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A B S T R A C T

Airborne laser scanning (ALS) is considered as the most accurate remote sensing data for the predictive mod-
elling of AGB. However, tropical landscapes experiencing land use changes are typically heterogeneous mosaics
of various land cover types with high tree species richness and trees outside forests, making them challenging
environments even for ALS. Therefore, combining ALS data with other remote sensing data, or stratification by
land cover type could be particularly beneficial in terms of modelling accuracy in such landscapes. Our objective
was to test if spectral-temporal metrics from the Landsat time series (LTS), simultaneously acquired hyper-
spectral (HS) data, or stratification to the forest and non-forest classes improves accuracy of the AGB modelling
across an Afromontane landscape in Kenya. The combination of ALS and HS data improved the cross-validated
RMSE from 51.5Mg ha−1 (42.7%) to 47.7Mg ha−1 (39.5%) in comparison to the use of ALS data only.
Furthermore, the combination of ALS data with LTS and HS data improved accuracies of the models for the forest
and non-forest classes, and the overall best results were achieved when using ALS and HS data with stratification
(RMSE 40.0Mg ha−1, 33.1%). We conclude that ALS data alone provides robust models for AGB mapping across
tropical mosaic landscapes, even without stratification. However, ALS and HS data together, and additional
forest classification for stratification, can improve modelling accuracy considerably in similar, tree species rich
areas.

1. Introduction

Large amounts of carbon are stored in the aboveground biomass
(AGB) in tropical forests, and change in the tropical forest cover is a
major source of carbon emissions (Houghton et al., 2009; Ciais et al.,
2013). Although most of the AGB resides in the forests, the importance
of the trees outside forests has been increasingly underlined (Schnell
et al., 2015; Sloan and Sayer, 2015; Vanderhaegen et al., 2015). With
the agricultural expansion and intensification, tropical landscapes be-
come more affected by human activities, and turn into the mosaics of
agricultural land, plantations and secondary, logged and fragmented
forests (Mertz et al., 2012; Laurance et al., 2014). Trees are also
common in the tropical agro-ecological systems, and agroforestry and
trees on croplands make major contributions to the global and regional
carbon budgets (Albrecht and Kandji, 2003; Zomer et al., 2016).
Therefore, in order to better understand AGB distributions and climate
change mitigation possibilities within the landscapes, it is important to

depict AGB variations also outside forests.
Remote sensing is required for mapping AGB at most of the scales.

The current pan-tropical and continental-scale maps have relatively
coarse resolution (Saatchi et al., 2011; Baccini et al., 2012; Avitabile
et al., 2016), large uncertainties in the pixel-level (Baccini et al., 2017),
or are restricted to the savannas with relatively low AGB (Bouvet et al.,
2018). Hence, these data are not yet sufficient to characterize AGB
variations in the landscapes where small forest patches can have high
AGB. In general, AGB is predicted most accurately by using light de-
tection and ranging (LiDAR) systems, in particular, the airborne laser
scanning (ALS) (Zolkos et al., 2013). The feasibility of ALS has been
demonstrated for different vegetation types in Africa, including forests
with high AGB (Asner et al., 2012; Vaglio et al., 2014, 2016; Hansen
et al., 2015; Fatoyinbo et al., 2018) and savannahs with lower AGB
(Mauya et al., 2015; Næsset et al., 2016; Tesfamichael and Beech, 2016;
Egberth et al., 2017). However, rather few studies have so far examined
agriculture-forest mosaics including both high AGB forests and almost
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treeless vegetation types in Africa (Asner et al., 2012; Adhikari et al.,
2017; Graves et al., 2018).

One possibility to improve the accuracy of the predictive models for
AGB is to combine ALS and optical remote sensing data (Zolkos et al.,
2013). Several studies have used Landsat data for AGB mapping in
Africa, including the latest Landsat 8 OLI imagery (Dube and Mutanga,
2015; Karlson et al., 2015; Gizachew et al., 2016; Egberth et al., 2017;
Heiskanen et al., 2017). Egberth et al. (2017) combined ALS and
Landsat 8 OLI imagery in the Miombo woodlands in Tanzania, which
improved accuracy slightly in comparison to the ALS models. However,
a greater synergy of ALS and Landsat data was found by Phua et al.
(2017) for the tropical forest in Malaysia. Furthermore, with the free of
cost Landsat data, it has become more feasible to utilize a time series of
imagery instead of single scenes. The spectral-temporal metrics based
on Landsat time series (LTS) have potential to improve the accuracy of
the AGB prediction models through complementary information on the
land surface phenology (Zhu and Liu, 2015). The potential of such
metrics has been demonstrated for mapping tree height, an important
factor in AGB, across Africa (Hansen et al., 2016).

Hyperspectral (HS) remote sensing (imaging spectroscopy) has been
shown to be highly useful for the classification of tree species in forests
(Fassnacht et al., 2016) and agro-ecosystems (Piiroinen et al., 2015;
Graves et al., 2016; Piiroinen et al., 2017). Although HS data have not
usually performed well in AGB modelling alone (Clark et al., 2011;
Zolkos et al., 2013), the integration of HS data to AGB prediction
models could improve modelling accuracy as it includes com-
plementary information on tree species composition. For example,
Vaglio et al. (2014) found out that the combination of ALS and HS data
outperformed ALS data in the tropical forest in Sierra Leone. Therefore,
there could be synergies in some cases, for example, when tree species
richness is particularly high. However, the integration of both ALS data
with LTS and HS data remain poorly explored in the forest-agricultural
land use mosaics in tropical Africa.

When modelling AGB across the mosaic landscapes, it is also re-
levant to consider stratification by vegetation type or land use class
(Mauya et al., 2015; Latifi et al., 2015). AGB, canopy structure, and tree
species composition can vary considerably between the strata with an
effect on the characteristics of ALS point clouds and the most suitable
predictor variables. Earlier, some studies have shown that stratification
can improve ALS models for forest AGB (Clark et al., 2011) while others
have found only marginal benefits (Latifi et al., 2015). Mauya et al.
(2015) showed that AGB predictions were improved by the post-stra-
tification in the Miombo savannah in Tanzania. Therefore, stratification
should be also studied for other landscape types in Africa.

Our main objective was to examine if ALS data complemented with
LTS or HS data, or forest - non-forest classification, improves the ac-
curacy AGB predictions across an Afromontane landscape in Kenya.
More specifically, we studied how accurately AGB can be modelled
using ALS, LTS and HS variables separately and together, and modelled
AGB separately for the forest and non-forest classes using different data
combinations. Finally, we compared non-stratified models (model fit
without considering forest classification) and stratified models (pre-
dictions for the forests and non-forest classes combined) at the land-
scape-level.

2. Material and methods

2.1. Study area

We conducted this study in the Taita Hills, in southeastern Kenya
(Fig. 1). The data were collected from a 10 km×10 km study area in
the middle of the hills. The area is topographically variable and altitude
range from approximately 1000m a.s.l. to the highest peak of the Taita
Hills, Vuria (2208m a.s.l.). The area has a bimodal rainfall pattern with
rainy seasons from October to December and from late March to June.
The amount of rainfall varies according to the topography but it is

greater than 1200mm per year in the hills (Pellikka et al., 2013).
The Taita Hills belong to the Eastern Arc Mountains with high

conservation value (Platts et al., 2011). The Afromontane forests are
particularly valuable in terms of biodiversity and other ecosystem ser-
vices. However, the area is currently densely populated and have un-
dergone large scale deforestation. The remaining forest patches are very
fragmented and located near the mountaintops (Pellikka et al., 2009,
2013). Some of the most common native species include Tabernae-
montana stapfiana, Macaranga capensis, Oxyanthus speciosus, Phoenix
reclinata and Celtis africana. Otherwise, the landscape consists of
smallholder agriculture (mainly maize fields), the plantations of exotic
trees (Eucalyptus spp., Pinus patula, Cupressus lusitanica and Acacia
mearnsii), bushland and settlements (Fig. 2). Agroforestry and trees
outside forests (e.g. Grevillea robusta) are common in the study area.

2.2. Field measurements and aboveground biomass calculation

In order to estimate reference AGB for the modelling, we surveyed
131 circular 0.1 ha plots in January and February in 2013 and 2014.
The sampling scheme (Fig. 1) varied between the two field campaigns.
In 2013, we sampled ten clusters of ten plots using geographically
stratified random sampling (Vågen et al., 2013). In 2014, we set up
additional plots to forests based on ALS data and HS imagery. The plot
centers were located by a Trimble GeoXH GNSS receiver with differ-
ential correction (see Pellikka et al., 2018 for details).

Within the plot radius (17.84m), we measured stem diameter at
breast height (D) and identified tree species for all living stems having
D>10 cm. The stem diameter was measured using a diameter mea-
surement tape. We measured tree height (H) for most of the trees out-
side forests by a hypsometer (Suunto). In 2014, H was measured for at
least three sample trees (minimum, maximum and median D) in the
forest plots using a laser range finder (Laser Technology TruPulse 360).
However, ten forest plots surveyed in 2013 lacked H measurements and
we estimated maximum H from the ALS-based canopy height model
(CHM) and assumed that the tree with the largest D was also the tallest
tree in the plot. Based on the H measurements, we imputed H for all the
tallied trees by using the two-parameter Curtis’s function (Curtis,
1967), and non-linear mixed effect modelling and plot as random ef-
fects (Valbuena et al., 2016). The models were fit using ‘nlme’ package
in R (Pinheiro et al., 2015) with the root mean square error of 3.8 m
(30.5%). For palms, we always measured H because D is not good
predictor of AGB (Brown, 1997).

As the main allometric equation for AGB estimation, we used the
pan-tropical model of Chave et al. (2014) based on D, H and wood
density (ρ). The model includes also data from the Eastern Arc Moun-
tains (Marshall et al., 2012). We searched ρ from Zanne et al. (2009)
and ICRAF (2015). In total, we recorded 95 species in the plots and
found species or family level ρ value for 84 species (96.1% of all the
stems). For the remaining species, we employed a landscape-level mean
value (0.562 g cm−3). The data used in the Chave et al. (2014) model
does not include tropical plantations. Therefore, we used additional
species-wise equations for A. mearnsii and Eucalyptus spp. (Paul et al.,
2013). For pines (Pinus spp.), we applied a stem volume equation from
Henry et al. (2011: equation 474) and default biomass expansion factor
for tropical pines (IPCC, 2003). The palm equation based on H (Brown,
1997) was used for P. reclinata. See Pellikka et al. (2018) for more
details on the allometric models. Lastly, we summed all the tree-wise
AGB values for each plot and calculated AGB per hectare according to
the plot area. We did not make slope correction in the field, and hence,
corrected the plot area based on the slope derived from the digital
elevation model (DEM).

Table 1 presents summary statistics for the plots. Nine plots in 2013
data were treeless, and one plot was removed as we considered D
measurements of two very large trees unreliable because of the abun-
dant lianas. Furthermore, four plots lacked valid HS data. This resulted
in 117 plots for modelling.
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Furthermore, we classified each plot as forest or non-forest in the
field based on the dominant land cover. The classification was made
according to the Land Degradation Surveillance Framework field guide
(Vågen et al., 2013), which follows White (1983) vegetation type

classification. The forest class included the montane forest plots, com-
posed mainly of native tree species, and the plantation forest plots
consisting mainly of exotics. The non-forest plots included everything
else, such as croplands, agroforestry, and bushland. The number of the
forest plots was 39 and the number of the non-forest plots was 78.

2.3. Airborne laser scanning data

We acquired ALS data 3–8 February 2013 by Optech ALTM 3100
sensor. The pulse rate was 100 kHz and scan rate 36 Hz. The maximum
scan angle was±16 degrees, the mean range 760m, and the mean
footprint diameter 23 cm. A maximum of four returns were recorded
per emitted pulse. As a result, the mean pulse density was 9.6 pulses
m−2 and mean return density 11.4 returns m−2 (Pellikka et al., 2018).
The acquisition period corresponds to the dry season when agricultural
crops are or are soon going to be harvested. The most of the trees in the
altitude of our study area do not shed their leaves during the dry
season. The pre-processing of the ALS data was made by TopScan
GmbH (Germany). Furthermore, we used Terrascan software (Terra-
solid Oy, Finland) to filter the ground returns and buildings. We also
filtered the powerlines and high points manually. The overlap of the
neighboring flight lines was removed using lasoverage tool in LAStools
software (rapidlasso GmbH, Germany). Finally, we used the ground
returns to produce DEM at 1m resolution.

2.4. Landsat time series

We used Landsat 8 Operational Land Imager (OLI) imagery for two
full years of data since the first available Landsat 8 image for the study
area (14 April 2013; path 167, row 62). The period corresponds roughly
to the time of field data collection (2013–2014) although it begins
about two months after the airborne data collection. However, we
preferred to use higher quality Landsat 8 data instead of Landsat 7
Enhanced Thematic Mapper Plus data. We downloaded Landsat

Fig. 1. Location of the study area and field plots. Canopy height model (CHM) and contour lines in 100m interval are based on the airborne laser scanning data. CHM
visualize the fine-scale variation in tree cover and height in the study area. The borders of the Eastern Arc mountains are from Platts et al. (2011).

Fig. 2. Typical landscape in the Taita Hills with settlements, maize fields and
agroforestry, and montane forests and plantations in the mountain tops.

Table 1
Summary of the field plot data (n= 117).

Variable Min Max Mean SD

Stem density (stems ha−1) 10 1214 302 309
Mean diameter at breast height (cm) 13.2 45.5 23.1 6.5
Basal area (m2 ha−1) 0.2 85.6 18.8 21.6
Basal area weighted mean height (m) 3.0 38.2 13.9 6.3
Maximum height (m) 3.0 48.0 19.3 8.7
Aboveground biomass (Mg ha−1) 0.3 642.2 120.7 160.5
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Collection 1 Level-2 surface reflectance data from U.S. Geological
Survey EarthExplorer1 . The data included surface reflectance in blue
(0.45–0.51 μm), green (0.53–0.59 μm), red (0.64–0.67 μm), near in-
frared, NIR (0.85–0.88 μm), and two shortwave infrared bands, SWIR1
(1.57–1.65 μm) and SWIR2 (2.11–2.29 μm), respectively. The spatial
resolution of the OLI data is 30m×30m. We masked clouds and cloud
shadows using the CFMask cloud masks provided with the data (Foga
et al., 2017). Furthermore, we performed topographic normalization
using the C-correction method (Adhikari et al., 2016) and Japan
Aerospace Exploration Agency (JAXA) DEM2 .

Out of the 42 imagery available for the region, 30 were cloud and
cloud shadow free in the 10 km×10 km study area. In general, the
cloudiness follows the variation of dry and wet seasons in the study
area. The average percentage of cloud and cloud shadow cover was the
smallest during the dry season in January (16.1%) and the largest
during the rainy season in May (87%). The number of usable ob-
servations per pixel was 4–22 with median of 12 observations (6–17
with median of 11 observations in the field plots, respectively).

2.5. Hyperspectral data

We collected HS data simultaneously with ALS data using
AisaEAGLE sensor (Specim, Spectral Imaging Ltd., Finland). The HS
data had 129 bands in the spectral range of 400–1000 nm (bandwidth
4.5–5.0 nm). The planned flying height was approximately 750m. The
resulting pixel size was one meter (Piiroinen et al., 2017, 2018).

We made the radiometric correction and orthorectification for the
raw data using CaliGeoPro 2.2 software (Specim, Spectral Imaging Ltd.,
Finland). We used a digital surface model derived from the ALS data in
the orthorectification. After the correction, we noted that there were
geometric mismatches between ALS and HS data. Therefore, we co-
registered the HS data with the ALS data using control points collected
from the CHM using second order polynomial transformation (Piiroinen
et al., 2018). The atmospheric correction was done with ATCOR-4
software (Richter and Schläpfer, 2002). Furthermore, there were some
cloud shadows in the southern part of the mosaic and we masked those
manually.

Before calculating the predictor variables (Section 2.6), we also
removed the darkest shadows and non-tree pixels from the mosaic as
described by Piiroinen et al. (2018). The objective of this masking was
to improve the sensitivity of the HS variables to the tree species com-
position. We masked all the pixels having NIR (836 nm) reflectance<
0.2 and normalized difference vegetation index (NDVI) (Rouse et al.,
1973)< 0.5. These data were used for calculating variables for the HS
only models (Section 2.7). However, as HS data alone does not allow
reliable masking of the ground and lower vegetation pixels, we re-
moved the remaining non-tree pixels from the data with the help of
ALS-based CHM (height< 3m). These data were used only for calcu-
lating variables for the models combining ALS and HS data (Section
2.7).

2.6. Predictor variables

We used ALS, LTS and HS data to compute a large number of pre-
dictor variables for AGB modelling (Supplement 1). In total, there were
66, 99 and 216 variables in ALS, LTS and HS data sets, respectively.

To calculate ALS variables, we extracted returns for the field plots
using the radius of 17.84m corresponding to the field plot radius and
used FUSION software (McGaughey, 2018) for the variable computa-
tion. The computed variables were related to the laser return height
distribution and canopy cover. We used a 3m height threshold to se-
parate canopy returns from ground and understory returns. This

threshold was found earlier to work well with the 10 cm minimum DBH
used in the field data collection (Adhikari et al., 2017; Pellikka et al.,
2018). Furthermore, we computed the height-related variables sepa-
rately using the first and the last returns only (Næsset, 2002). The first
return data contained the ‘single’ and ‘first of many’ returns, while the
last return data included the ‘single’ and ‘last of many’ returns.

For LTS data, we calculated a set of spectral-temporal variables for
each pixel using all the cloud and cloud shadow free observations in the
two years. In addition to the reflectance values in the spectral bands, we
also calculated Tasseled Cap Brightness, Greenness and Wetness (Crist,
1985), NDVI (Rouse et al., 1973), and Reduced Simple Ratio (RSR)
(Brown et al., 2000) vegetation indices. The Tasseled Cap indices were
derived from the topographically corrected reflectance, and NDVI and
RSR from the non-corrected reflectance as those are not affected by the
topographic effects (Adhikari et al., 2016). The spectral-temporal
variables included selected percentiles (10th, 25th, 50th, 75th, 90th)
corresponding to the low, median, and high reflectance and vegetation
index values in the time series. We also calculated trimmed means
(10%, 25%) and inter-percentile ranges (10th–90th, 25th–75th) (Potapov
et al., 2012; Hansen et al., 2016). The lowest and the highest values
were excluded from mean and range due to possible unmasked clouds
and cloud shadows. Finally, we used bilinear interpolation method to
extract values for the field plot center locations.

HS variables were based on the pixels inside the field plots. The
variables included spectral bands and narrowband VIs identified useful
for the study of vegetation by Roberts et al. (2011) (see also Piiroinen
et al., 2017). Furthermore, we applied the minimum noise fraction
(MNF) transformation for data reduction (Green et al., 1988). The
transformation was calculated using ENVI software (version 5.0, Re-
search Systems Inc., USA). We used the first 15 MNF bands and dis-
regarded the rest of the bands based on their low eigenvalues and visual
analysis (Piiroinen et al., 2018). MNF transformation was calculated
separately for two differently masked mosaics. For each variable, we
calculated the trimmed mean (10%) and selected percentiles (10th, 50th,
and 90th) corresponding to the dark, median and bright pixels.

2.7. Predictive modelling

We applied linear regression for the AGB modelling. First, we tested
ALS, LTS and HS variables separately, and then different combinations
of the data sets. The models were also fit separately for the forest and
non-forest plots.

We used ‘lm’ function in R Core Team (2016) for fitting the re-
gression models. First, we searched the best models having 1–4 pre-
dictors by an exhaustive search using ‘regsubsets’ function in package
‘leaps’ (Lumley, 2017). For each data set and combination, we obtained
the 30 best models. We applied a square root transformation for AGB as
we found that it improved the model fits. When using models for pre-
diction, we corrected the back-transformation bias by multiplying the
predictions by the square of the standard error (Gregoire et al., 2008).

For accuracy assessment, we used leave one out cross-validation
(LOOCV) (Packalén et al., 2012). For LOOCV, we removed each plot
from the modelling set at the time and used it for validation. We re-
peated the procedure as many times as there were field plots, and
computed accuracy statistics based on the observed and predicted va-
lues. The accuracy statistics included root mean square error (RMSE,
Mg ha–1) and relative RMSE (percentage of mean AGB), and pseudo
coefficient of determination (R2). We also combined the observed and
LOOCV predicted values for the forest and non-forest strata in order to
compare the non-stratified predictions and stratified predictions at the
landscape-scale.

We applied several criteria to select the best model among the 120
model candidates for each set of plots and data. In order to assess if
predicted values from LOOCV are consistent with observed values and
the model is unbiased, we assessed if the predicted and observed values
followed the 1:1 correspondence line using the hypothesis test (Piñeiro

1 https://earthexplorer.usgs.gov/
2 http://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
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et al., 2008; Valbuena et al., 2017). The null hypothesis was that the
intercept (α) and slope (β) of the linear regression between the pre-
dicted and observed values are 0 and 1, respectively. If the null hy-
potheses were rejected (p < 0.05), the model was not accepted
(Valbuena et al., 2017). In order to evaluate the degree of overfitting to
the sample, we employed the sum of squares ratio (SSR) (Valbuena
et al., 2017). SSR is the ratio between the square root of the residual
sums of squares (SS) from the cross-validation ( SScv ) and without
cross-validation ( SS fit ). SSR increase with overfitting, and we rejected
models that had SSR > 1.1 because of possible overfitting (Valbuena
et al., 2017). As many of the predictor variables were highly correlated,
we also used variance inflation factor (VIF) to reject models with highly
correlated variables (Zuur et al., 2010). We rejected the models having
variables with VIF > 4. Furthermore, we accepted only models with
significant predictor variables (p < 0.05). Finally, we selected the
model with the lowest LOOCV RMSE among the models fulfilling all the
above criteria.

3. Results

ALS data performed considerably better than LTS or HS data when
used alone and without stratification (Table 2). LOOCV RMSE was
51.5Mg ha−1 (42.7%) for ALS data with high pseudo R2 (0.90). The
predicted versus observed plots show that ALS model has some large
random errors in the forests but in general the predictions follow 1:1
line across both strata (Fig. 3a). LTS model underestimated large AGB
values, and both LTS and HS models overestimated small AGB values
(Fig. 3b and c). The combination of ALS and HS data improved accuracy
slightly (RMSE 48.9Mg ha−1, 40.5%) in comparison to the ALS only
model (Fig. 3d). The best models combining ALS and LTS data did not
contain any LTS variables (i.e. only ALS variables were selected).

ALS data were also clearly better than LTS and HS data for the forest
and non-forest plots (Table 2). LTS and HS data performed similarly for

the forest plots but HS data had particularly poor performance for the
non-forest plots. However, the combination of ALS data with LTS and
HS data improved accuracies of the forest and non-forest models.
LOOCV RMSE of the forest models dropped from 88Mg ha−1 (28.0%)
to 82.3Mg ha−1 (26.2%) and 67.8Mg ha−1 (21.5%) when combining
ALS data with LTS and HS data, respectively. Improvement of the non-
forest models was not as considerable; LOOCV RMSE dropped from
11.7Mg ha−1 (49.3%) to 11.2Mg ha−1 (47.2%) and 10.2Mg ha−1

(43.0%), respectively. Similar to the non-stratified models, the best
models had only ALS and HS variables (i.e. no LTS variables were se-
lected).

The accuracy of the ALS predictions at the landscape-level was not
improved by using separate models for the forest and non-forest plots
(Table 2, Fig. 3e). Nevertheless, the accuracy of the LTS and HS pre-
dictions was improved considerably in comparison to the non-stratified
models, despite the poor model fits in terms of R2 in the forest and non-
forest plots (Table 2, Fig. 3f and g). Furthermore, the combined ALS and
LTS data, and ALS and HS data, showed better accuracies than ALS
model when the forest and non-forest strata were assessed together
(Fig. 3h and i). Overall, the best accuracy at the landscape-level was
achieved when using ALS and HS data with stratification (RMSE
40.0Mg ha−1, 33.1%).

The selected variables varied between the non-stratified and forest/
non-forest models, and between the data combinations (Table 2). The
best non-stratified ALS model included only two variables, one related
to canopy cover and density (cca, percentage of all returns above 3m)
and another related to canopy height (hp25_f, 25th percentile of the first
return heights). The best forest and non-forest models included other
height related variables (hp30_f, hp40_f, hp60_l, hmax_f), standard de-
viation of the last return heights (hsd_l), L-moment 3 based on the last
return heights (hL3_l), and other canopy cover and density related
variables (ccmeanaf, ccaf). RSR based on red, NIR and SWIR1 re-
flectance was included in the non-stratified LTS model and forest

Table 2
Modelling results for the different data sets. The non-stratified model included all the field plots. The forest and non-forest models were fit separately using forest and
non-forest plots. The stratified models combine predictions of the best forest and non-forest models. Some of the ALS+ LTS and ALS+HS+LTS combinations did
not include variables from all the data sets and hence results area not shown. See Supplement 1 for the explanation of variable names.

Model Data set Selected variables RMSE
(Mg ha−1)

RMSE
(%)

α β R2 SSR VIF1 VIF2 VIF3 VIF4

Non-stratified ALS hp25_f, cca 51.5 42.7 –2.5NS 1.02NS 0.90 1.04 3.3 3.3
LTS RSR_p25, TCG_p50 85.1 70.5 –3.3NS 1.11NS 0.72 1.03 1.1 1.1
HS PSRI_p10, mARI_p90, PRI_p90 89.8 74.4 –13.6 NS 1.10NS 0.69 1.04 2.6 1.6 1.9
ALS+ LTS ALS variables only
ALS+HS hp30_f, cca, MNF8_p90 48.9 40.5 –3.6NS 1.03NS 0.91 1.05 3.3 3.8 1.5
ALS+ LTS + HS ALS and HS variables only

Forest ALS hp40_f, hsd_l 88.0 28.0 25.5NS 0.92NS 0.59 1.09 3.6 3.6
LTS blue_q90, NDVI_range25_75, RSR_p90 118.0 37.5 34.8NS 0.89NS 0.26 1.09 1.6 1.3 1.2
HS PSRI_p10, PRI_p90 123.0 39.1 62.8NS 0.80NS 0.21 1.08 1.3 1.3
ALS+ LTS hp25_f, NDVI_p25 82.3 26.2 11.4NS 0.96NS 0.64 1.08 1.1 1.1
ALS+HS hp25_f, R722_p90, MNF8_p90 67.8 21.5 2.5NS 0.99NS 0.75 1.09 1.0 1.0 1.0
ALS+ LTS + HS ALS and HS variables only

Non-forest ALS hmax_f, hL3_l, ccmeanaf 11.7 49.3 –1.2NS 1.05NS 0.82 1.07 2.3 1.6 1.9
LTS blue_p90, SWIR1_p75 22.7 95.6 –6.5NS 1.27NS 0.35 1.03 3.8 3.8
HS MNF13_p10, SIPI_p90, CRI1_p90 20.8 87.6 –6.0NS 1.12NS 0.45 1.07 1.5 1.8 1.3
ALS+ LTS hp30_f, ccmeanaf, blue_p90, SWIR1_p10 11.2 47.2 –0.4NS 1.01NS 0.84 1.08 1.5 2.1 2.7 3.2
ALS+HS hp60_l, ccaf, PSSR_p10, MNF12_p10 10.2 43.0 –0.8NS 1.03NS 0.86 1.09 1.4 1.8 1.4 1.0
ALS+ LTS + HS ALS and HS variables only

Stratified ALS ALS 51.7 42.8 1.7NS 0.98NS 0.90
LTS LTS 70.7 58.6 1.0NS 0.99NS 0.81
HS HS 72.7 60.2 2.1NS 0.98NS 0.79
ALS+ LTS ALS+ LTS 48.4 40.1 0.7NS 0.99NS 0.91
ALS+HS ALS+HS 40.0 33.1 0.1NS 1.00NS 0.94
ALS+ LTS + HS ALS and HS variables only

ALS= airborne laser scanning; LTS= Landsat time series; HS= hyperspectral; RMSE= root mean square error based on leave-one-out cross validation; α/β =
intercept/slope of observed versus predicted regression; NS = non-significant (null hypothesis not rejected, p≥ 0.05); SSR = sum of squares ratio; VIFn = variance
inflation factor for the nth selected variable in the model.
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model. However, the different percentile values corresponding to the
dry season RSR (RSR_p25) and maximum RSR (RSR_p90) were used.
Maximum reflectance in the blue band (blue_p90), corresponding to the
dry season, was used in the forest and non-forest models. Other vari-
ables included median tasseled cap greenness (TCG_p50), NDVI inter-
quartile range and 25th percentile (NDVI_range25_75, NDVI_p25), and
75th percentile reflectance in the SWIR1 band (SWIR1_p75). Further-
more, the best HS models included MNF bands and vegetation index
(e.g. PSSR, PSRI and PRI). The model for forest included also the red
edge spectral band at 722 nm. The selected HS variables were mostly
low or high percentile values, i.e. values corresponding to the dark or
bright pixels.

In order to apply the stratified models for prediction, it is important
that those strata can be mapped with reasonable accuracy in order to
apply separate models for them. In general, all the ALS variables used in
the AGB prediction models can separate very well the forest and non-
forest plots classified in the field (Fig. 4). However, only the number of
returns above mean / total first returns × 100 (ccmeanaf) was able to

separate forest and non-forest plots perfectly (Fig. 4d), and hence, we
used it for predicting AGB (Fig. 5). The non-stratified ALS model, the
model based on ALS and HS data, and the model based on ALS and HS
model with stratification depict the same spatial patterns in AGB
(Fig. 5a–c). The remaining forest patches are shown in the map as
uniform areas of relatively high AGB, and abundant trees outside forests
are visible in all the maps. However, as revealed by the difference
images (Fig. 5d and e), large differences (> 10Mg ha−1) are observed
locally, particularly in the forest areas where improvement in the ac-
curacy was the greatest when combining ALS and HS data.

4. Discussion

We modelled AGB using ALS, LTS and HS data across an
Afromontane landscape where trees are abundant outside forests. The
most accurate predictions at the landscape-level were achieved by
combining ALS and HS data, and using separate models for the forest
and non-forest strata. In the forest strata, RMSE decreased from 28.0%

Fig. 3. Predicted versus observed aboveground biomass (Mg ha–1) for the selected models based on leave-one-out cross validation. Non-stratified predictions (one
model for all the field plots) based on (a) airborne laser scanning (ALS), (b) Landsat time series (LTS), (c) hyperspectral (HS) data, and (d) combined ALS and HS data.
Stratified predictions (separate models for the forest and non-forest plots) based on (e) ALS, (f) LTS, (g) HS, (h) combined ALS and LTS, and (i) combined ALS and HS
data.
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Fig. 4. Distribution of the selected canopy
cover and density related airborne laser scan-
ning variables for the non-forest and forest
plots: (a) percentage of first returns above 3m
(ccf), (b) percentage of all returns above 3m,
(c) number of all returns above 3m / total first
returns × 100 (ccaf), and (d) number of returns
above mean height / total first returns × 100
(ccmeanaf).

Fig. 5. Aboveground biomass (AGB) maps of the study area predicted by (a) the non-stratified model based on airborne laser scanning (ALS) data, (b) the non-
stratified model based on ALS and hyperspectral (HS) data, and (c) the separate models for the forest and non-forest strata based on combined ALS and HS data.
Panels (d) and (e) show differences between the maps (a) and (b), and (a) and (c), respectively. Part of the HS data were missing because of the cloud shadows.
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to 21.5%, and in the non-forest strata from 49.3% to 43.0% in com-
parison to the ALS data. Both of these are major improvements and
indicate possible synergies of the two data sets similar to Vaglio et al.
(2014) and some studies outside Africa (Anderson et al., 2008). On the
other hand, we observed minor improvement in the accuracy of the
non-stratified predictions, which is in line with studies that have found
only small benefits from additional HS data (Clark et al., 2011;
Fassnacht et al., 2014). The variables in the best HS models included
MNF bands and vegetation indices (e.g. pigment specific simple ratio,
PSSR, Blackburn, 1998), which were used successfully for the tree
species classification by Piiroinen et al. (2017). Therefore, HS data
could improve AGB models through sensitivity to the tree species
composition, which affect wood density. The selected HS variables can
be sensitive to the season although most of the trees in the study area do
not shed their leaves during the dry season. Therefore, the models
combining ALS and HS data should be considered site and time specific.

Combining ALS and LTS resulted in minor improvements in the
forest and non-forest plots. No improvement was observed in the case of
non-stratified model. Earlier, Egberth et al. (2017) reported a small
improvement in RMSE (from 50.3% to 49.1%) when combining ALS
and Landsat 8 OLI data in the Miombo woodlands. In Australia,
Ediriweera et al. (2014) found that combination of ALS and Landsat 5
data improved RMSE in the eucalyptus forest in but not in the closed-
canopy subtropical forest. Therefore, small improvements in the pre-
diction performance are possible when combining ALS and Landsat
data. Also this improvement could be due to the sensitivity of the
multispectral data on tree species composition. The selection of dif-
ferent percentile values and NDVI range emphasizes the potential of
LTS for AGB prediction. However, because of the uneven distribution of
the cloud-free observations over the year, the spectral-temporal vari-
ables are biased towards dry periods, which can limit their sensitivity to
phenology. More data, for example from another sensor, would be ne-
cessary for improving observation distribution.

In general, our results demonstrate the strength of ALS data for AGB
modelling across the tropical mosaic landscapes. LTS and HS data
performed similarly with earlier studies using Landsat (Karlson et al.,
2015; Gizachew et al., 2016; Egberth et al., 2017) and HS data
(Fassnacht et al., 2014; Vaglio et al., 2014). Passive optical remote
sensing data tends to saturate at relatively low AGB values, which was
clearly observed also by the LTS data in this study. In contrast, ALS data
are sensitive to the tree height and its variability, which makes it su-
perior for modelling AGB (Zolkos et al., 2013). The cross-validated
RMSE of the non-stratified ALS model (42.7%) is similar to the studies
encompassing several vegetation types in Africa (Mauya et al., 2015;
Næsset et al., 2016; Egberth et al., 2017).

The best non-stratified ALS model included only two variables; 25th

height percentile based on the first returns, and canopy cover (or ca-
nopy density) based on all returns. Similar variables were used by
Adhikari et al. (2017) and Pellikka et al. (2018). However, the forest
and non-forest models included somewhat different variables (e.g.,
higher height percentiles and standard deviation of the last returns).
This indicates that while some variables might be good predictors of
AGB across a range of land cover types, others might be more suitable
for the others. Typically, ALS-based AGB prediction models include
both height and canopy cover related variables but otherwise, there
seems to be little agreement on the exact predictor variables. Hansen
et al. (2015) found that variables based on the returns from the lower
parts of the canopy and canopy cover were more important than those
describing the canopy height. On the other hand, Egberth et al. (2017)
had 60th height percentile and two canopy cover variables based on the
first returns in their model. Finding more general variables for the AGB
mapping across Africa would require combining several AGB and ALS
datasets from the different areas. Furthermore, sensitivity of ALS vari-
ables on season are poorly known in similar areas.

The selected ALS variables seem robust for a large range of the tree
covered vegetation types. The forests in the Taita Hills show great

variation in canopy structure (e.g., include species-rich tropical mon-
tane forest at different altitudes and single-species plantation forest) but
have in general high canopy cover. On the other hand, the non-forest
areas have sparse tree cover and sometimes the sample plots had only a
few trees completely or partially in the plot. It could be expected that
accuracy of the strata-specific ALS models is better than that of the
general model as the strata are more homogenous (Mauya et al., 2015;
Latifi et al., 2015). However, the forest and non-forest stratification was
beneficial for the data fusion models but it did not improve the accu-
racy of the ALS-based predictions. This is similar to the results of Latifi
et al. (2015). An earlier study by Heiskanen et al. (2015) suggested that
leaf area index prediction models should be stratified according to the
main forest types in the area. Hence, further studies should investigate
stratification by the main forest types and by the dominant species of
the plantations using a larger data set.

The stratification (stratified sampling or post-stratification) is
sometimes considered impractical as it requires spatial data on vege-
tation or land cover, or some other relevant stratification, which is not
necessarily trivial to produce (Mauya et al., 2015). Therefore, Mauya
et al. (2015) recommended the non-stratified model when such data are
not available. Here, we found that ALS variables, such as ccmeanaf,
could separate forest and non-forest plots reliably, which enabled the
application of the stratified models. In the case of LTS and HS only
models, there was a clear improvement due to the post-stratification.
However, the performance in terms of R2 were poor for forest and non-
forest classes in comparison to ALS models. Furthermore, using LTS or
HS data alone, forest vs. non-forest classification would not have as
good accuracy as attained by ALS data, also limiting the use of such
models. In addition, the classification of the main forest types could be
more difficult if stratification by the forest type or dominant species
would be preferred.

ALS-based AGB modelling includes many uncertainties related to
the field data collection. It is well-known that results improve when
larger field plots are used (Zolkos et al., 2013). However, the field plots
larger than 0.1 ha can be impractical to measure, particularly in the
complex terrain and dense forests (Hansen et al., 2015). In the wood-
lands and croplands, larger plots would be more feasible as 0.1 ha plot
include sometimes only a few trees. In these cases, large trees just
outside the plot borders can have disproportionally large effect to the
ALS variables although not included in AGB of the plot. Combination of
the area-based and single-tree-based approaches could help reducing
border effects due to the small plot size (Packalen et al., 2015). Un-
certainties are also related to the allometric models, and tree height
measurement and modelling (Chave et al., 2014; Valbuena et al., 2016),
which increase modelling uncertainties. Furthermore, it has been
common to measure only trees that have DBH > 10 cm in the tropical
forest inventories (Ganivet and Bloomberg, 2019). However, in some of
the vegetation types (e.g., thickets and fallow fields), smaller DBH trees
and shrubs could make a considerable share of the AGB, and affect the
modelled relationships and selected variables. Therefore, further stu-
dies should pay more attention to the effect of the smaller trees and
shrubs on the modelling accuracy.

5. Conclusions

The tropical mosaic landscapes have got increasing attention as
those are vulnerable to land use and land cover change and large
fraction of landscape-level AGB can reside outside forests. According to
our results, ALS provides robust models for AGB prediction across such
landscapes, including the areas outside forests. However, the results
demonstrate a clear improvement in the modelling accuracy if com-
bining ALS and HS data, and applying a forest and non-forest stratifi-
cation. Furthermore, ALS data also provided the means for the forest
and non-forest stratification, which is necessary for making use of HS
data. Without stratification, only minor improvement in accuracy was
achieved in comparison to using ALS data only. To conclude, our results
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suggest that simultaneous ALS and HS data acquisition can be useful for
the AGB modelling purposes in similar landscapes. The additional costs
of HS data acquisition and processing can be also justified by other
applications of HS data, such as tree species classification.
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