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Abstract

Much hope has been put in the modelling of network traffic with machine learning

methods to detect previously unseen attacks. Many methods rely on features on a mi-

croscopic level such as packet sizes or interarrival times to identify reoccurring patterns

and detect deviations from them. However, the success of these methods depends both

on the quality of corresponding training and evaluation data as well as the understand-

ing of the structures that methods learn. Currently, the academic community is lacking

both, with widely used synthetic datasets facing serious problems and the disconnect

between methods and data being named the “semantic gap”.

This thesis provides extensive examinations of the necessary requirements on traf-

fic generation and microscopic traffic structures to enable the effective training and

improvement of anomaly detection models. We first present and examine DetGen, a

container-based traffic generation paradigm that enables precise control and ground

truth information over factors that shape traffic microstructures. The goal of DetGen

is to provide researchers with extensive ground truth information and enable the gen-

eration of customisable datasets that provide realistic structural diversity.

DetGen was designed according to four specific traffic requirements that dataset

generation needs to fulfil to enable machine-learning models to learn accurate and

generalisable traffic representations. Current network intrusion datasets fail to meet

these requirements, which we believe is one of the reasons for the lacking success of

anomaly-based detection methods. We demonstrate the significance of these require-

ments experimentally by examining how model performance decreases when these

requirements are not met.

We then focus on the control and information over traffic microstructures that Det-

Gen provides, and the corresponding benefits when examining and improving model

failures for overall model development. We use three metrics to demonstrate that Det-

Gen is able to provide more control and isolation over the generated traffic. The ground

truth information DetGen provides enables us to probe two state-of-the-art traffic clas-
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sifiers for failures on certain traffic structures, and the corresponding fixes in the model

design almost halve the number of misclassifications .

Drawing on these results, we propose CBAM, an anomaly detection model that

detects network access attacks through deviations from reoccurring flow sequence pat-

terns. CBAM is inspired by the design of self-supervised language models, and im-

proves the AUC of current state-of-the-art by up to 140%. By understanding why sev-

eral flow sequence structures present difficulties to our model, we make targeted design

decisions that improve on these difficulties and ultimately boost the performance of our

model.

Lastly, we examine how the control and adversarial perturbation of traffic mi-

crostructures can be used by an attacker to evade detection. We show that in a stepping-

stone attack, an attacker can evade every current detection model by mimicking the

patterns observed in streaming services.



Lay Summary

Computers in a network communicate by exchanging packets that each contain a piece

of data. Different applications and settings use different mechanisms to package this

information, which results in persistent structures in the overall packet stream.

Attackers abuse flaws in the mechanisms of applications that authenticate users,

and can thus access and manipulate information that they should not have access to.

Most of these attacks are executed remotely by sending packets with malicious code to

the victim. Signature detection systems, the predominant defence against these attacks,

recognise small pieces of data in the packet stream that are characteristic for a known

attack. Albeit very efficient, this method does not protect from novel attacks for which

this information is not available yet.

Attacks that are inserted and executed in a packet stream often introduce pertur-

bations to the persistent structures that are observed in the packet streams of benign

communication. Network anomaly detection aims to train machine learning methods

on benign traffic streams that are capable of recognising attacks as deviations from

the learned packet stream structures in order to detect attacks without requiring any

information about the attack. A main difficulty so far has been the quality of available

data to examine the nature of these structures, which has resulted in network anomaly

detection not yet producing detection rates sufficient for operational deployment.

This thesis examines how these traffic structures are formed, how they can be gen-

erated in a controlled way, and how an improved understanding traffic structures can

boost the results and design of network anomaly detection methods. For this, we

present and examine DetGen, a traffic generation paradigm that provides more control

than current methods to enable precise examinations of how detection models react to

specific traffic structures.

We also present CBAM, a novel network anomaly detection method that identifies

dependencies in a traffic stream in a similar way as we identify dependencies between

words in a sentence. By examining and understanding which dependencies are harder
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to learn for the model, we are able to improve the model design and ultimately outper-

form the state-of-the art in the detection of seven network attacks.

Lastly, we examine how well an attacker with control can evade existing detection

methods when adding altering traffic patterns with adversarial noise. It turns out that

for a specific attack, an attacker can successfully evade all existing methods.
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Chapter 1

Introduction

Intrusion detection can be seen as a never ending arms-race. On the one side, mali-

cious actors that aim to access, manipulate, or damage computation infrastructure in

a network. And on the other detection system providers and research community that

provide tools to defend against attacks. An important part of this defence are net-

work intrusion detection (NID) systems, which analyse computer traffic for to detect

intrusion attempts. An increasing threat to today’s computer networks is the usage of

zero-day exploits in attacks that circumvent traditional NID models. A 2019 Cyber As-

sessment Framework guidance from the UK National Cyber Security Centre (NCSC)

states that “some cyber attackers will go to great lengths to avoid detection via stan-

dard security monitoring tools such as anti-virus software, or signature-based network

intrusion detection systems, which give a direct indication of compromise” [7].

Traditionally the most common approach to NID is based on detecting closely

defined notions of attacks with what are known as attack signatures. Since the late

1980’s, signature based systems such as Snort [8] have dominated the field of network

intrusion detection due to high effectiveness, low false positives, and good computa-

tional efficiency. Due to their design, signature-based methods can only alert on known

issues that had been categorised as threats on a signature list; zero-day attacks remain a

blind spot of traditional NID systems. With attackers having access to more resources

than ever, custom-built malware is becoming more common to circumvent signature-

based detection. A report from Watchguard Technologies found that 74% of malware

attacks in 2021 were using zero-day exploits [9].

In the 1990’s, network anomaly detection emerged as a complementary detection

tool. Through statistical analysis or the training of machine learning (ML) methods,

anomaly detection learn behaviour structures in benign traffic in order to identify attack

19



20 Chapter 1. Introduction

behaviour violating these structures as deviations from learned benign behaviour. By

not relying on specific signatures of attacks, anomaly methods can detect new attacks

and therefore decrease the threat of zero-day attacks. Even though signature detection

remains the predominant technique in NID systems, anomaly-based detection solu-

tions are finding more widespread industrial application. Products from companies

such as Crowdstrike and Darktrace [10, 11] promise protection from zero-day-threats

through anomaly-detection, and the NCSC Cyber Assessment Framework guidance

states: “The science of anomaly detection, which goes beyond using pre-defined or

prescriptive pattern matching, is a challenging but growing area. Capabilities like

machine learning are increasingly being shown to have applicability and potential in

the field of intrusion detection.” However, the absence of suitable agreed benchmarks

makes it difficult to compare products, and the NCSC has recently issued guidance on

the use of Intelligent Security Tools after concerns that companies purchase such tools

without always understanding their capabilities [12].

In academia, successful research results for anomaly-based NID so far has been

restricted to the detection of high-volume attacks. Recent evaluations show that the

current anomaly-based network intrusion detection methods fail to detect remote ac-

cess attacks reliably [13]. Already in 2010, Paxson and Sommer have identified what

they called a semantic gap between structures in network traffic that are significant

for detection, and the design of machine learning models aimed to perform network

anomaly detection [14].

In our eyes, one reason for this gap is the fact that no effort has been made so

far to monitor or control the various factors that shape traffic structures. The current

quasi-benchmark NID-datasets CICIDS-17/18, UNSW-NB-15 and KDD-99 pay more

attention to the inclusion of specific attacks and topologies rather than the documenta-

tion of the generated traffic. This situation has so far led researchers to often simply

evaluate a variety of ML-models on these datasets in the hope of edging out competi-

tors, sometimes without fully understanding model or data flaws.

This thesis introduces the notion of traffic microstructures and addresses the se-

mantic gap between these structures and corresponding model design and improve-

ment. For this, we set out to control, manipulate, and control important microstructures

to monitor their effect on anomaly detection models. The aim of this thesis is to un-

derstand traffic microstructures and the factors that shape them, and to define method-

ologies to develop machine-learning based anomaly detection methods that leverage

traffic microstructures effectively for the detection of access attacks.



1.1. Traffic microstructures 21

1.1 Traffic microstructures

Both computational scalability concerns and the increasing encryption of traffic led

researchers to shift the application of ML methods from packet payloads to packet and

connection metadata. Prominent recent network intrusion detection methods such as

Kitsune or DeepCorr learn structures in the sizes, flags, or interarrival times (IATs) of

packet sequences for decision-making [15, 16]. These structures reveal information

about attack behaviour, but are also influenced by a number of factors such as network

congestion or the software version. We define these microscopic structures as follows:

Traffic microstructures are reoccurring patterns in the metadata and tem-
poral ordering of packet sequences in an individual connection, such as the
packet sizes of a Diffie-Hellman exchange or typical IATs of video stream-
ing, or across a short sequence of connections on a host, such as the pattern
of port 53 (DNS) connections being followed by port 80 or 443 connec-
tions (HTTP/S). Traffic microstructures are shaped by and characteristic
for the specific communication activity as well as the computational con-
ditions that facilitate the communication.

Learning accurate representations of these microstructures is a key to build success-

ful traffic anomaly models. However, controlling or monitoring traffic microstructures

has not been considered so far in the generation of datasets. Labelling traffic sam-

ples is labour intensive and often impossible without additional information about the

underlying computational processes. This leaves researchers often in the dark about

systematic model-failures, or understanding specific properties of traffic that is not

processed correctly.

Furthermore, privacy and security concerns so far have prevented the release of

large and detailed real-world datasets suitable for network intrusion detection. Re-

searchers are therefore forced to turn to synthetically generated datasets. The current

NID traffic generation processes however provides far less variability and realism than

necessary for effective training of machine-learning methods.

In comparison to other domains where machine-learning models have been contin-

uously developed and improved, the success of machine-learning based NID methods

has not progressed as much, with researchers mostly trying to apply new techniques

to the same datasets rather than understanding and improving existing methods. This

lack of progress has been described in a qualitative manner by Paxson and Sommer

in 2010 and confirmed by several papers since then, and a 2018 survey by Nisioti et

al. has given evidence that models detecting access attacks continue to produce high
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false positive rates in the area of up to several percent. [14, 17, 18, 13]. We argue

that improving the understanding of traffic microstructures and the factors that shape

them as well as extensive traffic control, monitoring and labelling is one of the keys to

improve the design and performance of anomaly-based NID methods.

1.1.1 Application of traffic microstructure models

The communication between two applications is a result of computational activities

that can normally be described as a finite-state machine. Models of traffic microstruc-

tures should model the packet and connection sequences resulting from this communi-

cation under the influence of external influences (transmission failures, computational

load, etc.) and the content and complexity of transmitted data. A well-built model

should therefore be able to distinguish different computational activities or applications

or identify deviations from the communication of known activities or applications, and

can therefore be used to classify traffic and identify attacks on network applications.

For this, the attacks within the detection scope should take place at or close to the net-

work application layer to generate deviations in the observed traffic microstructures.

A privilege escalation attack on a host executed via a remote SSH-shell session would

hardly leave a visible deviation in the observed microstructures as the performed SSH-

communication and corresponding packet streams still conform to the SSH-protocol,

whereas a direct exploit on the SSH-application during a session would likely cause

more observable microstructure deviations.

1.2 Contributions

This thesis examines the necessary requirements on traffic generation and traffic mi-
crostructures to enable the effective training and improvement of anomaly detection
models. Fig. 1.1 highlights these three main themes that this thesis revolves around,

and their examined interactions.

We first study how current machine-learning based detection methods are designed

and their requirements on comprehensive and realistic datasets to generate models that

generalise well on persistent traffic microstructures. We establish our findings with

three experiments and empirical evidence to demonstrate how the non-compliance with

these requirements affects model performance.

The thesis then proposes DetGen, a traffic generation paradigm to provide near
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Figure 1.1: Three main themes of this thesis.

deterministic control over factors that shape traffic microstructures. The goal of Det-

Gen is to provide researchers with extensive ground truth information and generate

customisable, scalable, and controllable datasets with realistic levels of microstructure

diversity. We verify the level of control DetGen provides with two experiments and

compare the results with existing traffic generation techniques.

We then demonstrate how the precise traffic control and corresponding ground truth

labels that DetGen provides can improve model development with two experimental

studies. For this, we probe two state-of-the-art NID models with traffic traces that

are subject to controlled variations to understand where the models fail and how they

can be improved. We identify design flaws with regards to network retransmissions and

HTTP-requests, and are thus able to improve the detection performance to almost halve

the number of misclassifications with very simple design adjustments. These studies

serve as examples of how the model development process in NID can be expanded to

improve existing models in new ways.

Considering these results, we propose CBAM, a contextual bidirectional anomaly

model that detects low-volume access attacks as deviations from recurring flow mi-

crostructures. CBAM is trained as a self-supervised traffic language model and out-

performs the detection rates of current state-of-the-art methods by up to 140%. We

examine how persistent microstructures are perturbed by specific attacks, and how

CBAM detects these perturbations. The output of CBAM also provides valuable in-

sights into the frequency, clustering, and evolution of microstructures in real-world

traffic data.

Lastly, we look at stepping-stone attacks where an attacker relays an attack via
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a jump host located in the target network. We examine how attackers can perturb

the relayed traffic in an adversarial way to prevent models from identifying the corre-

sponding relay of persistent microstructures. We use DetGen to generate controllable

stepping-stone attack data to identify which level of perturbations are required to pre-

vent detection. We then evaluate several models with different detection methodolo-

gies on this data and conclude that unfortunately realistic adversarial perturbations can

evade all current methods. This suggests future directions for necessary research on

adversarial robustness that build up on our work.

1.3 Central research objectives

The research contained in this thesis was conducted under the following objectives:

Research Objective 1
How well-structured is the space of microstructures observed in the traffic of a ma-

chine or a network? To what degree are these microstructures a result of specific com-

putational activities that are of interest for traffic classification and network intrusion

detection, and how much are they affected by other external variables?

Research Objective 2
How can we identify microstructures significant for intrusion detection and train cor-

responding models? What requirements must a labelled traffic generation framework

fulfil to provide realistic data?

Research Objective 3
To what degree can relevant microstructures in network traffic be captured in a model

from a training dataset, and how can we achieve this? How can a model adapt to

changes of structures in benign traffic?

Research Objective 4
To what degree can access attacks be detected by a model that learns traffic microstruc-

tures? What kind of attacks will necessarily show contextual anomalies, and which will

not? Can an adversary adapt his attacks to avoid detection?

We will revisit these objectives and how well they were addressed in this thesis in

Section 7.1.
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1.4 Thesis overview

This section explains the structure that this thesis follows. Fig. 1.2 provides a graphical

overview over the thesis themes discussed in each chapter.

Chapter 2 provides the reader with background information on network traffic and

attacks, machine-learning based network intrusion detection, and explains the neces-

sary concepts of machine-learning based anomaly detection for sequential data streams.

The chapter highlights important NID models that leverage traffic microstructures, and

discusses existing datasets and synthetic traffic generation as well as their current short-

comings.

Chapter 3 introduces DetGen, a framework that provides small-scale traffic gener-

ation specifically aimed for machine-learning based intrusion detection. The chapter

starts with the identification of four major shortcomings of existing NID-datasets re-

garding the training of machine-learning models that leverage traffic microstructures.

The chapter then defines four requirements that a machine-learning-focused traffic gen-

eration framework must fulfil. The chapter provides results from several experiments

to demonstrate that models do not sufficiently generalise when the training data does

not meet these requirements.

Chapter 4 builds up on the results in Chapter 3 by experimentally examining the in-

fluence of several factors on traffic microstructures and the level of control that DetGen

provides. The chapter then provides two case-studies on how to produce traffic effec-

tively to probe a state-of-the-art traffic classifier, and why a high degree of generative

determinism is required for this to isolate the influence of traffic microstructures.

Chapter 5 introduces CBAM, an anomaly detection model that detects low-volume

access attacks as deviations from persistent flow microstructures. The chapter explains

the reasoning for CBAM’s design in order to learn specific microstructures in a self-

supervised manner, and how attacks perturb these microstructures. The chapter then

provides detection results and a comparison to three benchmark models, before exam-

ining long-term stability of the learnt structures and current shortcomings on real-world

datasets.
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Figure 1.2: Chapter structure of this thesis.

Chapter 6 explains the procedure of a stepping-stone attack, common techniques to

detect them, and how attackers introduce microscopic perturbations to evade detection.

The chapter then provides results based on data that we generated with varying degrees

of introduced perturbations to compare the performance of seven stepping-stone detec-

tion methods.

Chapter 7 concludes this thesis, provides a critical perspective on the presented re-

sults, and gives an outlook to future work in this area.



Chapter 2

Background

2.1 Network traffic and attacks

2.1.1 Traffic metadata

Computers in a network mostly communicate by sending network packets to each

other, which contain the control information necessary for transmission, called the

packet header, and the user information, called payload. Information contained in the

header depends on the respective transport layer protocol (TCP, UDP, ICMP, etc.). Fig.

2.1 displays the content of a TCP-header as an example.

Figure 2.1: Typical format of a TCP packet. Source: https://www.lifewire.com/tcp-headers-and-udp-

headers-explained-817970, accessed 23.08.2021

In a monitoring setting, packets are usually captured by network routers and stored

in the pcap format. In case of space shortage or privacy concerns, packet streams are

often summarised into network flows. RFC 3697 [19] defines a network flow as a se-

quence of packets that share the same source and destination IP addresses, IP protocol,

and for TCP and UDP connections the same source and destination ports. A network

27
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flow is usually saved containing this information along with the start and duration of

the connection and the number of packets and bytes transferred in the connection, but

can also contain additional information describing the connection. Both data formats

are used widely in network intrusion detection.

2.1.2 Network attacks

One reason for the recent rise of cyber crime is the increased use of sophisticated tech-

niques for the attack of specific targets. Attackers use social engineering and custom-

build malware that penetrate defensive barriers to stay undetected in an infected system

for an extended period of time. In 1980, James P. Anderson, a member of the Defense

Science Board Task Force on Computer Security at the U.S. Air Force, published the

first report to introduce the notion of automated intrusion detection [20]. In it, he

defines an intrusion attempt as

“. . . an unauthorized and deliberate attempt to access or manipulate in-
formation, or to render a system unreliable or unusable.”

Very often, intrusive attacks involve some sort of network communication between

the victim machine(s) and a malicious agent. As this thesis focuses primarily on net-

work intrusions and corresponding defence systems, we will take a closer look at this

type of communication. A recent survey covering intrusive attacks and defence sys-

tems distinguishes four classes of malicious network attacks [13]:

1. DoS-attacks: A denial-of-service attack is an attempt to remove the ability of

a particular computer to communicate with other machines over an extended

period of time. All major types of DoS-attacks overwhelm the target server with

requests that are corrupted to bind server resources.

2. Network probing attack: The purpose of network probing is to gather infor-

mation about computers in a network. This typically involves sending specific

service requests to other computers in the network to find out about open ports

or the operating system running on a machine.

3. Access Attacks: These are attacks that attempt to gain unauthorized access di-

rectly to a machine or to resources on a machine. This is typically done by

brute-forcing the authentication system or exploiting vulnerabilities to execute

code on the targeted machine. This could both be an individual from outside
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gaining access to the network, or a user from inside the network accessing ser-

vices or privileges outside of their authority. Examples of such attacks are SQL-

injections, where information is extracted from an SQL-server through the covert

execution of SQL-commands in malicious requests, or by planting and execut-

ing software scripts on a machine using techniques such as cross-site-scripting

or buffer-overflow exploits. This thesis is primarily concerned with the detection

of network access attacks.

4. Data Manipulation Attack: Also known as “man-in-the-middle”, these attacks

involve an attacker reading and manipulating information in a data stream that

is not addressed to them by exploiting authentication mechanisms. A common

form of such an exploit is IP spoofing where an attacker pretends to be a trusted

computer by sending packets with a spoofed trusted source IP address.

2.2 Anomaly detection

Anomaly detection refers to the problem of identifying data instances that have signifi-

cantly different properties than previously observed “normal” data instances. Anomaly

detection has its origins in statistical research where normal data instances are assumed

to be generated as random variables from a probability distribution PN(X). A new data

sample Xnew is then identified as anomalous if its properties correspond to regions with

vanishing likelihood, i.e. PN(Xnew)≈ 0. Usually, the hard part in anomaly detection is

to use observed data efficiently to build an estimated distribution P̂N(X) that resembles

PN(X), and often relies on training machine-learning models.

Anomalies can be classified into a) point-, b) group-, or c) contextual/behavioural

anomalies. Point anomalies or outliers occur when a single data sample differs from

the rest of the samples in a dataset through its position in the feature space, such as

an unusually large or long connection in a network. Group anomalies occur when

the occurrence frequency of a feature subset is anomalous within an observation inter-

val, such as the frequency of half-open connections during a DoS attack. Contextual

or behavioural anomalies occur when one or more data samples do not conform to

expected behaviour within their temporal or spatial context, such as unusually large

SQL-connections being opened after an HTTP-request from an unauthorised host dur-

ing an SQL-injection attack. Graphical examples of point and contextual anomalies

are depicted in Fig. 2.2.
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(a) (b)

Figure 2.2: The left plot (a) depicts simple anomalies that deviate in distance from

regular data. The right plot (b) shows a contextual anomaly where a group of data

instances do not follow a repeating timely behaviour with respect to all other data points

(corresponding to an Atrial Premature Contraction, taken from [21])

2.2.1 Supervised vs. Unsupervised learning

Machine learning methods are often grouped into supervised methods trained on la-

belled data, and unsupervised methods that are trained on unlabelled data.1 Besides

the input data samples, supervised methods receive separate response data that the

model is then trained on to predict in a general settings without any available response

data. Typically, the response data is a class label for the corresponding data sample,

or numerical values in a regression-type problem. Unsupervised methods are trained

entirely on the input samples in the absence of a separate response. The purpose is

often not the prediction itself, but to extract information such as numerical thresholds,

sample likelihoods, or groupings that describe the data. Examples of unsupervised

methods are clustering methods or time-series and sequence prediction.

Machine-learning-based anomaly-detection typically deal with a two-class clas-

sification problem, where one class, benign data, is abundant and coherent in their

structure while the other, anomalous data samples, are rare, incoherent, and thus more

difficult to describe. Anomaly-detection methods are therefore mostly trained in an

unsupervised manner entirely on benign data samples to extract information on their

underlying structures and provide boundaries of typical behaviour to distinguish them

from anomalous samples that exceed these boundaries.

1Semi-supervised methods are sometimes identified as a separate group, but their functionality is
often closely related to supervised methods.
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Real-world benign data typically exhibits structures in a myriad of ways, and it

is often impossible to build a model that reflects all of these structures in an accurate

way. Even though anomaly-detection methods are often claimed to be independent of

a notion of anomalous or attack behaviour, the design of the method and the choice of

structures that the learned benign-boundary is generated from, mean that some knowl-

edge of anomalous behaviour is needed.

Anomaly detection has found wide application in areas where stability of critical

systems or detection of their abuse is crucial. Examples of these include engine-fault

detection in wind-turbines and fraud detection for credit cards. The assumption here

is that the modelled system, such as the sensor-data stream of an engine or the buying

behaviour of a customer, remains stable and generates consistent data.

2.2.2 Language models and masked language modelling

In self-supervised learning, a subgroup of unsupervised approaches, an artificial re-

sponse is often generated from the input data to generate a labelled dataset from an

unlabelled dataset to train a model on large amounts of unlabelled data to learn general

representations of data structures before fine-tuning it on smaller labelled dataset for a

specific task, such as classifying the topic of a text or producing a caption for an image.

A common way to achieve this is by masking some part of the input and training the

model to predicting it from the remaining parts of the input, also called self-prediction.

Common examples of this approach include the masking of pixel rows which are then

predicted with PixelCNN models using an approach called contrastive predictive cod-

ing [22], or by masking individual words in an input sentence that predicted from the

remaining sentence, a technique called masked language modelling that is used by self-

supervised language models such as ALBERT [23] and that we will examine in more

detail now.

In natural language processing (NLP), language models are used for text comple-

tion, generation, and correction. A statistical language model is a probability distribu-

tion that describes the overall likelihood of a sequences of words. For example, in the

sentence “The students opened their laptops.”, the language model could provide the

probability

Pr
(

“laptops”|“The students opened their”
)

of the word “laptop” following the previous part of the sentence.
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Figure 2.3: Depiction of the self-supervised training of a language model.

Language models are often trained using masked language modelling with large

amounts of unlabelled text. The model is fed an input sentence with a part of the

sentence masked that the model tries to predict. The predictions are then compared to

the actual words, as depicted in Fig. 2.3.

In the past, language models were mainly built using simple N-gram models or

Hidden Markov models. In the last decade the success of deep learning pushed LSTM-

based (Long-short-term memory) networks as depicted in Fig. 2.3 to the top of well-

performing language models. Recently, LSTM-networks have been overtaken by Trans-

former-networks that can be trained more efficiently on huge datasets.

Language models can be used as anomaly detectors in for example a grammar

checking setting. Here, the predicted probability of a word or a whole sentence are

compared to a threshold value, and grammatical or syntactical anomalies are detected

as low predicted probabilities.

Written language and network traffic metadata bear significant similarity as each

consists of sequences of discrete events (words vs. packets/flows) that stand in contex-

tual relationship to their surroundings. However, the application of successful language

models to network anomaly detection is still unexplored. A part of this thesis tries to

demonstrate the potential of training language models to capture traffic microstruc-

tures.
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2.3 Network intrusion detection

The field of intrusion detection is concerned with the development of methods and tools

that identify and locate possible intrusions in a computer network. Intrusion detection

is a well researched area, with the first IDSs emerging in the late 1980’s. Intrusion

detection today comprises a variety of research areas in terms of different types of data

sources, system architectures, detection scope, and so forth. In 1987, Dorothy Denning

established the notion of two different types IDS implementations [24]: a) host-based

and b) network-based. Host-based intrusion detection systems monitor each host in a

network individually, and rely on local data streams such as application logs or raw

operating system calls as data source. Network-based intrusion detection refers to

the detection of malicious traffic in a network of computers and uses network traffic

captures as a data source. Host-based systems have the advantage of working with

high quality data that are typically very informative. NIDS have the advantage of

being platform independent and more robust against attacks on the NIDS as detection

of an attack is not done on the attacked system. Fig 2.4 provides an overview over

different aspects to consider in network intrusion detection.

2.3.1 Deep vs shallow packet inspection

Modern firewalls and NID solutions rely extensively on deep packet inspection (DPI),

where the payloads of packets are scanned for attack signatures or anomalies such

as known-malicious byte-sequences or anomalous HTTP-requests. While this offers a

direct view at the content of communications, it raises several problems: The computa-

tional overhead of DPI is large and scales directly with the amount of transferred data.

Furthermore, DPI infringes user privacy when scanning the content of messages, po-

tentially allowing the operator to access the vast amount of personal information sent

over the internet. Finally, DPI is incapable of processing encrypted traffic, an issue

that malicious actors increasingly exploit. Some firewall-providers have started to de-

crypt any transferred traffic in a man-in-the-middle manner, but the ethical legitimacy

of such approaches is at the very least controversial.

Shallow packet inspection (SPI) in contrast only inspects packet headers and is

therefore computationally less expensive as well as robust against encryption and to

some degree application evolution. SPI is used both by rule- and signature-based sys-

tems such as Snort [8], as well as by an ever increasing number of machine-learning

based methods that attempt to make broad generalisations about traffic solely from
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Figure 2.4: A broad overview over different aspects in an IDS

evaluating packet headers. These methods are discussed in more detail in the follow-

ing chapters.

2.3.2 Misuse vs anomaly detection

Detection methods are the core of an IDS, and are therefore the most important design

choice. Traditionally, two broad types of detection approaches are identified: a) misuse

detection and b) anomaly detection.

Misuse detection aims at detecting a particular and well known reoccurring char-

acteristic or pattern of a malicious behaviour. Two simple examples of such a charac-

teristic are the large number of SYN packets sent by a host in a DoS attack, and the

synchronised connection of many hosts to one server in a botnet. In misuse detection,
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abnormal or malicious behaviour is therefore defined first before developing a model

to distinguish the defined behaviour from other traffic.

In contrast, anomaly detection aims at building a model of normal system be-

haviour that is accurate enough to spot any malicious behaviour as traffic that devi-

ates from the estimated model. Anomaly detection is principally more difficult than

misuse detection since the traffic model has to incorporate potentially very heteroge-

neous traffic behaviours. By design, anomaly detection is more suitable to detect new

and previously unseen malicious behaviour as it makes no definite assumptions on the

anomalous behaviour. Misuse detection is robust against evolution of malware as long

as defined malicious behaviours do not change.

In reality, anomaly and misuse detection are not necessarily mutually exclusive,

and there is a fluent passage between the two. This is because many anomaly detection

approaches choose a particular set of features to be modelled with a particular threat in

mind. For instance, models for the number of connections of a machine are naturally

suitable for detecting DoS attacks, port scans, or worm attacks.

2.3.3 Evolution of network anomaly-detection

In 1986, Denning and Neumann published the first IDS prototype model, called In-

trusion Detection Expert System (IDES) [24]. The IDES model relies on point-based

anomaly-detection based on both statistical and expert rules, and considers both net-

work and host data. In the following years, several other systems were proposed that

combine statistical and expert systems on security audit data, such as MIDAS [25] or

Haystack [26]. In 1990, the first purely network-based anomaly detection methods

emerged with the Network Security Monitor, and the Network Anomaly Detection and

Intrusion Reporter. Both systems tried to profile user activity over time, and detect

abnormalities with statistical estimates based on historic data. These systems were

still relying on the notion that the aggregated values of service usage or destination

hosts of an intruder is different enough from a legitimate user to be detected, and the

corresponding detection resolution was only up to 5-minute intervals.

Between 2003 and 2005, several techniques to identify network-wide anomalies

that are caused by worm propagation or scanning attacks were proposed first by Wag-

ner and Plattner [27, 28], and followed by Anukool Lakhina [29, 30]. Lakhina’s meth-

ods were more sophisticated, relying on principle component analysis and wavelet-

modelling to detect sudden changes in the network, and were also the first anomaly-
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based NID-methods with acceptable false-positive rates on real-world data.

In 1998, Martin Roesch developed Snort, the now most widely used NID-system

[8]. Snort was the first system to identify individual packets as malicious, based on

pre-defined rules on both packet content and packet header, but only detects misuse

instead of anomalies. In 2002, both Kruegel et al. [31] and Mahoney and Chan [32]

proposed packet-level anomaly-detection systems. Mahoney and Chan apply cluster-

ing techniques to both the packet header and the packet payload, while Kruegel et al.

model the packet payload with Markov chains according to the specific service and

request.

While Kruegel et al. only evaluate their model on proprietary DNS-data, Mahoney

and Chan used the new DARPA 98 dataset, the first public benchmark NID dataset

with labelled attack data [33]. This dataset, along with its derivatives, the KDD 99

and the NSL-KDD datasets [34, 35], were since then used heavily. In particular the

format of the KDD 99 and NSL-KDD datasets, which consist of connection sum-

maries with 41 features, influenced and simplified the way that NID-methods were de-

signed. The overwhelming majority of systems proposed to detect access attacks since

then have applied supervised or unsupervised ML-methods directly to these features,

with each flow being classified independently from other traffic. Among the applied

ML-techniques used for anomaly-detection are density-based models, support-vector

machines (SVM), projection methods, Bayesian and fuzzy-logic classifiers, and neu-

ral networks such as autoencoders or deep belief networks. Prominent examples of

this methodology include a hybrid SVM and neural clustering model trained with the

DARPA 98 data by Shon and Moon in 2007 [36], and or an autoencoder model trained

on the NSL-KDD dataset by Shone et al. in 2018 [37].

The existence of public benchmark datasets have enabled researchers to compare

the performance of different methods, but also encouraged them to neglect operational

considerations or structures akin to specific attacks and services. However, according

to a recent study by Nisioti et al., several widespread evaluation malpractices which

are discussed further in Section 5.3 decrease trustworthiness of published low volume

access attack detection rates [13]. Overall, the academic progress of anomaly-based ac-

cess attack detection has not progressed as much in the last decade, with false-positive

rates still being magnitudes too high for operational deployment.

Further discussion of specific techniques related to anomaly detection using se-

quential models and to stepping-stone detection can be found in Sections 5.9 and 6.2.
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2.4 Traffic datasets

In order to evaluate their ability to model the behaviour of hosts in a network and iden-

tify network intrusions, new methodologies have to be tested using existing datasets of

network traffic. The dataset should ideally contain realistic and representative benign

network traffic as well as a variety of different network intrusions. However, as net-

work traffic contains a vast amount of information about a network and its users, it is

notoriously difficult to release a comprehensive dataset without infringing the privacy

rights of the network users. Furthermore, the identification of malicious traffic in net-

work traces is not straightforward and often requires a significant amount of manual

labelling work.

For that reason, only three datasets for network intrusion detection containing real

world traffic exist: LANL-15/17, UGR-16, and LITNET-2020, all of which have lack

however lack the necessary diversity of attack traffic. Significant efforts have been

made to artificially create such datasets and thus bypass any privacy concerns. How-

ever, up to today, no artificial dataset truly resembles real network traffic in every aspect

[13]. Table 2.1 at the end of this chapter provides an overview of the dimensions and

characteristics of the most important NID datasets.

2.4.1 Real-world datasets

Los Alamos National Laboratory - Comprehensive, Multi-Source Cyber-Security

Events 2015, and Unified Host and Network Data Set 2017 [38][39]

In 2015, the Los Alamos National Laboratory (LANL) released a large dataset con-

taining network flows from their corporate computer network, which contains about

17,600 computers. The data was gathered over a period of 58 days with about 600

million events per day. The data only contains internal network connections, i.e. no

flows going to or coming from computers outside the network are included. IPs and

ports were de-identified, but are consistent throughout the data. Since the data stems

exclusively from within the corporate network, it can be assumed that it shows more

homogeneity in the observed traffic patterns than general network traffic.

The dataset furthermore contains a labelled set of red-team events which should

resemble pass-the-hash-attacks. However, these events are not part of the network

flow data and only contain information about the time of the attack and the attacked

computer.
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LANL released another dataset containing network flow traffic from their network

in 2017 [40]. This dataset is similar to the one from 2015, but spans over a longer

period of time, 90 days. Furthermore, it contains no labelled malicious activity.

UGR 2016 [41]

The UGR 2016 dataset was released by the University of Grenada and contains net-
work flow data from a cloud service provider to a number of companies, and thus the

data comes from a much less structured network than the LANL data. It contains both

client’s access to the internet and traffic from servers hosting a number of services.

IP-adresses are consistently anonymised while network ports are unchanged. It is not

ensured that all traffic coming from and going to a particular machine is captured. The

dataset correspondingly covers a very long period, spanning from March to August of

2016, and containing about 14 GB of traffic per week.

The dataset contains labelled traffic from three real attacks, corresponding to IP-

scanning and a spam mail campaign. The dataset also contains twelve days of synthet-

ically generated data from a virtualised network along with controlled DoS and port

scanning attacks and injected C&C traffic.

2.4.1.1 LITNET-2020 [42]

The LITNET-2020 from the Kaunas University of Technology Lithuania from 2020

was collected from an academic network over a timespan of ten months and contains

annotated real-life benign and attack traffic. The corresponding network provides a

large network topology with more than a million IP-addresses, and the data was col-

lected in the form of network flows with more than 80 features. However, the dataset

only contains traffic from high volume attacks such as DoS-, scanning, or worm at-

tacks.

CAIDA and MAWIlab datasets [43, 44]

The Center for Applied Internet Data Analysis (CAIDA) started collecting network

traces from a US high-speed backbone link in 2008, with the collection still ongoing.

The data is available in anonymised yearly released datasets containing one hour of

packet headers. Since the data is captured at a backbone, the capture is not necessarily

complete, i.e. some packets in a connection could be routed via another backbone and

not appear in the capture. It is furthermore not necessarily free from attack traffic.
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Although this dataset has been used for intrusion detection before, it is more suitable

for general internet traffic analysis.

Similarly to the CAIDA datasets, the MAWIlab dataset from the MAWI (Mea-

surement and Analysis of the WIDE internet) research group contains packet headers
from the WIDE backbone, with weekly updates. It is therefore similarly unstructured,

anonymised, and not free from attack traffic. The dataset is labelled with the labels

“anomalous”, “suspicious”, “notice”, and “benign” according to several heuristics, and

has identified traffic from several worm and DoS attacks.

UNIBS 2009[45]

This now outdated dataset was collected on the campus network of the University

of Brescia on three consecutive days in 2009. The dataset contains in total 79,000

anonymised TCP and UDP network flows, which is far smaller than the other datasets

discussed here.

This dataset is not directed towards intrusion detection research, but was made as

ground truth data for traffic classification. It therefore contains labels which indicate

which of in total six applications generated the corresponding traffic flow.

2.4.2 Synthetic datasets

CICIDS 2017/2018 [46][47]

The CICIDS 2017 dataset, released by the Canadian Institute for Cybersecurity (CIC),

contains five days of network traffic from 15 virtual machines. The network contains

switches, routers, a web server, a modem, and a firewall in order to ensure a realistic

network topology. The traffic data itself consists of labelled benign and attack traffic,

and is available as 11 GB per day of raw packets with payloads, or as network flows.

The background traffic is not directly generated through user interactions on the

machine, but by using a method to profile abstract user behaviour in different traffic

protocol. However, it is not completely clear how much of the underlying structure of

real traffic is lost in the process, and therefore how suitable this data is to build models

of benign user activity.

The attack data of this dataset is one of the most diverse among NID datasets, as

it contains attacks such as DoS, SQL-injections, Heartbleed, brute-forcing, probing,

or XXS. These are not always successful in order to reflect actual attack scenarios.
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However, the authors did not describe well how exactly the data from these attacks is

generated.

CICIDS 2018: This dataset is generated in a similar fashion to the CICIDS-2017

dataset. The main differences are that the CICIDS 2018 data spans over three weeks

and includes in total 450 hosts, but lacks the amount of web-attacks that is present in

the CICIDS 2017 dataset.

UNSW-NB 2015 [48]

The dataset released by the University of New South Wales in 2015 contains traffic

collected at the Cyber Range Lab of the Australian Centre for Cyber Security. The

background traffic is generated from scripted activities on around 45 virtual machines,

and is overlayed with replayed attack traffic using the IXIA PerfectStorm tool. The

time span of the collection is in total 31 hours, and the data is available as raw packets
and network flows along with two other data formats containing newly engineered

features.

The attacks include a variety of DoS, reconnaissance, and access attacks. However,

due to the synthetic injection of traffic from these attacks, it is unclear how close they

are to real-world attack scenarios.

DARPA 1998 [49] & KDD Cup 1999 [34]

The Defense Advanced Research Projects Agency released the first major dataset to test

network intrusion detection systems in 1998. The data stems from two experiments at

the MIT Lincoln Laboratory were multiple victim hosts running Unix and Windows

NT were subject of over 200 attacks of 58 different types. The data spans three weeks

of training and two weeks of testing data and contains raw packets that are labelled.

The KDD Cup 1999 dataset was created by the MIT Lincoln Laboratory by pro-

cessing portions of the 1998 DARPA dataset with new labels, and has been the most

widely used dataset in network intrusion detection. It contains two million connections

summaries in a new format similar to flow summaries, and in total 38 attack types.

The DARPA 98 dataset received a lot of criticism for its lack of realistic back-

ground traffic and the presence of artefacts from these simulations in the data. Nat-

urally, as the KDD’99 data stems directly from the DARPA dataset, it also faces the

same problems and criticism.
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CTU 2013 [50, 51]

The Stratosphere Laboratory in Prague released this dataset in 2013 to study botnet

detection. It consists of more than 10 million labelled network flows captured on lab

machines for 13 different botnet attack scenarios. Additionally, the raw packets for

the botnet activity is also available for attack analysis.

A criticism of this dataset is the unrealistically high amount of malicious traffic

contained in the dataset, which makes it easier to spot it while reducing false posi-

tives. Furthermore, the way normal or background traffic is generated is described

only poorly, and the labelling is imprecise.

2.4.3 Generative traffic models and traffic generation

Network traffic models and corresponding traffic generation models have been one of

the cornerstones of network design and stress testing. The fidelity of specific traffic

characteristics to real-world traffic depends on the purpose of the generator. Simple

performance measurement tools such as iPerf or Mausezahn are used to explore

network transmission reliability and efficiency, and therefore only send dummy packets

that do not correspond to actual communication [52, 53]. The realism of network

activity levels and spikes is a crucial aspect for these tools. The traffic is typically sent

from a client device to a server device.

Traffic generators such as IXIA PerfectStorm aim to test the performance and scal-

ability of content-aware firewalls and similar security devices [54]. They replay ap-

plication traffic such as web traffic or video streaming as well as traffic from various

attacks to test the reliability and overhead of a security device. The generated traffic

therefore contains actual communication with semantically correct packet sequences

and payloads, but offers little room to modify the transmitted traffic. The network

set-up here is similar to tools like iPerf.

Traffic generation for NID-datasets is often performed using an arrangement of

virtual machines that communicate to generate traffic, such the one used in the UGR-

16 dataset as depicted in Fig. 2.5 [41]. The machines are configured to cover a range of

network applications and protocols and communicate via scripted interactions. Attacks

are typically performed from specifically designated attack machines. In Chapters 3

and 4, we discuss several shortcomings of this method.

Recently, traffic emulation tools that are powered through Generative Adversarial
Networks (GANs) such as DoppelGANger [55] have attracted attention. These are
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Figure 2.5: Setup of VM-machines in the UGR-16 dataset [41].

trained on real-world data and are capable of generating realistic sequences of traffic

features. In contrast to actual traffic generators, no actual traffic is generated and the

output of GAN-models so far has been limited to numerical features such as activity

levels or port entropy distributions obtained after traffic processing. Approaches to

generate sequences of packets or flows have so far not been successful [56, 57].
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Chapter 3

Requirements for Machine Learning

3.1 Introduction

Security oriented datasets describing computer networks are notoriously hard to obtain,

and researchers struggle to evaluate new NID systems on suitable network traffic data.

The lack of quantity, variability, meaningful labels, and ground truth has so far slowed

scientific progress and objective and appropriate measurements on ML-based network

security methods.

Privacy and security concerns discourage network administrators to release rich

and realistic datasets for the public. Network traffic produced by individuals contains

a mass of sensitive, personal information, such as passwords, email addresses, or us-

age habits, requiring researchers to expend effort anonymising the dataset [58]. To

examine malicious behaviour, researchers are often forced to build artificial datasets

using isolated virtual machines in a laboratory setting to avoid damaging operational

devices. Background traffic is usually generated in real-time from scripts executed on

the virtual machine, which constrains both the amount and heterogeneity of the data.

Existing network intrusion detection datasets are predominantly designed to sup-

port a broad range of applications, and are collected in a static manner, unable to be

modified or expanded. This proves to be a serious defect as the ecosystem of intrusions

is continually evolving. Furthermore, it prohibits a more detailed analysis of specific

areas of network traffic due to the available data only being a fraction of the original

dataset. To combat this, new datasets must be periodically built from scratch.

Allowing researchers to create datasets dynamically to circumvent these issues

would be highly beneficial. Container networks have recently found adoption to con-

duct traffic generation experiments, such as by Fujdiak et al. [59] who use container-

45
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ised web servers to generate DoS-traffic. The reason of using containerisation in these

experiments is to provide a lightweight, scalable, and extendible framework that pro-

duces attack traffic in a secure way. In this chapter, we propose a framework, called

DetGen that uses Docker-containers, that is designed to increase the control, moni-

toring, and experimental determinism in the traffic generation process to provide re-

searchers with more information for model analysis [60]. Each Docker container is

highly specialised in its purpose, generating traffic related to only a single application

process. This shields the generation process from background activities and corre-

sponding traffic events or disturbances during the collection. In combination with the

scripting of a variety of well-defined and monitored communication scenarios, both

for benign and attack traffic, and the controlled simulation of external effects, we can

build a dataset with quasi perfect ground truth. Since many containerised applications

are shared on the Docker Hub platform, implementation process is relatively easy.

The following results are discussed in this chapter:

1. We present a novel network traffic generation framework that is designed to im-

prove several shortcomings of current datasets for NIDS evaluation. This frame-

work is openly accessible for researchers on GitHub and allows for straightfor-

ward customisation.

2. We define four new requirements a network intrusion dataset should fulfil in

order to be suitable to train machine-learning based intrusion detection methods.

3. We perform a number of experiments to demonstrate the suitability and utility

of our framework.

This chapter is mostly consisting of work published in “Traffic generation using

containerisation for machine learning” (Henry Clausen, Robert Flood, and David As-

pinall, 2019 [1]).

3.1.1 Outline

The remainder of this chapter is organised as follows. Section 3.2 background informa-

tion about application virtualisation methods. Section 3.3 discusses the problems that

arise during the usage of existing NIDS datasets and concludes with a set of require-

ments we propose to improve the training and evaluation of machine-learning-based
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methods. Section 3.4 describes the general design of our framework, and how it im-

proves on the discussed problems in existing datasets. We also discuss a specific exam-

ple in detail. Section 3.5 discusses several experiments to validate the improvements

and utility our framework provides. Section 3.6 concludes the results and discusses

limitations of our work and directions for future work.

3.1.2 Scope of DetGen and potential use-cases

The scope of DetGen is to generate traffic with near-deterministic control over factors

that influence microscopic packet- and flow-level structures. DetGen separates pro-

gram executions and traffic capture into distinct containerised environments to exclude

any background traffic events, simulates influence factors such as network congestion,

communication failures, data transfer size, content caching, or application implemen-

tation.

The purpose of DetGen is to better train and understand traffic models that model

individual or short sequences of connections. Due to the controllable randomisation

of influence factors and its extendibility, researchers can easily generate tailored traf-

fic samples at scale to train and fine-tune their models on particular traffic types (an

example of this is described in Section 3.5.3), or test the behaviour of models when

encountering different data balances during training or evaluation to understand which

structures the models fails on (a detailed description of this process is described in

Chapter 4).

It is important to mention that since DetGen is currently only capable of generat-

ing atomic traffic events consisting of individual or short sequences of connections,

the data generated with DetGen is not suitable to train or evaluate traffic models of

network-wide features such as usage distributions or activity spikes as well as models

that correlate events in a traffic stream over more than a few seconds. It is also not

suitable to examine multi-step attacks yet as the included attack scenarios also consist

of atomic interactions. The simulation of causal dependencies in attack sequences as

well as for individual hosts is considered for future extensions of DetGen, as described

in Section 3.6.2.
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FROM ubuntu

MAINTAINER XYZ ( email@domain . com )

RUN apt − g e t u p d a t e

RUN apt − g e t i n s t a l l −y ng inx

ENTRYPOINT [ ” / u s r / s b i n / ng inx ” ,” − g ” , ” daemon o f f ; ” ]

EXPOSE 80

Figure 3.1: Example of Dockerfile creating a nginx-container.

3.2 Background

3.2.1 Containerisation with Docker

Virtual machines (VMs) share the same hardware infrastructure as the host machine.

VMs necessitate the use of hypervisors, software responsible for sharing the host OS’s

hardware resources, such as memory, storage and networking capabilities. OS-level

virtualisation, also known as containerisation, is a virtualisation paradigm that has be-

come popular in recent years due to its lightweight nature and speed of deployment. In

contrast with standard VMs, containers forego a hypervisor and the shared resources

are instead kernel artefacts, which can be shared simultaneously across several con-

tainers. Although this prevents the host environment from running different operat-

ing systems, containerisation incurs minimal CPU, memory, and networking overhead

whilst maintaining a great deal of isolation [61].

The main advantage of using containers for traffic generation is the isolation of

individual applications. This enables us to gather ground truth about the traffic origin,

and enables us to easily extend, modify, and scale our traffic generation framework,

which would not be possible when relying on VMs.

Docker container Docker is a software platform that allows for the creation, mainte-

nance and deployment of containers. In Docker’s terminology, a container is a single,

running instance of a Docker image. Docker images are defined via a text file known as

the Dockerfile, which consists a series of commands that modify an underlying base

image, usually a containerised OS. Example commands include installing libraries and

copying files. Figure 3.1 displays a simple example of Dockerfile.

After each command is executed, the intermediate, read-only image is saved as a

layer. These layers can be shared between containers. When a Docker image is run as

a container, a final read-write layer is added and when the container is later stopped,



3.2. Background 49

this layer is discarded, preserving the integrity of the underlying layers. This allows

Docker containers to be run repeatedly whilst always starting from an identical state.

Individual Docker containers are intended to be highly specialised in their purpose

with each container running only a specific piece of software or application. Com-

monly used base images — such as Alpine Linux — have minimal background pro-

cesses running during a container’s lifetime. This means that the network traces of a

Docker container can be associated with a specific application. The one-to-one cor-

relation between containers and network traces allows us to produce labelled datasets

with fully granular ground truths.

The Docker software platform includes a cloud-based repository called the Docker

Hub [62] which allows users to download and build open source images on their local

computers. At the time of writing, nearly 2.5 million images are available from the

Docker Hub. Some common software — such as popular webservers and databases

— have officially maintained images. We use these as far as possible to simplify the

production of our scenarios, and keep them close to software configuration used in

practice.

Docker Networking Docker allows the creation of virtualised networks with one or

more subnetworks, to which containers can connect via a virtualised network bridge.

Containers attached to the bridge network are assigned an IP address and are able to

communicate with other containers on their subnetwork. Containers can furthermore

be connected to a host network, which allows communication with external networks

using NAT via the host interface.

To host containers in an isolated network, we can create our own user-defined

bridge networks, which provides greater isolation between containers [63]. Further-

more, this allows us to fix the subnet and gateway for our networks as well as the

IP addresses of our containers, which simplifies scripting scenarios. Docker allows

containers to share the same network interface. This enables us to assign the same IP

address to multiple containers.

NetEm The Docker engine also provides network access to Linux traffic control fa-

cilities such as NetEm, on which we will rely in this project. NetEm is a Linux toolkit

for testing protocols by emulating properties of wide area networks [64]. It allows the

user emulates variable delay, loss, duplication and re-ordering of packets on particular

network interfaces.
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v e r s i o n : ’3 ’

s e r v i c e s :

w e b s e r v e r :

image : ng inx : a l p i n e

p o r t s :

− ” 8 0 : 8 0 ”

n e t w o r k s :

− app − ne twork

db :

image : mysql : 5 . 7 . 2 2

p o r t s :

− ”3306 :3306”

e n v i r o n m e n t :

MYSQL DATABASE: l a r a v e l

MYSQL ROOT PASSWORD: y o u r m y s q l r o o t p a s s w o r d

n e t w o r k s :

− app − ne twork

n e t w o r k s :

app − ne twork :

d r i v e r : b r i d g e

Figure 3.2: Example of Docker-compose file launching a nginx- and a mysql-container

in an isolated network.

Docker Compose Applications built using the Docker framework often need more

than one container to operate, for example an Apache server and a MySQL server

running in separate containers. We must build and deploy several interconnected con-

tainers simultaneously. Docker provides this functionality via Docker compose, a tool

that allows users to define the services of multiple containers as well as the properties

of virtual networks in a YAML file. By default, this file is named docker-compose.yml.

This allows for numerous containers to be started, stopped and rebuilt with a single

command in a consistent manner. This is particularly significant for our purposes;

with Docker compose, we can launch several containers in a specific order, with a

specific network configuration, whilst running specific commands within each con-

tainer on start up. This ensures that our interactions are deterministic, barring any

added randomisation. Figure 3.2 displays an example of a simple Docker compose

file.
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3.3 Problems in modern datasets

The difficulty of obtaining malicious traffic in real-world captures means that the per-

formance of new network intrusion detection algorithms are almost exclusively eval-

uated on synthetic datasets. Potential disadvantages of synthetic compared to real-

world datasets have been discussed by several authors [14, 65]. However, none address

problems in the particular design of such synthetic testbeds that are holding machine-

learning based methods back in performance and from getting more widespread ap-

plication. Here, we focused on this aspect and four design problems common among

modern synthetic datasets.

Lack of variation To generate benign traffic, a selection of activities is scripted and

executed on virtual machines. Activities are selected to cover the most prominent

protocols, but seldom to cover the range of subactivities that each protocol offers.

Instead, the manner in which each protocol is used is highly-restricted, and there are

doubts about whether this traffic is representative of its real-world equivalent usage

[14]. An illustrative example of the restricted protocol activity in synthetic datasets

can be seen in the CIC-IDS 2017 dataset. Here, the vast majority of successful FTP

transfers consist of a client downloading a single text file containing the Wikipedia

page for ‘Encryption’ several hundred times in a day. In reality, FTP is used for a

large number of tasks, which can occur in random order with varying input sizes and

parameters.

In addition to that, implemented test bed environments are usually separated from

external influence or even virtualised, which isolates them from fluctuations and faults

introduced by the complexity of modern networking. These include packet delays

through network congestions, unexpected connection drops or resets, and out-of-order

arrivals, all of which lead to variations in the response behaviour of particular services.

This general lack of variation in individual protocols leads to observed homogene-

ity both on a packet exchange level and on a network flow level, and thus to clearer

structures in the data. Identifying separations of malicious and benign activity or be-

tween different services consequently becomes easier, which leads to overoptimistic

results in the evaluation of machine-learning based methods. It is therefore clear that

traffic variation is a crucial aspect of a comprehensive intrusion detection dataset. pa-

rameter
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Lack of ground truth To evaluate machine-learning-based methods that distinguish

between different types of network traffic data, we need to verify that separating struc-

tures in the model correspond to distinct computational actions, using traffic labels.

Most obvious is the labelling of benign and malicious traffic. More granular labels

are desirable to distinguish between several different types of network traffic. An ex-

ample for this is the design of ‘stepping stone’ detection methods, where researchers

try to detect connections relayed over a jump-host. Similarity or correlation metrics

that measure the closeness of two connections are a popular tool. To understand such

a measure, ground truth about how computationally similar two connections are and

what type of behaviour they represent is necessary. Other areas that look at small-

scale traffic structures and would benefit from detailed traffic labels include protocol

verification, traffic classification, traffic disaggregation, or exploit discovery.

Ground truth labels for network traffic are hard to obtain. The network traffic

produced by a typical PC will invariably contain traffic originating from background

processes, such as software updates, authentication traffic, network discovery services,

advertising features, as well as many other sources. To separate traffic from different

origins retrospectively is often hard, if not impossible. Source attribution through port

numbers is unreliable because port numbers can be dynamically allocated and are not

restricted to particular processes, and processes can open connections on multiple ports

at the same time. All of these reasons mean that the identification of different compu-

tational operations from captured traffic is often infeasible. Therefore, no public NID

dataset currently considers the inclusion of ground truth traffic labels.

Static design A released dataset can only contain data that is representative a sys-

tem at the time of creation. In contrast to other many other data sources for machine-

learning, network traffic, both benign and malicious, is constantly changing as com-

putational protocols and systems evolve. All available NIDS datasets today have been

created in a static manner , so that a fixed test bed of host machines is created designed

to contain specific vulnerabilities to the selected attacks. This makes it very hard to

change the test bed and thus adjust the dataset to updated traffic structures. Allix et al.

[66] claim that it is impossible to release a NID dataset that is truly representative of

the real-world attacks due to the inherent secrecy of the intrusion ecosystem and the

rate at which it develops.
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Limited size Today’s machine-learning revolution was supercharged by the expo-

nential growth of available data. Larger amounts of data mean that a given model can

identify more complex structures that remain invariant in noisy environments and thus

generalise better. Although the amount of globally transmitted network traffic is grow-

ing every year, the size of available NIDS datasets is limited by small host numbers,

typically 5-10, and short capture periods, at maximum a 5-6 weeks, inherent to test bed

captures. This means that traffic models can experience difficulties to generalise over

specific traffic types which represent a smaller fraction of the total dataset. In an ideal

setting, researchers would have the ability to generate arbitrary amounts of specific

traffic types.

3.3.1 Dataset Requirements

The primary task of this project is to provide a suite of Docker container composi-

tions that is capable of generating traffic datasets suitable for machine-learning-based

intrusion detection systems. This container suite is designed to address the criticism of

current NIDS datasets discussed in Section 3.3. For this, we created a set of require-

ments that a modern intrusion detection dataset has to fulfil to address the problems

discussed in Section 3.3:

Variation To ensure that we produce representative data for modelling, we want the

traffic generated by our container suite to cover a sufficient number of protocols that

are commonly found in real-world traffic and existing datasets. For malicious traffic,

we want to ensure that the attacks are modern and varied, both in purpose and in

network footprint. For each protocol, we want to establish several capture scenarios

to encompass the breadth of that protocol’s possible network traces. Communication

between containers should be subject to the same disturbances and delays as in a real-

world setting.

Ground truth Since ground truth is a main focus of this work, we want a capture

scenarios to be consistent and reproducible in the traffic they generate. This way, we

can be certain that a particular traffic trace corresponds to the capture scenario it was

generated by, and can thus relate individual traffic events to computational operations.

We discuss what it means for a scenario to be reproducible in detail in Section 3.5.1.
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Figure 3.3: Visualisation of the different levels at which traffic variation is introduced in

DetGen.

Modularity Traffic capture scenarios should be implemented in a modular way al-

low for a straightforward addition or modification of traffic capture modules without

disrupting the rest of the container suite. This reduces the effort to adjust a dataset to

changing traffic patterns and allows the addition of modern attacks traffic.

Scalability Each capture scenario should be running in a scalable manner to allow

generation of large data quantities.

3.4 Design

To cover a range of activities, the containers in our framework are arranged in different

configurations corresponding to particular capture scenarios. Running a given capture

scenario triggers the launch of several Docker containers, each with a scripted task

specific to that capture scenario. A simple exemplary capture scenario may consist

of a containerised client pinging a containerised server. We ensure that each Docker

container involved in producing or receiving traffic will be partnered with a tcpdump

container, allowing us to collect the resulting network traffic from each container’s

perspective automatically.

We outline different stages within the creation of a dataset at which traffic variation

is introduced. Figure 3.3 visualises this process.
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3.4.1 Scenarios

We define a scenario as a series of Docker containers interacting with one another

whereby all resulting network traffic is captured from each container’s perspective.

This constructs network datasets with total interaction capture, as described by Shiravi

et al. [67]. Each scenario produces traffic from either a protocol, application or a series

thereof. Both benign and malicious activities are implemented as scenarios. Examples

may include an FTP interaction, a music streaming application and client, an online

login form paired with an SQL database, or a C&C server communicating with an open

backdoor. A full list of currently implemented scenarios can be found in Section 3.4.9.

Each scenario is designed to be easily started via a single script that allows the user

to set the length of the capture time, and the specification of particular subscenarios,

discussed below. Scenarios can be repeated indefinitely without further instructions

and be run in parallel, therefore allowing the generation of large amounts of data.

Our framework is modular, so that individual scenarios are configured, stored, and

launched independently. Adding or reconfiguring a scenario has no effect on the re-

maining framework.

3.4.2 Subscenarios

In contrast to scenarios, subscenarios provide a finer grain of control over the traffic

to be generated, allowing the user to specify the manner in which a scenario should

develop. The aim of having multiple subscenarios for each scenario is to explore the

full breadth of a protocol or application’s possible traffic behaviour. For instance, the

SSH protocol can be used to access the servers console, to retrieve or send files, or for

port forwarding, all of which may or may not be successful. It is therefore appropriate

to script multiple subscenarios that cover this range of tasks.

The same applies to malicious activity. For instance, it would be naive for an

SSH password bruteforcing scenario to always successfully guess a user’s password.

Instead, we include a second subscenario in which the password bruteforcer fails.

Subscenarios are specific to particular scenarios and can be specified when launch-

ing that scenario.
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3.4.3 Randomisation within Subscenarios

Scripting activities that are otherwise conducted by human operators often leads to a

loss of random variation that is normally inherent to the activity. As mentioned in

Section 3.3, the majority of successful FTP transfers in the CIC-IDS 2017 data consist

of a client downloading a single text file. In reality, file sizes, log-in credentials, and

many other variables included in an activity are more or less drawn randomly, which

naturally influences traffic quantities such as packet sizes or numbers.

To account for these fluctuations, we identify variable input parameters within sce-

narios and their subscenarios and systematically draw them randomly from a suitable

distribution. Passwords and usernames, for instance, are generated as a random se-

quence of letters with a length drawn from a Cauchy distribution, before they are

passed to the corresponding container. Files to be transmitted are selected at random

from a larger set of files, covering different sizes and file names.

3.4.4 Network transmission

Docker communication takes place over virtual bridge networks, so the throughput

is far higher and more reliable than in real-world networks, with the Docker virtual

network achieving a bandwidth of over 90 Gbits/s when measured using iPerf [68].

This level of speed and consistency is worrying for our purposes as packet timings

will be largely identical on repeated runs of a scenario and any collected data could be

overly homogeneous.

To retard the quality of the Docker network to realistic levels, we rely on emulation

tools. As discussed in section 3.2.1, NetEm is a Linux command line tool that allows

users to artificially simulate network conditions such as high latency, low bandwidth

or packet corruption in a flexible manner.

Although it is relatively straightforward to apply NetEm commands to a Docker

Bridge network, we decided not to invoke NetEm in this manner as this would cause

all network settings of all containers to be identical, such as all containers in a sce-

nario having a latency of 50ms. Instead, we developed a wrapping script that applies

NetEm commands to the network interface of a given container, providing us with the

flexibility to set each container’s network settings uniquely. This script randomises the

values of each parameter, such as packet drop rate, bandwidth limit, latency, ensuring

that every run of a scenario has some degree of network randomisation if desired.
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3.4.5 Capture

To capture traffic, we use containers running tcpdump, a widespread and free packet

analyser software that can capture packets arriving at or leaving from a network inter-

face [69]. We attach tcpdump containers on every interface in the virtualised docker

network and write packets into separate capture files. This allows us to capture traf-

fic from the perspective of every container in a scenario, giving a complete view. In

Section 3.4.8, we discuss how the collected capture files are coalesced into one dataset.

3.4.6 Implementation Process

The implementation process for each scenario follows broadly the same outline:

1. Select containers which provide the required services and identify the primary

container/s for a given scenario which is/are dictating the container interaction.

Then create and build a Dockerfile containing all necessary dependencies.

2. Identify different ways to use the service of the given scenario and define them

into a set of subscenarios.

3. Design and implement the behaviour for secondary containers to provide the

required service to the primary container(s).

4. For each subscenario, identify variable input values and their appropriate range;

then systematically implement their generation from appropriate distributions

covering this range.

5. Add tcpdump containers to every network interface.

6. Create a Docker compose file that launches all containers simultaneously.

7. Finally, write a script that, upon running, calls this Docker compose file, applies

a network emulation script to each container network interface, and allows the

user to specify how long and how many times a scenario should be run.

Following the Docker guidelines [70], each container in our framework consists

of a single service with a specialised purpose, with as few additional dependencies as

possible. Moreover, we ensure that there are minimal inter-dependencies between the

containers of a scenario. This allows us to easily modify and update containers as new

versions of the underlying software are released.
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Figure 3.4: Diagram of FTP scenario

3.4.7 Simple Example Scenario - FTP server

We review the design of a prototypical capture scenario, namely, an FTP server and

client interaction. The interaction is initiated by a single script, which allows the user

to specify the length of the interaction, the number of times the interaction takes place

as well as the specific subscenario. The script generates a random ftp username and

password, creating the necessary User directory on the host machine before calling

the Docker-compose file which creates a bridge network. Subsequently, the necessary

containers are then started which, in this case, consist of a VSFTPD server, a client with

ftp installed and two containers running tcpdump to capture all of the traffic emitted

and received by the client and server respectively into separate .pcap-files. These

.pcap-files are shared with the host machine via a shared volume. The host machine

also shares:

• A dataToShare volume containing files that can be downloaded by the client.

• The User directory with the server, which contains the same files as the dataToShare

folder.

• An empty receive folder with the client into which the files will be downloaded.

• The random username and password is shared with the client container so it can

authenticate itself to the server.

Up to this point, no network traffic has been generated and the containers are now

ready to begin communicating with one another. For this particular interaction between
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an FTP server and client, we want to ensure that it is possible to capture the many ways

in which an FTP session may develop. For instance, the client may seek to download

files via the get command or the put command, alongside many other possibilities.

We define 13 possible capture subscenarios intended to encapsulate a wide range of

potential FTP sessions. These include downloading a single file using get or put,

downloading every file using mget or mput, deleting every file from the server and

requesting files from the server without the necessary authentication.

After the scenario ends, both the User directory and any downloaded files are re-

moved from the host machine. The containers are then stopped and the bridge network

is torn down. All necessary containers, volumes and scripts are in the same position

prior to initiating the scenario — barring any generated .pcap-files — allowing for the

scenarios to be started repeatedly with minimal human interaction. The .pcap-files are

tagged with information about the time of creation, executed scenario and subscenario,

and the container generating the traffic.

3.4.8 Dataset creation

Our framework generates network datasets consisting of a single interaction, but it

is possible to coalesce these datasets to create larger datasets with a wide variety of

traffic, albeit with some caveats. Due to the networking constraints of the Docker

virtual network, such as limitations regarding clashing ports, running many of our

Docker scenarios simultaneously over a large period of time is infeasible. Thus, to

ensure that the generated traffic is suitably heterogeneous, numerous datasets must be

generated before being coalesced into a main dataset. If done naively, this presents

a problem. As discussed by Shiravi et al. [67], merging distinct network data in

an overlapping manner can introduce inconsistencies. For instance, if one wanted to

create a dataset containing both normal webserver traffic and traffic originating from a

Denial of Service attack, it would not work to generate these two datasets separately

before merging them together. If these two events really did occur simultaneously,

the high network throughput of the latter would likely effect the packet timings of the

former.

To avoid such inconsistencies, we create larger datasets by collecting data in con-

secutive chunks of fixed time. Within each chunk, several scenarios are run simulta-

neously. All .pcap-files collected during a given chunk can be merged together. It

is then simple to stitch together all of these chunks into a single .pcap-file using a
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combination of Mergecap [71] and Editcap [72]. This allows us to shift the timings

of each .pcap-file by a fixed amount such that all of our chunks occur in succession

whilst maintaining the internal consistency of each chunk.

3.4.9 Implemented scenarios

Our framework contains 29 scenarios, each simulating a different benign or malicious

interaction. The protocols underlying benign scenarios were chosen based on their

prevalence in existing network traffic datasets.These datasets consist of common in-

ternet protocols such as HTTP, SSL, DNS, and SSH. According to our evaluation, our

scenarios can generate datasets containing the protocols that make up at least 87.8%

(MAWI), 98.3% (CIC-IDS 2017), 65.6% (UNSW NB15), and 94.5% (ISCX Botnet)

of network flows in the respective dataset. Our evaluation shows that some protocols

that make up a substantial amount of real-world traffic are glaringly omitted by current

synthetic datasets, such as BitTorrent or video streaming protocols, which we decided

to include.

In total, we produced 17 benign scenarios, each related to a specific protocol or

application. Further scenarios can be added in the future, and we do not claim that the

current list exhaustive. Most of these benign scenarios also contain many subscenarios

where applicable.

The remaining 12 scenarios generate traffic caused by malicious behaviour. These

scenarios cover a wide variety of major attack classes including DoS, Botnet, Brute-

forcing, Data Exfiltration, Web Attacks, Remote Code Execution, Stepping Stones,

and Cryptojacking. Scenarios such as stepping stone behaviour or Cryptojacking pre-

viously had no available datasets for study despite need from academic and industrial

researchers.

We provide a complete list of implemented scenarios in Table 3.1.

3.5 Validation experiments

A framework that generates network traffic does not necessarily provide realistic and

useful data. To evaluate the utility of our Docker framework, we construct a series

of experiments. We have two goals in mind. First, we want to demonstrate that the

traffic generated is sufficiently representative of real-world traffic. Second, we want to

demonstrate that having a framework to continually generate data compared to static



3.5. Validation experiments 61

Name Description #Ssc.

Ping Client pinging DNS server 1

Nginx Client accessing Nginx server 2

Apache Client accessing Apache server 2

SSH Client communicating with SSHD server 5

VSFTPD Client communicating with VSFTPD server 12

Scrapy Client scraping website 1

Wordpress Client accessing Wordpress site 1

Syncthing Clients synchronise files via Syncthing 1

Mailx Mailx instance sending emails over SMTP 2

IRC Clients communicate via IRCd 2

BitTorrent Download and seed torrents 3

SQL Apache with MySQL 2

NTP NTP client 2

Mopidy Music Streaming 5

RTMP Video Streaming Server 1

WAN Wget Download websites 5

SSH B.force Bruteforcing a password over SSH 3

URL Fuzz Bruteforcing URL 1

Basic B.force Bruteforcing Basic Authentication 2

Goldeneye DoS attack on Web Server 1

Slowhttptest DoS attack on Web Server 4

Mirai Mirai botnet DDoS 3

Heartbleed Heartbleed exploit 1

Ares Backdoored Server 3

Cryptojacking Cryptomining malware 1

XXE External XML Entity 3

SQLi SQL injection attack 2

Stepstone Relayed traffic using SSH-tunnels 2

Table 3.1: Currently implemented traffic scenarios along with the number of imple-

mented subscenarios

datasets benefits evaluating the efficacy of intrusion detection systems.

The first experiment provides a general verification of the reproducibility of our

framework, which is required for guarantee the ground truth of the produced data.

The second experiment demonstrates that the WAN-characteristics we emulate for our
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data make it quasi non-distinguishable from real WAN traffic. Our third experiment

then demonstrates the advantage of unlimited data generation capabilities for training

ML-based traffic classification.

3.5.1 Reproducible scenarios

To provide ground truth, we have to guarantee that our implemented scenarios and

subscenarios are consistent and reproducible upon repeated execution. This applies

both to consistency for external influences on the host, such as increased computational

load, as well as internal consistency of the implemented script execution.

It is impossible to guarantee that each scenario will produce a truly ‘deterministic’,

or repeatable, output due to differences in network conditions, computational times, or

input. Instead, we aim for our data to be reproducible up to networking and computa-

tional differences. This means that when running a scenario multiple times, we expect

the quantities of most packets to be largely identical. We do expect some packets to

exhibit greater variation due to non-determinism in the underlying protocols, Fig. 3.5

outlines this behaviour in terms of interarrival times and packet sizes.

To measure how consistent our scenarios are, we generate 500 .pcap files for three

different implemented scenarios, namely the Apache, the VSFTPD, and the SSH sce-

nario. These were generated consecutively under different host CPU load. We did not

apply any delays or other NetEm traffic controls.

We assess the consistency of a scenario across different .pcap files by comparing

all generated .pcap files pairwise. We measure this by the similarity of the connections

captured.

To test the similarity of two connections, we extract the sample distributions of

the packet interarrival times and packet sizes overall, upstream and downstream. We

define two connections as similar if the two distributions for each of these quanti-

ties pass an equality test. We use the two-sample Kolmogorov-Smirnov (K-S) test,

a non-parametric statistical test for the equality of two continuous one-dimensional

distributions [73], with a p-value of 0.01.

As all tested files passed this similarity test, we conclude that these scenarios yield

consistent and reproducible results. As other scenarios follow the same setup and

launch commands, we expect the results to stay the same as long as the involved con-

tainers are consistent in their behaviour.
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Figure 3.5: Means of IATs & packet sizes along with standard deviation bars for the first

twelve packets in the Apache scenario.

3.5.2 Exploring Artificial Delays

Most traffic our framework generates is transported over Docker’s virtual network and

therefore does not succumb to problems associated with normal network congestion,

such as packet loss, corruption and packets arriving out of order. A realistic dataset

should include these phenomena, which is why we developed wrapping scripts that

allow us to artificially add delays as well as packet loss and corruption, using NetEm.

Choosing the parameters is not straightforward; it is not clear how close to real-world

traffic such network emulation techniques are. This is especially true for packet delays,

which are described by continuous distributions and often have temporal correlation.

Furthermore, the high effective bandwidth of the Docker virtual network resulted

in traffic with extremely short inter-arrival times (IATs, defined as the time between

two packet arrivals). Therefore, we devote considerable time to demonstrating that it

is possible for traffic generated by our Docker framework to conform to real-world IAT
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distributions when altered using NetEm.

3.5.2.1 Datasets

We create two classes of datasets, one which is representative of ‘real-world’ traffic,

and one which has been generated from our Docker framework. For simplicity, we

only consider datasets consisting of FTP traffic.

For the real-world dataset, we set up a containerised VSFTPD server running on a

Google Compute virtual machine located in the Eastern United States, and a container-

ised FTP client on our local host. We then ran a series of our scripted interactions be-

tween the two machines, generating 834 megabytes of data in 250964 packets. These

interactions consisted of several FTP commands with various network footprints. We

collect all data transmitted on both the server and the client. We call this data the

Non-Local dataset.

We then repeat this process using the same container setup, but across the Docker

virtual network on a local machine. We repeat this process several times, generat-

ing several Local datasets under a variety of emulated network conditions, discussed

in Section 3.5.2.2. Our Local datasets vary slightly in size, but are all roughly 800

megabytes with 245000 packets.

3.5.2.2 Methodology

NetEm allows us to introduce packet delays according to a variety of distributions,

namely uniform, normal, Pareto and Paretonormal1. Furthermore, NetEm adds delays

according to modifiable distribution tables, and so it is trivial for us to add a Weibull

distribution, which along with Pareto distributions have been shown to closely model

packet IATs [74, 75]. In total, we test the efficacy of four distributions to model inter-

arrival times — normal, Pareto, Paretonormal and Weibull.

We generate several Local datasets by delaying traffic according these distributions,

performing an exhaustive grid search over their means and standard deviations. Initial

experiments revealed that introducing delays with a mean in the range of 40 ms to 70

ms produced the best results. Setting the jitter of the distribution too high resulted in

the repeated arrival of packets out of order, therefore we further limit the grid search to

1This Paretonormal distribution is defined by the random variable Z = 0.25∗X +0.75∗Y , where X
is a random variable drawn from a normal distribution and Y is a random variable drawn from a Pareto
distribution.
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Figure 3.6: Results of Random Forest Classifier for a given distribution at the best

performing delay mean µ. Note that a score of .5 indicates total indistinguishability.

jitter values in 5 ms intervals up to half of the value of the mean. In total, we generate

88 Local datasets.

Our goal is to discover the Local dataset whose packet timings most closely re-

semble those of our Non-Local dataset. To do this, we extract the IATs and packet

sizes from our datasets on a packet-by-packet basis and store these results in arrays.

We measure the similarity between two of these arrays by training a Random Forest

classifier to distinguish between them. We say that if the Random Forest correctly clas-

sifies each packet with a success rate of only 50% then it is no better than randomly

guessing and, as such, the inter-arrival times of these two arrays are indistinguishable

from one another for the Random Forest.

To perform this measurement, we concatenate one Local dataset array with our

Non-Local dataset array, label the entries and then shuffle the rows. We proportion this

data into a training set and a testing set using an 80-20 split. We then feed this training

data into a Random Forest with 1000 trees and fixed seed, and then record the accuracy

of this Random Forest on the test set. We repeat this process for every single Local

dataset.
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3.5.2.3 Results

Table 3.2 summarises the values of the mean and jitter for a given distribution that

produced the worst results from the random forest classifier.

DISTRIBUTION MEAN JITTER RF ACCURACY

NO DELAYS (BASELINE) 0 0MS 0.8176

CONSTANT DELAY 40MS 0MS 0.6730

NORMAL 60MS 5MS 0.6028

PARETO 60MS 10MS 0.5979

PARETONORMAL 50MS 10MS 0.6015

WEIBULL 60MS 10MS 0.5540

Table 3.2: Worst Random Forest accuracy rates for a given distribution

To establish a baseline, we compare the traffic generated from our Docker scenario

to that of the Google Compute data with no added delays. In this case, the Random

Forest was able to distinguish between the two datasets, achieving an accuracy of over

90%. The classification accuracy is worsened considerably by introducing network

delays, with the best results being achieved using a Weibull distribution with a mean

of 60 ms and a jitter of 10 ms, leading to an accuracy of just 55%. Results for Pareto

and Weibull distributions seem to yield consistent results for differing jitter values. Al-

though not completely indistinguishable, this proves that using NetEm we can emulate

WAN properties very closely.

3.5.3 Advantages of Dynamic Dataset Generation

Having examined whether our Docker framework is capable of emulating real-world

IATs, we explore their utility in traffic classification to demonstrate the advantages that

our framework provides compared to static, unlabelled datasets.

Machine-learning techniques are a popular tool for traffic classification, with many

successful published classifiers. Furthermore, inter-packet arrival times have been

shown to be a discriminative feature [76, 77]. However, these methods considered

datasets consisting of completed traffic flows, limiting their use in, say, a stateful packet

inspector. On-the-fly classifiers are also successful. Jaber et al. [78] showed that a K-

means classifier can classify flows in real-time solely based on IATs with precision

exceeding 90% for most protocols within 18 packets. Similarly, Bernaille et al. [79]



3.5. Validation experiments 67

demonstrated that a K-means classifier can precisely classify traffic within five packets

using only packet size as a feature.

However, Jaber et al. [78] only evaluated their traffic classifier with training and

testing data drawn from the same dataset containing traces of a single network; there

is no measure of how this model may generalise to other networks with differing con-

ditions. Furthermore, they were limited to using unsupervised machine learning algo-

rithms to classify their traffic as their datasets had no ground truth.

We attempt to replicate these results within our Docker framework with some ad-

justments. As we can generate a fully accurate ground truth, we attempt to segregate

application flows based on their packet IATs using supervised learning techniques.

Moreover, we then measure this model’s ability to generalise by expanding our dataset

to include traffic from networks with differing bandwidth and latency.

3.5.3.1 Data & Preprocessing

Our goal is to measure a classifier’s ability to generalise across datasets. Therefore we

construct two datasets using our Docker framework, both containing the same number

of network traces from the same containers.

For our first dataset, we generate .pcap-files, each containing traffic from one

of 16 different classes: HTTP (Client & Server), HTTPS (Client & Server), RTMP

(Client, Server & Viewer), SSH (Client & Server), FTP (Client & Server), IRC (Client

& Server), SMTP, SQLi and DoS traffic. To prevent class imbalance, we generate 200

.pcap-files for each of the 16 classes, resulting in 3200 total files. To more accurately

emulate potential network conditions, we use our NetEm scripts to apply a unique de-

lay to every container involved in a scenario. These delays follow a Pareto distribution

with random mean between 0 and 100 milliseconds and random jitter between 0 and 10

milliseconds. We then preprocess this data by removing all but the first 12 packets of

each .pcap-file. We extract the 11 inter-arrival times separating the 12 packets, which

act as our feature vectors. We collect these feature vectors for each class along with a

class label, and store collected feature vectors from all 3200 .pcap-files in a 12 x 3200

array. We call this our Primary dataset.

We then repeat this process to generate a second dataset, changing the properties of

our emulated network. Again, we delay all traffic using a Pareto distribution, however,

this time we select a random mean in the range of 100 to 500 milliseconds and ran-

dom jitter between 0 and 50 milliseconds. The subsequent preprocessing of our data

remains unchanged. We call this our Secondary dataset.
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3.5.3.2 Methodology

First, we attempt to reproduce the results presented by Jaber et al. [78] by training

a Random Forest with 100 trees to classify application flows based on packet IATs.

We do this by proportioning our Primary dataset into training and testing sets using an

80-20 split. We then train and test our Random Forest repeatedly, first considering the

classification accuracy based on the IATs of only the first two packets, then the first

three packets and so on, up to 12 packets. We record the resulting confusion matrix for

each round and calculate the precision and recall rates of our classifier.

Having trained the classifier, we measure its ability to generalise by repeating the

above experiment, but replacing the test set with the Secondary dataset.

3.5.3.3 Results

After each run of our Random Forest on our Primary dataset, we gather the True Pos-

itive (TP), False Positive (FP) and False Negative (FN) rate for each class. We then

calculate their precision, defined as TP
TP+FP

, and recall, defined as TP
TP+FN

, values. in Fig.

3.7, we see that our average precision and recall across the classes exceeds 0.9 after 10

IATs. Furthermore, after 12 packets our DoS and SQLi data is classified with precision

and recall rates of 1.0 and 1.0 and 0.9462 and 0.9322 respectively.

These results does not hold when we test the classifier on our Secondary dataset.

As seen in Fig. 3.7, we see a substantial decrease in our average precision and recall

rates, achieving a maximum of 0.5923 and 0.5676 respectively. Moreover, after four

packets, increasing the number of IATs in our dataset provides little additional benefit.

Although some services generalised well, such as IRC-client and IRC-server, others

failed to be classified, with every single SMTP feature being classified as HTTP-client.

We also see a substantial drop-off in the classification of malicious traffic, with the

precision rates of DoS and SQLi data not exceeding 0.6.

These diverging results demonstrate the necessity of dynamic dataset generation

for evaluation purposes. Researchers evaluating their methods only on a dataset with

fixed properties such as the Primary dataset might receive overoptimistic results. The

capability of generating two or more datasets with the same traffic classes, but other-

wise differing properties, provides a more realistic evaluation.
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Figure 3.7: Results of Random Forest Classification on Primary dataset (Above) and

Secondary dataset (Below)

3.6 Conclusions

In this chapter, we outlined four requirements a modern dataset has to fulfil to strengthen

the training of intrusion detection systems. We then proposed a Docker framework ca-

pable of generating network intrusion datasets that satisfy these conditions. The major

design advantage of this framework are the isolation of traffic scenarios into sepa-

rate container arrangements, which allows the extension of new scenarios and detailed

implementation of subscenarios as well as the capture of ground truth of the com-

putational origins of individual traffic events. Furthermore, containerisation enables

the generation of traffic data at scale due to containers being light-weight and easily

clonable.

We verified the realism of the generated traffic and the corresponding ground truth
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information with two experiments, and demonstrated the usefulness of the framework

in another experiment. Presently, our framework consists of 29 scenarios capable of

producing benign and malicious network traffic. Several of these scenarios, such as

the BitTorrent or the Stepping-Stone scenario, provide novel traffic data of protocols or

behaviours that has not been widely available to researchers previously.

3.6.1 Difficulties and limitations

Our framework is building network traffic datasets from a small-scale level up by coa-

lescing traffic from different fine-grained scenarios together. While this provides great

insight into small-scale traffic structures, our framework will not replicate realistic

network-wide temporal structures, such as port usage distributions or long-term tem-

poral activity. These quantities would have to be statistically estimated from other

real-world traffic beforehand to allow our framework to emulate such behaviour reli-

ably. Other datasets such as UGR-16 use this approach to fuse real-world and synthetic

traffic and are currently better suited to build models of large-scale traffic structures.

Working with Docker containers can sometimes complicate the implementation of

individual scenarios compared to working with VMs. Although several applications

are officially maintained Docker containers that are free from major errors, many do

not. For instance, in the BitTorrent scenario, most common command line tools, such

as mktorrent, ctorrent and buildtorrent, failed to actually produce functioning

torrent files from within a container due to Docker’s union filesystem. Furthermore,

due to the unique way in which we are using these software packages, unusual config-

uration settings are sometimes needed.

Lastly, capturing .pcap-files from each container can quickly exceed available disc

space when generating traffic at scale. Depending on specific research requirements, it

is advisable to add filtering or feature extraction commands to the scenario execution

scripts to enable traffic preprocessing in real-time.

3.6.2 Future work

Although ground truth for particular traffic traces is provided by capturing .pcap-files

for each container individually, we have not implemented a labelling mechanism yet

for the dataset coalescence process. Though not technically difficult, some thought will

have to be put how such labels would look like to satisfy different research demands.

Furthermore, the Docker platform provides the functionality to collect system logs via
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the syslog logging driver. We plan on implementing their collection in the future,

where they could act either as traffic labels providing more ground truth details, or act

as a separate data source that complements the collected traffic.

We paid meticulous attention to enable control over as many traffic impact factors

as possible. However, DetGen is currently only offering insufficient control over un-

derlying application-layer implementations such as TLS 1.3 vs 1.2. In theory, it should

be unproblematic to provide containers with different implementations, and we are

currently investigating how to compile containers in a suitable manner.

While the functionality of DetGen has been verified to some degree in Chapter 4,

there are still aspects that need to be properly verified.





Chapter 4

Traffic generation to probe and

understand model behaviour

4.1 Introduction

Scientific machine learning model development requires both model evaluation, in

which the overall predictive quality of a model is assessed to identify the best model, as

well as model validation, in which the behaviour and limitations of a model is assessed

through targeted model probing, as depicted in Fig. 4.1. Model validation is essential

to understand how particular data structures are processed, and enables researchers

to develop their models accordingly. Data generation tools for rapid model probing

such as the What-If tool [80] underline the importance of model validation, but are

not suitable for providing probing data that resembles the complex structures found in

network packet streams.

Machine-learning breakthroughs in many fields have been reliant on a precise un-

derstanding of data structure and corresponding descriptive labelling to develop more

suitable models. In automatic speech recognition (ASR), tone and emotions can al-

ter the meaning of a sentence significantly. The huge automatically gathered speech

datasets however only contain speech snippets and if possible their plain transcripts.

While modern speech models are in principle able to learn implicit structures such as

emotions without explicit labels, it is impossible to determine the cause for systematic

error when they are not. Datasets that contain labelled specialised speech character-

istics such as the Ryerson Database of Emotional Speech and Song (RAVDESS) [81]

not only allow researchers to identify if their model is susceptible to structural mis-

classification through targeted probing, but also inspire new methods to capture and

73



74 Chapter 4. Traffic generation to probe and understand model behaviour

Figure 4.1: Model evaluation and model probing with controlled data characteristics.

understand these implicit structures [82], which in turn leads to design improvements

of general speech recognition models [83].

In contrast to ASR, no effort has been made so far to monitor or control the effect

of similar factors on network traffic to probe these models for specific microstructures.

The current quasi-benchmark NID-datasets such as CICIDS-17, UGR-16 or UNSW-

15 pay more attention to the inclusion of specific attacks, protocols, and topologies

rather than the documentation of the generated traffic. This situation has so far led

researchers to often simply evaluate a variety of ML-models on these datasets in the

hope of edging out competitors, without understanding model flaws and corresponding

data structures through targeted probing.

In this chapter, we demonstrate how to produce traffic effectively to probe a state-

of-the-art traffic classifier, and why a certain degree of generative determinism is re-

quired for this to isolate the influence of traffic microstructures. The model insights

and corresponding performance improvements achieved through probing motivate our

experimental examination of various influence factors over microstructures and how to

control them during traffic generation.

Thesis context: This chapter builds up on Chapter 3 by extending the examination

of DetGen. Here, we examine DetGen’s near-deterministic control over microstructure-

shaping factors such as conducted activity, communication failures or network conges-

tion to generate reproducible traffic samples along with corresponding ground-truth

labels.

The majority of work in this chapter was published in “Examining traffic mi-

crostructures to improve model development” (Henry Clausen and David Aspinall,

2021 [2]) and “Controlling network traffic microstructures for machine-learning model
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probing” (Henry Clausen, David Aspinall, and Robert Flood, 2021 [3]).

This chapter discusses the following results:

1. We demonstrate why model probing with controllable traffic microstructure is a

crucial step to understand and ultimately improve model behaviour by probing a

state-of-the-art LSTM traffic classifier and lowering its false positives five-fold.

2. We examine experimentally how different factors affect traffic microstructures,

and how well they can be controlled in a more effective manner when compared

to common VM-based traffic generation setups.

3. We examine how DetGen provides accurate control and labels over traffic mi-

crostructures, and experimentally demonstrate the level of provided generative

determinism to traditional generation set-ups.

4. We discuss requirements for traffic data suitable to probe models pre-trained on a

given NIDS-dataset, and demonstrate how to generate probing traffic effectively

through DetGen-IDS, a dedicated probing dataset.

4.1.1 Existing datasets and ground-truth information

Real-world NID-datasets such as those from the Los Alamos National Laboratory [39]

(LANL) or the University of Grenada [41] provide large amounts of data from a par-

ticular network in the form of flow records. Due to the lack of monitoring and traffic

anonymisation, it is impossible for researchers to extract detailed information about

the specific computational activity associated with a particular traffic sample. Syn-

thetic NID-datasets such as the CICIDS-17 and 18 [84] or the UNSW-NB-15 [85] aim

to provide traffic from a wide range of attacks as well as an enterprise-like topology in

the form of pcap-files and flow-statistics.While some effort is put in the generation of

benign activities using activity scripting or traffic generators, we have seen no atten-

tion being spent at monitoring these activities accordingly, which leaves researchers

with the limited information available through packet inspection. Furthermore, syn-

thetic datasets can be criticised for their limited activity range, such as the CICIDS-17

dataset where more than 99% of FTP-transfers consist downloading the Wikipedia

page for ‘Encryption’ [86], which leads to insufficient structural nuances to for effec-

tive training or probing.
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4.1.2 Outline

The remainder of the chapter is organised as follows. Section 4.2 and 4.3 motivate the

need for probing data with sufficient microstructure control by examining the probing

and corresponding improvement of two state-of-the-art intrusion detection models as a

motivating example. Section 4.4 proceeds to examine over which traffic characteristics

DetGen exerts control and the corresponding control level. Section 4.5 provides details

over the design paradigm of DetGen and the resulting advantages over traditional se-

tups, while Section 4.6 discusses the level of control DetGen provides when compared

to traditional setups. Section 4.7 discusses how to generate probing data appropriately

for pretrained models, and provides an overview over the DetGen-IDS data. Section

4.8 concludes our work.

4.2 Methodology and example

Assume the following problem: You are designing a packet-level traffic classifier

which is generating a significant number of false positives, something that is still

a common problem for the state-of-the-art [13]. The false positives turn out to be

caused by a particular characteristic such as unsuccessful logins or frequent connection

restarts. However, existing real-world or synthetic datasets do not contain the neces-

sary information to associate traffic events with these characteristics, which prevents

you from identifying the misclassification cause effectively. To address this problem,

we need a way to controllably generate and label traffic microstructures caused by

these characteristics.

To provide an example, we look at a Long-Short-Term Memory (LSTM) network,

a deep learning design for sequential data, by Hwang et al. [87], which is designed

to classify attacks in web traffic and has achieved some of the highest detection rates

of packet-based classifiers in a recent survey [88]. Through probing we will learn that

retransmissions in a packet sequence dramatically deplete the model’s classification

accuracy. We take the following steps:

Step 1: Determine model performance and feed it suitable probing traffic.

Step 2: Examine the correlation between traffic misclassification scores and the

generated traffic microstructure labels to find a likely cause.

Step 3: Examine at which latency levels specific connections are misclassified.
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Figure 4.2: Scores for the LSTM-traffic model before and after the model correction.

Step 4: Generate two similar connections, with one exposed to strong packet

latency.

Step 5: Show that by removing retransmission sequences in the pre-processing,

misclassification is significantly reduced.

Step 1: To detect SQL injections, we train the model on the CICIDS-17 dataset

[84] (85% of connections). For the evaluation, we also include a set of HTTP-activities

generated by DetGen (7.5%) that mirror the characteristics in the training data, as ex-

plained in Section 4.7. In total, we use 30,000 connections for training and for evaluat-

ing the model, or slightly under 2 million packets. The initially trained model performs

relatively well, with an Area under curve (AUC)-score of 0.981, or a detection/false

positive rate1 of 96% and 2.7%. However, to enable operational deployment the false

positive rate would need to be several magnitudes lower [89].

Step 2: Now suppose we want to improve these rates to both detect more SQL-

injections and retain a lower false positive rate. To start, we explore which type of

connections are misclassified most often. We retrieve the classification scores for all

connections and measure their linear correlation to the microstructure labels avail-

able for the probing data. The highest misclassification ratio was measured for one

of the three SQL injection scenarios (19% correlation) and connections with multi-

ple GET-requests (11% correlation). When not distinguishing activities, we measured

a high misclassification correlation with simulated packet latency (12%), which we

now examine. More details on this exact procedure can be found in (citation currently

blinded).
1tuned for the geometric mean
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Figure 4.3: LSTM-output activation in dependence of connection phases.

Step 3: Fig. 4.2 depicts classification scores of connections in the probing data in

dependence of the emulated network latency. The left panel depicts the scores for the

initially trained model, while the right panel depicts scores after the model correction

that we introduce further down. The left panel shows that classification scores are

well separated for lower congestion, but increased latency in a connection leads to

a narrowing of the classification scores, especially for SQL-injection traffic. Since

there are no classification scores that reach far in the opposing area, we conclude that

congestion simply makes the model lose predictive certainty. Increased latency can

both increase variation in observed packet interarrival times (IATs), and lead to packet

out-of-order arrivals and corresponding retransmission attempts. Both of these factors

can decrease the overall sequential coherence for the model, i.e. that the LSTM-model

loses context too quickly either due to increased IAT variation or during retransmission

sequences.

Step 4: We use DetGen to generate two similar connections, where one connec-

tion is subject to moderate packet latency and corresponding reordering while the other

is not. DetGen’s ability to shape traffic in a controlled and deterministic manner al-

lows us to examine the effect of retransmission sequences on the model output and

isolate it from other potential influence factors. Fig. 4.3 depicts the evolution of the
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LSTM-output layer activation in dependence of difference connection phases for the

connection subject to retransmissions. Depicted are packet segment streams and their

respective sizes in the forward and backward direction, with different phases in the

connection coloured and labelled. Below is the LSTM-output activation while pro-

cessing the packet streams. The red line shows the output for the connection without

retransmissions2 as a comparison. Initially the model begins to view the connection

as benign when processing regular traffic, until the SQL-injection is performed. The

model then quickly adjusts and provides a malicious classification after processing the

injection phase and the subsequent data transfer, just as it is supposed to.

The correct output activation is however quickly depleted once the model processes

a retransmission phase and is afterwards not able to relate the still ongoing data transfer

to the injection phase and return to the correct output activation. When we compare

this to the connection without retransmissions, depicted as the red line in Fig. 4.3, we

do not encounter this depletion effect. Instead, the negative activation persists after the

injection phase.

Step 5: Based on this analysis, we try to correct the existing model with a simple

fix by excluding retransmission sequences at the pre-processing stage. This leads to

significantly better classification results during network latency, as visible in the right

panel of Fig. 4.2. SQL-injection scores are now far-less affected by congestion while

scores for benign traffic are also less affected, albeit to a smaller degree. The overall

AUC-score for the model improves to 0.997 while tuned detection rates improved to

99.1% and false positives to 0.345%, a five-fold improvement from the previous false

positive rate of 2.7%.

4.3 Refining the notion of benign traffic for anomaly de-

tection

Next, we show how ground-truth traffic information can help produce more coher-

ent clusters and thus refine the benign traffic model in anomaly-detection. In par-

ticular, we will examine a simplified version of Kitsune [15], a recent deep learning

anomaly-detection model based on stacked autoencoders. Kitsune’s AUC-scores sur-

passed those of other state-of-the-art methods for a variety of attacks, including various

types of Botnet traffic and man-in-the-middle attacks.

2scaled temporally to the same connection phases
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The model takes connection packet streams as input, which are pushed through

an artificial information bottleneck before reconstruction, which forces the model to

learn and compress reoccurring traffic structures. The compressed connection repre-

sentation is essentially a positional projection into a lower-dimensional vector space,

where spatial boundaries around benign traffic can be drawn. For demonstration pur-

poses, we use a widely-used clustering approach for anomaly-detection rather than

Kitsune’s more complex ensemble method. Here, anomalous outliers are detected us-

ing the Mahalanobis-distance of a projected connection from identified cluster centres.

Benign traffic should ideally be distributed evenly around the cluster centres to allow

a tight borders and good separation from actual abnormal behaviour.

Unstructured datasets such as the CAIDA traffic traces assumably contain too much

abnormal behaviour to train an anomaly-detection model, which is why we train the

model on benign traffic from the CICIDS-17 [84] intrusion detection dataset (80%).

Again, we add 20% probing traffic consists of HTTP, FTP, SSH, and SMTP commu-

nication, using a wide spectrum of settings for examination purposes. Attack data for

the evaluation was again provided through the CICIDS-17 dataset, and includes access

attacks such as SQL-injections or Brute-Forcing, as well as Mirai botnet traffic. We

train the model with in total 150,000 connections.

4.3.1 Projection coherency evaluation

Like many approaches that generate representations of benign traffic for anomaly de-

tection, Kitsune projects traffic events into a vector-space where traffic clusters and

similarities become more apparent. In order for the projection to accurately capture

important traffic structures, this projection should be consistent, i.e. traffic events with

similar origins and characteristics should be projected to similar positions rather than

be dispersed throughout the vector space [90].

To verify the models projection consistency, we generate traffic from near-identical

conditions to provide certainty on the expected traffic similarities. We generate a small

dataset that consists of HTTP-requests, file-synchronisation, and Botnet communica-

tion. For each of the three traffic types we fix four settings that vary in the performed

activity and network latency, with the traffic shaping described in Section 4.4 being

held constant within each setting except for small variations in the transmitted mes-

sage or file. Table 4.1 summarises the traffic for each setting.

We verify if traffic samples within each group are projected to similar areas by
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Label HTTP File-Sync Mirai-C&C

1 Get-req. NGINX,

low lat.

Two hosts, low lat. Command 1, low

lat.

Results: 0.14 , 0.45 0.19 , 0.27 0.03 , 0.06

2 Multi-req. NGINX,

low lat.

Four hosts, low lat. Command 2, low

lat.

Results: 0.32 , 0.45 0.15 , 0.33 0.03 , 0.04

3 Post-req. Apache,

high lat.

Two hosts, high lat. Command 3, high

lat.

Results: 0.17 , 0.28 0.16 , 0.28 0.02 , 0.04

4 Multi-req. Apache,

high lat.

Four hosts, high lat. Command 4, high

lat.

Results: 0.53 , 2.51 0.71 , 1.31 0.03 , 0.05

Table 4.1: Outline of the traffic settings for examining projection consistency. The num-

bers below each setting describe the measured Mahalanobis-distances (blue:average,

red:maximal) for the corresponding projections.

measuring the average and maximum Mahalanobis-distance to quantify the overall dis-

persion of the samples. The results are displayed in Table 4.1 and depicted in Fig. 4.4.

The first thing to notice is that the model projects samples from each group within the

same cluster, thus confirming the capture of a coarse traffic structure. When looking at

the traffic dispersion and the corresponding Mahalanobis-distance measurements, we

notice that the multi-request HTTP traffic as well as the file-synchronisation between

multiple computers is much further dispersed than in the other settings, especially

when exposed to more latency. We also find that the corresponding dimension, x3,

with the most projected dispersion seems to be the same for each of the four settings.

This suggests that the cause for the dispersion is the same for the different traffic types.

We now focus on the influence of input features on the projected positions exclu-

sively in the x3-direction. Here, we can again perform a simple correlation analysis

between different the input feature values and the corresponding x3-value. We observe

that the arrival time of packet bears the most correlation (5.4%) for the selected set-

tings. We also see that this influence is concentrated primarily on connections that are

opened shortly after a previous connection, with the temporal separation between these
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Figure 4.4: Dispersion of projected traffic samples from each setting, plotted along the

two most dispersed axes.

two connections apparently being the primary cause for the spread on the x3-axis. The

connection interarrival times are naturally an important feature for Kitsune to detect

attacks such as Man-in-the-Middle, which could explain the weight this feature plays

in the projection process.

4.3.2 Investigating individual cluster incoherences

When examining false-positive and corresponding anomaly scores, we noticed that the

model often classifies Brute-Force Web attacks as benign and some HTTP-traffic as

anomalous. When examining the projected location of the corresponding connections,

we see that most of this HTTP-traffic as well as the Brute-Force attack traffic lie near

a particular cluster, depicted in Fig. 4.5. A significant portion of traffic in that cluster

seems to be spread significantly more across the cluster axis than the rest of the traffic

in that cluster, leading to an inflated radius that partially encompasses Brute-Force

traffic.

When cross-examining the traffic in this cluster with the probing data, we see that
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Figure 4.5: Scores for the LSTM-traffic classification model in dependence of simulated

network congestion, along with the classification threshold

HTTP-traffic with the label ”Sudden termination” are distributed across the cluster axis

in a similar fashion, also depicted in Fig. 4.5, suggesting the conclusion that this type

of traffic causes the inflated cluster radius. DetGen generates traffic with the label

”Sudden termination” as half-open connections which were dropped by the server due

to network failure. One defining characteristic of such connections are that they are not

closed with a termination handshake using FIN-flags. To better capture this defining

characteristics in the modelling process, we included an additional feature attached

to the end of a packet sequence that indicates a proper termination with FIN-flags in

the modelling process. The newly trained model now projects ”Sudden termination”

connections into a different cluster, which leads to a far better cluster coherence. The

detection rate on Brute-Force attack traffic could thus be improved from 89.7% to

94.1%.
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4.4 Traffic microstructures and their influence factors

The biggest and most obvious influence on traffic microstructures is the choice of the

application layer protocols. For this reason, the range of protocols is often used as

a measure for the diversity of a dataset. However, while the attention to microstruc-

tures in current NID-datasets stops here, computer communication involves a myriad

of other different computational aspects that shape observable traffic microstructures.

Here, we highlight and quantify the most dominant ones, which will act as a justifica-

tion for the design choices we outline in Section 4.5.1. We look at both findings from

previous work as well as our own experimental results.

1. Performed task and application. The conducted computational task as well as

the corresponding application ultimately drives the communication between comput-

ers, and thus hugely influences characteristics such as the direction of data transfer,

the duration and packet rate, as well as the number of connections established. These

features are correspondingly used extensively in application fingerprinting, such as by

Yen et al. [91] or Stober et al. [92].

2. Application layer implementations. Different implementations for TLS, HTTP,

etc. can yield different computational performance and can perform handshakes differ-

ently and differ in multiplexing channel prioritisation, which can significantly impact

IAT times and the overall duration of the transfer, as shown in a study by Marx et al.

[93] for the QUIC/HTTP3 protocol3.

3. LAN and WAN congestion. Low available bandwidth, long RTTs, or packet loss

can have a significant effect on TCP congestion control mechanisms that influence

frame-sizes, IATs, window sizes, and the overall temporal characteristic of the se-

quence, which in turn can influence detection performance significantly as shown in

Section 4.2.

4. Host level load. In a similar manner, other applications exhibiting significant

computational load (CPU, memory, I/O) on the host machine can affect the processing

speed of incoming and outgoing traffic, which can again alter IATs and the overall

duration of a connection. An example of this is visible in Fig. 4.6, where a FTP-client

sends significantly fewer PUSH-packets when under heavy computational load. Colours
3Fig. 2 in [93] illustrates these differences in a nice way
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Figure 4.6: Packet-sequence similarity comparison under different load.

indicate packet flags while the height of the packets indicates their size. This effect is

dependent on the application layer protocol, where at a load number of 3.5 we see

about 60% less upstream data-packets while the downstream is only reduced by 10%,

compared to HTTP where both downstream and upstream packet rates are throttled by

about 40%.

5. Caching/Repetition effects. Tools like cookies, website caching, DNS caching,

known hosts in SSH, etc. remove one or more information retrieval requests from the

communication, which can lead to altered packet sequences and less connections being

established. For caching, this can result in less than 10% of packets being transferred,

as shown by Fricker et al. [94].

6. User and background activities. The choice and usage frequency of an appli-

cation and task by a user, sometimes called Pattern-of-Life, governs the larger-scale

temporal characteristic of a traffic capture, but also influences the rate and type of con-

nections observed in a particular time-window [95]. The mixing of different activities

in a particular time-window can severely impact detection results of recent sequential

connection-models, such as by Radford et al. [96] or by Clausen et al. [4]. To quantify

this effect, we look at FTP-traffic in the CICIDS-17 dataset. As explained in Section

4.1.1, the FTP-traffic overwhelmingly corresponds to the exact same isolated task, and

should therefore spawn the same number of connections in a particular time window.

However, we observe additional connections from other activities within a 5-second
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window for 68% of all FTP-connections, such as depicted in Table 4.2, which contains

FTP-, HTTPS- and DNS-, as well as additional unknown activity.

Time Source-IP Destination-IP Dest. Port

13:45:56.8 192.168.10.9 192.168.10.50 21

13:45:56.9 192.168.10.9 192.168.10.50 10602

13:45:57.5 192.168.10.9 69.168.97.166 443

13:45:59.1 192.168.10.9 192.168.10.3 53

13:46:00.1 192.168.10.9 205.174.165.73 8080

Table 4.2: 5-second window for host 192.168.10.9 in the CICIDS-17 dataset.

Other prominent factors that we found had less effect on traffic microstructures

include:

7. Networking stack load. TCP or IP queue filling of the kernel networking stack

can increase packet waiting times and therefore IATs of the traffic trace, as shown by

[97]. In practice, this effect seems to be constrained to large WAN-servers and routers.

When varying the stack load in otherwise constant settings on an Ubuntu-host, we did

not find any notable effect on packet sequences when comparing the corresponding

traffic with a set of three similarity metrics. More details on this setting and the metrics

can be found in Section 4.6.

8. Network configurations. Network settings such as the MTU or the enabling of

TCP Segment Reassembly Offloading have effects on the captured packet sizes, and

have been exploited in IP fragmentation attacks. However, these settings have been

standardised for most networks, as documented in the CAIDA traffic traces [43].

We designed DetGen to control and monitor factors 1-6 to let researchers explore

their impact on their traffic models, while omitting factors 7 and 8 for the stated rea-

sons.

4.5 How DetGen generates precisely controlled data

As we will demonstrate in Section 4.6, containers provide significantly more isola-

tion of programs from external effects than regular OS-level execution. This isolation
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Figure 4.7: Traditional traffic-generation-setups (left), and DetGen (right).

enables us to monitor processes better and create more accurate links between traf-

fic events and individual activities than on a virtual machine were multiple processes

run in parallel and generate traffic. The corresponding one-to-one correlation between

processes and network traces allows us to capture traffic directly from the process and

produce labelled datasets with granular ground truth information.

Additionally, containers are specified in an image-layer, which is unaffected dur-

ing the container execution. This allows containers to be run repeatedly whilst always

starting from an identical state, allowing a certain level of determinism and repro-

ducibility in the data generation.

4.5.1 Simulation of external influence

4.5.1.1 Caching/Cookies/Known server.

Since we always launch containers from the same state, we prevent traffic impact from

repetition effects such as caching or known hosts. If an application provides caching

possibilities, we implement this as an option to be specified before the traffic generation

process.
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4.5.1.2 Network effects.

Communication between containers takes place over a virtual bridge network, which

provides far higher and more reliable throughput than in real-world networks [68]. To

retard and control the network reliability and congestion to a realistic level, we rely on

NetEm, an enhancement of the Linux traffic control facilities for emulating properties

of wide area networks from a selected network interface [64].

We apply NetEm to the network interface of a given container, providing us with

the flexibility to set each container’s network settings uniquely. In particular, packet

delays are drawn from a Paretonormal-distribution while packet loss and corruption

are drawn from a binomial distribution, which has been found to emulate real-world

settings well [98]. Distribution parameters such as mean or correlation as well as

available bandwidth can either be manually specified or drawn randomly before the

traffic generation process.

4.5.1.3 Host load.

We simulate excessive computational load on the host with the tool stress-ng, a Linux

workload generator. Currently, we only stress the CPU of the host, which is controlled

by the number of workers spawned. Future work will also include stressing the mem-

ory of a system. We have investigated how stress on the network sockets affects the

traffic we capture without any visible effect, which is why we omit this variable here.

4.6 Verifying the generative determinism of DetGen

We now assess the claim that DetGen controls the outlined traffic influence factors

sufficiently, and how similar traffic generated with the same settings looks like. We

also demonstrate that this level of control is not achievable on regular VM-based NIDS-

traffic-generation setup.

To do so, we generate traffic from three traffic types, namely HTTP, file-synchronisation,

and botnet-C&C, each in four configurations that varied in terms of conducted activity,

data/credentials as well as the applied load and congestion. Within each configura-

tion all controllable factors are held constant to test the experimental determinism and

reproducibility of DetGen’s generative abilities. As a comparison, we use a regular

VM-based setup, were applications are hosted directly on two VMs that communicate

over a virtual network bridge that is subject to the same NetEm effects as DetGen,
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Figure 4.8: Dissimilarity scores for DetGen and a regular VM-setup, on a log-scale.

such as depicted in Fig. 4.7. Such a setup is for example used in the generation of the

UGR-16 data [41].

To measure how similar two traffic samples are, we devise a set of similarity met-

rics that measure dissimilarity of overall connection characteristics, connection se-

quence characteristics, and packet sequence characteristics:

• Overall connection similarity We use the 82 flow summary statistics (IAT and

packet size, TCP window sizes, flag occurrences, burst and idle periods) pro-

vided by CICFlowMeter [99], and measure the cosine similarity between con-

nections, which is also used in general traffic classification [100].

• Connection sequence similarity To quantify the similarity of a sequence of

connections in a retrieval window, we use the following features to describe the

window, as used by Yen et al. [91] for application classification: The number

of connections, average and max/min flow duration and size, number of distinct

IP and ports addresses contacted. We then again measure the cosine similarity

based on these features between different windows.

• Packet sequence similarity To quantify the similarity of packet sequences in

handshakes etc., we use a Markovian probability matrix for packet flags, IATs,

sizes, and direction conditional on the previous packet. We do this for sequences

of 15 packets and use the average sequence likelihood as this accommodates

better for marginal shifts in the sequence.

We normalise all dissimilarity scores by dividing them by the maximum dissim-

ilarity score measured for each traffic type to put the scores into context. For each

configuration, we generate 100 traffic samples and apply the described dissimilarity



90 Chapter 4. Traffic generation to probe and understand model behaviour

Figure 4.9: Packet-sequence similarity comparison for HTTP-activity for DetGen and a

regular setting.

measures to 100 randomly drawn sample pairs. Fig. 4.8 depicts the resulting dissimi-

larity scores on a log-scale.

The DetGen-scores yield consistently less than 1% of the dissimilarity observed on

average for each activity. Scores are especially low when compared to traffic groups

collected in the VM setting, which are consistently more dissimilar, in particular for

connection-sequence metrics, where the average dissimilarity is more than 30 times

higher than for the DetGen setting. Manual inspection of the VM-capture showed that

high dissimilarity is caused by additional flow events from background activity (OS

and application HTTP, NTP, DNS, device discovery) being present in about 24% of all

captures. . While sequential dissimilarity is roughly the same for the DetGen- and the

VM-settings, overall connection similarity for the VM-setting sees significantly more

spread in the dissimilarity scores when computational load is introduced.

Fig. 4.9 depicts an exemplary comparison between HTTP-samples generated using

DetGen versus generation using the VM-setup. Colours indicate packet flags while the

height of the packets indicates their size. Even though samples from DetGen are not

perfectly similar, packets from the VM-setup are subject to more timing perturbations

and reordering as well as containing additional packets. Additionally, the packet sizes

vary more in the regular setting.

These results confirm that DetGen exerts a high level of control over traffic shaping

factors while providing sufficient determinism to guarantee ground-truth traffic infor-

mation.
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4.7 Reconstructing an IDS-dataset for efficient probing

Moving towards a more general dataset constructed to apply this probing methodol-

ogy, we constructed DetGen-IDS. This dataset is suitable to quickly probe ML-model

behaviour that were trained on the CICIDS-17 dataset [84]. The dataset mirrors prop-

erties of the CICIDS-17 data to allow pre-trained models to be probed without re-

training. The DetGen-IDS data therefore serves as complementary probing data that

provides microstructure labels and a sufficient and controlled diversity of several traffic

characteristics that is not found in the CICIDS-17 data.

We focus on mirroring the following properties from the CICIDS-17 data:

1. Application layer protocols (ALP)

2. ALP implementations

3. Typical data volume for specific ALPs

4. Conducted attack types

Extracting more information on characteristics such as conducted activities of cur-

rent NID-datasets is difficult for the reasons explained in 4.1.1. However, our examina-

tion shows that aligning these high-level features with the original training data helps

to significantly reduce the validation error of a model on the probing data.

We then took the following steps to extract the necessary information from the

CICIDS-17 data and implement the traffic-generation process accordingly:

1. The primary ALPs in the dataset can be identified using their corresponding

network ports. We ordered connections by the frequency of their respective port, and

excluded connections that do not transmit more than 15 packets per connection as

these do not provide enough structure to create probing data from it. This leaves us

with the ALPs HTTP/SSL, SMTP, FTP, SSH, SQL, SMB, and NTP. We had already

implemented traffic scenarios for each of them except SMB and LDAP, which we then

added to the catalogue described in Section 3.4.1. Table 4.3 displays the frequency of

the most common ALPs in the CICIDS-17 along with their average size and packet

number per connection and how we adopted them in the DetGen-IDS data.

2. Most of the used ALP implementations, such as Apache and Ubuntu Webserver

for HTTP, could be gathered from the description of the CICIDS-17 dataset. When

this was not the case, it is mostly possible to gather this information by inspecting

a few negotiation packets for the corresponding ALP with Wireshark to identify the
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TLS version or the OpenSSH-client. The correct ALP implementation can then be

included in the traffic generation process by simply identifying and including a Docker-

container that matches the requirements, which is explained more in Section 3.4.2.

CICIDS-17 DetGen-IDS

ALP Port
Av. Conn.

Size

Av. Packets

/Conn.
# Packets # Packets # Activities

HTTP 80 131626.4 120.4 26631853 724032 7

HTTPS 443 24637.5 36.7 18531661 432104 7

DNS 53 286.2 3.6 3515510 - -

SSH 22 4699.6 40.9 430380 379421 13

LDAP 389 5429.2 22.3 133471 94587 3

FTP 21 311.3 41.7 121472 183587 9

NetBIOS 137 773.6 14.3 111341 - -

SMB 445 12941.5 61.9 88175 47945 3

NTP 123 157.0 3.2 73057 1243 1

SMTP 465 2663.5 21.5 77650 104967 3

Kerberos 88 2687.7 6.9 38262 - -

mDNS 5353 3685.5 35.5 24592 - -

Table 4.3: Common ALPs in CICIDS-17 data

3. Since the total size of a connection is one of the most significant features for its

classification, we restrict connections in the DetGen-IDS data to cover the same range

as their counterparts in the CICIDS-17 data. For this, we extracted the maximum and

minimum connection size for each ALP in the benign data and use it as a cut-off to

remove all connections from the DetGen-IDS data that do not meet this requirement.

4. Included attacks are well documented in the CICIDS-17 description. These

include SQL-injections, SSH-brute-force, XSS, Botnet, Heartbleed, GoldenEye, and

SlowLoris. We aim to cover as many of these attack types in the DetGen-IDS data as

well as adding them to the overall DetGen-attack-catalogue. We were not able to cover

all attacks though as DetGen either did not provide the necessary network topology to

conduct the attack, such as for port-scanning, or the attack types are not implemented

in the catalogue of scenarios yet.

In addition to the pcap-files, we used the CICFlowMeter to generate the same 83

flow-features as included in the CICIDS-17 data. Table 4.3 displays the content and

statistics of the DetGen-IDS data.

In Fig. 4.10, we compare the validation error of a recent LSTM-model for network

intrusion detection by Clausen et al. [4] on the DetGen-IDS data to demonstrate that

a model trained on the CICIDS-17 data is able to perform well without retraining. We

distinguish models when trained exclusively on the CICIDS data (green), and when
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Figure 4.10: Validation errors of LSTM-model [4] on DetGen-IDS data.

also trained on the probing data (red). Even though the validation error is slightly

higher when only trained on the CICIDS data, the difference is almost negligible com-

pared to the error resulting from a model trained on a completely different dataset

(UGR-16 [41], blue). This does not fully prove that every model is able to transfer

observed structures between the two datasets, but it gives an indicator that they mirror

characteristics.

4.8 Conclusions

In this chapter, we examined how the generation of traffic with controllable and exten-

sively labelled traffic microstructures can aid the probing of machine-learning-based

traffic models. For this, we demonstrated the impact that probing with carefully crafted

traffic microstructures can have for improving a model with a state-of-the-art LSTM-

traffic-classifier with a detection rate that improved by more than 3% after understand-

ing how the model processes excessive network congestion.

To verify DetGen’s ability to control and monitor traffic microstructures, we per-

formed experiments in which we quantified the experimental determinism of DetGen

and compared it to traditional VM-based capture setups. Our similarity metrics in-

dicate that traffic generated by DetGen is on average 10 times, and for connection

sequences up to 30 times more consistent.

We are also releasing DetGen-IDS, a substantial dataset suitable for probing mod-

els trained on the CICIDS-17 dataset. This data should make it easier for researchers

to understand where their model fails and what traffic characteristics are responsible to

subsequently improve their design accordingly.



94 Chapter 4. Traffic generation to probe and understand model behaviour

4.8.1 Difficulties and limitations:

While the control of traffic microstructures helps to understand packet- or connection-

level models, it does not replicate realistic network-wide temporal structures. Other

datasets such as UGR-16 [41] or LANL-15 [40] are currently better suited to examine

models of large-scale traffic structures.

While controlling traffic shaping factors artificially helps at identifying the limits

and weak points of a model, it can exaggerate some characteristics in unrealistic ways

and thus alter the actual detection performance of a model.

The artificial randomisation of traffic shaping factors can currently not completely

generate real-world traffic diversity. This problem is however more pronounced in

commonly used synthetic datasets such as CICIDS-17, where for example most FTP-

transfers consist of a client downloading the same text file.

Discussions about the implications of the model correction proposed in Section 4.2

are above the scope of this chapter, and there likely exist more complex and suitable

solutions.



Chapter 5

CBAM: An anomaly detection model

for traffic microstructures

5.1 Introduction

Remote access attacks are used to gain control or access information on remote devices

by exploiting vulnerabilities in network services, and are involved in many of today’s

data breaches [101]. A recent survey [13] showed that these attacks are detected at

significantly lower rates than more high-volume probing or DoS attacks. To address

this, we present CBAM, a short-term contextual bidirectional anomaly model of net-

work flows, which improves detection rates of remote access attacks significantly by

learning reoccurring flow sequence microstructures. The underlying idea of CBAM is

to capture probability distributions over sequences of network flows that quantify their

overall likelihood, much like a language model. CBAM is based on deep bidirectional

LSTM networks.

Recently, deep learning models such as LSTMs have been a popular tool in network

intrusion detection [102, 103, 96]. However, persistent failings in evaluations have

made it difficult to assess the performance and real-world applicability of currently

proposed methods to access attack detection, and have lead to a chaotic and convoluted

NIDS landscape [13].

To avoid these pitfalls and demonstrate that our approach delivers a significant

improvement in detection rates and real-world applicability, we evaluated our model

carefully on three modern network intrusion detection datasets. Furthermore, we reim-

plemented and evaluated three state-of-the-art methods on these datasets and compared

their performance against ours.

95
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We carefully select the input parameters for our model based on the interdepen-

dence we observe between them in exemplary flow sequences, and increase the model

complexity in terms of depth and input embedding compared to preceding models.

This enables us to detect remote access attacks at a false positive rate of 0.16%, a rate

at which none of the comparison models are able to detect any attacks reliably.

We also discuss specific design choices and how they enable effective modelling of

specific traffic microstructures to boost performance. The evaluation of existing deep

learning models so far has generally been agnostic to particular microstructures of the

modelled traffic and fails to explain where and why the corresponding model fails to

classify traffic properly. In this chapter, we therefore apply the similar model probing

techniques as demonstrated in Chapter 4 to validate the undertaken design steps.

Thesis context: This chapter turns from the generation and examination of traffic

microstructures to the design of an anomaly detection model that leverages specific

microstructures for detection. It also examines which conclusions can be made on the

distribution and similarity of microstructures from the model output.

This chapter largely consists of work published in “Better Anomaly Detection for

Access Attacks Using Deep Bidirectional LSTMs” (H. Clausen, G. Grov, M. Sabate,

and D. Aspinall, 2020 [4]) and “CBAM: A Contextual Model for Network Anomaly

Detection” (H. Clausen, G. Grov, and D. Aspinall, 2021 [5]).

5.1.1 Outline

The remainder of this chapter is organised as follows: Section 5.2 provides a motiva-

tion for short-term flow models and their benefits for the detection of access attacks.

Section 5.3 provides an overview of common evaluation pitfalls that prevent a fair

comparison of corresponding NID models. Section 5.4 explains the methodology and

architecture of CBAM as well as the data preprocessing. Section 5.5 describes the

problems with network traffic datasets which previous methods were evaluated on,

and explains the advantages of our selection of datasets. We also describe how and

why traffic from particular hosts is selected, and how training and test data are con-

structed. Section 5.6 discusses our detection rates on attack traffic in the CICIDS-17

and LANL-15 data, and examines how and why CBAM is able to identify these at-

tacks. Section 5.7 discusses the false positive rate on benign traffic, and examines

long-term stability of flow structures and corresponding model performance. It also

provides details on the score distributions and the type of traffic that is both predicted
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accurately and inaccurately, as well as the influence of the training data size on these

predictions. Section 5.8 discusses the reason and measured benefit of specific design

steps that increase model complexity. Section 5.11 concludes our results.

5.2 Overview

Src Dst DPort bytes # packets

A B 80 247956 315

A B 80 7544 13

A B 80 328 6

A B 80 2601 10

A B 80 328 6

A B 80 328 6

A B 80 380 7

A B 80 328 6
...

(a) XSS-attack, A=192.168.10.50, B=

172.16.0.1

Src Dst DPort bytes # packets

D C N33 600 5

C D 445 77934 1482

D C N33 600 5

C D 445 5202 10

(b) Benign SMB, C=C6267, D=C754

Src Dst DPort bytes # packets

C D 445 4106275 2830

C D 445 358305611 242847

(c) Pass-the-hash attack via SMB

Table 5.1: The left side depicts a flow sequence from an XSS-attack.The right side

depicts a benign SMB-sequence (top), and a sequence from a Pass-the-hash attack

via the same SMB service.

In verbal or written speech, we expect the words “I will arrive by . . . ” to be fol-

lowed by a word from a smaller set such as “car” or “bike” or “5pm”. Similarly,

on an average machine we may expect DNS lookups to be followed by outgoing

HTTP/HTTPS connections. These short-term structures in network traffic are a re-

flection of the computational order of information exchange. Attacks that exploit vul-

nerabilities in network communication protocols often achieve their target by deviating

from the regular computational exchange of a service, which should be reflected in the

generated network pattern.

Table 1(a) depicts a flow sequence from an XSS-attack. Initial larger flows are

followed by a long sequence of very small flows which are likely generated by the em-

bedded attack script trying to download multiple inaccessible locations. Flows of this
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Figure 5.1: HTTP flow size distribution overall, and if preceded by an HTTP flow smaller

than 500 bytes.

size are normally immediately followed by larger flows, as depicted in Fig. 5.1, which

makes the repeated occurrence of small HTTP flows in this sequence very unusual.

Table 1(b) depicts a regular SMB service sequence while Table 1(c) depicts a Pass-

the-hash attack via the same SMB service. As shown, the flows to port N33 necessary

to trigger the communication on the SMB port are missing while the second flow is

significantly larger than any regular SMB flows due to it being misused for exfiltration

purposes.

The underlying idea of CBAM is to predict probabilities of connections in a host’s

traffic stream conditional on adjacent connections. The probabilities are assigned

based on the connection’s protocol, network port, direction, and size, and the model is

trained to maximise the overall predicted probabilities.

To assign probabilities, we map each connection event to two discrete sets of states,

called vocabularies, according to the protocol, the network port, and the direction of the

connection for the first, and according to number of transmitted bytes for the second.

The size of the vocabulary is chosen large enough to capture meaningful structures

without capturing rare events that can deteriorate prediction quality. We feed these

vocabularies into a deep bidirectional LSTM (long short-term memory) network that

takes bivariate sequences of mapped events as input to efficiently capture the condi-

tional probabilities for each event.

CBAM acts as an anomaly-detection model that learns short-term microstructures

in benign flow sequences and identifies malicious sequences as deviations from these

structures. By predicting probabilities of flows in benign flow sequences, CBAM is

trained in a self-supervised way on strictly benign traffic. In contrast to classification-

based training, CBAM does not require labelled attack traffic in the training data and

is thus not affected by typical class imbalances in network intrusion datasets.
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5.3 Evaluation pitfalls

According to Nisioti et al. [13], the trustworthiness of published low volume access

attack detection rates is debatable due to evaluation shortcomings. We designed our

evaluation to avoid four common pitfalls that are regularly seen:

Outdated datasets Two datasets and their derivatives, DARPA-98 and KDD-99,

have been extensively used to benchmark network intrusion detection models [104],

with all anomaly-based techniques discussed in a recent survey [13] with reported de-

tection rates on U2R and R2L attacks relying on either of them. However, both datasets

are now more than 20 years old and have been pointed out as significantly flawed and

prone to give overoptimistic results [105].

Lack of attack class distinction Most intrusion datasets include attack events from

both low volume access attack classes such as R2L (Remote-to-Local) and U2R (User-

to-Root) as well as attacks like DoS or port scans which generate a large number of

events. Recorded events are labelled individually, creating an imbalance in the number

of DoS and probing events compared other attack classes. For instance, 96% of the

attack events in the CICIDS-17 dataset [84] consist of DoS and probing events. If

reported detection rates do not distinguish between different attacks or attack classes,

performance metrics will be dominated and potentially inflated by DoS and probing

attacks.

Arbitrary false positive rates There is no agreed upon value for a suitable false

positive rate in network intrusion detection. This leads many authors to report very

high detection rates at the expense of having unrealistically high false positive rates,

often around 5% and above. In our evaluation, we report overall AUC scores, which

describe the separation of benign and anomalous traffic.

Lack of long-term evaluation To be effective, an intrusion detection system has to

produce a consistently low false positive rate in the presence of concept drift. A crucial

aspect when assessing the deployability of an intrusion detection system is the long-

term stability of a trained model [106], which is often neglected in the literature. We

include a dataset focused on long-term traffic evolution in our evaluation to demon-

strate the stability and deployability of our model.
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5.4 Design

5.4.1 Session construction

The raw input data, in the form of network flows, contains unordered traffic from and

to all hosts in the network. To order the raw network flows, we first gather all outgoing

and incoming flows for each of the hosts selected for examination according to their

IP address.

The traffic a host generates is often seen as a series of session, which are intervals

of time during which the host is engaging in the same, continued, activity [107]. In

our context, flows that occur during the same session can be seen as having strong

short-term dependencies. We therefore group flows going from or to the same host to

sessions using an established statistical approach [107]:

If a network flow starts less than α seconds after the previous flow for that host,

then it belongs to the same session; otherwise a new session is started. If a session

exceeds β events, a new session is started.

We chose the number of α = 8 seconds as we have found that on average around

90% of flows on a host start less than 8 seconds after the previous flow, a suitable

threshold to create cohesive sessions according to Rubin-Delanchy et al. [107]. We

introduced the β parameter in order to break up long sessions that potentially contain

a small amount of malicious flows, and estimated β = 25 to be a suitable parameter.

Detection rates do not seem to be very sensitive to the exact choice of β though.

A perfect session grouping would require (unavailable) information from the top

layers of the network stack. We therefore use our session definition as a first approxi-

mation which we found to be useful enough for this experiment. We will discuss this

issue further in Section 5.8.2 and Section 5.10.

The IAT distribution for selected hosts in the used datasets, described in Section

5.5.1, along with 90% quantile lines is depicted in Fig. 5.2.

5.4.2 Contextual modelling

Each session is now a sequence of flows that are assumed to be interdependent. We

observed in an initial traffic analysis that the protocol, port, and direction of a flow as

well as its size are highly dependent on the surrounding flows, which motivates their

use in the modelling process. We treat flows as symbolic events that can take different

states, much like words in a language model. The state of a flow is defined as the tuple
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Figure 5.2: Flow interarrival distributions for selected hosts in the CICIDS-17, the LANL-

15, and the UGR-16 data, with 90 percent quantile lines.

consisting of the protocol, network port, and the direction of the flow. We consider

only the server port numbers, which indicate the used service, in the state-building

process. We introduce the following notation:

M: number of states

C: number of host groups

S: number of size groups

Ni
embed: embedding dimension

Ni
hidden: LSTM layers dimension

N j: the length of session j

xi, j ∈ {1, . . . ,M} : the state of flow i in session j

c j ∈ {1, . . . ,C}: the host group

si, j ∈ {1, . . . ,S}: size group of flow i in session j

pi, j,k
x = P(xi, j = k| j) the predicted probability of xi, j = k

conditional on the other flows in session j

pi, j,l
s = P(si, j = l| j) the predicted probability of si, j = l

conditional on the other flows in session j

The collection of all states is called a vocabulary. For prediction, the total size of a

vocabulary directly correlates with the number of parameters needed to be inferred

in an LSTM network, thus influencing the time and data volume needed for training.
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Too large vocabularies also lead to decreased predictive performance by including rare

events that are hard to predict [108]. We therefore bound the total number of states and

only distinguish between the M − 2 tuples of protocol, port, and direction most com-

monly seen on a machine, with less popular combinations being grouped as “Other”.

Furthermore, the end of a session is treated as an additional artificial event with its own

state. The total vocabulary size is then given by M.

Our experimentation has shown that detection rates improve when including the

size as an additional variable, as we discuss in Section 5.6.3. Rather than making a

point estimate of the size, we want to produce a probability distribution for different

size intervals. This provides better accuracy for situations in which both small and

large flows have a similar occurrence likelihood. We group flows into S different size

quantile intervals, with the set of all size intervals forming a third vocabulary. The S−1

boundaries that separate the size intervals correspond to S−1 equidistant quantiles of

the size distribution in the training data.

Hosts are grouped according to their functionality (Windows, Ubuntu, servers, etc.)

a distinction that can easily be performed using signals in the traffic. The group is

provided to the model as an additional input parameter c j and forms a third vocabulary.

5.4.3 Architecture selection

We now represent each session as a set of two symbolic sequences that contain between

three and 27 items, in order to capture their contextual structure for the reasons de-

scribed in Section 5.2. A number of techniques exist to describe such sequences, such

as Markov-models and Hidden-Markov-models, Finite-State-Automata, or N-Gram

models. However, the success of recurrent neural networks in similar applications

of natural language processing over these methods suggests they would be the most

appropriate architecture to capture contextual relationships between flows. In Sec-

tion 5.8.3, we compare the performance of CBAM to both Markov-based models and

Finite-State-Automata. Even though convolutional neural networks and feed-forward

networks can be more suitable choices for specific sequential problems with tabular

or regression characteristics, recurrent neural networks such as LSTMs or GRUs nor-

mally outperform them for short tokenised sequences [109]. Both LSTMs and GRUs

perform similarly well and generally outperform simple RNNs.
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Figure 5.3: Architecture of the trained bidirectional LSTM network.

5.4.4 Trained architecture

We use a deep bidirectional LSTM network which processes a sequence in both for-

ward and reverse direction to predict the state and size group of individual flows. The

architecture of the network we trained is depicted in Fig. 5.3. The increased model

complexity we present has not been explored in previous LSTM applications to net-

work intrusion detection, and enables us to boost detection rates while lowering false

positive rates, which we demonstrate in Section 5.8.

5.4.4.1 Embedding

First, each of the three vectors is fed through an embedding layer, which assigns them

a vector of size Ni
embed, i ∈ {1,2,3}. This embedding allows the network to project

the data into a space with easier temporal dynamics. This step significantly extends

existing designs of LSTM models for anomaly detection and allows us to project mul-

tiple input vocabularies simultaneously without a large increase in the model size. By

treating the state, the size group, and the host group as separate dictionaries, we avoid

the creation of one large vocabulary of size M×C×S, which makes training faster and

avoids the creation of rare states [108].
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5.4.4.2 LSTM-layer

In the second step, the vectors are concatenated and fed to a stacked bidirectional

LSTM layer with N1
hidden hidden cells. This layer is responsible for the transport of

sequential information in both directions. The usage of bidirectional LSTM layers

compared to unidirectional ones significantly improved the prediction of events at the

beginning of a session and consequently boosted detection rates within short sessions,

as we demonstrate in Section 5.8.1. Increasing the number of LSTM layers from one to

two decreases false positive rates in longer sessions while maintaining similar detection

rates, as we show in Section 5.8.2. In Section 5.10.1, we discuss why we are not further

increasing the number of layers.

5.4.4.3 Output layer

The outputs from the bidirectional LSTM layers are then concatenated and fed to an

additional linear hidden layer of size N2
hidden with the commonly used rectified linear

activation function. We added this layer to enable the network to learn more non-

linear dependencies in a sequence. We found that by adding this layer, we are able to

capture complex and rare behaviours and decrease false positive rates, as demonstrated

in Section 5.8.3.

Finally, the output of this layer layer is fed to two output layers with M and S linear

output cells. These produce two numeric vectors of size M and S

pi, j,k
x , k ∈ {1, . . . ,M},

M

∑
k

pi, j,k
x = 1

pi, j,l
s , l ∈ {1, . . . ,S},

S

∑
l

pi, j,l
s = 1

that describe the predicted probability distribution of xi, j and si, j respectively.

The prediction loss for the state group is then given by the negative log-likelihood:

lhi, j
x =

M

∑
k=1

(1− xi, j
k ) · log(1− yi, j

k )− xi, j
k · log(yi, j

k )

with the size group loss being calculated in the same way. We calculate the total loss

as the sum of the state loss and the size group loss. A visualisation of the prediction-

making process is depicted in Fig. 5.4.
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Figure 5.4: Visualisation of model prediction process.

After the training, we use the network to determine the anomaly score of a given in-

put session via the average of the predicted likelihoods, as this measure is independent

of the session length:

AS j = 1−
N j

∑
i=1

(
exp(lhi, j

x )+ exp(lhi, j
s )

)
/N j

An anomaly score close to 0 corresponds to a benign session with a very high

likelihood while a score close to 1 corresponds to an anomalous session with events

which the network would not predict in the context of previous events. We rescale all

anomaly scores for better readability, however this does not influence their ordering.

The design of the proposed anomaly score as an average likelihood has some short-

comings, which have not been considered at the time of model design and evaluation.

One of these shortcomings is that while the anomaly score is designed to yield sim-

ilar anomaly scores for sessions of different length, short anomalous sequences get

smoothed out by other traffic the longer a session becomes as its contribution to the

anomaly score is inversely proportional to the session length. Other methods such as
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using the maximal value of a running average would mitigate this problem and should

be investigated for future usage of CBAM.

5.4.5 Parameter selection and training

We now train CBAM and tune it to maximise its prediction performance. We train on

a quad-core CPU with 3.2 GHz, 16 GB RAM, and a single NVIDIA Tesla V100 GPU,

and we use minibatches of size 30 using the ADAM optimiser in PyTorch. Training a

model can be achieved in under three hours.

We want to create a model that has sufficient parameters to capture complex flow

dependencies, but is not overfitting the training data. For this, we split the available

training data into a larger training and a smaller validation set. We then select two

model configuration, one with a larger number of parameters and one with a smaller

number. We then train the model for 500 epochs on the training set and observe

whether the same loss decrease can be observed on the validation set. As long as

the larger model is performing better than the smaller model and the validation loss

is consistent with the training loss, we keep increasing the number of parameters, a

standard practice to train deep learning models. The best performing parameters were

N1
embed = 10, N2

embed =N3
embed = 5 for the embedding layers, and N1

hidden =N2
hidden = 50

for the hidden layers.

To build a more powerful model without the risk of overfitting, we use a drop-out

rate of 0.5 and a weight-decay regularization of 5× 10−4 per epoch, as suggested by

Hinton et al. [110]. To increase the training performance, we use an adaptive learning

of 0.0003, which decays by a factor of 2 after each fifty subsequent epochs, as well as

layer normalization. The values for the learning rate and weight decay were estimated

in a similar procedure as the model size.

As we mentioned above, too large vocabularies can cause problems both for model

training and event prediction. We achieved the best results for M = 200 for the avail-

able data and computational resources. The size of the size group was chosen smaller

with S = 7, which improves detection capabilities without increasing anomaly scores

for benign sessions too much. We found that a suitable value of C = 4 to describe

different host types, which include servers, two types of client machines depending on

the operating system, and auxiliary devices (printers, IP-phones, and similar). Host

groups were determined for each dataset individually and the corresponding machines

labelled manually. However, for larger datasets this process is easily automated by
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filtering for specific traffic events such as requests to Microsoft update servers.

# cells # parameters

Embedding layer 202/10/5 2055

LSTM-layer 1 50 6700

LSTM-layer 2 50 12700

Linear layer 50 2550

Softmax layer 202/10 10557

Total 34562

5.4.6 Detection method

We use a simple threshold anomaly score to identify a session as malicious. We esti-

mate the 99.9% quantile for benign sessions in the training data, which will then act

as our threshold value T. By determining T from the training data, we control the ex-

pected false positive rate in the test data. Threshold values are determined for each

dataset and each host within a dataset separately.

Tc : P[AS j
c j ≤ Tc]≤ 0.999

Finding an appropriate threshold value is a compromise between higher detection

rates and lower false positive rates, and we chose this value to achieve false positive

rates that are low enough for a realistic setting. We compare detection and false positive

rates for different T in Section 5.6.1, and we give an outlook to more sophisticated

detection methods in Section 5.10.

5.5 Datasets and benchmark models

5.5.1 Dataset assembly

The field of network intrusion detection has always suffered from a lack of suitable

datasets for evaluation. Privacy concerns and the difficulty of posterior attack traf-

fic identification are the reason that no dataset exists that contains realistic U2R/R2L

(User-to-Root, Remote-to-local) traffic and benign traffic from a real-world environ-

ment [111]. To evaluate CBAM, we need both representative access attack traffic to
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test detection rates, and background traffic from a realistic environment to test false

positive rates. To ensure that both criteria are met, we selected three modern publicly

available datasets that complement each other: CICIDS-17 [84], LANL-15 [38, 39],

and UGR-16 [41]. The CICIDS-17 dataset contains traffic from a variety of modern

attacks, while the UGR-16 dataset’s length is suitable for long-term evaluation. The

LANL-15 dataset contains enterprise network traffic along with several real-world ac-

cess attacks.

We train models with the same hyperparameters on each dataset to demonstrate the

capability of CBAM to detect various attacks and perform well in a realistic environ-

ment.

CICIDS-17: This dataset [84], released by the Canadian Institute for Cybersecu-

rity(CIC), contains 5 days of network traffic collected from 12 computers with attacks

that were conducted in a laboratory setting. The computers all have different operating

systems to enable a wider range of attack scenarios. The attack data of this dataset is

one of the most diverse among NID datasets and contains SQL-injections, Heartbleed

attacks, brute-forcing, various download infiltrations, and cross-site scripting (XSS)

attacks, on which we evaluate our detection rates.

The traffic data consists of labelled benign and attack flow events with 85 summary

features which can be computed by common routers. The availability of these features

makes it suitable to evaluate machine-learning techniques that were only tested on the

KDD-99 data.

The benign traffic is generated on hosts using previously gathered and implemented

traffic profiles to make the traffic more heterogeneous during a comparably short time

span, and consequently closer to reality. For our evaluation, we selected four hosts that

are subject to U2R and R2L attacks, two web servers and two personal computers.

This dataset is generated in a laboratory environment, with a higher proportion of

attack traffic than is normally encountered in a realistic setting. Consequently, we need

to test on traffic from real-world environments to prove that CBAM retains its detection

capabilities and low false alert rates.

LANL-15 dataset: In 2015, the Los Alamos National Laboratory (LANL) re-

leased a large dataset containing internal network flows (among other data) from their

corporate computer network. The netflow data was gathered over a period of 27 days

with about 600 million events per day [38, 39].

In addition to large amounts of real-world benign traffic, the dataset contains a set

of attack events that were conducted by an authorised red team and are supposed to re-
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semble remote access attacks, using mainly the pass-the-hash exploit. We selected this

dataset to demonstrate that CBAM is able to detect attacks in a realistic environment

with low false alert rates. We isolated traffic from ten hosts, with two being subject

to attack events. Two of these hosts resemble server behaviour, while the other eight

show typical behaviour of personal computers.

The provided red team events are not part of the network flow data and only contain

information about the time of the attack and the attacked computer. Furthermore, not

all of the attack events are conducted on the network level, so it is impossible to tell

exactly which flows correspond to malicious activity and which do not. Therefore we

labelled all flows in a narrow time interval around each of the attack timestamps as pos-

sibly malicious. As these intervals are narrow, identified anomalies likely correspond

to the conducted attack.
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Figure 5.5: Temporal change in protocol and port usage over the different train and test

intervals across selected servers in the UGR-16 dataset.

UGR-16 dataset: The UGR-16 dataset [41] was released by the University of

Grenada in 2016 and contains network flows from a Spanish ISP. It contains both

clients’ access to the Internet and traffic from servers hosting a number of services. The

data thus contains a wide variety of real-world traffic patterns, unlike other available

datasets. Additionally, a main focus in the creation of the data was the consideration of

long-term traffic evolution, which allows us to make statements about the robustness

of CBAM to concept drift over the 163 day span of the dataset. For our evaluation, we

isolated traffic from five web-servers that provide a variety of services.
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5.5.2 Dataset split

We split our data into a test set and a training set. To resemble a realistic scenario, the

sessions in the training data are from a previous time interval than sessions in the test

data.

To evaluate detection rates on the CICIDS-17 data, we selected the four hosts in

the data that are subject to remote access attacks, two web servers and two personal

computers. We choose our test set to contain the known attack data while the training

data should only contain the benign data. Due to the short timespan of the dataset,

we have to train on traffic from all five days, with the test data intervals being placed

around the attack. In total, the test set contains 14 hours of traffic for each host while

the training set contains 31 hours of traffic. While the test set for the CICIDS-17

data covers a shorter timespan, it contains more traffic due to voluminous brute-force

attacks.

For the LANL data, the test set stretches approximately over the first 13 days with

the training data spanning over the last 14 days. The unusual choice of placing the

test set earlier the training set was made because the attacks occur early in the dataset.

However as the training and test are contained in two non-overlapping intervals, a

robustness evaluation is still possible.

Dataset hosts sessions in sessions in length

training set test set

CICIDS-17 4 24128 32414 5 days

LANL-15 10 89480 76984 27 days

UGR-16 5 65000 480018 163 days

Table 5.2: Summary of the amount of traffic extracted from each dataset.

To test long-term stability and robustness of CBAM against concept drift, we split

the UGR-16 data into one training set interval and two test set intervals, for which

we can compare model performance. The training set interval stretches over the first

month, with the first test set interval containing the sessions from the following two

months, and the second test set interval containing the last two months. We then

isolated traffic from five web-servers that provide a variety of services that show be-

havioural evolution. Fig. 5.5 depicts the changes of these servers in terms of protocol

and port usage over the different intervals.
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We chose our training data to contain about 10 000 sessions per host if possible.

A summary of the amount of data in the training and test data for each dataset can be

found in Table 5.2.

5.5.3 Sample imbalance and evaluation methodology

Most NID datasets include attack events from both low volume access attack classes

as well as attacks like DoS or port scans which generate a large number of events. If

reported detection rates do not distinguish between different attacks or attack classes,

performance metrics will be dominated and potentially inflated by DoS and probing

attacks. Similarly, detection results are often given in terms of precision and recall

or F-measures, which are sensitive to the specific dataset balance of the majority and

minority classes in a dataset. Since the ratio of attack traffic is inflated in general

NID-datasets, these measures are not suitable for model comparison.

We evaluate CBAM using simple detection true positive and false positive rates,

which are independent of the dataset balance. We also distinguish detection rates for

different attacks, and assess overall performance by averaging these rates over attack

classes rather than overall number of attack events. Since there is no agreed upon value

for a suitable false positive rate in network intrusion detection, we compute ROC-

curves to display the detection rates in dependence of the false-positive rate and report

overall AUC-scores (Area under Curve), which describe the separation of benign and

anomalous traffic. We use these for comparison with other models, as this measure is

fairer than point comparisons. The evaluation procedure is supported by several NID

evaluation surveys [112, 113].

Some researchers propose cost-based evaluation metrics by assigning false alerts

and missed intrusion attempts a cost-value and tuning the detection threshold to min-

imise the expected cost, such as done by Ulvila and Gaffney [112]. Such a metric is

however strongly dependent on the observed ratio of attack to benign traffic, which is

strongly inflated in NID-datasets, and requires operational information to assign costs

to a false alert or intrusion. This evaluation works well in specific cases such as DoS-

attacks or cryptojacking, where server-downtime costs and attack volume are generally

quantifiable, but is not applicable in cases where this information is not available or

well defined [113].

Training classifiers on imbalanced dataset can affect their performance, both due

to the imbalanced ratio of attack to benign traffic and the imbalance between several
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attack classes. Some methods have been proposed to augment or synthetically inflate

minority samples for attack traffic [114]. As an anomaly-detection method, CBAM is

however trained in a self-supervised way strictly on benign traffic, with no attack traffic

being present in the training data. The training stage is therefore independent of the

minority class ratio in a given dataset and does not require specific balancing methods.

In the evaluation stage, the above described steps apply for both classification- and

anomaly-detection-based methods.

5.5.4 Benchmark comparison models

We compare our detection and false positive rates against three network anomaly mod-

els that we have re-implemented and re-evaluated.

A recent and well cited survey by Nisioti et al. [13] identified the UNIDS model
by Casas et al. [115] as achieving the highest detection rates of remote access attacks

on the KDD-99 dataset, so we chose to include this method as our first benchmark.

The authors rely on subspace-projection and density-based clustering (DBSCAN) for

outlier detection, and achieve detection rates of access attacks at around 80−85% on

the KDD-99 dataset with a false positive rate of 3.5%.

Niyaz et al. [116] present a more recent deep-learning model combines anomaly

detection and classification by using sparse autoencoders and detection through recon-

struction error. The authors classify individual flows and claim a detection precision

of 99% with a recall of 97.5%, even higher than the UNIDS model.

Finally, Radford et al. [96] predict sequences of individual flows between pairs

of hosts using a two-layer LSTM network. Flows are tokenised according to their

protocol and size, and the model detects 60% of the attacks at a false positive rate

of about 2% on the CICIDS-2010 dataset. This model is closest to ours in terms of

contextual anomaly detection from flow metadata, and achieves the best results out

of the three benchmark models during our evaluation. We include it to highlight the

improvements our design choices yield over other contextual LSTM-models.

Lastly, we include a more shallow version of our model, depicted in Fig. 5.6, to

highlight the benefits of a deeper structure. This model only contains one LSTM-layer,

and no linear layer before the output layer.
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Figure 5.6: Architecture of the shallow LSTM-model version we use as a benchmark.

5.6 Detection performance

We now demonstrate that we can build an accurate and close-fitting model of normal

behaviour with CBAM. We train models for each dataset separately, but without any

change in the selected hyperparameters, i.e. number of hidden cells, vocabulary size,

learning rate etc.

As described above, we estimate detection rates using traffic of various remote

access attacks in the CICIDS-17 dataset. Table 5.3 describes the number of sessions

present for each attack class.

FTP-BF SSH-BF Web-BF SQL-Inj. XSS Heartbleed Infiltr.

# Sessions 243 210 88 8 41 4 17

Table 5.3: Number of sessions for each attack class in the CICIDS-17 dataset

5.6.1 CICIDS-17 results

Table 5.4 and Fig. 5.7 depict anomaly score distributions and detection rates for traffic

from seven different types of attacks.

Most notable is that scores from all attacks except cross-site scripting (XSS) are

significantly higher distributed than benign traffic, with median scores lying between

0.75 and 0.89. Detection rates with our chosen threshold of T = 0.77 are highest for
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Figure 5.7: Score distribution for access attacks contained in the CICIDS-17 dataset.

Heartbleed attacks (100%), followed by FTP and SSH brute-force attacks and SQL-

injections, where 91%, 74%, and 75% of all affected sessions are detected. Detection

rates are lowest for XSS and Infiltration attacks. The overall detection rates we achieve

are in a similar range as most unsupervised methods in Nisioti et al.’s evaluation [13],

but with significantly better false positive rates.

Anomaly scores (T=0.77) Detection Shallow

min max median rates [%] LSTM

Brute-force Web 0.50 0.92 0.80 0.66 0.28

FTP-Patator 0.28 1.00 0.82 0.91 0.38

Heartbleed 0.89 0.89 0.89 1.00 0.0

Infiltration 0.57 0.97 0.75 0.41 0.0

SQL-injection 0.67 1.00 0.84 0.75 2 0.21

SSH-Patator 0.47 0.86 0.80 0.74 0.67

XSS 0.06 0.75 0.20 0.00 0.0

Table 5.4: Anomaly score distributions and detection rates at threshold T for known-

malicious sessions in the CICIDS-17 dataset, as well as detection rates for a less com-

plex benchmark model (Fig. 5.6).

XSS and infiltration attacks cause the victim to execute malicious code locally.

Heartbleed and SQL injections on the other hand exploit vulnerabilities in the commu-

nication protocol to exfiltrate information, and are thus more likely to exhibit unusual

traffic patterns, visible as excessively long SQL-connections or completely isolated

TCP-80 flows for SQL-attacks, or unusual sequences of connections initiated by the
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attacked server during Heartbleed attacks.

Brute-force attacks on the other hand cause longer sequences of incoming connec-

tions to the same port of a server, in this case to port 21 for FTP, 22 for SSH, and 80

for web brute-force. Especially for port 80, such sequences are not necessarily un-

usual, which explains the difference in detection rates between web brute-force, which

CBAM does not detect reliably, and FTP and SSH brute-force, which are detected at

a higher rate. Depending on how much benign traffic the particular sessions are over-

layed, the estimated anomaly scores can vary. Brute-Force attacks are not low in vol-

ume, and spread over many sessions since we introduced a maximum session length.

For these types of attack, CBAM therefore only has to flag a smaller percentage of

malicious sessions the attack generates to detect anomalous behaviour.

Fig. 5.8 provides ROC (Receiver operating characteristic) curves for each attack

type. As seen, for Heartbleed, FTP brute-force, SQL injection, and infiltration attacks,

CBAM starts detecting attacks with close to zero false positives.
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Figure 5.8: ROC-curves for different attack types in the CICIDS-17 dataset.

5.6.1.1 Comparison models

We now compare detection rates between our model and the three models described in

Section 5.5.4 that we chose as benchmarks.

All three models ultimately detect anomalies when an anomaly score exceeds a

threshold, which controls the balance between low false positive rates and high detec-

tion rates and usually depends on the given data. To create a fair comparison, we chose
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threshold providing similar false positive rates of 0.01%, e.g. the 99.9% anomaly score

quantile of the training data, which is necessary for assessing suitability for real-world

deployment as we have argued in Section 5.4.6.

1-AUC scores

Our model UNIDS Radford Niyaz shallow m.

Brute Force Web 0.016 0.49 0.027 0.32 0.048

FTP-Patator 0.0025 0.011 0.0048 0.16 0.0052

Heartbleed 0.0003 0.0057 0.032 0.077 0.012

Infiltration 0.046 0.033 0.35 0.15 0.11

SQL-injection 0.005 0.44 0.497 0.39 0.019

SSH-Patator 0.009 0.013 0.035 0.011 0.005

XSS 0.127 0.02 0.03 0.16 0.13

Average 0.044 0.144 0.135 0.18 0.091

Table 5.5: 1-AUC scores for our model and the implemented comparison models on the

CICIDS-17 dataset. Fat numbers indicate the best value for each attack.

To assess the overall separation between benign and malicious traffic for each

model, we calculated 1−AUC (Area under ROC curve) scores by varying the thresh-

olds for each model, and calculating the area under the ROC-curve, depicted in Fig.

5.8 and Table 5.5.

In comparison to the other benchmark models, our shallow model is capable of

making some detection at the chosen false positive rate, but cannot reach the levels

of our deeper model. While brute-force attacks are still detected, more nimble at-

tacks such as Heartbleed or XSS are less distinctive from benign traffic for the shallow

model. It is remarkable that by adding the described additional layers, we are able to

more than double the overall detection power, as indicated by the 1-AUC-scores.

5.6.2 LANL results

We now examine whether CBAM is able to detect actual attacks in real-life traffic from

the LANL-15 dataset.

As described in Section 5.5.1, we do not have labels for malicious flows in the

LANL-15 data. Instead, attacks are described by narrow intervals surrounding con-

ducted malicious activity. These intervals inevitably contain benign activity too. How-

ever, as the intervals are narrow and we saw that benign sessions only rarely receive
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high anomaly scores, a session with a high anomaly score is likely to be associated

with a malicious event. Of the hosts in the dataset we selected for evaluation, hosts

C2519 and C754 are subject to the red team attacks. The red team activity is spread

over three attack intervals A1, A2, and A3.

Figure 5.9: Computed scores for the third attack interval in the LANL data, along with

our detection threshold.

Sessions in A1 and A2 have similar scores as other benign traffic, with no sessions

receiving remarkably high scores. It is both possible that CBAM did not identify the

malicious traffic, or that the activity in these intervals was purely host-based and did

not generate any traffic.

Interval A3 is more interesting, containing 15 sessions for host C2519 and 5 ses-

sions for host C754 that have high anomaly scores, as depicted in Fig. 5.9.

For host C2519, each session with a high anomaly score consists of a single TCP-

flow on port 445, which is usually reserved for a Microsoft SMB service. The anomaly

of these sessions becomes apparent when we compare them to other sessions that con-

tain TCP-flows on port 445.

Proto SrcAddr Sport DstAddr Dport Prob End

1 tcp C20473 N345 C2519 445 0.03

2 tcp C2519 445 C20473 N345 0.55

Table 5.6: Exemplary session with SMB-traffic, host C2519, along with the estimated

probability of the session to end.

All other sessions contain at least two subsequent flows. The model, in expectation

of other following flows, assigns a very low probability to the sessions ending after a

single flow. Since the analysis of the identified sessions supports their anomaly score,

we believe it is very likely that these events correspond to the conducted malicious

activity.



118 Chapter 5. CBAM: An anomaly detection model for traffic microstructures

5.6.3 How attacks affect flow structures

We now examine in more detail why modelling sequences of flows is effective to detect

access attacks, and how these attacks alter common flow structures. Unfortunately,

the CICIDS-17 dataset, and to our knowledge all other NID-datasets, do not contain

sufficient ground truth information about included attack traffic, so this analysis is

based on empirical domain-knowledge of similar attacks as well as the traffic itself.

Figure 5.10: Flow-sequence in an SQL-injection attack with predicted size likelihood

(log-scale). Arrows indicate flow directions (down=incoming, up=outgoing).

Fig 5.10 shows a session in the CICIDS-17 data that corresponds to a SQL-injection

attack on host 172.16.0.1, a Ubuntu web server. Depicted is the order of the flows along

with their direction, the destination port and the size of the flow. Dashed rectangles in-

dicate the most likely flow size as predicted by CBAM. Below are the likelihoods of

the actually observed flow sizes on a log-scale, which determine the anomaly-score of

the session.

SQL-requests from a web-server typically consist of verification of user credentials

or the retrieval of specific content on a web page. In an SQL-injection, SQL-code

is injected into a HTTP-request that forces the server to retrieve, modify or forward

additional content from an SQL-database, which can significantly increase the size of

the corresponding SQL-request.

The sequence of flows in Fig. 5.10 overall resembles regular incoming HTTP re-

quests accompanied by corresponding outgoing SQL-requests from the server. How-

ever, Fig. 5.10 clearly shows that the sizes of two of the SQL-connections on port 1433
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are magnitudes larger than CBAM is predicting based on the context of the surround-

ing flows, which is likely caused by the injection attack. This results in a very low

likelihood of the observed flow sizes and a high anomaly score for the whole session.

Fig 5.11 depicts a session that corresponds to an infiltration attack on host 192.168.10.8

in the CICIDS-17 data. Again, the figure depicts the order, direction, size and destina-

tion port of the flows, along with predictions of the most-likely sizes (dashed rectan-

gles) and the overall likelihood of the actually observed flows.

This sequence does not resemble regular behaviour typically encountered on this

host. DNS flows on port 53 are typically followed by HTTP flows on port 80 or 443,

to which the model assigns a very high likelihood after the first 4 flows. However, this

session contains excessively many consecutive DNS flows, which are interrupted by

only one HTTP flow. Correspondingly, the likelihood for the excessive DNS flows as

well as the overall session likelihood is low.

It is not completely clear how the infiltration attack triggers this abnormal be-

haviour. Possibly, the infiltration software is trying to retrieve the current address of a

C&C-server via DNS.

Figure 5.11: Flow-sequence in an infiltration attack with port-direction likelihood (log-

scale).

5.6.4 Runtime performance

CBAM contains around 35000 parameters, which is relatively lightweight for deep

learning models. The processing of a session of ten flows takes around 23ms on our
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setup, which is far shorter than the average length of 5.6s of a session. In a similar

comparison, our setup can process one day of activity (≈ 15000 sessions) of a web

server in the UGR-16 dataset in 95s.

Considering these runtime numbers, the necessary rate of recorded flows to over-

whelm our setup would need to exceed 434 flows/second. The largest rate observed

for Brute-Force attacks in the CICIDS-17 dataset is 23 flows/second.

5.7 Benign traffic and longterm stability

5.7.1 UGR-16 data

We conduct the main validation of the longterm stability of CBAM on benign traffic

in the UGR-16 dataset, which contains real-world traffic and spans several months.

For this, we split the test data into two disjoint sets that span from May-July and

August-September while being separated by one month. We then look at the quantiles

and visual distribution of session scores in each test set and assess whether the score

distributions and number of false positives changed as evidence on concept drift in the

traffic. Fig. 5.12 depicts the score distribution of benign sessions for each dataset in

the corresponding test sets.

As visible in the plot, the centre of the score distribution is concentrated very well in

the lower region of the [0,1] interval, with about 50% of all sessions receiving scores in

the region between 0.1 and 0.25. High scores are rare, with only very small percentages

exceeding our chosen detection threshold of T = 0.76.

This is also reflected by the corresponding table that describes score distributions

for all 5 hosts in the UGR-16 data. On average less than 0.15% of all assumed-benign

sessions exceed the threshold, which would translate to fewer than ten false-alerts over

the span of four months on a host with similar activity rates.

Differences in the score distributions for the two test sets are quasi non-existent.

The core of the distributions are very stable, with the score quantiles differences being

less than 0.03. There are some differences in the observed false positives, but the

available sample size is not large enough to make any statements on any systematic

differences.

A clear banding structure is visible in the plotted distributions, with most session

scores being very concentrated on narrow intervals. These scores represent frequently

reoccurring activities that generate very similar traffic sequences. Fig. 5.12 shows that
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test set 1 test set 2

50% 90% Pr(>T) 50% 90% Pr(>T))

42.219.153.32 0.21 0.39 0.01% 0.22 0.38 0.01%

42.219.155.189 0.12 0.20 0.01% 0.10 0.21 0.03%

42.219.155.128 0.24 0.44 0.63% 0.19 0.43 0.41%

42.219.155.4 0.13 0.34 0.10% 0.17 0.39 0.23%

42.219.154.44 0.11 0.32 0.13% 0.11 0.28 0.11%

Figure 5.12: Anomaly score distributions for benign traffic in the UGR-16 data, along

with an exemplary distribution plot for a selected host.

these banding structures remain virtually unchanged over several months and carry

over from test set 1 to test set 2.

We coloured three of these bands in Fig. 5.12 at different levels as well as two of

the observed false-positives, which we are now examining closer. Fig. 5.13 depicts

the corresponding dominant session pattern that is present in each band along with the

predicted likelihood for each flow. Again, the figure depicts the order, direction, size

and destination port of the flows, along the overall likelihood of observed flows. For

clarity, we omitted the predictions of the most-likely flow sizes (dashed rectangles).

The two lower bands, blue and red located at AS = 0.061 and AS = 0.18, repre-

sent simple and frequent HTTP- as well as corresponding NoSQL-requests and SSH

activity by the server. These sessions are therefore predicted with high accuracy.

The green band at AS = 0.45 represents more complex and longer sessions that
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Figure 5.13: Sessions corresponding to score banding structures in Fig. 5.12, with

predicted likelihoods (log-scale).

involve both incoming and outgoing HTTP-connections as well as TelNet and RDP

connections. The size and order of the flows in these sessions is less deterministic than

the activity in the red and blue bands. This activity is also less frequent, which explains

the less accurate predictions by CBAM. The model however still recognises these ses-

sions and is able to predict flow state and size with a non-vanishing probability, which

keeps the overall session score bounded.

The two purple-coloured sessions likely represent server inspection activity, in-

volving activity on port 0, SSH-sessions and activity on uncommon ports. This type of

activity is very rare on this server and appears less deterministic than other more com-

mon activity. CBAM therefore fails to recognise the session structure and is not able

to assign non-vanishing probabilities to several flows, which decreases the overall ses-

sion likelihood and results in a high anomaly-score. We are not aware how often server

are subject to inspections and whether this would present a problem in operational de-

ployment. However, it seems feasible that resulting false-alerts could be linked to this

administrative activity automatically or by a security analyst.



5.7. Benign traffic and longterm stability 123

5.7.2 CICIDS-17 and LANL-15 results

We now look at the structure and stability of anomaly scores for benign traffic in the

LANL-15 and CICIDS-17 datasets. The plots and tables in Fig. 5.14 depict the score

distribution of presumably benign sessions in both datasets as well as describe the 50%

and 90% quantiles and false-positive rates for each host. Again, score distributions for

both datasets are concentrated well in the lower region of the [0,1] interval. For both

datasets, the median lies between 0.06 and and 0.29.

For the LANL-15 data, we observe the same banding structure as in the UGR-15

data, with most sessions being concentrated in these bands. This banding is however

far less pronounced in the CICIDS-17 data, with the majority of session scores here

being dispersed to a greater extent. This suggests that the traffic generation process

for this dataset relies far less on reoccurring rigid activities than we observe in real-

life data, which however does not seem to deteriorate the prediction performance of

CBAM.

5.7.3 Importance of training data size

Host C13845 in the LANL-15 and host 192.168.10.51 in the CICIDS-17 data are an

exception from the above observations, with their median anomaly score being 0.38

each and their estimated false-positive rates being 0.4% and 0.42%, which significantly

exceed the average of 0.1%.

When examining host 192.168.10.51, we notice that it produced less traffic than

other hosts in the CICIDS-17 data. Due to this fact, the training dataset only contains

3096 sessions or 36989 flows for this host, compared to about 10000 sessions or

115000 for host 192.168.10.25.

For hosts C13845, we see a similar picture. Because the host is less active than

others in the dataset, the training data contains only 728 sessions or 2423 flows for this

host, compared to 6013 sessions for the host with the next fewest training sessions.

This suggests that traffic on these hosts are not necessarily harder to predict for

CBAM, but that the lack of sufficient training data prevents CBAM from learning

traffic patterns for these two hosts effectively. To verify this, we examined how many

sessions are necessary in the training phase to achieve similar false positives at a given

anomaly threshold. We selected the hosts with the most sessions for each dataset,

and reduced the number of training sessions from 10000 to 3000 and 1000. We then

trained models with otherwise similar settings and compared how many additional
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50%q 90%q Pr(>T)

C10047 0.06 0.34 0.053%

C443 0.06 0.33 0.119%

C2519 0.19 0.25 0.064%

C13845 0.38 0.63 0.40%

C486 0.12 0.48 0.16%

C7379 0.09 0.38 0.11%

C754 0.22 0.40 0.08%

C7564 0.06 0.38 0.11%

C9020 0.10 0.43 0.19%

C9676 0.29 0.51 0.19%

50%q 90%q Pr(>T)

10.25 0.25 0.49 0.09%

10.50 0.11 0.50 0.17%

10.51 0.38 0.63 0.42%

10.8 0.25 0.56 0.064%

Figure 5.14: Anomaly score distributions for benign traffic in the LANL-15 and CICIDS-

17 datasets.

sessions exceed the anomaly threshold. For UGR-16 and LANL-15, we examined if

increasing the number of training sessions to 20000, which was not possible for the

CICIDS-17 data.

Fig. 5.15 depicts the corresponding false-positive rates for each host. False-positive

rates for the UGR-16 and the CICIDS-17 hosts are already significantly affected when

only trained on 3000 sessions, and increase further when only 1000 host sessions are

available during training. Increasing the number of sessions to 20000 however does

not seem to have an effect to further improve the model.

For the host in the LANL-data, this effect is far less pronounced, and false-positives

at 3000 sessions are similar to the ones at 10000 and 20000. CBAM apparently is able
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Figure 5.15: Influence of number of sessions in training data for benign traffic modelling

accuracy.

to learn flow predictions sufficiently from similar hosts in the dataset without depend-

ing on sessions specifically from the selected host. When we train CBAM exclusively

on sessions from host C2519 without data from other hosts, the same deterioration of

model prediction can be observed.

5.8 Benefit of increased model complexity

A significant part of the conducted work was concerned with improving the given

network design to address insufficient predictions for several traffic phenomena and

boost overall model performance. We now outline several key-steps in the design

process and how they improve performance.

5.8.1 Bidirectionality for better session context

The usage of bidirectional LSTM layers compared to unidirectional ones significantly

improved the prediction of events at the beginning of a session and consequently

boosted detection rates within short sessions. Fig. 5.16 demonstrates this in a detailed

manner: Displayed is a short session of 4 flows containing FTP and HTTP activity on

host “42.219.153.32”. On the right side are the predicted likelihoods of FTP and HTTP

states for each flow in the session, with the blue bars corresponding to predictions by

the forward layer, while the red bars display the backwards direction and the green

bars display the likelihoods after aggregating both predictions.

Fig. 5.16 demonstrates this in a detailed manner: Displayed is a short session of 4

flows containing FTP and HTTP activity on host “42.219.153.32”. On the right side
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Figure 5.16: Common short session and the flow likelihoods predicted by each dirctional

model.

are the predicted likelihoods of FTP and HTTP states for each flow in the session,

with the blue bars corresponding to predictions by the forward layer, while the red

bars display the backwards direction and the green bars display the likelihoods after

aggregating both predictions.

When only relying on the forward direction, for the first two flows the predicted

likelihoods are less than 0.07 each. The last two flows of the session are however pre-

dicted well with high likelihoods over 0.3. Because the session is short, the inaccurate

predictions for the first two flows decrease overall likelihood of the session to 0.18 and

the corresponding anomaly score to AS= 0.73, which is just below the anomaly thresh-

old, even though this type flow sequence is quite common in the UGR-16-dataset. In a

similar manner, this applies for the backward direction with the likelihoods of the last

two observed flows being 0.02 and 0.03 respectively.

The cause for these phenomena is that the start of a session can differ significantly

for different activities, and the LSTM-layer needs some context before recognising

the specific activity and make corresponding predictions. In short sessions, the lack

of accurate predictions in the first flows can then dominate the anomaly-score of the

whole session.

By adding a bi-directional layer, we are able to provide context for these initial

flows in a session as well by looking at later flows first. The green bars in Fig. 5.16 dis-

plays this: By basing predictions both on the output of the forward- and the backward-
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Likelihood of
FP rate [%]

flows 1&2

unidir bidir unidir bidir

UGR-16
All sess. 0.13 0.27 0.31 0.12

sess.<5 flows 0.19 0.41 1.6 0.09

CICIDS-17
All sess. 0.09 0.29 0.37 0.18

sess.<5 flows 0.05 0.30 1.7 0.13

Table 5.7: Average likelihood of first two flows in a session and false-positives for uni-

and bidirectional model.

layer, the bidirectional model is able to predict flow likelihoods significantly better and

thus assign the session a much lower anomaly-score.

Table 5.7 displays how much we could decrease false-positive rates by replacing

the unidirectional LSTM layer with a bidirectional one. Overall, the false-positives

decreased by 61% for the CICIDS-17 dataset, and by 52% for the UGR-16 dataset.

More strikingly, when only looking at short sessions that contain less than 5 flows, we

were able to reduce false-positives by 94% and 87% respectively.

5.8.2 Additional layers for complex session modelling

The inclusion of a second LSTM-layer as well a subsequent linear layer allows CBAM

to capture more complex behaviour in long sessions as well as remember rare be-

haviour more quickly. It also increased the average predicted likelihood for flows

overall.

To examine the benefit of the described model depth, we compare it to a more

shallow version that lacks the second LSTM- and linear layer, as depicted in Fig. 5.6,

which was trained under otherwise similar conditions. Overall detection rates for this

model can be found in Table 5.4 and 5.5, while score distributions can be found further

down in Table 5.8. Here, we examine in more detail how the increased model depth

allows better predictions for complex sessions.

Fig. 5.17 displays two different types of activities, A and B, which are common

in the CICIDS-17 data. The structure in these sessions can be observed frequently

with only minor variations. Consequently, the sessions are predicted well by both the

original and the more shallow model.
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Figure 5.17: Predictions for two activities in isolated sessions and in a mixed session.

However, traffic from two or more activities can sometimes occur simultaneously

and thus get grouped into the same session. Fig. 5.17 shows how the traffic from

activity A and B are overlapping in a session, which makes the structure in the session

more complex to predict.

The displayed likelihoods show predictions by the shallow model are accurate for

flows at the beginning of the session well, but deteriorate once encountering flows

from activity B. Prediction accuracy by the more complex model is also decreasing,

but remaining on a sufficient level to assign this session an anomaly score of AS= 0.51,

compared to ASS = 0.79 for the shallow model. When looking at the activation in the

LSTM-memory cell, we see that similar neurons as in activity A are activated at the

beginning of the session, which shifts during the course of the session and resembles a

more similar activation as in activity B at the end.

The improvements achieved by adding these additional layers could suggest that

increasing the number of layers even further will decrease false positive rates even
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further, which we discuss in Section 5.10.

5.8.3 Comparison with simpler models

In this section we aim at studying whether the higher complexity of an LSTM net-

work is necessary for the task of detecting contextual network anomalies, or whether

simpler baseline methods can achieve the same results. For comparison purposes, we

implemented a first-order Markov Chain (MC) and a Non-Deterministic Finite Au-

tomata (NDFA) model. Both methods are widely used in sequence modelling, and

have been applied successfully to security problems [117, 118]. In contrast to LSTMs,

Markov Chains have no memory past the last event while NDFAs can distinguish be-

tween different types of sequences via state-merging, and give corresponding transition

probabilities.

Similar to our LSTM model, Markov Chains and Finite Automata predict state tran-

sition probabilities, which is why we can employ the same anomaly score computation.

However, computational costs increase quadratically with the number of states, and a

separation of state vocabularies is not possible. We restrict both comparison models to

the above described port-direction states. Models and detection rates were determined

on the CICIDS-17 dataset. Table 5.8 shows distribution characteristics of benign and

malicious sessions for our shallow LSTM-model, the Markov Chain model, and the

NDFA. It shows that CBAM outperforms these baseline methods, but also that the au-

tomata performs better than Markov Chains. While the Markov Chain is practically

not able to make any distinction between malicious and benign traffic, the automata

model shows some, albeit limited ability to identify anomalous sessions, mainly for

the three types of brute-force attacks. This order shows the importance of sequence

memory for contextual anomaly detection, and confirms our previous comparison of

the suitability of Markov Chains and NDFAs for network intrusion detection [119].

5.9 Related work

The application of recurrent neural networks to network intrusion detection has risen

in popularity recently. LSTM-models for web attack detection, such as by Yu et al.

[120], improve detection rates of simpler preceding models such as Song et al. [121].

They rely on deep packet inspection, and are often targeted at protecting selected web-

servers rather than network-wide, due to a lack of computational scalability and in-
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shallow Markov
NDFA

LSTM MC

Ben. 50%q 0.22 0.61 0.55

Ben. 90%q 0.55 0.81 0.86

Ben. 99%q 0.73 0.89 0.96

Mal. 50%q 0.70 0.60 0.68

Mal. 90%q 0.85 0.83 0.89

Mean AUC 0.86 0.53 0.64

Table 5.8: Score distributions for simpler models.

creasing traffic encryption. Methodologically, vocabularies are created from string

sequences with well-known NLP methods, while CBAM provides a new vocabulary-

construction method suitable for traffic metadata.

The majority of LSTM-based metadata approaches rely on labelled attack data for

classification, and do not have the scope of anomaly-based models to detect previously

unseen attacks. A prominent example of this comes from Kim et al. [103], who classify

flow sequences based on 41 numeric input features. Anomaly-based approaches, such

as ours, mostly rely on iterative one-step ahead forecasts, with the forecasting error

acting as the anomaly indicator. This is for instance done in GAMPAL by Wakui

et al. [122], who use flow data aggregation as numerical input features, which are

computationally easier to process, but cannot encapsulate high-level information such

as the used protocol, port, or direction. These models are best used for detecting

high-volume attacks. Apart from our work, only Radford et al. [96] create event

vocabularies from flow protocols and sizes. We use a more sophisticated model in

terms of stacked recurrent layers and embeddings for more input features, which results

in higher detection rates, as demonstrated in see Section 5.8. The HCRNNIDS model

by Kahn provides an interesting adaption of hybrid convolutional recurrent networks

typically used in video modelling to intrusion detection [123] with promising results.

In comparison to CBAM, this model is applied to individual flow features rather than

flow sequences, and is trained as a classifier rather than an anomaly-detection model.

Encoding methods are increasingly used in combination with LSTM networks to

create embeddings of packet or flow sequences, such as done by Zhong et al. [124] for
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anomaly detection. Zhou et al. [125] use embeddings to facilitate anomaly-detection

that is robust against dataset imbalances. Liu et al. [114] use embeddings to augment

and inflate minority class data samples for the same purpose.

Berman et al. [126] have surveyed recent deep-learning techniques for network

intrusion detection as well as other cyber-security applications. They assess that many

recurrent methods are state-of-the-art, but do not reach a conclusion whether they per-

form better than convolutional or generative methods.

Notable work outside of network traffic includes Tiresias [127], an LSTM model

for security event forecasting with great accuracy, and DeepLog [128], an LSTM net-

work to learn a system’s log patterns (e.g., log key patterns and parameter values) from

normal execution. The design of Tiresias has similarities to ours, but the scope of the

model is attack forecasting rather than intrusion detection, and relies on both different

input data in the form of IDS logs as well as different evaluation metrics. DeepLog

is combined with a novel log parser to create a sequence of symbolic log keys, which

is then also modelled using one-step forecasting. The authors achieve good detection

results in regulated environments such as Hadoop with limited variety of events (e.g.,

29 events in Hadoop). Here, CBAM goes further by being applied to a much more

heterogeneous data source and creating a more than 30 times larger vocabulary. Han

et al. [129] have recently proposed a deep graph-net based anomaly-detection method

for provenance based data that demonstrates how effective neural anomaly-detection

methods at detecting unknown intrusions.

5.10 Limitations and evasion

5.10.1 Limitations

CBAM is an initial application of short-term contextual modelling on network traf-

fic that demonstrates the potential of contextual traffic models for intrusion detection.

Although we use a relatively simple model with few, but carefully selected input fea-

tures, we outperform sophisticated methods while retaining low false positive rates.

The detection rates are to be taken with care as the available access attack data is

small, synthetic and contains just a limited number of attack classes. The detection

rates in the cross-evaluation on a real-world access attack in the LANL-15 data gives

us confidence that CBAM’s performance is reproducible in real-world scenarios, but

additional data is required for an ultimate conclusion.
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A frequently asked question concerns whether low false-positive rates carry over

from the synthetic background traffic in datasets such as CICIDS-17 to real-world

scenarios [14]. We believe that this was sufficiently demonstrated by the long-term

evaluation and the observed score stability on the UGR-16 real-world dataset.

The improvements achieved by adding additional layers could suggest that increas-

ing the number of layers even further will decrease false positive rates even further, and

is certainly worth exploring in future work. However, as discussed in Section 5.7.1, the

current main source for false positives are rare activity events which are not contained

in the training data and are therefore not be recognised by the model. To make signif-

icant reduction in the false positive rate, we would need to train on datasets spanning

more computers or over longer time periods. We are however aware of the difficulties

involved in creating datasets for NIDS evaluation.

5.10.2 Evasion and resilience

Evasion tactics and corresponding model resilience against them have been a concern

in the development of NIDS. We specifically focused on short-term sequential anoma-

lies as they are often an unavoidable by-product of attack sequences, and it is thus very

difficult for an attacker to perturb attack sequences that rely on a specific exploit with-

out pre-existing control over the victim device or other network devices. We therefore

believe that CBAM is relatively robust against evasion. However we identified poten-

tial improvements for future work.

A specific evasion tactic that has been discussed extensively in the context of ma-

chine learning is model poisoning in the training/retraining phase. A great difficulty

for the attacker is the fact that CBAM uses sequences of symbolic events rather than

continuous parameters. The introduction of a gradual shift is therefore not possible

in a direct way as the alteration of individual events would look anomalous straight

away. Furthermore, it is normally not possible for an attacker to alter individual events

significantly without pre-existing control over network devices or specific exploits, i.e.

the change of the port or size would normally cause an error in the communication. It

is thinkable that an attacker could increase the predicted probability of specific events

patterns more gradually by overlaying traffic stemming from 3rd party devices. How-

ever, the attacker would either need control of these devices or the ability to monitor

traffic to the victim device in real-time, both of which is usually not available. We also

showed in Section 5.7 that short-term contextual traffic patterns remain stable over
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several months, which means that retraining of CBAM is only necessary at a low rate

and attackers will have to wait for a long time to execute successful model poisoning.

An issue we encountered is the overlay of malicious and benign traffic. Currently,

the existence of known traffic patterns in a session can deplete the overall anomaly

score of a session. A potential evasion tactic could therefore try to conceal an attack

behind benign communication on the victim device, an already common approach for

C&C communication. Possible improvements for this issue are a refined notion of a

session that groups related traffic better, and a better scoring method that identifies

smaller anomalous sequences in an otherwise normal sequence of flows. Additionally,

developing more sophisticated detection methods from the computed scores may boost

detection rates.

A potential tactic that an attacker could use to make a multi-step attack consisting

of multiple attack connections appear less anomalous is to artificially slow down con-

nections. If a connection in an attack sequence is slowed down enough, a response

from the victim or a follow-up connection from the attacker triggered by this connec-

tion could fall outside of the session window of 8 seconds. This way, an attacker could

place each connection in an attack sequence in a separate session, where the anomaly

of the connections would appear less anomalous than if most or all connections fall in

the same session. Future work should therefore examine if consecutive sessions could

be compared and if necessary concatenated or correlated.

5.10.3 Future Work

CBAM is an initial application of short-term contextual modelling to network traffic

that demonstrates the potential of contextual traffic models for intrusion detection. Al-

though we use a relatively simple model with few, but carefully selected input features,

we outperform sophisticated methods while retaining low false positive rates. Future

work may further improve detection and false positive rates to consistently detect more

types of contextual anomalies. Future work to extend the input or output feature space,

or to grow the size of the model will require careful design and calibration, but may

potentially achieve even better results and more accurate traffic representations.

An obvious step for improvements is to extend the existing model onto more input

features, making it harder for attacks to resemble normal short-term interactions in

network traffic while still performing their intended activity. Features such as packet

distribution features for individual flows are hard to spoof and can give more context
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to common sequences.

An issue we encountered is the overlay of malicious and benign traffic. Currently,

the existence of known traffic patterns in a session can deplete the overall anomaly

score of the whole session. Possible improvements for this issue are a refined notion

of a session that groups related traffic better, and a better scoring method that identifies

smaller anomalous sequences in an otherwise normal sequence of flows. Additionally,

developing more sophisticated detection methods from the computed scores may boost

detection rates.

To improve predicted probabilities at the start of a session, it may be helpful to

process the event sequence both from the start and the end using bidirectional mod-

elling. False positive rates may be decreased by computing anomaly scores differently

for shorter sessions.

Finally, the performance evaluation of our model would benefit from longer datasets

with more comprehensive real-world attacks to assess its the deployment potential. We

are however aware of the difficulties involved in creating datasets for NIDS evaluation.

All these steps will require careful design and calibration, but may potentially

achieve even better results and more accurate traffic representations.

5.11 Conclusion

CBAM presents a new and promising angle to anomaly-based intrusion detection that

significantly improves detection rates on the types of network attacks with the lowest

detection rates. By assigning contextual probabilities in flow microstructures, CBAM

improves detection rates of low-volume remote access attacks and outperforms current

state-of-the-art anomaly-based models in the detection of several attacks while retain-

ing significantly lower false positive rates. Furthermore, CBAM retains low false posi-

tive rates for periods stretching several months. Our results provide good evidence that

designing anomaly detection models based on observed traffic microstructures may in

the future help decrease the threat of previously unseen vulnerabilities and malware

aimed at acquiring unauthorised access on a host. We specifically focused on short-

term flow anomalies as they are often an unavoidable by-product of an attack thus very

difficult for an attacker to avoid without pre-existing control over the victim device or

other network devices.
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Stepping-stone detection and evasive

microstructure control

6.1 Introduction

The problem of stepping-stones detection (SSD) has been studied for over 20 years,

yet the body of literature fails at providing an informative overview of the detection

capabilities of current methods. In this chapter, we set out to do just that by evalu-

ating and comparing a number of selected state-of-the-art approaches on a new and

independently generated dataset.

In a stepping-stone attack, malicious commands are relayed via a chain of compro-

mised hosts, called stepping-stones, in order to access restricted resources and reduce

the chance of being traced back. Real-world attacks using stepping-stone chains in-

clude Operation Aurora [130], Operation Night Dragon [131], the Black Energy [132]

attack on the Ukrainian powergrid, and the MEDJACK [133] attack where medical

devices were used as stepping-stones. The European Union Agency for Cybersecurity

currently classifies stepping-stone attacks as one of the top ten threats to IoT-devices

[134].

The detection of interactive stepping-stones is challenging due to various reasons.

Packet-based methods are computationally expensive while false-positives can render

a method unusable. Attackers are not constrained to specific proxy techniques and can

encrypt their communication to make detection through content comparison impossi-

ble. Many methods therefore aim to detect traffic microstructures that reoccur in the

relayed traffic. However, attackers can obfuscate these microstructures with evasive

perturbations. Like many intrusion attacks, stepping-stones are rare and there exist no

135
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public datasets, leading researchers to evaluate their methods on self-provided private

data, which makes a direct comparison of the achieved results impossible.

This chapter discusses the following results:

1. We describe a framework to generate data that represents realistic stepping-stone

data without bias to particular detection mechanisms. Our framework is scalable

and capable of generating sufficient variety in terms of network settings and

conducted activity.

2. We re-implemented eight SSD methods that represent the current state-of-the-art

and provide a fair evaluation of their capabilities in a number of settings.

3. Our evaluation shows that while most methods can accurately detect stepping-

stones through traffic microstructure propagation, detection rates plummet when

appropriate perturbations are inserted. This result disproves the claims made for

multiple methods that their detection rates are robust against chaff perturbations.

Thesis context: This chapter builds up on the previous chapter by displaying sev-

eral methods that leverage microstructures for the detection of stepping stones, and

displays how an attacker can evade detection by altering specific microstructural as-

pects of the generated traffic.

This chapter is mostly consisting of work published in “Evading stepping-stone

detection with enough chaff” (Henry Clausen, Michael S. Gibson, and David Aspinall,

2020 [6]).

6.1.1 Outline

The rest of the chapter is organised as following: Section 6.1 provides an introduction

and background to the problem of stepping-stone detection. Section 6.3 discusses the

particular design of the data generation framework. Section 6.4 presents the dataset

arrangement in terms of background and attack data and discusses evaluation methods.

Section 6.5 discusses the selection process, properties, and implementation of the eight

SSD methods that we implemented for evaluation. Section 6.6 discusses the results

achieved by the implemented methods on the given data. Section 6.2 discusses related

work.
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Figure 6.1: Depiction of an exemplary stepping-stone chain.

6.1.2 Background and threat model

Stepping-stones were first conceptualised by Staniford-Chen and Heberlein in 1995

[135]. In an interactive stepping-stone attack, an attacker located at the origin host,

called host O, sends commands to and awaits their response from a target, host T.

The commands and responses are proxied via a chain of one or more intermediary

stepping-stone hosts, called host S1, . . . , SN , such as depicted in Fig. 6.1. Once a host

Si is brought under control, it can be turned into a stepping-stone with simple tools and

steps. Some of the most common set-ups are port forwarding via SSH-tunnels, setting

up a backpipe with NetCat, or using Metasploit to set up a SOCKS proxy [136].

Stepping-stone detection (SSD) is a process of observing all incoming and out-

going connections on a particular host hi and determining whether it is used to relay

commands. This is generally done with no prior information about any other stepping-

stone hosts S1, . . . SN or the endpoints O and T . A popular approach to SSD is to

compare connections pairwise to identify whether they carry the same information.

To avoid detection, several evasive flow transformation techniques exist that aim at

decreasing observable correlation between two connections in a chain.

• Packet transfer delays/drops: An attacker can choose to apply artificial delays

to forwarded packets, or drop certain packets to cause retransmission, in order

to create temporal disparity between connections. Researchers often assume the

existence of a maximum tolerable delay [137].

• Chaff perturbations: Chaff packets do not contain meaningful content and are

added to individual connections in a chain without being forwarded. Adding

chaff perturbations can be used to shape the connection profile towards other

traffic types.

• Repacketisation: Repacketisation is the practice of combining closely adjacent

packets into a larger packet, splitting a packet into multiple smaller packets, or

altering the packet content to change observed packet sizes and numbers.
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In our evaluation, we set out to understand the effect of different evasive methods

on detection rates. We are focusing on entirely on interactive stepping-stones as de-

scribed above, in which an attacker relays commands in real-time to their target. So

called store-and-forward stepping stones, which are described in 6.2 are not discussed

as their detection would follow a very different approach and requires different types

of data.

Similarly, we are looking at methods that detect stepping-stones by identifying

relayed interactive connections from a network-perspective. We are not looking at

methods that use host log data to reconstruct connection paths through a network or that

describe unusual activity patterns related to stepping-stones, as simulating temporal

stepping-stone activity realistically is difficult, with little empirical data to support

specific assumptions.

6.2 Related work

6.2.1 Testbeds and data

In 2006, Xin et al. [138] developed a standard test bed for stepping-stone detection,

called SST that generates interactive SSH and TelNet connection chains with variable

host numbers. In contrast to our work, the authors give little detail on implemented

evasive tactics, and is not available any more.

An approach to use publicly available data comes from Houmansadr et al. [16],who

simulate stepping stones by adding packet delays and drops retroactively to connec-

tions in the CAIDA data [43]. While this procedure seems sufficient for the evaluation

of watermarking methods, it falls short on simulating the effects of an actual connec-

tion chain and leaves out chaff perturbations.

We find that when authors evaluate methods on self-generated data, tested eva-

sive behaviours are often lacking analytical discussion and their implementations are

too simplistic, leading to increased detection rates. An example of this can be seen

in the evaluation of Ano1 [139], where a standard option in Netcat is used to gener-

ate chaff perturbations for evaluation, or for PContext [140] where simulated chaff is

added randomly after the traffic collection.Furthermore, often a relatively low limit on

the amount of inserted chaff perturbations is assumed without obvious reason, thus

avoiding evaluation at higher ratios.
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6.2.2 Detection methods and threat models

Coskun et al. [141] identify another form of stepping-stones called store-and-forward,

which transfer data within files in a non-interactive manner. Though harder to de-

tect than interactive connections, this procedure limits the attackers ability to explore

the target, which is why SSD research has been primarily concerned with interactive

stepping-stones.

A different direction in SSD that we did not discuss in this work focuses more on

the general communication behaviour of selected hosts rather than individual connec-

tions. Features include the timely correlation of connecting IP-address on a selected

host or unusual paths of simultaneously existing connections within a computer net-

work. Graph-based and behavioural models such as Hopper by Ho et al. [142] or

Apruzzese et al. [143] do not examine individual connections but instead focus on the

overall temporal activity of hosts in a network or as appearing in host logs. Since our

dataset focuses only on individual connections and corresponding evasion, we are not

able to include graph-based or behavioural approaches in our evaluation. For the same

reason, we did not include store-and-forward stepping-stones, which transfer data in a

non-interactive manner and should thus be identified through their temporal behaviour.

6.3 Data generation setting

6.3.1 Containerisation with DetGen

To ensure reproducibility, we rely on containerisation. A container is a standard unit

of software that runs standalone in an isolated user space in order to remove platform

dependencies and ensure repeatability. The use of containerisation for this project

follows the same traffic generation paradigm as used for our DetGen framework, which

we described in Chapter 3.

6.3.2 Simulating stepping stones with SSH-tunnels and Docker

We want to capture data not only from one interaction in a fixed stepping-stone chain,

but from many interactions and chains with different settings. For that, we run multiple

simulations, with each simulation establishing a stepping-stone chain and controlling

the interactions between host O and host T .

A simulation begins with the start-up of the necessary containers and ends with
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Figure 6.2: Depiction of the way a command is packetised, encrypted, and travels

through the different stages of the stepping-stone chain via SSH-tunnels.

their takedown. We simulate host O, host T , and host S1, . . . ,Sn with SSH-daemon

containers. To establish a connection chain, we connect these containers via SSH-

tunnels, with the first tunnel forwarding a port from host O to host S1, which is then

forwarded to host S2 by the second tunnel etc. As mentioned by Gordon Fraser [136],

this is one of the most common pivoting methods for attackers. Traffic is captured

both at host T and host Sn, which acts as the final stepping-stone in the chain. Fig. 6.2

depicts a packet transfer via an exemplary chain.

6.3.2.1 Simulating interactive SSH-traffic

In order to generate enough data instances representing interactive stepping stone be-

haviour, we automatised the communication between host O and host T . For each

simulation, we generate a script which passes SSH-commands from host O to host T .

To mimic a user’s actions, we compiled a command database which consists of

common commands and their usage frequency, similar to [138].Commands are drawn

randomly according to their usage frequency and concatenated to a script. Commands

can either be atomic, such as ”ls-la” or ”pwd”, or compound commands such as in-

putting text to a file. Command inputs are randomised appropriately when a compound

command is drawn. A scripts ends once the End-command is drawn at random from

the command catalogue.

To simulate human behaviour that is reacting to the response from host T , all com-

mands are separated by sleep-commands for time t, which is drawn from a truncated

Pareto-distribution. Paxson et al. [75] have shown that inter-packet spacings corre-

sponding to typing and ”think time” pauses are well described by Pareto distributions

with a shape parameter α ≈ 1.0.

6.3.2.2 Simulating different network settings

Hosts in a stepping-stone chains can be separated by varying distances. Some may

sit in the same LAN, while others may communicate via the Internet from distant

geographical locations, which influences the round-trip-time, bandwidth, and network
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reliability.

To retard the quality of the Docker network to realistic levels, we rely on the emu-

lation tool NetEm, which allows users to artificially simulate network conditions such

as high latency, low bandwidth, or packet corruption/drop [64]. We set the network set-

tings and bandwidth limit for each host container individually before each simulation

to allow hosts to experience different settings.

6.3.3 Evasive tactics

6.3.3.1 Adding transfer delays

To simulate evasive behaviour, we add transfer delays to forwarded packets. This

method, often called jittering, can destroy time-based watermarks in packet flows

and help decrease observable correlation between two connections. The delays are

added using NetEm. We draw delays from a uniform distribution, covering the inter-

val [0,δD]. This particular choice has been suggested by Padhye et al. [144] in order to

mimic the interarrival distributions of streaming services. The value of δD is fixed be-

fore each simulation and can be varied to allow for different degrees of packet jittering.

We explore values for δD up to 1500 ms, with values above leading to unstable com-

munication. Results in Section 6.6 show that this is enough to render watermarking

methods and most flow correlation methods obsolete.

6.3.3.2 Adding chaff perturbation

We insert chaff packets without actual information to individual connections in the

chain using a Netcat client. To add and filter packets in a connection, we open ad-

ditional ports in each SSH-tunnel that are however not forwarded through the entire

chain. Padhye et al. [144] suggest to generate chaff that mimics the flow characteristics

of streaming services to both spread the added perturbations evenly across the connec-

tion and increase the difficulty of detecting the perturbation itself. For this, packet sizes

are drawn from a truncated Lognormal-distribution with mean µC, while transmission

intervals are drawn from a uniform distribution that covers the interval [δC/2,δC] to

mimic a constant packet flow. By adjusting δC, we can control the amount of chaff

sent.

6.3.3.3 Repacketisation

By design, SSH-tunnels perform repacketisation along with re-encryption and inde-

pendent packet confirmations.
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Figure 6.3: Depiction the simulation setup for each host in the chain.

6.4 Evaluation data

We want to look at a variety of attack scenarios to highlight the strengths and weak-

nesses of different SSD approaches. We created three main attack datasets that contain

different forms and amounts of evasive behaviour, and a smaller dataset to highlight

the influence of different chain lengths.

To present a valuable false positive test, we provide three datasets with benign

background traffic. The first contains general real-world traffic, while the second and

third contain benign data that bears similar traffic characteristics as the generated attack

data.

6.4.1 Stepping-stone data

We create our main datasets using a chain of four stepping-stones S1,S2,S3, and S4. We

subdivide into three datasets: We first capture data without transfer delays and chaff

perturbations in dataset BA (baseline attack). We then capture data once with added

transfer delays with varying δD to control delays in dataset DA (delay attack), and

once with added chaff perturbations of varying δC in dataset CA (chaff attack). Each

dataset contains 30.000 connection pairs. We furthermore create a smaller dataset CL
(chain length) with differing numbers of stepping-stones (1,3,5, and 8 jumps) without

transfer delays and chaff perturbations.

6.4.2 Benign data

We include real-world traffic traces, taken from the CAIDA 2018 Anonymized Internet

Traces dataset [43], as overall background traffic. This data contains traces collected

from high-speed monitors on a commercial backbone link, and is often used for re-

search on the characteristics of Internet traffic.

To sufficiently test for false-positive, we also need to include benign traffic that
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Label Nr. of conn. Purpose

Attack data

set BA 30000 Baseline attack data without evasive

tactics

set DA 30000 Inclusion of delays with varying δD

set CA 30000 Inclusion of chaff with varying δC

set CL 40000 Data from chains of different lengths,

no evasive tactics

Benign data

CAIDA 60000 General background data

SSH 20000 Background data similar to attack

commands

Multim. 20000 Background data similar to chaff per-

turbations

Table 6.1: Summary of different components in our evaluation data.

has similar characteristics to the attack traffic and was generated in a similar network

environment. We created a set of interactive SSH-connections that communicate di-

rectly between the client and the server without a stepping-stone. We follow the same

procedure as described in Section 6.3.2.1.

Since we generate perturbations with multimedia streams characteristics, we addi-

tionally want to test for false-positives against actual multimedia stream traffic. For

that, we captured traffic from a Nginx-server streaming randomised video to a client.

We merge the three datasets to create our benign background dataset, with the

CAIDA part containing 60000 connection pairs, while the other two each contain

20000 connection pairs. The amount of SSH traffic and multimedia streams in this

setting is inflated from a realistic setting (up to 0.2% of flows for SSH and up 3%

for video streaming [145]) to highlight the strengths and drawbacks of SSD methods,

which we consider in the evaluation. In Section 6.6.4, we analyse false-positives for

each dataset individually. Table 6.1 summarises the different parts in our evaluation

data.

6.4.3 Evaluation methodology

To create a fair playing field for the selected SSD methods, we only look at connections

that exchange more than 1500 packets and exclude shorter connections from both the

data. The number of packets necessary for detection should ideally be a low possible

to enable early detection. The chosen number of 1500 packets seems like a suitable
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minimal limit since all of the selected methods are designed to make successful detec-

tion with 300-1500 packets. Furthermore, there were no connections with less packets

in the stepping-stone dataset. True stepping stone connections are rare compared to

benign ones, making their detection an imbalanced classification problem. An appro-

priate evaluation measure for imbalanced data are false positive and false negative rates

as well as the Area-under-ROC-curve (AUC) for threshold-based methods.

6.5 Selected SSD methods and Implementation

A range of underlying techniques exist for SSD, and we try to include approaches from

every area to create an informative overview and highlight strengths and weaknesses.

We surveyed publications to create a collection of SSD methods. We started with the

publications from surveys [146, 147], and then added impactful recent publications

found via Google Scholar (keywords “connection”, “correlation” “stepping-stone”,

“detection”, “attack”, “chaff perturbation”). From here, we selected approaches based

on the following criteria:

1. The achieved detection and false positive rates claimed by the authors,

2. and whether the model design shows robustness against any evasion tactics as

claimed by the authors.

3. We always selected the latest versions if a method has been improved by the

authors.

Table 6.2 contains a summary of the included methods. Especially for traditional

packet-correlation as well as robust watermarking and anomaly-based methods, there

has been little developments since the early 2010s. We labelled each method to make

referring to it in the evaluation easier.

PContext, 2011 Yang et al. [148] compare sequences of interarrival times in connec-

tion pairs to detect potential stepping-stone behaviour. For that, the contextual distance

of a packet is defined as the packet interarrival times around that packet. The authors

focus on Echo-packets instead of Send-packets to resist evasion tactics.The authors

evaluate their results with up to 100% chaff ratio with 100% detection rate.
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Category Approach TP FP Robustness Label

Packet-corr. Yang, 2011 [148] 100% 0% jitter/< 80% chaff PContext

Neural netw.
Nasr, 2018 [16] 90% 0.0002% small jitter DeepCorr

Wu, 2010 [149] 100% 0% - WuNeur

Yang, 2015 [140] not provided 50% chaff RWalk
RTT-based

Huang, 2016 [150] 85% 5% - Crossover

Anomaly
Crescenzo, 2011 [139] 99% 1% jitter/chaff Ano1

Huang, 2011

[151, 152]

95% 0%
> 25% chaff

> 0.2s jitter
Ano2

Watermark Wang, 2011 [153] 100% 0.5% < 1.4s jitter WM

Table 6.2: Summary of included SSD-methods along with the claimed true positive and

false positive rates and evasion robustness by the corresponding authors. We added

labels to each method for later reference.

WuNeur, 2010 Wu et al. [149] propose a neural network model based on sequences

of RTTs , which are fed into a feed-forward network to predict the downstream length

of the chain. The network itself only contains one hidden layer and achieves good re-

sults only if RTTs are small, i.e. when the stepping-stone chain is completely contained

within one LAN-network.

DeepCorr, 2018 Nasr et al. [16] train a deep convolutional neural network to identify

connection correlation from the interarrival times and packet sizes in each connection.

The trained network is large with over 200 input filters, and consists of three convo-

lutional and three feed-forward layers. On stepping-stones, the authors achieve a 90%

detection rate with 0.02% false positives.

RWalk, 2015 Yang et al. [140] combine packet-counting methods and RTT mining

methods to improve detection results from [154]. The model resists chaff perturba-

tion by estimating the number of round-trips in a connection via packet-matching and

clustering to determine if the connection is being relayed.

C-Over, 2016 Huang et al. [150] use the fact that in long connection chain, the

round-trip-time of a packet may be longer than the intervals between two consecutive

keystrokes. This will result in cross-overs between request and response, which causes

the curve of sorted upstream RTTs to rise more steeply than in a regular connection.
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Figure 6.4: ROC-curves for different SSD methods on dataset BA (no evasive tactics).

Anomaly-based methods are excluded.

Ano1, 2011 Crescenzo et al. [139] have proposed an anomaly-based methods to

detect time delays and chaff perturbations in a selected connection. Packet time-delays

are detected if RTTs exceed a threshold, while chaff detection compares the similarity

of downstream with upstream sequences. The authors claim detection for chaff ratios

25% or more, and for delays introduced to up to 70% of all packets.

Ano2, 2011/2013 Huang et al. [151, 152] proposed an anomaly-based method to

detect chaff and delay perturbations since interarrival times in regular connections tend

to follow a Pareto or Lognormal distribution, which chaffed connections supposedly do

not. The authors state 95% detection rate at 50% chaff ratio and more while retaining

zero false positives using a small set of interactive SSH stepping-stone connections.

WM, 2010 Watermarking typically yields very low false-positives for connection cor-

relation. Wang et al. [153] provide an approach that offers at least some resistance

against timing perturbations. The authors assume some limits to an adversary’s timing

perturbations, such as a bound on the delays.The authors state 100% TP with 0.5% FP

with resistance against timing perturbations of up to 1.4s.

6.6 Results

6.6.1 Data without evasion tactics

First, we look at the detection rates for traffic from stepping-stones that did not use

any evasive tactics, i.e. S1, . . . ,S4 are only forwarding commands and responses. The

successful detection of this activity with low false-positives should be the minimum
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PContext DeepCorr WuNeur RWalk C-Over WM

AUC 0.998 0.997 0.938 0.853 0.965 0.9998

Table 6.3: AUC-scores for different methods on stepping-stone data without evasive

tactics.
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Figure 6.5: Detection rates in dependence of δD for different methods on dataset DA

with a fixed FP rate of 0.4%.

requirement for any SSD method. Since anomaly-based approaches aim to only detect

evasive behaviour, we exclude them from this analysis.

Fig. 6.4 depicts the calculated ROC-curves, which plot the true positive rate against

the false positive rate for varying detection thresholds. Table 6.3 depicts the overall

AUC-scores.

Unsurprisingly, the watermarking method achieves high detection results with very

low false-positives. Both the PContext and DeepCorr models start to yield good de-

tection results of around 80% at a FP rate lower than 0.1%, with the PContext method

slightly outpacing the DeepCorr method. RTT-based methods seem to not perform as

well compared to the other included methods. Overall, the observed ROC curves seem

to be in agreement with the stated detection rates of the selected methods except for

RWalk.

6.6.2 Delays

We now consider the effect of transfer delays added by the attacker to packets on the

detection rates. For that, we pick detection thresholds for each SSD methods corre-

sponding to a FP rate of 0.4% as most methods are able to achieve at least moderate

detection results at this rate. We look at delays added to only to outgoing packets on

S4, the last stepping stone in the chain. Fig. 6.5 depicts evolution of detection rates in

dependence of the maximum delay δD.
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PContext DeepCorr WuNeur RWalk C-Over Ano1 Ano2 WM

AUC 0.638 0.995 0.613 0.641 0.952 0.997 0.996 0.562

Table 6.4: AUC-scores for SSD methods with added transfer delays at δD = 1000ms.
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Figure 6.6: Detection rates in dependence of δC for different methods on dataset CA

with a fixed FP rate of 0.4%

As visible, both anomaly-based methods are capable of detecting added delays

relatively reliably above a certain threshold. Furthermore, both the detection rates of

DeepCorr and the RTT-based C-Over only decrease slightly under the influence of

delays. Detection rates for all other methods decrease significantly to the point where

no meaningful predictions can be made. This is also reflected by the AUC-scores for

traffic with δD = 1000ms, given in Table 6.4.

While the WM method is robust against transfer delays up to δD = 500ms, this

value is smaller than the one claimed by the authors. This might however be a re-

sult of the slightly smaller quantisation step size that we used. It is surprising that

the PContext method shows only little robustness against transfer delays, which con-

tradicts the authors claims, potentially due to the incorrect assumption that relying on

Echo-packets are not subject to transfer delays.

6.6.3 Chaff

We now consider the effect of chaff perturbations added by the attacker to individual

connections on the detection rates. Again we pick detection thresholds for each SSD

methods corresponding to a FP rate of 0.4%.

Chaff packets are added to both the connection between S3 and S4 as well as be-

tween S4 and host T as described in Section 6.3.3.2. Fig. 6.6 depicts evolution of

detection rates in dependence of the ratio of number of chaff packets to packets from

the actual interaction.
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PContext DeepCorr WuNeur RWalk C-Over Ano1 Ano2 WM

AUC 0.639 0.886 0.615 0.641 0.589 0.782 0.738 0.839

Table 6.5: AUC-scores for SSD methods with added chaff at 300% ratio.

PContext DeepCorr WuNeur RWalk C-Over Ano1 Ano2 WM

CAIDA 0.36 0.46 0.47 0.67 0.53 0.48 0.35 0.81

SSH 0.53 0.46 0.21 0.28 0.27 0.05 0.02 0.08

multim. 0.11 0.08 0.32 0.04 0.20 0.47 0.63 0.11

Table 6.6: Relative contribution in % of different benign data to the FP rate.

As visible, all methods struggle to detect stepping stones once the chaff packets be-

come the majority of the transferred traffic. This is also evident from the AUC-scores

given in Table 6.5. Several approaches claimed to be resistant to chaff perturbations,

however prior evaluations were limited chaff ratios below 100% without obvious rea-

son.

It is surprising that the anomaly detection methods do not perform better at detect-

ing chaff perturbations. Chaff in both approaches was however evaluated with different

traffic generation distribution and not compared against a background of traffic follow-

ing a similar generation distribution, which could explain the disagreement between

the results we are finding here.

Overall, these results are in disagreement with the ”robustness” claims made for

four of the selected approaches, namely PContext, RWalk, Ano1, and Ano2.

6.6.4 False positives

Table 6.6 depicts the relative contribution (after adjusting for their weight) at FP =

0.4% of each of the three benign data types to the overall false positive rate. Most

methods have more problems with the heterogeneous nature the CAIDA traces, with

only PContext and DeepCorr seeing most false positives in the SSH traffic.

The multimedia traffic is causing most problems for the anomaly-based methods,

presumably because it follows a similar distribution as the generated chaff perturba-

tions.
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Figure 6.7: Detection rates in dependence of chain length for different methods on

dataset CL with a fixed FP rate of 0.4%

Value TP deviation from average

DeepCorr WuNeur RWalk C-Over WM

RTT
5ms −0.2% +41.3% −42.3% −36% +0.03%

70ms −5.6% −5.8% +35.1% +51% −2.2%

Packet loss
0% +1.2% +1.3% +2.1% +4.3% +0.02%

7% −9.1% −1.1% −3.1% −7.3% −9.7%

Table 6.7: Influence of network congestion on detection rates at a fixed FP rate of 0.4%.

The given percentages are describing the change of the detection rate under the given

congestion setting when compared to the overall average.

6.6.5 Influence of chain length

In this section, we look at the effect of differing chain lengths on the detection rates.

We only focus on RTT-based methods here since the other methods should and do not

see a significant effect from varying chain lengths. Since RTT-based methods aim to

measure the effect of packets travelling via multiple hosts, it is unsurprising that they

perform better at detecting longer chains.

Of the RTT-based methods, only C-Over was able to yield consistent detection rates

under transfer delays. Interestingly, if the C-Over method is applied to connections

between S3 and S4 instead of between S4 and the target, detection rates decrease in the

same manner as for other RTT-based methods. This is not surprising as the underlying

assumption for robustness for this approach relies on Echo-packets not being delayed.
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6.6.6 Influence of network settings

Finally, we look at the effect of different network settings. We only show methods that

show significant effects and omitted bandwidth from the evaluation as different values

do not seem to have any effect on detection rates1.

As visible in Table 6.7, the three RTT-based methods show different responses to

small/large average round-trip-times. While WuNeur, as expected from prior results,

performs better in LAN settings, detection rates of the RWalk and C-Over methods are

boosted by larger RTTs. All methods profit from lower packet losses.

6.6.7 Summary

Overall, detection rates on dataset BA are mostly in line with the claimed capabilities

except for RWalk, although detection rates are slightly lower than stated by most au-

thors. Delay perturbation increases detection difficulty for most methods, except for

Ano1, Ano2, and DeepCorr, which contradicts robustness claims for PContext and to

some extend WM. Our inserted chaff perturbations however render detection impossi-

ble for all methods examined, which contradicts robustness claims for PContext, Ano1,

Ano2, and RWalk, even though the claims were based on lower chaff levels.

As discussed in Section 6.6.5 and 6.6.6, longer chains yield higher detection rates

for RTT-based methods while Different network transmission settings seem to have

overall little influence on detection rates.

6.7 Conclusion

In this work, we set out to evaluate the state-of-the-art of SSD methods using a compre-

hensive data generation framework. Our framework simulates realistic stepping-stone

behaviour with SSH-tunnels in different settings and varying amounts of evasive per-

turbation tactics. We released a large dataset that highlights multiple aspects in SSD,

and is suitable to train ML-based methods.

Overall, our results show that attackers can reliably evade detection by using the

right type and amount of chaff perturbation, which disproves several claims made

about the robustness against this evasive tactic. Although to a lesser degree, our imple-

mented delay perturbations still affect detection rates for most methods.

1For all methods, the detection rate differences (0.7%−6.2%) were smaller across bandwidths than
the overall detection rate errors (2.6%−6.5%).
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Currently, it seems that watermarking methods are most suited to reliably detect

simple stepping-stones in real-life deployment. The performance of DeepCorr indi-

cates that deep neural networks show the most potential at detecting attacks that use

chaff or delay perturbations if they are trained on suitable data. We find that detection

and false-positive rates for RTT-based methods are significantly lower than for other

methods.
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Conclusion

This thesis investigated the generation and control of traffic microstructures, their in-

fluence on network intrusion detection, and the design and robustness of corresponding

models. The presented results both demonstrate how to improve model design and de-

velopment by considering and examining the difficulties models can experience when

encountering specific microstructures, as well as how a model that is designed to cap-

ture short-term flow microstructures can raise the state-of-the-art in detecting network

access attacks. We also demonstrated how an attacker can perturb microstructures to

evade detection in a stepping-stone attack.

In this chapter, we will revisit the original research objectives, discuss some caveats

of our work, and suggest future research directions.

7.1 Revisiting research objectives

Considering the presented results in Chapters 3, 4, 5, and 6, we will now discuss how

well the research objectives formulated in Sect. 1.3 have been addressed.

Research Objective 1
How well-structured is the space of microstructures observed in the traffic of a ma-

chine or a network? To what degree are these microstructures a result of specific com-

putational activities that are of interest for traffic classification and network intrusion

detection, and how much are they affected by other external variables?

The results in Chapter 4 provide an examination of factors that shape traffic mi-

crostructures, and which ones can be of interest for designing intrusion detection mod-

els. The chapter provides experimental evidence for the effect that congestion, compu-
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tational load, or background activities can have on packet and connection sequences,

or how specific activities such as HTTP-multiplexing or file-syncing or communica-

tion failures such as half-open connections can lead to structurally similar traffic that

affects the ability of a model to classify correctly. Chapter 5 discusses in part how

the length and complexity of connection sequences is determined by specific activities

and the amount of activity overlay. It also discusses how frequent different levels of

connection sequence complexity are observed in real-world datasets.

Research Objective 2
How can we identify microstructures significant for intrusion detection and train cor-

responding models? What requirements must a labelled traffic generation framework

fulfil to provide realistic data?

Chapter 3 and 5 address this objective to a satisfying degree, albeit not completely.

Chapter 3 defines a set of requirements for datasets to enable effective training of ma-

chine learning models. These requirements address both the information available on

the given data as well as the variability of structures in the data. Chapter 5 provides an

example of how to identify a suitable set of microstructures in connection sequences,

and how to design a corresponding model to capture them.

Research Objective 3
To what degree can relevant microstructures in network traffic be captured in a model

from a training dataset, and how can we achieve this? How can a model adapt to

changes of structures in benign traffic?

Chapter 4 provides an examination of how and why two state-of-the-art methods

are failing to capture some relevant packet-level microstructures from their given train-

ing dataset, and how this impedes their performances. Chapter 5 then examines how

our CBAM-model captures flow-level microstructures, what design choices are made

to improve the processing of specific structures, and which structures are more difficult

to capture. The chapter also provides an examination of how constant these structures

remain over time, but does not discuss how to detect and adapt to structural changes.

For these, we would require traffic data that introduces structural changes on several

hosts, and examine if we can identify characteristics in the way CBAM reacts to these

changes compared to anomalies corresponding to attacks.
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Research Objective 4
To what degree can access attacks be detected by a model that learns traffic microstruc-

tures? What kind of attacks will necessarily show contextual anomalies, and which will

not? Can an adversary adapt his attacks to avoid detection?

Chapter 5 provides detection results for access attacks contained in the CICIDS-

17 dataset, and discusses reasons why some attacks are detected more effectively than

others, and how attackers can potentially evade detection. This is however constrained

to the available attack data and not a comprehensive discussion of access attacks in

general. Chapter 6 examines a specific type of attack and available detection meth-

ods. It also discusses evasive methods extensively and concludes that an attacker can

avoid detection in a stepping-stone scenario effectively. In general, there are many fu-

ture questions to explore regarding the adversarial robustness of detection for different

attack types.

7.2 Critical analysis

In this section, we reflect on the limitations of the presented results and how researchers

can and cannot benefit from them.

7.2.1 Usage of synthetic data

Chapter 5 presented a novel approach to detect access attacks using network flow data.

While we paid attention to include real-world datasets in the longterm evaluation, a

lack of available data means that the presented detection rates have been obtained only

using synthetic attack data. These attacks were conducted in a laboratory environment,

and do not stand in any context to each other. The realism of the delivery of laboratory

attacks has been criticised due to the absence of prior or posterior events in relation

to the attack, as well as the inflated ratio of attack data. For this reason, the presented

detection rates have to be taken with care. The same applies for the methods examined

in Chapter 4.

Chapter 6 similarly presents an evaluation of methods on partly real-world benign

traffic, but only synthetic attack data that we generated. While similar arguments can

be made regarding the realism of the attack traffic, detecting attacks in the wild is

generally seen as more challenging than in a laboratory setting. The presented data

served as a baseline that a model must be able to fulfil as a minimal requirement. The
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conclusion that overall all methods failed to pass this benchmark therefore indicates

their unsuitability in a real-world setting.

7.2.2 Operational considerations

Chapter 5 presented some considerations on the computational scalability as well as the

maximal detection lag, and Chapter 6 discussed some immediate potential defensive

actions following the detection of a stepping stone. However, more work needs to be

conducted to confirm that the presented results would be achievable in an operational

setting.

7.2.3 Potential incompleteness of microstructure control

Chapter 3 and 4 presented and examined DetGen and its ability to control important

factors that shape traffic microstructures. The considered factors were chosen based

on domain expertise and the measurement of their respective influence. However, it is

difficult to verify that this list is comprehensive and that there are no other important

factors that shape traffic microstructures in real-world settings. These might include

geographical location and corresponding packet routing or the impact of proxies or

firewalls.

For researchers, this means that DetGen is a useful tool to probe models, examine

the effect of different factors on model behaviour, or generate sufficient amount and

variability of specific traffic types for model training. It is however not necessarily

suitable to generate comprehensive datasets that simulate the heterogeneity observed

in real-world datasets due to the possible absence of some traffic-shaping influence

factors.

7.3 Future work

7.3.1 Future application of DetGen

DetGen currently only generates short-term traffic events. We are investigating how

to better simulate causality in connection spawning and other medium-term temporal

dependencies, as well as emulate the usage activity of individual scenarios by a user

or a network. The modelling and generation of computer network activity has been
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investigated extensively, with tools such as DoppelGANger [55] automatically gener-

ating realistic network activity streams. A promising way forward would be to enable

the import of externally generated activity timelines, and generate the corresponding

communication events corresponding to the activity timestamps with DetGen.

An interest of researchers might be to test their NID-model on a variety of network

topologies and potentially in real-time. An idea we are investigating is to use DetGen

in combination with a virtual network framework such as Mininet with virtual software

switches, Ethernet links, routers, and firewalls. The idea is to populate the network in

a given topology with containers that execute DetGen scenarios with corresponding

activity randomisation in real-time according to an activity timeline. This would en-

able researchers to explore different topologies and place their NID-model within the

created network to perform detection in real-time.

Attacks in synthetic NID-datasets so far have been conducted in isolation and do

not reflect the chain of attack that a sophisticated intruder might pursue when infiltrat-

ing a network. The flexible nature of implemented scenarios in DetGen could be used

to execute attack scenarios at different stages and points in a network to simulate the

behaviour of a larger attack chain. This could be performed using pre-defined attack

tactics to enable different attack paths.

7.3.2 Model and data adaptivity

As applications and internet protocols evolve, so do their corresponding traffic mi-

crostructures. We have outlined in Chapter 3 how to adapt data generation to include

new traffic types with DetGen’s modular design, and in Chapter 5 how to test whether

the structures learned by a model remain stable over longer time periods. Additionally,

a number of NID-models have been proposed that automatically adapt to slow changes

in network characteristics such as port entropies or activity levels [155, 156].

The identification of changes in traffic microstructures, and their distinctions from

intrusion attempts remains a challenge. New or updated applications or protocols can

alter tokenised packet or flow sequences significantly with novel authentication mecha-

nisms or data retrieval implementations such as HTTP-multiplexing. As these changes

are abrupt, their identification as application evolution rather than anomalies caused by

intrusion attempts is a complex problem.
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7.3.3 Further application of NLP-models and large-scale datasets

Language models based on LSTM-encoders and today’s transformer networks such

as “BERT” and “GPT3” have demonstrated how well complex structures in tokenised

sequences such as written language can be learned when trained on sufficient data.

The extensive knowledge of today’s language models about structures in the trained

data can be used to make accurate probabilistic statements about an input sequence,

and is applied in spelling and grammar correction [157], and their design has found

application to fraud detection and other anomaly detection applications [158, 159].

The format similarity of packet and flow sequences to sequences of words sug-

gests that success in these areas can translate well to network anomaly detection. With

CBAM, we presented a small model that is inspired from NLP and has proven to suc-

cessfully learn structures in flow sequences. The immense success of current language

models such as “BERT” and “GPT3” however stems in part from their large size and

the corresponding scale of the datasets they are trained on. Network intrusion detec-

tion currently lacks structured large-scale datasets of network traffic to enable similar

self-supervised models to thrive in this area. A necessary step to successfully apply

state-of-the-art language models to network anomaly detection therefore is the gather-

ing and release of larger and richer datasets that represent and store structures in traffic

traces in an efficient and privacy-preserving manner.

7.3.4 Directions for detecting stepping-stones

Our results in Chapter 6 have shown that current methods of detecting interactive

stepping-stones fail when encountering evasive chaff perturbations. The ability of

an attacker to artificially decorrelate traffic streams suggests that even more sophis-

ticated stream correlation methods could be evaded with sufficient noise. To counter

detection evasion, methods that incorporate more contextual features about a network

appear more capable of identifying relayed traffic. As the addition of noise produces

traffic with a substantial volume, evaluating whether voluminous connections between

the respective source and target device in the network should be seen as anomalous.

Graph-based methods discussed in Section 6.2 go in a similar direction and could po-

tentially be combined with weak correlation indicators.
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7.4 Final outlook

In the end we believe that the study of traffic microstructures and their influence on

model behaviour plays a significant role in closing the semantic gap that still exists be-

tween the design of ML-based NID techniques and the challenges we encounter when

dealing with real-world traffic. Despite 30 years of research, several problems that

have been described in this thesis still prevent the overwhelming success that machine

and deep learning has experienced in other domains to transfer into better defence

against cyber attacks. However, we believe that these problems can be addressed in

the future as they are not inherent to the detection of cyber attacks, but are caused by

the limited amount of empirical knowledge and data resources available to researchers

at the moment.





Bibliography

[1] H. Clausen, R. Flood, and D. Aspinall, “Traffic generation using Container-

ization for Machine Learning,” in Proceedings of the ACSAC Dynamic and

Novel Advances in Machine Learning and Intelligent Cyber Security Workshop.

ACM, 2019.

[2] H. Clausen and D. Aspinall, “Examining traffic microstructures to improve

model development,” in 2021 WTMC at IEEE Security and Privacy Workshops

(SPW). IEEE, 2021.

[3] H. Clausen, R. Flood, and D. Aspinall, “Controlling network traffic microstruc-

tures for machine-learning model probing,” 2021, manuscript submitted for pub-

lication.

[4] H. Clausen, G. Grov, M. Sabate, and D. Aspinall, “Better Anomaly Detection

for Access Attacks Using Deep Bidirectional LSTMs,” in Machine Learning

for Networking: Third International Conference, MLN 2020, Paris, France,

November 24–26, 2020, Revised Selected Papers 3. Springer International

Publishing, 2021, pp. 1–18.

[5] H. Clausen, G. Grov, and D. Aspinall, “Cbam: A contextual model for network

anomaly detection,” Computers, vol. 10, no. 6, p. 79, 2021.

[6] H. Clausen, M. S. Gibson, and D. Aspinall, “Evading stepping-stone detection

with enough chaff,” in International Conference on Network and System Secu-

rity. Springer, 2020, pp. 431–446.

[7] “NCSC CAF guidance,” https://www.ncsc.gov.uk/collection/caf/caf-principles-

and-guidance/c-2-proactive-security-event-discovery, UK National Cyber Se-

curity Centre, Tech. Rep., 2019, accessed on 25 August 2021.

161



162 Bibliography

[8] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.” in Lisa,

vol. 99, no. 1, 1999, pp. 229–238.

[9] C. Nachreiner, “Internet Security Report - Q1 2021,” https://www.watchguard.

com/wgrd-resource-center/security-report-q1-2021, WatchGuard Technolo-

gies, Tech. Rep., 2021, accessed on 25 August 2021.

[10] “Catching Mimikatz’ behavior with anomaly detection,” https://www.darktrace.

com/en/blog/catching-mimikatz-behavior-with-anomaly-detection/, Darktrace,

Tech. Rep., 2019, accessed on 22 July 2021.

[11] “How the CrowdStrike ML-based Engine Defends Against Unknown

Malware,” https://www.crowdstrike.com/resources/white-papers/rise-machine-

learning-ml-cybersecurity/, Crowdstrike, Tech. Rep., 2020, accessed on 22 July

2021.

[12] UK National Cyber Security Centre Guidance, “Intelligent security tools,”

https://www.ncsc.gov.uk/collection/intelligent-security-tools, Tech. Rep., 2019,

accessed 23 August 2021.

[13] A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos, “From Intrusion Detection

to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods,”

IEEE Communications Surveys & Tutorials, 2018.

[14] R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine

Learning for Network Intrusion Detection,” in 2010 IEEE Symposium on Secu-

rity and Privacy, May 2010, pp. 305–316.

[15] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an ensem-

ble of autoencoders for online network intrusion detection,” arXiv preprint

arXiv:1802.09089, 2018.

[16] M. Nasr, A. Bahramali, and A. Houmansadr, “Deepcorr: Strong flow correlation

attacks on tor using deep learning,” in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, 2018, pp. 1962–1976.

[17] R. Harang, “Bridging the semantic gap: Human factors in anomaly-based in-

trusion detection systems,” in Network Science and Cybersecurity. Springer,

2014, pp. 15–37.



Bibliography 163

[18] M. R. Smith, N. T. Johnson, J. B. Ingram, A. J. Carbajal, R. Ramyaa, E. Dom-

schot, C. C. Lamb, S. J. Verzi, and W. P. Kegelmeyer, “Mind the Gap: On

Bridging the Semantic Gap between Machine Learning and Information Secu-

rity,” arXiv preprint arXiv:2005.01800, 2020.

[19] N. Brownlee, C. Mills, and G. Ruth, “Traffic flow measurement: Architecture,”

Tech. Rep., 1999.

[20] J. P. Anderson, “Computer security threat monitoring and surveillance,” Techni-

cal Report, James P. Anderson Company, 1980.

[21] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,”

ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[22] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive

predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[23] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A

lite bert for self-supervised learning of language representations,” arXiv preprint

arXiv:1909.11942, 2019.

[24] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on software

engineering, no. 2, pp. 222–232, 1987.

[25] M. M. Sebring, “Expert systems in intrusion detection: A case study,” in Proc.

11th National Computer Security Conference, Baltimore, Maryland, Oct. 1988,

1988, pp. 74–81.

[26] S. E. Smaha et al., “Haystack: An intrusion detection system,” in Fourth

Aerospace Computer Security Applications Conference, vol. 44. Orlando, FL,

USA, 1988.
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