentially helpful in solving two-class learning

problems whereby the first class which is mostly well-sampled is known as “target” class, and the

other class which severely under-sampled is known as the “outlier” class. The goal is to build a

decision surface around the samples in the target class with a view to distinguish the target objects

from the outliers (all the other possible objects) [134].

Support Vector Machine (SVM) [135] is a supervised learning model that can be used in the

process of analyzing data and recognizing patterns, which is the core of any classification task.

The SVM algorithm takes training dataset with labeled samples that belong to one of two classes

 85

and divides the samples into separate groups through a wide gap while penalizing all samples that

appear on the wrong side of the gap. Then, the SVM model produces his predictions by assigning

points to one side of the gap or the other. Occasionally, to increase the existing samples to be able

to build the two-class model, over-sampling is used; however, it is impossible to predict all new

patterns of a network intrusion detection system from limited examples. Furthermore, a collection

of even limited examples can be expensive.

Adapting the one-class classification from a two-class SVM problem was proposed in [64].

The basic idea was to use an appropriate kernel function to map the input data to a high

dimensional feature space. Doing this, it was possible to create a decision function that best

separates up one class samples from the second-class samples with the maximum margin.

Figure 15: Geometry Interpretation of the One-Class SVM Classifier.

5.2. The MHN Dataset

Finding a comprehensive and valid dataset to train and evaluate proposed intrusion detection

techniques is a significant challenge to many researchers [136]. Although there exist a number of

available datasets that researchers have used in evaluating their proposed approaches performance,

 86

most of them are unreliable and out of date and do not reflect the current trends. On the other hand,

most of the adequate and suitable datasets are not publicly available due to privacy issues. This

chapter produces a new reliable IDS dataset that contains benign and different common attack

network flows, that meets the real-world criteria. In this section, we describe the dataset and how

it was collected.

To collect the data, we have implemented the Modern Honey Network (MHN) [137], which

is a centralized server to manage and collect data from honeypots. MHN has an easy-to-use web

interface that helps in quickly deploying the sensors and immediately collecting a viewable data.

MHN deploys scripts which include several common honeypot technologies, like Snort, Cowrie,

Dionaea, and glastopf., MHN can aid in developing stronger network security by analyzing the

data from honeynets. Unfortunately, no tool currently exists to aggregate data from the sensors

implemented with MHN environments. So, we created a dataset tool using Excel, which

aggregates data from separate network monitors into a single spreadsheet.

We used Google Cloud to create four instances of Ubuntu 16.04 LTS servers, where we had

one MHN server, and three sensor servers. The first sensor (Sensor-1) was set up with Conpot,

p0f, and Snort. The second sensor (Sensor-3) was set up with Shockpot, Elastic honey, p0f and

Snort. The third sensor (Sensor-4) was set up with Wordpot, p0f and Snort. Using this architecture;

we were able to collect a large amount of data through the sensors. We also were able to sort

through the data and create a better format and similar data structure for all the collected data.

Figure 16 shows the MHN implementation.

 87

Figure 16: Modern Honey Network Implementation.

5.2.1.Network Sensors and Honeypots

In an active Modern Honey Network environment, there are different sensors and honeypots

that can be deployed. In this section, six of the typical sensors are described. These are the monitors

that we chose to implement in our network, and they include: Snort, p0f, Conpot, Elastichoney,

Wordpot and Shockpot.

Snort: Snort is one of the more popular sensors and collects a lot of diverse network and

attack data. It performs real-time traffic analyses and packet logging on the IP network. That

means, with a snort sensor, we can get different information from the rudimentary traffic. We can

get information out of the packet logging feature. These are based on the IP network.

p0f: P0f stands for passive OS fingerprinting tool. This sensor includes different passive

traffic fingerprinting mechanisms. Nobody noticed that the data was scanned though this sensor.

It identifies the player, in this case, the OS, behind any incidental TCP/IP communication. Like

Snort, this sensor is also based on the TCP/IP stack but gives more detailed information than the

Snort sensor. In a similar fashion to Snort, p0f collects a lot of information and is often used in

MHN implementations.

 88

Conpot: Conpot is a low interaction Industrial Control System honeypot. That means it

provides a range of common industrial control protocols. Like many other MHN honeypots, this

network monitor simulates a fake machine. In fact, this honeypot emulates a complex

infrastructure. The attacker should think that he found a huge industrial complex which is

worthwhile to attack. With the emulation of a huge infrastructure, it also increases the honeypot

attack surface in general. For this project it is important to have a huge attack surface to get a lot

of information.

Elastichoney: The Elastichoney sensor simulates the Elasticsearch search engine.

Elasticsearch is a well-known target for attackers because traffic is easy to capture. The

Elastichoney takes all request on /, /_search and /_nodes endpoints. It returns JSON as response.

In addition, it stores a JSON file with all important information about the attack.

Wordpot: Wordpot is the MHN sensor which was created to simulate a WordPress site. This

means, if a company has a WordPress site, they can use the Wordpot honeypot as a decoy, making

it a suitable choice for a sensor. WordPress sites are also often at the receiving end of web attacks.

This is due to the fact that WordPress is one of the most common frameworks for websites on the

Internet. Being that WordPress sites are so commonplace on the web, we decided to implement a

Wordpot sensor to generate attack traffic.

Shockpot: Shockpot is another example of a web app honeypot. The first goal of this sensor

is to catch attackers targeting the ShellShock vulnerability. It also functions much like the other

honeypots discussed above, acting as a fake web application to draw the attention of potential

network attacker.

 89

5.3. The Experimental Setup

Data source: Our dataset consists of 41770 entries with 25 feature columns which are a mix

of numeric and categorical types plus one label column. In order to train our anomaly detector, we

will be using only the samples with a 'normal' label while ignoring those with an 'anomaly' label.

However, we will be using both categories for evaluating the anomaly detector. In our experiment,

we used Azure Machine Learning (AML) which is a cloud-based environment from Microsoft to

preprocess data, train, test, deploy, manage, and track ML models.

Preprocessing: The first step in the experiment is the dataset preprocessing where we use the

AML Metadata Editor module to mark the target column 'Class' as type 'label'. Next, we split the

data into two sets, one (70%) for training and the second (30%) for testing. To make sure that the

training set contains only normal traffic, we use the Split module with a regex filter on the label

column to remove rows with 'anomaly' label. This process is being repeated on the data that is

used for parameter sweep including a further splitting of training data into train and validation

sets.

Model training: The second step is the model training process using the OCSVM. In this

process, the model works on separating the training data collection from the origin using maximum

margin. By default, a radial basis kernel is used. To specify the parameters of the model we use

the Create Trainer Mode option from the module properties and select the Parameter Sweep mode

which is used in conjunction with the Sweep Parameters module. This module produces a learner

with the best settings.

Model evaluation: The next step is using the generic Score Model module to obtain the

predictions from the OCSVM anomaly detector, and finally, evaluate the proposed model. Figure

17 shows the whole process as applied in the AML.

 90

Figure 17. OCSVM Anomaly Detector Model Using AML.

5.4. The Experimental Results

Since our dataset was randomly divided into 70% for training and 30% for testing, in the

preprocessing phase, we tried to run the experiment several times to compute the average and

variance of the results on the test data. The AML evaluation module shows that there is no big

variance in the results and the average accuracy of the proposed anomaly detection model was

97.61%. Figure 18 shows the Per-class comparison for Precision, Recall, and F1 Score.

 91

Figure 18: Per-Class Comparison Based on Precision, Recall and F1 Score.

This chapter proposed a new network intrusion detection model that applied the OCSVM

algorithm. The proposed model method worked by modeling what is normal instead of what is

anomalous and was able to detect the anomalies with a high detection rate. The model has been

experimented on a new dataset collected from real network traffic using the modern honey

network. The focus of the next chapter will be in comparing the performance of a set of ML

classifiers for multi class dataset as a preliminary step towards implementing a powerful IDS.

5.5. Discussion

With the network developing at an unprecedented pace, the traditional intrusion detection

approaches are faced with more and more challenges. So, a lot of new techniques have been

introduced to conduct intrusion detection, among which the SVM algorithm is one of the widely

used techniques. SVM tries to construct a hyperplane that has the largest distance to the nearest

training-data point of any class in a high or infinite-dimensional space, which can be used for

classification and other tasks. By using the slack variables and kernel tricks, the SVM guarantees

to find the hyperplane that achieves a good separation. Whereas in the actual intrusion detection

scenarios, the conventional two-class SVM algorithms may face some minor problems.

 92

Given this, this chapter proposed an adopted OCSVM, which uses the normal connection

records as the training dataset and can recognize normal from various attacks, to create an anomaly

detection model for network intrusions. The proposed model has achieved a high detection rate,

low false-positive rate, and low false alarm rate. The overall detection rate achieved was 99.53%

with accuracy reached 97.61% and false positive rate equals 0.005% and with false alarm equals

0.7%. The proposed model has the advantage of detecting attacks without previous knowledge

about their behavior. The model just learns normal behavior. The standard deviation with a tuning

value is used to determine the normal class's boundaries and any instance that has a distance greater

than the standard deviation of that normal class is labeled as abnormal.

 93

6. COMPARATIVE ANALYSIS OF ML CLASSIFIERS USING NSL-KDD DATASET

Though ML approaches are used frequently, a deep analysis of ML algorithms in the context

of intrusion detection is somewhat lacking. In this section, we present a comprehensive analysis

of some of the most popular ML classifiers regarding identifying intrusions in network traffic.

Specifically, we analyze the classifiers along various dimensions, namely, feature selection,

sensitivity to hyper-parameter selection and class imbalance problems that are inherent to intrusion

detection. We evaluate several classifiers using the NSL-KDD dataset and summarize their

effectiveness using a detailed experimental evaluation. We present the experimental setup and the

results of comparing six ML classifiers regarding classification accuracy, TPR, FPR, precision,

recall, f-measure, and ROC area. We selected the six classifiers from various classifier families

and applied them to NSL-KDD dataset. The selected classifiers are Naïve Bayes, Logistic,

Multilayer Perceptron (NN), SMO (SVM), IBK (KNN) and J48 (DT).

6.1. Statistical Summary of NSL-KDD

Each record in the NSL-KDD dataset unfolds different features of the traffic with 41 attributes

plus an assigned label classifying each record as either normal or attack. The features of the dataset

are three types: Nominal, Numeric, and Binary. The nominal features are 2, 3, and 4, while the

binary features are 7, 12, 14, 15, 21, and 22, and the rest of the features are a numeric type. Authors

in [91] listed the details of those attributes that are the attributes names, description, and sample

data.

Attack types in the dataset can be grouped into four main classes namely DoS, U2R, Probe,

and R2L [138]. Table 5 maps different attack types with its attack class while Table 5 shows the

number of occurrences for normal and different attack classes.

 94

Table 5: NSL-KDD Attack Types and Classes.

Attack

Class

Attack Type Sample Relevant

Feature

Example

DoS Apache2, Back, Pod, Process table, Worm,

Neptune, Smurf, Land, Udpstorm, Teardrop

percentage of packets

with errors - source

bytes

Syn

flooding

Probe Satan, Ipsweep, Nmap, Portsweep, Mscan,

Saint

source bytes - duration

of the connection

Port

scanning

R2L Httptunnel, Snmpgetattack, Snmpguess,

Guess_Password, Imap, Warezclient,

Ftp_write, Phf, Multihop, Warezmaster,

Spy, Xsnoop, Xlock, Sendmail

number of shell

prompts invoked - the

number of file

creations

Buffer

overflow

U2R Buffer_overflow, Xterm, SQL attack, Perl,

Loadmodule, Loadmodule, Ps, Rootkit

Service requested –

connection duration –

num of failed login

attempts

password

guessing

Table 6 shows that the number of attack records associated with the R2L and U2R attack

classes in the dataset is very low compared to the normal and other attack classes, which leads to

the imbalanced problem. Classification process for any imbalanced dataset is always a challenging

issue for researchers. Most standard ML and data mining methods consider balanced datasets.

When the methods are used with an imbalanced dataset, they produce biased results toward the

 95

samples from the majority classes. The classification accuracy for the majority classes is much

higher than for the minority classes [139].

Table 6: No of Samples for Normal and Attack Classes.

Class Training Set Occurrences

Percentage

Testing Set Occurrences

Percentage

Normal 67343 53.46 % 9711 43.08 %

DoS 45927 36.46 % 7460 33.08 %

Probe 11656 9.25 % 2421 10.74 %

R2L 995 0.79 % 2885 12.22 %

U2R 52 0.04 % 67 0.89 %

Total 125973 100.0 % 22544 100.0 %

6.2. Experimental Setup

Our experimental setup went through three phases. In the first phase, we compared the

performance of the classifiers with their default settings and without any preprocessing for the

dataset. We trained the classifiers on the training dataset provided by NSL-KDD using Stratified

Cross-Validation of 10-folds and used the trained models with the testing dataset. The testing

datasets were also provided by NSL-KDD to compare the performance. The results of this phase

are summarized in Tables 8 and 9 where Table 10 summarizes performance metrics for the trained

models and Table 10 summarizes the same performance metrics for the trained models on the test

dataset.

 96

In the second phase, the NSL-KDD dataset was preprocessed to reduce its dimension by

selecting the most relevant features. We applied the InfoGainAttributeEval algorithm with Ranker

which ranked the attributes by their evaluation and resulted in selecting 14 out of 41 features

suggested by NSL-KDD. The selected features are shown in Table 7. We also used

CVParameterSelection to perform the hyperparameter optimization for each classifier. Finally, we

compared the performance as we did in the first phase. The results of this phase are summarized

in Tables 9 and 10.

Table 7: NSL-KDD Selected Features.

Feature

No.

Feature Name Description

3 Service The destination of the network service used

4 Flag The status of the connection

5 Src_bytes Number of bytes transferred from source to destination

6 Dst_bytes Number of bytes transferred from destination to source

9 Urgent A number of connection urgent packets

12 Logged_in Login Status: successfully =1, Otherwise = 0

14 Root_shell 1 if root shell is obtained; 0 otherwise

25 Serror_rate Percentage of the connections which activated the s0, s1,

s2 or s3 flags among the aggregated connections in (count)

26 Srv_serror_rate Percentage of the connections that have SYN errors

29 Same_srv_rate Percentage of the connections to the same service

 97

Feature

No.

Feature Name Description

30 Diff_srv_rate Percentage of the connections which were going to

different services, amongst the connections aggregated in

(count)

37 Dst_host_srv_

diff_host_rate

Percentage of the connections coming from different hosts

and going to the same service

38 Dst_host_serror_rate Percentage of the connections which have activated the s0,

s1, s2 or s3 flags, among the aggregated connections in

(dst_host_count)

39 Dst_host_srv_s

error_rate

Percentage of the connections which have activated the s0,

s1, s2 or s3 flags among the connections aggregated in

(dst_host_srv_count)

In the third phase, we worked on mitigating the dataset imbalance problem by under-sampling

the dominant classes and over-sampling the minority classes. For under-sampling, we used

WEKA’s Resample filter which takes a random subsample. By setting the bias toward the uniform

class to 1, we ensured that the output subsample was balanced. For oversampling, we used

WEKA’s SMOTE filter. SMOTE stands for Synthetic Minority Over-Sampling Technique. It

works by generating synthetic instances based on the existing instances in the minority class to

balance the data. The synthetic instances are generated by taking random points along a line

between an existing minority instance and its nearest neighbors.

 98

All experiments have been carried out using WEKA, a data mining tool running on a PC with

Intel(R) CORE(TM) i5-6600K CPU @ 3.50GHz, 3.50 GHz, 8 GB RAM installed and running a

64-bit Windows 10 OS, x64-based processor.

6.3. Experimental Results

For the evaluation purpose of each of the classifiers, we considered Stratified Cross-Validation

more important. The evaluation is performed using the training dataset, Stratified Cross-Validation

of 10-fold and the testing dataset provided by NSL-KDD.

Figures 19, 20, 21, 22, and 23 summarize the performance of the tested classifiers according

to Accuracy, and ROC Area in the first two experimental phases. Tables 7, 8, 9, and 10 present a

comprehensive comparison of the classifiers regarding classification accuracy, Precision, Recall,

TPR, FPR, F-Measure, and ROC Area. Table 11 shows the accuracy of each classifier in

classifying different types of attacks.

Figure 19: Training Vs. Testing Accuracy of Phase 1.

 99

Figure 20: Training Vs. Testing Accuracy of Phase 2.

Figure 21: Testing Accuracy of Phases 1 and 2.

 100

Figure 22: ROC Curves for Phase 1.

 101

Figure 23: ROC Curves for Phase 2.

Table 8: Classifier Trained Model Accuracy Metrics of Phase 1.

Classifier Accuracy TPR FPR Precision Recall F-Measure ROC Area

NB 80.20 % 0.841 0.087 0.890 0.841 0.852 0.968

Logistic 91.55 % 0.955 0.039 0.952 0.955 0.952 0.983

MLP 94.98 % 0.969 0.026 0.973 0.969 0.970 0.992

SMO 91.81 % 0.957 0.027 0.972 0.957 0.973 0.977

IBK 94.62 % 0.986 0.002 0.996 0.996 0.996 0.988

J48 94.74 % 0.987 0.002 0.997 0.997 0.997 0.987

 102

Table 9: Classifier Trained Model Accuracy Metrics on The Test Dataset of Phase 1.

Classifier Accuracy TPR FPR Precision Recall F-Measure ROC Area

NB 76.12 % 0.916 0.337 0.673 0.916 0.776 0.837

Logistic 75.60 % 0.928 0.380 0.649 0.928 0.763 0.653

MLP 77.60 % 0.929 0.393 0.642 0.929 0.759 0.886

SMO 75.39 % 0.926 0.393 0.641 0.926 0.758 0.625

IBK 79.35 % 0.927 0.353 0.665 0.927 0.775 0.802

J48 81.69 % 0.972 0.318 0.698 0.972 0.813 0.818

Table 10: Classifier Trained Model Accuracy Metrics of Phase 2.

Classifier Accuracy TPR FPR Precision Recall F-Measure ROC Area

NB 90.41 % 0.898 0.083 0.947 0.898 0.922 0.957

Logistic 95.48 % 0.965 0.064 0.958 0.965 0.961 0.975

MLP 96.50 % 0.973 0.051 0.965 0.973 0.969 0.973

SMO 95.73 % 0.966 0.060 0.960 0.966 0.963 0.953

IBK 97.83 % 0.979 0.022 0.979 0.979 0.979 0.978

J48 97.89 % 0.979 0.022 0.979 0.979 0.979 0.979

 103

Table 11: Classifier Trained Model Accuracy Metrics on The Test Dataset of Phase 2.

Classifier Accuracy TPR FPR Precision Recall F-Measure ROC Area

NB 78.15 % 0.782 0.083 0.821 0.782 0.794 0.889

Logistic 81.51 % 0.815 0.142 0.851 0.815 0.832 0.889

MLP 78.15 % 0.782 0.173 0.818 0.782 0.799 0.889

SMO 79.83 % 0.798 0.161 0.832 0.798 0.814 0.856

IBK 84.35 % 0.824 0.134 0.860 0.824 0.841 0.838

J48 82.67 % 0.807 0.157 0.837 0.807 0.821 0.883

Table 12: Classifier Accuracy Detection for Different Classes of Attacks.

Classifier Class Phase I Phase II Phase III

NB Normal 76.1 % 86.0 % 89.9 %

DoS 75.2 % 83.8 % 91.8 %

Probe 76.1 % 81.8 % 83.9 %

R2L 10.1 % 26.7 % 39.0 %

U2R 30.3 % 30.8 % 32.1%

Logistic Normal 75.6 % 84.4 % 96.4 %

DoS 74.9 % 90.7 % 96.7 %

Probe 75.1 % 69.6 % 88.7 %

R2L 00.0 % 00.0 % 26.2 %

U2R 22.3 % 26.7 % 53.2 %

MLP Normal 77.6 % 82.4 % 97.5 %

 104

Classifier Class Phase I Phase II Phase III

DoS 80.5 % 86.3 % 97.4 %

Probe 68.9 % 63.2 % 93.9 %

R2L 00.0 % 00.0 % 60.6 %

U2R 08.9 % 09.7 % 30.2 %

SMO Normal 75.3 % 83.3 % 96.7 %

DoS 74.7 % 91.9 % 97.5 %

Probe 55.4 % 60.0 % 87.6 %

R2L 00.0 % 00.0 % 02.7 %

U2R 00.0 % 00.0 % 04.9 %

IBK Normal 79.3 % 86.8 % 99.4 %

DoS 80.5 % 90.7 % 99.5 %

Probe 71.8 % 76.2 % 99.0 %

R2L 00.0 % 00.0 % 53.2 %

U2R 00.0 % 00.0 % 41.5 %

J48 Normal 81.6 % 84.8 % 99.5 %

DoS 80.1 % 89.2 % 99.2 %

Probe 67.9 % 63.2 % 91.6 %

R2L 18.9 % 18.2 % 55.1 %

U2R 00.0 % 00.0 % 39.3 %

 105

Our experimental results show that J48 outperforms other classifiers with the best accuracy in

the first phase while IBK performs better in the second phase. Figure 12 shows that the best

performance improvement when applying the feature selection methods is for SMO, Logistic, and

IBK classifiers. Moreover, the results shown in Table 12 indicate that all the classifiers give good

accuracy for the dominant classes, while it is not the case for the R2L and U2R classes. It also

shows that the imbalance mitigation method improves limitations in detecting R2L and U2R

attacks.

6.4. Conclusion

The main purpose of the experiments in this chapter was to test the effect of dataset

preprocessing and the process of algorithm hyperparameter optimization on the overall

performance of the ML-based IDS. In this chapter, we have used a subset of features extracted

from the NSL-KDD dataset, which is the most used dataset in network intrusion detection

literature, to provide a comparative analysis of a group of ML classifiers for intrusion detection.

We focused on supervised ML approaches by using the following classifiers: Naïve Bayes,

Logistic, MLP, SMO, IBK, and J48.In addition, we used the InfoGainAttributeEval algorithm for

feature selection and dimensionality reduction. Moreover, we have used WEKA’s Resample and

SMOTE filters to overcome the dataset imbalance problem. Using the NSL-KDD dataset and

based on our extensive experimental study, we conclude that the IBK and J48 approaches show

the best performance in terms of accuracy, precision, F-measure, and AUC metrics.

 106

7. GTCS-I: NEW GENERATED DATASET

The effectiveness of IDSs is evaluated based on their performance to identify attacks that

require a comprehensive dataset that contains normal and abnormal behaviors [140]. Older

benchmark datasets are DARPA, KDDCUP and NSL-KDD which have been widely adopted for

evaluating NIDS performance. It is perceived through several studies[84, 141], evaluating an IDS

using these datasets does not reflect realistic output performance due to several reasons that can

be summarized in the following points.

• Data privacy reasons and security policies that prevent corporate from sharing

their realistic data with users, and the research community.

• Getting the permission of the dataset's owner is frequently delayed. Moreover,

it usually requires the researcher to sign an Acceptable Use Policies (AUP) that

include limitations to the time of usage and data that can be published about the

dataset.

• The limited scope of most datasets that don't fit various network intrusion

detection researchers' aims and objectives.

• Most of the available datasets in the field of IDSs suffer from the lack of proper

documentation that describes the network environment, the simulated attacks,

and the dataset limitations.

• Many of the accessible datasets were labeled manually.

The above reasons have boosted a serious challenge for the researchers in the cybersecurity

domain. To overcome these problems, this thesis presents a new novel dataset that is automatically

 107

and completely labeled. The dataset with proper documentation is publicly available to researchers

and doesn't require any AUP to use. In this chapter, we demonstrate (1) how our novel dataset was

collected and stored, (2) the dataset collection testbed implementation and key design decisions,

(3) the dataset features selection and extraction, and (4) dataset statistical summary to show the

quality of the data collected.

7.1. Lab Setup

To generate the new dataset, benign network traffic, along with malicious traffic were

extracted, labeled, and stored. To mimic typical network traffic flow, we designed a complete

testbed (Figure 24) composed of several normal and attacking virtual machines (VMs) that are

distributed into two separate networks. The victim network consists of a set of VMs running

different versions of the most common operating systems namely Windows Server and/or PC,

Linux, and Android. The attack network is a completely separated infrastructure and contains Kali

1.1 and Kali 2.0 VMS.

To generate a large amount of realistic benign traffic, we used Ostinato [142] the packet

generator tool which is a flexible tool that generates normal traffic with given IPs and ports. The

malicious traffic was generated using Kali Linux [143] which is enterprise-ready security auditing

Linux distribution based on Debian GNU/Linux [144]. The process to generate both benign and

malicious traffic took 8 days. 100 % of the attacks in this dataset are new. In our attack scenarios

four of the most common and up to date attack families are considered and are briefly described

below.

 108

Figure 24: The Lab setup for the GTCS Network.

• Botnet attacks [145]: This attack can be defined as a group of compromised network

systems and devices that execute different heinous network attacks like sending spams,

granting backdoor access to compromised systems, stealing information via keyloggers,

performing phishing attacks, etc.

• Brute force attacks [146]: a well-known network attack family where intruders try every

key combination as an attempt to guess passwords or try to use fuzzing methods to get

unauthorized access to certain hidden web pages (e.g., admin login page).

• Distributed Denial of Service (DDoS) attacks [147]: Denial of Service attack (DoS) is a

very popular network attack where an attacker sends an overwhelming number of false

requests to a target service or network in order to deny legitimate users from accessing that

 109

service. DDoS is a modern DoS attack where attackers use thousands of compromised

systems to flood the bandwidth or resources of the target system.

• Infiltration attacks [148]: a type of attack that is usually executed from inside the system

that is compromised by exploiting vulnerabilities in software applications such as Internet

browsers, Adobe Acrobat Reader., etc.

7.2. Data Collection & Feature Extraction

We implemented four attack scenarios namely, Botnet, Brute force, DDoS, and Infiltration

attacks. For each attack, we defined a scenario based on the implemented network topology and

execute the attacks using the Kali Linux machines that are located in a separate network from the

target machines. The attacking machines were Kali 1.1 and Kali 2.0.

To perform the Botnet attack, we have used Zbot [149], which is a trojan horse malware

package that can be run on MS Windows operating systems to execute many malicious tasks. Zbot

can be mainly extended through drive-by downloads and different phishing schemes. Because it

uses stealth techniques to hide from different security tools, Zbot malware has become the largest

botnet on the Internet [150]. The victim machines in our Botnet attack scenario were running

Windows 7 and Windows 8. It is important to note that firewall, windows defender and automatic

updating are all disabled on all windows victim machines to enable capturing a wide spectrum of

interesting cases. The GNS3 (Graphical Network Simulator-3) and EVE (Emulated-Virtual-

Experience) cloud components are network software emulators that allows the combination of

virtual and real devices to simulate complex networks. Also, password complexity check was not

active, and all passwords were set to minimum 3 characters. For the Brute force attack, we have

used the FTP module on the Kali 2.0 Linux machine to attack the machine running Ubuntu 16.4

system in the victim network. To carry out the DDoS attack, we have used the HOIC (High Orbit

 110

Ion Canon) tool [151] which is a popular free tool for performing DDoS attacks. HOIC works by

flooding a target web server with junk HTTP, GET, and POST requests and can open up to 256

simultaneous attack sessions at once. For the infiltration attack, we have sent a vulnerable

application to the Metasploitable Linux-2 machine from the victim network. Next, we have used

the vulnerable application to open a backdoor and perform our infiltration attack.

To capture the raw network traffic data (in pcap format) we used Wireshark and Tcpdump

[152, 153]. Wireshark is a network packet analyzer that can capture the network traffic data in as

much detail as possible while Tcpdump is a command line utility that helps in capturing and

analyzing network traffic. After collecting the raw network packets (i.e., pcap files), we used the

CICFlowMeter [154, 155] to process those files and extract the attributes/features of the network

flow packets. The CICFlowMeter is an open-source tool that generates Biflows from pcap files

and extracts features from these flows. The extracted features are as follows:

• Flow: ID which presents the unique id calculated from the 5-tuple i.e., Src IP, Dst IP, Src

Port, Dst Port, and Protocol number as follows

o Src IP: the IP address of the machine from which the traffic started.

o Src Port: the source port number.

o Dst IP: the IP address of the destination machine.

o Dst Port : the destination port number.

o Protocol number: the number of the transaction protocol.

• Timestamp: the date and time of day for when the flow occurred.

• Flow Duration: the total duration of the flow.

• Tot Fwd/Bwd Pkts: the total packets in the forward/backward direction.

• TotLen Fwd/ Bwd Pkts: the total size of packet in forward/backward direction.

 111

• Fwd/Bwd Pkt Len: the size of the packet in the forward/backward direction.

• Flow Byts/Packets: the rate of flow byte/packets that is number of bytes/packets transferred

each second.

• Flow IAT: the time between two packets sent in the forward/backward direction.

• Fwd/Bwd IAT: the time between two packets sent in the forward/backward direction.

• Fwd/Bwd PSH: the number of times that PSH flag was set to the packets moving in

forward/backward direction.

• Fwd/Bwd URG: the number of times that URG flag was set to packets moving in forward/

backward direction.

• Active: how long a flow was active before being idle.

• Idle: how long a flow was idle before being active.

• Fwd/Bwd Pkts/s: the number of transmitted packets per second in the forward/backward

direction.

• Fwd/Bwd Byts/s: the number of transmitted bytes per second in the forward/backward

direction.

• Label: indicates whether the traffic is malicious or not.

The CICFlowMeter interface is shown in Figure 25 while the full extracted features are listed

in Table 13.

 112

Figure 25: CICFlowMeter Interface.

Table 13: Full List of GTCS-I Extracted Features.

Feature Name Description

1 Flow ID A unique id calculated from the 5-tuple (Src IP, Dst IP, Src Port,

Dst Port, and Protocol number)

2 Src IP The source IP address

3 Src Port The source port number

4 Dst IP The destination IP address

5 Dst Port The destination port number

6 Protocol The transaction protocol

 113

Feature Name Description

7 Timestamp The flow timestamp

8 Flow Duration The total duration of the traffic flow

9 Tot Fwd Pkts Total packets in the forward direction

10 Tot Bwd Pkts Total packets in the backward direction

11 TotLen Fwd Pkts Total size of packet in forward direction

12 TotLen Bwd Pkts Total size of packet in backward direction

13 Fwd Pkt Len Max Maximum size of packet in forward direction

14 Fwd Pkt Len Min Minimum size of packet in forward direction

15 Fwd Pkt Len Mean Mean size of packet in forward direction

16 Fwd Pkt Len Std Standard deviation size of packet in forward direction

17 Bwd Pkt Len Max Maximum size of packet in backward direction

18 Bwd Pkt Len Min Minimum size of packet in backward direction

19 Bwd Pkt Len Mean Mean size of packet in backward direction

20 Bwd Pkt Len Std Standard deviation size of packet in backward direction

21 Flow Byts/s flow byte rate that is number of packets transferred per second

22 Flow Pkts/s flow packets rate that is number of packets transferred per second

23 Flow IAT Mean Average time between two flows

24 Flow IAT Std Standard deviation time two flows

25 Flow IAT Max Maximum time between two flows

26 Flow IAT Min Minimum time between two flows

27 Fwd IAT Tot Total time between two packets sent in the forward direction

28 Fwd IAT Mean Mean time between two packets sent in the forward direction

 114

Feature Name Description

29 Fwd IAT Std Standard deviation time between two packets sent in the forward

direction

30 Fwd IAT Max Maximum time between two packets sent in the forward direction

31 Fwd IAT Min Minimum time between two packets sent in the forward direction

32 Bwd IAT Tot Total time between two packets sent in the backward direction

33 Bwd IAT Mean Mean time between two packets sent in the backward direction

34 Bwd IAT Std Standard deviation time between two packets sent in the backward

direction

35 Bwd IAT Max Maximum time between two packets sent in the backward

direction

36 Bwd IAT Min Minimum time between two packets sent in the backward

direction

37 Fwd PSH Flags Number of times the PSH flag was set in packets travelling in the

forward direction (0 for UDP)

38 Bwd PSH Flags Number of times the PSH flag was set in packets travelling in the

backward direction (0 for UDP)

39 Fwd URG Flags Number of times the URG flag was set in packets travelling in the

forward direction (0 for UDP)

40 Bwd URG Flags Number of times the URG flag was set in packets travelling in the

backward direction (0 for UDP)

41 Fwd Header Len Total bytes used for headers in the forward direction

42 Bwd Header Len Total bytes used for headers in the forward direction

 115

Feature Name Description

43 Fwd Pkts/s Number of forward packets per second

44 Bwd Pkts/s Number of backward packets per second

45 Pkt Len Min Minimum length of a flow

46 Pkt Len Max Maximum length of a flow

47 Pkt Len Mean Mean length of a flow

48 Pkt Len Std Standard deviation length of a flow

49 Pkt Len Var Minimum inter-arrival time of packet

50 FIN Flag Cnt Number of packets with FIN

51 SYN Flag Cnt Number of packets with SYN

52 RST Flag Cnt Number of packets with RST

53 PSH Flag Cnt Number of packets with PUSH

54 ACK Flag Cnt Number of packets with ACK

55 URG Flag Cnt Number of packets with URG

56 CWE Flag Count Number of packets with CWE

57 ECE Flag Cnt Number of packets with ECE

58 Down/Up Ratio Download and upload ratio

59 Pkt Size Avg Average size of packet

60 Fwd Seg Size Avg Average size observed in the forward direction

61 Bwd Seg Size Avg Average size observed in the backward direction

62 Fwd Byts/b Avg Average number of bytes bulk rate in the forward direction

63 Fwd Pkts/b Avg Average number of packets bulk rate in the forward direction

64 Fwd Blk Rate Avg Average number of bulk rates in the forward direction

 116

Feature Name Description

65 Bwd Byts/b Avg Average number of bytes bulk rate in the backward direction

66 Bwd Pkts/b Avg Average number of packets bulk rate in the backward direction

67 Bwd Blk Rate Avg Average number of bulk rates in the backward direction

68 Subflow Fwd Pkts The average number of packets in a sub flow in the forward

direction

69 Subflow Fwd Byts The average number of bytes in a sub flow in the forward

direction

70 Subflow Bwd Pkts The average number of packets in a sub flow in the backward

direction

71 Subflow Bwd Byts The average number of bytes in a sub flow in the backward

direction

72 Init Fwd Win Byts Number of bytes sent in initial window in the forward direction

73 Init Bwd Win Byts # of bytes sent in initial window in the backward direction

74 Fwd Act Data Pkts # of packets with at least 1 byte of TCP data payload in the

forward direction

75 Fwd Seg Size Min Minimum segment size observed in the forward direction

76 Active Mean Mean time a flow was active before becoming idle

77 Active Std Standard deviation time a flow was active before becoming idle

78 Active Max Maximum time a flow was active before becoming idle

79 Active Min Minimum time a flow was active before becoming idle

80 Idle Mean Mean time a flow was idle before becoming active

81 Idle Std Standard deviation time a flow was idle before becoming active

 117

Feature Name Description

82 Idle Max Maximum time a flow was idle before becoming active

83 Idle Min Minimum time a flow was idle before becoming active

84 Label Indicates whether the traffic is malicious or not

7.3. Discussion

The primary goal of this chapter was to produce a high-quality network intrusion dataset that

can be used for ML and data mining tools in IDS approaches. Another goal was to illustrate a

standardized procedure (that can be replicated) to generate similar high-quality and up-to-date

datasets. When compared to the publicly available IDS evaluation datasets mentioned in chapter

3, we can confirm that we have successfully achieved our goals. We were able to make

improvements by focusing on the important characteristics of the process for generating a quality

dataset. The quality of our controlled attacks was improved by performing them in a live network.

Attacks that take place in a live network are an invaluable enhancement to background noise that

is truly realistic and is an improvement from the normal traffic created by other datasets. We had

avoided adding the extremely poor synthetic data that can be generated by using only SMTP, DNS,

or simple HTTP services. Furthermore, the real normal data in our dataset helps to promote a more

realistic portion of false negatives and false positives within the dataset.

 118

8. NEC-IDS: A HOLISTIC APPROACH FOR IDS USING ENSEMBLE ML

CLASSIFIERS

In this chapter, we propose an ensemble classifier model (Figure 28) composed of multiple

classifiers with different learning paradigms to address the issue of the accuracy and false alarm

rate in IDS. First, we compare the performance of the same set of ML algorithms in chapter 6

regarding identifying intrusions in network traffic using the new generated dataset (GTCS).

Finally, we present an accurate a holistic approach for detecting network intrusions by using

ensemble of the best performed ML algorithms.

8.1. Statistical Summary of GTCS-I

Each record in the GTCS-I dataset unfolds different features of the traffic with 83 attributes

plus an assigned label classifying each record as either normal or an attack type. To reduce the

dimension of the dataset we applied the InfoGainAttributeEval algorithm with Ranker which

ranked the attributes by their evaluation and resulted in selecting 44 out of 84 features of the

GTCS-I dataset. The final selected features are summarized and ranked in Figure 26.

Attack types in the dataset can be grouped into four main classes namely Botnet, Brute Force,

DDoS, and Infiltration. The number of records associated with each class is shown in Table 14.

Table 14: No of Samples for Normal and Attack Classes.

Class Training Set Occurrences Percentage

Normal 139186 26.98 %

Botnet 93021 17.97 %

Brute Force 83858 16.20 %

 119

Class Training Set Occurrences Percentage

DDoS 131211 25.35 %

Infiltration 70202 13.56 %

Total 517478 100.00%

Figure 26: GTCS-I Selected Features.

8.2. ML Algorithms Performance Comparison

The experiment in this section went through two phases. In the first phase, we compared the

performance of the classifiers using the GTCS-I dataset with the full extracted features shown in

Table 12. The results of this phase are summarized in Tables 15. In the second phase, reduced

GTCS-I with the selected features shown in Figure 26 was used. The results of this phase are

summarized in Tables 16.

The experiment in this section has been carried out using WEKA, on a PC with Intel(R)

CORE(TM) i5-8265U CPU @ 3.50GHz, 3.50 GHz, 16.0 GB RAM installed and running a 64-bit

Windows 10 OS, x64-based processor.

 120

Table 15: Phase 1 Examination Results.

Classifier Accuracy TPR FPR Precision Recall F-Measure ROC Area

NB 86.81% 0.869 0.116 0.912 0.864 0.885 0.921

Logistic 91.88% 0.936 0.097 0.923 0.931 0.924 0.930

MLP 92.90% 0.944 0.085 0.932 0.939 0.931 0.937

SMO 92.13% 0.937 0.093 0.925 0.932 0.926 0.917

IBK 94.23% 0.948 0.055 0.943 0.945 0.942 0.942

J48 94.29% 0.951 0.054 0.949 0.945 0.944 0.943

Table 16: Phase 2 Examination Results.

Classifier Accuracy TPR FPR Precision Recall F-Measure ROC Area

NB 89.51% 0.881 0.109 0.942 0.894 0.915 0.948

Logistic 94.58% 0.948 0.091 0.953 0.961 0.954 0.966

MLP 95.60% 0.956 0.077 0.96 0.969 0.962 0.964

SMO 94.83% 0.949 0.086 0.955 0.962 0.956 0.944

IBK 96.93% 0.960 0.050 0.971 0.973 0.971 0.969

J48 96.99% 0.962 0.048 0.974 0.975 0.972 0.970

Table 17: Classifiers Accuracy Detection for Different Classes of Attacks.

Classifier Class Phase I Phase II

NB Normal 86.00% 86.90%

 121

Classifier Class Phase I Phase II

Botnet 87.90% 88.80%

Brute Force 80.00% 80.90%

DDoS 83.80% 84.70%

Infiltration 78.96% 79.86%

Logistic Normal 92.50% 93.40%

Botnet 92.80% 93.70%

Brute Force 84.80% 85.70%

DDoS 91.58% 92.48%

Infiltration 81.30% 82.20%

MLP Normal 93.60% 94.50%

Botnet 93.50% 94.40%

Brute Force 90.00% 90.90%

DDoS 98.89% 99.79%

Infiltration 82.30% 83.20%

SMO Normal 92.80% 93.70%

Botnet 93.60% 94.50%

Brute Force 83.70% 84.60%

DDoS 91.01% 92.89%

Infiltration 72.45% 83.35%

IBK Normal 95.50% 96.40%

Botnet 95.60% 96.50%

Brute Force 95.10% 96.00%

 122

Classifier Class Phase I Phase II

DDoS 96.32% 97.22%

Infiltration 79.67% 80.57%

J48 Normal 94.60% 95.10%

Botnet 95.30% 96.20%

Brute Force 87.70% 91.60%

DDoS 95.53% 96.43%

Infiltration 83.43% 84.33%

Tables 15 and 16 present a comprehensive comparison of the classifiers regarding

classification accuracy, Precision, Recall, TPR, FPR, F-Measure, and ROC Area. Table 17

presents the accuracy of each classifier in classifying different classes in the GTCS-I dataset in the

two phases which is also illustrated in Figure 27.

Figure 27: Classification Accuracy in the Two Phases.

 123

Figure 28: The Accuracy of Each Classifier in Classifying Different Classes in GTCS-I.

The experimental results show that IBK outperforms other classifiers with the best accuracy

in both phases. Moreover, the results in Table 17 show that IBK outperforms other classifiers in

classifying Normal, Botnet, and Brute Force classes while MLP is the best for DDoS class samples

and J48 is the best for Infiltration class. These results are illustrated in Figure 28.

8.3. NEC-IDS: A Holistic Approach for IDS Using Ensemble ML Classifiers

The proposed model composed of three ML classifiers from various classifier families. The

selection of these classifiers is based on the results from section 8.2. The selected classifiers are

J48 (DT-C4.5), IBK (KNN) and MLP (NN). In the proposed model, the four classifiers work in

 124

parallel, and each classifier builds a different model of the data. The outputs of the three classifiers

are combined by majority voting method to obtain the final output of the ensemble model.

Figure 29: Ensemble Classifier Model Flow.

In the ensemble system each classifier builds a different model of the data based on the

preprocessed dataset. To build the models, each classifier was tested using the 10-folds cross-

validation technique within the dataset, where the dataset gets divided into 10 folds or subsets.

Any 9 subsets were used as training sets and the remaining subset was used as the test set. More

specifically, each fold was analyzed, and the total score results determined the average

performance out of 10-fold. Majority voting is one of the traditional and common way to combine

the classifier.

8.4. The Experimental Results

The experimental results show that the proposed ensemble IDS model was able to outperform

all single classifiers in terms of classification accuracy as shown in Figure 30.

 125

Figure 30: Ensemble Vs Single Classifiers Accuracy.

Moreover, the ensemble model was able to increase the true positive rate and decrease the

false positive rate. The results for the ensemble model as well as for each single classifier used in

the model are summarized in Table 18.

Table 18: Individual Vs Ensemble Performances.

Class J48 IBK MLP Ensemble Model

Acc

%

TP FP Acc

%

TP FP Acc

%

TP FP Acc

%

TP FP

Normal 95.10 0.902 0.049 96.40 0.960 0.049 93.60 0.966 0.051 98.62 0.965 0.029

Botnet 96.20 0.913 0.038 96.50 0.967 0.046 93.50 0.951 0.053 98.87 0.972 0.018

Brute

Force

91.60 0.876 0.068 96.00 0.960 0.050 90.00 0.816 0.068 96.70 0.901 0.031

DDoS 96.43 0.964 0.035 97.22 0.973 0.039 98.89 0.976 0.038 98.99 0.979 0.016

Infiltration 84.33 0.898 0.088 80.57 0.911 0.091 82.30 0.886 0.089 88.69 0.899 0.040

 126

9. GTCS-II: NEW GENERATED DATASET FROM A REAL TRAFFIC

In the section below, we explain the details of the testbed setup that we implemented to create

the dataset.

9.1. Lab Setup

To collect a real attacks traffic, a testbed was built on AWS (Amazon Web Services) and ran

for 10 days. The system consists of three main subsystems as shown in Figure 31. The first

subsystem is the sensors network, which is used as a decoy to lure the adversaries to try the system.

The second subsystem is used to collect the data from different sensors. The third subsystem is the

visualizer, that is necessary to parse, analyze, search, and extract the collected data.

Figure 31: Testbed subsystems.

9.1.1. The Sensors Subsystem (Honeynet)

Sensors are servers that are intentionally exposed to the public network pretending to offer

something interesting for the attacker. A lot of effort has been made to create such technology

leading to what is known as a honeypot [156]. A honeypot is an information system resource

whose value lies in unauthorized or illicit use of that resource, which means that honeypots derive

their values from threats using them [157]. Honeypot, as a security approach, differs from firewall

and intrusion detection systems in the sense that they are implemented somewhere in the network

intentionally with the hope of being approached by the hackers. If they are built the right way with

Sensors Collector visualizer

 127

the right precaution, then the more they are attacked and the smarter those attacks are, the more

valuable the honeypots are. A honeynet is a collection of high interaction honeypots on a tightly

controlled and highly monitored network.

A honeypot can be one of the three types:

1. Low-interaction honeypot - This kind of honeypot gives the intruders the illusion that

the system is running some services so, it has no risks and requires less resources, but

it is easy to be discovered by the attacker.

2. Medium interaction honeypot - This kind is a little more interactive as it simulates

some services and enables the attacker to run commands on the system.

3. High interaction honeypot - This kind can be a separate network of real running

services for the sole purpose of deflecting the attacker from the actual services,

collecting his data, and studying his behavior. It requires more resources and can be

risky, but the collected data can be more valuable.

Besides the use of the honeypots as a decoy to capture the attacker's data, it could also be of

great value to trick and deflect the adversaries from the actual system and give the administrators

of the attacked system more time to harden the system and apply the necessary patches. In real

enterprise systems, honeynets can be deployed either before or after the organization`s firewall.

When deployed before the firewall, it allows the most exposure to the evil scary world of the

internet to collect as much attacks as possible. On the other hand, it could be deployed behind the

firewall for two reasons: first, to capture internal attacks from inside the organization from those

who are trying to do things they should not be doing, as usually internal traffic does not go through

the firewall; second, to give an early alert that the organization`s firewall or IDS might need to be

tuned after it was successfully evaded by some non-legitimate attacker.

 128

In this experiment, the sensors subsystem is built as a honeynet of six honeypots to collect

data from the attackers. Different honeypots have different purposes and run/simulate different

services. In this section, a brief description of each honeypot is given. As this is not intended to be

comprehensive detailed information about each honeypot, we focus on the decryption, what type

each honeypot is, and which services are they listening for.

• Dionaea: a low-interaction honeypot that captures attack payloads and malware. Dionaea

uses Python as a scripting language, using libemu to detect shellcodes, supporting ipv6 and

tls. It listens on many different protocols e.g., blackhole, epmap, ftp, http, memcache,

mirror, mqtt, mssql, mysql, pptp, sip, smb, tftp, upnp.

• Cowrie: a medium to high interaction SSH and Telnet honeypot designed to log brute force

attacks and the shell interaction performed by the attacker. In medium interaction mode

(shell), it emulates a Unix system in Python, in high interaction mode (proxy) it functions

as an SSH and Telnet proxy to observe attacker behavior to another system. Cowrie

emulates SSH and Telnet services and gives the intruder the illusion of interacting with a

real system and hence, captures his actions against the system e.g., commands and

downloaded files. It works by running a fake filesystem with the ability to add/remove files

where a full fake filesystem resembling a Debian 5.0 installation is included, so it allows

adding of fake file contents so the attacker can “cat” files, such as /etc/passwd. Cowrie also

gives the attacker the ability to download and upload files using wget/curl or sftp/scp and

saves files downloaded for later inspection.

• Conpot: a low interactive server-side industrial control systems (ICS) honeypot designed

to be easy to deploy, modify and extend with the goal of collecting intelligence about the

motives and methods of adversaries targeting industrial control systems. By providing a

 129

range of common industrial control protocols, Conpot created the basics to build a system

capable to emulate complex infrastructures to convince an adversary that he landed a huge

industrial complex. To improve the deceptive capabilities, it also provided the possibility

to server a custom human-machine interface to increase the honeypots' attack surface. The

response times of the services can be artificially delayed mimicking the behavior of a

system under constant load. Since Conpot is providing complete stacks of the protocols, it

can be accessed with productive HMI's or extended with real hardware. Conpot is

simulating real systems like Siemens S7-200 PLC or a Guardian AST tank monitor and

uses the Modbus protocol, which is the de-facto standard communication protocol used for

connecting industrial electronic devices.

• AMUN: a highly flexible and lightweight low-interaction honeypot, designed to capture

malware that spreads by exploiting server-based vulnerabilities. The use of a scripting

language allows it to be easily extended and ported to different operating systems.

Furthermore, Amun tries to actually “speak” the required protocol of an application an

attacker is trying to exploit, making it more successful at fooling attackers. AMUN

simulates a lot of protocols like RDP, SMP, telnet, FTP, and more to emulate many

vulnerabilities e.g., Buffer Overflow, Buffer Overrun, and Stack Overflow.

• Snort: a honeypot, but it is used in this project as a sensor for the traffic. Snort is an IPS

that was developed by Cisco, who opened its source and made it available for the

community. It uses a series of rules to help define malicious network activity and uses

those rules to find packets that match against them and generates alerts for users. It can be

deployed inline to stop these packets, as well. Snort has three primary uses: as a packet

sniffer like tcpdump, as a packet logger (which is useful for network traffic debugging), or

 130

it can be used as a full-blown network IPS. Snort can be downloaded and configured for

personal, and business use alike (Snort - Network Intrusion Detection & Prevention

System, 2020). In this project, Snort is used as a packet sniffer to log all the malicious

traffic.

• P0f: a tool that utilizes an array of sophisticated, purely passive traffic fingerprinting

mechanisms to identify the players behind any incidental TCP/IP communications (often

as little as a single normal SYN) without interfering in any way. P0f is capable of

recognizing the operating system, measurement of system uptime, distance, and link type.

Common uses for P0f include reconnaissance during penetration tests, routine network

monitoring, detection of unauthorized network interconnects in corporate environments,

providing signals for abuse-prevention tools, and miscellaneous forensics. As a passive

tool for fingerprinting, P0f could be less accurate than active fingerprinting tools like

NMAP, which probes the target system for information.

9.1.2. The Collector Subsystem (MHN)

Modern Honey Network (MHN) is a centralized server for the management and data

collection of honeypots. MHN allows to deploy sensors quickly and to collect data immediately,

viewable from a neat web interface. Honeypot deploy scripts include several common honeypot

technologies, including Snort, Cowrie, Dionaea, Amun, and ElasticHoney, among others. MHN is

the brain of the testbed as it facilitates the deployment of honeypots by wrapping all the necessary

software for each honeypot in a script, collects data from sensors, and enables the integration with

the visualizer, as well as provides a RESTful API for integration with 3rd parties.

 131

Figure 32: MHN Server Architecture.

As shown in Figure 32, MHN composes of two main components that are

1- hpfeeds, which is a lightweight authenticated publish-subscribe protocol. It has a simple

wire-format so that everyone is able to subscribe to the feeds with their favorite language

in almost no time, so it is used as the landing point from all the honeypots, and as a data

source for three other system components:

a. Honey map, which is a fancy map to show the geographical location of live attacks

from some types of honeypots like Dionaea.

b. Hpfeeds-logger is a simple utility for logging hpfeeds events to files compatible

with Splunk and ArcSight.

c. Mnemosyne Provides immutable persistence for hpfeeds. It also provides

normalization of data to enable sensor agnostic analysis and exposes this

normalized data through a RESTful API.

 132

2- MongoDB is a general-purpose, document-based, distributed database used to store all the

indexed data feed from Mnemosyne. The Mongo database is used as the data source for

two other system components:

a. Web app, which is the basic built-in visualization component of MHN unless a

more complex analysis is needed by 3rd party like Splunk.

b. 3rd party API, which provides an API interface for 3rd party integration.

9.1.3. The Visualizer (Splunk)

With the big amount of data collected by the sensors, it was better to use a third-party

application to handle the data instead of the MHN built-in web app. Splunk is used in this project,

but MHN also supports the integration with ArcSight software.

Splunk is a software platform to search, analyze and visualize the machine-generated data

gathered from the websites, applications, sensors, and devices, which make up the IT infrastructure

and business. Splunk is a great tool when it comes to the processing of a huge amount of data, as

it can provide real-time processing, and accept any data input format e.g., csv, and JSON. It can

also be configured to give alerts about the machine’s states and predict if resource scaling is

needed. To make it easy for the integration with other systems, Splunk has the concept of apps

which are an extension/addon of Splunk functionality that give the developers of any applications

e.g., MHN, who want to use Splunk, the ability to develop their own application with a customized

user interface and visualization dashboards to serve a specific need, then upload it to Splunk

marketplace (splunkbase) to make it available for the Splunk community. This makes it easy for

the users to integrate those applications with Splunk by just importing the application extension

into Splunk and sometimes do a few setup steps like licensing and data source configuration. For

MHN, there is an app with the same name that can be downloaded from the splunkbase.

 133

9.2. Data Collection

 We built our testbed as shown below in Figure 33. It consists of six sensors running

different honeypots and one server running MHN and Splunk services. The honeypots servers

were running on AWS free tier t2-micro instance type, while the MHN & Splunk server were

running on t2-medium instance during data collection and upgraded to t2-large instance type

during data analysis and extraction. The experiment ran for 10 days between the 8th and the 18th

of March.

Figure 33. Testbed System Architecture

9.3. Data Presentation and Analysis

After the data was collected from the sensors by the MHN server and sent to Splunk for

analysis and visualization, we used the Splunk query language Splunk processing language (SPL)

to extract the datasets. Table 19 summarizes the total number of the collected data using the sensors

subsystem as well as the data collected per each sensor. In the section below, we present a sample

 134

of the dataset, distribution of the data across the collection period, and a summary of the collected

data per each sensor.

Table 19: GTCS-II Collected Data.

Sensor Total

Collected

Distinct

SRC

Distinct SRC

DEST_Port

Distinct SRC

DEST_Port SRC_Port

Dionaea 177,000 10,000 72,000 158,000

P0f 369,000 24,000 108,000 212,000

AMUN 245,000 9,000 10,000 228,000

Cowrie 58,000 1,243 1,243 45,000

Snort 108,000 6,200 53,000 67,000

Conpot 3,780 444 444 544

Total 960,780 50,887 244,687 755,544

By implementing a testbed hosted on amazon AWS cloud, we ran an experiment for 10 days

and collected different attacks on different services. Using the data collected by different sensors,

we created a real network attacks dataset full of many interesting features that can be used to

profile the attacker e.g., source/destination IPs, source/destination port numbers (attacked service),

ssh version, operating system name and version, link type, usernames and password tried by the

attacker, tcp flags, ip ttl, and many more. A full list of the extracted features is shown in Table 20.

The dataset obtained can be used or be a seed for a dataset that solves most of the common issues

in the currently available datasets as its real by design, up-to-date, and can be kept up-to-date easily

by running the testbed every specific period and automate all the post-processing operations

needed to get a ready dataset thanks to the use of visualizers and query languages. Also, the dataset

 135

is representing different types of attacks and can easily represent more by deploying more

honeypots.

Table 20: The Full List of GTCS-II Extracted Features.

Feature Name Description

1 _time time of traffic capturing

2 app honeypot captured the traffic

3 dest dest ip

4 dest_port dest port

5 dionaea_action either Dionaea honeypotaccept or reject the connection

6 direction the direction of the captured traffic either in or out

7 eth_dst the dest mac address

8 eth_src the source mac address

9 host splunk server ip or host name

10 ids_type

11 ip_id

12 ip_len packet lenth

13 ip_tos packet type of service

14 ip_ttl packet time to live

15 linecount the number of lines of the captured trtaffic

16 p0f_app protocol used by P0f for fingerprinting

17 p0f_link the connection type at the attcker side like modem or dsl

18 p0f_os the operating system of the machine generating the attack

 136

Feature Name Description

19 p0f_uptime how long since the attacking machine is up

20 protocol tcp or udp

21 sensor id assigned by MHN per honeypot

22 severity severity rank of the attack

23 signature the signature of the attack as matched by snort

24 snort_classification a nomber given by snort to classify the traffic

25 snort_header

26 snort_priority

27 source input data source (needed by splunk)

28 sourcetype input data type (needed by splunk)

29 splunk_server splunk ip or hostname

30 src attack src ip

31 src_port attack source port

32 ssh_password password used by the attacker trying to get ssh access

33 ssh_username usename used by the attacker trying to get ssh access

34 ssh_version attacker ssh client version

35 tcp_flags are used within TCP packet transfers to indicate a particular

connection state or provide additional information

36 tcp_len packet lenth

37 timeendpos at which bye into the event the timestamp ends

38 timestartpos at which byte the timestamp starts

39 transport transport protocoll type tcp or udp

 137

Feature Name Description

40 type honeypot event type

41 udp_len packet length

42 vendor_product name of the honeypot that captures the traffic

43 _raw raw (not parsed) event

Based on 10-day experiment, the most attacked service was server message block (SBM),

which might make sense as this service is used by the WannaCry attacks that have been spreading

and active since 2017. SSH service comes second in the most attacked services as the attacker tries

to exploit the lack of awareness of some users that use the default or weak credentials. “admin” as

a username was the most tried username and “password” came second in the most tried passwords

while, less expected, “nproc” was the most tried password, which is a bash command to get the

total number of cores/threads on the machine. The most used operating system by the attacker was

Linux version 3 or later, while Windows came next which makes sense as a lot of the used hacking

tools are Linux based e.g., kali. Although the United States came first where most of the attacks

were originated, it might or might not accurately reflect the actual attacker`s location as a serious

attacker might be using compromised machines to mount his attacks which could be located

anywhere or using any cloud-hosted machines which the US has most of the cloud providers. The

data showed that the top attacking single IP was located in Panama and generated around 34,000

attacks during the 10 days. The most used command is “uname”, which is used to get the operating

system type, kernel version, and other information that are necessary to determine the suitable

attacking scripts and tools. Also, the 2nd and the 3rd most used commands are “echo” that is used

to show whatever argument is used after it and “which ls” to get the full path of the “ls” command.

 138

The two commands might not be meant for themselves but just to check if this is a real system or

a trap. This is interesting to guide the honeypot developer toward which commands they need to

simulate for a more deceptive honeypot.

Besides, Cowrie and Dionaea honeypots were able to capture the binaries and scripts used by

the attacker. Also, Splunk provides an easy way to check the binaries against different antiviruses

by using the API of TotalHash and VirusTotal websites. Furthermore, Cowrie can re-play the

attacks using its own “playlog” command which is useful to study the attacker`s behavior.

9.4. Data Labeling

The process of labeling the data was applied in a per-flow base. It is important to know that

network traffic connections are two-way, so a single connection can be considered as two separate

one-way connections. So as to distinguish the attacks within the background traffic, we have used

a strategy of performing both of the signature-based and the anomaly-based detection methods on

the collected dataset. First, we tried to identify different attacks by their recognized signatures,

delivering labels for the numerous attacks. Next, we have implemented anomaly detection to

distinguish other possible intrusions in the background traffic.

9.5. GTCS-II Interesting Facts

In this section, we show some interesting facts from the collected data for each sensor and

from all the data when applicable.

Dionaea

Most downloaded binaries/Malware/Trojans: Dionaea not only listens on the opened ports,

but also allows the attacker to download and upload files. Figure 34 shows a list of the top

 139

downloaded binaries expressed as their MD5. It is worth noticing that the same files came from

different sources.

Figure 34. Dionaea Top Captured MD5Binaries

 Splunk`s MHN application also adds a fast method to scan those files against different

antiviruses via TotalHash and VirusTotal websites. By clicking on the link, a web page will open

automatically, search for the file, and show the scanning results, as shown below in Figure 35.

Figure 35. Scanning Results for a Malware File

Figures 36 and 37 show top attackers and their corresponding countries while Figure 38 shows

the top attacked ports.

 140

Figure 36. Dionaea Top Attackers.

Figure 37. Dionaea Top Attacks by Countries.

Figure 38. Dionaea Top Attacked Ports.

P0f

 141

Figures 39 and 40 show top attackers and their corresponding countries while Figure 41 shows

the top attacked ports, Figure 42 shows the top link types, and Figure 43 shows the operating

system.

Figure 39. P0f Top Attackers.

Figure 40. P0f Top Attacks by Countries.

Figure 41. P0f Top Attacked Ports.

 142

Figure 42. P0f Top Link Types.

Figure 43. P0f Top Operating Systems.

AMUN

Figures 44 and 45 show top attackers and their corresponding countries while Figure 46 shows

the top attacked ports captured by AMUN sensor.

Figure 44. AMUN Top Attackers and Their Countries.

 143

Figure 45. AMUN Top Attacks by Countries.

Figure 46. AMUN Top Attacked Ports.

Cowrie

Figure 47 shows the top URLs that were used by the attackers to download scripts and binaries

used to mount their attacks, Figure 48 shows the top SSH versions, while Figure 49 shows the top

used users/passwords pairs, and Figure 50 shows top used attack commands. Also, Figures 51 and

52 show top attackers and their corresponding countries

 144

Figure 47. Cowrie Top URLs.

Figure 48. Cowrie Top SSH Versions.

Figure 49. Cowrie Top Users/Passwords.

 145

Figure 50. Cowrie Top Attack Commands.

Figure 51. Cowrie Top Attackers and Their Countries.

Figure 52. Cowrie Top Attacks by Countries.

Snort

 146

Figures 53 and 54 show top attackers and their corresponding countries while Figure 55 shows

the top attacked ports captured by Snort.

Figure 53. Snort Top Attackers and Their Countries

Figure 54. Snort Captured Top Attacks by Countries.

 147

Figure 55. Snort Captured Top Attacked Ports.

Conpot

Figures 56 and 57 show top attackers and their corresponding countries while Figure 58 shows

the top attack types captured by Conpot.

Figure 56. Conpot Top Attackers and Their Countries.

 148

Figure 57. Conpot Captured Top Attacks by Countries.

Figure 58. Conpot Captured Top Attack Types.

Figures 59, 60, and 61 provide interesting facts about all the data where Figures 59 and 60

show top attackers and their corresponding countries while Figure 61 shows the top attacked ports

in general.

Figure 59. Top Attackers and Their Countries.

 149

Figure 60. Top Attacks by Countries.

Figure 61. Most Attacked Ports.

9.6. SNEC-IDS: Stacking ensemble IDS using Heterogeneous Datasets

The advantage of stacking was described in [158] to implement protein classification

approach, and a high accuracy results were achieved. Also, it is described in [159] that an ensemble

of classifiers offer better solutions compared to individual classifiers. A comparative evaluation

study was performed to evaluate the performance of SVM along with different classifiers like DT,

RF, NB, and LR. The results of the study have indicated that algorithmic combinations with SVM

deliver superior results compared to individual SVM [160]. The application of the ensemble

learning algorithm known as super learner resulted in enhanced results using the MAWILab

dataset [161]. By merging the improvements of different algorithms, the detection effect can be

 150

improved [162]. The stacking technique was used to identify malware on mobile appliances and

better accuracy and F-measure results were achieved [163].

9.7. Implementation Strategy

Illustrated in Figure 62 is the stacking model that involves a set of classifiers —namely, LR,

KNN, RF, and SVM. As shown in [164], a combination of different classifiers produces superior

predictions. Stacking was originally proposed by Wolpert [165], where different ML classifiers

determine their different biases on a learning set eventually filtering out biases. The process of

stacking includes two models: level 0 classifiers and level 1 or metaclassifier. The fundamental

logic of stacking is to use the metaclassifier to predict the samples by learning from level 0

classifiers. Yan and Han [166] demonstrated an important improvement of the stacking classifier.

They stated that stacking approaches can enhance the accuracy even with unbalanced datasets.

Figure 62: Stacking Ensemble Model.

9.8. The Classification Process

The critical hyperparameters used in the hyperparameter optimization process are listed in

Table 21. Algorithm 5 shows the whole classification process implemented in the classification

framework involving multiple classifiers.

Table 21: Critical Hyperparameters.

 151

The Model GTCS-I GTCS-II

RF Est = 100.00

C = ginii

Est = 50.00

C = entroppy

KNN Neighbours = 4

M = Minkwski

Neighbours = 5

M = Euclidan

LR P = L2 P = L2

SVM C = 1.00

K= rbf

C = 1.00

K = rbf

ALGORITHM 5: Stacking Ensemble Strategy.

9.9. Results and Discussion

To accurately assess the efficacy of the proposed framework and validate the outcomes

achieved from a stacked ensemble, results from both binary and multiclass classification processes

are presented in this section. Table 22 shows the results achieved upon classifying the network

traffic instances of the GTCS-I dataset.

 152

Table 22: Two-fold Classification Results From the GTCS-I Dataset.

Accuracy Precision Recall F1 score AUC FPR

79% 98% 96% 97% 99% 1.1%

Presented in Table 23 are classification results relating to each one of GTCS-I different classes —

namely, normal, botnet, brute force, DDoS, and infiltration.

Table 23: GTCS-I Multi-class Classification Results.

Metric Normal Botnet Brute Force DDoS Infiltration Overall

Recall 0.9918 0.98597 0.98907 0.99056 0.9797128 0.9809

Precision 0.9940 0.98988 0.98859 0.98976 0.9818808 0.9881

FPR 0.0054 0.0062 0.0102 0.0093 0.0147 0.0101

Accuracy 0.9871 0.97826 0.98001 0.98218 0.9666758 97.19%

The traffic traces obtained in GTCS-II are generated from real network traffic in a duration of

ten days. Shown in Table 25 is performance metrics for the seven attack types found in the GTCS-

II dataset.

Table 244: Confusion Matrix of the 7 Attacks in GTCS-II.

 0 1

SSHscan

0 945101 5727

1 7834 90829

UDPscan 0 894525 16786

 153

 0 1

1 18586 120998

Spam

0 929987 9421

1 13346 93768

DOS

0 937453 12288

1 9299 89889

Scan

0 925646 11167

1 10657 99879

Blacklist

0 947865 9876

1 8897 88974

DDoS

0 926565 13897

1 69876 48760

It is observable in Table 25 that the FPR was significantly lower for different attack categories,

thus indicating that the whole performance of the ensemble model was performing better. Table

26 also shows that the false alarm rate was low for different attack categories. The receiver

operating characteristic (ROC) curve is shown in Figure 63.

Table 25: Performance Metrics for GTCS-II.

Metric Blaklist Spam Scan SSHscan UDPscan DOS DDoS Overall

Recall% 97.9 95.3 94.5 97.1 96.2 93.1 90.1 94.8

Precision% 91.2 93.9 95.8 91.7 96.1 95.7 97.1 94.5

FPR% 1.6 1.5 2.2 1.9 3.2 2.9 1.4 2.1

 154

Metric Blaklist Spam Scan SSHscan UDPscan DOS DDoS Overall

Accuracy% 97.5 96.55 940.1 962.1 958.5 967.2 911.3 95.42

Figure 63: ROC Curve for GTCS-II.

9.10. Discussion

Honeypot technology is a promising approach applied side by side with antivirus and firewall

technologies to secure the increasing online offered services that are, by design, exposed to all

kinds of attacks. With a well-designed honeynet and the advances of simulating more services, it

would be more feasible to get high-quality datasets, study the attacker behavior, and get the latest

binaries and trojans before hitting the actual services. In addition, software utilities, such as

Modern Honey Network make it easy to deploy many sensors and more to come, which increases

the opportunity to get most of the adversaries’ tricks attacking different services. Finally, the

advances in big data tools like Splunk and ArcSight are of great help to get more insight from the

data when working with that kind of huge data amount.

 155

This research has presented an ensemble methodology based on the concept of stacking

generalization for effective network intrusion detection. Two heterogeneous and newly generated

datasets GTCS-I (emulated) and GTCS-II (real-traffic) were utilized for the experiment. The

results showed that stacking generalization approach using a set of algorithms namely RF, LR,

KNN, and SVM has shown superior predictions than single classifiers. Superior computing

engines could be also utilized to accelerate the processing speed and improve scalability with

larger amount of network traffic data.

 156

10. CONCLUSION

The main goal of this thesis was to demonstrate that the ensemble of different learning

paradigms can improve the detection accuracy, improve the true positive rate, and decrease the

false positive rate. Particularly, the thesis showed that different ML approaches are needed to

detect different classes of attacks and thus treating those classes separately is important. Based on

previous work in the area of ensemble approaches applied to IDSs, the thesis presented a new IDS

to evaluate the relevance of selecting the learning paradigms for detecting different classes of

attacks.

The IDS system presented in this thesis was, in fact, an ensemble of three different learning

paradigms. Each of the three was in charge of detecting one or two classes of attacks and was

trained with the same set of features. The first ML algorithm was IBK (KNN), which performed

better in detecting both botnet and brute force attack classes. The second ML algorithm was MLP

(NN), which was the best in detecting the DDoS attacks class. The third ML algorithm was J48

(DT), which outperformed other algorithms in detecting the class of infiltration attacks.

Before designing the ensemble-based IDS, we conducted a comparative analysis of six of the

most popular ML classifiers vis-à-vis identifying intrusions in network traffic. Specifically, we

analyzed the classifiers along various dimensions: feature selection, sensitivity to the

hyperparameter selection, and class imbalance problems that are inherent to intrusion detection.

We evaluated those classifiers using a benchmark dataset—the NSL-KDD dataset—and

summarized their effectiveness using a detailed experimental assessment. In our experiments, the

process of feature selection was exceptionally effective in the pre-processing of the high

dimensional dataset. Using feature selection, we were able to eliminate those features in the dataset

which were redundant or less relevant. The benefits of doing this were a reduction in the overall

 157

computation time, an improvement in the accuracy of the ML algorithm, and an enhanced

understanding of the resulting model.

Moreover, our experiments revealed that the hyperparameters of ML classifiers were

important because they directly controlled the behavior of the training algorithm and had a

significant impact on the performance of the model being trained. Choosing the appropriate

hyperparameters (a.k.a., hyperparameter optimization) played a crucial role in the success of the

attack classification process, as it had a material effect on the learned models.

Furthermore, this thesis determined that class imbalance has a marked impact on classification

performance metrics. The problem with the imbalanced class learning is that most classification

algorithms are designed around the notion that training sets are well balanced in distribution; this

assumption is often incorrect. The algorithms do not consider the underlying distribution of the

datasets and thus generate inaccurate model representation in class-learning tasks. Such imprudent

attempts will likely lead to deterioration in classification performance. Our experiments showed

that under-sampling the dominant classes and over-sampling the minority classes induced

mitigation in the dataset imbalance problem and achievement of the highest classification accuracy

scores.

Due to the lack of sufficient datasets and to produce a robust ensemble-based IDS, we

presented a newly-generated IDS dataset—GTCS (Game Theory and Cyber Security)—which

overcomes most shortcomings of the existing available datasets and addresses most of the

necessary criteria for the common contemporary attacks, such as botnet, brute force, DDoS, and

in-filtration attacks. The generated dataset was completely labeled and comprised about 84

network traffic features that were extracted and calculated for all benign and intrusive flows. We

analyzed the GTCS dataset to select the best feature sets to detect different attacks and presented

 158

a comprehensive analysis of the ML classifiers for identifying intrusions in network traffic.

Specifically, we analyzed the classifiers in terms of accuracy, true positive, and false-positive

rates.

Finally, we have designed an adaptive stacking ensemble learning model that integrates the

advantages of different ML classifiers for different types of attacks and achieve optimal results.

The advantage of ensemble learning is to combine the predictions of several base estimators so as

to improve generalizability and robustness over a single estimator. Our experimental results have

shown that the ensemble model was able to enhance the classification accuracy, increase the true

positive rate, and decrease the false positive rate.

10.1. Future Work

 The results from this study can be improved in many ways which could be a promising

future work. We can run more honeypots like Shockpot, Elastic Honey, etc., and distribute them

among different cloud providers and different areas of the world to achieve wider exposure to

different attacks. We can also run the study for a longer period e.g., two or three months instead

of just 10 days. Furthermore, we can dig more into the data either row data or try some other

visualizer to get more features from the data and investigate the behavior of the attacker. Besides,

we can improve the performance of the Ensemble classifier and apply it to real-time network

traffic.

 159

REFERENCES

1. Mell, P. and T. Grance, The NIST definition of cloud computing. 2011.

2. The Internet World Stats. December 20, 2020]; Available from:

https://www.internetworldstats.com/.

3. Abomhara, M., Cyber security and the internet of things: vulnerabilities, threats,

intruders and attacks. Journal of Cyber Security and Mobility, 2015. 4(1): p. 65-88.

4. Singh, R., et al., Internet attacks and intrusion detection system. Online Information

Review, 2017.

5. Kaur, P., M. Kumar, and A. Bhandari, A review of detection approaches for distributed

denial of service attacks. Systems Science & Control Engineering, 2017. 5(1): p. 301-

320.

6. Jordan, T. and P.J.T.S.R. Taylor, A sociology of hackers. 1998. 46(4): p. 757-780.

7. Tankard, C.J.N.s., Advanced persistent threats and how to monitor and deter them. 2011.

2011(8): p. 16-19.

8. The 2020 crowdstrike global threat report December 21, 2020]; Available from:

https://www.crowdstrike.com/resources/reports/2020-crowdstrike-global-threat-report/.

9. Rathore, M.M., A. Ahmad, and A.J.T.J.o.S. Paul, Real time intrusion detection system for

ultra-high-speed big data environments. 2016. 72(9): p. 3489-3510.

10. Sommer, R. and V. Paxson. Outside the closed world: On using machine learning for

network intrusion detection. in 2010 IEEE symposium on security and privacy. 2010.

IEEE.

11. Auria, L. and R.A. Moro, Support vector machines (SVM) as a technique for solvency

analysis. 2008.

12. Quinlan, J.R., Probabilistic decision trees, in Machine Learning. 1990, Elsevier. p. 140-

152.

13. Mitchell, T.M.J.M.l., Artificial neural networks. 1997. 45: p. 81-127.

14. Kuncheva, L.I., Combining pattern classifiers: methods and algorithms. 2014: John

Wiley & Sons.

15. Ho, T.K., Multiple classifier combination: Lessons and next steps, in Hybrid methods in

pattern recognition. 2002, World Scientific. p. 171-198.

16. Ellis, R. and V. Mohan, Rewired: Cybersecurity Governance. 2019: John Wiley & Sons.

17. Raj, A., N. Jain, and S.S.J.C. Chauhan, Digital Payments and its Security. 2020. 2(2): p.

13-20.

18. Gagneja, K. and L.G. Jaimes. Computational Security and the Economics of Password

Hacking. in International Conference on Future Network Systems and Security. 2017.

Springer.

19. Pogrebna, G. and M. Skilton, A Sneak Peek into the Motivation of a Cybercriminal, in

Navigating New Cyber Risks. 2019, Springer. p. 31-54.

20. Chowdhury, F. and N.T.-i.-R. Corps, CIS 356: Fundamentals of Cybersecurity and

Intelligence Gathering-Confidentiality, Integrity, Availability. 2020.

21. Sabillon, R., et al., Cybercrime and cybercriminals: a comprehensive study. 2016.

22. Richards, I. and M.A.J.I.j.o.c.c. Wood, Hacktivists against terrorism: a cultural

criminological analysis of anonymous' anti-IS campaigns. 2018. 12(1): p. 187-205.

https://www.internetworldstats.com/
https://www.crowdstrike.com/resources/reports/2020-crowdstrike-global-threat-report/

 160

23. Mézešová, T., P. Sokol, and T. Bajtoš. Evaluation of Attacker Skill Level for Multi-stage

Attacks. in 2019 11th International Conference on Electronics, Computers and Artificial

Intelligence (ECAI). 2019. IEEE.

24. Park, K., et al., Secure cyber deception architecture and decoy injection to mitigate the

insider threat. 2018. 10(1): p. 14.

25. Kumar, S., D.J.I.J.o.A.R.i.C.S. Agarwal, and Management, Hacking attacks, methods,

techniques and their protection measures. 2018. 4(4): p. 2253-2257.

26. Porterfield, J., White and Black Hat Hackers. 2016: The Rosen Publishing Group, Inc.

27. Cheng, L., et al., Enterprise data breach: causes, challenges, prevention, and future

directions. 2017. 7(5): p. e1211.

28. Conteh, N.Y. and P.J.J.I.J.o.A.C.R. Schmick, Cybersecurity: risks, vulnerabilities and

countermeasures to prevent social engineering attacks. 2016. 6(23): p. 31.

29. Sevis, K.N. and E. Seker. Cyber warfare: terms, issues, laws and controversies. in 2016

International Conference On Cyber Security And Protection Of Digital Services (Cyber

Security). 2016. IEEE.

30. Lou, X., et al., Understanding Rowhammer attacks through the lens of a unified reference

framework. 2019.

31. Huang, H., H. Al-Azzawi, and H.J.a.p.a. Brani, Network traffic anomaly detection. 2014.

32. Bace, R.G. and P. Mell, Intrusion detection systems. 2001, US Department of Commerce,

Technology Administration, National Institute of ….

33. Azeez, N.A., et al., Intrusion Detection and Prevention Systems: An Updated Review, in

Data Management, Analytics and Innovation. 2020, Springer. p. 685-696.

34. Scarfone, K. and P. Mell, Guide to intrusion detection and prevention systems (idps).

2012, National Institute of Standards and Technology.

35. Vijayarani, S. and M. Sylviaa, Intrusion detection system-a study. International Journal of

Security, Privacy and trust management (IJSPTM) vol, 2015. 4: p. 31-44.

36. Yeo, L.H., X. Che, and S. Lakkaraju, Understanding Modern Intrusion Detection

Systems: A Survey. arXiv preprint arXiv:1708.07174, 2017.

37. Zhengbing, H., L. Zhitang, and W. Junqi. A novel Network Intrusion Detection System

(NIDS) based on signatures search of data mining. in First International Workshop on

Knowledge Discovery and Data Mining (WKDD 2008). 2008. IEEE.

38. Hodo, E., et al., Shallow and deep networks intrusion detection system: A taxonomy and

survey. arXiv preprint arXiv:1701.02145, 2017.

39. Gangwar, M.A. and M.S. Sahu, A survey on anomaly and signature based intrusion

detection system (IDS). International Journal of Engineering Research and Applications

ISSN, 2014: p. 2248-9622.

40. Gupta, M., Hybrid intrusion detection system: Technology and development.

International Journal of Computer Applications, 2015. 115(9).

41. Tirumala, S.S., H. Sathu, and A. Sarrafzadeh. Free and open source intrusion detection

systems: A study. in 2015 International Conference on Machine Learning and

Cybernetics (ICMLC). 2015. IEEE.

42. Liu, S., et al. A flow based method to detect penetration. in The 7th IEEE/International

Conference on Advanced Infocomm Technology. 2014. IEEE.

43. Kumar, G.N.K. and R. SHARMA, AN OVERVIEW STUDY ON INTRUSION

DETECTION SYSTEM (IDS). International Journal of Pure and Applied Mathematics,

2018. 118(24).

 161

44. Debar, H., M. Dacier, and A. Wespi, Towards a taxonomy of intrusion-detection systems.

Computer networks, 1999. 31(8): p. 805-822.

45. Ali Almaleki, M., Enhancing snort IDs performance using data mining. 2016.

46. Axelsson, S. The base-rate fallacy and its implications for the difficulty of intrusion

detection. in Proceedings of the 6th ACM Conference on Computer and Communications

Security. 1999.

47. Eid, H.F.A.M., Computational Intelligence in Intrusion Detection System. 2013, MSc

Thesis, Al-Azhar University.

48. KR, K. and A. Indra, Intrusion detection tools and techniques–A survey. International

Journal of Computer Theory and Engineering, 2010. 2(6): p. 1793-8201.

49. Fadlullah, Z.M., et al., State-of-the-art deep learning: Evolving machine intelligence

toward tomorrow’s intelligent network traffic control systems. IEEE Communications

Surveys & Tutorials, 2017. 19(4): p. 2432-2455.

50. Dasgupta, D., et al., Machine learning in cybersecurity: a comprehensive survey. 2020: p.

1548512920951275.

51. Shalev-Shwartz, S. and S. Ben-David, Understanding machine learning: From theory to

algorithms. 2014: Cambridge university press.

52. Jordan, M.I. and T.M.J.S. Mitchell, Machine learning: Trends, perspectives, and

prospects. 2015. 349(6245): p. 255-260.

53. Fayyad, U.M. and K.B. Irani, On the handling of continuous-valued attributes in decision

tree generation. Machine learning, 1992. 8(1): p. 87-102.

54. Martínez, D., G. Alenya, and C.J.A.I. Torras, Relational reinforcement learning with

guided demonstrations. 2017. 247: p. 295-312.

55. Koturwar, P., S. Girase, and D. Mukhopadhyay, A survey of classification techniques in

the area of big data. arXiv preprint arXiv:1503.07477, 2015.

56. Buczak, A.L., E.J.I.C.s. Guven, and tutorials, A survey of data mining and machine

learning methods for cyber security intrusion detection. 2015. 18(2): p. 1153-1176.

57. Witten, I.H. and E.J.A.S.R. Frank, Data mining: practical machine learning tools and

techniques with Java implementations. 2002. 31(1): p. 76-77.

58. Yuan-Fu, Y. A Deep Learning Model for Identification of Defect Patterns in

Semiconductor Wafer Map. in 2019 30th Annual SEMI Advanced Semiconductor

Manufacturing Conference (ASMC). 2019. IEEE.

59. Claesen, M. and B. De Moor, Hyperparameter search in machine learning. arXiv

preprint arXiv:1502.02127, 2015.

60. Ryu, J.W., M. Kantardzic, and C. Walgampaya. Ensemble classifier based on

misclassified streaming data. in Proc. of the 10th IASTED Int. Conf. on Artificial

Intelligence and Applications, Austria. 2010.

61. Abd Elmomen, A., A. Bahaa El Din, and A. Wahdan. Detecting Abnormal Network

Traffic in the Secure Event Management Systems. in International Conference on

Aerospace Sciences and Aviation Technology. 2011. The Military Technical College.

62. BalaGanesh, D., et al., Smart devices threats, vulnerabilities and malware detection

approaches: a survey. 2018. 3(2): p. 7-12.

63. Hansen, L.K., P.J.I.t.o.p.a. Salamon, and m. intelligence, Neural network ensembles.

1990. 12(10): p. 993-1001.

64. Koch, R., M. Golling, and G.D. Rodosek. Towards comparability of intrusion detection

systems: New data sets. in TERENA Networking Conference. 2014.

 162

65. Karimi, Z., M.M.R. Kashani, and A. Harounabadi, Feature ranking in intrusion detection

dataset using combination of filtering methods. International Journal of Computer

Applications, 2013. 78(4).

66. Kohavi, R. and G.H. John, Wrappers for feature subset selection. Artificial intelligence,

1997. 97(1-2): p. 273-324.

67. John, G., R. Kohavi, and K. Pfleger, Irrelevant features and the subset selection problem,

in\Machine Learning: Proceedings of the Eleventh International Conference. 1994,

Morgan Kaufmann.

68. Biesiada, J. and W. Duch, Feature selection for high-dimensional data: A kolmogorov-

smirnov correlation-based filter, in Computer Recognition Systems. 2005, Springer. p.

95-103.

69. Araújo, N., et al. Identifying important characteristics in the KDD99 intrusion detection

dataset by feature selection using a hybrid approach. in 2010 17th International

Conference on Telecommunications. 2010. IEEE.

70. Chebrolu, S., A. Abraham, and J.P. Thomas. Hybrid feature selection for modeling

intrusion detection systems. in International Conference on Neural Information

Processing. 2004. Springer.

71. Guennoun, M., A. Lbekkouri, and K. El-Khatib, Optimizing the feature set of wireless

intrusion detection systems. International Journal of Computer Science and Network

Security, 2008. 8(10): p. 127-131.

72. Kohavi, R. and G.H.J.A.i. John, Wrappers for feature subset selection. 1997. 97(1-2): p.

273-324.

73. Harris, E. Information Gain Versus Gain Ratio: A Study of Split Method Biases. in

ISAIM. 2002.

74. Hall, M.A., Correlation-based feature selection for machine learning. 1999.

75. Shirzad, M.B. and M.R. Keyvanpour. A feature selection method based on minimum

redundancy maximum relevance for learning to rank. in 2015 AI & Robotics

(IRANOPEN). 2015. IEEE.

76. Liu, Y., et al., Combining integrated sampling with SVM ensembles for learning from

imbalanced datasets. Information Processing & Management, 2011. 47(4): p. 617-631.

77. Seo, J.-H. and Y.-H. Kim, Machine-learning approach to optimize smote ratio in class

imbalance dataset for intrusion detection. Computational Intelligence and Neuroscience,

2018. 2018.

78. Zhai, Y., et al., An effective over-sampling method for imbalanced data sets

classification. Chinese Journal of Electronics, 2011. 20(3): p. 489-494.

79. Chawla, N.V., et al., SMOTE: synthetic minority over-sampling technique. Journal of

artificial intelligence research, 2002. 16: p. 321-357.

80. Yen, S.-J. and Y.-S. Lee, Cluster-based under-sampling approaches for imbalanced data

distributions. Expert Systems with Applications, 2009. 36(3): p. 5718-5727.

81. Hasanin, T., et al. Investigating Random Undersampling and Feature Selection on

Bioinformatics Big Data. in 2019 IEEE Fifth International Conference on Big Data

Computing Service and Applications (BigDataService). 2019. IEEE.

82. Thomas, C., V. Sharma, and N. Balakrishnan. Usefulness of DARPA dataset for intrusion

detection system evaluation. in Data Mining, Intrusion Detection, Information Assurance,

and Data Networks Security 2008. 2008. International Society for Optics and Photonics.

 163

83. Brown, C., et al. Analysis of the 1999 darpa/lincoln laboratory ids evaluation data with

netadhict. in 2009 IEEE Symposium on Computational Intelligence for Security and

Defense Applications. 2009. IEEE.

84. McHugh, J.J.A.T.o.I. and S. Security, Testing intrusion detection systems: a critique of

the 1998 and 1999 darpa intrusion detection system evaluations as performed by lincoln

laboratory. 2000. 3(4): p. 262-294.

85. Siddiqui, M.K. and S. Naahid, Analysis of KDD CUP 99 dataset using clustering based

data mining. International Journal of Database Theory and Application, 2013. 6(5): p. 23-

34.

86. Stolfo, S.J., et al. Cost-based modeling for fraud and intrusion detection: Results from the

JAM project. in Proceedings DARPA Information Survivability Conference and

Exposition. DISCEX'00. 2000. IEEE.

87. Tavallaee, M., et al. A detailed analysis of the KDD CUP 99 data set. in 2009 IEEE

symposium on computational intelligence for security and defense applications. 2009.

IEEE.

88. Portnoy, L., Intrusion detection with unlabeled data using clustering. 2000, Columbia

University.

89. Leung, K. and C. Leckie. Unsupervised anomaly detection in network intrusion detection

using clusters. in Proceedings of the Twenty-eighth Australasian conference on

Computer Science-Volume 38. 2005.

90. Revathi, S. and A. Malathi, A detailed analysis on NSL-KDD dataset using various

machine learning techniques for intrusion detection. International Journal of Engineering

Research & Technology (IJERT), 2013. 2(12): p. 1848-1853.

91. Dhanabal, L. and S. Shantharajah, A study on NSL-KDD dataset for intrusion detection

system based on classification algorithms. International Journal of Advanced Research in

Computer and Communication Engineering, 2015. 4(6): p. 446-452.

92. Lima Filho, F.S.d., et al., Smart Detection: An Online Approach for DoS/DDoS Attack

Detection Using Machine Learning. Security and Communication Networks, 2019. 2019.

93. Javaid, A., et al. A deep learning approach for network intrusion detection system. in

Proceedings of the 9th EAI International Conference on Bio-inspired Information and

Communications Technologies (formerly BIONETICS). 2016.

94. Dhanabal, L., S.J.I.J.o.A.R.i.C. Shantharajah, and C. Engineering, A study on NSL-KDD

dataset for intrusion detection system based on classification algorithms. 2015. 4(6): p.

446-452.

95. Hodo, E., et al., Shallow and deep networks intrusion detection system: A taxonomy and

survey. 2017.

96. Chandola, V., A. Banerjee, and V.J.A.c.s. Kumar, Anomaly detection: A survey. 2009.

41(3): p. 1-58.

97. MeeraGandhi, G.J.I.J.C.S.C., Machine learning approach for attack prediction and

classification using supervised learning algorithms. 2010. 1(2): p. 11465-11484.

98. Nguyen, H.A. and D. Choi. Application of data mining to network intrusion detection:

classifier selection model. in Asia-Pacific Network Operations and Management

Symposium. 2008. Springer.

99. Darshan, V. and R.J.J.o.M.I. Raphael, Real Time Call Monitoring System Using Spark

Streaming and Network Intrusion Detection Using Distributed WekaSpark. 2017. 2(1): p.

7-13.

 164

100. Belavagi, M.C. and B.J.P.C.S. Muniyal, Performance evaluation of supervised machine

learning algorithms for intrusion detection. 2016. 89(2016): p. 117-123.

101. Xie, H., K. Lv, and C. Hu. An effective method to generate simulated attack data based

on generative adversarial nets. in 2018 17th IEEE International Conference On Trust,

Security And Privacy In Computing And Communications/12th IEEE International

Conference On Big Data Science And Engineering (TrustCom/BigDataSE). 2018. IEEE.

102. Grajeda, C., F. Breitinger, and I.J.D.I. Baggili, Availability of datasets for digital

forensics–and what is missing. 2017. 22: p. S94-S105.

103. Kholidy, H.A. and F. Baiardi. Cidd: A cloud intrusion detection dataset for cloud

computing and masquerade attacks. in 2012 Ninth International Conference on

Information Technology-New Generations. 2012. IEEE.

104. Nazarov, A., A. Sychev, and I. Voronkov. The Role of Datasets when Building Next

Generation Intrusion Detection Systems. in 2019 Wave Electronics and its Application in

Information and Telecommunication Systems (WECONF). 2019. IEEE.

105. Giacinto, G., et al., Intrusion detection in computer networks by a modular ensemble of

one-class classifiers. 2008. 9(1): p. 69-82.

106. Nader, P., P. Honeine, and P. Beauseroy. Intrusion detection in SCADA systems using

one-class classification. in 21st European Signal Processing Conference (EUSIPCO

2013). 2013. IEEE.

107. Ghorbel, O., H. Snoussi, and M. Abid. Online OCSVM for outlier detection based on the

Coherence Criterion in Wireless Sensor Networks. in Proc. International Conference.

2013.

108. Kaplantzis, S., et al. Detecting selective forwarding attacks in wireless sensor networks

using support vector machines. in 2007 3rd International Conference on Intelligent

Sensors, Sensor Networks and Information. 2007. IEEE.

109. Xiao, Y., et al., Two methods of selecting Gaussian kernel parameters for one-class SVM

and their application to fault detection. 2014. 59: p. 75-84.

110. Amer, M., M. Goldstein, and S. Abdennadher. Enhancing one-class support vector

machines for unsupervised anomaly detection. in Proceedings of the ACM SIGKDD

workshop on outlier detection and description. 2013.

111. Kim, G., S. Lee, and S.J.E.S.w.A. Kim, A novel hybrid intrusion detection method

integrating anomaly detection with misuse detection. 2014. 41(4): p. 1690-1700.

112. Winter, P., E. Hermann, and M. Zeilinger. Inductive intrusion detection in flow-based

network data using one-class support vector machines. in 2011 4th IFIP international

conference on new technologies, mobility and security. 2011. IEEE.

113. Hota, H. and A.K. Shrivas, Decision tree techniques applied on NSL-KDD data and its

comparison with various feature selection techniques, in Advanced Computing,

Networking and Informatics-Volume 1. 2014, Springer. p. 205-211.

114. Khammassi, C., S.J.c. Krichen, and security, A GA-LR wrapper approach for feature

selection in network intrusion detection. 2017. 70: p. 255-277.

115. Abdullah, M., et al., Enhanced intrusion detection system using feature selection method

and ensemble learning algorithms. 2018. 16(2).

116. Solanki, M., V.J.I.J.o.A.o.I.i.E. Dhamdhere, and Management, Intrusion detection system

using means of data mining by using C 4.5 algorithm. 2015. 4(5): p. 2319-4847.

117. Chebrolu, S., et al., Feature deduction and ensemble design of intrusion detection

systems. 2005. 24(4): p. 295-307.

 165

118. Roli, F. and J. Kittler, Multiple Classifier Systems: Third International Workshop, MCS

2002, Cagliari, Italy, June 24-26, 2002. Proceedings. Vol. 2364. 2002: Springer Science

& Business Media.

119. Hansen, J.V., et al., Genetic programming for prevention of cyberterrorism through

dynamic and evolving intrusion detection. 2007. 43(4): p. 1362-1374.

120. Koza, J.R., R.J.I.t.i.o. Poli, search, and d. support, A genetic programming tutorial. 2003.

8.

121. Wang, G., et al., A new approach to intrusion detection using Artificial Neural Networks

and fuzzy clustering. 2010. 37(9): p. 6225-6232.

122. Mok, M.S., S.Y. Sohn, and Y.H.J.e.s.w.a. Ju, Random effects logistic regression model

for anomaly detection. 2010. 37(10): p. 7162-7166.

123. Rahman, C.M., D.M. Farid, and M.Z. Rahman, Adaptive intrusion detection based on

boosting and naive bayesian classifier. 2011.

124. Su, M.-Y.J.E.S.w.A., Real-time anomaly detection systems for Denial-of-Service attacks

by weighted k-nearest-neighbor classifiers. 2011. 38(4): p. 3492-3498.

125. Sangkatsanee, P., N. Wattanapongsakorn, and C.J.C.C. Charnsripinyo, Practical real-

time intrusion detection using machine learning approaches. 2011. 34(18): p. 2227-2235.

126. Muda, Z., et al. Intrusion detection based on K-Means clustering and Naïve Bayes

classification. in 2011 7th International Conference on Information Technology in Asia.

2011. IEEE.

127. Aneetha, A., S.J.C.S. Bose, and Engineering, The combined approach for anomaly

detection using neural networks and clustering techniques. 2012. 2(4): p. 37.

128. Catania, C.A., F. Bromberg, and C.G.J.E.S.w.A. Garino, An autonomous labeling

approach to support vector machines algorithms for network traffic anomaly detection.

2012. 39(2): p. 1822-1829.

129. Lin, S.-W., et al., An intelligent algorithm with feature selection and decision rules

applied to anomaly intrusion detection. 2012. 12(10): p. 3285-3290.

130. Sindhu, S.S.S., S. Geetha, and A.J.E.S.w.a. Kannan, Decision tree based light weight

intrusion detection using a wrapper approach. 2012. 39(1): p. 129-141.

131. Schölkopf, B., et al., Estimating the support of a high-dimensional distribution. Neural

computation, 2001. 13(7): p. 1443-1471.

132. Yamanishi, K., et al., On-line unsupervised outlier detection using finite mixtures with

discounting learning algorithms. Data Mining and Knowledge Discovery, 2004. 8(3): p.

275-300.

133. Tax, D., One-class classification; Concept-learning in the absence of counterexamples.

Ph. D thesis. Delft University of Technology, ASCI Dissertation Series, 2001. 146 p.

2001.

134. BURGER, C. A tutorial on Support Vector Machines for Pattern Recognition, Data

Mining and Knowledge Discovery. 1998. WORKSHOP ON DATA MINING AND

KNOWLEDGE DISCOVERY.

135. Platt, J.C., et al., Estimating the support of a high-dimensional distribution. Technical

Report MSR-T R-99–87, Microsoft Research (MSR), 1999.

136. Chandola, V., A. Banerjee, and V. Kumar, Anomaly detection: A survey. ACM

computing surveys (CSUR), 2009. 41(3): p. 1-58.

137. Giacinto, G., et al., Intrusion detection in computer networks by a modular ensemble of

one-class classifiers. Information Fusion, 2008. 9(1): p. 69-82.

 166

138. He, H. and E.A. Garcia, Learning from imbalanced data. IEEE Transactions on

knowledge and data engineering, 2009. 21(9): p. 1263-1284.

139. Witten, I.H., E. Frank, and M.A. Hall, Practical machine learning tools and techniques.

Morgan Kaufmann, 2005: p. 578.

140. Gogoi, P., et al. Packet and flow based network intrusion dataset. in International

Conference on Contemporary Computing. 2012. Springer.

141. Vasudevan, A., E. Harshini, and S. Selvakumar. SSENet-2011: a network intrusion

detection system dataset and its comparison with KDD CUP 99 dataset. in 2011 second

asian himalayas international conference on internet (AH-ICI). 2011. IEEE.

142. Srivats, P., Ostinato packet generator. 2018.

143. Najera-Gutierrez, G. and J.A. Ansari, Web Penetration Testing with Kali Linux: Explore

the methods and tools of ethical hacking with Kali Linux. 2018: Packt Publishing Ltd.

144. de Sousa, O.F., M. de Menezes, and T.J.J.J.o.C.I.S. Penna, Analysis of the package

dependency on debian gnu/linux. 2009. 1(2): p. 127-133.

145. Meidan, Y., et al., N-baiot—network-based detection of iot botnet attacks using deep

autoencoders. 2018. 17(3): p. 12-22.

146. Arzhakov, A.V., D.S.J.I.J.o.E. Silnov, and C. Engineering, Analysis of Brute Force

Attacks with Ylmf-pc Signature. 2016. 6(4).

147. Sharma, K., B.B.J.I.J.o.E.-S. Gupta, and M. Applications, Taxonomy of distributed denial

of service (DDoS) attacks and defense mechanisms in present era of smartphone devices.

2018. 10(2): p. 58-74.

148. Kirda, E. Getting Under Alexa’s Umbrella: Infiltration Attacks Against Internet Top

Domain Lists. in Information Security: 22nd International Conference, ISC 2019, New

York City, NY, USA, September 16–18, 2019, Proceedings. 2019. Springer Nature.

149. Yan, G., N. Brown, and D. Kong. Exploring discriminatory features for automated

malware classification. in International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment. 2013. Springer.

150. Lawrence, D., The hunt for the financial industry’s mostwanted hacker. 2015.

151. Nagpal, B., et al. DDoS tools: Classification, analysis and comparison. in 2015 2nd

International Conference on Computing for Sustainable Global Development

(INDIACom). 2015. IEEE.

152. Goyal, P. and A. Goyal. Comparative study of two most popular packet sniffing tools-

Tcpdump and Wireshark. in 2017 9th International Conference on Computational

Intelligence and Communication Networks (CICN). 2017. IEEE.

153. Chappell, L.J.L.C.U., USA, Wireshark 101: Essential Skills for Network Analysis-

Wireshark Solution Series. 2017.

154. Draper-Gil, G., et al. Characterization of encrypted and vpn traffic using time-related. in

Proceedings of the 2nd international conference on information systems security and

privacy (ICISSP). 2016.

155. Lashkari, A.H., et al. Characterization of tor traffic using time based features. in ICISSp.

2017.

156. Perkins, R.C. and C.J. Howell, Honeypots for Cybercrime Research, in Researching

Cybercrimes. 2021, Springer. p. 233-261.

157. Spitzner, L. Honeypots: Catching the insider threat. in 19th Annual Computer Security

Applications Conference, 2003. Proceedings. 2003. IEEE.

 167

158. Diplaris, S., et al. Protein classification with multiple algorithms. in Panhellenic

Conference on Informatics. 2005. Springer.

159. Oza, N.C. and K.J.I.f. Tumer, Classifier ensembles: Select real-world applications. 2008.

9(1): p. 4-20.

160. Chand, N., et al. A comparative analysis of SVM and its stacking with other classification

algorithm for intrusion detection. in 2016 International Conference on Advances in

Computing, Communication, & Automation (ICACCA)(Spring). 2016. IEEE.

161. Vanerio, J. and P. Casas. Ensemble-learning approaches for network security and

anomaly detection. in Proceedings of the Workshop on Big Data Analytics and Machine

Learning for Data Communication Networks. 2017.

162. Gao, X., et al., An adaptive ensemble machine learning model for intrusion detection.

2019. 7: p. 82512-82521.

163. Zhang, W., et al. Exploring feature extraction and ELM in malware detection for android

devices. in International Symposium on Neural Networks. 2015. Springer.

164. Van der Laan, M.J., et al., Super learner. 2007. 6(1).

165. Wolpert, D.H.J.N.n., Stacked generalization. 1992. 5(2): p. 241-259.

166. Yan, J. and S.J.M.P.i.E. Han, Classifying imbalanced data sets by a novel re-sample and

cost-sensitive stacked generalization method. 2018. 2018.

 168

APPENDIX A

In this appendix section, we show the process of deploying and configuring Modern Honey

Network (MHN).

Installing MHN Server on EC2 Instance

 169

 170

And this is the MHN Server Web Interface

To run Ubuntu Desktop GUI (AWS EC2 Instance) on Windows

 171

 172

To run Metasploit on the Kali Linux Docker

 173

 174

 175

 176

 177

APPENDIX B

In this appendix section, we show some attack examples captured by Cowrie honeypot while

the attacker is trying to gain SSH access to the machine. There is a huge number of captured

attacks, but we only show a few of them. In most of the attacks, the behavior is as follows: 1-

attacker started a session; 2- Cowrie fingerprinted the attacker and got some information about his

SSH client; 3- Cowrie checked the attacker`s user and password. If the credential matches a record

in Cowrie database, the attacker is allowed and handed an SSH fake session; 4- the user started

running commands which usually are a- switching to specific directory; b- downloading some

malware/binaries from remote server; c- executing the downloaded binaries; 5- Cowrie closed the

session and sent the captured data to MHN (hpfeeds).

Example 1

 178

Example 2

Example 3

 179

Example 4

To know what those binaries do, we ran some of them as follows:

Example 5

In this example, once the script downloaded the binaries and executed them, the machine

crashed

Example 6

 180

This script seems to open a backdoor on the machine as once executed it gave this message

“listening to tun0” and started to listen on port 6628 as shown by the output of “netstat” command

	TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE INTRUSION DETECTION SYSTEM USING NEWLY GENERATED HETEROGENEOUS DATASETS
	Recommended Citation

	tmp.1685112842.pdf.6kqYi

