165 research outputs found

    Non-contractive logics, paradoxes, and multiplicative quantifiers

    Get PDF
    The paper investigates from a proof-theoretic perspective various non-contractive logical systems, which circumvent logical and semantic paradoxes. Until recently, such systems only displayed additive quantifiers (Grišin and Cantini). Systems with multiplicative quantifiers were proposed in the 2010s (Zardini), but they turned out to be inconsistent with the naive rules for truth or comprehension. We start by presenting a first-order system for disquotational truth with additive quantifiers and compare it with Grišin set theory. We then analyze the reasons behind the inconsistency phenomenon affecting multiplicative quantifiers. After interpreting the exponentials in affine logic as vacuous quantifiers, we show how such a logic can be simulated within a truth-free fragment of a system with multiplicative quantifiers. Finally, we establish that the logic for these multiplicative quantifiers (but without disquotational truth) is consistent, by proving that an infinitary version of the cut rule can be eliminated. This paves the way to a syntactic approach to the proof theory of infinitary logic with infinite sequents

    Contraction, Infinitary Quantifiers, and Omega Paradoxes

    Get PDF
    Our main goal is to investigate whether the infinitary rules for the quantifiers endorsed by Elia Zardini in a recent paper are plausible. First, we will argue that they are problematic in several ways, especially due to their infinitary features. Secondly, we will show that even if these worries are somehow dealt with, there is another serious issue with them. They produce a truth-theoretic paradox that does not involve the structural rules of contraction.Fil: Da Re, Bruno. Instituto de Investigaciones Filosóficas - Sadaf; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rosenblatt, Lucas Daniel. Instituto de Investigaciones Filosóficas - Sadaf; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    From Double Pushout Grammars to Hypergraph Lambek Grammars With and Without Exponential Modality

    Full text link
    We study how to relate well-known hypergraph grammars based on the double pushout (DPO) approach and grammars over the hypergraph Lambek calculus HL (called HL-grammars). It turns out that DPO rules can be naturally encoded by types of HL using methods similar to those used by Kanazawa for multiplicative-exponential linear logic. In order to generalize his reasonings we extend the hypergraph Lambek calculus by adding the exponential modality, which results in a new calculus HMEL0; then we prove that any DPO grammar can be converted into an equivalent HMEL0-grammar. We also define the conjunctive Kleene star, which behaves similarly to this exponential modality, and establish a similar result. If we add neither the exponential modality nor the conjunctive Kleene star to HL, then we can still use the same encoding and show that any DPO grammar with a linear restriction on the length of derivations can be converted into an equivalent HL-grammar.Comment: In Proceedings TERMGRAPH 2022, arXiv:2303.1421

    A logical approach to fuzzy truth hedges

    Get PDF
    The starting point of this paper are the works of Hájek and Vychodil on the axiomatization of truth-stressing and-depressing hedges as expansions of Hájek's BL logic by new unary connectives. They showed that their logics are chain-complete, but standard completeness was only proved for the expansions over Gödel logic. We propose weaker axiomatizations over an arbitrary core fuzzy logic which have two main advantages: (i) they preserve the standard completeness properties of the original logic and (ii) any subdiagonal (resp. superdiagonal) non-decreasing function on [0, 1] preserving 0 and 1 is a sound interpretation of the truth-stresser (resp. depresser) connectives. Hence, these logics accommodate most of the truth hedge functions used in the literature about of fuzzy logic in a broader sense. © 2013 Elsevier Inc. All rights reserved.The authors acknowledge partial support of the MICINN projects TASSAT (TIN2010-20967-C04-01) and ARINF (TIN2009-14704-C03-03), and the FP7-PEOPLE-2009-IRSES project MaToMUVI (PIRSES-GA-2009-247584). Carles Noguera also acknowledges support of the research contract “Juan de la Cierva” JCI-2009-05453.Peer Reviewe

    Through and beyond classicality: analyticity, embeddings, infinity

    Get PDF
    Structural proof theory deals with formal representation of proofs and with the investigation of their properties. This thesis provides an analysis of various non-classical logical systems using proof-theoretic methods. The approach consists in the formulation of analytic calculi for these logics which are then used in order to study their metalogical properties. A specific attention is devoted to studying the connections between classical and non-classical reasoning. In particular, the use of analytic sequent calculi allows one to regain desirable structural properties which are lost in non-classical contexts. In this sense, proof-theoretic versions of embeddings between non-classical logics - both finitary and infinitary - prove to be a useful tool insofar as they build a bridge between different logical regions

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    A Natural Proof System for Natural Language

    Get PDF
    corecore