2,066 research outputs found

    Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates

    Get PDF
    Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon density, satellite data with lower cost and broad coverage can be as effective as lidar

    Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure

    Get PDF
    Abrupt forest disturbances generating gaps \u3e0.001 km2 impact roughly 0.4–0.7 million km2a−1. Fire, windstorms, logging, and shifting cultivation are dominant disturbances; minor contributors are land conversion, flooding, landslides, and avalanches. All can have substantial impacts on canopy biomass and structure. Quantifying disturbance location, extent, severity, and the fate of disturbed biomass will improve carbon budget estimates and lead to better initialization, parameterization, and/or testing of forest carbon cycle models. Spaceborne remote sensing maps large-scale forest disturbance occurrence, location, and extent, particularly with moderate- and fine-scale resolution passive optical/near-infrared (NIR) instruments. High-resolution remote sensing (e.g., ∼1 m passive optical/NIR, or small footprint lidar) can map crown geometry and gaps, but has rarely been systematically applied to study small-scale disturbance and natural mortality gap dynamics over large regions. Reducing uncertainty in disturbance and recovery impacts on global forest carbon balance requires quantification of (1) predisturbance forest biomass; (2) disturbance impact on standing biomass and its fate; and (3) rate of biomass accumulation during recovery. Active remote sensing data (e.g., lidar, radar) are more directly indicative of canopy biomass and many structural properties than passive instrument data; a new generation of instruments designed to generate global coverage/sampling of canopy biomass and structure can improve our ability to quantify the carbon balance of Earth\u27s forests. Generating a high-quality quantitative assessment of disturbance impacts on canopy biomass and structure with spaceborne remote sensing requires comprehensive, well designed, and well coordinated field programs collecting high-quality ground-based data and linkages to dynamical models that can use this information

    Remote Sensing Support for the Gain-Loss Approach for Greenhouse Gas Inventories

    Get PDF
    For tropical countries that do not have extensive ground sampling programs such as national forest inventories, the gain-loss approach for greenhouse gas inventories is often used. With the gain-loss approach, emissions and removals are estimated as the product of activity data defined as the areas of human-caused emissions and removals and emissions factors defined as the per unit area responses of carbon stocks for those activities. Remotely sensed imagery and remote sensing-based land use and land use change maps have emerged as crucial information sources for facilitating the statistically rigorous estimation of activity data. Similarly, remote sensing-based biomass maps have been used as sources of auxiliary data for enhancing estimates of emissions and removals factors and as sources of biomass data for remote and inaccessible regions. The current status of statistically rigorous methods for combining ground and remotely sensed data that comply with the good practice guidelines for greenhouse gas inventories of the Intergovernmental Panel on Climate Change is reviewed.For tropical countries that do not have extensive ground sampling programs such as national forest inventories, the gain-loss approach for greenhouse gas inventories is often used. With the gain-loss approach, emissions and removals are estimated as the product of activity data defined as the areas of human-caused emissions and removals and emissions factors defined as the per unit area responses of carbon stocks for those activities. Remotely sensed imagery and remote sensing-based land use and land use change maps have emerged as crucial information sources for facilitating the statistically rigorous estimation of activity data. Similarly, remote sensing-based biomass maps have been used as sources of auxiliary data for enhancing estimates of emissions and removals factors and as sources of biomass data for remote and inaccessible regions. The current status of statistically rigorous methods for combining ground and remotely sensed data that comply with the good practice guidelines for greenhouse gas inventories of the Intergovernmental Panel on Climate Change is reviewed.Peer reviewe

    Estimating Tropical Forest Structure Using a Terrestrial Lidar

    Get PDF
    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data.We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p \u3c 0.001, RMSE = 1.04 m). Tree density was found to have the poorest significant relationship (r2 = 0.50, p \u3c 0.01, RMSE = 153.28 n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p \u3c 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy variables in addition to height metrics. Our work indicates that vegetation profiles from TLS data can provide useful information on forest structure

    REMOTE SENSING OF FOLIAR NITROGEN IN CULTIVATED GRASSLANDS OF HUMAN DOMINATED LANDSCAPES

    Get PDF
    Foliar nitrogen (N) concentration of plant canopies plays a central role in a number of important ecosystem processes and continues to be an active subject in the field of remote sensing. Previous efforts to estimate foliar N at the landscape scale have primarily focused on intact forests and grasslands using aircraft imaging spectrometry and various techniques of statistical calibration and modeling. The present study was designed to extend this work by examining the potential to estimate the foliar N concentration of residential, agricultural and other cultivated grassland areas within a suburbanizing watershed. In conjunction with ground-based vegetation sampling, we developed Partial Least Squares (PLS) models for predicting mass-based foliar N across management types using input from airborne and field based imaging spectrometers. Results yielded strong predictive relationships for both ground- and aircraft-based sensors across sites that included turf grass, grazed pasture, hayfields and fallow fields. We also report on relationships between imaging spectrometer data and other important variables such as canopy height, biomass, and water content, results from which show strong promise for detection with high quality imaging spectrometry data and suggest that cultivated grassland offer opportunity for empirical study of canopy light dynamics. Finally, we discuss the potential for application of our results, and potential challenges, with data from the planned HyspIRI satellite, which will provide global coverage of data useful for vegetation N estimation

    Do airborne laser scanning biomass prediction models benefit from Landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes?

    Get PDF
    Airborne laser scanning (ALS) is considered as the most accurate remote sensing data for the predictive modelling of AGB. However, tropical landscapes experiencing land use changes are typically heterogeneous mosaics of various land cover types with high tree species richness and trees outside forests, making them challenging environments even for ALS. Therefore, combining ALS data with other remote sensing data, or stratification by land cover type could be particularly beneficial in terms of modelling accuracy in such landscapes. Our objective was to test if spectral-temporal metrics from the Landsat time series (LTS), simultaneously acquired hyperspectral (HS) data, or stratification to the forest and non-forest classes improves accuracy of the AGB modelling across an Afromontane landscape in Kenya. The combination of ALS and HS data improved the cross-validated RMSE from 51.5 Mg ha−1 (42.7%) to 47.7 Mg ha−1 (39.5%) in comparison to the use of ALS data only. Furthermore, the combination of ALS data with LTS and HS data improved accuracies of the models for the forest and non-forest classes, and the overall best results were achieved when using ALS and HS data with stratification (RMSE 40.0 Mg ha−1, 33.1%). We conclude that ALS data alone provides robust models for AGB mapping across tropical mosaic landscapes, even without stratification. However, ALS and HS data together, and additional forest classification for stratification, can improve modelling accuracy considerably in similar, tree species rich areas.Peer reviewe

    Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

    Get PDF
    NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available

    Deforestation, degradation, and natural disturbance in the Amazon: using a new monitoring approach to estimate area and carbon loss

    Get PDF
    Forest degradation causes environmental damage and carbon emissions, but its extent and magnitude are not well understood. New methods for monitoring forest degradation and deforestation show that more disturbance has occurred in the Amazon in recent decades than previously realized, indicating an unaccounted for source of carbon emissions and damage to Amazon ecosystems. Forest degradation and natural disturbance change a landscape, but the visible damage apparent in satellite images may be temporary and difficult to differentiate from undisturbed forests. Time series analysis of Landsat data used in a spectral mixture analysis improves monitoring of forest degradation and natural disturbance. In addition, the use of statistical inference accounts for classification bias and provides an estimate of uncertainty. Application of the methodology developed in this dissertation to the Amazon Ecoregion found that forest degradation and natural disturbance were more prevalent than deforestation from 1995 to 2017. Of consequence, the total area of forest in the Amazon that has been recently disturbed is greater than previously known. Overall, deforestation affected 327,900 km2 (±15,500) of previously undisturbed forest in the Amazon while degradation and natural disturbance affected 434,500 km2 (±22,100). Forest degradation and natural disturbance occur more frequently during drought years, which have increased in frequency and severity in recent years. Deforestation has largely decreased since 2004, while forest degradation and natural disturbance have remained consistent. Previously disturbed forests are lower in biomass than undisturbed forests, yet regeneration after disturbance gradually sequesters carbon. A carbon flux model shows that gross aboveground carbon loss from forest degradation and natural disturbance and deforestation from 1996 to 2017 in the Amazon were 2.2-2.8 Pg C and 3.3-4.3 Pg C, respectively. Since 2008, however, carbon loss from degradation and natural disturbance has been approximately the same as from deforestation. The methodologies developed in this dissertation are useful for monitoring deforestation and degradation throughout the world’s forest ecosystems. By leveraging dense data time series, statistical inference, and carbon modeling it is possible to quantify areas of deforestation and forest degradation in addition to the resulting carbon emissions. The results of this dissertation stress the importance of degradation and natural disturbance in the global carbon cycle and information valuable for climate science and conservation initiatives
    • …
    corecore