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ABSTRACT 

 

REMOTE SENSING OF FOLIAR NITROGEN IN CULTIVATED GRASSLANDS OF HUMAN 

DOMINATED LANDSCAPES 

BY 

PAUL A. PELLISSIER 

University of New Hampshire, May, 2015 

 

Foliar nitrogen (N) in plant canopies plays a central role in a number of 

important ecosystem processes and continues to be an active subject in the 

field of remote sensing. Previous efforts to estimate foliar N at the landscape 

scale have primarily focused on intact forests and grasslands using aircraft 

imaging spectrometry and various techniques of statistical calibration and 

modeling.  The present study was designed to extend this work by examining the 

potential to estimate the foliar N concentration of residential, agricultural and 

other cultivated grassland areas within a suburbanizing watershed.  In 

conjunction with ground-based vegetation sampling, we developed Partial 

Least Squares Regression (PLSR) models for predicting mass-based foliar %N 

across management types using input from airborne and field based imaging 

spectrometers.  Results yielded strong predictive relationships for both ground- 

and aircraft-based sensors across sites that included turf grass, grazed pasture, 

hayfields and fallow fields.  We also report on relationships between imaging 
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spectrometer data and other important variables such as canopy height, 

biomass, and water content, results from which show promise for detection with 

imaging spectroscopy and suggest that cultivated grasslands offer opportunity 

for empirical study of canopy light dynamics.  Finally, we discuss the potential for 

application of our results, and the challenges posed, to data from the planned 

HyspIRI satellite, which will provide global coverage of data useful for 

vegetation N estimation. 

         

 



 

 
 

 

 

1. INTRODUCTION 

 

 Through its association with proteins and plant pigments, foliar nitrogen (N) 

plays an important regulatory role in photosynthesis, leaf respiration and net 

primary production in terrestrial ecosystems (Field & Mooney 1986, Ollinger & 

Smith 2005, Reich et al. 2006).  Because N is a common and widespread limiting 

resource to plants, spatial patterns of foliar N are also related to fluxes of 

carbon, water and energy, and are therefore central to understanding the role 

that terrestrial ecosystems play within the larger Earth system (Ollinger et al. 2008, 

Ustin 2013).  At the landscape scale these patterns are driven by environmental 

attributes including climate, species composition, soil condition, disturbance 

history and management practices.  Given its importance, foliar N has been the 

focus of considerable attention in the field of remote sensing spanning several 

decades (e.g. Wessman et al. 1988, Martin et al. 2008, Ramoelo et al. 2012).  

While the foundational methods are rooted in laboratory and agricultural 

settings (Marten et al. 1984, Park et al. 1998), more recent efforts at estimating 

foliar N have primarily concentrated on intact forests and grasslands due to their 

spatial extent and documented importance to the Earth system (Smith et al. 

2002, Townsend et al. 2003, He et al. 2006, McNeil et al. 2008, Ramoelo et al. 

2012).  Although these and other investigations have successfully classified N 

status in forests and grasslands, difficulties associated with the diversity of land 
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ownership and land management objectives have been an impediment to 

applications in developed landscapes (Milesi et al. 2005).  Several studies have 

successfully delineated lawns and other urban plant canopies using high spatial 

resolution imagery (Walton et al. 2008, Wu & Bauer 2012), but the use of remote 

sensing for estimating biochemistry and nutrient status in developed landscapes 

remains in its infancy (Davies et al. 2011).   

 The cultivation of grasses for animal forage or aesthetic purposes is a near 

ubiquitous practice in human-dominated landscapes and often represents 

important shifts in terms of ecosystem function and services from surrounding 

ecosystems (Foley et al. 2005).  Turf grass surface area in the United States has 

been estimated at 163,812 km2, an area larger than that of the nation’s largest 

irrigated crop (Milesi et al. 2005).  When pastures and hay fields are included, 

cultivated grasses comprise 707,627 km2, or 8.76%, of total land area in the 

conterminous United States (NLCD 2006).  As with many intensively managed 

systems, these grasslands embody tradeoffs among various ecosystem services, 

with consequences affecting both human and environmental welfare (Kaye et 

al. 2006).  They comprise an important base of our food system and help define 

the locations we inhabit, while often requiring inputs of chemical fertilizers, 

irrigated water, and energy to meet desired management goals (Falk 1976, 

Cassman et al. 2002).  Through these pathways, and by altering soil structure, 

ground water penetration, and surface water flow, the cultivation of grass has 
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substantial influence on terrestrial and aquatic biogeochemical cycles (Pataki 

et al. 2011, Trowbridge et al. 2013, Kaushal et al. 2014).   

 From a remote sensing standpoint, the diversity of management 

objectives in developed systems poses challenges that are less prevalent in 

more natural ecosystems (Boegh et al. 2002, Booth &  Tueller 2003).  While 

remote sensing imagery has been used to detect water stress (Gao 1996, Tilling 

et al. 2007), N status (Gamon et al. 1993, Boegh et al. 2002, Ramoelo et al. 2012) 

and plant biomass (Paruelo et al. 1997, Running et al. 2004) in grasslands, our 

understanding of the combined effect of these factors on whole canopy 

reflectance is incomplete (Ollinger 2011).  It remains unclear whether a 

generalizable approach for estimating foliar N via remote sensing can 

accommodate the range of management strategies encountered within a 

developed landscape.  Resolving this is particularly pertinent in light of the 

planned HyspIRI mission, which will provide global coverage of high-fidelity 

imaging spectrometer data from an orbital platform.  To address this question, 

we sought to examine the use of high spectral resolution remote sensing from 

both airborne and ground-based platforms for detecting foliar N within 

cultivated grasslands.  Our study focused on a mixed-use landscape in 

southeastern New Hampshire that included a wide range of grass management 

strategies.  Results are presented with respect to the utility of methods we tested 

and their potential application to environmental modeling, resource 

management and for future applications with HyspIRI.  
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2. METHODS 

2.1. Study Sites 

The study was conducted within the Lamprey River Watershed (LRW) in 

southeastern New Hampshire (43.1032°N, 71.1104°W), a coastal area 

encompassing 479 km2 and nine towns that drains into the Great Bay National 

Estuarine Research Reserve.  The watershed has a diverse history with more than 

300 hundred years of land use change following European settlement (Hamilton 

1882).  Today, rural to urban development gradients are present throughout the 

watershed and population densities range from zero to greater than 620 people 

per km-2.  Although the watershed is predominately forest, non-forested land 

accounts for 17.5% of the total area.  Residential turf and agricultural grasslands 

are mixed throughout this fraction and represent important loci for human-

environment interactions.  The cultivation and maintenance of grasses has a 

strong influence on biogeochemistry within the watershed (Fissore et al. 2012) 

and the U.S. Environmental Protection Agency has established that water quality 

in both the Lamprey River, and the Great Bay estuary into which it drains, is 

impaired by excess N.  Twenty-seven percent of the total non-point source N 

pollution coming into Great Bay is attributed to residential and agricultural 

fertilizer use (Trowbridge et al. 2013), highlighting the need for methods to better 

understand the N status of managed grasses.   



 

[5] 
 

In 2012, twenty field sites representing four management types (7 

residential & commercial turf, 4 pasture, 3 hayfield, and 6 fallow) were selected 

for the purpose of vegetation sampling and image calibration (Figure 1).  The 

sites were selected using a stratified random sampling design with access to 

private property influencing the final number included in each management 

type.   

 

 

 

 

 

Figure 1.  The Lamprey River Watershed, its location in New Hampshire, and distribution of 
field sites surveyed in this study. Dark gray areas of the Lamprey River Watershed are 
forest, while light gray areas are dominated by residential and agricultural grasslands. 
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2.2. Vegetation Sampling 

At each of the 20 field sites, two to five plots were established for 

vegetation sampling such that a minimum of ten plots represented each 

management type (53 in total).  Plots were 5m by 5m in size and were located 

to best characterize each site’s management practices while avoiding 

potential edge effects of adjacent parcels.  The mixed nature of management 

on a given parcel allowed some sites to include plots of more than one 

management type.   

Plots were sampled for aboveground biomass, canopy nitrogen 

concentration (%N), leaf water content and canopy height.  Plot-level values for 

each measured attribute represent the mean of data collected at the two to 

five locations within the plot boundaries.  Biomass sampling consisted of shearing 

all standing foliage to ground level within a randomly placed 10x50 cm 

sampling frame.  Once collected, samples were immediately enclosed in 

sealable plastic bags and stored on ice to prevent water loss.  Samples were 

then weighed “wet” prior to being dried at 70°C for 48 hours and reweighed to 

determine water content.  Dried samples were ground using a Wiley mill with a 

1mm mesh screen.  Canopy %N (g N  100g biomass-1) for all dried and ground 

samples was determined using a FOSS NIR 6500 bench-top spectrometer as 

described by Bolster et al. (1996).  Because dried, ground samples included total 

biomass from grass species present within the sampling area, %N values 

represent multi-species means and were inherently weighted by the fractional 
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abundance of each species present.  Although existing calibration equations 

have proven accurate for grassland systems generally (Park et al. 1998, Park et 

al. 1997), we derived a calibration equation specific to this study in order to 

ensure that the full range of conditions would be captured.  The calibration was 

based on a random subset of 103 samples collected during 2012, for which 

canopy %N values were measured with a mass spectrometer and 

independently validated  using one-out repeat calibration (Shetty et al. 2011).  

To aid in the interpretation of grass canopy spectra, canopy height was 

measured at locations where biomass samples were taken and represents the 

mean height above ground as grasses were naturally displayed and is not 

necessarily a measure of total tiller/blade length.   

In 2012, field sampling was conducted between late July and mid-August 

to ensure that samples were collected within fourteen days of the aircraft 

imaging spectrometer data collection (Section 2.4).  Additional sampling in 2013 

was conducted to expand the number of observations available for 

comparison with coincident ground-based spectra, but were not used in the 

calibration against 2012 aircraft image data.  Sampling dates in 2013 were 

chosen to match 2012 in terms of position within the growing season and to 

capture similar conditions relative to time since mowing and other management 

practices. In total, 830 biomass samples were collected for foliar %N analysis (see 

Section 3.2 below). 
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2.3. Ground-based Spectroscopy 

Ground-based reflectance was measured with an ASD FieldSpec 4 

handheld spectroradiometer (www.asdi.com) under clear sky conditions at all 

sites, coincident with vegetation sampling.  Data were collected within two 

hours of solar zenith in order to minimize the effect of shadows.  The ASD has a 

spectral range of 350-2500 nm with an effective spectral resolution ranging from 

1.4 to 2 nm and a target ground sampling resolution of 0.08 m2 when equipped 

with an 18°fore optic at one meter above the canopy.  Canopy reflectance 

was calculated using the average of 50 spectral reflectance signatures logged 

during a random walking survey of each 25 m-2 plot.  Care was taken to avoid 

sampling areas where vegetation had been trampled by fieldworkers.  Spectral 

surveys conducted during the 2012 field season occurred within two weeks of 

the airborne remote sensing mission to minimize temporal variation between the 

two datasets.  During the 2013 field season, spectral surveys were conducted 

during the same time of year in conjunction with field sampling.   

 

2.4. Airborne Remote Sensing Data Collection 

Airborne visible and infrared reflectance for the entire LRW was collected 

in 33 flight lines on August 4th and 7th in 2012 to coincide with peak growing 

season conditions.  Data were obtained by the ProSpecTIR-VS instrument, which 

is a dual sensor design with a visible/near-infrared (400-1000 nm) and a short-

wave infrared (1000-2500 nm) sensor.  Together, these sensors capture upwelling 
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radiance in 360 continuous spectral bands with a nominal spectral resolution of 

5 nm.  The instrument was flown on a Cessna fixed wing aircraft at an altitude of 

~3900 m, yielding a spatial resolution of 5 m.  Flight lines were oriented in the 

principal plane of the sun to minimize cross-track brightness gradients.  

 

2.5. Data Processing and Analysis  

2.5.1. Spectral Preprocessing  

Reflectance spectra from ground and aircraft instruments were processed 

using a combination of R version 2.15.1 (www.r-project.org) and ENVI 4.7 

(www.exelisvis.com).  Airborne data were converted from calibrated radiance 

to apparent surface reflectance using MODTRAN 4 atmospheric lookup tables 

with the ATCOR4 software.  Field plots were located within the aerial imagery 

using GPS coordinates collected during field surveys and were represented as 

single 5x5m pixels centered at these locations.  To facilitate comparison 

between datasets, ground-based spectra containing 2,150 one-nanometer 

bands were convolved (using full-width half-maximum) to match the coarser 

360 band airborne data.  This was done prior to the development of spectral 

calibrations (Section 2.5.2.).  Spectral bands that fell within visibly noisy regions or 

where atmospheric absorbance resulted in no usable data (i.e. <400 nm, 1350-

1450 nm, and 1800-2000 nm) were removed from both datasets.   

Ground-based spectral data were further processed to remove spectra 

that were dominated by non-vegetation surfaces or shadows.  This typically 
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resulted in the removal of 0-5 spectra per plot.  At the plot level, and across 

management types, simple linear regression was used to compare the overall 

shape and agreement of canopy reflectance from ground- and aircraft-based 

spectra.     

2.5.2. Regression Model Development  

Relationships between canopy reflectance and vegetation variables 

(canopy %N, water content, height, and biomass) were assessed using Partial 

Least Squares Regression (PLSR) in JMP Pro 10.  PLSR is an eigen-based analysis 

designed to maximize the covariance between two datasets.  In practice, PLSR 

reduces the full spectrum into a smaller set of ordinated factors to optimize the 

covariance within prediction factors (i.e. spectra) and observed data 

simultaneously (Martin et al. 2008).  PLSR excels over traditional regression 

techniques with data containing many more prediction variables relative to the 

number of observations, making it particularly well suited for high spectral 

resolution data.  The final number of latent factors incorporated in each PLSR 

prediction model was determined by minimizing the root mean predicted 

residual sum of squares (PRESS), generated by one-out cross validation (Tobias 

1995, Denham 2000).  In instances where this method resulted in a model with a 

large number of factors relative to observed sample size, the number of factors 

was decreased according to the method described by van der Voet (1994).  

The van der Voet T2 is a permutation-based statistic that allows the comparison 

of predictive ability of multiple models by analyzing the distribution of prediction 
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residuals.  Models incorporating data from all plots were generated using the 

ground-based and airborne spectral datasets discretely.  Predictive models that 

used ground-based spectra incorporated data collected during both study 

years and therefore tended to have larger sample sizes when compared with 

models based on airborne spectra, where data were only available for the 2012 

season (see Table 2).  The prediction accuracy and precision of the PLSR models 

was assessed by the coefficient of determination (R2) and root mean square 

error (RMSE), respectively.   

2.5.3. Image Application for %N Estimation  

Developed, cultivated, and grassland pixels were extracted from the 

aerial imagery using the 2010 NOAA C-CAP land cover classification (DOC-

NOAA 2013).  Pixels classified as developed were included in the initial 

extraction due to the finely mosaicked nature of commercial and residential 

grasslands in our region of study.  Buildings and roads within these pixels were 

then masked using the 2010 Impervious Surfaces in Coastal New Hampshire and 

Southern York County, Maine dataset (CSRC 2011).  Both classification datasets 

are based on Landsat 5 imagery with a spatial resolution of 30m.  Pixels classified 

as having less than 30% impervious surfaces were included in the final 

classification scheme in an effort to include grassland parcels smaller than 30 x 

30 m.  Canopy %N was then estimated for the remaining image data by 

applying the airborne PLSR model (described in the previous section).   
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3. RESULTS 

3.1. Summary of Field Measurements 

Canopy %N, height, and aboveground biomass differed significantly 

(p<0.05) by management type, with the exception of agricultural grasses (i.e. 

pasture and hay; Table 1).  Pasture and hayfield canopy %N, height and 

biomass were not statistically significantly different from each other, but were 

significantly different from turf and fallow grasslands.  No significant differences 

in canopy water content were observed across grass cover types.  Average 

nitrogen concentration was highest in turf grasses followed by agricultural 

grasses and lowest in fallow fields.   

Cover Type 
%N (gN×100g-1) Biomass (g×m-2) Canopy Height (mm) Water Content 

Min Max  Mean Min Max  Mean Min Max  Mean Min Max  Mean 

Turf 1.31 3.51 2.82 15.2 381 108 50 150 86 0.35 2.88 1.46 

Pasture 1.03 3.09 1.96 105 387 262 104 620 338 1.03 3.09 1.96 

Hay 1.06 5.55 2.76 101 596 264 157 602 356 1.06 5.55 2.76 

Fallow  0.71 4.91 1.73 131 1060 500 175 1290 595 0.71 4.91 1.73 

 

3.2. Lab-based Canopy N Calibration   

Figure 2 shows foliar %N values measured by mass spectroscopy in relation 

to those predicted by the study-specific NIRS calibration.  This calibration was 

based on a random subset of 103 samples (collected in 2012) and was used to 

determine the N concentration of the remaining samples (n=727).  Of the total 

830 biomass samples collected and analyzed for %N using laboratory NIRS (see 

section 2.2), six samples fell well below the range of N values included in the 

Table 1. Summary statistics of measured canopy attributes by management type. Canopy %N, height, 

and aboveground biomass differed significantly (p<0.05) across all management types with the 

exception of pastures and hayfields, which were statistically similar.  
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Figure 2. NIRS predicted %N values of 
103 dried and ground grass foliage 
samples.  Prediction and fit based on 
partial least squares regression with 7 
extracted factors.  RMSE=0.1810, 
p<0.0001 

 

calibration dataset and were not included in the development of regression 

models used to estimate %N using airborne and ground-based spectra. These 

samples are believed to have included a large portion of dead biomass 

resulting resulted in low N values relative to the rest of the sample set.   

 

 

3.3. Calibration of Ground- and Aircraft-based Spectra 

PLSR models incorporating data from all plots and management types 

produced strong predictive calibrations for canopy %N using both aircraft and 

ground-based datasets (Figure 3, Table 2).  The calibration using ground-based 

spectra yielded a better fit (r2=0.76, RMSE= 0.29) than that based on aircraft 

data (r2=0.67, RMSE=0.36) although both were highly significant (p<0.0001).  

Additionally, significant calibrations for water content, canopy height, and 

biomass were obtained using ground-based spectra (Figure 4, Table 2). 
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Table 2. Prediction statistics for measured canopy attributes resulting from PLSR. Significant 

(p<0.0001) relationships are indicated in bold.   

 Data Source Prediction n R
2
 Mean  Response RMSEP Min RM PRESS Factor

s Ground Based %N (gN100g-1) 54 0.7609 2.1067 0.2911 0.4842 9 

Airborne %N (gN100g-1) 39 0.6723 2.1478 0.3626 0.6683 6 

Ground Based Water Content 50 0.6117 2.0864 0.7661 0.8195 3 

Airborne Water Content 22 0.0465 57.44182 10.7958 12.5589 3 

Ground Based Canopy Height (mm) 55 0.6122 361.935 133.6353 204.9702 7 

Airborne Canopy Height (mm) 28 0.0022 412.7143 284.5958 293.9386 1 

Ground Based Biomass (gm-2) 56 0.5494 302.0243 137.5195 177.692 8 

Airborne Biomass (gm-2) 39 0.00787 224.3362 220.5728 228.3671 1 

 

A B C 

Figure 4. Relationships between PLSR prediction models incorporating ground-based canopy 

reflectance and measured (A) canopy height, (B) Water Content, and (C) Aboveground Biomass  

(P<0.0001) 

 

Figure 3.  Relationships between %N measured using NIRS vs. %N predicted with PLS 

models incorporating (A) airborne and (B) ground-based canopy reflectance (p<0.0001) 

A B 
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Figure 5. Important wavelengths as indicated by 

the variable importance of projection (VIP) in 

PLSR prediction models of (A) canopy %N 

predicted by airborne reflectance data, and (B) 

canopy %N, (C) canopy height, (D) Biomass, 

and (E) water content predicted by  ground-

based reflectance data.   

A B 

C D 

 

E 

3.4. Relative Importance of Spectral Bands in Calibrations  

The contribution of spectral bands in each of the significant PLSR 

calibration models described above was assessed using the Variable 

Importance of Projection (VIP) statistic of Wold (1994; Figure 5).  The VIP score 

describes the importance of a given predictor in the projection of the latent 

variables that underlie a PLSR model (Chong & Jun 2005).  According to Wold 

(1996), predictors with a VIP score of one or higher are typically important in the 
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resulting projection and those less than 0.8 tend to add little. VIP scores for both 

airborne and ground-based canopy %N calibrations indicate the importance of 

NIR bands located between 750-1300nm and, to a lesser extent, 1550-1750nm.  

These peaks are also important in the prediction of canopy height, biomass and 

water content.   

3.5. Sensor Comparison  

At the plot level and across management types, canopy reflectance 

derived from airborne and ground-based sensors showed agreement in the 

overall shape of spectral reflectance curves (e.g. Figure 5), although differences 

in brightness across some regions of the spectrum made direct comparison of 

these two data sources difficult.  This can be seen in the differences in slope in 

Table 3.  Generally, airborne spectra tended to be brighter in the visible region 

and dimmer throughout the NIR (750-1800nm) as compared to ground-based 

spectra.   

 

3.6. Predicted Canopy %N for Grassed within the Study Region  

 The distribution of cultivated grasslands in the LRW follows regional 

development trends concentrated in southern and eastern portions of the 

watershed (Figure 6).  Predicted foliar %N values across the watershed exhibited 

Management Type r2 Slope 

Turf 0.9253 0.9109 

Pasture 0.8977 0.7476 

Hay 0.9249 0.6036 

Fallow 0.9064 0.8340 

Table 3.  Linear regression of ground-based and 
airborne spectra by management type. Correlation 
coefficients represent agreement across spectral shape 
and differences slope indicate change in overall 
brightness. 
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a normal distribution with a mean of 2.24% and a range of 0.25% to 5.0%.  These 

values fall within the range of foliar %N values of grasses compiled by Reich and 

Oleksyn  in 2004 for their global study of plant N and phosphorous.  While visual 

inspection of the watershed N prediction revealed a wide range of canopy %N 

values in all management groups, direct comparison of canopy %N across the 

four management types at the landscape level proved difficult due to the lack 

of an existing detailed classification that discriminates cultivated grasslands by 

management type.   
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4.  

5.   

Figure 6. Canopy %N of cultivated grasslands in the Lamprey River Watershed. Areas in black 

represent non-grass vegetation. White areas are characterized as impervious and are included to 

provide context in residential and built areas. The inset image (outlined in red, top panel) is of the 

Durham New Hampshire area and illustrates the ability of the airborne imagery to delineate small 

grassland parcels and discriminate within-field differences in canopy %N.       
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4. DISCUSSION 

4.1. N Detection in Cultivated Grasslands: Challenges and Opportunities   

 Cultivated grasslands are dynamic ecosystems that are heavily 

influenced by human management (Falk 1976).  Management actions and the 

plant responses they induce affect canopy light interactions in complex ways 

posing challenges in the interpretation of remotely sensed data (e.g. Booth & 

Tueller 2003).  Mowing and grazing—the primary mechanisms used to maintain 

cultivated grasslands—affect canopy reflectance in a number of ways, 

including altering aboveground biomass, leaf area index, leaf water content, 

soil background and leaf angle (Wu et al. 2012, Lee & Lathrop 2006).  Imaging 

spectroscopy data from platforms such as those used in this study and the 

proposed HyspIRI mission allow for the inclusion of subtle yet influential 

reflectance features in the development of calibration equations that would 

otherwise be attenuated by traditional multispectral sensors (Chambers et al. 

2007).  In this regard, results of our study offer promise for the use of both ground- 

and aircraft-based high spectral resolution reflectance data and PLSR models to 

accommodate a range of grass conditions in predicting canopy %N.  As with all 

PLSR-based approaches, these relationships are based on empirical 

observations and their application should be restricted to the range of 

conditions under which they were derived.  Determining functional linkages 

between individual plant properties and spectral reflectance features at the 

canopy scale is often challenging given the complexity of plant canopies and 
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the interrelated nature of many plant traits (Ollinger 2011).  Determining these 

causal mechanisms has been an active field of research and often relies on the 

use of canopy light models (e.g. Zhang et al. 2006).  Although such models have 

advanced our understanding of canopy light dynamics, they rarely include N 

because N itself has no distinct optical properties and because our 

understanding of relations between N and other optically important plant traits 

is incomplete.  Grasses are potentially well suited to studying these relationships 

because they quickly respond to nutrient and water treatments and are easy to 

manipulate, isolating physical traits such as leaf area index and leaf angle 

distribution.  Additionally, their short stature allows abundant collection of 

canopy reflectance data using handheld or laboratory instruments.    

 Through its association with plant proteins, foliar N represents an important 

measure not only of plant productivity but also of pasture and forage quality 

(e.g. Waramit et al. 2012).  Detailed maps of canopy N in cultivated grasslands 

have several potential applications with respect to watershed management.  In 

watersheds where agricultural grasslands are prevalent, the ability to detect 

canopy %N could aid managers in the application of fertilizers and 

management of livestock.  The use of remote sensing to tailor management 

practices is not a novel idea (Knox et al. 2011, Thulin et al. 2012); however its 

adoption at the watershed to regional scale could provide interesting insights 

into agricultural systems and efficiencies.  The spatial and temporal coverage of 

the upcoming HyspIRI mission has potential for estimating canopy % N and 
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forage quality for large swaths of agricultural grasses that could lead to 

improved and adaptive grazing management practices (Thulin et al. 2012).  

When paired with ecosystem production (e.g. Ollinger & Smith 2005) and 

hydrologic flow models (Tague 2009), data such as those presented here may 

prove useful in modeling productivity, helping to close watershed N budgets, 

and potentially identify non-point sources of N pollution.  Remotely sensed 

imagery offers the only effective means to produce the spatially explicit 

coverage necessary to study landscapes in this way.  Although it lacks the 

spatial coverage necessary for broad-scale studies, ground-based 

spectroscopy enables rapid estimation of canopy %N at relatively low costs and 

allows for repeated sampling throughout the growing season, making it useful as 

a monitoring tool in cases where the temporal coverage of aircraft or satellite 

platforms is insufficient. 

 

4.2. Relevance to HyspIRI 

 Remote sensing applications involving aircraft sensors come with the 

inherent limitation of the relatively small spatial coverage that can be achieved 

with aircraft.  Because the spectral data used in our analysis are spectrally similar 

to those that will be provided globally by HyspIRI, our results hold promise for N 

estimation in cultivated grasslands over much larger areas.  However, several 

hurdles will need to be overcome before this can be achieved.  As an example, 

the spatial resolution of data used in our study was 5 x 5 m, which is typically 
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adequate for capturing residential lawns (Zhou et al. 2008) as well as larger 

areas of agricultural grassland.  The suggested spatial resolution for HyspIRI is 60 

m, which is likely to be adequate for pasture, hay and other agricultural 

grasslands, but could present a challenge in residential areas given the smaller 

size of many private lawns.  This challenge could potentially be addressed using 

spectral unmixing (Lee & Lathrop 2006), or through a multi-sensor scaling 

approach whereby small training areas within a HyspIRI scene are captured with 

aircraft data in order to aid in resolving sources of subpixel variation (e.g. Hope 

et al. 2004).  Additionally, understanding the specific plant traits and 

management activities responsible for observed reflectance patterns will 

become more important as the areal extent of N estimation activities expands.  

A more mechanistic understanding would complement the empirical 

approaches used to date and aid in the effort to build leaf N concentrations 

and grassland management conditions into models that can be used to better 

interpret remote sensing signals where intensive field data are not available.  

Despite these challenges, results from this study suggest promise for applications 

of HyspIRI aimed at detecting patterns of vegetation condition in human-

dominated landscapes as well as those containing native vegetation. 
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5. CONCLUSIONS 

 This study demonstrated that high spectral resolution canopy reflectance 

data from ground- and aircraft-based sensors offer a viable tool for estimating 

canopy %N of cultivated grasslands across the wide range of management 

types encountered in human-dominated landscapes.  While the airborne %N 

calibration described here produced a good predictive relationship (r2=0.67) 

the inclusion of additional samples in future calibration datasets will likely result in 

improved predictive ability.  PLS regression techniques are well established in the 

remote sensing literature, but would be complemented by better understanding 

the underlying mechanisms governing canopy reflectance.  Because they are 

fast growing, easily manipulated, and can be sampled from the ground, 

cultivated grasslands provide a useful environment in which to empirically test 

these mechanisms at multiple scales.  Future remote sensing studies in human-

dominated landscapes will benefit from a better understanding of these 

mechanisms, as well as improved landscape classification, and should strive to 

incorporate additional plant functional types such as crop and forests.   
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