1,189 research outputs found

    Efficient storage and decoding of SURF feature points

    Get PDF
    Practical use of SURF feature points in large-scale indexing and retrieval engines requires an efficient means for storing and decoding these features. This paper investigates several methods for compression and storage of SURF feature points, considering both storage consumption and disk-read efficiency. We compare each scheme with a baseline plain-text encoding scheme as used by many existing SURF implementations. Our final proposed scheme significantly reduces both the time required to load and decode feature points, and the space required to store them on disk

    Fast Random Access to Wavelet Compressed Volumetric Data Using Hashing

    Get PDF
    We present a new approach to lossy storage of the coefficients of wavelet transformed data. While it is common to store the coefficients of largest magnitude (and let all other coefficients be zero), we allow a slightly different set of coefficients to be stored. This brings into play a recently proposed hashing technique that allows space efficient storage and very efficient retrieval of coefficients. Our approach is applied to compression of volumetric data sets. For the ``Visible Man'' volume we obtain up to 80% improvement in compression ratio over previously suggested schemes. Further, the time for accessing a random voxel is quite competitive

    Data compression opportunities in EOSDIS

    Get PDF
    The Earth Observing System Data and Information System (EOSDIS) is described in terms of its data volume, data rate, and data distribution requirements. Opportunities for data compression in EOSDIS are discussed

    Significant medical image compression techniques: a review

    Get PDF
    Telemedicine applications allow the patient and doctor to communicate with each other through network services. Several medical image compression techniques have been suggested by researchers in the past years. This review paper offers a comparison of the algorithms and the performance by analysing three factors that influence the choice of compression algorithm, which are image quality, compression ratio, and compression speed. The results of previous research have shown that there is a need for effective algorithms for medical imaging without data loss, which is why the lossless compression process is used to compress medical records. Lossless compression, however, has minimal compression ratio efficiency. The way to get the optimum compression ratio is by segmentation of the image into region of interest (ROI) and non-ROI zones, where the power and time needed can be minimised due to the smaller scale. Recently, several researchers have been attempting to create hybrid compression algorithms by integrating different compression techniques to increase the efficiency of compression algorithms

    CONTENT-BASED IMAGE RETRIEVAL USING ENHANCED HYBRID METHODS WITH COLOR AND TEXTURE FEATURES

    Get PDF
    Content-based image retrieval (CBIR) automatically retrieves similar images to the query image by using the visual contents (features) of the image like color, texture and shape. Effective CBIR is based on efficient feature extraction for indexing and on effective query image matching with the indexed images for retrieval. However the main issue in CBIR is that how to extract the features efficiently because the efficient features describe well the image and they are used efficiently in matching of the images to get robust retrieval. This issue is the main inspiration for this thesis to develop a hybrid CBIR with high performance in the spatial and frequency domains. We propose various approaches, in which different techniques are fused to extract the statistical color and texture features efficiently in both domains. In spatial domain, the statistical color histogram features are computed using the pixel distribution of the Laplacian filtered sharpened images based on the different quantization schemes. However color histogram does not provide the spatial information. The solution is by using the histogram refinement method in which the statistical features of the regions in histogram bins of the filtered image are extracted but it leads to high computational cost, which is reduced by dividing the image into the sub-blocks of different sizes, to extract the color and texture features. To improve further the performance, color and texture features are combined using sub-blocks due to the less computational cos

    Summative Stereoscopic Image Compression using Arithmetic Coding

    Get PDF
    Image compression targets at plummeting the amount of bits required for image representation for save storage space and speed up the transmission over network. The reduction of size helps to store more images in the disk and take less transfer time in the data network. Stereoscopic image refers to a three dimensional (3D) image that is perceived by the human brain as the transformation of two images that is being sent to the left and right human eyes with distinct phases. However, storing of these images takes twice space than a single image and hence the motivation for this novel approach called Summative Stereoscopic Image Compression using Arithmetic Coding (S2ICAC) where the difference and average of these stereo pair images are calculated, quantized in the case of lossy approach and unquantized in the case of lossless approach, and arithmetic coding is applied. The experimental result analysis indicates that the proposed method achieves high compression ratio and high PSNR value. The proposed method is also compared with JPEG 2000 Position Based Coding Scheme(JPEG 2000 PBCS) and Stereoscopic Image Compression using Huffman Coding (SICHC). From the experimental analysis, it is observed that S2ICAC outperforms JPEG 2000 PBCS as well as SICHC

    Effects of discrete wavelet compression on automated mammographic shape recognition

    Full text link
    At present early detection is critical for the cure of breast cancer. Mammography is a breast screening technique which can detect breast cancer at the earliest possible stage. Mammographic lesions are typically classified into three shape classes, namely round, nodular and stellate. Presently this classification is done by experienced radiologists. In order to increase the speed and decrease the cost of diagnosis, automated recognition systems are being developed. This study analyses an automated classification procedure and its sensitivity to wavelet based image compression; In this study, the mammographic shape images are compressed using discrete wavelet compression and then classified using statistical classification methods. First, one dimensional compression is done on the radial distance measure and the shape features are extracted. Second, linear discriminant analysis is used to compute the weightings of the features. Third, a minimum distance Euclidean classifier and the leave-one-out test method is used for classification. Lastly, a two dimensional compression is performed on the images, and the above process of feature extraction and classification is repeated. The results are compared with those obtained with uncompressed mammographic images
    corecore