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Abstract. Practical use of SURF feature points in large-scale indexing
and retrieval engines requires an efficient means for storing and decoding
these features. This paper investigates several methods for compression
and storage of SURF feature points, considering both storage consumption
and disk-read efficiency. We compare each scheme with a baseline plain-
text encoding scheme as used by many existing SURF implementations.
Our final proposed scheme significantly reduces both the time required
to load and decode feature points, and the space required to store them
on disk.
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1 Introduction

Speeded up robust features (SURF) based descriptors [1] have become very
popular in modern computer vision and multimedia information retrieval engines,
primarily due to their exceptional performance and a fast method for detection
and extraction. For large datasets, SURF features can be computed offline and
stored alongside the images they represent, allowing matching to be performed
without the need to extract features each time an image is visited.

A linear search for an object in a database of feature points requires, for each
image, three operations: 1) loading all feature points for the image from the
disk; 2) decoding these feature points; and 3) computing the distance between
all feature points in the query object to all feature points in the target image.
Euclidean distance is generally used in practice, and can be implemented using
a fixed number of primitive (add, subtract, square) machine operations. As
such, the time required to search a large dataset can be dominated by the time
spent loading and decoding feature points if the amount of memory required to
represent these feature points exceeds the memory capacity of the hardware.

Storage space for feature points also requires consideration. Typical image
files, efficiently compressed, require only a few tens or hundreds of kilobytes of
disk storage. Depending on the image and parameters specified for the feature
extraction algorithm, each image can produce hundreds or even thousands of
feature points. A näıve scheme for storing these feature points (e.g. XML) could
require significantly storage space than the image file itself. Indeed, one XML
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based storage scheme we investigated required over 13GB to store the feature
points for 10,000 images; the images required only a single gigabyte of storage.

Visual feature vector compression has previously been considered by Takacs
et al. [15], who used entropy coding of quantized feature vectors to reduce the
size of feature vectors to approximately 5 bits per coefficient, in their mobile
augmented reality system. They subsequently proposed transform coding of
SURF and SIFT [11] components using the Karhunen-Loeve transform, followed
by quantization and entropy coding, achieving very high compression rates
of approximately 2 bits per coefficient [3]. They later achieved even higher
compression rates using a compressed histogram of gradients descriptor [2].

While other authors have proposed very effective schemes for compressing
SURF feature vectors, these works were focused on low-bitrate descriptors; the
objective of this paper is to devise a storage scheme for SURF feature points that
is efficient in terms of both storage space and time required to read and decode
the features from a disk. This compression scheme, like the scheme used by Takacs
et al. [15], is based on quantization and entropy coding of the coefficients. While
Takacs et al. simply noted the use of entropy coded SURF features as part of a
larger system, we present a more in-depth discussion on how to implement such
an encoding scheme, and an analysis of the effect of quantization on the distance
between pairs of descriptors. We also present an empirical analysis of decode
time, storage requirements and accuracy using the BelgaLogos dataset [9].

It is worth mentioning that exhaustive search is usually impractical for large-
scale online image search systems where the query images are not known a-priori.
Visual bag of words (BoW) and bag-of-features (BoF) based techniques (e.g. [13,
12, 6]) are generally superior for these systems, in terms of both query time and
storage requirements, since only vectors of codewords need to be retained for
each image, rather than the individual descriptors. Such systems can, in addition,
benefit from BoF based compression techniques such that proposed by Jègou et
al. [8] to reduce the dimensionality of the codeword vectors, allowing for very
compact image descriptors. Nevertheless, storing the individual descriptors is still
important for a variety of applications. Search and indexing systems may benefit
from storing the descriptors during an intermediate step in the indexing chain,
to be processed at a later stage by other modules like visual word extraction or
offline indexing. Mobile applications may be required to transmit descriptors over
low-bandwidth connections for cloud based matching and detection. Retaining
individual descriptors can also be useful for establishing the precise location of
matched objects in images.

The remainder of the paper is organized as follows. Section 2 gives an overview
the composition of a SURF feature point and introduces notation for the compo-
nents. Section 3 describes the dataset we used for analysis and experimentation.
Section 4 examines the effect of quantizing SURF coefficients on the square
distance between pairs of coefficients. Section 5 discusses quantization strategies,
and Section 6 discusses entropy coding of the quantized coefficients. Section 7
evaluates the proposed encoding schemes, and Section 8 concludes the paper.



2 SURF Feature Points

A SURF feature point f is composed of the (x, y) location of the point, a scale
value s, an orientation value θ, a Laplacian value l ∈ {−1,+1}, and 64 coefficients
that make up the descriptor. The coefficients are summations over the horizontal
and vertical Haar wavelet filter responses in the 4× 4 = 16 blocks surrounding
the feature point. There are four coefficients extracted for each block: f1 =

∑
dx,

f2 =
∑
dy, f3 =

∑
|dx|, and f4 =

∑
|dy|, where dx and dy are the horizontal

and vertical filter responses at each pixel inside a block, and the summations
apply over all pixels in the block.

3 BelgaLogos Dataset

The BelgaLogos dataset [9] is composed of 10,000 images manually annotated
for 26 logos and trademarks, with 55 images from the dataset provided as query
images for these logos. This makes it ideal for evaluating image and feature
point matching techniques. We extracted a total of 5,966,580 feature points from
these images1, a mean of 596.7 per image. The range, interquartile range, mean,
median, and standard deviation of the number of feature points per image are:

min. Q.1 median mean Q.3 max. sd.

0 333 517 596.7 756 3938 377.8

The minimum of zero in the above is an outlier – only one image has zero
feature points associated with it.

To perform a statistical analysis of the feature points, we randomly sampled
100,000 feature points from the 5,966,580 in the dataset. Figure 1 shows the
distribution of feature point components f1 . . . f4 for all feature points in the
sample set. The f1 and f2 components for the sample are in the range [−0.5, 0.5];
the f3 and f4 are in the range [0, 1]. The observed ranges and mean values of the
coefficients are:

f1 f2 f3 f4

mean -0.0000235 0.0213 0.109 0.154
min -0.3709430 -0.408639 0.0 0.0
max 0.4143080 0.460317 0.64189 0.74343

The orientation value are in the interval [0, 2π], with modes {0, π2 , π,
3π
2 , 2π}.

The scale values in the sample set are in the interval [1.601, 22.680].

1 The number of features extracted is governed by the Hessian threshold, which we set
to 0.001.
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Fig. 1. Histograms showing the distribution of feature point descriptor coefficients
(f1, f2, f3, f4)

4 Coefficient Precision

Matching comparable SURF features (i.e. those with similar scales and Laplacian
values) requires computing the Euclidean distance between the coefficient vectors
for pairs of descriptors. Common criteria for deciding if two feature vectors
match are [14]: 1) comparing against a simple threshold, 2) finding the k nearest
neighbors feature vectors and comparing their distance against a threshold, and
3) comparing the the ratio between the nearest and second nearest neighbors
(the nearest neighbor distance ratio) with a threshold. Reducing the precision of
the SURF coefficients allows them to be stored using less bits. Ideally, we would
like to reduce the precision so that it does not have a significant affect on the
distance between any two vectors. Here we look at the effect of reducing the
precision of the coefficients on the distance computation.

Let u and v be the coefficient vectors for two SURF feature points, with
v = (v1, v2, . . . , v64), and u = (u1, u2, . . . , u64). The square distance between
these vectors is:

δ2(u,v) =

64∑
i=1

(ui − vi)2. (1)

Any loss in precision can introduce a small error component at each value in u
and v. Let the maximum error introduced by encoding the coefficients ui and
vi be equal to ε. In the worst case, this error value can affect each term in the



distance formula by 2ε, giving a square distance of:

δ2(u,v) =

64∑
i=1

(ui − vi + 2ε)2. (2)

Substituting ∆i = ui − vi in the above and multiplying out gives:

δ2(u,v) =

64∑
i=1

∆2
i +

[
4ε

64∑
i=1

∆i + 256ε2

]
. (3)

The first part is just the square distance, so the worst-case error in the square
distance computation that results from an error ε in each component is:

Eworst-case(ε,∆) = 4ε
64∑
i=1

∆i + 256ε2. (4)

Recall that the SURF coefficients f1 and f2 are in the interval [−0.5, 0.5] and the
coefficients f3 and f4 are in the range [0, 1]. The maximum distance between any
two SURF coefficients is therefore 1, and so the largest value of the summation
in the above is 64 (since, max

∑64
i ∆i = 64). Substituting this into Eq. (4) gives

a general worst-case error:

Eworst-case(ε) = 256× ε(ε+ 1). (5)

To keep the square distance error δ2ε below some value, we simply choose sufficient
digits of precision so that ε satisfies:

256ε2 + 256ε < δ2ε . (6)

The maximum allowable value of ε for a given δ2ε can be found by solving the
above quadratic inequality and inferring the required precision. The worst case
square error in terms of the number of bits of binary precision of each component
can be derived by substituting the machine unit roundoff error ε = 2−p/2 for p
bits of precision in Eq. (5).

Eworst-case(p) = 256× 2−p

2

(
2−p

2
+ 1

)
(7)

= 26−2p + 27−p. (8)

Usually the value of k =
∑64
i=1∆i from Eq. (4) will be significantly less than

its worst-case value of 64, which only occurs when the distance between each
of the individual components is maximal. It is clear from Figure 1 that the
coefficient values are usually close to zero, and so the expected value of k is
small. Moreover, the threshold on the Euclidean distance δ(u,v) used to match
SURF features is usually low. Therefore, although in the worst-case k = 64, in
the average case – and for cases that will affect the outcome of a whether two
are judged to match – k � 64.
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Fig. 2. Histogram (left) showing the distribution of k =
∑64

i=1∆i for a sample of 50,000
pairs of feature points. Q-Q plot (right) showing that it is reasonable to assume that k
is normally distributed.

Figure 2 (left) shows the distribution of k for a random sample of 50,000 pairs
of feature points, and Fig. 2 (right) shows the normal Q-Q plot of 5,000 of these
values. It is clear from these figures that the distribution of the sample is very
close to normal, and it is reasonable to assume that the value of k in general
is also normally distributed. The mean and standard deviation were found to
be zero (±0.0077 with 95% confidence) and 0.88 (c.i. (0.875, 0.887) with 95%
confidence). Assuming that the sample is representative, this implies that 75% of
all values of k are in the (−1,+1) interval, 97.6% are in the (−2,+2) interval, and
99.9% are in the (−3,+3) interval. The upper bound for error given by k = 64 in
Eq. 8 is therefore unrealistically high in practice; setting k = 4 gives a practical
upper bound on the error, while setting k = 1 gives the square distance error in
the majority of cases. The general formula for square distance error in terms of k
given p bits of precision is:

E(p, k) = 26−2p + 21−pk. (9)

Table 1 shows the error values for varying amounts of machine precision and
values of k. The first column is the number of bits p of machine precision; the
second is the roundoff error for p bits of precision; the remaining columns show
the effect of this error on the square distance in the worst and typical cases. The
last row, p = 23, corresponds to IEEE-754 single precision floating point numbers.
The table shows that the error incurred by encoding each coefficient using 16
bits of precision is likely to be acceptable. The error incurred by using 8 bits of
precision may also be acceptable, and is worth investigating.

5 Quantizing Coefficients

The discussion in the previous section on the effect of rounding error on the
outcome of a distance calculation indicates that encoding the coefficients with 16



Table 1. Worst-case and typical error values for varying amounts of machine precision

p ε = 2−p/2 k = 1 k = 2 k = 3 k = 4 Eworst-case

7 0.00390625 0.01953125 0.03515625 0.05078125 0.06640625 1.00390625
8 0.00195312 0.00878906 0.01660156 0.02441406 0.03222656 0.50097656
9 0.00097656 0.00415039 0.00805664 0.01196289 0.01586914 0.25024414
10 0.00048828 0.00201416 0.00396729 0.00592041 0.00787354 0.12506104
12 0.00012207 0.00049210 0.00098038 0.00146866 0.00195694 0.03125381
14 0.00003052 0.00012231 0.00024438 0.00036645 0.00048852 0.00781274
16 0.00000763 0.00003053 0.00006105 0.00009157 0.00012209 0.00195314
18 0.00000191 0.00000763 0.00001526 0.00002289 0.00003052 0.00048828
20 0.00000048 0.00000191 0.00000381 0.00000572 0.00000763 0.00012207
22 0.00000012 0.00000048 0.00000095 0.00000143 0.00000191 0.00003052
23 0.00000006 0.00000024 0.00000048 0.00000072 0.00000095 0.00001526

or possibly even 8 bits of precision should not significantly affect the outcome.
Since all the coefficients f have a range r = |max f −min f | ≤ 1, they can be
remapped so that they lie in the interval [0, 1]. We therefore only need to encode
the significand (mantissa) of the floating point number – all the bits can be used
for precision.

A rigorous description of the quantization scheme requires us to define round-
ing and quantization functions. The rounding function r : R → Z returns the
nearest integer to x, rounding ties away from zero:

r(x) =

{
bx+ 0.5c x ≥ 0

dx− 0.5e x < 0.
(10)

The clamp function c : R→ R limits the value of x to a given interval [x1, x2]:

c(x;x1, x2) = max{min{x, x2}, x1}. (11)

The linear remapping function m : R→ R maps values that lie in the interval
[x1, x2] to values in the interval [y1, y2] as follows:

m(x;x1, x2, y1, y2) = y1 +
(y2 − y1)(x− x1)

x2 − x1
. (12)

Using the above definitions, we can define the p bit quantization function qp : R→
Z, which maps a real value x ∈ [x1, x2] to a p bit integer representation:

qp(x;x1, x2) = r(m(c(x;x1, x2);x1, x2, 0, 2
p − 1)). (13)

The corresponding p bit de-quantization function dp : Z → R returns a real
number that approximates x ∈ [x1, x2]:

dp(y;x1, x2) = c(m(y; 0, 2p − 1, x1, x2);x1, x2). (14)



5.1 8 and 16-bit Encoding

We can define a 16-bit encoded point using the following C structure (a similar
structure can be defined for 8-bit coding, using instead 8 bits per coefficient):

struct encoded_point {
uint16_t x, y, scale;
uint8_t orientation, laplacian;
uint16_t coefficients[64];

};

Assuming images are never larger than 65535× 65535, the values x and y in
the above can be assigned from the unencoded values by simple rounding:

x′ = r(x) (15)

y′ = r(y). (16)

Assuming that scale values greater than 30 are sufficiently rare that they can be
safely approximated by a value of exactly 30, then we can assign the scale value
in the above structure as:

s′ = q16(s; 0, 30). (17)

The orientation parameter can be encoded to 8 bits, assuming that an error of
7/10 of a degree can be tolerated in practice.

θ′ = q8(θ; 0, 2π) (18)

The Laplacian parameter could be encoded in a single bit, but we use 8 bits so
that the structure is aligned to 16-bit boundaries in memory. The 16 blocks of
coefficients f1 . . . f4 are encoded as:

f ′1 = q16(f1;−0.5,+0.5) (19)

f ′2 = q16(f2;−0.5,+0.5) (20)

f ′3 = q16(f3; 0, 1) (21)

f ′4 = q16(f4; 0, 1). (22)

The final 16-bit encoding requires 136 bytes per SURF point, before applying
any compression algorithms. For the 8-bit quantization, the q8 quantizer is used
above. The 8-bit encoding requires 72 bytes per SURF point.

6 Compression

The symbol entropy values H(f) for each of the four Haar coefficients f1 . . . f4
for the BelgaLogos dataset sample were found to be:

f1 f2 f3 f4 mean

8-bit 5.64 6.32 6.09 6.60 6.16
16-bit 13.62 14.30 14.07 14.59 14.14



Shannon’s source coding theorem for symbol codes bounds the compression
rate that can be achieved using an optimal symbol coding algorithm between H(f)
and H(f) + 1, so based on the mean entropies above we can expect compressing
the 8-bit encoded coefficients using an optimal symbol coding algorithm to reduce
the number of bits to required to encode a coefficient by between 0.84 and 1.84
bits per symbol. This translates reducing amount of space required to store the
coefficients by between 10 and 23%.

To encode 8-bit coefficients, we first computed four empirical probability
distributions for the quantized coefficients f1 . . . f4 by sampling N = 100,000
points from the BelgaLogos dataset. These four sample distributions were then
smoothed by convolution with a width 5 Hamming window to give the empirical
distributions Pe(x|n), n ∈ {1 . . . 4}, x ∈ {0 . . . 255}. The empirical distributions
were then used to generate prefix codes Cn(x) for each the Haar coefficients
using the Huffman algorithm [5]. To minimize any wasted bits due to a block of
Huffman codes not being a multiple of 8 bits, we encoded all Haar coefficients of
the same type (e.g. f1) together in large blocks for all SURF points in a file.

7 Evaluation

To evaluate the effect of quantization on the outcome of a matching experiment,
we ran a linear search using the internal query set (55 query images) in the
BelgaLogos set for the different encoding strategies. Table 2 summarizes the
results of the evaluation. In the table, the column marked ‘text/xml’ refers to an
XML-based encoding scheme; ‘text/plain’ refers to the text encoding scheme used
by the OpenSURF2 library; ‘float/32’ refers to storing the coefficients as 32-bit
IEEE-754 floating point numbers; ‘int/16’ and ‘int/8’ refer to simple quantization
of the coefficients to 16 and 8 bits as described above; ‘huffman/8’ refers to
entropy coded 8-bit coefficients. The total query times shown are for all 55 images
in the internal query set3.

There is no change in mean average precision (MAP) when using 16-bit
precision to encode the coefficients. There is a slight increase in MAP when
using 8-bit coefficients. This increase can be attributed to the clustering effect of
quantizing the features, which makes them comparable with visual words.

The raw binary encoding schemes gave the fastest decode times, all producing
a roughly equal query time of ∼34 seconds per query on our test machine (34
seconds to match a set of query feature points against all feature points in the
BelgaLogos set). Huffman encoding of the coefficients more than doubles the
decode time to 75 seconds. Both raw and encoded coefficients are significantly
faster than using XML encoded features, giving speedups of 97.6% and 94.7%.
Compared with the plain text format generated by OpenSURF, the speedups
are 88% for raw features and 74.2% for encoded features.

2 http://www.chrisevansdev.com/computer-vision-opensurf.html
3 The test machine used was an Intel R© quad core Xeon R© 1.86GHz CPU (E5320) with

4GB RAM running Linux kernel 2.6.31-19 and using an ext4 filesystem.



Table 2. Summary of encoding method performance

text/xml text/plain float/32 int/16 int/8 huffman/8

Dataset size (MB) 13172 3683 1590 795 430 346
Mean file size (KB) 1349 377 163 81 44 35
Total query time (min) 1305 267 32 32 32 69
Mean query time (sec) 1422 291 34 34 34 75
Mean average precision (%) 8.53 8.53 8.53 8.53 8.74 8.74

Entropy coding of the 8-bit coefficients gives the greatest space efficiency,
reducing the dataset size by 97.4% compared to XML encoded features, by 90.6%
compared to plain text encoded features, and by 78.2% compared to binary
coding with 32-bit floating point numbers.

7.1 Comparison with PCA Compression

Correlation among the Haar coefficients within descriptors implies a more com-
pact representation may be obtained using principal component analysis (PCA)
to reduce the dimensionality of the feature vectors without loss of important
information. This approach is similar to the PCA-SIFT technique described
by Ke and Sukthankar [10], except that here we focus on matching using the
reconstructed descriptors rather than in the transform domain. The following
compares several PCA-based compression schemes with the simple quantization
and entropy coding schemes outlined above in terms of storage size, decoding
speed, and matching accuracy on the BelgaLogos dataset.

We used 100,000 randomly sampled feature points to derive the PCA eigenvec-
tor transform matrix Φ. We used the same sample to derive the empirical means
µ = (µ1, . . . , µ64) of the 64 coefficients, and the PCA transform of the sample to
derive the empirical range [αi, βi] of the transformed coefficients. Dimensionality
reduction of a coefficient vector v is performed by centering around the mean
and multiplying by the transform matrix: ΦT(v − µ), then truncating to the
desired number of coefficients. Each retained coefficient vi is then quantized to 8
bits using Eq.(13) with the empirical minimum αi and maximum βi. Decoding a
quantized coefficient vector u is performed similarly: by de-quantizing the stored
coefficients and performing the inverse transform Φu + µ.

Table 3 compares the performance of PCA compressed descriptors with 8-bit
quantization and entropy coding based descriptors on the BelgaLogos dataset.
The column heading ‘PCA/50’ denotes a 50 element PCA compressed descriptor
quantized to use 8-bits per element. It is clear from the table that the 50 element
PCA descriptor performs on par with 8-bit entropy coded coefficients in terms of
descriptor size and decode time, but suffers a small loss in matching precision.
The 40 and 30 element PCA descriptors are both smaller and faster than entropy
coded coefficients, but the sacrificed precision reduces matching accuracy. The
20 element descriptor is almost half the size of the entropy coded descriptor, but



Table 3. Comparison of 8-bit PCA compression with quantization and entropy coding

PCA/50 PCA/40 PCA/30 PCA/20 int/8 huffman/8

Dataset size (MB) 351 294 237 180 430 346
Mean file size (KB) 36 30 24 18 44 35
Total query time (min) 61 53 47 41 32 69
Mean query time (sec) 66 58 51 44 34 75
Mean average precision (%) 8.18 6.94 5.47 2.35 8.74 8.74

suffers an acute reduction in accuracy. Despite their smaller size, none of the
PCA-based descriptors match the decode time of the simple 8-bit scheme.

8 Conclusion

We have presented a simple, easy to implement, scheme for quantization and
entropy coding of SURF features that significantly reduces both the space required
to store these features and the time required to load and decode them. The
experiments show that careful quantization of the feature points can be performed
without significantly effecting matching performance. Quantization of coefficients
to 8 bits also opens the door to an integer only implementation of feature
point distances, which may improve performance, particularly for embedded
applications. Entropy coding reduces the storage requirements by 20% over raw
8-bit coefficients, but doubles the decoding time. This modest space improvement
rarely justifies the additional complexity and decode time; we anticipate that
simple 8-bit quantization may give the best balance between decode time and
storage requirements for many applications. If space is at a premium, transform
coding can be applied to de-correlate the coefficients prior to quantization at the
cost of reduced matching accuracy and increased decode times.

More powerful compression techniques like product quantization [7] are ca-
pable of achieving an even more compact representation. For example, [4] used
this technique to compress SURF feature vectors to around half the size of the
Huffman encoded vectors. This approach requires precomputing a codebook using
a VQ algorithm (e.g. Lloyd’s algorithm), which may take significant time and
can potentially produce suboptimal results. The simple quantization approach
presented here can be combined with product quantization to reduce the memory
footprint of the codebook by a factor of four without significant effect on recon-
struction. Codebooks can therefore be designed with four times more cluster
centroids and still fit in the same amount of memory, which may be important
for performance when the codebook is required to fit in cache memory [7].

An implementation of our SURF encoding schemes is available online and can
be downloaded from: http://kspace.cdvp.dcu.ie/public/surfenc.
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