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Forest disturbance and recovery: A general review in the context of

spaceborne remote sensing of impacts on aboveground biomass and

canopy structure

S. Frolking,1 M. W. Palace,1,2 D. B. Clark,3,4 J. Q. Chambers,5 H. H. Shugart,6

and G. C. Hurtt1

Received 11 December 2008; revised 3 April 2009; accepted 1 May 2009; published 22 July 2009.

[1] Abrupt forest disturbances generating gaps >0.001 km2 impact roughly
0.4–0.7 million km2 a�1. Fire, windstorms, logging, and shifting cultivation are
dominant disturbances; minor contributors are land conversion, flooding, landslides,
and avalanches. All can have substantial impacts on canopy biomass and structure.
Quantifying disturbance location, extent, severity, and the fate of disturbed biomass will
improve carbon budget estimates and lead to better initialization, parameterization, and/or
testing of forest carbon cycle models. Spaceborne remote sensing maps large-scale
forest disturbance occurrence, location, and extent, particularly with moderate- and
fine-scale resolution passive optical/near-infrared (NIR) instruments. High-resolution
remote sensing (e.g., �1 m passive optical/NIR, or small footprint lidar) can map crown
geometry and gaps, but has rarely been systematically applied to study small-scale
disturbance and natural mortality gap dynamics over large regions. Reducing uncertainty
in disturbance and recovery impacts on global forest carbon balance requires
quantification of (1) predisturbance forest biomass; (2) disturbance impact on standing
biomass and its fate; and (3) rate of biomass accumulation during recovery. Active remote
sensing data (e.g., lidar, radar) are more directly indicative of canopy biomass and many
structural properties than passive instrument data; a new generation of instruments
designed to generate global coverage/sampling of canopy biomass and structure can
improve our ability to quantify the carbon balance of Earth’s forests. Generating a
high-quality quantitative assessment of disturbance impacts on canopy biomass and
structure with spaceborne remote sensing requires comprehensive, well designed, and
well coordinated field programs collecting high-quality ground-based data and linkages to
dynamical models that can use this information.

Citation: Frolking, S., M. W. Palace, D. B. Clark, J. Q. Chambers, H. H. Shugart, and G. C. Hurtt (2009), Forest disturbance and

recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure,

J. Geophys. Res., 114, G00E02, doi:10.1029/2008JG000911.

1. Introduction

[2] Atmospheric CO2 concentrations continue to increase
[Forster et al., 2007], and evidence of contemporary climate
change is accumulating [Trenberth et al., 2007]. Significant

effort is being devoted to better quantifying the carbon
balance of terrestrial ecosystems [Grace, 2004], and to
develop and improve Earth system models capable of
incorporating the role of ecosystems, including forests and
forest dynamics, in the Earth’s coupled climate-carbon
system [e.g., Friedlingstein et al., 2006; Bala et al.,
2007]. Substantial uncertainties in the global carbon budget
are attributed to net carbon fluxes from land use and an
unidentified terrestrial carbon sink, both about 1.6 Pg C a�1

[Forster et al., 2007]. Forest disturbance and recovery play
an important role in both regional and global carbon
budgets, and in forest ecosystem processes.
[3] A recent report on near-term priorities for Earth

science applications from space by the National Research
Council recommended a suite of satellite missions, includ-
ing a mission ‘to observe the extent of changes in ecosystem
structure and biomass’ [National Research Council (NRC),
2007]. The report noted that the horizontal and vertical
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structure of vegetation is a key feature influencing ecosys-
tem carbon storage, surface energy balance, and species
habitats. Forests warrant particular focus because the verti-
cal structure of forest canopies is more complex and
variable than other ecosystems (grasslands, arid lands,
tundra, agricultural lands). Forest vertical canopy structure
plays a central role in forest ecology, productivity, and
biodiversity [Lowman and Rinker, 2004]. Vertical canopy
structure can vary with stand age to a greater degree than for
nonforested ecosystems, and also varies with soil properties,
nutrient and water availability, and small-scale variability in
climate patterns. The horizontal structure of a forested
landscape encompasses the spatial heterogeneity in species,
gap, and canopy height distributions.
[4] The NRC [2007] report also stated, ‘Quantifying

changes in the size of the [vegetation biomass] pool, its
horizontal distribution, and its vertical structure resulting
from natural and human-induced perturbations, such as
deforestation and fire, and the recovery processes is critical
for measuring ecosystem change.’ If forests were static
ecosystems, mapping relevant forest properties would be
relatively straightforward, and monitoring would be unnec-
essary. However, forest disturbance and recovery ensures
that the species composition, age, biomass, and biogeo-
chemical properties of forests are not static, and land cover
change and biome migration (e.g., woody encroachment or
desertification) ensures that the location and extent of forest
cover is also dynamic.
[5] The carbon balance of a forest ecosystem is funda-

mentally linked to its cycle of disturbance and recovery.
Major disturbances entail either a rapid release of biomass
carbon (e.g., combustion [Körner, 2003]) or a large transfer
of biomass from living and potentially growing vegetation
to dead material that either decomposes over a period of
years (e.g., coarse woody debris [Harmon et al., 1986;
Chambers et al., 2000; Palace et al., 2007]) or is removed
from the forest (e.g., wood products [Winjum et al., 1998]).
Forests recovering from disturbance are generally strong
carbon sources immediately following the disturbance (from
combustion or decomposition of abundant dead wood)
shifting to carbon sinks due to regrowing vegetation for
many decades thereafter [Chambers et al., 2004; Law et al.,
2004; Keller et al., 2004a]. Averaged over large area and
decades, the carbon losses from disturbances and the carbon
gains from recovery may be approximately equal [e.g.,
Körner, 2003], unless changes in the rate, severity, or extent
of disturbance or in the rate of recovery or regrowth cause a
change in the equilibrium carbon stock of a region’s forests.
Disturbance/recovery changes may play an important role in
the net terrestrial sink term of the global C budget. Earth
system models will simulate the dynamics of ecosystem
carbon cycling as it interacts with the climate system, with
both forcings and feedbacks. Initialization and/or evaluation
of carbon models require regional- to global-scale data sets
of both forest extent and forest properties related to the
coupled climate-carbon system. Fundamental forest proper-
ties (e.g., stand biomass, stand age distribution, life form
(evergreen or deciduous or mixed), canopy height, foliar
biomass and leaf area, and potential productivity) can be
measured both directly on the ground by forest inventories
or, generally indirectly, by spaceborne satellite remote
sensing.

[6] Forest disturbance can be abrupt (e.g., hurricanes) or
chronic (e.g., acid rain); stand-replacing (e.g., clear-cut
logging) or not (e.g., selective logging); complete (e.g.,
landslides) or incomplete (e.g., insect defoliation); natural
(e.g., tornados) or anthropogenic (e.g., land conversion);
widespread (e.g., fire) or geographically restricted (e.g.,
avalanches); temporary (e.g., blowdowns) or permanent
(deforestation and land use conversion).
[7] Disturbance is a major agent in determining the

heterogeneity of forest ecosystems across a broad range of
scales in space and time. Methods for projecting carbon
storage change in forests and for assessing plant and animal
habitat all contain assumptions about the physical structure
of forests. Characterizing a forest requires quantification of
more than a single feature. For example, a complex multi-
species, multilayered forest can be very different in many of
its dynamic functions than a mono-species, mono-layered
forest with an equivalent leaf area index (LAI). Additional
canopy structure information (e.g., canopy height and its
variance, gap sizes and frequencies, and aboveground
biomass) will provide a more complete picture of the state
of the forest than just LAI. In a world with conspicuous
environmental change, quantifying the structural aspects of
forests across large areas is a key factor in both qualitative
and quantitative descriptions of the state of forests.
[8] Much spaceborne remote sensing is based on mea-

suring the reflectance of incoming solar radiation. For these
so-called passive instruments reflected solar radiation is
broadly classed as visible (0.4–0.7 mm), near-infrared
or NIR (0.7–1.2 mm), and short-wave infrared or SWIR
(1.2–2.0 mm); active instruments beam radiation down and
measure the reflectance of that radiation. Spaceborne pas-
sive optical/NIR remote sensing has been an important tool
for mapping the extent and location of large-scale, stand
replacing forest disturbances such as deforestation and land
conversion [e.g., Skole and Tucker, 1993; Achard et al.,
2002; Hansen et al., 2008], logging [e.g., Asner et al., 2005;
Souza et al., 2005;Masek et al., 2008], fires [e.g., Kasischke
and Turetsky, 2006; Roy et al., 2008], and wind storms [e.g.,
Nelson et al., 1994; Chambers et al., 2007b]. There remain
several key hurdles to accurate continental to global assess-
ments of forest areas and forest disturbance: (1) cloud
interference at all spatial scales, particularly in humid
tropical and temperate forests [e.g., Asner, 2001; Simon et
al., 2004; Cardoso et al., 2005; Zhao et al., 2005; Sano et
al., 2007]; (2) definitional problems and changing assess-
ments of forest areas [e.g., Grainger, 2008; Houghton and
Goetz, 2008]; (3) for fine scale assessments (e.g., Landsat),
the challenge of developing robust algorithms that general-
ize across a region [e.g., Woodcock et al., 2001; Foody et
al., 2003]; and (4) the difficulty of detecting smaller-scale
disturbances that, in aggregate, are of global significance
[e.g., Asner et al., 2002a, 2002b].
[9] High-resolution (e.g., <5 m) passive optical/NIR

remote sensing data (e.g., Ikonos, QuickBird) provides a
much more detailed view of forest canopies [e.g., Palace et
al., 2008a], but with only limited and targeted coverage
[e.g., Hurtt et al., 2003]. With these new instruments there
has been work on remote sensing of the growth, mortality
and reproduction of individual trees [Clark et al., 2004a,
2004b; Wulder et al., 2008; Kellner, 2008], as well as
estimation of stand-level characteristics such as basal area,
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frequency of canopy gaps and land use history [Asner et al.,
2002a, 2002b; Palace et al., 2008a; Kellner et al., 2009;
Wulder et al., 2008; Malhi and Román-Cuesta, 2008].
[10] A more complete assessment of the impact on the

coupled climate-carbon system of forest changes through
disturbance and conversion or recovery requires more than
just information on the location and extent of these changes.
How many trees were killed? How many were damaged?
How much necromass (standing dead and coarse woody
debris) was generated? For an earlier disturbance, what is
the current state of forest recovery in terms of biomass, or
LAI, or stand height? Specific quantitative, geospatial
information on changes in forest biomass and canopy
structure will be more useful to carbon budget studies and
Earth system modeling than inferences of these changes
from maps of the location of disturbance and general forest
biome statistical data. Lidar (light detection and ranging
[Lefsky et al., 2005]), SAR (synthetic aperture radar
[Saatchi and Moghaddam, 2000; Saatchi et al., 2007a]),
and interferometric SAR (InSAR [Treuhaft et al., 2004]) all
offer the potential to complement the ongoing spaceborne
remote sensing work on forest disturbance mapping by
providing a more detailed assessment of predisturbance
and postdisturbance forest biomass and canopy structure.
[11] The state of a forest landscape with respect to the

collection of mosaic patches that comprise it is essential to
understanding the long-term dynamics of that landscape.
Forest in recovery from large disturbances will have a
narrow age distribution, while mature forests long-recovered
from a similar disturbance will have a broader age distri-
bution across a set of distributed samples or the entire forest
mosaic. These patterns of recovery versus equilibrium may
not be well quantified by the variation in the features of
forests that are easily monitored with conventional space-
borne remote sensing systems. The variation and higher
moments of landscape variability in leaf area, biomass,
height, etc., are necessary to reveal these essential forest
features. One can detect some of the variability with passive
remote sensing instruments (particularly at higher resolu-
tions or using multiangle ‘‘looks’’ at the vegetation) but the
suite of forest structure variables (and the richness of
potential interpretation) is greater with the addition of active
remote sensing (radar and lidar sensors).
[12] In this paper, we review major types of large-scale

and small-scale forest disturbances in terms of scale, fre-
quency, and impact on forest structure and aboveground
biomass, and the capabilities of existing spaceborne remote
sensing instruments to map disturbance location, extent,
timing, and impacts. Our examination of existing remote
sensing studies allows us to assess advantages, benefits, and
limitations of such research, and to make suggestions about
the development and synthesis of new studies and satellite
platforms necessary to the understanding of the role of
forest disturbance and recovery on forest carbon cycle
dynamics on both regional and global scales.

2. Definitions

[13] Our focus is the measurement of changes in forest
aboveground biomass distribution detectable by remote
sensing at different spatial scales (branch to landscape to
biome). Although the terms forest, biomass, canopy, distur-

bance, and recovery are common in forest ecology and
carbon cycle science literature, specific scientific definitions
vary based on the scale of study and the ecological concept
being examined.
[14] Biomass is the dry weight of living or dead organ-

isms; in forests most of the biomass is found in plants.
Vegetation biomass, or the mass of plant and plant-derived
organic matter, can be disaggregated into several categories
[Clark et al., 2001a, 2001b]. In forests, aboveground living
biomass consists primarily of the wood of canopy trees, but
also includes vine, epiphyte, canopy leaf, understory, and
groundcover biomass, and would exclude all aboveground
dead material (standing dead, coarse woody debris, litter
and duff) [Keller et al., 2001]. Necromass is defined as dead
vegetation biomass that has not been incorporated into soil
organic matter, and is sometimes included in biomass
estimates. Necromass can be partitioned into a fine compo-
nent, including fallen leaves and small twigs/branches, and
a coarse component, including standing dead and coarse
woody debris [Harmon et al., 1995]. Estimates of necro-
mass and comparison with live biomass can aid in the
understanding of spatial and temporal patterns of distur-
bance [e.g., Rice et al., 2004; Palace et al., 2008b]. We
focus on aboveground biomass (live and dead), as below-
ground biomass is not observable from space.
[15] Spies [1998] discussed four key components of forest

structure: live-tree size distribution, vertical foliage distri-
bution, horizontal pattern, and coarse woody debris. Live-
tree size distribution includes tree height distributions, tree
diameter (e.g., diameter at breast height or DBH) distribu-
tions, stem density (number per unit area), and age distribu-
tions. Vertical foliage distribution can include information
on LAI, canopy vertical distribution profile, canopy archi-
tecture (leaf size, shape, orientation and clumping index,
and life form: deciduous or evergreen), canopy roughness,
and understory and groundcover biomass, height, life form,
spatial pattern. Coarse woody debris includes information
on standing and fallen dead: diameter, height, mass, and
decay state [e.g., Keller et al., 2004a, 2004b; Palace et al.,
2007]. Horizontal pattern includes information on the forest
canopy as an element of the landscape structure: stand/patch
and gap size and shape distributions, and edge density and
habitat connectivity.
[16] Clark [1990] defined forest disturbance as ‘a rela-

tively discrete event causing a change in the physical
structure of the environment (vegetation and surface soil).’
These disturbances can range from branchfalls to landscape-
level blowdowns [van der Meer and Bongers, 1996; Clark
and Clark, 1991], and there is inverse relationship between
temporal and spatial patterns [e.g., Lorimer and Frelich,
1989; Fisher et al., 2008]. Following Clark [1990], we
focus in this review on disturbances that are abrupt events
that cause changes in forest biomass and structure (Table 1)
that are potentially detectable by space-based remote sens-
ing (Table 2). We exclude phenological or regenerative
changes in canopy biomass or structure. Regenerative
changes and growth will fall under our definition of
recovery (below). Seasonal phenological cycles induce
relatively predictable and repetitive changes in forest can-
opy structure. However, significant anomalies in bioclimatic
seasonality can have measurable impacts on forest canopies
and regional carbon cycles, at least over a growing season,
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such as a reduced midsummer leaf area index in following a
late frost in eastern North America in 2007 [Gu et al.,
2008]. We also exclude very gradual changes from our
definition of disturbance, changes that generally will be
detectable only over decades to centuries (e.g., sea level rise
onto a coastal plain, permafrost degradation and land
surface subsidence, ice sheet development). We also will
not focus on chronic disturbances that have an accumulating
impact (e.g., pollution, drought, disease, pests) that eventu-
ally can manifest in a change in forest canopy biomass/
structure [e.g., Linzon et al., 1973]. The impact of a chronic
disturbance (e.g., pollution loading) accumulates over
weeks to years, and may not initially be apparent. Many
chronic disturbances have their most profound impact
indirectly, e.g., drought or pest infestation making a forest
more susceptible to fire [Oliver and Larson, 1996].
[17] Disturbance cause can be broadly classified into

natural and anthropogenic (Table 1). Most natural forest
disturbances (e.g., windstorms, droughts) are climate related
and disturbance rates may change with climate change
[Dale et al., 2001]. Anthropogenic disturbances (e.g., logging)
have a different set of drivers (mostly socio-economic) that
can also be expected to change over time [e.g., Nakicenovic
et al., 2000]. An additional disturbance classification axis
relates to range and location: global or restricted either in
space or in time (Table 1). Restricted disturbances (e.g., an
avalanche) can only occur in suitable locations (e.g., moun-
tains) and/or times (e.g., winter), and do not require con-
tinuous global observations for detection.
[18] Near its 100th anniversary, it is appropriate to men-

tion the 1908 Tunguska impact on Siberian forests. The
Tunguska meteor or comet exploded about 10 km above the
surface with a force estimated to be equivalent to 10–15 Mt
TNT [Shoemaker, 1983], and trees were felled over an area
of about 2000 km2 [Longo, 2007]. Meteor impacts smaller
and much larger than the Tunguska have occurred through-
out Earth’s history, and can be expected to continue, though
the frequency of such impacts on forests is not known, and
no remote sensing work has been published. For planetary
impactors, the relevant satellite instruments should be
looking out to space, rather than in toward Earth. Volcanic
eruptions can also have a major impact on surrounding
forests through explosive blasts, debris and lava flows, toxic
chemicals and heat, landslides, and ash and ejecta deposi-
tion [e.g., Foster et al., 1998]. We do not consider volcanic
eruptions in this analysis because the locations of volcanoes
are well known, though the timing of eruptive explosions is
not, and so the task for forest disturbance remote sensing,
i.e., to map damage posteruption, is relatively well defined.
[19] Forest recovery refers to the reestablishment or

redevelopment of forest biomass and canopy structure
characteristics after the impact of a particular disturbance.
The nature and rate of recovery will depend on the size and
severity of the disturbance, the predisturbance state of the
site, and the processes of seedling establishment and nutri-
ent cycling, which will be a function of climate, postdis-
turbance soil nutrient status, and the inherent productivity of
the site [e.g., Doyle, 1981; Yarie, 1983; Oliver and Larson,
1996; Johnstone and Chapin, 2006a, 2006b]. Following
disturbance, forest recovery/regeneration can follow several
trajectories. In some cases, such as permanent land use
conversion to cropland, there is effectively no recovery of

forest biomass and canopy structure. In some other cases,
such as plantation forestry, recovery is meant to follow a
prescribed trajectory to meet silvicultural and production
goals, with management including transplanting seedlings
of selected species at prescribed stem densities, nutrient
amendments, and pest and weed control [e.g., Fox et al.,
2007]. In cases with minimal human influence postdisturb-
ance, small disturbances with minimal soil impact (e.g.,
natural mortality forest gaps) recover via advance regener-
ation and the soil seed bank of old-growth species. Large
disturbances, or canopy-tree-killing and stand-replacing
events, and those that severely impact the soil, such as
landslides, intense fires, and anthropogenic forest clearing
of large areas, lead to a very different regeneration pathway,
usually by a very restricted set of pioneers species with very
small seeds or bird dispersal [e.g., Clark, 1990]. The
timescale of canopy recovery following a particular distur-
bance depends on both the severity of the disturbance and
the canopy structural variable(s) of interest (e.g., LAI <
canopy height < biomass).

3. Forest Disturbance and Recovery Impacts on
Biomass and Structure

[20] We divide disturbances (Table 1) into two categories by
size: (1) large disturbances that generate gaps >�0.001 km2;
and (2) small disturbances that generate small gaps of one to
a few mature trees (<0.001 km2) and/or damage the forest
canopy without felling trees. In general, most modes of
disturbance in category (1) also generate disturbance appro-
priate to category (2); e.g., a hurricane can generate large
gaps along its path, but peripheral winds are weaker and
forest damage will be less, including small gaps and
extensive nonlethal damage.

3.1. Large Disturbances

[21] Large forest disturbances that generate gaps larger
than 0.001 km2 or 0.1 ha (often much larger) include
permanent and temporary land conversion, logging, fire,
severe windstorms, flooding, landslides, and avalanches
(Table 1). Land conversion, logging, fire, windstorms, and
flooding are unevenly but widely distributed throughout the
world’s forests. We estimate the total forest area disturbed to
be �4–7 � 105 km2 a�1, based on these rough calculations:
wood harvest is �1 Pg C a�1 [Hurtt et al., 2006], and at a
mean global harvestable forest biomass of 50–100 t C ha�1

[Houghton, 2005], this would require 1–2 � 105 km2 a�1;
250 million shifting cultivators clearing one-sixth of a
hectare of forest for cultivation every 2–4 years [Lanly,
1985] clear�1–2� 105 km2 a�1; Tansey et al. [2004] report
�3 � 106 km2 a�1 burned, with �3%, or 1 � 105 km2 a�1,
in forest; Dale et al. [2001] estimated 0.15 � 105 km2 a�1

of U.S. forests are damaged by wind, so we estimate �1 �
105 km2 a�1 globally; global area of flood disturbance is
probably less than wind disturbance. Tilman et al. [2001]
showed crop and pastureland area expanding in the 1990s at
�0.4 � 105 km2 a�1, while conversion to built-up land is
�0.1� 105 km2 a�1 [Klein Goldewijk, 2006]; only a fraction
of these land use changes will have cleared forested land.
Landslides and avalanches are confined to sloping and, for
avalanches, snowy terrain. Garwood et al. [1979] estimated
that earthquake-generated landslides denude 2–16% of sus-
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ceptible areas per century, 1 to 5 times more than erosional
landslides. They estimated susceptibility at 38% of Indo-
Malayan, 14% of American, and <1% of African tropical
forests (�2� 106 km2 in total forest area); at 10% per century
this is �2 � 103 km2 a�1. Dale et al. [2001] estimated that
landslides disturb �1 � 103 km2 a�1 of forest in the U.S.
Globally, avalanches probably disturb less area than land-
slides; together they probably disturb <104 km2 a�1 of global
forest.
[22] These major disturbances differ substantially in

(1) their impact on forest canopy structure and biomass,
(2) in the shape of the disturbance impact and the abruptness
of its boundaries, (3) in the fate of the forest biomass lost by
the canopy, and (4) in the recovery trajectory following
disturbance. In permanent land conversion, either for agri-
cultural or residential/industrial use, the forest is cut and the
wood and slash are typically removed and/or burned in situ.
There is no forest regrowth until subsequent abandonment,
although forest cover in residential land use can be sub-
stantial. Land conversion disturbance typically has a sharp
impact-intensity boundary. Similarly, clear-cut logging
removes most woody biomass and transfers it to fuel, pulp
and/or lumber pools; woody slash can be harvested for pulp
or piled to burn or decompose; belowground biomass is
generally left in the ground to decay. Clear-cut logging
disturbance typically has a sharp impact-intensity boundary.
[23] Large fires (ignited by lightning or humans) can burn

mostly on the ground (with little forest canopy damage), or
can climb into and burn the forest canopy. They burn a
fraction of the forest woody biomass in hours to days; and
can continue to spread and burn for months. Remaining
dead wood on site is often standing. Large fires generally
have a diffuse and irregularly shaped impact intensity
boundary, and impact severity within the burn scar can be
very heterogeneous [Foster et al., 1998]. Active fire sup-
pression in the twentieth century has reduced fire distur-
bance rates and extent of damage in temperate forests of
eastern North America [e.g., Frelich and Lorimer, 1991].
[24] Severe windstorms include hurricanes (known as

typhoons when they develop in the Pacific Ocean and as
cyclones when they develop in the Indian Ocean; hurricanes
develop in the Atlantic Ocean), tornados, and microburst
downdrafts associated with major convective storms. Most
biomass that is felled remains on site (woody debris can be
�1 m deep [McNulty, 2002]), many trees are injured/broken
but not completely felled; many trees are still standing, the
soil seed bank is intact and many juvenile trees survive.
Wind-caused mortality can cause variable mortality rates
among different species and stand ages, and can thus affect
overall forest species composition and successional trajec-
tories [Rich et al., 2007]. Severe storm wind damage can be
a major cause of disturbance in temperate hardwood forests,
with most disturbance events damaging only a small frac-
tion of canopy trees, leading to a very mixed-age canopy;
e.g., Frelich and Lorimer [1991] estimated that two-thirds
of the disturbance events (most were wind, not fire) during
1850–1969 caused <20% gap creation within 0.005 km2

plots studies in northern Michigan, USA. Hurricanes gen-
erally have a diffuse and irregularly shaped impact intensity
boundary and heterogeneous impact within the damage
region, though with a general gradient correlating to wind
intensities [Foster et al., 1998; Chambers et al., 2007b;

Chapman et al., 2008]. Poststorm salvage logging can
collect and remove �10% of the felled and damaged trees
[McNulty, 2002]. Tornadoes generally have a sharp impact
intensity boundary, and a fairly linear impact zone [Foster et
al., 1998]. In the neotropical forests of Brazil, blowdowns
generate relatively large gaps (�0.05 to >20 km2) some-
times characterized by fan-shaped forms, with damage
severity diminishing toward the edges [Nelson et al., 1994;
F. Del Bom Espirito-Santo, personal communication, 2008].
[25] Landslides generally completely denude the source

area, and frequently bury their terminal area, while ava-
lanches can scour the ground near their origin (‘start zone’)
but generally just damage trees at the bottom of the slope
(‘runout zone’) [Oliver and Larson, 1996; Johnson, 1987].
Avalanche locations are generally determined by mountain
slope and aspect, and typically reoccur at the same place
every few years (start zone) with damage in the runout zone
less frequent as it is dependent on the size of the avalanche.
Avalanches reduce seedling densities, but impacts are more
severe on larger, older trees, while younger, shorter trees
have higher survival rates [Johnson, 1987; Kajimoto et al.,
2004].

3.1.1. Mapping Large-Scale Forest Disturbance With
Remote Sensing
[26] Quantification of forest clearing and conversion rates

has been the focus of substantial work for the past few
decades [e.g., Food and Agricultural Organization (FAO),
1996, 2001, 2006; Grainger, 2008]. Because forests are
widespread, and often vast and not easily accessible, space-
borne remote sensing has played a major role in these
efforts, providing large-scale coverage and repeated viewing
with the same instrument. Such remote sensing has the
potential for automated analyses but requires substantial
ground truth data for calibration and interpretation of the
data [Steininger, 2000]. Moderate resolution sensing (e.g.,
MODIS at 250 m to 1000 m resolution) is too coarse for
reliable detection of much land conversion and logging
activity [e.g., Hansen et al., 2008], but has twice-daily
repeat viewing and so has many chances for gathering
cloud-free data. Fine resolution data (e.g., Landsat at �30 m)
can detect large-scale disturbances, and has been used in the
tropics for large-scale regional disturbance mapping assess-
ments for many years [Skole and Tucker, 1993; Achard et
al., 2002; Hansen et al., 2008]. Methods have improved
from manual digitizing of wall-to-wall images of the Brazil-
ian Amazon [Skole and Tucker, 1993], to collecting �100
Landsat samples for the tropical forest biome [Achard et al.,
2002], to combining Landsat and MODIS data to generate
an automated wall-to-wall assessment of pan-tropical forest
clearing [Hansen et al., 2008]. Mean deforestation rates
were �0.4–0.5% a�1 in all three of these studies, despite
differences in method, domain, and time period. Applied to
�20 million km2 of tropical forests globally [FAO, 2001],
this is �1 � 105 km2 a�1. Regional variability was high,
and local/regional rates were as high as 3–6% a�1 [Achard
et al., 2002] or 4–5% a�1 [Hansen et al., 2008]. Achard et
al. [2002] also quantified reforestation (0.08% a�1) and
forest degradation (0.2% a�1), while Skole and Tucker
[1993] quantified forest fragmentation (�1% a�1). An
assessment combining Landsat and MODIS imagery from
the boreal forest estimated 4% reduction from year 2000
forest area over 2001–2005, with the overall majority being
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lost to fire, particularly at higher latitudes, while other
disturbances (logging, insect damage) dominated in the
southern Canadian and European boreal zones [Potapov et
al., 2008].
[27] Shifting cultivation, or swidden or nonpermanent

agriculture, contributes significantly to forest cover dynamics
in many relatively remote regions of the tropics [e.g., Lanly,
1985; Rojstaczer et al., 2001;Hurtt et al., 2006;Olofsson and
Hickler, 2007] but has not been studied with spaceborne
remote sensing. Most swidden fields are <0.01 km2 [e.g.,
Denevan and Padoch, 1988; Ichikawa, 2007], are cultivated
for a couple of years, and then cultivation stops and forest
regrowth occurs, although this regrowth can be managed to
favor tree species with food, fiber, or medicinal value
[Denevan and Padoch, 1988]. There are on the order of
500 million people engaged in nonpermanent agriculture
[Rojstaczer et al., 2001], with roughly half clearing forested
land and half in grassland/savanna [Lanly, 1985]. If basic
sustenance requires one-sixth hectare per person [Lanly,
1985], with a 2–4 year cultivation period this should result
in clearing (and abandonment) of about 1–2 � 105 km2 a�1.
Although highly uncertain, this is approximately the area
estimated for tropical deforestation disturbances above.
However, much of the shifting cultivation forest disturbance
activity was probably not observed in the analyses of
Hansen et al. [2008], Achard et al. [2002], Skole and
Tucker [1993], or other similar work, both because the
shifting cultivation fields are generally small, scattered,
and difficult to detect, and because the 5–10 year return
observation interval in these remote sensing studies will
miss some of the rapid turnover.
[28] In an analysis of the majority of North American

temperate and boreal forests, Masek et al. [2008] quantified
stand-clearing forest disturbance that occurred in the 1990s,
using temporal change detection of wall-to-wall Landsat
imagery from c.1990 and c.2000. They validated this at
23 locations using higher frequency Landsat imagery. They
measured disturbance rates of up to 2–3% a�1 in some
regions and a disturbance rate of 0.9% a�1 for the conter-
minous U.S. Most disturbance in Canada’s boreal forest was
attributed to fire, with an overall disturbance rate of 0.4% a�1,
while in southern Canada and the conterminous U.S., most
disturbance was attributed to logging, with the highest
rates, �2.5% a�1 in the southeastern U.S., but with rates
nearly as high in the Pacific Northwest, Maine, and southern
Quebec.
[29] Fire scar mapping determines the area burned by

detecting changes in surface reflectance. Fire scar mapping
has been done with spaceborne optical/NIR remote sensing
at the global scale, starting in the 1990s with AVHRR data,
and more recently SPOT-Vegetation and MODIS data
[Chuvieco and Kasischke, 2007; Roy et al., 2008]. At
regional to local scales, fire scar mapping has been done
with Landsat data, using a variety of detection algorithms
[Chuvieco and Kasischke, 2007;Masek et al., 2008]. Global
fire scar mapping has been done with daytime data from the
Along Track Scanning Radiometer (ASTR-2) instrument
(e.g., the GLOBSCAR product) using reflectance band and
index thresholds [Simon et al., 2004]. This estimates that
about 0.31 million km2 of forest are burned annually, with
�67% in Africa. Tansey et al. [2004] report 3.5 million km2

of burned land (forest and nonforest) in 2000, based on

13 months of daily SPOT VGT data (1 km resolution),
using a set of regional fire scar detection algorithms;
average fire scar size (reported by nation) ranged from
�1 km2 to �30 km2 [Tansey et al., 2004].
[30] Active fire mapping detects fire radiant energy [e.g.,

Ichoku et al., 2008]. The MODIS active fire product
detected 3.22 � 105 km2 of forest fires and 7.07 � 105 km2

of woody savanna fires for July 2001 to June 2002 [Roy et
al., 2008]. Boreal fires burned �0.7 � 105 km2 a�1 during
1950–2000 [Balshi et al., 2007], though the burned area
varied significantly from year to year [Stocks et al., 2002].
In Canada, large fires (>2 km2) are <5% of the total number
of fires, but account for more than 95% of total burned area
in Canada [Stocks et al., 2002]; in Alaska large fires
account for �99% of total area burned [Kasischke and
Turetsky, 2006]. Fires in tropical rain forests are generally
associated with land use and forest edges, and fire return
intervals correlate with distance from deforested area
[Cochrane, 2003]. Cloud cover can significantly compro-
mise fire detection in the tropics [e.g., Cardoso et al., 2003,
2005].
[31] Soil moisture in fire scars is often different from

adjacent unburned forests, and this signal has been detected
with a number of active microwave C band SAR sensors:
ERS-1 in Alaska [French et al., 1996; Bourgeau-Chavez et
al., 2007], ERS-2 in Borneo [Siegert and Ruecker, 2000],
RADARSAT-1 in Spain [Gimeno and San-Miguel-Ayanz,
2004], and Envisat Advanced SAR in Siberia [Huang and
Siegert, 2006]. In Alaska, fire scars soils were detectable
because they were wetter, probably due to decreases in
evapotranspiration rates and melting of the permafrost,
while in Borneo, fire scar soils were drier in the dry season,
likely due to increased solar loading and soil evaporation.
No continental- to global-scale analyses have been done.
[32] Major hurricanes/typhoons/cyclones can have a large

impact on forest biomass and structure. The forest area
impacted by a single storm can be larger than 104 km2 [Dale
et al., 2001]; severity of damage will vary substantially
across this region, correlating with wind intensities and
forest susceptibility, e.g., forest height and species compo-
sition [Foster et al., 1998; Chambers et al., 2007b]; up to
10–100 Tg C in woody biomass can be transferred from
live to dead pools [McNulty, 2002; Chambers et al., 2007b],
though timber salvage can recover �10% of downed woody
biomass [McNulty, 2002]. The large deadwood pool gener-
ated by a hurricane can increase fire risk for several years
[McNulty, 2002]. If it does not burn and is not salvaged, this
necromass will slowly decompose, enhancing total ecosys-
tem respiration for years. Despite reduced productivity and
damaged trees, there is no evidence of increased insect or
disease damage following a hurricane [McNulty, 2002].
[33] Tornado damage is generally much more restricted,

with a narrow band of severe damage, typically <1 km wide
and <�10 km long [Foster et al., 1998; Oliver and Larson,
1996]. Blowdowns are caused by strong microburst winds
that can accompany large convective storms [Fujita, 1985]
and have been mapped in the mature forests of the Amazon
basin, using Landsat imagery, by manual classification with
a minimum area threshold of 0.3 km2 by Nelson et al.
[1994], and with automated classification and manual
checking with a minimum area threshold of 0.05 km2 by
F. Del Bom Espirito-Santo (personal communication, 2008).
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Blowdowns were discriminated from other gaps by remote-
ness from anthropogenic activity. The largest blowdown
observed by Nelson et al. [1994] was �33 km2, and the
largest observed by F. Del Bom Espirito-Santo (personal
communication, 2008) was �22 km2. In both studies most
blowdown areas were less than a few km2, and in each
study the largest fractional disturbed area due to blowdowns
was 0.3% of a Landsat-scene. Tree mortality is not 100%
within an area defined by a blowdown, and it can be
difficult to define a boundary. Recurrence intervals are
likely quite long (order of 104 years). It should be noted
that important intensity and size issues remain unresolved.
These events may be too clustered to be adequately sampled
on forest inventory plots [Fisher et al., 2008], yet many
blowdowns are too small to be easily detected in most
existing remote sensing studies.
[34] Individual landslide and avalanche disturbances are

generally small, and have not had comprehensive large-
scale studies of size and distribution. Mapping has been
done on a smaller scale, mostly for determining hazard
zones [e.g., Tralli et al., 2005]; for example, Nichol and
Wong [2005] found that postclassification change detection
with SPOT images in the Hong Kong metropolitan area
could detect about 70% of the landslides identified in
Ikonos imagery; omission errors were mostly due to small
landslide size, while commission errors were generally due
to human-induced terrain disturbance or building (e.g.,
roads). Avalanches are more restricted (steep and snowy
slopes), and have been mapped locally with Ikonos [Walsh
et al., 2004].

3.1.2. Beyond Mapping Extent and Location of Large-
Scale Disturbances
[35] Much of the work described above entails mapping

the location and size of large-scale disturbances, and rele-
vant techniques and instruments (e.g., Table 2) continue to
improve, though the small size of many of the ‘large-scale’
disturbances continues to present a challenge for global
mapping. However, as the role of land use and land cover
change becomes increasingly important to our understand-
ing of the Earth’s coupled climate-carbon system, it is
important to also go beyond mapping large-scale disturbances
to characterizing large-scale disturbances. This characteriza-
tion can address several questions; we consider four: (1) How
much biomass was disturbed, and what was its fate: burned,
removed and used for fuel or fiber, remaining as standing
dead or coarse and fine woody debris? (2) How has forest
structure changed? (3) Has the land been degraded such that
forest recovery will not rapidly establish a forest equivalent to
the one that was disturbed? (4) When did the disturbance
happen? There are several spaceborne remote sensing instru-
ments (flying and planned) that can be applied to these
questions (Table 2).
[36] For carbon cycle studies a key question is not what

area of land has been disturbed but how much aboveground
biomass (or carbon) has been disturbed [Houghton and
Goetz, 2008]. For some large-scale disturbances, all above-
ground biomass has been disturbed. This still requires a
quantification of predisturbance forest biomass, which is
currently based on limited ground-based sampling; these
sampling sites may not always be representative of the
forests that are disturbed. For other large-scale disturbances
(windstorms and fire) not all trees are killed and felled, so

measuring the biomass disturbed will depend on both
predisturbance and postdisturbance quantification with suf-
ficient accuracy to get a meaningful difference.
[37] Moderate and fine-scale passive optical/NIR remote

sensing such as MODIS and Landsat, the workhorse tools
for large-scale disturbance mapping, cannot fully address
these questions. Aside from clouds and shadows, these
instruments are most sensitive to aggregate canopy foliage
and soil within their footprint, and so they are very sensitive
to the regrowth of canopy leaf area, which generally occurs
during the initial years of recovery [Asner et al., 2004b].
Woodcock et al. [2001] noted that in efforts to generalize
fine resolution optical/NIR remote sensing detection algo-
rithms across space (i.e., regional- to global-scale analyses)
and time (i.e., change detection) there will be tradeoffs
between the level of detail of surface properties monitored
and the generalizability of the algorithms. Forest cover
change detection (i.e., the mapping discussed above) is
achievable for large regions, but forest canopy structure
and biomass discrimination may not be. For example,
tropical forest biomass correlates with Landsat spectral
bands and vegetation indices, with correlation coefficients
(r) of 0.7–0.8 across biomass ranges of 30–600 Mg ha�1

(estimated from DBH allometries), however statistical rela-
tionships between biomass and vegetation indices devel-
oped in a single Landsat scene generally do not transfer well
to other scenes [e.g., Foody et al., 2003]. Lack of transfer-
ability can be attributed to uncertainties in field data, offsets
in timing of remote sensing acquisition and field observa-
tions, and impacts of atmospheric variability and Sun-sensor
geometry on remote sensing reflectance [Foody et al.,
2003].
[38] Puhr and Donoghue [2000] found strong correla-

tions between Landsat TM SWIR reflectances and canopy
height and basal area (both of which correlate with biomass)
in temperate coniferous forests in Scotland, which they
attributed to the contribution of understory vegetation to
the total SWIR reflectance, which will decline as stand
height and basal area increase. Baccini et al. [2004] looked
at the relationship between MODIS reflectances and
ground-based measurements of temperate forest/woodland
biomass (from timber volume data); they found that MODIS
SWIR reflectance was strongly correlated with biomass for
low reflectance values (<0.2), which they attributed to the
changing nature of the forest canopy from young, short,
relatively uniform canopy to an older, mixed, more hetero-
geneous canopy with more gaps and shadows. More work
would be needed to determine if SWIR data analysis can
be developed into a more robust and broadly applicable
relationship.
[39] Important additional information can come from

active microwave instruments. At appropriate wavelengths,
microwave radiation interacts with woody biomass, so the
backscatter from active microwave instruments (particularly
L and C band), which depends on the size, mass and
dielectric properties of the scattering surface, can provide
direct, remotely sensed observations that can be related to
forest aboveground biomass [Waring et al., 1995; Saatchi
and Moghaddam, 2000; Saatchi et al., 2007a, 2007b] (S. S.
Saatchi et al., Radar measurements of vegetation structure,
submitted to Journal of Geophysical Research, 2009).
Microwave remote sensing has the additional benefit of
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being relatively insensitive to clouds, and so can acquire
much more frequent observations of wet tropical and
temperate forests. SAR instruments have an observation
swath, and data will accumulate to complete global cover-
age. However, radar does not measure biomass directly (as a
scale would), but instead relates the power of the back-
scattered microwave radiation to biomass through regres-
sion equations [e.g., Saatchi et al., 2007a]. Therefore,
accurate global biomass retrievals will depend on substan-
tial, high-quality ground-based biomass or allometry data,
accurate at the spatial scale of the sensor footprint, from
forest biomes around the world (see section 3.3).
[40] Drezet and Quegan [2007] used coherence in tandem

ERS-1 and ERS-2 C band active microwave data to map
age and productivity of forests in Britain. Coherence between
the two instrument backscatter signals, collected 24 h apart,
was related to stable landscape elements (e.g., soil, woody
biomass), while the signals from unstable elements (e.g.,
foliage, twigs) would have random phase differences.
Signal coherence and backscatter power were related to
canopy depth and forest biomass, which was correlated with
tree age and productivity, based on ground data from a
number of sites, which also provided uncertainty estimates.
Saatchi et al. [2007b] used airborne SAR fully polarimetric
L and P band SAR backscatter data to estimate both crown
and stem live biomass in evergreen needleleaf forests in
Yellowstone National Park, USA. They correlated HH, HV,
and VV polarization backscatter with field measured bio-
mass data. L band data had higher sensitivity for low
biomass stands (<20 Mg ha�1), while P band data (lower
frequency, longer wavelength) had higher sensitivity over a
larger biomass range, up to about 200 Mg ha�1. These
results point to limitations for radar remote sensing of
biomass for high-biomass forests; depending on wave-
length, radar detection of biomass appears to saturate at
50–200 Mg ha�1 [e.g., Waring et al., 1995]; wet tropical
and temperate forest biomass can exceed these limits, and
the biomass of many mature temperate forests is near or
above the high end of this range. For example, in mapping
forest biomass in the Amazon basin using data from
multiple sensors and climate data, Saatchi et al. [2007a,
2007b] found the L band SAR was useful, with other data,
for mapping lower biomass stands (<150 Mg ha�1), but not
for higher biomass stands.
[41] By definition, large-scale disturbances change forest

canopy structure, ranging from stand-clearing events to less
severe or spatially heterogeneous impacts. If there is suffi-
cient damage, this should be detectable by microwave
sensors as a reduction in biomass, but the nature of that
damage will be difficult to determine (e.g., were some-to-
many trees felled or were most-to-all trees damaged?).
High-resolution passive optical/NIR instruments can be
used to map gap distributions in a disturbed forest (see
section 3.2.1). Lidar instruments direct a pulse of laser light
down from the instrument, and measure the precise time of
the return of the reflected light. These lidar return wave-
forms can be used to measure the height and vertical
distribution of the forest canopy [Lefsky et al., 2002,
2005] (R. Dubayah et al., Lidar measurements of vegetation
structure, submitted to Journal of Geophysical Research,
2009). With adequate ground data to calibrate/interpret the
lidar return waveforms, or with predisturbance and post-

disturbance observations and accurate geolocation, changes
in canopy structure can be observed [Kellner et al., 2009].
In addition, forest aboveground biomass can be estimated
from allometric relationships with canopy height [e.g.,
Lefsky et al., 2002], though how appropriate these allome-
tric relationships are postdisturbance will need to be care-
fully evaluated. Again, accurate postdisturbance forest
structure retrievals will depend on substantial, high-quality
ground-based structural data from disturbed forest biomes
around the world. The pulse nature and small footprint size
of lidar instruments means that they are not designed to
generate full global coverage, but rather to develop a high-
density sample of the landscape (Dubayah et al., submitted
manuscript, 2009). Lidar, like passive optical/NIR, cannot
generate reliable data under cloudy conditions.
[42] Interferometric synthetic aperture radar (InSAR)

combines the reflected signal power (phase and amplitude)
from two backscattered microwave pulses separated by a
distance (baseline) to determine 3-D geometry of the
reflecting surface (e.g., forest canopy height) [Treuhaft et
al., 2004]. At this time spaceborne SAR interferometry is
done with single instrument on repeat orbits (‘repeat pass
interferometry’); ideally, instrumentation would have either
two antenna on a single platform (e.g., the Shuttle Radar
Topography Mission or SRTM) or tandem platforms (none
flying) [Krieger et al., 2005]. Treuhaft et al. [2004] outline
three methods for data fusion of InSAR with optical data for
improved retrieval of canopy structural characteristics: with
hyperspectral data to determine leaf area density, with
multiangular optical data, or with lidar data for improved
accuracy of regional InSAR canopy height estimates.
[43] Disturbance severity will determine what fraction of

live aboveground biomass is killed, and the degree to which
juvenile trees and the seed bank are disturbed. Fire severity
impacts forest canopy combustion and carbon emissions
[e.g., Kasischke et al., 2005], and postfire recovery [e.g.,
Johnstone and Chapin, 2006a], and detection ‘remains a
challenge’ [Chuvieco and Kasischke, 2007]. In an assess-
ment of a number of remote sensing indices, Epting et al.
[2005] found that the Normalized Burn Ratio (NBR), the
ratio of difference to sum of near-infrared and midinfrared
reflectances from Landsat data, ranked in the top three
correlations for all four burns in both a postburn assessment
and for three of four burns in preburn and postburn change
assessments. For forested land, the correlation between
NBR and ground data was r > 0.75. Miller and Thode
[2007] found that a threshold relative change in NBR had
good success at detecting severe fires across a range for
prefire forest stand densities. Roy et al. [2006] assessed the
reliability of NBR as an index of fire severity for Landsat
ETM+ data from southern Africa and 500-m MODIS data
for Russia, Australia, and South America at pixels where
1-km MODIS active fires were detected. On the basis of a
metric for burn signal optimality related to changes in near-
infrared and midinfrared reflectances relative to the NBR
index, they found that the NBR was far from optimal in
most cases. They concluded that ‘[an] improved severity
index should incorporate improved knowledge of how fires
of different severity displace the position of prefire vegeta-
tion in multispectral space.’
[44] Damage from wind disturbance can vary from tree

mortality approaching 100% over large tracts of forest from
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the most powerful hurricanes and downbursts [Nelson et al.,
1994; Chambers et al., 2007b], to a subtle increase in tree
mortality rates beyond background rates [Lugo and Scatena,
1996]. Since background mortality rates for most forested
ecosystems fall within the range of 1–2% stems a�1, even
an additional 1% mortality from a disturbance event corre-
sponds to a 50–100% increase in the average mortality rate
over that interval. Chambers et al. [2004] found that a shift
in average tree mortality rate from �1% to 2% resulted in a
greater than 50% loss in of aboveground live tree biomass
for a Central Amazon forest study. Forest inventory plots
provide valuable information on background mortality
rates; however, due to the clustered nature of most episodic
disturbances, forest inventory plots may not be adequate to
capture regional shifts in disturbance regimes [Fisher et al.,
2008].
[45] Remote sensing enables the sampling of events over

a much broader range of disturbance intensity, and field
studies directed using remote sensing analysis are needed to
better understand impacts at a regional scale. Nelson et al.
[1994], for example, demonstrated use of Landsat imagery
to identify blowdown patches across the Amazon basin, but
it remains unclear how tree mortality varies across the entire
area impacted by the blowdown. Chambers et al. [2007b]
utilized Landsat imagery to stratify a forested area hit by
Hurricane Katrina into disturbance intensity classes, and
then used this map to carry out stratified random sampling
of tree mortality and damage in the field. Results showed a
strong relationship between forest impacts and Landsat
image analysis of change in the fraction of nonphotosyn-
thetic vegetation. This close coupling of field studies and
remote sensing analysis enabled initial estimates of mortal-
ity and severe structural damage of 320 million trees from
Hurricane Katrina, with a 100 Tg C flux from live to dead
biomass pools. These methods build on those developed to
quantify selective logging in tropical forests [Asner et al.,
2005; Souza et al., 2005], and will enable improved quanti-
tative links between spectral changes observed from remote
sensing platforms, and ecological changes in the field.
[46] King et al. [2005] assessed forest canopy damage

from the major northeastern North America ice storm of
January 1998, locally with field assessment of canopy
damage and airborne color infrared photography (0.6 m
resolution) collected the following summer, and regionally
with prestorm and poststorm, midsummer Landsat data.
They could not adequately map canopy damage with Land-
sat data, but had best results from a neural network
classification of canopy damage into three classes (0–
25% crown loss; 26–50% crown loss; and >50% crown
loss) with 50–100% accuracies. In field assessments done 2
and 5 years after the storm, King et al. [2005] reported a
tendency for strong foliage production initially, with subse-
quent decline or mortality at younger than normal tree ages,
indicating that initial poststorm damage assessments would
not represent the full impact. Olthof et al. [2004] also used a
neural network classifier, and mapped deciduous forest
canopy damage caused by this ice storm into three damage
classes. They analyzed �10,000 km2 of eastern Ontario,
with accuracies of 50–85% for 10 field plots not in the
training data set.
[47] D’Aoust et al. [2004] evaluated the impact of a

1970–1987 spruce budworm outbreak in southern boreal

Quebec, quantifying canopy openness from preoutbreak and
postoutbreak aerial photos for five �50 ha forest stands of
different composition. Visual estimation of canopy percent
openness in 500 m2 grid cells was done on 1:15 000 aerial
photos with an 8x magnifying lens. Before the outbreak, all
four stands had �20% openness. In four stands (hardwood,
mixed, and conifer) �50% of the cells had minimal changes
in openness. Overall, the two mixed and two conifer stands
showed a significant increase in openness, while the hard-
wood stand did not. Heavily impacted cells tended to cluster
into patches of �5–10 ha size.
[48] The spaceborneMultiangle Imaging SpectroRadiometer

(MISR) instrument acquires solar reflectance data nearly
simultaneously from nine viewing angles; analysis of the
multiangle data can be used to determine subpixel surface
heterogeneity [e.g., Widlowski et al., 2001; Gobron et al.,
2002], but only a limited number of studies have been
conducted, so it is not yet known if this could be a useful
tool for mapping disturbance severity. Lobell et al. [2001]
found that airborne hyperspectral SWIR reflectances could
be used in an automated analysis system to map coniferous
forest canopy cover in Oregon, with potential application to
land use change analysis.
[49] The exact timing of logging and land conversion is

not crucial to land use and carbon cycle studies; for annual
budgeting, specifying the year is sufficient, though even that
is not always well known. However, changes in land surface
biophysical properties (e.g., albedo and roughness) are
important for regional and global climate models, and these
impacts will vary seasonally. Perhaps more importantly, if
disturbances are detected from analysis of change in a time
series of images (e.g., Landsat), the time series used must
have frequent enough cloud-free sampling to detect logging
and land conversion. Ideally, observation frequency should
be annual or better, and seasonally synchronized as, for
example, there can be classification complications when
comparing early and late dry season images [Hagen, 2006].
Similar constraints will apply for large blowdowns in
tropical forests. Large, severe windstorms like hurricanes
are monitored in real time as natural hazards, so their timing
is known.
[50] Of all the disturbances considered, fires have the

most rapid emissions of a number of important atmospheric
gases (e.g., CO2, CO, CH4) and large fires have generated a
detectable signal in the global atmospheric flask-sampling
network [e.g., Dlugokencky et al., 2001; Kasischke and
Bruhwiler, 2002; Kasischke et al., 2005]. The atmosphere’s
750 Gt CO2-C is spread fairly uniformly over the Earth’s
550 � 106 km2 surface, giving a column equivalent con-
centration of about 1500 t C km�2 or 15 t C ha�1. Mature
forest aboveground biomass C ranges from 20 to 250 t C ha�1

[Olson et al., 1985]. A major forest fire will therefore cause
a rapid and substantial perturbation on column CO2 in the
vicinity of the fire and should be readily detectable from
spaceborne instruments like the recently launched Green-
house Gases Observing Satellite (GOSAT [Kuze et al.,
2006]) and the proposed Active Sensing of CO2 Over Days,
Nights, and Seasons instrument (ASCENDS [NRC, 2007]).
Thus fire detection and emissions quantification will provide
an important data set for interpreting observations from
current and next generation atmospheric composition remote
sensing instruments measuring CO2 and other constituents
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(AIRS [Xiong et al., 2008]; SCHIAMACHY [Frankenberg
et al., 2005]; and GOSAT). As atmospheric data accumu-
lates and our understanding of the immediate impacts of fire
on atmospheric composition improves, these atmospheric
composition observations may also contribute to mapping
the location and intensity of fires. In a manner similar to
how fires are detected as visible light sources in nocturnal
satellite imagery when data are collected over a long enough
period to different stable lights (e.g., cities) from dynamics
lights (mostly fires) [Elvidge, 2001], these instruments
could map stationary, relatively stable or predictably sea-
sonal, greenhouse gas sources (e.g., cities, major industrial
sites, rice paddies); then strong but temporary sources
would indicate something else (e.g., fire).
[51] Global-scale active fire detection is currently done

with passive infrared remote sensing instruments such as
ASTR 1-km data every 3 days [e.g., Arino et al., 2005],
MODIS 1-km data twice daily [e.g., Giglio et al., 2006], and
GOES 4 km data every 30 min [e.g., Schroeder et al.,
2008a]. Fire intensity (or fire radiative power) can also be
estimated from thermal band brightness [e.g., Wooster et al.,
2003] and has been correlated with biomass burned [e.g.,
Roberts et al., 2005]. Major uncertainties in fire detection
are related to short-lived anthropogenic fires (often restricted
to daytime [e.g., Cardoso et al., 2005; Ichoku et al., 2008])
and omission of fires obscured by clouds [e.g., Roy et al.,
2008]. Schroeder et al. [2008a] evaluated MODIS and
GOES active fire detection products against higher spatial
resolution (30 m) ASTER and Landsat ETM+ data. They
found that omission errors (no fire detected by GOES or
MODIS when colocated ASTER or Landsat pixels showed
active fires) were common for small fires, dropping below
50% when �2–4% of the 30-m pixels within the larger
MODIS and GOES pixels had fires, and below 20% when
�6% of the 30-m pixels within the larger MODIS and
GOES pixels had fires. Many omission errors were associ-
ated with linear savanna fires, not forest fires. Schroeder et
al. [2008b] estimated that �11% of omission errors in
Amazonia were obscured by clouds. Schroeder et al.
[2008a] also found that commission errors (i.e., fire detec-
tion by MODIS or GOES when no Aster or Landsat pixels
had active fires) were also common (�15% false positives),
and mostly associated with areas of recent burning (scars
visible, which could lead to repeat detection for up to a
month), or smoldering (smoke visible). Initial analysis with
a change detection algorithm reduced false positives.
[52] The fact that three major tropical forest disturbance

studies [Skole and Tucker, 1993; Achard et al., 2002;
Hansen et al., 2008] all arrive at generally similar con-
clusions about the rate of deforestation is encouraging.
However, although their methods are somewhat different,
the instruments and data types (i.e., �30-m passive optical/
NIR reflectances) are basically the same, and are common
to many analyses of tropical forest disturbance [e.g.,
Grainger, 2008]. Note that Grainger [2008], analyzing the
FAO Forest Resource Assessments, also shows fairly uni-
form rates of decline in tropical forest area in the 1980s and
1990s. Although passive optical/NIR instruments continue
to improve, and data analysis methods improve as well, the
information is still coming from sunlight reflected from
complex forest canopies, passing through a variable atmo-
sphere, and so will always have inherent limitations.

Developing a comprehensive ground-based data set of
forest cover change at continental scale for validating this
kind of remote sensing analysis is prohibitively difficult and
expensive. How else can these results be independently
evaluated? Annual global-coverage mapping with SAR
could provide a completely independent remote sensing
data set that should be able to detect large-scale disturbance,
not only quantifying biomass changes for carbon cycle
studies, but also providing an independent estimate of
location and extent with comparable spatial resolution. A
spaceborne lidar instrument with high-frequency sampling
will not provide global coverage, but could provide annual
global forest height sampling. To the extent that the lidar
instrument is designed to have frequent track crossovers in
forested biomes, it could provide a second, completely
independent data set that samples large-scale disturbance
location and extent. The synthesis of several independent
data sets will provide a more comprehensive view of forest
disturbance and vegetation dynamics than can come from
any individual data set. Coherence and correlation in these
completely independent, spatially distributed time series
data sets will substantially increase the confidence with
which interpretations can be made. Analysis of data from
multiple sensors (data fusion) can also extract more detailed
biomass/structure information [e.g., Saatchi et al., 2007a]
(S. J. Goetz et al., Synergistic use of spaceborne LiDAR and
optical imagery for assessing forest disturbance: An Alaska
case study, submitted to Journal of Geophysical Research,
2009) or foster a more efficient analysis of large-scale data
sets [e.g., Hansen et al., 2008].

3.1.3. Regrowth and Recovery in Large Gaps
[53] A first step to recovery analysis is detecting distur-

bance and determining forest age since disturbance. Several
research groups have assembled ‘data cubes’, such as a set
of �10–20 annual Landsat scenes, and these can be
classified and overlain to detect forest disturbance [e.g.,
Goward et al., 2008]. Lucas et al. [2002a] assembled
11 scenes for the tropic forest north of Manaus, Brazil,
from Landsat MSS, SPOT HRV and Landsat TM data for
1973–1991; the largest time interval between successive
scenes was four years. Scenes were classified as mature
forest, regenerating forest and nonforest, and overlays of
these maps was used to approximate time of land use.
Limited sampling due to clouds and smoke/haze meant that
land use during some intervals had to be inferred. In
addition, misclassifications in any one image could be
incorrectly interpreted as change (or no change) from the
previous or subsequent image.
[54] Most assessments of forest recovery/regrowth with

remote sensing have used the chronosequence approach, a
standard methodology in forest ecology [Foster and Tilman,
2000], taking care to minimize differences in predisturbance
forest properties and disturbance impact severity. Data are
analyzed from a collection of sites at various known ages
since disturbance, and site differences are attributed to the
trajectory of recovery [e.g., Nilson and Peterson, 1994]. For
example, Lucas et al. [2002a] worked at sixteen 0.1 ha field
sites near Manaus, measuring DBH for all trees with DBH >
3 cm; each tree was identified to genus or species, a sample
of tree heights was collected, and canopy gap fraction was
estimated from hemispherical photos. They found for young
regenerating forests (<20 years) that stand age and species
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dominance (Cecropia or Vismia species dominance) corre-
lated with reflectance in NIR and MIR bands, and that
species dominance in early succession was correlated with
the duration and intensity of nonforest land use before
reforestation. Lucas et al. [2002b] found that MODIS NIR
(band 2) and MIR (band 6) data could be used for similar
discrimination, though with substantial uncertainty.
[55] Early work on monitoring postfire spatial and tem-

poral variability in soil moisture status with microwave
remote sensing shows promise in work done in boreal
Alaska (e.g., C band SAR [Bourgeau-Chavez et al.,
2007]). At these sites, soil moisture was related to levels
of tree recruitment into the burn scar [Kasischke et al.,
2007], indicating that microwave remote sensing may be
useful in quantifying and monitoring an important environ-
mental variable related to forest recovery post fire, at least in
the boreal region.
[56] Up to now, only a few remote sensing studies have

followed the trajectory of forest recovery/regrowth at a
particular disturbance site. Reestablishment of a forest
canopy in a large gap can take decades, and during this
time several important structural properties recover at dif-
ferent rates. Monitoring this with remote sensing requires
long-term data sets with stable instrumentation and well
established algorithms. For example, Schroeder et al. [2007]
used annual Landsat TM and ETM+ scenes covering
18 years following forest clearing in western Oregon. They
first mapped three clear-cut harvests from the Landsat
images, then classified the time series of images into percent
tree cover, and then were able to classify recovery after
clear-cutting into four rate classes, from ‘little-to-no’ to
‘fast’. These classes were correlated with a number of
environmental explanatory variables (e.g., potential radia-
tion, elevation, July maximum temperature) with ‘fair
agreement’ (k statistic).
[57] Recovery of canopy structural properties can depend

on disturbance severity. For example, Diaz-Delgado et al.
[2003] evaluated prefire and postfire Landsat TM NDVI at a
27 km2 fire in Spain, which was mapped into 7 fire-severity
classes based on field measurements. They found that
NDVI decline due to fire was positively correlated with
field fire severity class, but that NDVI recovery post fire (up
to 1165 days) was not correlated with fire severity until they
also accounted for spatial variability in species composition,
precipitation, and topography.
[58] Recovery of canopy photosynthetic capacity is

important for site primary productivity and carbon balance,
canopy albedo, evapotranspiration, interception of precipi-
tation, and the surface energy balance. Photosynthetic
capacity can recover relatively quickly, as early successional
species and even nonwoody groundcover vegetation occupy
the disturbed area and establish a leaf area index sufficient
to capture most incoming solar radiation; Asner et al.
[2004a] noted that gaps generated by conventional logging
in the eastern Amzaon had closed, often with ‘low-stature
secondary species,’ within 0.5–3.5 years. This can be
quantified with passive optical/NIR sensors; examples of
this include tracking vegetation greenness indices [e.g.,
Diaz-Delgado et al., 2003] or tree density [Schroeder et
al., 2007]. However, rapid recovery of photosynthetic
vegetation, particularly in tropical forests, makes it difficult
to detect disturbances more than a few years old [Grainger,

2008]. Masek et al. [2008] note that for North American
forests, detection rate for disturbances 5–6 years old is only
half that for new disturbances. Hyperspectral instruments
measure canopy reflectance in a large number of narrow
spectral bands, and image spectroscopy with these instru-
ments can be used to characterize canopy chemistry [e.g.,
Wessman et al., 1988] and forest species composition [e.g.,
Martin et al., 1998]. Since early successional species
generally have higher foliar nitrogen content than late
successional species, this provides a potential for either
independently characterizing relative stand age or for mon-
itoring forest successional pathways with spaceborne hyper-
spectral remote sensing, though much work needs to be
done. One complication is that foliar nutrient status will also
reflect soil/site nutrient status [Ollinger et al., 2002], which
is relatively independent of stand successional development.
[59] Recovery of canopy height is an important measure

of forest regrowth, as it can be used as a proxy for recovery
for forest age and canopy biomass through allometric
relationships developed in field studies. In principle, lidar
data should be able to measure this. Woodget et al. [2007]
collected airborne lidar data, gridded to 5 � 5 m pixels, over
a spruce plantation forest in northern England in 2003 and
2006. They found strong correlations between lidar-derived
height and ground data, but weak and negative correlations
between lidar-derived growth and ground data. The pre-
sented three possible reasons for this: geolocation discrep-
ancies between the two data sets, such that spatial variability
was confused with growth, (2) uncertainty in the ground-
based measurements of growth, and (3) differences in lidar
instrument/observation configuration between the two data
sets (scan angle, flight altitude, and lidar pulse density). The
first two of these are very relevant for similar studies with
satellite data. To date, there are no spaceborne lidar data
time series over a timescale relevant for forest recovery to
evaluate lidar’s ability to quantify forest height recovery
postdisturbance. However, K. Dolan et al. (Regional forest
growth rates measured by combining ICESAT GLAS and
Landsat data, submitted to Journal of Geophysical Research,
2009) detected correlations between lidar-derived stand
height and time since disturbance for several forest stands
in the eastern U.S. Yu et al. [2006] used airborne lidar
(40 cm beam size) to measure tree growth of boreal trees
from data collected 5 years apart. Their analysis required
tree-matching algorithm to detect growth in individual trees,
and also tree harvest [Yu et al., 2004]. Kellner et al. [2009]
looked at two discrete-return airborne lidar overflights of
old-growth tropical rain forest. Canopy gaps detected by
lidar were well correlated with ground data. At 5 � 5 m
scale, 39% of patches showed heights changes of �5 m. In
contrast, at the landscape scale mean height was very
similar for each overflight.
[60] Recovery of canopy/stand biomass is important for

the carbon balance, the recovery of forest economic value,
and for a range of ecosystem services. In principle, radar
data should be able to measure this. To date, there are no
radar data time series over a timescale relevant for forest
recovery to evaluate radar’s ability to quantify forest bio-
mass recovery postdisturbance. Lucas et al. [2006a] com-
bined Landsat-derived measure of foliage cover, using TM
and ETM+ dry-season images, with airborne SAR fully
polarimetric C, L, and P band (HH, VV, and HV) backscat-
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ter data to map woody regrowth on former agricultural land
in southeastern Queensland, Australia. C band backscatter
increased with Landsat-derived foliar cover for all forest
types, and both quickly rise to values similar to neighboring
remnant forests, and therefore were not considered useful
for mapping regrowing forests. On the other hand, longer
wavelength L and P band backscatter from young regrow-
ing forests was similar to nonforest backscatter. By com-
bining the data sets, regrowing forests were mapped as
having high C band backscatter or foliar cover and low L or
P band backscatter. Lucas et al. [2006b] found that the
airborne SAR backscatter was nonlinearly related to above-
ground biomass, as estimated by field data and low-flying
Lidar (footprint diameter � 0.15 m). C band SAR saturated
in these dry, sparse forests at aboveground biomass values
of �50 Mg ha�1, while L band HV polarization saturated at
�80 Mg ha�1. Maximum aboveground biomass in these
forests was 165 Mg ha�1, and the median value (n = 4500)
was 82 Mg ha�1.
[61] Finally, recovery of canopy heterogeneity or rugosity

is important for providing a range of habitats for plants and
animals. In early stages of recovery after a major distur-
bance, a forest stand can have a relatively uniform canopy
height, which becomes more heterogeneous, and rougher, as
the forest ages and natural mortality introduces variation
[Oliver and Larson, 1996]. These small disturbances are
discussed in the next section. In addition, as a forest stand
develops and matures after a disturbance, it can go through
a series of changes in species composition from dominance
by early to late-successional species. The changes in species
composition may be detectable by hyperspectral sensing
[e.g., Asner and Vitousek, 2005]. Accurate assessment of
forest recovery dynamics across the range of tropical,
temperate, and boreal forest biomes will depend on sub-
stantial, high-quality ground-based data.

3.2. Small-Scale Disturbances

[62] Canopy gaps are holes in the forest canopy due to the
death of one to a few trees; as a small-scale event, they
occur much more frequently than the larger disturbances
discussed in section 3.1 [e.g., Denslow, 1980, 1987; Fisher
et al., 2008; Marthers et al., 2009]. The spatial patterning
and distribution of gaps are of ecological significance
because they drive the gap-phase regeneration of the can-
opy, influencing stand structure and biomass, tree regener-
ation dynamics and species diversity and distribution
[Schemske and Brokaw, 1981; Denslow, 1987; Vitousek
and Denslow, 1986]. Gaps increase light levels in the
understory, release nutrients, and create structural habitat
for some species of flora, fauna, and fungi [Schemske and
Brokaw, 1981; Denslow, 1987; Vitousek and Denslow,
1986]. Gap dynamics can be a driving force of carbon
dynamics in forested ecosystems [e.g., Shugart, 1998].
There is no single definition of what constitutes a gap
[Marthers et al., 2009]; crown characteristics estimated
using remotely sensed data can differ from those estimated
from field data [Broadbent et al., 2008].
[63] There are numerous causes for tree mortality, and

different modes of tree death generate different forest
structural changes and canopy gaps [Orians, 1982]. Often
a disturbance event will generate both large and small gaps
as well as nonlethal disturbance. In addition, the death of

individual trees and their subsequent fall can generate small
gaps and canopy damage without an event detectable by
many types of remote sensing. The multiple processes
involved with individual tree mortality and crown distur-
bance often act in conjunction with one another or are
multicausal. Quantitative study of these mechanisms of
small-scale disturbances in forests is logistically demanding,
and is often based on repeat censusing of forest inventory
plots.
[64] Trees lose branches and portions of their canopy

through a number of processes that do not lead to whole tree
mortality. These process include self-abscission (due to leaf
loss, low light levels and drought [Addicott, 1978; Rood et
al., 2000]), mechanical failure (due to epiphytic loading,
wind storms, lightning [Prance and Lovejoy, 1985;Whitmore,
1978; Nelson et al., 1994]), interaction between crowns
(resulting in ‘‘crown shyness’’) [Putz et al., 1984], animal
activity resulting in limb breakage or rot of branches [Perry,
1978], as well as death of adjacent trees (resulting in
secondary hits from falling trees, death of understory trees
[Keller et al., 2004a, 2004b, 2004c]), and lianas pulling
down adjacent canopies and limbs [Gillman and Ogden,
2005; van der Heijden et al., 2008]. In addition, many of the
causes of small-scale disturbance have a low intensity but
can be prevalent across the landscape, affecting not just
biomass, but also forest productivity and nutrient dynamics.
[65] Disturbances smaller than individual trees also influ-

ence understory light levels, release nutrients, alter photo-
synthetic material, and increase tree seedling mortality
[Brokaw, 1987; Martinez-Ramos et al., 1988, 1989; Clark
and Clark, 1991] similar to gaps generated from the death
of individual trees. Branchfall, limbfall and nonlethal crown
disturbances impact aboveground biomass stocks [Clark et
al., 2001a; Chave et al., 2001], contribute to necromass
production [Clark et al., 2001a; Chambers et al., 2001;
Palace et al., 2007], alter crown shape and dimension [Young
and Hubbell, 1991], dictate tree architecture [Addicott,
1978], increase understory light levels through small canopy
gaps [Schemske and Brokaw, 1981; Denslow, 1987; Vitousek
and Denslow, 1986], increase nutrient availability [Vitousek
and Sanford, 1986; Vitousek and Denslow, 1986], and often
kill or injure adjacent trees and saplings [Gillman and
Ogden, 2005; Lang and Knight, 1983; Aide, 1987; Clark
and Clark, 1991; van der Meer and Bongers, 1996; Scariot,
2000]. The temporal frequency of branchfall when exam-
ined on the individual tree level ranges from annual to
decadal timescales. At the landscape level branchfall
impacts can vary annually, seasonally, or at a longer
temporal scale through succession [Palace et al., 2008b;
Eaton and Lawrence, 2006].
[66] An inability to quantify small-scale disturbances

hinders understanding of carbon dynamics and the patch-
mosaic across the landscape. Forest productivity measure-
ments do not necessarily account for branch fall and other
sublethal stem damage [Clark et al., 2001a; Chambers et
al., 2001]. Limbfall and sublethal disturbance accounts for a
fundamental difference between field-measured necromass
production and the estimation of necromass production
based solely on mortality rates [Palace et al., 2008b]. Kira
[1978] estimated annual branchfall to be 0.5% of the total
biomass of a tropical forest in Southeast Asia, while in
neotropical forests, field-based estimates of branchfall and

G00E02 FROLKING ET AL.: REMOTE SENSING OF FOREST DISTURBANCE

15 of 27

G00E02



crown damage range from 0.5 to 3.4Mg ha�1 a�1 [Chambers
et al., 2001; Chave et al., 2003; Palace et al., 2008b]. Field
plots can provide only a limited amount of data, due to the
size and heterogeneity of major forest landscapes and the
stochastic nature of many disturbance events. Remote
sensing of small-scale disturbance may be the only effective
and economical way to quantify forest biomass and three-
dimensional structure over the landscape. Improved data
sets on small-scale gap dynamics will help to parameterize
and test forest carbon cycle models [e.g., Prince and
Steininger, 1999; Kellner et al., 2009]. Use of remote
sensing can also aid in designing field experiments [e.g.,
Clark and Clark, 2000].
3.2.1. Remote Sensing of Small Canopy Gaps
[67] Canopy dynamics and gap generation associated

with small-scale disturbances are substantially smaller in
scale than moderate resolution spaceborne sensors (e.g.,
MODIS at 250 m or MISR at 1000 m resolution). Spectral
unmixing of moderate resolution reflectance data [e.g.,
Hagen et al., 2002; Braswell et al., 2003] is not likely to
detect individual events that impact <1% of the pixel area,
but has been used for deforestation ‘hot spot’ detection to
focus fine-resolution Landsat analysis [Hansen et al., 2008];
a similar approach may work for relatively low-intensity
disturbances that are prevalent over a large area.
[68] The largest of these small disturbances is on the scale

of fine-resolution remote sensing, but detection with these
sensors is difficult. Using Landsat data from a region with
selective logging, Asner et al. [2005] found that all but the
largest disturbance elements (log decks) were not resolvable
unless the gap fraction was >50%, and that the observable
features rapidly became indistinct due to vegetation recol-
onization or forest regrowth within 0.5 to a few years. Asner
et al. [2004a, 2004b, 2005] used intensive field data
collection to develop a Monte Carlo unmixing model that
was successful in estimating small-scale disturbance from
selective logging. Hansen et al. [2008] used a linear spectral
mixing model with Landsat TM data to quantify vegetation,
soil, and shade contributions to reflectance; these are then
segmented, classified, and manually checked to estimate
deforestation rates in the tropics. In a remote sensing study
of reduced-impact selective logging in the central Amazon
Basin, Read [2003] found that only major logging features
could be detected with Landsat images collected within one
year of logging activity, while roads and some but not all
logging gaps could be detected with high-resolution Ikonos
imagery. Read [2003] found that spatial analyses (texture
analysis, spatial autocorrelation) were more effective than
spectral analyses for detecting small gaps.
[69] High resolution optical/NIR image data, with a

resolution of �1 m, is well suited for detecting gaps as
small as an individual tree fall, because individual crowns of
trees are discernible in the image data and can be linked to
ground measurements [Asner et al., 2002a, 2002b; Clark et
al., 2004a, 2004b]. Since 2000, there have been an increas-
ing number of high-resolution satellite platforms that pro-
vide commercially available image data (e.g., Ikonos,
QuickBird, OrbView3, and WorldView). Resolution of
these satellites varies but is generally �1 m and most
provide slightly coarser multispectral image data as well.
Computation speed and increased data storage have allevi-
ated constraints on the analysis of forest structure using

high-resolution image data, but data availability and cost
are still issues.
[70] There are numerous methods that allow for forest

structure variables to be estimated from high-resolution
satellite image data, including both manual interpretation
and automated methods [e.g., Chambers et al., 2007a].
Manual methods tend to be time consuming, nonreplicable,
and prone to human error [Asner et al., 2002a, 2002b].
Dawkins [1963] conducted one of the first canopy and
remote sensing studies in the tropics to look at canopy
dimensions, by measuring crowns manually in an aerial
photograph and then measuring with a new photograph after
trees were removed and large white crosses were placed on
stumps. More recently Asner et al. [2002a, 2002b] manually
delineated a large area for tree crowns and compared
landscape averages with an extensive stratified sampling
of field data. They developed allometric equations provid-
ing association of crown width, height, depth, and DBH.
Asner et al. [2002a, 2002b] also included estimates of
understory and crown level trees in the allometric equations,
providing the means to compare with optical remotely
sensed data which can only estimate forest structure that
is visually apparent at the top of the canopy. Read et al.
[2003] analyzed selective logging with high resolution
image data using manual interpretation.
[71] The majority of recently published work in the

interpretation of forest structure from high-resolution image
data use automated methods. Currently, high-resolution
image data automated analysis of forest structure can be
grouped into two categories, texture or landscape level
estimates and crown delineation methods. Methods to
extract forest structure information at the stand level include
semivariance, gappiness (lacunarity) and fractal dimension,
and threshold, Fourier, entropy and wavelet analysis tech-
niques [Shugart et al., 2001; Malhi and Román-Cuesta,
2008; Popescu et al., 2003; Hudak and Wessman, 1998].
Shugart et al. [2001] used semivariograms calculated from
high-resolution remote sensing data to distinguish forest
types and successional types. Read [2003] examined natural
forest and selectively logged forests and was able to use
automated methods such as texture and fractal dimension to
differentiate the two forest types. Malhi and Román-Cuesta
[2008] used lacunarity estimates, fractal dimension and an
index of translational homogeneity for specific box sizes to
estimate the spatial distribution of structural properties of
forest canopies.
[72] Crown delineation algorithms and methods use a

variety of automated methods: local maxima and minima
identification, image segmentation, template matching, val-
ley finding, space-scale theory, Fourier and wavelet filter-
ing, and 3D modeling [Morales et al., 2008; Popescu and
Zhao, 2008; Palace et al., 2008a, 2008b; Wulder et al.,
2000; Pouliot et al., 2002; Leckie et al., 2003a, 2003b;
Quackenbush et al., 2000; Gougeon, 1995; Gong et al.,
2002; Weinacker et al., 2002; Brandtberg and Walter,
1998]. Careful crown delineation can also map gaps (spaces
between crowns), and in repeat observations with good
georeferencing, identify trees that have fallen [Clark et
al., 2004a, 2004b]. The crown detection algorithm devel-
oped by Palace et al. [2008a] simultaneously estimates
crown widths, crown dimensions and area, stems frequen-
cies, and locations. Use of allometric equations allow for
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trunk diameter distributions to be calculated. Little compre-
hensive work on canopy biomass partitioning has been
conducted in tropical forests, but Broadbent et al. [2008]
examined a Bolivian forest canopy in three dimensions and
estimated aspects of the canopy that would be visible to
remotely sensed data. Broadbent et al. [2008] also applied
the algorithm from Palace et al. [2008a] to compare field
data with remotely sensed estimates of canopy structure.
[73] Stereoscopic imaging with high-resolution imagery

can provide detailed information about canopy geometry.
Brown et al. [2005] processed airborne stereo video imagery
(pixel size 0.1 m) collected over a pine-savannah ecosystem
in Belize to map individual trees and shrubs, identify them
to plant type, measure height and crown area, and create a
virtual 3-D forest. They could then estimate stand biomass
from field-based allometry data. There is the potential for
stereoscopic imaging with high-resolution spaceborne sen-
sors such as Ikonos and QuickBird [e.g., Li, 1998], and
there has been at least one recent application to forest height
and structure analysis. St-Onge et al. [2008] used stereo
Ikonos images and airborne lidar data to generate surface
elevation models, and converted these to forest height and
forest biomass maps for a mixed boreal forest in Canada.
They used ground-based measures of tree height to assess
their forest height maps, and ground-based measures of
DBH and allometric equations to develop forest height-
biomass relationships. In their analysis, remotely sensed
estimates of biomass saturated at around 300 Mg ha�1, but
tree heights were still increasing, so they felt this saturation
might be a function of limited ground data from high
biomass stands. A single Ikonos stereo-pair covers about
100 km2, and could be used to interpolate between airborne
lidar data observations if allometric equations are applicable
across the image. Airborne lidar data are being collected in
many regions of the world [e.g., Stoker et al., 2006], and
this methodology should have widespread applicability for
relatively local-scale analyses. A similar analysis has not
been done with spaceborne lidar data.
[74] High-resolution image data do have potential prob-

lems and limitations. One problem relates to data availabil-
ity, as the sensors are tasked to collect images, and not
designed for global coverage. Data can be sparse or non-
existent in many areas of the world. Requesting and tasking
for a new image is quite expensive compared to larger
spatial-scale satellite data, but archived image data are
available for a fraction of the cost of a new image. A
second problem relates to image geolocation for image
intercomparison, less problematic for two high-resolution
images with highly distinctive points for georeferencing than
for stereo image analysis of high-resolution forest images or
comparing a high-resolution with a lower-resolution image.
High-resolution imagery is also very sensitive to Sun angle,
sensor image angle, crown shadows, and terrain influences
[Asner and Warner, 2003]. It is necessary to link high-
resolution data with field-measured data in order to interpret
the high-resolution imagery in terms of forest structural
information; this requires precise geolocation of both image
and field sample sites, yet GPS points are difficult to collect
under a dense canopy, particularly in the tropics [Clark et
al., 2004b]. Field-based locations of crown edges often are
approximations and can difficult to align with remotely
sensed satellite imagery [Asner et al., 2002a; Clark et al.,

2004b; Broadbent et al., 2008]. Finally, if the field plots are
not directly designed for remote sensing evaluation, the
field data may not include all aspects of forest structure that
might be detectable from remote sensing, or the remote
sensing imagery may span several field sites that have used
different methods for sampling.
[75] Lidar and microwave imagery are sensitive to prop-

erties of the forest below the top of the canopy. Forest
canopy structure can be measured by airborne laser range-
finding methods [Tanaka and Hattori, 2004]. Digitizing
waveform lidar has been used to estimate canopy structure
and biomass in tropical forests [Drake et al., 2002a, 2002b;
Hurtt et al., 2004]. Discrete return small-footprint lidar has
been successfully used over tropical rain forest landscapes
to generate digital terrain models, estimate tree heights
[Clark et al., 2004], measure and map canopy treefall
gaps, and assess canopy height changes over time [Kellner
et al., 2009]. Near-surface altimetry has been used to
examine stand development and complexity [Parker and
Russ, 2004]. High resolution SAR has been used in
tropical forests to estimate crown projections [Varekamp
and Hoekman, 2001]. JERS-1 was used successfully
examine vegetation spatial and temporal variability [Salas
et al., 2002] and biomass [Santos et al., 2002]. Spatial
patterns have also been estimated by combining microwave
data and modeling [Sun and Ranson, 1998; Varekamp and
Hoekman, 2001].
3.2.2. Remote Sensing Detection of Small Disturbances
[76] There are very few studies that have examined small-

scale disturbance using high-resolution image data from
satellites. Studies involving aerial photography exist, but
most use manual interpretation that do not allow for
replication of analysis or the application of an algorithm
to a new data set. A few studies have highlighted the use of
high-resolution image data to examine small-scale forest
disturbance at the individual tree level [Clark et al., 2004a,
2004b; Walsh et al., 2004; Wulder et al., 2008]. Clark et al.
[2004a] used manual comparison of two successive images
to quantify mortality of emergent trees in a tropical forest.
Mortality rates estimated from satellite data were essentially
identical to independent data from ground plots. Wulder et
al. [2008] looked a vegetation change due to canopy loss or
change using multiple high-resolution satellite image data
combined with an automated crown delineation algorithm.
Walsh et al. [2004] could discriminate avalanche source,
track, and runout zones from each other and from the
surrounding forests in Montana with Ikonos multispectral
data (4 m resolution). Even with the use of high-resolution
optical data (Ikonos and QuickBird), crown shadow proves
problematic in crown delineation [Clark et al., 2004a;
Palace et al., 2008a], and it is difficult to estimate crown
damage or loss, even for large emergent trees. Larger scale
lidar and radar might prove more useful in estimating small-
scale disturbances through estimates of the change of plot
level biomass.
[77] The combination of multiple remote sensing sensors

or platforms is useful in addressing limitations of some
sensors [e.g., Ranson et al., 2003]. High spatial resolution
instruments provide detailed textural information, but have
the drawbacks of small area coverage; they can sample a
region, but not map a region. Moderate spatial resolution
sensors have daily or near-daily repeat intervals, but contain
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less detailed spectral and spatial information on the land-
scape level. The combination of remotely sensed data from
multiple sensors at multiple spatial and temporal scales is
highly advantageous in estimating forest structure and
structural change [Asner et al., 2008]. Beyond spatial and
temporal scales, different types of sensors (e.g., passive
and active, optical/NIR and microwave; see Table 2) pro-
vide information about different aspects of a forest canopy,
and combining data from two different sensors can improve
information retrieval. Brown et al. [2005] combined a high-
resolution profiling laser with very high-resolution (0.1 m)
video imagery in an airborne instrument to generate a three
dimensional reconstruction of the canopy of a pine-savanna
ecosystem in Belize. Combining this with ground-based
allometry data, they mapped aboveground carbon density
for �70 plots (<1 ha). Anderson et al. [2008] showed that
combining airborne hyperspectral and lidar data improved
estimates of temperate mixed forest aboveground biomass
and basal area compared to either instrument alone.

3.3. Importance of Field Studies

[78] The importance of fieldwork must be stressed
because ground-based measurements are the only means
to understand and evaluate remotely sensed estimates of
forest biomass and structure and attempt to quantify uncer-
tainty and errors of such estimates. A limiting feature in a
remote sensing analysis of forest disturbance is often the
lack of adequate field-derived biometric data collected at the
plot level [e.g., Keller et al., 2001; Palace et al., 2008a,
2008b]. Future work to ensure proper interpretation of
remote sensing studies requires standardized field data
collection, collected over larger areas and in plots that take
into consideration forest disturbance dynamics and what
temporal and spatial disturbances can or will be captured on
such plots. In addition, long-term field studies, designed
with consideration of the temporal and spatial aspects of the
disturbance type to be examined, are crucial for quantifying
disturbance recurrence intervals.
[79] Biomass estimates have been made using the derived

relationship between crown height, crown width, wood
density, DBH or diameter above buttresses, or some com-
bination of these variables, and the biomass of individual
trees [Brown et al., 1995; Chambers et al., 2001; Araujo et
al., 1999; Ketterings et al., 2001]. Chave et al. [2004] state
that allometric equations account for the largest source of
error in biomass estimates. In temperate and boreal forests,
tree species have been well studied and allometric equations
are well developed. In the tropics, with its very high
diversity of species, there have been many fewer allometric
studies done [e.g., Araujo et al., 1999; Brown et al., 1995;
Chambers et al., 2001; Carvalho et al., 1998]. Advance-
ment and development of allometric equations, specifically
in tropical regions of the world, would be useful for remote
sensing analysis of small-scale disturbances and for better
estimates of regional biomass stocks. We note that this work
is underway at several large-scale field survey networks in
the tropics, such as the Smithsonian Center for Tropical
Forest Science field plots [Losos and Leigh, 2004], and the
Amazon Forest Inventory Network (RAINFOR) [Malhi et
al., 2002], but that this network is insufficient to adequately
characterize global tropical forests.

[80] It is also important to note that while some field data
is directly measured, such as basal area, DBH, stem density,
species richness, and wood density, most field data on
biomass are modeled from allometric relationships between
biomass and variables like DBH and estimated wood
density. Allometrically derived biomass estimates are likely
to be correct in a relative sense from site to site as long as
the same allometric equations are used (within one life zone
but not across life zones), but there is no way of knowing how
accurate they are in absolute terms without direct measures of
biomass, i.e., cutting and weighing the forest [e.g., Fearnside
et al., 1993], which is not a common practice.

3.4. Changes in Rates of Disturbance and Recovery

[81] Fisher et al. [2008] used a simple stochastic model of
gap generation and recovery to model the expectation value
of stand biomass, B, and change in stand biomass, dB/dt, as
a function of the relationship between gap size and gap
recurrence interval. With a constant growth rate G, and
constant disturbance probability, m, the expectation value of
the stand biomass, i.e., the mean stand biomass over a
uniform region that is much larger than disturbance areas,
behaves as B(t) = (G � m)(1 � e�mt ), and B(t) asymptot-
ically approaches an equilibrium value, B* (= G � m). This
model is a major simplification of reality (at a minimum, it
ignores all spatial heterogeneity and temporal variability),
but it has straightforward and important implications. A
change in the growth rate, G, or disturbance rate, m, will
give the system a new equilibrium value, and the timescale
for the system to approach that new equilibrium is on the
order of m�1. If a typical forest disturbance or turnover rate
is 2% a�1, then the timescale of the system response to a
change in growth or disturbance rate is 50–250 years. Thus,
if there has been a change in forest growth rates or
disturbance rates in the recent past, forests could be a net
sink (or source) of carbon for �100–200 years, with
diminishing strength over that time. Since it is very likely
that neither natural nor anthropogenic disturbance rates have
been constant over the past century, this is probably playing a
role in the net land carbon balance. This highlights the
importance of quantifying forest biomass, forest growth rates,
and forest disturbance rates (size and recurrence interval).
[82] Increased forest growth rates have been cited in

numerous studies as a potential mechanism for the carbon
sink needed to balance the global carbon budget (so-called
‘missing sink’): mechanisms include CO2 and N fertiliza-
tion, climate variability and change [e.g., Norby et al., 2005;
Magnani et al., 2007]. If this growth-related carbon sink is
spread diffusely across numerous biomes, it will be very
difficult to detect with field-based sampling or spaceborne
remote sensing, as the signal will be small against a large
background ‘noise’ due to interannual variability in weather
[e.g., Ciais et al., 2005], spatial heterogeneity, and, for
remote sensing, subpixel disturbances that affect pixel
biomass but are not identifiable as disturbances.
[83] Another mechanism for enhanced terrestrial C

sequestration is a change in disturbance rates. Through the
twentieth century, the largest such changes likely have been
anthropogenic, including fire suppression in North America,
Europe, and China [e.g., Hurtt et al., 2002; Lu et al., 2006;
Girod et al., 2007; Fellows and Goulden, 2008]; land
conversion to agriculture (cropland area increased by
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6.8 million km2 from 1900 to 2000 [Klein Goldewijk,
2006]); reforestation of former agricultural lands [e.g.,
Albani et al., 2006]; and increasing wood harvest (global
wood harvest in 2000 was �1.3 Pg C a�1, up threefold from
�0.4 Pg C a�1 in 1900 [Hurtt et al., 2006]). With continu-
ing increases in human population over the next several
decades [Lutz et al., 2001], direct anthropogenic disturbance
rates are likely to increase, although future scenarios are
highly uncertain [e.g., Morgan et al., 1999]. The IMAGE
2.1 model predicted an increase in agricultural area of
>5 million km2 in Africa and >3 million km2 in Asia
between 1990 and 2050, or �0.1 million km2 a�1, much
of it from conversion of forested land [Leemans et al., 1998;
DeFries et al., 2002]. This rate is similar to rates of tropical
deforestation observed over the past few decades, as dis-
cussed above. Future projections for wood harvest demand
have increases of as much as 400% (IMAGE Model, A1B
scenario [IMAGE-Team, 2001]). The Intergovernmental
Panel on Climate Change (IPCC) Special Report on Emis-
sions Scenarios (SRES) [Nakicenovic et al., 2000] projected
from 1 to 10 million km2 of land devoted to energy biomass
production globally in 2100, depending on scenario and
model; a significant fraction of this will likely be plantation
forestry [Stengers et al., 2006]. Future scenarios developed
more recently [Clarke et al., 2007] do not report land areas
for bio-energy production, but project that increased use of
bio-energy to meet stringent greenhouse gas stabilization
levels could lead to substantial conversion of previously
unmanaged lands to biomass production. Scenario analysis
by van Minnen et al. [2008] projects that there will be �5–
10 million km2 of carbon plantations by 2100. Shifting
cultivation operates in remote and marginal land areas,
which are being squeezed as mechanized agricultural
expands its domain. This, coupled with population growth,
is leading to shorter fallow periods and a more frequent
recurrence of disturbance [Flint and Richards, 1991;
Borggaard et al., 2003; Styger et al., 2007; de Neergaard
et al., 2008], though likely within an ever-shrinking domain.
[84] Climate change is also expected to change the rates

of many types of forest disturbance [e.g., Dale et al., 2001].
Kasischke and Turetsky [2006] documented an increase in
burned area and in the frequency of large fires (>2 km2) in
the North American boreal forest between the 1960s and the
1990s. Gillett et al. [2004] attributed the observed increase
in Canadian forest fires 1960–2000 to warming during the
dry season. Flannigan et al. [2004] predict a climate change
driven increase in annual burned area in Canada of 70% to
120% over the next century, based on 3xCO2 climate
change scenarios of two GCMs. Their estimates do not
explicitly take into account several factors that will impact
fire occurrence and severity, including changes in vegeta-
tion, ignitions, fire season length, and human fire manage-
ment. As noted above, fires in tropical forests are closely
related to land use and climate (dryness), and fire frequency
can be expected to change as those factors change. Allan
and Soden [2008] suggest that precipitation extremes
(droughts and heavy rains) are likely to increase with
climate warming, which may enhance flooding and drought
disturbance rates. Flooding frequencies will also be sensi-
tive to changes in land use and water management. There is
still a great deal of uncertainty as to climate change impacts
on hurricane frequency and severity [Saunders and Lea,

2008; Emanuel et al., 2008; Vecchi et al., 2008], and future
tornado frequency and intensity is also very uncertain
[Raddatz, 2003; Diffenbaugh et al., 2008]. In general, the
frequency of extreme weather events such as flooding and
drought are expected to increase with climate change
[Meehl et al., 2007].

4. Summary and Conclusions

[85] Abrupt, large-scale forest disturbance generating
gaps larger than 0.001 km2 occurs on about 0.4–0.7 million
km2 of forest each year; this is a rough estimate: at this time
we do not have good, comprehensive, global information on
forest disturbance and recovery rates. Much of this total
comes from fire, windstorms, logging, and temporary agri-
culture (shifting cultivation), with smaller amounts due to
land conversion, flooding, landslides, and avalanches. All of
these disturbances have substantial impacts on aboveground
canopy biomass and structure, and are important to quantify
(location, extent, severity, fate of disturbed biomass) to
improve regional and global carbon budget estimates and
to better initialize, parameterize, and/or test ecosystem-
carbon cycle models. Chronic, disturbances, such as insect
and pest damage, drought, and pollution loading, typically
operate at lower intensity and manifest more slowly, some-
times by making a forest more susceptible to an abrupt
disturbance. Small-scale disturbances generate small gaps,
fell individual trees, or cause sublethal damage to forest
canopies. Causes include selective and reduced impact
logging, fire, wind, avalanches, and natural mortality. Forest
disturbance due to natural and anthropogenic causes plays an
important role in determining the structure of forest canopies,
the spatial heterogeneity of the forested landscape, and the
rate of carbon exchange between the forest and the atmo-
sphere. Changing rates of forest disturbance and/or recovery
can have a large impact on the global net carbon budget.
Different forest biomes will have different spatial and tem-
poral disturbance dynamics and this needs to be addressed in
designing both field studies and remote sensing instruments.
[86] Both passive and active spaceborne remote sensing

detect electromagnetic radiation scattered up from the land
surface to the detector (passive microwave and thermal
infrared detect direct surface emissions) and can be used
to characterize the land-surface based on the intensity,
spectral distribution, timing, and/or polarization of this
reflected radiation. This makes them quite suitable for
mapping disturbance, as surface scattering is directly related
to a number of canopy properties that change with distur-
bance (e.g., soil, shadow, and nonphotosynthetic vegetation
fractions; heterogeneity of an image; spectral brightness
changes by band or vegetation indices; and seasonal vari-
ability in reflectances). Much work has been done with
spaceborne remote sensing to map the regional and global
occurrence, location, and extent of large-scale forest distur-
bance, particularly with passive optical/NIR instruments of
moderate-scale resolution (e.g., MODIS) and fine-scale
resolution (e.g., Landsat). These instruments provide large
area coverage with frequent repeat views need for detecting
disturbance, but are hampered by clouds and smoke. Some
large-scale disturbances are too small or spatially heteroge-
neous for reliable mapping with moderate scale instruments,
but most can be mapped with fine-scale instruments, and
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new methods combine the two scales of observation to
identify hot spots of disturbance (with moderate-scale
imaging), and then better quantify the extent of disturbance
(with stratified sampling of fine-scale imaging) [e.g.,Hansen
et al., 2008]. Also, as the remote sensing data record with
relatively stable instrumentation extends into several deca-
des, regional estimates of rates of disturbance [e.g., Achard
et al., 2002; Masek et al., 2008; Hansen et al., 2008] and
recovery [Schroeder et al., 2007] from image time series
analyses are becoming more feasible.
[87] There are still a number of challenges for spaceborne

mapping of forest disturbance. In areas of highly dynamic
land use, accurate assessment of disturbance and recovery
requires frequent looks, ideally at least annually, and pref-
erably at the same phenological time of year. This is
difficult for optical/NIR instruments (passive and active)
in cloudy regions of the world. Methods are not well
developed for quantifying degree of disturbance for large-
area disturbances that are very heterogeneous in impact
intensity (e.g., peripheral disturbance in hurricanes, and
patchy disturbance in large fires or major thunder storms,
which are the dominant modes of natural disturbance for
many temperate and boreal forests). Related to this, there
are no well established methods for regional- to global-scale
mapping of disturbances that are <0.01 km2 (in tropical
forests this would include several major disturbance mech-
anisms: shifting cultivation, selective and reduced-impact
logging, and severe storm microbursts). Of course, there are
also numerous challenges for ground-based mapping of
forest disturbance at regional to global scales; access to
remote forests and adequate field sampling for statistical
reliability (number and size of field sites) are two major
obstacles.
[88] To reduce uncertainty in the impact of disturbance

and recovery on the carbon balance of global forests
requires quantification of (1) forest biomass prior to distur-
bance; (2) the impact of disturbance on the standing
biomass and the fate of the disturbed carbon: burned,
removed, left to decompose; and (3) the impact of distur-
bance on forest structure/composition and the rate of bio-
mass accumulation during the recovery from disturbance.
However, no spaceborne remote sensing instruments directly
measure canopy biomass or most forest structural proper-
ties. This means that the characterization of forest biomass
or canopy structure from spaceborne remote sensing is
completely dependent on being relatable to high-quality,
comprehensive, temporally coherent, and spatially extensive
and representative ground-based measurements. Any pro-
gram that strives to generate a high-quality quantitative
assessment of forest canopy biomass and structure with
spaceborne remote sensing must include a well designed
and well coordinated field program to collect high-quality
ground-based forest structure data, including variables
related to biomass, since biomass is rarely measured directly
in the field. There is a major research need for improved
allometric equations relating forest biomass to variables
more readily measureable on the ground (e.g., DBH) and
from space (e.g., height), particularly in the tropics.
[89] There are a range of methods and spaceborne instru-

ments with the ability or potential to (indirectly) assess
forest biomass and structure. In all cases, these methods are
less well developed and less widely applied than spaceborne

disturbance mapping. Some work has been done with
passive solar reflectance instruments at local or small
regional scales, looking at SWIR bands or multiangle
imaging, which are more sensitive to canopy heterogeneity
than the more common MODIS and Landsat optical/NIR
analyses, and using hyperspectral analyses of canopy chem-
istry, which can vary along a recovery trajectory. More work
has been done with active remote sensing instruments (lidar
in the visible/NIR and SAR in the microwave), which are
generally more directly sensitive to forest canopy biomass
(microwave) and canopy height and vertical biomass distri-
bution (lidar and InSAR) than are passive solar reflectance
instruments, though not without their own shortcomings
(e.g., clouds/smoke interference for lidar, biomass saturation
for radar). These have mostly been local-scale studies, using
airborne and spaceborne instruments, to develop and test
methods for wider application, but there have recently been
some continental-scale analyses with spaceborne SAR.
Most of the remote sensing work on forest biomass and
structure analysis has not focused on disturbance impacts,
but just on canopy characterization (an exception is fire
severity work). A new generation of active instruments
designed to generate global coverage/sampling of forest
canopy biomass and structure will improve our ability to
quantify the carbon balance of the Earth’s forests [Houghton
and Goetz, 2008], and to initialize and/or evaluate ecosys-
tem and Earth system models that simulate forest carbon
cycling. It should also, over a multiple-year record, provide
data for assessing the capabilities of remote sensing for
detecting and quantifying disturbance and recovery impacts
on forest biomass and structure.
[90] As the surface characteristics to be quantified with

spaceborne remote sensing become more complex (e.g., not
just occurrence, but canopy structure impacts of distur-
bance) they typically become less directly related to any
single surface reflectance characteristic. There has been
limited work to date on large-scale (regional to global)
multisensor data fusion studies, but methods are being
developed and tested in an ever-growing collection of
studies that have shown the benefits of the synthesis of
data from multiple remote sensing instruments that observe
different characteristics of the landscape (mass, horizontal
texture, height and vertical distribution, foliar chemistry,
temporal dynamics). Synthesis of multiple instruments
provides a more complete description of a forested land-
scape, and also, through consistencies or inconsistencies
between the data sets, can enhance or diminish confidence
in the interpretation of the data.
[91] Small-scale disturbance and forest canopy gap

dynamics associated with natural mortality cannot be easily
observed with moderate- or fine-resolution spaceborne
remote sensing. High-resolution remote sensing (e.g.,
�1 m resolution for passive optical/NIR, small footprint
lidar) can map crown geometry and gaps, but has not yet
been applied over large regions in a systematic study. There
is the potential, however, to use high-resolution remote
sensing to assemble a very large data set on tree mortality
and small gap dynamics, sampling much more of the Earth’s
forested area than can be easily or affordably sampled by
ground-based field studies.
[92] The temporal and spatial scales of disturbance/recovery

span large ranges, and dictate which satellites can be useful
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for studying the various processes. All satellite instruments
come with their own limitations for observing forest distur-
bance and recovery; spatial resolution, spatial coverage, and
temporal repeat frequency are generally not a perfect match
to the scales of disturbance and recovery. One goal of
terrestrial remote sensing science is to analyze existing data
from airborne and spaceborne instruments to plan future
instruments and missions to better address outstanding
scientific questions related to forest disturbance and recov-
ery across as many scales as possible. The field of space-
borne remote sensing of forest canopy biomass and
structure is developing rapidly, as the collection of papers
in this special issue attests. As this field continues to
develop, and as new instruments are planned, built, and
launched, our capacity to detect forest disturbance and
recovery from space will improve, as will our ability to
quantify those impacts if extensive and coordinated ground
measurement programs are an integral part of the research
effort. While passive optical/NIR instruments with frequent
global coverage will continue to provide essential data
layers, active optical/NIR and microwave instruments
(e.g., lidar, SAR, and InSAR) are needed to provide
additional information about biomass and canopy structure
that cannot be derived from passive optical/NIR instru-
ments. Together, spaceborne and ground-based efforts will
provide essential data for reducing uncertainties in the
terrestrial carbon budget, and for improving our ability to
model the terrestrial carbon cycle.
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