

Tilburg University

A Natural Proof System for Natural Language

Abzianidze, Lasha

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Abzianidze, L. (2017). A Natural Proof System for Natural Language. Ridderprint.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/ccf0524f-ca61-4fe2-afaa-5e51a6eb607f

In the �tle of this thesis, a proof system refers to a system that carries out formal proofs
(e.g., of theorems). Logicians would interpret a system as a symbolic calculus while com-
puter scien�sts might understand it as a computer program. Both interpreta�ons are fine
for the current purpose as the thesis develops a proof calculi and a computer program
based on it. What makes the proof system natural is that it operates on formulas with
a natural appearance, i.e. resembling natural language phrases. This is contrasted to the
artificial formulas logicians usually use. Put differently, the natural proof system is
designed for a natural logic, a logic that has formulas similar to natural language sentenc-
es. The natural proof system represents a further development of an analy�c tableau
system for natural logic (Muskens, 2010). The implementa�on of the system acts as a
theorem prover for wide-coverage natural language sentences. For instance, it can prove
that not all PhD theses are interesting entails some dissertations are not interesting. On
certain textual entailment datasets, the prover achieves results compe��ve to the
state-of-the-art.

ISBN 978-94-6299-494-2

Lasha Abzianidze

A NATURAL PROOF SYSTEM
FOR NATURAL LANGUAGE

L
a
sha

 A
bzia

nidze
A
 N

a
tura

l P
roof S

ystem
 for N

a
tura

l L
a
ngua

ge

T

s

s

s

s

s

s
pp

pp

pp

vp
vp

n

n

n

np

np

T

T

T

T

T

F

F

F

x

e
e

e

ee

e

t

t

t

t

t
t

t

y

y

y
z

z

z

z
z

x

x

x

λλ

λ

λ

λ
β

β

γ

γ

γ

γ

γ

α

α

α

α
β

β
γ

γ

γ

γ

γ

α

α

α

α

x

e
e

e

e e

e

t

t

t

t

t
t

t

y

y

yz
z

z

z
z

x

x

x

λ

λ

λ

λ

λ

s

s

s

s

s

s
pp

pp

pp

vp

vp

n

n

n

np

np

T
T

T

T

T

F

F

F

T

A Natural Proof System
for

Natural Language

ISBN 978-94-6299-494-2

cb 2016 by Lasha Abzianidze

Cover & inner design by Lasha Abzianidze
Used item: leaf1 font by Rika Kawamoto

Printed and bound by Ridderprint BV, Ridderkerk

A Natural Proof System
for

Natural Language

Proefschrift

ter verkrijging van de graad van doctor aan Tilburg University op gezag van
de rector magnificus, prof.dr. E.H.L. Aarts, in het openbaar te verdedigen ten
overstaan van een door het college voor promoties aangewezen commissie in
de aula van de Universiteit op vrijdag 20 januari 2017 om 14.00 uur door

Lasha Abzianidze

geboren op 24 januari 1987 te Tbilisi, Georgië

Promotiecommissie

Promotor Prof. dr. J.M. Sprenger

Copromotor Dr. R.A. Muskens

Overige leden Prof. dr. Ph. de Groote
Dr. R. Moot
Prof. dr. L.S. Moss
Prof. dr. Y. Winter

Acknowledgments
During working on this dissertation, there were many people who helped and supported
me, both inside and outside the academic life. Here I would like to thank them.

First, my sincere thanks go to my supervisors Jan and Reinhard. I learned a lot from
them during this period. Their joint feedback and guidance were vital for my research.
This dissertation would not have been possible without their input. Many thanks go to
Reinhard who believed that I was a suitable candidate for his innovative research program.
He continuously provided me with crucial advice and suggestions during the research. I
thank him for believing in me and giving me a freedom to choose a more exciting and
demanding research direction towards wide-coverage semantics. Jan gave me valuable
and needed support in the later stage of the project. His comments and suggestions have
significantly improved the presentation in the thesis. I also benefited from his advice
about job applications. I am grateful to him.

I feel very lucky to have so much expertise and leading researchers of my field on the
committee. I am thankful to Philippe de Groote, Richard Moot, Larry Moss and Yoad
Winter for that. Additionally, I am indebted to Philippe for his support during my LCT
master study, and I want express my gratitude to Larry whose comments and opinion on
my work has been inspiring.

Special thanks go to my office mate Janine and my close friend Irakli who agreed to
be my paranymphs. I also thank Janine for preparing delicious cakes and sweets for me.
Irakli has been a friend I can rely on any time. I appreciate it.

I acknowledge the valuable benefit and feedback I got from participating in several
ESSLLI schools, attending and presenting at several workshops and conferences, among
them LENLS, WoLLIC, EMNLP, TbiLLC, Amsterdam Colloquium, ACL and *SEM.
The local TiLPS seminars were very helpful, where I presented early results of my re-
search and widened my knowledge of logic, language and philosophy.

My working environment and stay in Tilburg were enjoyable due to my colleagues at
TiLPS: Alessandra, Alfred, Barbara, Bart, Chiara, Colin, Dominik, Georgi, Jan, Janine,
Jasmina, Jun, Silvia, Machteld, Matteo, Michal, Naftali, Reinhard, and Thomas. Thank
you guys; with you I enjoyed playing footy in the corridor, having drinks, dinners or
parties, watching football, going on TiLPS excursions, or simply spending time together.
I also want to thank my close friend Sandro, who was also doing his PhD meanwhile. The
(skype) conversations with him were helpful, encouraging and entertaining for me.

Many thanks go to my family on the other side of the continent. Especially I want to
thank my mother, who always did her best to support and create conditions for me to feel
comfortable and to concentrate on my studies. I am deeply grateful to her for everything.

Finally and mostly, I would like to thank mu kallis Eleri for her continuous and endless
support, patience and unconditional love during this period. She bared me when I was
obsessed with research and writing. Her help and care have been indispensable for me.
I cannot thank her enough.

v

vi

Abstract

We humans easily understand semantics of natural language text and make inferences
based on it. But how can we make machines reason and carry out inferences on the text?
The question represents a crucial problem for several research fields and is at the heart of
the current thesis.

One of the most intuitive approaches to model reasoning in natural language is to
translate semantics of linguistic expressions into some formal logic that comes with an
automated inference procedure. Unfortunately, designing such automatized translation
turns out to be almost as hard as the initial problem of reasoning.

In this thesis, following Muskens (2010), we develop a model for natural reasoning
that takes a proof theoretic stand. Instead of a heavy translation procedure, we opt for
a light-weight one. Logical forms obtained after the translation are natural in the sense
that they come close to the original linguistic expressions. But at the same time, they
represent terms of higher-order logic. In order to reason over such logical forms, we
extend a tableau proof system for type theory by Muskens. An obtained natural tableau
system employs inference rules specially tailored for various linguistic constructions.

Since we employ the logical forms close to linguistic expressions, our approach con-
tributes to the project of natural logic. Put differently, we employ the higher-order logic
disguised as natural logic. Due to this hybrid nature, the proof system can carry out both
shallow and deep reasoning over multiple-premised arguments. While doing so, a main
vehicle for shallow reasoning is monotonicity calculus.

In order to evaluate the natural proof system, we automatize it as a theorem prover
for wide-coverage natural language text. In particular, first the logical forms are obtained
from syntactic trees of linguistic expressions, and then they are processed by the prover.
Despite its simple architecture, on certain textual entailment benchmarks the prover ob-
tains high competitive results for both shallow and deep reasoning. Notice that this is
done while it employs only WordNet as a knowledge base. The theorem prover also rep-
resents the first wide-coverage system for natural logic which can reason over multiple
propositions at the same time.

The thesis makes three major contributions. First, it significantly extends the natu-
ral tableau system for wide-coverage natural reasoning. After extending the type system
and the format of tableau entries (Chapter 2), we collect a plethora of inference rules for
a wide range of constructions (Chapter 4). Second, the thesis proposes a procedure to
obtain the logical forms from syntactic derivations of linguistic expressions (Chapter 3).
The procedure is anticipated as a useful tool for wide-coverage compositional semantic
analysis. Last, based on the natural tableau system, the theorem prover for natural lan-
guage is implemented (Chapter 5,6). The prover represents a state-of-the-art system of
natural logic.

vii

viii

Contents

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 Natural language inference . 1
1.2 Overview of approaches to textual entailment 4
1.3 Natural logic and monotonicity . 7
1.4 Natural logic approach to textual entailment 10
1.5 Overview of what follows . 13

2 Natural Tableau for Natural Reasoning 15
2.0 Preliminaries . 15

2.0.1 Functional type theory . 16
2.0.2 Semantic tableau method . 20

2.1 An analytic tableau system for natural logic 23
2.2 Extending the type system . 32
2.3 Extending the tableau entries . 35

2.3.1 Event semantics and LLFs . 36
2.3.2 Modifier list and event semantics 38

2.4 Extending the inventory of rules . 41
2.4.1 Rules for modifiers and the memory list 43
2.4.2 Rules for semantic exclusion and exhaustion 46

2.5 Conclusion . 51
Appendix A . 53

3 Lambda Logical Forms for Wide-Coverage Text 55
3.1 Combinatory Categorial Grammar . 56
3.2 Wide-coverage CCG parsers . 59

3.2.1 The C&C tools . 59
3.2.2 EasyCCG . 62

3.3 From CCG derivations to CCG terms . 65
3.4 Correcting CCG terms . 69

3.4.1 Shortcomings of the CCG derivations 69
3.4.2 Simplifying CCG terms . 72
3.4.3 Explaining the type-changing rules 73
3.4.4 Fixing wrong analyses . 77

ix

x CONTENTS

3.5 Type-raising quantifiers . 79
3.6 Conclusion . 85
Appendix B . 87

4 Inventory of Tableau Rules 89
4.0 Preliminaries . 90
4.1 Rules for modifiers . 91

4.1.1 Rules for auxiliaries . 91
4.1.2 Rules for adjectives . 92

4.2 Rules for prepositions . 94
4.2.1 The problem of PP attachment 94
4.2.2 Rules for prepositional phrases 95
4.2.3 Particles vs prepositions . 103

4.3 Rules for definite noun phrases . 106
4.3.1 Two theories of definite descriptions 106
4.3.2 Two options for modeling definite NPs 108

4.4 Closure rules . 111
4.4.1 The rule for expletive there . 111
4.4.2 Verb subcategorization . 113
4.4.3 Open compound nouns . 115
4.4.4 Light verb constructions . 117

4.5 Rules for the copula be . 117
4.6 Rules for passives . 120
4.7 Attitude verbs . 122

4.7.1 Entailment properties of attitude verbs 122
4.7.2 Rules for attitude verbs . 123

4.8 Conclusion . 127
Appendix C . 128

5 Theorem Prover for Natural Language 131
5.1 Knowledge base . 132
5.2 Inventory of the rules . 135

5.2.1 Properties of the rules . 135
5.2.2 Derivable rules . 137

5.3 NLogPro: a theorem prover for natural logic 140
5.4 LangPro: a theorem prover for natural language 143
5.5 Conclusion . 146
Appendix D . 148

6 Evaluation of the theorem prover 151
6.1 RTE datasets . 151

6.1.1 SICK . 152
6.1.2 FraCaS . 153

6.2 Learning . 156
6.2.1 Adaptation . 157
6.2.2 Development . 160

6.3 Analysis of the results . 164

CONTENTS xi

6.3.1 True entailments and contradictions 165
6.3.2 False entailments and contradictions 168
6.3.3 False neutrals . 171

6.4 Evaluation & comparison . 172
6.4.1 Based on FraCaS . 172
6.4.2 Based on SICK . 176

6.5 Conclusion . 182
Appendix E . 183

7 Conclusion 185
7.1 Summing up . 185
7.2 Future work . 187

7.2.1 Trying other RTE datasets . 187
7.2.2 Acquisition of lexical knowledge 188
7.2.3 Pairing with distributional semantics 189
7.2.4 Generate LLFs from dependency trees 190

7.3 Final remarks . 192

Acronyms 195

Bibliography 197

xii CONTENTS

Chapter 1

Introduction

Inferring natural language sentences from a text is the central problem for the thesis and
is known as Natural Language Inference (NLI). The chapter starts with the introduction
to NLI and presents a task, called Recognizing Textual Entailment (RTE), which was
designed by the Natural Language Processing (NLP) community in order to tackle the
NLI problem (§1.1). Before presenting our approach to the RTE task in the next chapters,
first we describe an intuitive model for solving the task, and then we briefly overview
some existing approaches to textual entailment ranging from shallow to deep approaches
(§1.2). Later we focus on the research line our approach contributes to. In particular, we
introduce the project of natural logic and describe its specialty—monotonicity reasoning
(§ 1.3). Next, we discuss a natural logic approach to textual entailment and present the
work by MacCartney and Manning (2007), which suggested the first mature application
of natural logic to RTE (§ 1.4). In the final section, we outline the rest of the chapters
which gradually present our natural logic-based approach to RTE.

1.1 Natural language inference

In a broad sense, Natural Language Inference (NLI) is a process of inferring a (target)
natural language text T from the meaning of another (source) natural language text S. In
practice, a text can range from a sequence of sentences to a single sentence, or even to a
phrase. We say that S infers T if and only if it is highly probable that T is true whenever
S is true. We also could define the inference relation as human inference: most humans
accept T as true, whenever S happens to be true. The key is that in both cases the notion of
inference is imprecise and depends on factors such as probability, acceptance, and human
understanding of S and T . For a given source text, one can infer several facts expressed
in terms of natural language. For example, consider the sentence in (1) as a source text.
Then the facts expressed by the sentences in (1a) and (1b) can be inferred from it. While
(1a) is necessarily true when (1) is true, (1b) is highly probable as usually a buyer club
violates some rules concerning a transfer and therefore pays a fine. On the other hand, the
sentence in (1c) expresses the meaning which is not inferred from (1).

Barcelona football club agreed to pay a ¤5.5m fine over the transfer of
Brazil international Neymar in 2013 (1)

The football club Barcelona agreed to pay a penalty for a transfer (1a)

1

2 CHAPTER 1. INTRODUCTION

Neymar signed for the football club Barcelona in 2013 (1b)
Neymar is the first Brazilian international in FC Barcelona (1c)

The study of NLI attempts to answer several questions: (i) how do humans process and
reason over natural language text? (ii) how shall we automatize the reasoning? (iii) which
representation of linguistic semantics is suitable for modeling NLI? An answer to one
of these questions can be a key while answering the rest of the questions. Since the
current work focuses on the latter two questions, we present the problem of NLI from the
perspectives of Natural Language Processing (NLP) and Artificial Intelligence.

The tasks concerning NLI can be seen “as the best way of testing an NLP system’s
semantic capacity” (Cooper et al., 1996, p. 63). One straightforward task of NLI is to list
the sentences that are inferred from a given source text. Unfortunately, from an evaluation
perspective, the task is ill-defined due to diversity of inferred facts and natural language
variability. For any source text, it is unclear how to define a finite list of correct (i.e. gold)
inferred sentences. Moreover, for each candidate sentence its meaning can be expressed
in several different ways due to language variability. For example, given the sentence in
(1), it is unclear which and how many sentences an NLP system should infer from it. This
indeterminacy makes it difficult to evaluate answers of NLP systems. Another alternative
NLI task is Question Answering (QA): based on a source text, to answer a question with
YES, NO or UNKNOWN (Cooper et al., 1996). For instance, to answer the question in (2)
based on the information provided by (1). With the help of yes-no-unknown questions,
we avoid the indeterminacy caused by natural language variability—an NLP system does
not need to generate natural language expressions.

Did the football club Barcelona agree to pay a penalty for a transfer? (2)
a ¤5.5m fine over the transfer of Brazil international Neymar (3)

But lengthy yes-no-unknown questions are unusual in natural language usage. More-
over, such questions are asked in context of declarative sentences and are not applicable to
non-sentential phrases, e.g., the noun phrase in (3). In order to free an NLI task from inter-
rogative sentences, the NLP community came up to an NLI task that contrasts semantics
of two declarative texts.

The task of Recognizing Textual Entailment (RTE) was introduced by Dagan et al.
(2006) and it attempts to evaluate an NLP systems competence in NLI. The objective in
the task is to guess an entailment (i.e. inference) relation1 from a text T to a hypothesisH .
The text T is a sentence or a set of sentences while the hypothesis H is a single sentence
or a phrase. In order to create a benchmark for the RTE task, first text-hypothesis pairs are
collected manually or semi-automatically, and then each pair is annotated with entailment
relations by humans. Usually canonical entailment relations are ENTAILMENT (i.e. YES),
CONTRADICTION (i.e. NO) and NEUTRAL (i.e. UNKNOWN) depending on whether T

1In logic, inference is more general notion than entailment: a proposition Q can be inferred from a
proposition P but not entailed. For example, Q can be inferred from P if Q represents the best explanation
for P (the latter called as abductive inference). However, at the same time, it can be the case that Q is not
entailed from P : there is a situation (though with little probability) where P is true and Q is false. So,
entailment is one of the sorts of inference. When concerning NLI, both notions are often used as synonyms
since entailment losses its strict logical sense and becomes soft.

1.1. NATURAL LANGUAGE INFERENCE 3

entails (i.e. infers), contradicts or is neutral to H .2According to the RTE guidelines, verb
tense and aspect issues must be ignored during the annotation (Dagan et al., 2006). In
the end, only those text-hypothesis pairs with high annotation agreement are included in
the RTE benchmark dataset. If an RTE system’s guesses resemble the human annotations
(also referred as the gold labels), then it is assumed that the system can emulate human-
like reasoning on the benchmark dataset.3 An example of text-hypothesis pair, i.e. an
RTE problem, from the first RTE dataset (Dagan et al., 2006) is given below, where the
problem has its data-specific ID and an ENTAILMENT gold label.

GOLD: ent; RTE1-62

Green cards are becoming more difficult to obtain

Green card is now difficult to receive

When judging textual entailment pairs, humans unintentionally employ their knowl-
edge of the world and natural language. This knowledge is later reflected by the gold
labels. In order to achieve high performance on the RTE task, a system is expected to
get the knowledge presupposed by humans. For instance, we have already mentioned the
world knowledge that contributes to the entailment of (1b) from (1). Awareness of syn-
onymous meanings of “obtain” and “receive” in the context of “green card” (RTE1-62)
represents knowledge of natural language. Since the above mentioned knowledge is vast
and almost each textual entailment problem requires some of it, RTE systems are always
hungry for knowledge. In fact, knowledge acquisition is a major bottleneck in RTE (Da-
gan et al., 2013, p. 7).

A successful RTE system can be leveraged in several other NLP tasks. For instance,
in open-domain QA, an RTE system can rerank an output of a QA system (Harabagiu and
Hickl, 2006). After the QA system returns a list of candidate answers to a question, e.g.
“How much fine does Barcelona have to pay?”, the RTE system can verify each candidate
answer whether it entails a declarative version of the question where a question word acts
as a variable, e.g., “Barcelona has to pay X fine”. In Multi-document Summarization,
a system is expected to generate a summary from several documents that are describing
the same event. In this task, an RTE system can be used to detect redundant sentences in
a summary, select the most responsive summary from possible candidates or model the
semantic content of an ideal summary (Lacatusu et al., 2006). In Machine Translation,
evaluation of a system translation against the reference (i.e. human) translation can benefit
from an accurate RTE system (Pado et al., 2009). Instead of using string similarity mea-
sures for the evaluation, one can employ an RTE system to check whether the meanings
of the system and reference translations are equivalent (i.e. entailing each other).

To sum up, NLI can be viewed as a soft version of logical entailment which is rooted
in natural language. The RTE task is designed to assess NLI capabilities of NLP sys-
tems. The task represents “an abstract generic task that captures major semantic infer-
ence needs across applications” (Dagan et al., 2006). In the last decade, RTE datasets

2In the very first RTE dataset (Dagan et al., 2006), the canonical relations were two: ENTAILMENT
and NON-ENTAILMENT. But since the fourth RTE challenge (RTE-4, Giampiccolo et al. (2008)) the non-
entailment relation was further disambiguated as either CONTRADICTION or NEUTRAL.

3An RTE system is not expected to guess all gold labels in a dataset since even individual annotator’s
guesses do not completely match the gold labels. A performance ceiling for an RTE system is usually
considered an average of all annotator performances.

4 CHAPTER 1. INTRODUCTION

are regularly created to exercise and test reasoning capacity of RTE systems in natural
language. Moreover, since Mehdad et al. (2010) a cross-lingual version of the task is also
being implemented. In the next section, we outline existing approaches to the RTE task.

1.2 Overview of approaches to textual entailment

There have been at least eight RTE challenges since the first RTE challenge (Dagan et al.,
2006) and many diverse approaches have been suggested to solve the problem of RTE.
Some of them favor rule-based methods operating on semantic representations and some
of them prefer machine learning techniques applied to certain features extracted from an
RTE problem. There are also baseline approaches that employ a lexical overlap measure
between a text and a hypothesis. Before briefly summarizing existing approaches to an
RTE task, let us first discuss an intuitive approach to the task.

Given an RTE problem 〈T,H〉, an intuitive model of an RTE system is expected first
to express the meanings of T and H in some canonical semantic representation language
and then to employ some sort of inference procedure to reason over the semantic repre-
sentations (Dagan et al., 2013, Sec. 2.1). It is assumed that the inference procedure of
the intuitive model is transparent and explanatory to a large extent rather than a black
box with an opaque decision procedure. In general, approaches that follow the intuitive
model are rule-based. It is assumed that rule-based systems are difficult to scale up since
they require long-lasting elaborated work on several directions: knowledge acquisition,
systematic translation of natural language texts into some meaning representation and au-
tomated reasoning for the meaning representation. Due to the difficulties related to the
construction of an intuitive RTE model, the NLP community has sought alternative so-
lutions to RTE. Below, we give a general overview of existing approaches and mention
a few prominent RTE systems based on them.

Every approach to RTE employs some sort of representation for natural language text
and an inference procedure over this representation. A representation of a linguistic ex-
pression can be shallow, like surface forms (i.e. a string representation) or a bag (i.e.
a multiset) of its words, or relatively deeper, like its syntactic tree or a formula in some
formal logic expressing its semantics. On the other hand, an inference procedure may
vary from simple methods, based on set operations or an alignment (i.e. mapping phrases
from T to H), to more elaborated methods, like reasoning with inference rules or em-
ploying some machine learning technique over certain features or objects derived from
the representations. Several common representations and inference components are given
in Figure 1.1. Inference procedures may vary in terms of the architecture. They can em-
ploy several components, e.g., a set of paraphrase rules with machine learning techniques,
or a single component, e.g., an inference engine solely based on inference rules.

Depending on the depth of reasoning, approaches to RTE are conventionally consid-
ered as shallow, deep or somewhere in the middle. For instance, one of the extremely
shallow approaches treats linguistic expressions as a bag of words and uses subset rela-
tion as entailment. According to it, (1) will correctly entail (4) as all words of the latter
occurs in the former. But due to its simplicity, the approach cannot capture the entail-
ment from (1) to (1a) because “penalty” does not occur in (1). Moreover, it makes severe
mistakes like entailing (5) from (1).

1.2. OVERVIEW OF APPROACHES TO TEXTUAL ENTAILMENT 5

Barcelona football club agreed to pay a ¤5.5m fine over the transfer of
Brazil international Neymar in 2013 (1)

Barcelona agreed to pay a fine over the transfer (4)
Brazil agreed to pay a fine (5)

Following Adams (2006), the previous shallow method can be upgraded by consid-
ering surface forms and incorporating an alignment method, a word similarity measure
and a machine learning classifier. A word similarity measure assigns a probability to each
word pairs. The inference procedure works as follows. First, each content word of H is
aligned (i.e. paired) with the most similar words in T . The product of the similarities of
aligned words is considered as a similarity score of T and H . In this way, (4) and (5) are
similar to (1) with a maximum score 1 taking into account that identical words are similar
with a probability 1. Another feature used by the classifier is a number of negations, i.e.
“not” and “no”, modulo two. To indicate differences in surface forms, the number of gaps
represents the number of content words in T that appear as a gap between the aligned
words. For instance, when considering (1) and (4) as T and H respectively, the gaps are
“football”, “club” and “¤5.5m”. Feeding a trained decision tree classier with all these
three features, i.e. a similarity score, the number of negations and the number of gaps,
results in an RTE system with high performance. Surprisingly, only three RTE systems
from 22 were able to outperform this shallow system at the second RTE challenge (Bar-
Haim et al., 2006). Despite its high performance on the test dataset, the RTE system and
its underlying approach is shallow since it can be easily misled. For instance, (4) and (5)
obtain the same features, hence obtain the same entailment relation, with respect to (1).

There are also more elaborated versions of the previous approach. For classifiers, they
usually employ more features extracted from different levels of representation. Lai and
Hockenmaier (2014) offered one of such methods. Their system uses two representations
at the same time: bag of words and chunked phrases combined with distributional and
denotational semantics respectively. In distributional semantics, semantics of each word
is modeled by the set of contexts it occurs in.4 On the other hand, denotational semantics
models a phrase based on the set of images that have the phrase in their caption. Based on
these representations and semantics, they collect 10 features for each entailment problem
with the help of various overlap, similarity and alignment techniques (see Figure 1.1).
The collected features are then labeled with an entailment relation using a trained ma-
chine learning classifier. The resulted system achieves the highest score in the recent
SemEval RTE task (Marelli et al., 2014a).5 Despite its high performance, we place the
approach relatively far from the intuitive model as it is not clear whether the approach

4More specifically, a wordw is modeled in terms of an embedding vector #–w, where each coordinate of #–w
corresponds to a predefined context word. In the simplest case, the value of #–wi is the number of occurrences
of a word i in the contexts of w. The contexts are taken from some fixed large corpus. The distributional
representation is motivated by the distributional hypothesis in linguistics saying that the words that occur
in similar contexts tend to have similar meanings (Harris, 1955). For more details about distributional
semantics and vector space semantics see (Turney and Pantel, 2010; Erk, 2012, and references therein).

5The task is intended for compositional distributional semantic approaches and contains relatively
shorter and simpler problems than the original RTE challenges employ. The dataset of the task and the
participant systems are further discussed in §6.1.1 and §6.4.2, respectively.

6 CHAPTER 1. INTRODUCTION

Shallow
approach

Deep
approach

Bag of words Surface form Distributions Syntactic tree Logical form

Representation

Word
overlap

Distributional
similarity

WordNet
similarity

Alignment
of T and H

Machine
learning

Logical
inference

Common ingredients of infrence procedure

,
EXTREMELY

SHALLOW

Adams (2006)

,
OUR

APPROACH

,
INTUITIVE

MODEL

MacCartney and
Manning (2007)

Bos and Markert
(2005, 2006)

Lai and Hock-
enmaier (2014)

Bowman
et al. (2015b)

Figure 1.1: Rough display of some RTE systems and underlying approaches on the scale
of the depth of NLI. Each system is linked with its representation and inference ingre-
dients, where dashed arrows represent weak links. Knowledge resources are ignored for
simplicity.

learns reasoning abilities or simple regularities found in the RTE dataset.6

Rule-based RTE systems with a set of inference rules and a transparent decision pro-
cedure come close to the intuitive model. Perhaps, this is the reason why around 40% of
the systems at first RTE challenges were rule-based. But due to the difficulty to scale them
up, the NLP community became less concerned about rule-based RTE systems. Never-
theless, some research lines still continue pursuing the rule-based paradigm. One of such
lines is initiated by Bos and Markert (2005, 2006) who scaled up the idea of Blackburn
and Bos (2005) to the RTE task. In particular, they translate T and H into first-order
logic formulas (Bos et al., 2004) and employ off-the-shelf inference tools such as a the-
orem prover and a model builder to detect entailment relations. Unfortunately, Bos and
Markert reported that the theorem prover correctly proves less than 6% of the RTE prob-
lems. A lack of lexical and background knowledge is considered as the main reason for it.
On the other hand, their experiments showed that the combination of a machine learning
classifier and the features extracted from the inference tools are more successful than the
tools alone. With this decision their approach becomes more robust but shallow to some
extent.7

Recent developments in compositional distributional semantics saw several new ap-
proaches to RTE that employ artificial neural networks for machine learning (Bowman
et al., 2015b). Distributional representation of lexical semantics is found suitable for

6Moreover, on average, each fifth positive guess (i.e. ENTAILMENT or CONTRADICTION) of the RTE
system is wrong. In other words, its precision is ca. 80%. More details about this issue is discussed in
§6.4.2.

7Despite the usage of shallow techniques, we still put the approach high in Figure 1.1 as it employs
elaborated logical forms with information on tense, events and thematic roles. On the other hand, the
logical forms fall short of capturing higher-order semantics of quantifiers or adjectives, e.g., “most” and
“professional”, while our approach will properly account for it.

1.3. NATURAL LOGIC AND MONOTONICITY 7

neural networks. To encode a word order or a tree structure of a linguistic expression,
a special sentence encoder is included in the architecture of neural networks. A neural
network approach is extremely greedy for labeled RTE datasets when learning entailment
relations over linguistic expressions. Recently, an interest in this direction increased after
Bowman et al. (2015a) made available a large RTE dataset with 570K sentence pairs. The
primary objection to this kind of approaches is that they are not interpretable and their
inference procedure is opaque.

Among other approaches to textual entailment, we would like to draw attention to the
approach of MacCartney and Manning (2007, 2008, 2009), which is inspired by natural
logic—a hypothetical logic that is built into natural language. As we will see later, our
approach also builds on the idea of natural logic. MacCartney and Manning employed
syntactic trees as a representation level where words are modeled by projectivity and im-
plication signatures. Reasoning is done by transforming T into H using atomic edits.
Each edit gives rise to one of seven elementary entailment relations. To obtain the fi-
nal entailment relation, the elementary relations are composed according to the order of
the edits. Due to its edit-driven reasoning, this approach can be considered as between
shallow and deep methods. This approach is further discussed in §1.4.

As we have discussed, the approaches to textual entailment vary at least in terms of
representation levels and inference procedures. Relatively shallow approaches are easy to
scale up for wide-coverage text (e.g., there is no need for full semantic interpretation of
natural language text) but can be easily deceived. In general, the systems based on shallow
approaches are good in learning regularities from training RTE datasets. This makes them
suitable for applications for open-domain text. On the other hand, deep approaches are
much more reliable in their positive (i.e. ENTAILMENT or CONTRADICTION) answers but
highly sensitive to errors in a semantic representation and to sparsity of knowledge and
rules. It is usually difficult to train and scale up deep approaches. That is why, they are
more used in applications with restricted domain. Despite these shortcomings, recently
the interest in deep rule-based methods has been revived: combining logical semantics
with distributional lexical semantics (Lewis and Steedman, 2013), and applying alignment
techniques and knowledge acquisition on-the-fly (Tian et al., 2014). In §6.4, we compare
our RTE system and the underlying approach to those mentioned here.

1.3 Natural logic and monotonicity

Natural logic is a hypothetical logic which is built in natural language and represents its
integral part. Lakoff (1970), who coined the term of natural logic, considered it as a
theory about “the regularities governing the notion of a valid argument for reasoning in
natural language”. Put differently, in natural language, natural logic characterizes valid
arguments in the similar way as grammar does it for well-formed linguistic expressions.
While doing so, natural logic operates on structures “as close as possible to the surface
forms” (Moss, 2010b), unless surface forms per se. In this way, Aristotelian traditional
logic, also called syllogistic logic, can be seen as a fragment of natural logic or vice versa,
natural logic as a mature descendant of traditional logic. Since the thesis develops a theory
inspired by natural logic, below we continue discussion on it by presenting monotonicity
reasoning, i.e. a signature of natural logic.

8 CHAPTER 1. INTRODUCTION

+

+

+
every↓↑

≤

−

−
man

3

−

−
who↑↑

×

−

−
consumed↑

s1(x) = x+ 1

−
alcohol

2

+

+
devoured↑

p3(x) = x3

+

+
most◦

m4(x) = x (mod 4)

0
snacks

7

↓

↑

↑

↑

↑

↑

◦

Figure 1.2: Underling semantic composition tree of the sentence in (6). The tree also
encodes the syntactic tree of the first arithmetic expression from (8). Each function word
is decorated with monotonicity properties. Function words are sitting on thick branches
while arguments on thin ones. Each thin branch is marked with a monotonicity property
projected by a function word. The root node has a positive polarity and polarities for the
rest of the nodes are induced based on the monotonicity marks: the polarity of a node is
the sign of the product of all monotonicity marks on the path from the node to the root
(in a product, ↑, ↓ and ◦ are treated as +1, −1 and 0 respectively).

The most popular and success story of natural logic is monotonicity reasoning. It
is a sort of reasoning with predicate substitution (including deletion and insertion). For
example, consider the sentences in (6) and (7). One can obtain (7) from (6) by replac-
ing “man”, “consumed”, “alcohol”, “devoured” and “most” with “young man”, “drank”,
“beer”, “ate” and “some” respectively. While many sentences can be obtained from (6)
by substitutions, only few of them are entailed from it. Monotonicity reasoning character-
izes the substitutions that lead to entailments. This is done by determining a polarity (i.e.
positive +, negative− or neutral 0) for each constituent based on monotonicity properties
of (function) words (i.e. upward monotonicity ↑, downward monotonicity ↓ and none of
them ◦). Then the polarity of a constituent decides whether a certain substitution of the
constituent yields an entailment relation.8 Let us explain this procedure on the example.

Every man who consumed alcohol devoured most snacks (6)

Every+ man− who− consumed− alcohol− devoured+ most+ snacks0 (6a)
Every young man who drank beer ate some snacks (7)

3× s1(2) ≤ p3(m4(7)) ⇒ 2× s1(1) ≤ p4(m8(7)) (8)

Words of certain classes, e.g., determiner, verb and conjunction, are rendered as func-
tions. For instance, “every” is interpreted as a binary function: in (6), it takes “man who

8Notice that monotonicity is a lexical/local feature while polarity is contextual/global.

1.3. NATURAL LOGIC AND MONOTONICITY 9

consumed alcohol” and “devoured most snacks” as arguments (see Figure 1.2). Each
function word has monotonicity properties associated with its argument positions. The
first argument position of “every” is downward monotone while the second one is upward
monotone, written as “every↓↑”. A monotonicity property is understood in the similar way
as in arithmetic. Informally speaking, “every” has similar monotonicity properties as the
less or equal relation ≤, which itself can be seen as a binary function from numbers to
truth values.

Monotonicity properties of function words project polarities on the arguments. As
a result, each constituent in an expression gets a polarity depending on the context it
occurs in. The polarities of constituents can be determined according to the following
algorithm. An entire expression, i.e., a root node, gets the + polarity. The polarity of a
proper constituent, i.e. non-root nodes, is defined as follows. First, compute the product
of all monotonicity properties on the path from the node of the constituent to the root
(treat ↑, ↓ and ◦ as +1, −1 and 0 respectively), and then take the sign of the product (see
Figure 1.2). The version of (6) with polarity marking on the words is given in (6a). We
say that a substitution A B obeys the polarity + (or−) if and only if A is semantically
more specific (or general, respectively) than B.

Finally, we have the following result. If all applied substitutions obey the polarities of
constituents in a source expression, the obtained expression is entailed from the source.
As an example, inspect the entailment relation from (6) to (7). Notice that monotonicity
reasoning can be carried out in the similar fashion on arithmetic expressions.9 For in-
stance, the reasoning process that validates entailment of (7) from (6) is isomorphic to the
one that validates the entailment in (8).10 See also Figure 1.2 for the polarity markings of
the first arithmetic expression in (8).

A study of monotonicity reasoning as a formal calculus was initiated by van Benthem
(1986, 1987) and further elaborated in Sánchez-Valencia (1991). As a part of the natu-
ral logic program, monotonicity calculus is often conjoined with a categorial grammar,
e.g., Lambek Grammar (Lambek, 1958). Some works have focused on formal calculi
for polarity marking, with an additional algorithm for marking (Sánchez-Valencia, 1991)
or with internalized marking (Dowty, 1994; Moss, 2012). Fyodorov et al. (2003) devel-
oped and Zamansky et al. (2006) extended an inference system for a small fragment of
English, which is based on monotonicity properties and directly operates on categorical
grammar derivation trees. Research presented in Moss (2010a) and references therein
departed from syllogistic logic and moved towards natural logic by extending the formal
system with certain linguistic constructions and class of words. Muskens (2010) intro-
duced a tableau proof system for a fragment of natural logic, formulas of which are typed
λ-terms. Following MacCartney and Manning (2008), Icard (2012) presented a formal
system for monotonicity reasoning extended with additional relations, e.g., exclusion and
exhaustion. Finally, for a summary of the work on (extended) monotonicity reasoning
and polarity marking see Icard and Moss (2014).

9To be on the safe side, we restrict the expressions to positive real numbers and assume the standard
linear (pointwise) order over them when talking about the general/specific ordering relation.

10The function symbols si(x), pi(x) and mi(x) denote x+ 1, xi and x (mod i) respectively.

10 CHAPTER 1. INTRODUCTION

1.4 Natural logic approach to textual entailment

Application of natural logic for modeling NLI seems quite intuitive. After all it is con-
jectured to be logic native to natural language. This section contrasts a proof-based
paradigm of natural logic to a semantic-based paradigm of translational approaches—the
approaches that try to translate natural language expressions into an intermediate repre-
sentation. Next, we describe the first mature natural logic-based approach (MacCartney
and Manning, 2007, 2008, 2009) to textual entailment and highlight its shortcomings. In
the end, we outline the motivation of our natural logic-based approach, which will be
presented in the subsequent chapters of the thesis.

One of the main attractions of the natural logic program is that it attempts to describe
“basic patterns of human reasoning directly in natural language without the intermediate
of some formal system” (van Benthem, 2008b). While logical forms of natural logic
are easily obtainable, this in general requires more work on the inferential part of the
logic as the latter has to establish connection between superficial structures. On the other
hand, in a translational approach, translation of linguistic semantics into some formal
representation is usually much harder than developing the inferential part for it. This is
because usually the translation already unfolds semantics of expressions to a large extent.

The mentioned contrast between natural logic and a translational approach brings
us naturally to the distinction between proof-theoretic and model-theoretic (i.e. truth-
conditional) semantics.11 In particular, the natural logic program opts for proof-theoretic
semantics as it models semantics of linguistic expressions in terms of proofs over the
expressions. To the contrary, a translational approach adopts model-theoretic semantics:
linguistic semantics are subject to truth with respect to a given model, i.e. a situation. Due
to the relativity character of proof-theoretic semantics, certain types of reasoning comes
easy to natural logic. For instance, from a natural logic perspective, entailing (4) from
(1) simply requires discarding the qualifiers from (1) while a transnational approach first
translates both sentences into a formal representation and then reasons over them. We
believe that natural logic, while maintaining (most part of) surface forms, has a potential
for more robust and economic reasoning in natural language.

Natural logic for an RTE task was first put to work by MacCartney and Manning
(2007). Their applied fragment of natural logic included monotonicity calculus. Based
on it, an RTE system, called NatLog, was evaluated against a small RTE dataset, a part of
FraCaS (Cooper et al., 1996), and was also used as a component of a hybrid RTE system.
Later, MacCartney and Manning (2008, 2009) augmented monotonicity calculus with
additional semantic relations and implicative properties. Below we explain their natural
logic approach to RTE by using an example in Figure 1.3, borrowed from MacCartney
(2009) and slightly modified.

In their version of natural logic, MacCartney and Manning employed seven entailment
relations; some of them are: equivalence (smart ≡ clever), forward-entailment (dance <
move), backward-entailment (move = dance), alternation (cat | dog) and negation (human

11The goal of model-theoretic semantics is to characterize meaning as a condition that explains in which
situations the meaning is true and in which false. On the other hand, proof-theoretic semantics aims to
model meaning with respect to other meanings, i.e. in terms of the entailment relations it has with other
meanings, where the relations are verified by proofs.

1.4. NATURAL LOGIC APPROACH TO TEXTUAL ENTAILMENT 11

Sentence & Atomic edit Lexical Projected Overall
(S0) John refused to move without blue jeans

(E1) DEL(refused to) | | |
(S1) John moved without blue jeans

(E2) INS(didn’t) ˆ ˆ <
(S2) John didn’t moved without blue jeans

(E3) SUB(move, dance) = < <
(S3) John didn’t dance without blue jeans

(E4) DEL(blue) < < <
(S4) John didn’t dance without jeans

(E5) SUB(jeans, pants) < < <
(S5) John didn’t dance without pants

Figure 1.3: An example of entailing (S5) from (S0) in the natural logic of MacCartney and
Manning (2008). A lexical relation is solely determined by an atomic edit. A projected
relation depends on a lexical relation and a polarity of an edited site. An overall relation,
with respect to the initial phrase (S0), is a composition of projected relations.

ˆ nonhuman).12 In order to find out an entailment relation between T and H—in our ex-
ample, (S0) and (S5) respectively—a sequence of atomic edits are found that transforms
T into H . For instance, (S0) is transformed into (S5) via the sequence (E1-E5); see Fig-
ure 1.3. For each atomic edit, a corresponding lexical entailment relation is determined.
For example, we have refuse to P | P based on the implicative signature of “refused to”.
Hence, its deletion (E1) corresponds to (|) lexical relation.

Next, the lexical entailment relations are projected to the sentence level. Ideally, these
projections follow the semantic composition tree (like the one in Figure 1.2) of the edited
expression, but MacCartney and Manning’s system NatLog carries out the projection
based on phrase-structure trees, where predefined tree patterns for monotonic entries are
employed to determine polarities.13 A projected relation represents an entailment relation
between two sentences differing from each other by a single atomic edit. As a result,
(S0) | (S1) holds after projecting the lexical entailment relation triggered by the edit (E1).
To illustrate an effect of negative polarity, consider the edit (E3). The lexical relation
(=) of (E3) is reversed after the projection since the edition occurs in a negative polarity
context, under the scope of “didn’t”. After all lexical entailment relations are projected,
we get a chain of entailment relations and intermediate expressions from T to H . A
composition of the projected relations yields the final entailment relation (<) from T to
H:

(S0) | (S1) 1 (S1)ˆ(S2) 1 (S2)<(S3) 1 (S3)<(S4) 1 (S4)<(S5) = (S0)<(S5) (9)

Despite the elegance and simplicity of the described approach, it has one major draw-
back. The reasoning in the approach is guided by a sequence of atomic edits, i.e. align-
ment of T to H . This guidance significantly limits the reasoning capacity of the frame-
work. For example, MacCartney (2009) notes that not all alignments of T to H lead to

12The alternation and negation relations can be seen as a specification of an exclusion relation.
13More details about the entailment projection in NatLog and its shortcomings see (MacCartney, 2009,

Sec. 7.5).

12 CHAPTER 1. INTRODUCTION

the same final entailment relation. Moreover, it is not clear how to search the alignments
that yield a correct and specified relation, if there is such a relation.14

The alignment-driven reasoning has also its limitations in terms of coverage. For in-
stance, MacCartney (2009) observes that his framework cannot account for de Morgan’s
laws for quantifiers, one of them exemplified by PROB-PROB-1. Furthermore, it is not
possible to account for the entailment relation in PROB-PROB-2, encoding one of de Mor-
gan’s laws for Booleans. The entailments licensed by an alternation of a structure, see
PROB-PROB-3 and PROB-4, are also beyond competence of the framework. Bound to
alignment of two phrases, the approach falls short of reasoning over several premises,
e.g. PROB-PROB-5. For the latter reason, the NatLog system was only evaluated against
single-premised problems in FraCaS. After all, we can conclude that the natural logic ap-
proach a la MacCartney and Manning, though simple and crafty, is significantly crippled
by the usage of the alignment technique which has no connection with natural logic.

PROB-1

Not all bird fly

Some birds does not fly

PROB-2

Mary is not blond and is not tall

Mary is not blond or tall

PROB-3

John bought a car from Bill

Bill sold a car to John

PROB-4

A student wrote an essay

An essay was written by a student

PROB-5

Most children like candies
Most children hate porridge

Some children like candies and hate porridge

Apart from the above described implementation of natural logic, there has been a little
work on building computational models for reasoning based on natural logic. Fyodorov
et al. (2003) implemented monotonicity reasoning over categorial grammar derivation
trees which allows coordination and relative clauses. Eijck (2005) gave a preliminary im-
plementation of syllogistic logic with monotonicity and symmetry rules. Hemann et al.
(2015) discussed two implementations of extended syllogistic logics. All these imple-
mentations are restricted to a small fragment of natural language.

The objective of the current thesis is to account for reasoning in natural language by
employing a version of natural logic. While doing so, we aim to fill the gap that remains
between studies of formal inference systems for natural logic and their application to
wide-coverage textual entailment. In this way, our approach will deliver a theory and a
computational model for wide-coverage natural reasoning, where employed logical forms
resemble surface forms, and at the same time, we maintain healthy logical reasoning over
these forms. To achieve this goal, we base on the novel idea of Muskens (2010) to device
a semantic tableau method for natural logic, referred here as a natural tableau. Muskens
opts for a version of natural logic that represents a higher-order logic with simply typed
λ-terms, where lexical terms are the only constant terms. Logical forms come close to the
semantic composition trees which were used for detecting polarities in Figure 1.2.

Reasoning over the terms is carried out according to a specially designed semantic
tableau method. Basically, the tableau method represents a collection of inference rules

14The framework allows underspecified entailment relations too. For instance, {<, |, ˆ} is an underspec-
ified entailment relation that might be one of the three specified entailment relations.

1.5. OVERVIEW OF WHAT FOLLOWS 13

that unfold semantics of terms by breaking them into smaller constituent pieces. The
rules are used to unfold the semantics of terms and find out inconsistency between them.
Thus, the reasoning procedure based on a tableau method has a nature of refutation. For
instance, entailment of H from T is proved by finding T and negation of H semantically
inconsistent. Unlike the approach of MacCartney and Manning (2007), the reasoning via
a semantic tableau is not limited to single-premised arguments. Moreover, accounting for
monotonicity reasoning, Booleans and sentence alternations will not represent a problem
for our approach.

1.5 Overview of what follows
The section gives an overview of the rest of the chapters. The chapters are organized in
a self-contained way. Each chapter starts with a brief outline. If some prior knowledge is
required for comprehension of the material, the chapter starts with a preliminary section.

Chapter 2 starts with preliminaries concerning a functional type theory and a semantic
tableau method. Familiarity with these two theories is important for understanding for-
mal theory behind the analytic tableau method of Muskens (2010), which is introduced
next. The rest of the chapter describes extension of the analytic tableau method in three
directions. First, we describe the extension of a type system with syntactic types. The lat-
ter can be seen as an integration of syntactic information in logical forms and reasoning.
This step will make it easy to keep logical forms similar to linguistic expressions, and
syntactic information will be used to unfold semantics of various linguistic constructions
accordingly. Second, the format of tableau entries is extended with an additional slot
which serves as a storage for remote (i.e. indirect) modifiers. The storage makes it easy to
account for event semantics in the tableau system. Last, a set of new tableau rules is intro-
duced that concerns interaction between modifiers and the new slot and accounts for the
semantic exclusion and exhaustion relations. The three-fold extension gears the tableau
system for wide-coverage natural reasoning. The chapter extends the work presented by
Abzianidze (2015c).

Chapter 3 takes a break from the discussion of the tableau method and describes a
way to obtain the logical forms of natural logic automatically from Combinatory Cate-
gorial Grammar (CCG) derivation trees. The procedure consists of several components:
(i) getting CCG terms by removing a directionality from CCG derivation trees, (ii) cor-
recting CCG terms by eliminating several systematic mistakes made by CCG parsers, and
(iii) obtaining a final logical form, called Lambda Logical Forms (LLFs), by type-raising
quantified noun phrases in corrected CCG terms. All in all, the procedure takes a CCG
derivation tree and outputs a list of logical forms (see Figure 1.4). The number of log-
ical forms is conditioned by quantifier scope ambiguity. The designed LLF generator
(LLFgen) can be used for many semantic applications as it constructs structures similar
to the semantic compositional trees (see Figure 1.2). The generation of LLFs was shortly
presented by Abzianidze (2015c,b).

Chapter 4 continues discussion of the tableau method and presents a wide-range of
tableau rules necessary for reasoning over open-domain text. After knowing from Chap-
ter 3 how the logical forms for wide-coverage sentences looks like, it is easier to present
these rules. The chapter covers tableau rules for adjectives, prepositional phrases, definite
determiners, expletives, verb subcategorization, open compound nouns, light verb con-

14 CHAPTER 1. INTRODUCTION

Linguistic
expression

LLFgen

CCG
Tree

CCG
Term

Corrected
CCG Term

LLFs

CCG
parsing

Removing
directionality

Correcting
analyses

Type-raising
quantified NPs

Figure 1.4: The LLF generator producing LLFs from a CCG derivation tree.

structions, copula, passive constructions, attitude verbs, etc. Most of the rules presented
in the chapter are refined versions of the rules found in Abzianidze (2015c).

Chapter 5 describes the architecture of a tableau theorem prover for natural language,
called LangPro. First, the issues of natural language theorem proving, such as knowledge
extraction from WordNet and strategies for rule applications in the tableau system, are dis-
cussed. Then functionality of two theorem provers are described. One is a natural logic
theorem prover (NLogPro), which operates on logical forms, while another prover (Lang-
Pro) reasons over natural language expressions. The latter prover contains a CCG parser,
LLFgen and an aligner along with NLogPro (see Figure 1.5). The aligner aligns shared
sub-terms of LLFs in order to prevent NLogPro from unnecessary rule applications.

LangPro

CCG parser LLFgen + Aligner NLogPro
CCG trees LLFs

Figure 1.5: The architecture of a natural language theorem prover, called LangPro.

Chapter 6 discusses learning and evaluation phases for the theorem prover on the RTE
datasets SICK (Marelli et al., 2014b) and FraCaS (Cooper et al., 1996). The learning
phase consists of adaptation and development. The former involves collecting tableau
rules, enriching the knowledge base and designing fixing rules for CCG terms. In other
words, the tableau rules from Chapter 4 and the correction rules from Chapter 3 can be
seen as deliverables of the adaptation phase. The development phase, on the other hand, is
used to set optimal parameters for the theorem prover. Due to a small size of FraCaS, we
use the same FraCaS sections for learning and evaluation. For SICK, different portions are
used for adaptation, development and evaluation. The evaluation reveals that the prover
is extremely reliable in its proofs, and obtains competitive results on each dataset. On
the FraCaS dataset, LangPro demonstrates state-of-the-art competence while on SICK
it achieves performance close to average human performance. The obtained results are
compared to related RTE systems. The work concerning the SICK and FraCaS datasets
were presented by Abzianidze (2015b,a) and Abzianidze (2016), respectively.

Chapter 7 concludes the thesis and discusses future work on the natural tableau sys-
tem. In particular, we present future research concerning the RTE datasets of different
type, lexical knowledge acquisition, coupling with distributional semantics, and generat-
ing LLFs from dependency trees.

Chapter 2

Natural Tableau for Natural Reasoning

The chapter presents a tableau system that operates on logical forms of linguistic expres-
sions. We start with the introduction of a type theory that is used throughout the work as
a semantic representation. For the readers who are not familiar with a semantic tableau
method, we introduce the idea behind the method and present a propositional tableau sys-
tem. After the preliminaries, the tableau system for natural logic of Muskens (2010) is
introduced. First, the Lambda Logical Form (LLF) and the format of tableau entries are
discussed, and then tableau rules with demonstrative proofs are presented. In order to
make the system suitable for reasoning over unrestricted natural language text, we extend
it in several directions. The first direction is the formal language. In particular, we propose
to extend the type system by adding syntactic types and adopt a subtyping relation over
the types in order to establish interaction between the syntactic and semantics types. The
next extension is directed towards the format of tableau entries. A new slot in a tableau
entry serves as a memory that keeps modifiers. This change enables smooth integration of
event semantics in the tableau system without altering the logical forms. The final step in
the development of the tableau system is to enhance the inventory of rules. We start with
presenting the rules specially designed for the newly added slot. Along with these rules,
algebraic properties relevant to reasoning are also introduced. We augment the reasoning
power of the system by modeling the exclusion and exhaustion relations. In particular,
we give the rules for these relations concerning lexical entries. Then the rules modeling
the interaction of these relations and monotone operators are presented. The rules that
account for several projectivity properties of functions are also introduced.

2.0 Preliminaries

The section introduces two important formal devices, a type theory (Church, 1940; Henkin,
1950) and a tableau method (Beth, 1955; Hintikka, 1955) which are employed throughout
the thesis. A simple type theory will be presented in a general way, and it will correspond
to a family of type logics differing in terms of a type system. The theory serves as a
formal language for representing linguistic semantics. We give the syntax and semantics
of its terms with several abbreviations and writing conventions. A tableau method repre-
sents a proof procedure that proves theorems by attempting to refute them. We present
the propositional version of a tableau method by describing the intuition behind it and ex-
emplifying a tableau proof tree with tableau rules. The combination of these two devices,

15

16 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

the tableau system for a type theory, is a topic of discussion in the subsequent sections.

2.0.1 Functional type theory
The subsection presents a simple type theory, i.e. type logic, with the interpretations in
terms of functions. We will present a family of type logics which will be refered as TY
after Gallin (1975). The TY logic represents a version of higher-order logic and is used
throughout the work as a semantic representation language for linguistic expressions. We
start with introducing the formal syntax of TY language, which basically follows Church
(1940), and then give standard functional semantics for its terms.

Definition 1 (TY type system). A TY type system over a non-empty set of basic types,
denoted by TB, is the smallest set of types such that:

(i) t ∈ B, i.e. a truth type is a basic type;

(ii) B ⊂ TB, i.e. all basic types are types;

(iii) If α ∈ TB and β ∈ TB, then (α, β) ∈ TB, where (α, β) is a function type.

A common TY type system is TSem where the set of basic types consists of an entity
type e and a truth type t, i.e. Sem = {e, t}. Type logic TY1, which employs the type
system TSem, will be used in §2.1 when introducing a tableau system.

The Greek letters α, β, γ will be used as meta-variables ranging over the TY types.
The function types sometimes will be abbreviated by omitting (outer) parentheses with
the convention that association is to the right; commas will also be ignored in case of the
basic types with single letters. For instance, eet stands for (e, (e, t)). Intuitively, (αβ)
stands for the type of unary function which takes an argument of type α and returns a
value of type β. In this way, (R,N) would be the type of functions from the real numbers
R to the natural numbers N.

The formal language of TY represents the simply typed λ-calculus (Church, 1940)
based on the TY types. We assume that for each TY type α we have countably infinite
constants and variables of that type, denoted by the sets Cα and Vα respectively. By
default, the trailing letters of the alphabet x, y, z and their indexed versions x1, ..., zn are
reserved for variables. The terms of TY are defined in a recursive way:

Definition 2 (TY terms). For each TY type α, a set of TY terms of type α, denoted by Tα,
is the smallest set of terms such that:

(i) (Cα ∪ Vα) ⊂ Tα; Basic terms

(ii) If B ∈ Tαβ and A ∈ Tα, then (BA) ∈ Tβ; Function application

(iii) If x ∈ Vα and B ∈ Tβ , then (λxB) ∈ Tαβ; λ-abstraction

(iv) If A,B ∈ Tt, i.e. A and B are formulas, then
¬A ∈ Tt and (A ∧B) ∈ Tt; Negation & Conjunction

(v) If A ∈ Tt and x ∈ Vα, then ∀xA ∈ Tt; Universal quantification

(vi) If A,B ∈ Tα, then (A = B) ∈ Tt. Equality

We ignore (outer) parentheses in the terms where it can be done without causing am-
biguity. While doing so, we assume association to the left and the widest scope for λ-
abstraction and universal quantification. Sometimes for better readability we employ a

2.0. PRELIMINARIES 17

dot after a variable in λ-abstraction or universal quantification. For instance, we write
∀y.AB(λx. xC) instead of ∀y((AB)(λx(xC))).

In order to present the type of a term in a compact way, we put the type in the subscript,
e.g., Aα implies thatA ∈ Tα. Also the colon formatA : α will be used to indicate the type
of a term. Sometimes the types are ignored for the variables in universal quantification and
λ-abstraction, e.g., ∀x(xβAα) is the same as ∀xβ(xβAα). In Definition 2, the terms A and
B are sub-terms of the compound terms constructed in (ii)–(vi). Notice that the definition
also encodes type inference rules—the rules that determine the type of a compound term
based on the types of its sub-terms.

Definition 3 (Free and bound variables). An occurrence of a variable x in a term A is
bound if it occurs in a sub-term ofA of the form (λxB) or ∀xB; otherwise the occurrence
is free. A term with no free occurrence of a variable is called closed; otherwise it is open.

For example, AB(λx. xC) and A∀x(BxC) are closed while (λx.AyB) and ∀x(AxyB)
are open as y occurs freely there.

After defining the TY terms and types, we need to give semantics for the terms. Each
term will be interpreted as a function from functions to functions, where every function
under discussion takes at most one argument. According to this functional interpretation,
the arithmetic operation of addition (+) is understood as a unary function from real num-
bers, i.e. functions with no arguments, to functions that map real numbers to real numbers.
This trick of expressing functions of several arguments in terms of unary functions is due
to Schönfinkel. For the interpretation we need a collection of functions with domains and
codomains of various types.

Definition 4 (TY frame). A TY frame is a set FB = {Dα | α ∈ TB} such that for any α
and β types:

(i) Dα 6= ∅;
(ii) Dt = {0, 1} is a standard Boolean algebra on {0, 1};

(iii) Dαβ ⊆ DDαβ , where the latter is a set of all functions from Dα into Dβ .

A TY frame is standard if Dαβ = DDαβ in (iii). Semantics of TY logic will be defined in
terms of standard frames.

In order to interpret TY terms on a standard TY frame, we first interpret basic terms
and then on their basis compound terms are interpreted. An interpretation function I for
a TY frame F is a function from a set of constant terms Cα to Dα. An assignment function
a is a function from a set of variables Vα to Dα. By a[b/x] we denote an assignment
function such that a[b/x](x) = b and a[b/x](y) = a(y) if x 6= y. In other words, a[b/x]
coincides with a but it maps x to b. A standard model is a pairM = 〈F , I〉, where I is
an interpretation function for a standard TY frame F .

Definition 5 (Standard semantics of TY). The standard semantics of a TY term A with
respect to a standard modelM = 〈F , I〉 and an assignment a is denoted by [[A]]M,a and
is defined as:1

1For generalized semantics of TY with respect to a general model (Henkin, 1950), i.e. a model based on
a general frame, existence of such [[.]]M,a semantic function is required while for a standard model [[.]]M,a

exists naturally.

18 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

(i) [[c]]M,a = I(c) for any constant term c and
[[x]]M,a = a(x) for any variable term x;

(ii) [[AB]]M,a = [[A]]M,a([[B]]M,a);

(iii) [[λxβ Aα]]M,a = f ∈ DDβα such that for any b ∈ Dβ , f(b) = [[Aα]]M,a[b/x];

(iv) [[¬At]]M,a = 1− [[At]]
M,a, i.e. a Boolean complement;

[[At ∧ Bt]]
M,a = inf{[[At]]M,a, [[Bt]]

M,a}, where infimum is taken from a Boolean
algebra on {0, 1};

(v) [[∀xαAt]]M,a = inf
b∈Dα
{[[At]]M,a[b/x]}.

(vi) [[Aα = Bα]]M,a = 1 if [[Aα]]M,a = [[Bα]]M,a; otherwise [[Aα = Bα]]M,a = 0

If A is a closed term, its semantics does not depend on an assignment function. So,
we simply write [[A]]M instead of [[A]]M,a. It can be checked that the semantic interpreta-
tion of a term does not change while the term undergoes the standard λ-conversions: α-
conversion, β-conversion and η-conversion. For example, A is obtained from (λxβ. Axβ)
after η-conversion when x has no free occurrence in A. To show that both terms have the
same semantics, let us see how the semantics of (λxβ. Axβ) behaves. For any standard
modelM, any assignment function a and any b ∈ Dβ , we have:

[[λx.Ax]]M,a(b)
(iii)
= [[Ax]]M,a[b/x] (ii)

= [[A]]M,a[b/x]([[x]]M,a[b/x])
(i)
= [[A]]M,a[b/x](b)

By the assumption that x has no free occurrence in A, we have [[A]]M,a[b/x] = [[A]]M,a.
The latter means that [[A]]M,a(b) = [[λx.Ax]]M,a(b) for any b ∈ Dβ . Hence, the two inter-
pretations are the same functions (according to the axiom of extensionality of Zermelo-
Fraenkel set theory).

The semantics of the terms ¬At, At ∧ Bt and ∀xAt are classical. Based on them we
can define the terms with other classical operators.

Definition 6 (Logical operators). The following terms of type t are defined as:

(a) At ∨Bt
def
= ¬(¬At ∧ ¬Bt); Disjunction

(b) At → Bt
def
= ¬(At ∧ ¬Bt);2 (Material) Implication

(c) ∃xαAt
def
= ¬∀xα¬At; Existential quantification

To allow writing certain long terms in a compact way, we introduce several conven-
tions. If a term is formed by several λ-abstractions in a row, then we write a single λ
followed by a sequence of variables, e.g., we write λxyz.A instead of λxλyλz.A. We
will use a vector representation for sequences of terms. For instance, λx1x2. . . xn.A will
be abbreviated as λ #–x .A, where #–x = x1, ..., nn for some natural number n. By default, we
assume that variables in variable vectors or sequences are different from each other. The
same conventions work for several universal or existential quantifications, e.g., we write
∀ #–x .A instead of ∀x1∀x2...∀xn.A. Using the vector representation we abbreviate the terms
of the form AB1B2 . . . Bn, where A is applied to a sequence of n terms, by A

#–

B where

2We do not define the material equivalence separately in terms of (At → Bt)∧ (Bt → At) as it already
coincides with At = Bt.

2.0. PRELIMINARIES 19

#–

B = B1, . . . , Bn. Notice that
#–

B in A
#–

B is not a sub-term due to the left association of the
function application. On the other hand

#–

B can be rendered as a sub-term in
#–

BC, but we
will not use the latter notation in order to avoid confusion. For the types, the vector rep-
resentation is used to shorten the types of the form α1α2 . . . αn as a vector type #–α where
#–α = α1, . . . , αn. For example, (et)(et)t can be denoted as #–αt, where #–α = (et), (et).
We say that a vector term

#–

A = A1, . . . , An is of vector type #–α = α1, . . . , αn if Ai is of
type αi. The latter is written in short as

#–

A #–α . It is important to see the difference between
two usages of vector types depending the kind of term it accompanies:

#–

A #–α vs A #–α . In the
first example, #–α is read as a sequence of types while in the second example it represents
a single type.

The terms of type #–αt, where #–α is any (possibly empty) sequence of the types, are
of special interest. The semantic interpretation of such a term corresponds to an n-ary
function with values in Dt = {0, 1}, where n is a length of #–α . For instance, [[Aeet]]

M,a

is a function from De to DDet , which corresponds to a binary function from De × De to
Dt according to Schönfinkel’s trick. Since the functions to {0, 1} are characteristics for
sets and relations, the semantics of terms of type #–αt can also be interpreted as sets or
relations. Due to this connection, the types of the form #–αt are called as relational types,
members of D #–αt as characteristic or relational functions, and the terms of relational type
as relational terms.

For each relational type, denoted as #–αt, the set D #–αt of functions represents a Boolean
algebra isomorphic to the Boolean algebra over the powerset℘(Dα1 × ...×Dαn) where
#–α = α1, ..., αn. The partial pointwise order over functions of D #–αt is defined recursively.
For any f, g ∈ D #–αt, we have f ≤ g iff f(b) ≤ g(b) for any b ∈ Dβ , where #–α = β #–γ .
Notice that the defined partial order is induced by (≤) ofDt = {0, 1}. We denote the least
and greatest elements of D #–αt as 0 #–αt and 1 #–αt respectively; hence 0t = 0 and 1t = 1.

Relational terms are as flexible as their interpretations. In particular, it makes sense to
have Boolean connectives for relational terms similarly to formulas.

Definition 7 (Generalized Boolean connectives). The terms formed from relational terms
via the generalized Boolean connectives are defined as follows:

(e) −A #–αt
def
= λ #–x .¬(A #–αt

#–x #–α); Complement / gen. negation

(f) A #–αt uB #–αt
def
= λ #–x .A #–αt

#–x #–α ∧B #–αt
#–x #–α ; Meet / gen. conjunction

(g) A #–αt tB #–αt
def
= λ #–x .A #–αt

#–x #–α ∨B #–αt
#–x #–α ; Join / gen. disjunction

(h) A #–αt v B #–αt
def
= ∀ #–x (A #–αt

#–x #–α → B #–αt
#–x #–α); Subsumption / gen. implication

The semantics of the defined terms are intuitive. For instance, the interpretation of
A #–αt u B #–αt is the relation which is an intersection of the relations corresponding to the
interpretations of A #–αt and B #–αt. The rest of the connectives are also interpreted in terms
of the operations (e.g., ∪ and −) and the relation ⊆ over sets. Subsumption over the
terms of type #–αt can be interpreted as the pointwise order ≤ over the functions in D #–αt.
Generalized equivalence defined in terms of (A #–αt v B #–αt) ∧ (B #–αt v A #–αt) coincides
with A #–αt = B #–αt. Notice that the defined terms, except the one in (h), are of type #–αt.
When #–α and #–x are empty sequences, then these connectives coincide with the classical
propositional connectives. The usage of the classical connectives automatically hints that
the terms are formulas.

The notions of validity and entailment over TY terms is defined in a standard way:

20 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

Definition 8 (Standard validity & entailment). A formula At is standardly valid or s-
valid, written as �At, if [[At]]

M,a = 1 for any standard modelM and any assignment a.
A finite set of formulas Γ standardly entails or s-entails a finite set of formulas ∆, written
as Γ � ∆, if and only if for any standard modelM and any assignment a:

inf{[[At]]M,a | At ∈ Γ} ≤ sup{[[At]]M,a | At ∈ ∆}

The standard validity and entailment are automatically defined over the terms of re-
lational type α if 1 is replaced by 1α and ≤ is a partial pointwise order induced by ≤ of
{0, 1}. For brevity, instead of writing �A, we will simply write A and assume its truth
with respect to any standard model. In the similar way, for instance, writing [[Aα]] = 1α
assumes that α is relational and that �A holds.

We have defined TY logic in terms of the simply typed λ-terms and the functional
interpretation based on the standard models. In addition to the standard logical operators,
we have also introduced the generalized versions of Boolean connectives, which will
allow us to express various lexical relations between linguistic expressions of different
categories. The presented type theory could be easily interpreted on general, i.e. non-
standard, frames and models in the sense of Henkin (1950). The functional interpretation
of terms could also be replaced by relational semantics in the style of Muskens (1995).
But since these decisions do not play an important role for our work, we have adopted
the classical formulation of type theory. For instance, to obtain the intensional version
of TY1 it is sufficient to introduce an additional basic type s for world-time pairs.3 The
fact that the current work does not model intensionality is not the reason for omitting
the s type from TY logic. The reason is that the s type would unnecessarily complicate
some notations and induce redundant symbols in proofs and inference rules. Nevertheless,
while extending TY logic (e.g., in §2.2), we will mention how things would be in case of
the intensional version of TY.

2.0.2 Semantic tableau method
A semantic tableau method, or simply a tableau method, is a proof procedure which
proves theorems via refutation—a systematic attempt to find the counterexample for a
theorem.4 The tableau method is a popular proof system and many formal logics, e.g.,
first-order logic, modal logics and many-valued logics, have their own versions of it
(D’Agostino et al., 1999). Before discussing a tableau method for TY, we would like
to present a general intuition behind a tableau method and show how its propositional
version works.

As we already mentioned, the tableau method is a refutation procedure, in other words,
instead of showing that a formula F is valid, i.e. F is true in any model, the method tries
to show that its counterexample ¬F is unsatisfiable, i.e. ¬F is false in any model. In the

3The intentional logic TY2 (Gallin, 1975) obtained in this way remains the same as Montague (1970)’s
intesional logic but formulated in a more general and neat way.

4Beth (1955) and Hintikka (1955) simultaneously arrive to the idea of semantic tableau. Their versions
of semantic tableau were pertinent but formulated in an unpractical manner. Beth graphically represented
semantic tableau as nested two-column tables while Hintikka used a tree structure with set of formulas at
nodes. Later Lis (1960) and Smullyan (1968) streamlined the method. For more historical details about the
development of the tableau method see (D’Agostino et al., 1999, Ch. 1) by Fitting.

2.0. PRELIMINARIES 21

similar way, to show that a set of formulas P semantically entails a formula F , written
as P � F ,5 the tableau method starts searching for a situation where the counterexample
holds: all the formulas in P are true and F is false. Due to the search of the model
for a counterexample, semantic tableau can also be regarded as a satisfiability checking
procedure—given a formula, to find if there is a model that makes the formula true.

Let us now discuss how the tableau method actually searches a model for a coun-
terexample. Throughout this work, we employ a signed tableau, which means that each
formula in a tableau is paired with a truth sign, either true (T) of false (F), standing for the
truth value of the formula. A pair of a formula and a truth sign is called a tableau entry.
A signed tableau starts from an initial set of tableau entries. The construction process of a
tableau is usually depicted as a bottom up tree growing down, where the initial entries are
at the root of the tree. Based on the tree interpretation, the tableau entries are also called
as nodes.

The construction of a tableau is carried out by applying certain schematic inference
rules (i.e. tableau rules) to the tableau entries. A tableau rule consists of a set of an-
tecedent entries and (usually one or two) consequent branches, where each branch con-
sists of consequent entries (also called as succedent entries). The formulas in antecedent
and consequent entries are called antecedent and consequent formulas respectively. For
example, (T∧) in Figure 2.1 has a single antecedent entry T : X ∧ Y and a single conse-
quent branch consisting of T : X and T : Y entries. In general the antecedent formulas
of a rule are longer than the consequent ones, i.e., tableau rules are inferring shorter and
simpler formulas from longer and more complex ones. It is also usual that the consequent
formulas of a rule are sub-formulas of the antecedent formulas; the latter dubbed as the
analyticity property. These two common properties are necessary for efficient tableau
systems. Both properties are satisfied by the rules in Figure 2.1. A rule is applicable if
all its antecedent entries match to some entries on a tableau branch, and after the rule is
applied, the branch is augmented with the consequent branches of the rule.

P ∨ (Q ∧ ¬R) � (P ∨ ¬R) ∧ (¬Q ∨Q) (1)

The example of a tableau is presented in Figure 2.1. The tableau attempts to prove
the entailment in (1). So, it starts with the counterexample represented with the nodes
1 and 2 . The tableau is augmented with 3 and 4 after the rule (F∧) is applied to 2 ,
where (F∧) infers falsity of one of the conjuncts if the conjunction is itself false. The
alternative possibilities, like falsity of one of the conjuncts, are modeled via branching.
The tableau is further expanded with other rule applications following the annotations on
the branches. A branch becomes closed if the closure symbol × occurs there, otherwise
it is open. Closure is introduced by closure rules, e.g., by (×) in case of a propositional
tableau system. After a branch is closed, no rule applications are carried out on its nodes.
A tableau is considered closed when all its branches are closed, otherwise it is open.
The construction process continues until all tableau branches are closed or no new rule
application is possible.

A branch of a tableau corresponds to the set of all possible situations that satisfies
all the entries sitting on the branch, where a situation s satisfies an entry X : F if F is
evaluated as X with respect to s. For instance, the most left branch in Figure 2.1 models a

5In other words, P � F holds if and only if for every situation (i.e. model), F is true if all formulas in
P are true.

22 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

1 T : P ∨ (Q ∧ ¬R)

2 F : (P ∨ ¬R) ∧ (¬Q ∨Q)

3 F : P ∨ ¬R

5 F : P

6 F : ¬R

7 T : P

9 ×

8 T : Q ∧ ¬R

10 T : Q

11 T : ¬R

12 ×

4 F : ¬Q ∨Q

13 F : ¬Q
14 F : Q

15 T : Q

16 ×

F∨[3]

×[5,7] T∧[8]

×[6,11]

F∨[4]

F¬[13]

×[14,15]

F∧[2]

T∨[1]

F∨
F : X ∨ Y

F : X
F : Y

T∧
T : X ∧ Y

T : X
T : Y

T∨
T : X ∨ Y

T : X T : Y

T¬
T : ¬X

F : X

F∧
F : X ∧ Y

F : X F : Y

F¬
F : ¬X

T : X

×
T : X
F : X

×

Figure 2.1: An example of a closed propositional tableau. The tableau employs the rules
on the right. To clarify the tableau construction, the entries are labeled with IDs and edges
are annotated with rule applications, i.e. a rule and the IDs of the entries it applies to.

set of all possible situations where P ∨(Q∧¬R) and P are true and (P ∨¬R)∧(¬Q∨Q),
P ∨ ¬R, P and ¬R are false. Consequently, binary branching of a single branch can be
seen as splitting the corresponding set of possible situations into two exhaustive subsets.6

A closed branch does not represent any possible situation since it has the same formula
with true and false signs; see (×). Since all branches in a tableau share the initial entries,
during the tableau construction all and only those situations are considered that satisfy the
initial entries. Hence a closed tableau is understood as a failure to find a situation where
the initial entries hold.

When the tableau initiated with a set of entries in (2) closes, it is said that a sequent
P1, ..., Pm ` Q1, ..., Qn is correct.

{T : P1, ...,T : Pm, F : Q1, ...,F : Qn} (2)

A tableau system is sound if and only if all its rules make sound inferences. For exam-
ple, the rules presented in Figure 2.1 are all sound. As a result for a sound tableau system,

6It is important that the subsets are exhaustive, i.e. their union represents the initial set, but they are not
necessarily disjoint. For instance, when (T∨) is applied to an entry T : X ∨ Y on a branch, it introduces
two branches. Now if we consider the situations where both conjuncts X and Y are true, then all these
situations will be still modeled by both of the resulted branches.

2.1. AN ANALYTIC TABLEAU SYSTEM FOR NATURAL LOGIC 23

whenever a tableau closes, this means that the initial entries are inconsistent. In other
words, P1, ..., Pm ` Q1, ..., Qn yields the following (semantic) entailment P1, ..., Pm �
Q1, ..., Qn.7 That is why the closed tableau in Figure 2.1 serves as a proof for the entail-
ment in (1).

A tableau system is complete if and only if every open tableau guarantees consistency
of the initial nodes. Consequently, if the entailment P1, ..., Pm � Q1, ..., Qn is correct,
then P1, ..., Pm ` Q1, ..., Qn is correct too. The sound and complete tableau system for
propositional logic is represented by the set of rules in Figure 2.1.

We have introduced the main ideas behind the semantic tableau method by presenting
the propositional tableau system. We also introduced the terminology and the presenting
style of tableau proofs and rules. We hope that the current section provides sufficient
information about the tableau method in order to follow the further discussions of tableau
systems in the rest of the work. The readers who would like to know more about the
tableau method are referred to D’Agostino et al. (1999) which discusses tableau systems
for various formal logics.

2.1 An analytic tableau system for natural logic

The section describes Muskens (2010)’s analytic tableau system for a version of natural
logic. Since the previous section provided the preliminaries for two main components of
the approach, we focus here on the tableau system for natural logic. In particular, first
we present employed logical forms and show what makes them natural, then we describe
the format of tableau rules and demonstrate how they model various algebraic properties
of lexical elements (including monotonicity). With the help of tableau proofs, we show
the reasoning process over logical forms and the rules in action. But before introducing
the tableau system, we briefly present the goals and intuitions behind the natural logic
program and an analytic tableau method.

Natural logic is a vague notion (see § 1.3). It refers to logic that dwells in natural
languages and underlies reasoning over linguistics expressions. Capturing natural logic
roughly amounts to find logic that (i) is able to express linguistic semantics, (ii) charac-
terizes all the valid inferences of natural language and (iii) formulas of which resemble
linguistic surface forms. These three properties are tied up by the assumption that rea-
soning and the grammar of natural language are strongly related to each other in natural
logic (Lakoff, 1970). For instance, Aristotelian syllogistic logic can be considered as an
early version of natural logic while later developments in natural logic mainly follow van
Benthem (1986); Sánchez-Valencia (1991).8

On the other hand, a semantic tableau method (Beth, 1955; Hintikka, 1955) is a proof
system that proves a formula via attempting to refute it. If the refutation process fails then
the formula is considered proved. The intuition behind a tableau method is simple: a proof

7The latter entailment is also referred as a semantic sequent. Similarly to footnote 5, we say that the
entailment holds, i.e. the semantic sequent is correct, if and only if for any possible situation if all {Pi}mi=1

are true, then some Qk from {Qj}nj=1 is also true.
8For a brief history of natural logic see van Benthem (2008a). For recent contributions to natural logic

see, inter alia, Fyodorov et al. (2003); Zamansky et al. (2006); van Eijck (2007); MacCartney (2009); Moss
(2010b); Muskens (2010); Icard and Moss (2014).

24 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

starts with a counterexample and further expands it with the help of a predefined inventory
of inference rules. While each branch in a tableau is interpreted as a set of possible
situations, construction of a tableau proof can be seen as building possible situations
where the initial counterexample holds.

A combination of natural logic and a tableau system was recently proposed by Muskens
(2010). He adopts a fragment of higher-order logic based on the simply typed λ-calculus
as a version of natural logic. By default, Muskens employs the three-sorted type theory
TY2 of Gallin (1975) interpreted on the relational frames (Muskens, 1995, Ch. 1). But we
will use here the two-sorted type theory TY1, i.e. without the type s for world-time pairs,
with semantics over functional frames (see §2.0.1).9 The fact that the current work does
not model intensionality is not the reason for omitting s. The reason is that having the s
type would unnecessarily complicate some notations and introduce redundant symbols in
proofs and inference rules. Nevertheless, while extending TY1 logic (e.g., in §2.2), we will
mention how things would be in presence of the intensional type. In regard to interpre-
tation, our work does not hinge on the functional frames and it can be easily interpreted
on relational frames, too. Notice that every function can be represented as a relation. So,
for every function in a functional frame, there is a corresponding relation in a relational
frame; see (Muskens, 1995, Ch. 1) for further discussion.

In order to make a version of natural logic from TY1, Muskens introduces constant
terms in TY1 corresponding to lexical elements, e.g., womanet for “woman”. What gives a
natural appearance to the TY1 terms is that they contain no logical connectives and quan-
tifiers but only lexical terms, e.g., andttt and each(et)(et)t for “and” and “each”, respec-
tively. The logical forms, called Lambda Logical Forms (LLFs), are the TY1 terms that
are solely built up from variables and constant lexical terms with the help of application
and λ-abstraction. Below we give several examples of LLFs along with the correspond-
ing surface forms; the types of the lexical terms are in subscripts where p abbreviates
et corresponding to the property type. Common nouns and intransitive verbs are typed
as properties (et), i.e. functions from entities to propositions, and quantifiers as binary
relations over properties ((et)(et)t). The latter typing treats quantified noun phrases as
generalized quantifiers—a property over properties (et)t.

Some little bird flies (3)
some(et)(et)t (little(et)et birdet) flyet (3a)

Each man who dances and sings loves Mary (4)

eachppt
(
whoppp (andppp dancep singp) manp

)
(loveeet Marye) (4a)

Most men love some woman (5)

mostppt manp
(
λx. someppt wommanp (λy. loveeet ye xe)

)
(5a)

someppt wommanp
(
λx. mostppt manp (loveeet xe)

)
(5b)

Due to lexical terms and their compositions, which often follow a syntactic composition,
most of the sub-terms of LLFs correspond to the syntactic constituents of linguistic ex-
pressions. This facilitates the automatized generation of LLFs from surface forms, as

9As a reminder, TY1 is a version of TY logic which employs only two basic types: an entity type e and a
truth type t. On the other hand, TY2 uses an additional type s for world-time pairs.

2.1. AN ANALYTIC TABLEAU SYSTEM FOR NATURAL LOGIC 25

we will see in Chapter 3. As a result, LLFs resemble linguistic surface forms and the
approach can be considered as a contribution to the natural logic program. Moreover,
Muskens (2011) offers to interpret LLFs as the abstract terms of Abstract Categorial
Grammars (ACGs) (de Groote, 2001) or Lambda Grammars (Muskens, 2001, 2003).10

Muskens (2010) also observes that LLFs come close to the logical forms studied in gen-
erative grammar and found in (Heim and Kratzer, 1998).

Now as the language contains a plethora of lexical terms, the goal and a challenge
is to adequately model the natural semantics behind these terms. In order to reason over
LLFs, Muskens employs a signed version of an analytic tableau system, in short, a natural
tableau. A tableau entry is structured as a tuple (6) consisting of three parts: a main term,
a list of terms and a truth sign.11

LLF : argumentList︸ ︷︷ ︸
Binary format of a term

: truthSign (6)

While a truth sign is either true (T) or false (F), a main term and the elements in a list are
LLFs (with an exception that the list might contain a non-lexical constant term). Examples
of tableau entries are given in (3b–3e) where typing information is omitted and assumed
according to (3a). The interpretation behind a tableau entry F :

#–

A : X is that the term
F

#–

A, which is a result of applying the main term F to the elements of the argument list
#–

A
(in the order of the list), is evaluated as the truth sign X. In this way, the entries in (3b–
3d) carry the same underlying semantics: “some little bird flies” is true is some situation,
more formally [[(3a)]]M = 1 for some modelM. Notice that a main term applied to the
arguments in a list must result in a term of type t.

some (littlebird) fly : [] : T (3b)
some (little bird) : [fly] : T (3c)
some : [little bird, fly] : T (3d)

no : [little bird, fly] : T (3e)

The presented entries also show how the binary format allows to represent the identical
LLFs differently in a tableau. A dichotomy of a term into a main function term and
its argument list is useful for two main reasons. First, it allows to traverse through a
recursive structure of a term without analyzing the argument terms; see (3b–3d). Second,
an argument list can be used for collecting and aligning the shared arguments of function
terms. This makes it easy to contrast two LLFs by contrasting the terms in which they
differ from each other. For example, with the help of this technique, the entries in (3d)
and (3e) are rendered as contradictory by contrasting the quantifiers.

While presenting tableau rules, we will use a folder format that displays complex
tableau rules in a compact way; see the sample rule (RuleID) below. The folder for-
mat, in addition to the standard components like antecedents and consequent branches,

10Though recent developments of Abstract Categorial Grammars Winter and Zwarts (2011); Groote and
Winter (2015) introduce an abstract term for the closure operator while accounting event semantic. This in-
troduction distorts the correspondence between LLFs and the abstract terms. This issue is further discussed
in §2.3.1.

11Compared to the original format of tableau entries (Muskens, 2010), we reverse the order in entries. In
this way, we think, the new format reflects a natural order: an argument list is on the right of a main term
and in the end a truth sign evaluates the expression. This format is also better for readability when dealing
with real-world examples.

26 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

incorporates an optional bar for constraints over terms, types and truth signs. Constraints
usually have a form of equations. They help to present several related rules as a single
rule. By default, we assume that all typing information is carried from antecedents to
consequents unless stated otherwise. For simplicity we also omit the types of common
lexical terms and those that can be inferred from the well-formedness of entries. Inside a
rule, the following conventions for meta-variables are adopted:

RuleID

Antecedents

Left

Consequents

Right

Consequents

Constraints

◦ Uppercase meta-variables match any term;
◦ Lowercase meta-variables match only con-

stant terms;
◦ #–

C and #–c match possibly an empty se-
quence of terms and constants respectively;
◦ X matches either T or F while X stands for

a negation of X, where T = F and F = T.

There are around 30 tableau rules presented by Muskens, which account for the
Boolean connectives, determiners, the format of entries, monotonicity and related alge-
braic properties. For instance, the equivalence of the entries in (3b–3d) is licensed by the
rules (A>) and (A<) derived from the binary format of a term.

A>

A B : [
#–

C] : X

A : [B,
#–

C] : X

A<

A : [B,
#–

C] : X

A B : [
#–

C] : X

¬
notαα A : [

#–

C] : X

A : [
#–

C] : X

The rules for the Boolean connectives are similar to those of the propositional tableau.
In natural logic these connectives have their non-Boolean counterparts which are also
dealt with these rules; for example, in (¬), α can match t or et corresponding to a propo-
sitional or predicate negation respectively. Conjunctions for several types are modeled by
(∧T) and (∧F), where formally speaking α can be any relational type (i.e. a type with t
as its final type). For certain types there are special lexical terms for a conjunction, e.g.,
whoppp is used to express a conjunction over unary predicates as in (4a).

∧T
FαααA B : [

#–

C] : T

A : [
#–

C] : T
B : [

#–

C] : T
F ∈ {and, who}

∧F

FαααA B : [
#–

C] : F

A : [
#–

C] : F B : [
#–

C] : F
F ∈ {and, who}

×v
A : [

#–

C] : T
B : [

#–

C] : F

×
A v B

Muskens presents (×v) as the only closure rule: it identifies inconsistency and after
its application a tableau branch is closed. The subsumption relation A v B, also called
inclusion, is assumed to be provided from some Knowledge Base (KB); see §2.0.1 for the
formal definition of A v B.

The rules for quantifiers, e.g., (∀F) and (∃F), resemble the first-order logic tableau
rules for logical quantifiers ∀ and ∃. The rules either introduce a fresh constant term on
the branch or employ an old constant term from it: a term is old or fresh for a branch

2.1. AN ANALYTIC TABLEAU SYSTEM FOR NATURAL LOGIC 27

1 not((et)(et)t)(et)(et)t all(et)(et)t birdet flyet : [] : T
2 some(et)(et)t birdet (not(et)et flyet) : [] : F

3 not all bird : [fly] : T

4 not all : [bird, fly] : T

5 all : [bird, fly] : F

6 all bird : [fly] : F

7 all bird fly : [] : F

8 bird : [ce] : T
9 fly : [ce] : F

10 bird : [c] : F

12 ×

11 not fly : [c] : F

13 fly : [c] : T

14 ×

A>[1]

A>[3]

¬[4]

A<[5]

A<[6]

∀F[7]

×v[8,10] ¬[11]

×v[9,13]

∃F[2]

Figure 2.2: The closed tableau proves: not all bird fly ` some bird (not fly).
The types are explicated in the initial entries and they can be inferred for the rest of the
entries by following the development of the tableau. To show the development process
of the tableau, the entries and edges are labeled with IDs and source rule applications,
respectively.

28 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

depending on whether it is already on the branch or not, respectively. The Boolean and
quantifier rules in action are demonstrated by the tableau proof in Figure 2.2. For instance,
the application of (∀F) to 7 introduces a fresh constant ce not present on the branch before.
On the other hand, applying (∃F) to 2 employs the old constant ce already existing on the
branch before the rule application.

∃F
some A B : [] : F

A : [ce] : F B : [ce] : F
c is old

∀F
every A B : [] : F

A : [ce] : T
B : [ce] : F
c is fresh

∀T
every A B : [] : T

A : [ce] : F B : [ce] : T
c is old

∃T
some A B : [] : T

A : [ce] : T
B : [ce] : T
c is fresh

The natural tableau system proves logical relations and checks a set of terms on con-
sistency in a standard way. The example of a tableau proof is given in Figure 2.2. In order
to prove the entailment relation, the tableau starts with a counterexample: the conclusion
being false while the premise is true. In other words, the tableau starts building some
model M where the conclusion is false and the premise true. The tableau is closed as
both of its branches are rendered as inconsistent by (×v). The left branch is closed be-
cause the entity c is and is not bird at the same time. Another branch is also closed with
the similar reason. The closed tableau automatically makes the sequent in (7) correct.
Due to soundness of the employed rules, this implies (8). We regard the latter as a proof
of “not all birds fly” entailing “some bird does not fly”. Hereafter, each closed tableau
will be directly understood as a proof of a certain semantic relation over natural language
expressions.

not all bird fly ` some bird (not fly) (7)
not all bird fly � some bird (not fly) (8)

It is also possible to account for monotonicity calculus in the natural tableau system
(§1.3). For this it is necessary to know monotonicity properties of terms:

Definition 9 (Upward monotonicity). A function term F of type (#–αt) #–γ t is upward mono-
tone (↑), denoted as F ↑, if it satisfies one of the following equivalent properties:

∀XY
(
(X v Y)→ (FX v FY)

)
(9)

∀XY
(
F (X u Y) v (FX u FY)

)
(9a)

∀XY
(
(FX t FY) v F (X t Y)

)
(9b)

For any closed term N , the following terms are upward monotone: everyN , not every,
most N , some, some N , and N , or N , both N , red and many N .

2.1. AN ANALYTIC TABLEAU SYSTEM FOR NATURAL LOGIC 29

Definition 10 (Downward monotonicity). A function term F of type (#–αt) #–γ t is downward
monotone (↓), denoted as F ↓, if it satisfies one of the following equivalent properties:

∀XY
(
(X v Y)→ (FY v FX)

)
(10)

∀XY
(
F (X t Y) v (FX u FY)

)
(10a)

∀XY
(
(FX t FY) v F (X u Y)

)
(10b)

For any closed termN , the following terms are downward monotone: every, neitherN ,
no, no N , few N and not. The terms that are neither upward nor downward monotone
are: most, both, many, few and exactly n, where many and few have relative semantics
and n is some natural number.

Monotonicity properties are assigned to lexical items by the annotation functionA that
maps each lexical constant and an argument position to a set of some algebraic properties.
For example, the monotonicity properties of every is encoded asA(every, 1) = {↓} and
A(every, 2) = {↑}; we write these two equations shortly as every : (et)↓(et)↑t. Based
on such annotations on the types of lexical terms, it is possible to find out a monotonicity
feature of a term whose main function is a lexical term asA(FA, i) = A(F, i+ 1). Hence
we get that every man is upward monotone because A(every man, 1) = A(every, 2) =
{↑}.

Taking into account the monotonicity features of terms, Muskens presents several
rules where (↑v) and (↓v) are the most important ones among them. We present the rules
in a slightly modified way: in the constraints we specify a concrete value of P depending
on which function term is monotone. These two rules can emulate word substitution
based reasoning of monotonicity reasoning. Let us have a closer look at one of them.
(↑v) is a branching rule and its application yields two sets of situations. The left branch
corresponds to the situations where A v B does not hold, i.e. A 6v B holds, and the right
one to the situations where G 6v H holds. Notice that in the situations where A v B
holds, G 6v H is obtained automatically due to G↑ or H↑ and the proeprty (9). Hence
both branches cover all situations where the antecedent entries hold.

↑v

G A : [
#–

C] : T
H B : [

#–

C] : F

A : [
#–

D] : T
B : [

#–

D] : F
G : [P,

#–

C] : T
H : [P,

#–

C] : F

G↑ and P = B, or H↑ and P = A

↓v

G A : [
#–

C] : T
H B : [

#–

C] : F

A : [
#–

D] : F
B : [

#–

D] : T
G : [P,

#–

C] : T
H : [P,

#–

C] : F

G↓ and P = B, or H↓ and P = A

In order to illustrate how the rules work, we give a tableau in Figure 2.3. The tableau as
usually starts with a counterexample, 1 and 2 , in order to refute an entailment relation.
It is further expanded using (↑v) which takes into account the upward monotonicity of
one of the function terms. From the resulting branches, the left one is closed as it is
identified as inconsistent with the help of the closure (×v) rule. The right branch is
further developed by applying (↓v) to 5 and 6 . The rule application takes into account
the downward monotonicity of every or each. From the new branches, the right one
is closed as every v each is assumed in the KB while the left one is grown from 8
and 9 with the rules (∧T) and (∧F) treating who as a conjunction. In the end, each

30 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

1 every(et)(et)t (who(et)(et)et moveet personet) smirket : [] : T
2 each(et)(et)t (who danceet manet) smileet : [] : F

3 smirk : [] : T
4 smile : [] : F

7 ×

5 every (who move person) : [smile] : T
6 each (who dance man) : [smile] : F

8 who dance man : [c] : T
9 who move person : [c] : F

13 dance : [c] : T
14 man : [c] : T

15 move : [c] : F

17 ×

16 person : [c] : F

18 ×

10 every : [who dance man, smile] : T
11 each : [who dance man, smile] : F

12 ×

×v[3,4]

∧T[8]

×v[13,15] ×v[14,16]

×v[10,11]

↑v[1,2]

↓v[5,6]

∧F[9]

Figure 2.3: The closed tableau proves that “every person who moves smirks” entails “each
man who dances smiles”.

branch of the tableau is closed, i.e. the tableau is closed, which indicates a failure to find
a counterexample to the entailment relation; therefore the entailment relation is proved.

The tableau proof in Figure 2.3 also shows that the natural tableau system is able
to reason over phrases of the same syntactic category (not necessarily of sentential cat-
egory), e.g., common nouns, noun phrases or verb phrases. For instance, the sub-trees
in Figure 2.3 rooted with 5 – 6 and 8 – 9 are similar to the tableaux which prove that
“every person who moves” entails “each man who dances” and “man who dances” entails
“person who moves”, respectively.

Muskens presents additional tableau rules that model other algebraic properties. Some
of these rules are designed for the equivalent properties of monotone operators, e.g.,
(FuFT) and (FuFF) account for the properties in (9a) and (10b) respectively. Notice
that the monotonicity constraints are placed in the antecedents as superscripts.

FuFT

F ↑(and A B) : [
#–

C] : T

FA : [
#–

C] : T
FB : [

#–

C] : T

FuFF

F ↓(and A B) : [
#–

C] : F

FA : [
#–

C] : F
FB : [

#–

C] : F

2.1. AN ANALYTIC TABLEAU SYSTEM FOR NATURAL LOGIC 31

The rules (FutFF) and (FtFT) model a function F that is splitting (9b′) and have
meet (9a′) respectively. For any closed term N , some and some N are splitting while
every N and both N have meet. The properties (9a′) and (9b′) complement the implica-
tions in (9a) and (9b) up to equivalence.

∀XY
(
(FX u FY) v F (X u Y)

)
having meet (9a′)

∀XY
(
F (X t Y) v (FX t FY)

)
being splitting (9b′)

FutFF

F (and A B) : [
#–

C] : F

FA : [
#–

C] : F FB : [
#–

C] : F
F has meet

FtFT

F (or A B) : [
#–

C] : T

FA : [
#–

C] : T FB : [
#–

C] : T
F is splitting

The latter four rules and the analogous rules for the similar algebraic properties can be
seen as the rules discarding the Booleans operators: while antecedents contain Booleans,
the consequents are free from them. (uF) and (λu) are also introduced by Muskens to
give a wide scope to Booleans and make their removal easier. The rules are of distributive
characteristics. In (uF), the argument distributes over conjunct functions while in (λu)
λ-abstraction distributes over embedded conjuncts. Corresponding rules are available for
or and not too. For checking the soundness of these rules, the definition ofAuB suffices.

uF

(and F G)A : [
#–

C] : X

and (FA)(GA) : [
#–

C] : X

λu
(λx. and A B) : [

#–

C] : X

and (λx.A) (λx.B) : [
#–

C] : X

At this point we finish presenting the tableau rules of Muskens (2010). We have
discussed most of the rules. For the complete list of them we refer readers to the original
work. In the next sections we introduce additional rules having a formal logical nature,
similarly to the currently presented ones. In Chapter 4, we will introduce a bunch of rules
that are more of linguistic nature and which are necessary for wide-coverage reasoning.

We have presented the main ides behind the natural tableau of Muskens (2010) ac-
cording to which (i) LLFs play proxies for semantic representations and surface forms at
the same time and (ii) there is a tableau proof system that operates on LLFs. We have
showed how reasoning is carried out in the tree style and discussed a plethora of tableau
rules mainly concerning the Boolean operators and monotone functions.

Informally speaking, Muskens regards natural language as a formal logical language
and models natural reasoning in the same style as it is done for formal logics in terms
of proof systems. At first glance this approach is in the same vein as the proposal by
Montague (1970) that there is no important theoretical difference between natural lan-
guages and the artificial languages of logicians, but they differ in terms of focus. While
Montague concentrates on the complete translation of linguistic expressions into some
well-studied formal logic, Muskens focuses more on the development of the proof calcu-
lus over natural-looking LLFs rather than on translation.

32 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

The advantages of the natural tableau system are several. The underlining logic, due
to its higher-order nature, models certain linguistic phenomena in a more natural way than
first-order logic offers, e.g., it can easily account for generalized quantifiers (Montague,
1973; Barwise and Cooper, 1981), monotonicity calculus (van Benthem, 1986; Sánchez-
Valencia, 1991; Benthem, 1991; Icard and Moss, 2014) and subsective adjectives. Since
LLFs resemble syntactic trees of linguistic expressions to some extent, from the appli-
cation point of view, obtaining LLFs from raw text is cheaper than obtaining first-order
logic formulas. In particular, Chapter 3 will show that producing LLFs is almost parsing.
Moreover, the natural tableau handles reasoning over any finite number of entries, which
is beyond any alignment-based approach to reasoning and monotonicity calculus as such.

In the next sections we propose an extension of the natural tableau in several dimen-
sions: extending the type system of TY1, expanding the format of tableau entries and
increasing the inventory of tableau rules. These changes aim to make the natural tableau
more robust and suitable for reasoning over LLFs of wide-coverage text.

2.2 Extending the type system

We shall argue that the syntactic categories of lexical terms are valuable information for
guiding tableau construction. Unfortunately, the types built upon the e and t basic types
are not informative from syntactic point of view. As a solution, we offer a conservative ex-
tension of the TY type system by incorporating extra types motivated by natural language
syntax.

The presented natural tableau uses LLFs that are simply typed λ-terms over the type
system TSem where Sem = {e, t}. We shall refer the types of TSem as semantic types be-
cause they are semantically motivated and are usually used for typing the terms represent-
ing semantics. We argue that the semantic types are poor in guiding the rule applications
in the natural tableau system. The reason is that the semantic types treat several different
syntactic categories in a uniform way. For instance, nouns, intransitive verbs and preposi-
tional phrases (PPs) are usually treated as unary predicates of type et; transitive verbs and
prepositions as binary predicates of type eet; and adverbs, adjectives and relative nouns
as binary predicates of type (et)et.

Let us consider the node in (11) where het is some lexical term. Based only on its
type, we can infer that het is either a noun or a verb. The similar situation is with the
LLF in (12). It can represent at least two different syntactic constructions: an adjective-
noun pair (12a) or an adverb-verb pair (12b). But if we plan to unfold semantics of
verbs differently from nouns, e.g., to introduce an event entity for a verb, then based on
semantic types it is not clear how to decompose the terms. Obviously we would also like
to analyze the entries (13a) and (13b) in different ways as their LLFs model the semantics
of completely different constructions. But distinguishing the entries requires at least some
sort of mechanism for identifying prepositions.

het : [ce] : T (11)
A(et)et Bet : [ce] : T (12)

little(et)et birdet : [ce] : T (12a)
high(et)et flyet : [ce] : T (12b)

2.2. EXTENDING THE TYPE SYSTEM 33

a(et)et(beetce) : [ce] : T (13)
quietly(et)et (followeet johne) : [ce] : T (13a)

wife(et)et (ofeet johne) : [ce] : T (13b)

Syntactic information is also relevant for the project of natural logic. In particular,
there is a tight connection, or sometimes a coincidence, between the syntactic rules and
the rules relating surface forms to logical forms (Lakoff, 1970). Taking into account that
unfolding semantics of LLFs is a duty of tableau rules, they can also be rendered as the
rules that relate LLFs to some deeper semantic analyses. Hence, there is a good reason to
believe in the tight connection between tableau rules and syntactic rules. The latter makes
syntactic information crucial for tableau rules.

Yet another argument for the importance of syntactic information is motivated by
natural reasoning and its efficiency. For humans it is easy to use lexical relations like
hypernymy, synonymy and antonymy while reasoning on natural language text. Notice
that the lexical items in these relations are usually of the same syntactic category. For
instance, it is smarter to contrast two lexical terms that model lexical elements of the
same syntactic category than two lexical terms of the same semantic type. Thus, we
believe that the information about syntactic categories can guide to short proofs by giving
the priority to those rule applications that contrast or align the terms of the same syntactic
category.

While being in need of syntactic information, one can think of a scenario where each
lexical term comes with a Part of Speech (POS) tag. Then, it is possible to design some
procedure SyntCat that identifies the syntactic category of a lexical term hPOSα based on
its POS tag and type. Unfortunately, it is not easy to extend this procedure over compound
terms. For instance, in order to find out whether a term a(et)etbet is an adjective-noun (12a)
or adverb-verb (12b) pair, SyntCat needs to be able to calculate the syntactic category
from the POS tags and the types of the constituent lexical terms. Taking into account the
number of combinations of types, POS tags, and λ-term forming operations, the procedure
SyntCat becomes complicated. In the natural tableau, such an ad hoc and complex
procedure for determining the syntactic category of an LLF is unwanted for two main
reasons. First, the tableau rules heavily rely on LLF matching when properly identifying
their antecedent entries. Using SyntCat in the constraints of the rules will make the
natural tableau theory unnecessary cumbersome for presentation. Second, since one of
our goals is to implement the theorem prover for the natural tableau, we anticipate that
integration of SyntCat in the LLF matching procedure will cause significant inefficiency
in theorem proving.

Fine-grained efficient matching over LLFs is crucial for the natural tableau system.
Also as we have seen from the examples (11–13) that the semantic types are not enough
informative to smoothly guide the rule application in the wide-coverage version of natural
tableau. As a solution we suggest to extend the type system TSem by adding new basic
types to the semantic ones. Particularly, we introduce the basic syntactic types np (for
noun phrases), n (for nouns), s (for sentences), pp (for prepositional phrases) and pr

(for particles). The syntactic types are motivated by the basic syntactic categories NP ,
N , S and PP of Combinatory Categorial Grammar (CCG) (Steedman, 2000).12 Hence,
TSS

def
= TSem∪Syn is a new type system where Syn = {np, s, n, pp, pr}. The extension of

12The usage of CCG categories by the CCG parsers (Clark and Curran, 2007; Lewis and Steedman,

34 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

the type system automatically yields the extended type logic, referred as TYSS. A type is
called semantic or syntactic if it belongs to TSem or TSyn, respectively. A term is called a
syntactic term if it is built up only from syntactic terms, where constant and variable terms
of syntactic type are syntactic terms. A semantic term is also defined similarly. Hereafter,
we will use a boldface style for lexical syntactic terms. The syntactic LLF in (15) is a
syntactic counterpart of the semantic LLF in (14), where the vp type abbreviates (np, s).

no(est)(est)st birdest flyest (14)
nonp,vp,s birdn flyvp (15)

Interaction between the syntactic and semantic types is established by a subtyping
relation (<:). We say that α is a subtype of β, or β consumes α, and write α <: β.

Definition 11 (Subtyping). The subtyping relation <: is the smallest partial order over
TSS satisfying the following properties:13

(a) e <: np, s <: t, n <: et, pp <: et;

(b) For any α1, α2, β1, β2∈TSS, (α1, α2) <: (β1, β2) iff β1 <: α1 and α2 <: β2

According to the definition of subtyping, for example, vp <: et, i.e. the type of
intransitive verbs is subsumed by the type of unary predicates, and (np, vp) <: (eet), i.e.
the type of transitive verbs is a subtype of the type of binary predicates. In connection
with the subtyping relation, we also introduce an additional subtyping clause: (iv) for
TYSS frames in Definition 4 and (vii) for TYSS terms in Definition 2 (see §2.0.1):

(iv) if α <: β, then Dα ⊆ Dβ Subtyping for frames

(vii) if α <: β, then Tα ⊆ Tβ (i.e. each term Aα is of type β). Subtyping for terms

From the new subtyping clauses it follows that the termAαBβ is of type γ if α <: (β, γ).
Also both LLFs in (14) and (15) are of type t as the LLF in (15) is of type s, hence of
type t. Now a term can be of several types, where all these types for a complete lattice
ordered with (<:). For example, a term lovenp,vp, apart from an eet type, is of four other
types where (np, np, s) and eet are the least and the greatest types, respectively. We refer
this property of typing as multiple typing.

Now, with the help of the multiple typing, it is straightforward to apply lovenp,np,s marynp
directly to ce, and there is no need for introducing new terms loveeet and marye. For the
same reason it is not necessary to introduce manet for applying it to ce as mannce is already
a well-typed term. The latter examples show that syntactic terms not only carry the syn-
tactic information but also some of them emulate their semantic counterparts. For more
evidence consider the entries in (12a′–13b′) that are syntactic counterparts of the entries
in (12a–13b).

littlen,n birdn : [ce] : T (12a′)

2014a) and CCGbank (Hockenmaier and Steedman, 2007) will also facilitate the process of obtaining LLFs
with syntactic types. Notice that pr type corresponds to the CCG category PR for particles, which was
introduced later in rebanked CCGbank (Constable and Curran, 2009; Honnibal et al., 2010). We include
the pr type in the type system in order to make the natural tableau theory and prover compatible with the
CCG derivations allowing the PR category.

13In case of the intensional type system TY2, with the s type, the first clause would be altered according
to s <: st, n <: est and pp <: est.

2.3. EXTENDING THE TABLEAU ENTRIES 35

highvp,vp flyvp : [ce] : T (12b′)
quietlyvp,vp (follownp,vp johnnp) : [ce] : T (13a′)

wifen,n (ofnp,pp johnnp) : [ce] : T (13b′)

Nevertheless, sometimes it is inevitable to introduce a semantic term since its syntactic
counterpart is not able to give adequate semantics. For instance, if we have the entry
redn,ncarn : [ce] : T in a tableau branch, then one has to introduce the semantic term redet
in order to assert the redness of ce by the entry redet : [ce] : T, because the term redn,nce
is not well-formed. Notice that the introduction of a new term redet would be inevitable
in case of using only semantic types too as red(et)et cannot serve as a unary predicate.

Incorporating terms of syntactic and semantic types in one system can be seen as
putting two different representation levels together. These levels are very similar to
the abstract and semantic levels found in ACG (de Groote, 2001) or Lambda Grammar
(Muskens, 2003): the syntactic and semantic terms can be seen as the terms of the ab-
stract and semantic levels, respectively, while the subtyping relation as the reminiscence
of the type homomorphism from the abstract types to the semantic types. Along with the
similarities, there are also differences. Recent developments of ACG (Winter and Zwarts,
2011; Groote and Winter, 2015) employ the semantic type v for events and do not include
the abstract types for pp and pr. Also the terms consisting of both abstract and semantic
terms are not allowed in the ACG and Lambda Grammar formalisms.

We have shown that the semantic types cannot provide LLFs with the syntactic in-
formation, which is so important for fine-grained LLF matching, the project of natural
logic and efficient natural reasoning. As a solution we introduced the syntactic types,
borrowed from CCG formalism, in the type system. The syntactic types automatically
provide the terms with the syntactic information, and at the same time, many semantic
terms can be emulated by the syntactic terms. As a result we augment LLFs with the syn-
tactic categories without losing their natural appearance. Moreover, the tableau rules and
proofs presented in the previous section are accommodated in the extended type theory in
a straightforward way. For the demonstration, compare the tableau proof for the TY1 terms
(Figure 2.2) to the proof for the corresponding TYSS terms (Figure 2.7 in Appendix A).

The proposed solution gives robustness to the natural tableau. Now it is simpler to
obtain LLFs with syntactic types from the CCG derivations produced by CCG parsers.
Moreover, LLFs with syntactic types offer much more facilities for natural language gen-
eration compared to information-poor semantic types. For example, if the natural tableau
system generates conclusions from premises or a counterexample for textual entailments,
it will be easier to generate linguistic expressions from LLFs of syntactic types.

2.3 Extending the tableau entries
An adjunct-head construction is one of the most common syntactic construction in natural
languages. It is crucial to account for this phenomenon in the natural tableau system. In
this section, we argue for adding an extra slot to the format of tableau entries. The new
slot will serve as a storage for modifiers of nouns and verbs. The storage will make it
easy to link a remote modifier to its head by saving it temporarily. This technique also
contributes to accommodate event semantics in LLFs. We start with discussing adverbial

36 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

phrases that modify verb phrases (VPs). In particular, we show how event semantics can
be integrated in LLFs and the tableau system. Then we demonstrate how modifiers-noun
pairs can be accommodated in the proposed approach. As we will see in the end, the
offered solution contributes to natural appearance of LLFs, the reasoning power of the
tableau system and efficiency of theorem proving.

2.3.1 Event semantics and LLFs
We start with a discussion on the problems of accommodating event semantics in LLFs.
First, two approaches for pairing the standard compositional semantics and event seman-
tics, by Winter and Zwarts (2011) and Champollion (2010), are discussed. Then we argue
that the representations from these approaches are not appropriate for being LLFs. The
reason is their unnatural appearances and unnecessarily complicated type systems.

Main properties of modifiers are their optionality and the ability to iterate. The it-
eration of adverbial modifiers is demonstrated in (16). Semantics of the sentences with
adverbial modifiers are elegantly modeled in first-order logic (16a) using Davidsonian
events (Davidson, 1967). Each verb is represented by an event entity that is related to its
participants via the corresponding verbal predicate. Adverbial modifiers then act as unary
predicates and modify the event entity. By modeling adverbials as conjuncts, Davidsonian
semantics easily captures the optionality and iteration properties of adverbial modifiers
and the entailments licensed by these properties. A refined version of Davidsonian se-
mantics (Parsons, 1990) is also presented in (16b). This type of analysis, often called
neo-Davidsonian, directly accounts for optional verbal arguments: a verbal argument
modifies the event via the corresponding thematic relation, e.g., AGENT, which itself is
just another property of the event. In the end, there is no need for several verbal predi-
cates differing in terms of the argument structures in order to model a verb with optional
arguments, e.g., “eat” in “John ate” and “John ate an apple”.

John jogged slowly in Tilburg at midnight (16)

∃e
(
jog(John, e) ∧ slow(e) ∧ in Tilburg(e) ∧ at midnight(e)

)
(16a)

∃e
(
jog(e) ∧ AGENT(John, e) ∧ slow(e) ∧ in Tilburg(e) ∧ at midnight(e)

)
(16b)

∃-CLOSV,S
(

AT MIDNIGHTV,V (IN TILBURGV,V (SLOWLYV,V (JOGNP,V JOHNNP)))
)

(16c)

[[CLOSURE]]
(
[[AG]] [[john]]

(
[[slowly]]

(
[[in Tilburg]]

(
[[at midnight]] [[jog]]

))))
(16d)

at midnightvp,vp
(

in Tilburgvp,vp(slowlyvp,vpjogvp)
)

Johnnp (16e)

Pairing (neo-) Davidsonian event semantics and compositional semantics poses two
challenges: the event modification and the event quantification problems (Winter and
Zwarts, 2011). The event modification problem is about making sure that an adverbial
modifies a correct event entity and no other entities. The event quantification problem
concerns a correct scope of an event quantifier, for instance, to get correctly the narrow
scope of an event quantifier, as in (17a) for the sentence in (17). Notice that the wide
scope of the event quantifier in (17a) would give wrong semantics for (17).

Nobody kissed Mary passionately (17)

¬∃x
(
∃e
(
kiss(Mary, x, e) ∧ passionately(e)

))
(17a)

¬∃x
(
∃e
(
kiss(e) ∧ AGENT(x, e) ∧ THEME(Mary, e) ∧ passionately(e)

))
(17b)

2.3. EXTENDING THE TABLEAU ENTRIES 37

NOBODY(NP,S),S

(
λx.∃-CLOSV,S(PASSIONATELYV,V (KISSNP,NP ,V MARYNPxNP))

)
(17c)

[[CLOSURE]]
(
[[AG]] [[nobody]]

(
[[TH]] [[Mary]]

(
[[passionately]] [[kiss]]

)))
(17d)

nobodyvp,s
(

passionatelyvp,vp (kissnp,vp Marynp)
)

(17e)

Since we plan to model adverbials, we would like to incorporate event semantics and
its expressive power into the tableau system. But what the LLFs, e.g., of (16) and (17),
should look like then? One of the key features of LLFs is to be similar to linguistic forms
and therefore easily obtainable from them. For example, it is obvious that first-order logic
formulas are not suitable candidates for LLFs: (16a) and (16b) are far from the linguistic
form in (16). Since we have emphasized the tight connection between LLFs and the
abstract terms of ACG, it is worthy to consider them as possible candidates for LLFs.

An abstract term of ACG that can yield (16a) or (16b) on the semantic level is given in
(16c).14 Notice that a saturated verb is of abstract type V and its semantic interpretation
is a set of events. The terms of type V are converted into sentential terms with the help of
the existential closure operator (∃-CLOS) of type (V, S). The semantic counterpart of the
operator converts a set of events into a truth value, respectively. On the linguistic level
(i.e. pheno-level), the operator is treated as vacuous. The existential closure operator
does not always take the widest scope as it is in (16c). In opposite, it takes the narrowest
scope compared to other quantifiers, e.g., see the abstract term in (17c). Unfortunately, we
are not aware of any work that identifies the existential closure operator with any lexical
element that fits into the compositional architecture of ACG. For this reason, we find the
terms similar to ∃-CLOS as a hinder for a natural appearance of LLFs. Moreover, from
the natural logic point of view, the distinction between the types of saturated verbs and
the sentences can be seen as an unnecessary complication of logical forms.

Another noteworthy combination of standard compositional semantics and event se-
mantics is due to Champollion (2010, 2014). According to his approach, the modifiers and
arguments of a VP are both treated as VP modifiers, where the arguments are augmented
with thematic relations.15 The semantics of (16) and (17), represented in first-order logic
as in (16b) and (17b), are obtained by combining the semantic recipes of the lexical en-
tries in (16d) and (17d), respectively. We refer the latter structures as compositional terms
since they express the instructions for semantic composition. The continuation of an event
is closed by the closure operator [[CLOSURE]] of type vt and the term of truth type is re-
turned in the end. Unlike ∃-CLOS of Winter and Zwarts (2011), the operator [[CLOSURE]]
always applies last; for the contrast compare (17c) to (17d).

We do not consider the compositional terms of Champollion (2014) as adequate prox-
ies for LLFs at least for two reasons. First, the terms contain abstract lexical items, e.g.,
AG and TH, corresponding to thematic relations. These abstract items make the terms un-

14Winter and Zwarts (2011) and Groote and Winter (2015) model event semantics in ACG using the
additional abstract type V that translates into the semantic level as the type (vt), where v is the event type.
After the introduction of the type V , abstract terms for verbs and generalized quantifiers now differ in their
final type. The verbs return V (e.g., JOGNP,V) and the generalized quantifiers S (e.g., NOBODY(NP,S),S).

15Every subcategorization of VP is semantically interpreted as a generalized quantifier over events, i.e.
of semantic type ((vt)t), where v is the type for events. In other words, they denote continuations of events.
VP modifiers are of type ((vt)t)(vt)t consequently. The narrowest scope of an event quantifier is achieved
by interpreting VP projections as a continuation of events and by including the existentially quantified event
in the denotation of a lexical verb.

38 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

natural and difficult to be automatically obtained from the English text.16 Second, though
the approach of Champollion (2014) is quite powerful, we find the types in compositional
terms too complex for natural reasoning. It is not obvious that reasoning over composi-
tional terms is more robust or powerful than reasoning over the first-order logic formulas,
e.g., (16b) and (17b), which are directly obtained from them by substituting the entries
with the semantic denotations.17

We have examined two semantic representations, originating from Winter and Zwarts
(2011) and Champollion (2010), as the candidates for LLFs. Our main objections are
related to the abstract non-lexical elements they employ and the type systems that are un-
natural for natural reasoning. In the next subsection, we propose our alternative solution
to incorporate event semantics into LLFs.

2.3.2 Modifier list and event semantics

The main difficulty in encoding event semantics in LLFs is that events are abstract entities
that are usually invisible on the surface level. On the other hand, we want LLFs to resem-
ble surface forms in order to capture some logical relations in a swift way and to be easily
obtainable for surface forms. Here, we will show that this is possible. In particular, we
induce event semantics from LLFs in a procedural way while LLFs still having a natural
appearance, e.g., (16e) and (17e).

John jogged slowly in Tilburg at midnight (16)

at midnightvp,vp
(

in Tilburgvp,vp(slowlyvp,vpjogvp)
)

Johnnp (16e)
Nobody kissed Mary passionately (17)

nobodyvp,s
(

passionatelyvp,vp (kissnp,vp Marynp)
)

(17e)

We can achieve pairing LLFs and event semantics with the help of the tableau system.
There are basically no restrictions on tableau rules except that the consequent entries of
a rule have to be semantically entailed from the antecedent entries. So, it is possible that
tableau rules introduce event entities, like fresh entities, during tableau construction. In
order to give the intuition what these rules might look like, let us first consider the rule
(EV′T), where αk stands for a vector type that consists of the k number of αs. The rule has
a dark gray background as it represents a temporary rule that serves as a demonstration.

16Maybe for the natural languages that have a rich case system, the lexical items for thematic relations
can be successfully identified as cases markers. But for English, which almost lost its case system, these
lexical items indeed come out of nowhere.

17Additionally, the monotonicity properties of generalized quantifiers (GQs) are not accessible in com-
positional terms of Champollion (2014) as noun phrases (NPs) are arguments of thematic relations. In order
to enable the monotonicity properties of GQs, one can type-raise NP arguments from (et)t to

(
((et)t)cc

)
cc,

where c abbreviates (vt)t. In this way, [[AG]] [[nobody]] is replaced by [[nobody]]∗ [[AG]], where [[nobody]]∗

is a type raised version of [[nobody]]. This leads to more complicated types for NPs.

2.3. EXTENDING THE TABLEAU ENTRIES 39

EV′T

bnpk,s : [c1, ..., ck] : T

bn : [ve] : T
role1eet : [v, cke] : T

...
rolekeet : [v, ck−1e] : T

ve is fresh, 0 < k ≤ l and the verb b has
the argument structure [role1, ..., rolel]

The rule demonstrates how neo-Davidsonian event semantics can be accommodated in the
tableau system. The antecedent entry represents a lexical verbal term applied to its con-
stant arguments. Roughly speaking, the entry is interpreted as the first-order logic formula
∃x.b(x, c1, ..., ck), where b(x, c1, ..., ck) is a Davidsonian predicate. The rule introduces a
fresh event entity ve for which the property bn is asserted, where bn is a nominalization of
bnpk,s. For instance, if bnpk,s = kissnp,np,s, then the term kissn corresponds to the property
of “being a kissing event”.18 Based on the assumption that the thematic roles associated
with a verb are provided by some lexicon or a signature, (EV′T) links the event entity to
the arguments via the thematic relational terms corresponding to those roles. Notice that
the last argument ck is associated with the first role because we assume that the order in
the argument list follows standard syntactic analyses: a subject is the last to form a con-
stituent with a VP. In case one of the arguments ci is of type np, its semantic counterpart
ce is linked to the event entity.

Since (EV′T) decomposes the antecedent into a conjunction of k + 1 entries, the coun-
terpart rule (EV′F), which applies to the entry with the false sign, will have k+ 1 branches.
Each of the branches will contain exactly one consequent of (EV′T) with the false sign.
Moreover, the rule will be a so-called consumer (§5.2.1), i.e. a γ-rule, which means that
it becomes applicable every time a fresh entity constant is introduced on the branch. Due
to several branches and its consumer nature, (EV′F) is extremely inefficient from theorem
proving perspective: for transitive verbs it is a γ-rule with three branches.

The solution with (EV′T), which accommodates event semantics in LLFs, leads to cor-
rect event quantification for the following reasons. (a) The event entity is introduced from
the verb if and only if the verb occurs in a true context (i.e. with the true sign). In this way,
no event entity is introduced for (17e) with T. (b) The event quantifier has the narrowest
scope as the event entity is always introduced from the entry that has a lexical verb and
the constant arguments.

In general, a verb can be modified by finitely many adverbials. On the other hand,
(EV′T) introduces an event entity from the true entry with a verb as its main LLF. This
means that first we have to strip adverbials away from the head verb and then apply the
rule that introduces an event entity. But how can we retrieve discarded adverbials back in
order to modify the introduced event entity? It is crucial to save the discarded adverbials

18Notice that the term jogn differs from jogvp. While jogn encodes the property of being a jogging event,
jogvp is understood as the property of being jogging. In Chapter 3, we obtain LLFs where each lexi-
cal term will be accompanied with a POS tag from https://www.cis.upenn.edu/˜treebank/
tokenization.html. Therefore, jogn and jogvp are actually abbreviations of the terms jogNNn and jogVBvp,
respectively. Hence their corresponding terms of type et, namely jogNNet and jogVBet , are also different terms.

https://www.cis.upenn.edu/~treebank/tokenization.html
https://www.cis.upenn.edu/~treebank/tokenization.html

40 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

somewhere and retrieve it back when needed. For this reason, we introduce an extra slot,
called a memory or modifier list, in a tableau entry and as a result we get a new ternary
format:

memoryList : LLF : argumentList︸ ︷︷ ︸
ternary format of a term

: truthSign (18)

Similarly to the argument list, which keeps argument terms, the memory list can be
seen as keeping function terms. From the linguistic perspective, the parts of the ternary
format can be seen as trichotomy between modifiers, a head and arguments. Concerning
event semantics, we will use the memory list as a storage for the adverbials that indirectly
modify a verb. Empty memory lists will be conventionally omitted from tableau entries.

In order to reduce LLFs to the ternary format, we introduce the modifier pushing (M>)
and modifier pulling (M<) rules. Notice that the orientation of the less-than sign shows the
direction the term is carried in. The rules can operate on any function term, but we call it
modifier rules as they are mainly to shift modifiers.

M<

[
–

M] : A H : [
#–

C] : X

[
–

M,A] : H : [
#–

C] : X

M>

[
–

M,A] : H : [
#–

C] : X

[
–

M] : A H : [
#–

C] : X

The rules are the analogy of the argument pulling (A<) and pushing (A>) rules from §2.1:
they carry modifier terms back and forth to a memory list. The following proposition
holds for the ternary format and simply typed λ-terms:

Proposition 1. Using the rules (A<), (A>), (M<) and (M<), a typed term can be reduced
to several ternary formats and from each of these ternary formats exactly one term is
obtainable, the initial term.

Proof. Consider a term in one of the ternary forms [
–

M,m] : H : [c,
#–

C] where two pos-
sibilities for reconstruction can arise. Due to typed terms, there is only one scenario of
putting the terms back to H: either we can pull only c or only m.

For example, the term in (16e) is possible to be reduced to (16e′) and (16e′′) while
from them we can recover only one LLF, which is obviously the original term (16e). In
other words, Proposition 1 says that it is safe to carry out the pulling and pushing rules as
the semantics of entries are not changed by these rules.

[at midnightvp,vp, in Tilburgvp,vp, slowlyvp,vp] : jogvp : [Johnnp] (16e′)
[at midnightvp,vp] : in Tilburgvp,vp : [slowlyvp,vpjogvp, Johnnp] (16e′′)

For the semantic analysis, we are interested in the ternary forms like (16e′) as the
trichotomy is relevant from the semantic or syntactic viewpoints. Now it seems intuitive
how to get the event semantics with proper event modification from an LLF in the ternary
format. The event introducing rule (EV′T) has to take into account the modifier terms
in the memory list of an antecedent and assert them for the introduced event entity. To
demonstrate this, we upgrade (EV′T) to (EVT), which now handles the memory list:

2.4. EXTENDING THE INVENTORY OF RULES 41

EVT

[M1
vp,vp, ...,M

j
vp,vp] : bnpk,s : [c1, ..., ck] : T

[A1
n,n, ..., A

j
n,n] : bn : [ve] : T

role1eet : [v, c1e] : T
...

rolekeet : [v, cke] : T

ve is fresh, 0 < k ≤ l, the verb b has the argument
structure [role1, ..., rolel], for i = 1, ..., j
M i

vp,vp = pinp,vp,vpH
i or M i

vp,vp is lexical and
Ain,n = pinp,n,nH

i or Ain,n = der(JJ,M i
n,n), respectively

Similarly to (EV′T), the rule (EVT) introduces bn, the nominalization of the verb term
bnpk,s, and asserts it for the event entity. It also introduces the memory list with the nom-
inal modifiers [Ain,n]

j
i=1 that corresponds to the list of adverbials [M i

vp,vp]
j
i=1. Here, we

assume that the adverbials in the memory list are either lexical terms or PPs. A nominal
modifier is obtained from an adverbial PP by changing the type (np, vp, vp) of a preposi-
tion with (np, n, n). To obtain an adjective from a lexical adverb, we assume a derivation
function der.19 The consequent entry with bn and the memory list is further analyzed
by additional rules for modifier-nominal pairs (presented in § 2.4.1). The usage of the
newly introduced rules and the memory list is illustrated by the tableaux in Figure 2.4 and
Figure 2.5. The empty memory list is conventionally omitted from the entries.

We have extended the format of tableau entries with the additional list, called a mem-
ory or modifier list. The extension is conservative and backward compatible as the old
format can be obtained by having the empty memory list. The memory list facilitates
linking a remote modifier to its head. The new rules (M<) and (M>) enable to save and
discharge terms from the list. The rule for events (EVT) employs the memory list and re-
duces the analysis of modifier-VP pairs to the analysis of modifier-noun pairs. In the next
section, we will present the additional rules that operate on the elements of a memory list.

2.4 Extending the inventory of rules
An inventory of tableau rules represents a reasoning power for tableau systems. In order
to make the natural tableau more powerful and robust, we add additional rules to the in-
ventory. In the previous sections, we have presented the tableau rules of a formal nature,
so-called formal rules. They are abstract in the sense that they do not depend much on
concrete lexical entries. The formal rules usually model general syntactic constructions,
algebraic properties, and formal properties licensed by the λ-calculus and the format of
tableau entries. For example, (M>) and (M<) are examples of formal rules. In this section,
we continue introducing formal rules. In particular, we present several rules concerning
the new format of tableau entries and the algebraic properties of modifiers such as subsec-
tivity and commutativity. We also extend the formal language of TYSS with the exclusion

19The function der is a partial function. It takes a lexical term tPOS1 and a POS tag POS2; if there exists
the lexical term uPOS2 that is a derivational form of tPOS1, then it returns uPOS2; otherwise it is not defined for
the input. For example, der(JJ, slowlyRB) = slowJJ while der(IN, slowlyRB) is undefined.

42 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

1 at midnightvp,vp
(

innp,vp,vpTilburgnp(slowlyvp,vpjogvp)
)

Johnnp : [] : T

2 at midnight
(

in Tilburg (slowly jog)
)

: [John] : T

3 [at midnight] : in Tilburg (slowly jog) : [John] : T

4 [at midnight, in Tilburg] : slowly jog : [John] : T

5 [at midnight, in Tilburg, slowly] : jog : [John] : T

6 [at midnightn,n, innp,n,nTilburgnp, slown,n] : jogn : [ve] : T
7 agenteet : [ve, Johne] : T

A>[1]

M<[2]

M<[3]

M<[4]

EVT[5]

Figure 2.4: The tableau demonstrates the usage of (M<) and (EVT) and shows how they
unfold the semantics of (16e). For better demonstration of (EVT), we treat in Tilburgvp,vp
as a compound term. It is assumed that jogvp has the argument structure [agent].

1 non,vp,s personn
(

passionatelyvp,vp (kissnp,vp Marynp)
)

: [] : F

2 person : [ce] : T
3 passionately (kiss Mary) : [ce] : T

4 [passionately] : kiss Mary : [c] : T

5 [passionately] : kiss : [Mary, c] : T

6 [passionaten,n] : kissn : [ve] : T
7 agenteet : [v, c] : T

8 themeeet : [v, Marye] : T

NOF[1]

M<[3]

A>[4]

EVT[5]

Figure 2.5: The tableau shows how (M<) and (EVT) contribute to decompose the se-
mantics of negated (17e). For transparency and simplicity we substitute nobodyvp,s with
non,vp,s personn. It is assumed that kissvp has the argument structure [agent, theme].

2.4. EXTENDING THE INVENTORY OF RULES 43

(|) and exhaustion (`) relations since they are as crucial for natural reasoning as the sub-
sumption/inclusion relation (v). The rules modeling various aspects of these relations are
presented in the end of the section.

2.4.1 Rules for modifiers and the memory list
In §2.3, we have already presented the rules (M>) and (M<), which deal with the memory
list. It has been also shown how to reduce adverbial-verb constructions to the modifier-
noun constructions. Following this line, we plan to present the rules that process the
modifiers in a memory list. Before doing so, we introduce several algebraic properties,
like subsectivity and intersectivity, of modifier terms, i.e. terms that are of type (α, α).
While doing so, we consider only compositional modifier-head constructions; therefore,
the phrases like “hot dog”, “green thumb” or “red tape” with their non-compositional
meanings are ignored.

Definition 12 (Subsectivity and intersectivity). Given a modifier term Aα,α, where α is a
relational type, we say that Aα,α is subsective, written as A⊂, if and only if it satisfies:

∀X(Aα,αXα v Xα)

A modifier term that is not subsective is non-subsective. We say that Aα,α is intersective,
written as A∩, if and only if it satisfies:

∃A′∀X(Aα,αXα = A′α uXα)

A modifier term that is not intersective is non-intersective.

Corollary 1. Every intersective term is subsective.20

Proof. Follows from the fact that ∀X∀Y (Xα u Yα v Yα).

Corollary 2. Every intersective term is upward monotone in its first argument position.

Proof. Follows from ∀XY F
(
(Xα v Yα) → ((Fα u Xα) v (Fα u Yα))

)
, where the

latter is licensed by the upward monotonicity of the infimum inf operator defined on the
Boolean algebra {0, 1}.

Based on the definitions, we consider the terms roundn,n, redn,n, plasticn,n and Dutchn,n as
intersective, hence subsective too. The terms that are subsective and non-intersective are
talln,n, skillfuln,n, successfuln,n and slown,n. This is because a “tall grass” is not tall in general
but tall relatively to grass, a “skillful surgeon” is not skillful in everything but in surgery,
a “successful sportsman” is successful in sports and not necessarily in any other activity,
a “slow jog” is not slow event in general since it is fast in terms of a movement. On the
other hand, the terms possiblen,n, apparentn,n and former are non-subsective modifiers: not
every “possible mistake” or “apparent mistake” is a “mistake” and a “former student” is
not a “student”. We will come back to these properties when presenting the tableau rules
for modifiers in §4.1.2.

20Due to this relation, sometimes subsective adjectives are referred as non-intersective but subsective in
order to distinguish them from intersective adjectives, which are also subsective.

44 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

For the semantic perspective, sometimes the order in which modifiers modify a head is
irrelevant. Though for syntax it might matter. For instance, English has a preference to a
certain order of modifiers on the surface level. For instance, “round blue toy” is preferred
to “blue round toy”, or “relational modifier term” to “modifier relational term”. But in
both cases, the order of modifiers are usually semantically irrelevant as we are talking
about a “round and blue toy” or a “relational and modifier term”, respectively. In order to
capture the irrelevance of the order of modifiers, we define the notion of commutativity:

Definition 13 (Commutativity). We say that relational modifier termsAα,α andBα,α com-
mute with respect to Nα and define it as:

A
N B
def
= (ABN = BAN)

We say that Aα,α and Bα,α commute and define it as:

A
 B
def
= ∀Xα(A
X B)

Corollary 3. Every two intersective terms commute.

Proof. Follows from the free order of elements in the argument of the infimum inf oper-
ator defined on the Boolean algebra {0, 1}.

For example, the following terms commute bluen,n
 roundn,n as they are intersective.
An example of a pair of subsective terms that are non-intersective but still commute is:
talln,n
 skullfuln,n. Additionally taking into account that talln,n is subsective, we get the
following relations (informally written as a chain):

talln,nskullfuln,nsurgeonn = skullfuln,ntalln,nsurgeonn v talln,nsurgeonn (19)

In this way, commutativity helps to capture direct modification of the head surgeonn by
the remote modifier talln,n. Obviously not all modifiers commute, e.g., formern,n and
successfuln,n do not commute as a “former successful student” is not necessarily a “suc-
cessful former student”.

After defining the relevant properties of modifiers, we present the rules that operate
on the modifiers of a memory list. The first rule, (
M), swaps the adjacent terms in the
memory list that commute. Since terms commute, this means that the terms are modifiers
of the same type. The rule (⊂MT) concerns subsective modifiers. If the initial term in the
list is a subsective modifier, marked with ⊂ in a superscript, then discarding it preserves
the truth. The soundness of (
M) and (⊂MT) is obvious if we go from the ternary format
back to LLFs and use the definitions for commutative and subsective terms.

M

[
#–

A,M,M ′,
#–

B] : H : [
#–

C] : X

[
#–

A,M ′,M,
#–

B] : H : [
#–

C] : X
M
M ′

⊂MT

[M⊂,
#–

A] : H : [
#–

C] : T

[
#–

A] : H : [
#–

C] : T

2.4. EXTENDING THE INVENTORY OF RULES 45

The rules (
 M) and (⊂MT) are fundamental rules and their combinations can lead
to robust and linguistically relevant inference rules. One of such rules is (⊂
T). If the
modifier M is surrounded by other subsective modifiers and commutes with all modifiers
in the path to an H , then applying M directly to H upholds the truth. To show that a
list comprises only subsective terms, we mark it with ⊂ in a superscript. The rule has a
gray background to indicate that it is a combination of other rules. The tableaux in Fig-
ure 2.8 (Appendix A) demonstrate how (⊂
T) processes nominal and verbal modifications
uniformly.

⊂
T

[
#–

A⊂,M,
#–

B⊂] : H : [
#–

C] : T

MH : [
#–

C] : T

∀E ∈ #–

B (M
 E)

×M

[
–

M] : A : [
#–

C] : T
[

–

M] : B : [
#–

C] : F

×
A = B, or A v B and

–

M↑

The tableau in Figure 2.8b serves as an evidence that, with the help of the memory list
and the introduced rules, it is not necessary to appeal for event semantics in order to model
optionality or disposition of verbal modification. In particular, with the new tableau rules,
it is possible to capture the equivalence of (16e) and (16f)21 and the entailments of (16g)
from (16e) or (16f) without introducing event entities.

∃e
(
jog(e) ∧ AGENT(John, e) ∧ slow(e) ∧ in Tilburg(e) ∧ at midnight(e)

)
(16b)

at midnightvp,vp
(

in Tilburgvp,vp(slowlyvp,vp jogvp)
)

Johnnp (16e)

in Tilburgvp,vp
(

at midnightvp,vp(slowlyvp,vp jogvp)
)

Johnnp (16f)
in Tilburgvp,vp(at midnightvp,vp jogvp)Johnnp (16g)

Another useful shortcut rule is (×M). The rule is more general than the closure rule
(×v) as it allows nonempty memory lists in entries. In case A is subsumed by B, all
the members of

–

M are required to be upward monotone. Including (×M) in the inventory
contributes to shorter tableau proofs. Without it, rendering the antecedent nodes incon-
sistent requires several applications of (↑v). The analogous closure rule can be designed
when the elements in the memory lists are downward monotone.

With the help of (×M), if adverbials are upward monotone, we can substitute the
verb with a more general verb and hence license the entailment of (16g′) from (16g).
The approaches that cannot model subsective adjectives allow wrong entailments like
“John jogged slowly at midnight in Tilburg” � “John moved slowly at midnight in Tilburg”
(triggered by the unsound entailment “slow jogging” � “slow moving”). For example, the
(neo-) Davidsonian analysis with first-order logic wrongly proves these entailments as it
entails (16b′) from (16b). On the other hand, such wrong entailments are blocked in the
tableau system as it accounts subsective operators properly: it is not possible to prove
(16f) ` (16f′) with the current tableau rules.

∃e
(
move(e) ∧ AGENT(John, e) ∧ slow(e) ∧ in Tilburg(e) ∧ at midnight(e)

)
(16b′)

21Using (M>) and (M<), first reduce both LLFs to the form where all the adverbials and verbal arguments
are in the corresponding lists. Then swap at midnightvp,vp and in Tilburgvp,vp via (
M). Finally, we can get
two identical entries with opposite truth signs by pushing all members of the memory lists.

46 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

in Tilburgvp,vp
(

at midnightvp,vp(slowlyvp,vp movevp)
)

Johnnp (16f′)
in Tilburgvp,vp(at midnightvp,vp movevp)Johnnp (16g′)

It is noteworthy that the rules (⊂
T) and (×M) are admissible rules, meaning that they
are redundant from the completeness point of view.22 For instance, (⊂
T) can be repre-
sented by the several applications of (
M), (⊂MT) and (M<). Conventionally we display
admissible rules with a gray background.

The new rules have been introduced which process a memory list depending on the al-
gebraic properties of its modifiers. The analogy between the ternary format of entries and
the syntactic modifier-head-argument distinction in natural languages seems promising
from the natural logic perspective. As an evidence, modeling the phenomena like option-
ality and disposition of adverbial modifiers do not require deep semantic processing, e.g.,
an introduction of event entities. Nevertheless, event semantics and the rule (EVT) are still
indispensable when dealing with examples like the paraphrases concerning the argument
structure of a verb or reasoning over temporal references.

2.4.2 Rules for semantic exclusion and exhaustion
The semantic inclusion (or subsumption) relation v is crucial for natural reasoning. It
underlies one of the most fundamental tableau rules (×v) which closes tableau branches.
In addition to v, here we incorporate two new semantic relations, exclusion and joint
exhaustion, which are also crucial for the reasoning. The tableau rules related to these re-
lations are presented and shown how they contribute to proofs of certain logical relations.

The semantic inclusion relation is well studied in terms of monotonicity calculus since
van Benthem (1986); Sánchez-Valencia (1991). Later, MacCartney (2009) and MacCart-
ney and Manning (2009), along with monotonicity calculus, incorporated additional rela-
tions into natural logic including exclusion and exhaustion. From the natural logic per-
spective, this step seems quite intuitive as the inclusion relation with monotonicity cal-
culus is just a part of a larger calculus (Icard, 2012; Icard and Moss, 2014). We follow
MacCartney (2009) and introduce additional relations in TYSS.23

Definition 14 (Exclusion). We say that relational terms A #–αt and B #–αt are in an exclusion
relation (or are disjoint) and define it as the formula of TYSS:

A | B def
= ¬∃ #–

X. (A uB)
#–

X

Definition 15 (Joint exhaustion). We say that relational terms A #–αt and B #–αt are jointly
exhaustive (or represent a cover) and define it as the formula of TYSS:

A ` B
def
= ∀ #–

X. (A tB)
#–

X

22For more discussion about redundant tableau rules see §5.2.1.
23In contrast to MacCartney (2009), we do not adopt the most specific relations but the relations that

are based on more general properties. In particular, MacCartney (2009) interprets x|y as a conjunction of
x ∩ y = ∅ and x ∪ y 6= U , while x ` y is understood as a conjunction of x ∩ y 6= ∅ and x ∪ y = U ,
where U is a universal set. In our case, similarly to Icard (2012); Icard and Moss (2014), x|y will mean
only x ∩ y = ∅ and x ` y only x ∪ y = U . The symbols for the exclusion (|) and exhaustion (`) relations
are borrowed from MacCartney and Manning (2009).

2.4. EXTENDING THE INVENTORY OF RULES 47

Notice that the latter two definitions can be equivalently expressed syntactically as
A | B def

= A v −B and A ` B
def
= −A v B, respectively. The semantics of the defined

terms can be shortly described as follows: [[A | B]]M,a = 1 iff [[A u B]]M,a = 0 #–αt

and [[A ` B]]M,a = 1 iff [[A tB]]M,a = 1 #–αt. The exclusion relation is more general than
the antonymy relation. Since many concepts in natural language are specific, disjoint
concepts are frequent. The examples of the lexical terms in the exclusion relation are:

(dogn | catn), (manyn,vp,s | fewn,vp,s), (sleepvp | runvp)

(cheapn,n | expansiven,n) and (withnp,n,n | withoutnp,n,n)

In contrast to disjoint concepts, natural language does not offer so many jointly exhaus-
tive pairs of lexical words. The following pairs of terms (including both lexical and com-
pound) are jointly exhaustive:

(nonhumann,n ` animaln,n), (at least sixn,vp,s ` at most tenn,vp,s) and (somen,vp,s ` non,vp,s)

The pairs of terms that are in both exclusion and exhaustion relations are:

〈humann, nonhumann〉, 〈somen,vp,s, non,vp,s〉 and 〈withnp,n,n,withoutnp,n,n〉
We call such pairs of terms complementary or contradictory. The semantic relations over
lexical terms are assumed to be provided by some KB.

The exclusion and exhaustion relations over lexical terms are modeled by the (×|) and
(×`) tableau rules. They apply to the entries with the same sign, in contrast to (×v). The
rules together with (×v) offer a general solution: if a pair of terms is in several relations,
then each rule accounts for its corresponding relation. For instance, while proving that
two terms are complementary to each other, one uses both (×|) and (×`) rules. These
rules are enough to model all 7 relations used by MacCartney and Manning (2009).

×v
a : [

#–

C] : T
b : [

#–

C] : F

×
a ≤ b

×|
a : [

#–

C] : T
b : [

#–

C] : T

×
a | b

×`
a : [

#–

C] : F
b : [

#–

C] : F

×
a ` b

↑|̀

GA : [
#–

C] : X
HB : [

#–

C] : X

A : [
#–

D] : T
B : [

#–

D] : F
G : [P,

#–

C] : X
H : [P,

#–

C] : X

G↑ and P = B, or H↑ and P = A

↓|̀

GA : [
#–

C] : X
HB : [

#–

C] : X

A : [
#–

D] : T
B : [

#–

D] : F
G : [P,

#–

C] : X
H : [P,

#–

C] : X

G↓ and P = B, or H↓ and P = A

In order to model exclusion and exhaustion over compound LLFs, we need additional
rules for that. The rules (↑v) and (↓v) try to align arguments of monotonic functions
while hoping that the terms are in a certain inclusion relation. The analogous rules for
exclusion and exhaustion are (↑|̀) and (↓|̀). For instance, (↑|̀) processes the entries which

48 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

1 manyn,vp,s birdn hovervp : [] : T
2 fewn,vp,s birdn flyvp : [] : T

3 hover : [ce] : T
4 fly : [ce] : F

7 ×

5 many bird : [fly, ce] : T
6 few bird : [fly, ce] : T

8 many : [bird, fly, c] : T

9 few : [bird, fly, c] : T

10 ×

×v[3,4] A>[5]

A>[6]

×| [8,9]

↑|̀ [1,2]

Figure 2.6: The tableau proves that “many birds hover” contradicts “few birds fly” and
vice versa. One of (↑|̀) and (↓|̀) is necessary to prove the contradiction.

show that GA and HB are not disjoint (i.e. X = T) or are not jointly exhaustive (i.e.
X = F). After one of H and G is upward monotone, the rule analyzes the entries as
follows. Either A 6v B in the left branch or A v B in the right branch, where the latter
allows to set the same arguments for G and H . In this way, if A v B holds, then (↑|̀)
shifts reasoning from GA and HB to the simpler G and H terms. (↓|̀) does the similar
job when one of the function terms is downward monotone. Figure 2.6 illustrates how the
new rules contribute to the proof of a contradiction relation that was not possible to be
proved before the introduction of the rules.

Certain function terms have properties to modify and project the relations between
their arguments. For example, if a relational term Fα #–γ t is upward (downward) monotone
and Xα v Yα, then FX v FY (FY v FX respectively). In other words, upward
monotone functions preserve v while downward monotone functions reverse it. The
projectivity behavior of monotone functions can be captured via (F↑v) and (F↓v).24 But
actually these rules are admissible since (↑v) and (↓v) can mirror them: whenG = H the
right consequents of (↑v) and (↓v) lead to immediate closure while the left ones coincide
with the consequents of (F↑v) and (F↓v) respectively.

F↑v

F ↑A : [
#–

C] : T
F ↑B : [

#–

C] : F

A : [
#–

D] : T
B : [

#–

D] : F
#–

D is fresh

F↓v

F ↓A : [
#–

C] : T
F ↓B : [

#–

C] : F

A : [
#–

D] : F
B : [

#–

D] : T
#–

D is fresh

24In order to indicate that the both antecedent entries of the rules share the same function term, we put F
in the names of the rules.

2.4. EXTENDING THE INVENTORY OF RULES 49

Based on the inclusion, exclusion and exhaustion relations, there are 12 different pos-
sible projectivity properties for function terms. Two of them, in (9) and (10), represent
the projection of inclusion relation expressed by monotone functions. Four projectivity
properties of the disjoint and exhaustion relations are given below (the appropriate types
of the terms are assumed by default):

∀XY
(
(X | Y)→ (FX | FY)

)
(P1)

∀XY
(
(X | Y)→ (FX ` FY)

)
(P2)

∀XY
(
(X ` Y)→ (FX ` FY)

)
(P3)

∀XY
(
(X ` Y)→ (FX | FY)

)
(P4)

The rest of the properties correspond to projections that map asymmetric relations (e.g.,
v and w) to symmetric relations (e.g., | and `) or vice versa. We call these projections
asymmetric ones. For the demonstration, two of the six asymmetric projections are given
in (P5) and (P6). The asymmetric projectivity properties are somewhat unusual. For
example, the property in (P5) implies that any disjoint pair of terms are mapped to se-
mantically equivalent terms, or that for any term X we have F (X) = F (−X). On the
other hand, (P6) maps arbitrarily small or large terms to a cover. Moreover, according to
it, for any X and Y such that X v Y , both F (X) ` F (Y) and F (−X) ` F (−Y) covers
hold.

∀XY
(
(X | Y)→ (FX v FY)

)
(P5)

∀XY
(
(X v Y)→ (FX ` FY)

)
(P6)

While we are not aware of any linguistic phrases that realize asymmetric projections,
there are several phrases that satisfy the properties in (P1–P4). Based on these phrases
we can say that subsective terms (e.g., skillfuln,n), mostqNn and everyqNn satisfy (P1);
notq,q everyqNn, notvp,vp and notn,n satisfy (P2); someqNn has the property (P3); noqNn,
notvp,vp and notn,n comply with (P4).25 The terms containing Nn maintain corresponding
projectivity properties only in those modelsM where [[Nn]]

M 6= 0n. For example, if this
condition is violated, i.e. [[Nn]]

M = 0n, then someqNn will not satisfy (P3) forM: for a
cover (runvp ` notvp,vprunvp), none of someqNnrunvp and someqNn(notvp,vprunvp) are true.
Notice that the term mostqNn unconditionally satisfies (P1).

F||

FA : [
#–

C] : T
FB : [

#–

C] : T

A : [
#–

D] : T
B : [

#–

D] : T
#–

D is fresh and
F satisfies (P1)

F|(

FA : [
#–

C] : F
FB : [

#–

C] : F

A : [
#–

D] : T
B : [

#–

D] : T
#–

D is fresh and
F satisfies (P2)

F((

FA : [
#–

C] : F
FB : [

#–

C] : F

A : [
#–

D] : F
B : [

#–

D] : F
#–

D is fresh and
F satisfies (P3)

F(|

FA : [
#–

C] : T
FB : [

#–

C] : T

A : [
#–

D] : F
B : [

#–

D] : F
#–

D is fresh and
F satisfies (P4)

The tableau rules that model (P1–P4) properties are presented above. The rules carry
out inference from complex terms to simpler ones, where a pair of entries of the form

25We assume that q abbreviates the syntactic type (n, vp, s).

50 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

A : [
#–

D] : X and B : [
#–

D] : X amounts to A 6 |B if X = T and A 6` B if X = F.
The names of the rules follow the intuition that a function maps the first relation to the
second one: (F|() expresses the projectivity property that maps the exclusion relation to
the exhaustion relation. The presented four rules account for the projectivity signatures
studied by MacCartney (2009); Icard (2012).

The properties in (P1–P4) can be seen as an offshoot of the following algebraic prop-
erties, studied since (Zwarts, 1981) and (Hoeksema, 1983). The definition follows Icard
(2012).

Definition 16. For relational terms Fα,β , Aα and Bα, we say that:

• F is multiplicative (↑◦) iff F (AuB) = FAuFB, and it is completely multiplicative
(↑c◦) if additionally [[F]](0α) = 0β;

• F is anti-multiplicative (↓◦) if F (A u B) = FA t FB, and it is completely anti-
multiplicative (↓c◦) if additionally [[F]](0α) = 1β .

• F is additive (↑+) iff F (A t B) = FA t FB, and it is completely additive (↑c+) if
additionally [[F]](1α) = 1β;

• F is anti-additive (↓+) if F (AtB) = FAuFB, and it is completely anti-additive
(↓c+) if additionally [[F]](1α) = 0β;

For example, noq is ↓+ in both of its arguments, everyq is ↓+ in its first argument and
↑◦ in the second argument, someq is ↑+ in both of its arguments, notq,q everyq is ↑+ in its
first argument and ↓◦ in the second argument, the negations notvp,vp and notn,n are ↓c+ and
↓c◦ at the same time.26

Each defined algebraic properties automatically satisfies exactly one of (P1–P4) prop-
erties, preserving the order. The completeness property is necessary for this connection.
So, the tableau rules modeling (P1–P4) also automatically work for the terms with the
complete versions of the algebraic properties. Moreover, it is not necessary for a term to
have one of these four algebraic properties in order to be processed by the tableau rules.
For instance, mostqNn is simply upward monotone and does not have non of the four alge-
braic properties, however it still satisfies (P1) and hence (F||) works for it. In other words,
the presented tableau rules model the projectivity properties (P1–P4 which are more basic
than the ones in Definition 16.

The section has presented two groups of new tableau rules. The first group consists
of the rules operating on the members of a memory list having algebraic properties like
subsectivity, intersectivity and commutativity. Several admissible rules were also pre-
sented which shorten tableau proofs significantly. The rules of the first group finalize
integration of event semantics into the natural tableau system. The second group of rules
is dedicated to the exclusion and exhaustion relations. Specifically, we have presented the
rules which account for theses relations, their combination with monotonic operators, and
certain projectivity behavior of function terms with respect to the relations.

26Notice that additivity and multiplicativity automatically assume upward monotonicity, while anit-
additivity and anti-multiplicativity imply downward monotonicity. Also multiplicative terms are exactly
those terms that are upward monotone and have meet. The terms that are splitting and upward monotone
are additive and vice versa.

2.5. CONCLUSION 51

2.5 Conclusion

We have presented the natural tableau system of Muskens (2010) which is foundation
for the work presented in the next chapters. In order to make the presentation accessible
for wide range of readers, we have introduced the simple type theory TY and a semantic
tableau method and also included several detailed examples of natural tableau proofs. The
natural tableau system is prepared for wide-coverage reasoning by extending it in three
dimensions: the type system, the format of tableau entries, and the set of tableau rules.

Integration of syntactic types in the type system helps to maintain syntactic informa-
tion for terms (§ 2.2). Since our goal is to employ natural logic as an inference device,
the integration step could be seen as enhancing the logic with syntactic information. This
move fits well into the project of natural logic where inference rules and syntactic rules
are strongly related to each other (Lakoff, 1970). Interaction between semantic and syn-
tactic terms is established via the subtyping relation: it allows the terms like redn,n carn ce
to be well-formed as n is a subtype of et. Apart from introducing syntactic information,
the extension encourages a natural appearance of LLFs. For example, we can express
intersective adjectives, e.g., redn,n or verbal predicates, e.g., runnp,s, without explicit use
of a conjunction and an event entity, respectively. Deeper semantics of such expressions
can be later retrieved after tableau rule applications. Finally, syntactic types contribute
to fine-grained term matching. The latter is crucial from an automated theorem proving
perspective while searching for applicable tableau rules.

We have added an additional slot, in the format of tableau entries, called the modifier
or memory list. Its function is to keep terms and reuse them later if necessary. The list
is heavily used by modifiers. Pushing adverbs or remote adjectives in the list is used to
establish link with their heads. For example, the modifier list makes it easy to account
for event semantics in the natural tableau (§2.3.2). An event entity is introduced from a
lexical verb if it is signed with T. At the same time, its adverbs are kept in the modifier list
and they wait for the introduction of the event entity. After its introduction, the adverbs
are asserted for it. Furthermore, the modifier list can be seen as a counterpart of the
argument list. In formal logics, completing a predate or a function with its arguments is
mainstream while function or predicate modification is allowed only in particular logics.
Taking into account the expressive power of natural language, why should not we have
a dedicated list for modifiers while we have it for arguments? In the end, the ternary
dichotomy modifier-head-argument of a term is another step towards coupling reasoning
and syntax in the natural tableau system. Now, in conjunction with the argument list, the
modifier list can also be used for aligning identical modifiers and help to single out and
contrast heads.

In addition to the extra rules which operate on the modifier list and account for event
semantics, we have introduced new rules that model the semantic exclusion and exhaus-
tion relations (§ 2.4.2). The rules can be classified into three groups based on the phe-
nomena they model. The first group contains closure rules that directly account for the
two semantic relations. The rules in the second group model interaction between mono-
tonic functions and their arguments which are in one of the two relations. These rules are
counterparts of the monotonic rules suggested by Muskens (2010). The third group has
rules that model projectivity features of function terms. These rules contrast terms with
the same functions and shift reasoning to the arguments.

52 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

All in all, the extended tableau system represents a powerful calculus that employs
both syntactic and semantic types. The format of tableau entries offers dedicated slots for
modifiers, heads and arguments. The information-rich and structured terms are processed
with the help of tableau rules. The processing can be of three types: (i) decomposition of
a term into smaller parts, (ii) deriving information based on contrasting different terms,
and (iii) shifting a term from a shallow level (i.e. with syntactic types) to a deeper level
(i.e. with semantic types). After extending and gearing the natural tableau system for
wide-coverage reasoning, in the two subsequent chapters, we actually model natural rea-
soning in the extended system. First, we automatically obtain LLFs from wide range of
linguistic expressions (Chapter 3). Then we design a bunch of tableau rules that account
for semantics of various lexical elements and syntactic constructions (Chapter 4).

APPENDIX A 53

Appendix A

1 not(n,vp,s), n,vp,s alln,vp,s birdn flyvp : [] : T
2 somen,vp,s birdn (notvp,vp flyvp) : [] : F

3 not all bird : [fly] : T

4 not all : [bird, fly] : T

5 all : [bird, fly] : F

6 all bird : [fly] : F

7 all bird fly : [] : F

8 bird : [ce] : T
9 fly : [ce] : F

10 bird : [c] : F

12 ×

11 not fly : [c] : F

13 fly : [c] : T

14 ×

A>[1]

A>[3]

¬[4]

A<[5]

A<[6]

∀F[7]

×v[8,10] ¬[11]

×v[9,13]

∃F[2,c]

Figure 2.7: The tableau proves that “not all birds fly” entails “some bird does not fly”.
Apart from using the TYSS terms, i.e. LLFs with the extended type system, the proof is
identical to the tableau found in Figure 2.2.

54 CHAPTER 2. NATURAL TABLEAU FOR NATURAL REASONING

6 [at midnightn,n, innp,n,nTilburgnp, slown,n] : jogn : [ve] : T

7 at midnight jog : [v] : T

8 in Tilburg jog : [v] : T

9 slow jog : [v] : T

⊂
 [6]

⊂
 [6]

⊂
 [6]

(a) Processing nominal modification. The modifiers are assumed to commute pairwise and be
subsective.

5 [at midnightvp,vp, innp,vp,vpTilburgnp, slowvp,vp] : jogvp : [Johnnp] : T

6 at midnight jog : [John] : T

7 in Tilburg jog : [John] : T

8 slow jog : [John] : T

⊂
 [5]

⊂
 [5]

⊂
 [5]

(b) Processing verbal modification. The modifiers are assumed to commute pairwise and be sub-
sective.

Figure 2.8: The tableaux show how the memory list and the rule (⊂
T), powered by (
M)
and (⊂MT), allow the uniform treatment of nominal (e.g., jogn) and verbal (e.g., jogvp)
modifications. The initial entries 5 and 6 are taken from the tableau in Figure 2.4.

Chapter 3

Lambda Logical Forms for
Wide-Coverage Text

In order to enable the natural tableau system to operate on natural language text, it is
necessary to generate Lambda Logical Forms (LLFs) automatically from linguistic ex-
pressions. In this chapter, we describe how to obtain LLFs from syntactic derivations of
categorial grammar. We opt for categorial grammar derivations since there lexical ele-
ments are combined like a function and an argument, similarly to the term combination
in LLFs. Syntactic derivations will be produced by state-of-the-art parsers that analyze
linguistic phrases according to Combinatory Categorial Grammar (CCG). Generating se-
mantically adequate LLFs from CCG derivations is not a trivial procedure. It is challeng-
ing for two main reasons: (i) CCG parsers diverged from the CCG formalism in order to
process unrestricted text efficiently, and (ii) The parsers are not perfect and therefore they
make mistakes. Both the discrepancy from the formalism and the parsers’ mistakes need
to be eliminated in the generation procedure. The chapter is structured as follows.

We start with introducing the CCG formalism (Steedman, 2000), and then two state-
of-the-art CCG parsers, C&C (Clark and Curran, 2007) and EasyCCG (Lewis and Steed-
man, 2014a), are presented and compared to each other. The procedure of generating
LLFs from CCG derivation trees consists of several steps; see Figure 3.1. After obtaining
a CCG derivation tree of a phrase, the very first step is to eliminate directional components
in the CCG tree, and as a result get, what we call, a CCG term. We carefully analyze CCG
trees and draw a list of mistakes, i.e. semantically inadequate analyses, that are systemati-
cally made by the CCG parsers. These mistakes in CCG terms are corrected with the help
of several hand-written rules. The correction procedure also covers elimination of type-
changing rules of the CCG parsers—the rules nonnative for the CCG formalism. Final

Linguistic
expression

CCG
Tree

CCG
Term

Corrected
CCG Term

LLFs

Rep.1

Rep.2CCG
parsing

Removing
directionality

Correcting
analyses

Type-raising
quantified NPs

Figure 3.1: A procedure of generating LLFs from a raw linguistic expression.

55

56 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

LLFs are obtained from corrected CCG terms via type-raising quantified noun phrases.
The type-raising procedure represents an improved version of the nested Cooper storage
(Keller, 1988). This step produces LLFs with scope resolved quantifiers. Implementation
details of the generation procedure are also discussed. The implemented LLF generator,
called LLFgen, can be seen as a valuable tool for those researcher lines that attempt to
obtain linguistic semantics in a compositional manner. With the help of LLFgen, it is
possible to get more fine-grained logical forms than one can obtain solely from the CCG
parsers. This is due to integration of fixing rules in LLFgen.

3.1 Combinatory Categorial Grammar

Categorial grammar is a lexicalized grammar formalism, in which all constituents are la-
beled with a syntactic category (also often referred as a syntactic type) and a semantic
interpretation. A syntactic category can be either a primitive category or a function cate-
gory. Usually, N,NP, PP , and S are the primitive categories corresponding to syntactic
categories for common nouns, noun phrases (NPs), prepositional phrases (PPs) and sen-
tences, respectively. Depending on applications, the primitive categories can be further
distinguished by features, like number, case, mood, etc.

Usually categorial grammars distinguish two directions of functional application which
are motivated by word order in linguistic expressions. Consequently function categories
have one of the forms Y/X or Y \X , where X and Y are meta-variables over syntactic
categories. A syntactic category Y/X (or Y \X) is a function that returns Y if an argu-
ment X is found on its right (or left, respectively). Constituents are then combined using
the function application rules: the forward (>) and backward (<) application rules feed a
function category with an argument category on its right and left, respectively.

Y/X : f X : a ⇒ Y : fa Forward functional application (>)
X : a Y \X : f ⇒ Y : fa Backward functional application (<)

The rules also come with a recipe how to combine semantic interpretations of constituents,
where semantic interpretations are delimited from categories by a semicolon. The inter-
pretations are usually combined using the λ-calculus as it goes hand-in-hand with a func-
tion application carried over constituents. The described categorial grammar, with the
directional slashes and two functional application rules, is the earliest and simplest cate-
gorial grammar known as AB-grammar after Ajdukiewicz (1935) and Bar-Hillel (1953).

Combinatory Categorial Grammar (CCG) is a kind of categorial grammar which, in
addition to (>) and (<), employs extra combinatory rules, e.g., type-raising and func-
tional composition rules.1 The forward type-raising rule (>T) changes a category into
a functional category that takes functions over this category as an argument. The rule is
often used for type-raising NP category to S/(S\NP). The backward version of (>T) is
(<T).

X : a ⇒ T/(T\X) : λx. xa Forward type-raising (>T)
X : a ⇒ T\(T/X) : λx. xa Backward type-raising (<T)

1 The rules in CCG are called combinatory rules since they correspond to the simplest of combinators
found in Curry and Feys (1958).

3.1. COMBINATORY CATEGORIAL GRAMMAR 57

Barcelona

NP
B

>T
S/(S\NP)
λP. P B

defeats

(S\NP)/NP
λyx. defeat y x

>B
S/NP

λy. defeat y B

and

((S/NP)\(S/NP))/(S/NP)
λGHx.Gx ∧Hx

Atletico

NP
A
>T

S/(S\NP)
λP. P A

overtakes

(S\NP)/NP
λyx. overtake y x

>B
S/NP

λy. overtake y A
>

(S/NP)\(S/NP)
λHx. overtake x A ∧Hx

<
S/NP

λx. overtake x A ∧ defeat x B

Real Madrid

NP
RM

>
S

overtake RM A ∧ defeat RM B

Figure 3.2: A CCG derivation for a non-constituent coordination—right node raising

The composition rules combine two constituents of functional category first, by feed-
ing one of the constituents with a hypothetical constituent, then applying another con-
stituent to the fed one, and in the end eliminating the introduced hypothetical constituent.

Z/Y : f Y/X : g ⇒ Z/X : λx. f(gx) Forw. functional composition (>B)
Y \X : g Z\Y : f ⇒ Z\X : λx. f(gx) Backw. functional composition (<B)
Z/Y : f Y \X : g ⇒ Z\X : λx. f(gx) Forw. crossing funct. compos. (>B×)
Y/X : g Z\Y : f ⇒ Z/X : λx. f(gx) Backw. crossing funct. compos. (<B×)

Let us consider the forward composition rule (>B) as an example. Since Z/Y cannot
take Y/X as an argument or vice versa, first, Y/X applies to a hypothetical argument of
categoryX on its right. The resulted Y is taken as an argument by Z/Y and Z is obtained.
Taking away the hypothetical X from the right side of Z results in Z/X . Most common
composition rules for English CCG are (>B) and (<B×). The other composition rules
that might be employed in the CCG framework are crossing counterparts of the former
rules, (>B×) and (<B×), and generalized versions of the composition rules, e.g., (>B2).

Generalized-2 forward functional composition
Z/Y : f (Y/X)/W : g ⇒ (Z/X)/W : λwx. f(gwx) (>B2)

In order to demonstrate how the CCG combinatory rules work, a non-trivial example
of a CCG derivation is given in Figure 3.2. The derivation employs (>, <, >T, >B) rules
and shows how syntactic categories and semantics of phrases are obtained from syntactic
categories and semantics of its constituents. In the end, the sentence is of category S with
a first-order logic (FOL) formula as its semantic interpretation.2

The CCG formalism, like other categorial grammars, is attractive for semantic anal-
ysis due to its transparent syntax-semantic interface. In particular, for a lexical item its
syntactic category determines the (semantic) type of its logical form. For instance, the

2In this example, a simply typed λ-calculus (λ→), with basic types for entities e and truth values t, is
used as a glue language for FOL semantic interpretations. In the calculus, the FOL predicates for lexical
entities, e.g. defeat(x, y), are represented in Curried form, e.g., defeat x y.

58 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

John

NP
>T

S/(S\NP)

loves

(S\NP)/NP

>B
S/NP

Mary

NP

>
S

John

NP
>T

S/(S\NP)

loves

(S\NP)/NP

>B
S/NP

Mary

NP
<T

S\(S/NP)

<
S

John

NP

loves

(S\NP)/NP

Mary

NP
<T

VP\(VP/NP)
<

S\NP
>

S

Figure 3.3: Spurious ambiguity in CCG parsing

transitive verbs “defeats” and “overtakes” both are of category (S/NP)\NP which al-
ready predicts the semantic type e(et) of their logical forms. The interface is established
by a mapping T that translates syntactic categories into semantic types as follows:

NP
T7−→ e, S

T7−→ t, Y \X T7−→ T (X) T (Y), Y/X
T7−→ T (X) T (Y)

This transparency between syntactic categories and semantic types in CCG is known
as the principle of categorial type transparency. In order to project the categorial type
transparency for compound phrases, the combinatory rules are subject to a condition
called the principle of combinatory type transparency. The latter principle forces that
semantic interpretations (i.e. logical forms) are combined or modified according to the
way their corresponding syntactic categories are combined or modified. For instance, in
(>B), logical forms f and g (or λP.P B and λyx. defeat y x in Figure 3.2) are combined
in the same way as their corresponding Z/Y and Y/X syntactic categories (or S/(S\NP)
and (S\NP)/NP , respectively). Due to these transparency principles, starting only from
lexical semantic interpretations, a derivation tree gives a semantic interpretation of the
entire phrase for free. The derivation in Figure 3.2 serves as an evidence for this: the final
logical form is obtained by faithfully applying the combinatory rules to constituents and
carrying out operations of the λ-calculus over logical forms.

From a linguistic perspective, CCG is one of the most well-studied categorial gram-
mar formalism. With functional categories and a few combinatory rules, it is able to
analyze a wide range of bounded and unbounded dependencies—whether a dependent
is in the same tensed clause as its head or outside the clause, respectively. The CCG
derivation in Figure 3.2 analyzes right node rising which represents an example of an
unbounded dependency as the dependent “Real Madrid” is outside the verbal clauses.
Further analysis of bounded (e.g., reflexivization, dative shift, heavy NP shift, object and
subject control, etc.) and unbounded constructions (e.g., extraction in Figure 3.4b, argu-
ment cluster coordination, right-node raising in Figure 3.2, etc) can be found in Steedman
(1996), Steedman (2000), or in a shorter introduction to CCG by Steedman and Baldridge
(2011).3

There can be several CCG derivations for a single unambiguous sentence, where all
these derivations lead to the same logical form (see Figure 3.3). This kind of ambigu-
ity is called spurious and it is essential for CCG due to the type-raising and functional
composition rules. For instance, using these combinatory rules (and forbidding double

3For the gapping constructions like “Three points Real Madrid got without deserving” and “Barcelona
defeated Real Madrid and Atletico Valencia” CCG needs extra combinatory rules substitution and decom-
position, respectively. While the former rule is rarely used in other constructions, the latter one is considered
controversial as it violates certain principles of CCG.

3.2. WIDE-COVERAGE CCG PARSERS 59

use of the type-raising rule on the same category), there are six derivations for a simple
sentence like “John loves Mary” with fixed lexical categories. Figure 3.3 lists three non-
trivial derivations from those six. In general, the number of derivations over fixed lexical
categories increases exponentially with the number of lexical elements.4

For more details about the CCG formalism and its linguistic and computational appli-
cations, we recommended to consult (Steedman, 1996), (Steedman, 2000), or Steedman
and Baldridge (2011). The latter gives a relatively short introduction to all these aspects
of CCG. The next section describes the state-of-the-art wide-coverage CCG parsers which
will be used in generation of LLFs.

3.2 Wide-coverage CCG parsers

One of the main reasons why the CCG formalism is chosen for obtaining LLFs is that
there are at least two robust and accurate wide-coverage parsers for it. In order to make the
text self-contained, this section describes those two CCG parsers, the C&C tools (Clark
and Curran, 2007) and EasyCCG (Lewis and Steedman, 2014a), provides several qualita-
tive or quantitative characteristics for them and gives examples of actual derivation trees.
The information about each parser helps to understand why specific parsing mistakes are
systematic and also sheds light on structures of generated LLFs.

3.2.1 The C&C tools

The C&C tools by Clark and Curran (2007) is a collection of NLP systems such that
their pipeline, called the C&C parser, can efficiently analyze a wide-coverage text in a
CCG-style. The C&C parser (sometimes in short, C&C) by default expects a tokenized
input in the style of the Penn Treebank (Marcus et al., 1993)5 and returns analyses in
one of the several formats: CCG predicate-argument dependencies, Briscoe and Carroll
style grammatical relations (Carroll et al., 1998), or CCG derivations rendered as a Prolog
term. Since the parser is statistical, for every input it returns a derivation with the highest
probability. The NLP systems of the C&C parser can be used as a separate tool or as a
part of the pipeline. Below we list and briefly describe each of these systems:

• The POS tagger (Curran and Clark, 2003a) annotates each token with one of the
part of speech (POS) tags used in the Penn Treebank;6 its accuracy is slightly more
than 97%. The tools also contain a multi-POS tagger that, instead of a single most
probable POS tag, returns a list of POS tags the probabilities of which are above
some predefined threshold.

4Despite the spurious ambiguity in CCG parsing, there exist methods that avoid this problem. Existing
CCG parsers are designed in such a way that they aim to return a normal form derivation—a derivation using
the least number of the type-raising and functional composition rules. In order to do so, a parser ignores
those sub-derivations that either get low probabilities or logical forms of which are already obtained by
another simpler sub-derivation.

5https://www.cis.upenn.edu/˜treebank/tokenization.html
6https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_

pos.html

https://www.cis.upenn.edu/~treebank/tokenization.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

60 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

• The chunker tries to identify spans that have to be constituents. Constraints put by
the chunker make parsing search more efficient (Djordjevic et al., 2007).

• The named entity recognizer (NER) (Curran and Clark, 2003b) identifies tokens
as a part of a proper name; it distinguishes seven types of proper names. Tags for a
person (PER), organization (ORG), location (LOC) and date (DAT) are among them.

• The morphological analyser Morpha (Minnen et al., 2001) is used as a lemma-
tizer: it annotates each token with a lemma.

• The supertagger is a statistical tagger that tags each token with a CCG category,
i.e. a lexical category. The decision of the supertagger is based on the follow-
ing information: (i) a token’s lexicon of lexical categories (i.e. a set of categories
assigned to the token in a training data), (ii) the words and their POS tags in the
5-word window with the token in the center, and (iii) lexical categories of two pre-
vious words (Clark and Curran, 2004a). With respect to the Wall Street Journal text,
the accuracy of the supertagger (based on the first highest rank lexical category) per
word is around 91.5% while the sentence accuracy (i.e. tagging all words in a sen-
tence correctly) is 32.5% (Clark and Curran, 2007, p. 29). The supertagger can also
serve as a multi-supertagger—assigning a list of most probable lexical categories
per word.

• The CCG parser is a statistical parser that attempts to build a CCG derivation tree
over lexical categories assigned by the supertagger. Not all combinatory rules used
by the parser are found in the CCG formalism or vice versa. For example, the parser
uses type-changing rules, also called lexical rules, unfamiliar for CCG (see lx rule
in Figure 3.4) which destroys the transparency principles of CCG. Moreover, the
type-raising rule (>T), containing a free meta-variable T , is restricted to certain
categories in order to maintain parsing efficiency (Clark and Curran, 2007).7

The C&C parser is trained on CCGbank (Hockenmaier and Steedman, 2007)—a tree-
bank of CCG derivations semi-automatically obtained from phrase-structure trees of the
Penn Treebank. Therefore, a set of lexical categories and combinatory rules the parser
uses are directly coming from CCGbank. The employed lexical categories are built from
primitive categories with features. For example, Sdcl, Sng and Spss categories are intended
for declarative, gerund and passive sentencial phrases, respectively.8 CCGbank uses 20
combinatory rules with more than 3,000 instances, i.e. combinatory rules with instan-
tiated meta-variables. The statistical model of C&C parser depends on instances of the
rules as it is trained on counts of the instances. The C&C parser, trained on Sections
02-21 and developed on Section 00 of CCGbank, can obtain derivations for 99.6% of the

7The core components of the C&C parser are the supertagger and the parser which tightly interact with
each other during parsing. Since supertagging is considered as almost parsing, the supertagger acts as a
multitagger and tags tokens with a set of lexical categories. In case the parser cannot find a derivation over a
certain set of lexical categories, then it picks less probable categories from the suppertager and tries to find
a derivation over them. This interactive approach, called adaptive supertagging, results in a higher parsing
speed compared to an approach where the parser searches a derivation over entries each assigned a set of
all possible lexical categories (Clark and Curran, 2003).

8Tne average number of lexical categories with features (i.e. instantiated lexical categories) per word
type is greater than 30, where some closed-class words might have much more lexical categories (e.g., “as”
has 130, “is” – 109, “to” – 98, etc.).

3.2. WIDE-COVERAGE CCG PARSERS 61

ba[Sdcl]

fa[VP dcl]

ba[VP pss]

out
VP pss\VP pss

out
RP

I-PRT

O

sold
VP pss

sell
VBN

I-VP

O

is
VP dcl/VP pss

be
VBZ
B-VP

O

ba[NP]

lx[NP\NP, Sdcl/NP]

fc[Sdcl/NP]

liked
VP dcl/NP

like
VBD

I-VP

O

tr[Sdcl/VP dcl]

I
NP

I
PRP
B-NP

O

ba[NP]

fa[NP\NP]

lx[NP,N]

Zara
N

Zara
NNP

I-NP

I-LOC

in
(NP\NP)/NP

in
IN
I-PP

O

fa[NP nb]

shirt
N

shirt
NN
I-NP

O

Every
NP nb/N

every
DT
I-NP

O

(a) A CCG tree produced by the C&C parser trained on CCGbank. This model prefers NP-S
analysis to Nom-S analysis of a restrictive relative clause and a restrictive noun modification: “in
Zara” and “I like” are of categoryNP\NP . Also a verb particle “out” is analyzed as a verb phrase
modifier. The category NPnb expresses a non-bare NP.

ba[Sdcl]

fa[VP dcl]

fa[VP pss]

out
PR
out
RP

I-PRT

O

sold
VP pss/PR

sell
VBN

I-VP

O

is
VP dcl/VP pss

be
VBZ
B-VP

O

fa[NP]

ba[N]

lx[N\N,Sdcl/NP]

fc[Sdcl/NP]

liked
VP dcl/NP

like
VBD

I-VP

O

tr[Sdcl/VP dcl]

I
NP

I
PRP
B-NP

O

ba[N]

fa[N\N]

lx[NP,N]

Zara
N

Zara
NNP

I-NP

I-LOC

in
(N\N)/NP

in
IN
I-PP

O

shirt
N

shirt
NN
I-NP

O

Every
NP/N
every
DT
I-NP

O

(b) A CCG tree by rebanked C&C. In contrast to the CCG tree in (a), the tree opts for Nom-S
analysis of a restrictive relative clause and a restrictive noun modification. Unlike (a), the current
derivation directly yields a correct logical form when combined with standard lexical semantics.
Notice also that the verb particle gets a new category PR and serves as a complement to the verb.

Figure 3.4: CCG trees for “Every shirt in Zara I liked is sold out” by C&C trained on
the original (a) and rebanked (b) CCGbanks. Terminal nodes contain a token, lexical
category, lemma, POS tag, and tags from the chunker and the NER; non-terminal nodes
are annotated with a combinatory rule (abbreviated according to Table 3.2) and a resulted
category. VP i abbreviates Si\NP where i stands for a feature.

62 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

sentences in the unseen Section 23. But only 33% of the derivations are flawless (Clark
and Curran, 2007, p. 36).

There is also a more recent statistical model for the C&C parser which is trained on
a rebanked version of CCGbank (Honnibal et al., 2010). The rebanked CCGbank is an
updated version of CCGbank with improved analyses of certain constructions.9 Honnibal
et al. (2010) show that the rebanked C&C parser performs only 0.8% worse than the model
trained on the original CCGbank, although the new model returns more fine-grained CCG
derivations. In order to give an example of a C&C derivation and to contrast the two
models of the parser, the CCG derivations of the same sentence based on these models
are given in Figure 3.4. We present a CCG derivation produced by CCG parsers as an
upside-down tree, called a CCG tree.

The C&C parser was successfully used in several large-scale NLP tasks like textual
entailment recognition (Bos and Markert, 2005; Bjerva et al., 2014), semantic similarity
(Bjerva et al., 2014; Beltagy et al., 2014), question answering (Clark et al., 2004), or
producing semantics of wide-coverage text in combination with Boxer (Bos et al., 2004;
Bos, 2008). For more details about the C&C parser, readers are advised to consult (Clark
and Curran, 2007), which also contains appendices describing the implementation details.

3.2.2 EasyCCG
EasyCCG, by Lewis and Steedman (2014a), is a CCG parser that has a simpler architec-
ture compared to the C&C parser. It only consists of a simple lemmatizer, a supertagger
and a parser. EasyCCG was created under the ideology supertagging is almost parsing
and its supertagger is the most crucial component of the system.

The supertagger of EasyCCG (Lewis and Steedman, 2014b) is a unigram log-linear
tagger that assigns a distribution over all lexical categories to each lexical item. The
supertagging model employs features of the words in the ±3 word context window sur-
rounding a lexical item.10 The word embeddings used by the supertagger are trained on a
large unlabeled corpus; this allows more generalized suppertagging on words not seen in
the labeled/annotated data. The main difference from the C&C parser is that the EasyCCG
supertagger does not employ information about POS tags. As a result, the supertagger is
cheaper to train—it does not require labeled data, generalizes better on the unseen data,
and is not influenced by the errors coming from POS tagging.

The parser component is non-statistical: combinatory rules are not distinguished from
each other based on their frequency. The probability of a derivation is merely a product
of the probabilities of the lexical categories. For building a derivation, the parser uses A*
search which potentially allows the parser to consider all categories for each lexical item
until it finds a derivation. In this way, the search space is not pruned by the supertagger as
it is done in the C&C parser. In case there are several possible derivations over the same
sequence of lexical categories, the parser prefers a derivation with the maximum length

9The CCG analyses are improved for verb predicate-argument and noun predicate-argument construc-
tions, verb-particle constructions, compound nouns, partitive constructions, punctuations, and restrictive
and non-restrictive nominal modifiers.

10The word features are 2-character suffixes, capitalization and 50-dimensional word embeddings (Turian
et al., 2010), where the latter being a key feature of the supertagger. A word embedding represents a high-
dimensional vector extracted from a large corpus. The vector encodes frequencies of the words that occur
in the context of a target word.

3.2. WIDE-COVERAGE CCG PARSERS 63

TiLPS

NP

in

(NP\NP)/NP

Tilburg

NP
>

NP\NP
<

NP

in

(NP\NP)/NP

the Netherlands

NP
>

NP\NP

<
NP

(a)

TiLPS

NP

in

(NP\NP)/NP

Tilburg

NP

in

(NP\NP)/NP

the Netherlands

NP
>

NP\NP
<

NP
>

NP\NP
<

NP

(b)

Figure 3.5: Different derivations with different logical forms. The length of dependency
arcs in (a) is longer than in (b); therefore EasyCCG prefers (a) to (b) if it derives both.

of arcs in the corresponding dependency tree. Consequently non-local attachments (a) are
favored over local ones (b) in the derivations (see Figure 3.5). This heuristic was chosen
simply because it performed better on development data.11

EasyCCG uses fewer combinatory rules compared to the C&C parser. In total there
are 23 instantiated or meta-rules in the grammar, where 13 of them are unary. Similarly
to C&C, EasyCCG contains type-changing (i.e. lexical) rules, in total 10. For instance,
these rules carry out the following type-changes:

N
lx7−→NP, S\NP lx7−→NP\NP, Sto\NP

lx7−→N\N, Sdcl/NP
lx7−→NP\NP, S\NP lx7−→S/S

Hence, the transparency principles of CCG are also violated by EasyCCG.
Compared to the C&C parser, EasyCCG is leaner, 4 times faster, cheaper to train

and generalizes better on unseen data. After training it on CCGbank, EasyCCG achieves
slightly better results than C&C.12 EasyCCG expects as an input a natural language text
(not necessarily tokenized) and can return n-best CCG derivations of the input. The two
best parse trees by EasyCCG for the sentence discussed in Figure 3.4 are given in Fig-
ure 3.6. Although EasyCCG and C&C assign almost identical lexical categories for the
sentence, the derivation trees are different. The trees by EasyCCG failed to capture a long
distance dependency and gave a different syntactic reading of a sentence. Despite this
failure, EasyCCG is still able to capture analyses of Figure 3.4 using the n-best feature.
The trees produced by EasyCCG are free from POS and NER tags as it does not require
these tags. Nevertheless, EasyCCG allows an input augmented with POS and NER tags
(e.g., from the C&C tools) where the tags are later copied in the final tree. In contrast to
Morpha (Minnen et al., 2001), used in C&C, EasyCCG uses a less accurate morphological
analyzer.

Apart from the n-best derivation feature, EasyCCG also allows to constrain the root
category of an input sentence: to be either a declarative sentence, a question, or a noun
phrase. Unfortunately, these two features are not available in the C&C parser; this gives
EasyCCG certain advantages over C&C from application perspectives.

11Although there is nothing more said on this issue by Lewis and Steedman (2014b), one of the reasons
why favoring non-local attachments shows better results could be that parsing is the only phase where non-
local attachments can be encouraged. Notice that lexical categories are primed for local attachments as the
supertagger is trained on local ±3 word context windows.

12Lewis and Steedman (2014a) report that the best results are achieved when EasyCCG’s supertagger is
combined with the parser component of C&C.

12These parse trees are obtained using EasyCCG version 0.2 with pre-trained models from http://
homepages.inf.ed.ac.uk/s1049478/easyccg.html

http://homepages.inf.ed.ac.uk/s1049478/easyccg.html
http://homepages.inf.ed.ac.uk/s1049478/easyccg.html

64 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

ba[Sdcl]

ba[VP dcl]

out
VP\VP

out

fa[VP dcl]

sold
VP pss

sell

is
VP dcl/VP pss

be

ba[NP nb]

fa[NP\NP]

ba[NP]

lx[NP\NP, Sdcl/NP]

fc[Sdcl/NP]

liked
VP dcl/NP

like

tr[S/VP]

I
NP

i

lx[NP,N]

Zara
N

Zara

in
(NP\NP)/NP

in

fa[NP nb]

shirt
N

shirt

Every
NP nb/N

every

(a) The first best derivation tree by EasyCCG, where a reduced relative clause is attached to “Zara”
and a verb particle “out” modifies a compound verb phrase.

ba[Sdcl]

fa[VP dcl]

ba[VP pss]

out
VP\VP

out

sold
VP pss

sell

is
VP dcl/VP pss

be

ba[NP nb]

fa[NP\NP]

ba[NP]

lx[NP\NP, Sdcl/NP]

fc[Sdcl/NP]

liked
VP dcl/NP

like

tr[S/VP]

I
NP

i

lx[NP,N]

Zara
N

Zara

in
(NP\NP)/NP

in

fa[NP nb]

shirt
N

shirt

Every
NP nb/N

every

(b) The second best derivation tree by EasyCCG. The tree differs from the best one (a) only in the
analysis of the final verb phrase.

Figure 3.6: The first (a) and the second (b) best trees for “Every shirt in Zara I liked is
sold out” by EasyCCG. The trees are significantly different from the trees produced by
the C&C parser (Figure 3.4). EasyCCG failed to capture a long-distance dependency of
“I like” on “shirt”. It also preferred NP-S analysis to Nom-S as the considered version
of EasyCCG is trained on CCGbank. The combinatory rules are abbreviated according to
Table 3.2. VP i abbreviates Si\NP where i stands for a feature.

3.3. FROM CCG DERIVATIONS TO CCG TERMS 65

All in all, EasyCCG is another robust parser that parses sentences according to the
CCG formalism. It is made publicly available for download13 and for trying online14.

3.3 From CCG derivations to CCG terms

Two types of directional slashes and a forward-backward dichotomy in combinatory rules
represent a technique that controls word order on the surface level. From a semantic
perspective, this directional division is redundant. It does not matter for the semantic
compositional process whether an argument is found on the left or right of a function;
what matters is that a function finds and applies to an argument, which can be expressed
with a canonical order—an argument directly following a function. In this section, our
goal is to abstract from directional elements of CCG and produce a structure that is more
universal and adequate as a semantic representation.

In order to eliminate directional slashes in categories, directional categories will be
converted to non-directional ones. In other words, both slashes will be replaced by a sin-
gle type/category constructor. Obviously, in this process only functional categories will
be affected. For instance, a syntactic category (S\NP)/NP for transitive verbs will be
changed into a functional category (NP, (NP, S)), where the comma is a category con-
structor. We call these non-directional syntactic categories syntactic types and, hereafter,
represent them like (np, (np, s)). For a syntactic category, a corresponding syntactic type
is obtained by replacing both slashes with the comma and simply reversing an order of
primitive categories while maintaining the grouping enforced by parentheses.15 Reversing
is a result of an opposite order in argument-value pairs of CCG categories and syntactic
types: value/argument and value\argument in contrast to (argument,value), respectively.
The conversion is demonstrated by the following example, where digits are considered as
primitive categories:(

(1/2)\(3\4)
)
/(5/6) 7−→

(
6, 5
)
,
(
(4, 3), (2, 1)

)
Apart from changing categories, the directionality has to be discarded from combi-

natory rules as well. In particular, since a functional syntactic type does not contain the
information on which side it has to find an argument, a function-argument order over
constituents has to be altered in such a way that the application obeys typing. Figure 3.7
shows examples of rearranging nodes for the functional application and functional com-
position rules. In the resulted structures, the lexical entries with new syntactic types are
combined using function application and λ-abstraction of the simply typed λ-calculus.

It is not a coincidence that resulted structures in Figure 3.7 represent simply typed
λ-terms. Indeed, our aim is to transform CCG derivations into λ-terms and CCG cat-
egories into syntactic types. In order to design a general procedure of transforming a
CCG derivation into a λ-term, for each CCG combinatory rule we define how its con-
stituents are shuffled (similarly to the transformations in Figure 3.7). Rearrangement of

13https://github.com/mikelewis0/easyccg/releases
14http://homepages.inf.ed.ac.uk/s1049478/easyccg.html
15Correctness of this transformation can be formally proved using mathematical induction over the length

of a category, where the length represents the number of primitive categories.

https://github.com/mikelewis0/easyccg/releases
http://homepages.inf.ed.ac.uk/s1049478/easyccg.html

66 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

fa[Y]

A
X

F
Y/X

ba[Y]

F
Y \X

A
X

=⇒
@[y]

A
x

F
(x, y)

(a) A structure for the functional appli-
cation rule fa coincides with the final
structure due to the convention associ-
ated to a term application @, where a
function precedes its argument.

fc[Z/X]

A
Y/X

F
Z/Y

bc[Z\X]

F
Z\Y

A
Y \X

=⇒

λ[(x, z)]

@[z]

@[y]

v
x

A
(x, y)

F
(y, z)

v
x

(b) A hypothesis about existence of an item of cat-
egory X , which the functional composition rules
make, is represented by a variable x of category X .
After composition of initial constituents, the hypo-
thetical x is taken away via the λ-abstraction.

Figure 3.7: Rearranging nodes for the functional application and functional composition
combinatory rules in order to accommodate syntactic types. Non-terminal nodes are la-
beled with a category or type and an operation (e.g., fa – the forward application rule, @
– the functional application of λ-terms, or λ – the λ-abstraction operation.

constituents follows the way logical forms are combined by the combinatory rules.16 For
example, the obtained structures in Figure 3.7 are presented in the (underlined) semantic
interpretations of the combinatory rules:

Y/X : f X : a ⇒ Y : fa Forward functional application (>)
X : a Y \X : f ⇒ Y : fa Backward functional application (<)

Z/Y : f Y/X : g ⇒ Z/X : λx. f(gx) Forward functional composition (>B)
Y \X : g Z\Y : f ⇒ Z\X : λx. f(gx) Backward functional composition (<B)

Since the CCG parsers use combinatory rules that are not in the CCG formalism, it is
necessary to define transformations for them, too. In Table 3.2, almost all combinatory
rules of the CCG parsers with corresponding transformations are given. The transfor-
mation schemata in Table 3.2 can be also seen as a rule of combining logical forms: if
constituents in a schema are replaced by their semantic counterparts then semantics of a
resulted constituent is obtained.

As the parsers employ the lexical rules, it is not straightforward to convert CCG
derivations into λ-terms. To make the conversion procedure step-wise and transparent,
first, a derivation is translated into a term with type-changes, and then the type-changes
are eliminated via a correction procedure. A CCG term is a typed λ-term that, in addition
to the functional application and the λ-abstraction, uses type-changing operators [.]βα for
any α and β types. A type-changing operator [.]βα is simply a constant λ-term of type

16Bos (2009) does a related job. On top of the CCG derivations of the C&C parser, he builds semantic
interpretations in Discourse Representation Theory (DRT) (Kamp and Reyle, 1993) while using the λ-
calculus as a combining device. The semantic interpretations, i.e. the terms of λ-DRT, are combined
according to the CCG combinatory rules. In contrast to (Bos, 2009), we do not build any layer for semantics
on top of the derivations, but we convert derivations into a new semantic layer.

3.3. FROM CCG DERIVATIONS TO CCG TERMS 67

ba[Sdcl]

ba[Sdcl]

lx[NP,N]

fa[N]

Two
N/N
two
CD

people
N

people
NNS

fa[Sdcl\NP]

are
VP dcl/VP ng

be
VBP

kickboxing
VP ng

kickbox
VBG

rp[Sdcl\Sdcl]

conj[Sdcl\Sdcl, Sdcl]

and
conj
and
CC

ba[Sdcl]

lx[NP,N]

spectators
N

spectator
NNS

fa[Sdcl\NP]

bxc[VP dcl/VP ng]

are
VP dcl/V Png

be
VBP

not
VP dcl\VP dcl

not
RB

watching
VP ng

watch
VBG

.
period

.

.

(a) A CCG derivation by the rebanked C&C parser. Lexical entries are annotated with syntactic
categories, lemmata and POS tags. Non-terminal nodes are labeled with a combinatory rule (writ-
ten in a Prolog style) and a final category that is optionally followed by a source category (e.g., a
source category is present in lx and conj).

sdcl

sdcl, sdcl

and
sdcl, sdcl, sdcl

and
CC

sdcl

vpdcl

not
vpdcl, vpdcl

not
RB

vpdcl

are
vpng, vpdcl

be
VBP

watching
vpng

watch
VBG

np

spectators
n

spectator
NNS

sdcl

vpdcl

are
vpng, vpdcl

be
VBP

kickboxing
vpng

kickbox
VBG

np

n

Two
n, n
two
CD

people
n

people
NNS

(b) A CCG term obtained from the CCG tree in (a) by removing directionality in CCG categories,
rearranging lexical entries according to Table 3.2 and carrying out β-reduction.

Figure 3.8: A CCG tree (a) and the corresponding CCG term (b) for a sentence “Two
people are kickboxing and spectators are not watching.” from the SICK dataset (Marelli
et al., 2014b). VP i and vpi abbreviate Si\NP and (np, si) respectively.

68 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

Two

N/N
twon,n

people

N
peoplen

>
N

twon,npeoplenLx
NP

[twon,npeoplen]np

are

VP/VP
bevp,vp

kickboxing

VP
kickboxvp

>
VP

bevp,vpkickboxvp

<
S

bevp,vpkickboxvp[twon,npeoplen]np

and

(S\S)/S
ands,s,s

spectators

N
spectatornLx

NP
[spectatorn]np

are

VP/VP
bevp,vp

not

VP/VP
notvp,vp

<B×
VP/VP

λx. notvp,vp(bevp,vpxvp)

watching

VP
watchvp

>
VP

notvp,vp(bevp,vpwatchvp)
<

S
notvp,vp(bevp,vpwatchvp)[spectatorn]np

>
S\S

ands,s,s
(

notvp,vp(bevp,vpwatchvp)[spectatorn]np
)

<
S

ands,s,s
(

notvp,vp(bevp,vpwatchvp)[spectatorn]np
)(

bevp,vpkickboxvp[twon,npeoplen]np
)

Figure 3.9: A CCG derivation of the sentence in Figure 3.8, where each lexical entry has
a canonical logical form—a term expressed by the corresponding lemma typed with the
corresponding syntactic type. The logical form of the sentence coincides with the CCG
term (2) of Figure 3.8b.

(α, β). Hence, their introduction in the calculus is straightforward. For brevity, we em-
ploy a polymorphic notation of type-changing operators: we write [A]β instead of [Aα]βα.
Examples of CCG terms are given in the last column of Table 3.2.

After transforming each combinatory rule of a CCG derivation according to Table 3.2,
a corresponding CCG term is obtained. As a demonstration of this transformation, a CCG
derivation tree (a) by the C&C parser and its corresponding CCG term (b) are given in
Figure 3.8. In general, in order to obtain a concise CCG term, β-reduction needs to be
carried out on a term. For example, after faithfully converting each combinatory rule of
a constituent “are not watching” in Figure 3.8a, a β-redex (1) is obtained due to the bxc

combinatory rule. So, for obtaining nice CCG terms from CCG derivations, one also
needs to automatize the λ-calculus.

(
λx. not (are x)

)
watching

β−→ not (are watching) (1)

Obtained CCG terms are information-rich terms as their constant terms (i.e. lexical
items) maintain all annotations they have in a CCG derivation. When a CCG term is
written in-line, a lemma of a lexical item abbreviates the entire item as it is shown for the
CCG term of Figure 3.8b below:

ands,s,s
(

notvp,vp(bevp,vpwatchvp)[spectatorn]np
)(

bevp,vpkickboxvp[twon,npeoplen]np
)

(2)

Finally, a CCG term can be seen as a canonical logical form of a CCG derivation: if
each lexical entry has its lemma as a logical form typed with a corresponding unidirec-
tional category, then a CCG term of a CCG derivation coincides with a logical form of a
whole phrase. The former fact is demonstrated in Figure 3.9.

3.4. CORRECTING CCG TERMS 69

3.4 Correcting CCG terms

A CCG term is a typed λ-term (with possible type-changing rules in it) that is directly
obtained from a CCG derivation. In order to obtain LLFs suitable for reasoning, we
further process CCG terms as follows. First, certain closed-class lexical terms are replaced
by their canonical forms, e.g., all ; every. Also several multiword expressions, e.g., “in
front of ”, are identified and treated as lexical terms. This step serves as a pre-processor
which shrinks term vocabulary. The latter itself decreases the number of tableau rules
and make tableau rules leaner. Second, we eliminate most frequent type-changes in CCG
terms. The changes are explained either by setting new types for lexical entries or by
inserting new lexical entries in CCG terms. Third, we fix wrong analyses the CCG parsers
systematically produce. Such wrong analyses mainly concern attachments of relative
clauses and prepositional phrases.

During all these three steps, CCG terms are modified by term rewriting rules. The
rules are collected manually in the data-driven adaptation described in §6.2.1. The whole
correction procedure is facilitated by syntactic types and the absence of word order in
CCG terms. The former aspect contributes to fine-grained matching between rewriting
rules and CCG terms while the latter aspect makes the rules simpler and keeps their num-
ber relatively small. The pseudocode of the correction procedure is given in algorithm 1
(Appendix B). Before presenting the actual rules, we first discuss shortcomings of the
CCG derivation trees obtained from the CCG parsers and show how they might lead to
poor performance on textual entailment recognition.

3.4.1 Shortcomings of the CCG derivations

For reasoning over sentences, it is essential to get the semantics of sentences right. Getting
adequate LLFs from CCG derivations is highly important for the natural tableau system to
find a proof. Unfortunately, the parsers are not flawless and they make a lot of mistakes.
Remember that for CCGbank, C&C and EasyCCG get only about 85% of dependencies
right (Lewis and Steedman, 2014a). Moreover, C&C obtains a gold derivation, i.e. a
derivation with no mistakes, for less than 33% of the newswire sentences (§3.2.1).

These results seem quite desperate for producing adequate semantic representations
from CCG trees, but the situation is still encouraging as the parsers displayed promis-
ing results in several semantic tasks (Bjerva et al., 2014; Beltagy and Erk, 2015; Artzi
et al., 2015). Moreover, some textual entailment datasets (Cooper et al., 1996; Marelli
et al., 2014b), unlike CCGbank, contain simpler sentences. Hence, we expect less parsing
errors from the parsers on those datasets. Finally, although correct semantic represen-
tations are essential for the proof system, they are not always necessary for recognizing
logical relations. Consider a textual entailment problem in PROB-6. Regardless whether
the clause “I liked” modifies, “Zara” (Figure 3.6) or “shirt” (Figure 3.4), the entailment
relation is still possible to be captured. It is enough to know that “sold out” entails “out of
stock”. Even there can be the case that analyses of constituents do not matter for detect-
ing a logical relation. In SICK-42, it is not necessary to analyze the first conjunct of the
sentences in order to classify the sentence pair as contradiction.

70 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

GOLD: ent; PROB-6

Every shirt in Zara I liked is sold out

Every shirt in Zara I liked is out of stock

GOLD: cont; SICK-42

Two people are kickboxing and spectators are not watching

Two people are kickboxing and spectators are watching

Despite the above-mentioned, adequate LLFs are still crucial for reasoning and a sin-
gle mistake in a CCG derivation might lead to a wrong decision. An incomplete list of
such kind of mistakes made by C&C and EasyCCG is described next.17 While present-
ing a textual entailment problem, its sentences are annotated with errors coming from the
parsers. We use brackets for constituency marking and they should not be confused with
the type changing operators occurring in CCG terms. Syntactic categories for phrases are
written in a subscript.

A CCG derivation tree can often suffer because of a wrong syntactic category as-
signed by a supertagger. For instance, in the premise of SICK-2911, the C&C supertagger
wrongly identifies the verb “putting” as ditransitive and assigns (VP ng/NP)/PP to it. In
the end, this wrong category contributes to VP dcl as the final category of the sentence.
After this mistake, the premise and the conclusion are not comparable, hence impossible
to classify the textual entailment as contradiction.

GOLD: ent; SICK-2911

[A woman is putting(VPng/NP)/PP on makeup]VP dcl

[There is no woman puttingVPng/PP on makeup]Sdcl

GOLD: cont; SICK-219

There is no girl in [white dancingNNn]N

A girl in [whiteN]NP is dancing

Even a wrong POS tag can cause failure. In the premise of SICK-219, the C&C POS
tagger identifies “dancing” as a noun (with the POS tag NN). Based on this error, the
C&C supertagger assigns a category N to “white dancing” which radically changes the
meaning of the sentence and makes it impossible to identify contradiction between the
premise and the conclusion. The same problem remains for EasyCCG which does not
employ a POS tagger but still its supertagger wrongly tags “dancing” with N in the first
best derivation.

The type-changing rules also pose a problem as it is not clear what they do from a
compositional semantics point of view. For example, in SICK-219, the type of “white”
is changed from N into NP and the changing operation needs to have corresponding
semantics.

17Described errors are triggered by using rebanked C&C (Honnibal et al., 2010) and EasyCCG version
0.2 trained on CCGbank. For different versions of the parsers or models, the errors might be different.

3.4. CORRECTING CCG TERMS 71

One of the most frequent mistakes both parsers make is a wrong prepositional phrase
(PP) attachment. This problem occurs naturally from ambiguity related to PP attachments.
For instance, in the premise of SICK-2772, identifying “for cooking into a pot” as a PP
constituent and attaching it to the verb phrase “pouring oil” makes it more difficult to
capture entailment relation. Another example where both C&C and EasyCCG make a
wrong PP attachment is SICK-3657: “with water” is attached to the noun instead of the
verb in the premise. Afterwards, the attachment makes it impossible to recognize the
entailment relation.

GOLD: ent; SICK-2772

A person is
[
[pouring oil]VPng/PP [for cooking into a pot]PP

]
A person is

[
[pouring cooking oil]VPng/PP [into a pot]PP

]

GOLD: ent; SICK-3657

A boy is filling [a pitcher with water]NP

A pitcher is being [filled with water]VP pss by a boy

It is well-known that multiword expressions (MWEs) represent a problem for lexical-
ized parsers (Sag et al., 2001), and this is also the case for the CCG parsers. The parsers
often fail to render MWEs as constituents. For instance, expressions like “because of ”,
“according to”, “next to”, “in front of ”, etc. are not analyzed as constituents. This makes
it difficult to capture entailment in the problems like SICK-6096 as the knowledge of
“beside” and “next to” being synonymous does not suffice.

GOLD: ent; SICK-6096

A man is standing beside a birdcage which is large and colorful

The man is standing next [to a bird cage]PP

GOLD: ent; FraCaS-26

[
[MostN/N EuropeansN]N

]
NP are resident in Europe

[All Europeans]NP are people
[All people who are resident in Europe]NP can travel freely within Europe[
[MostN/N EuropeansN]N

]
NP can travel freely within Europe

Finally, the CCG parsers do not analyze quantified noun phrases (NPs) as type-raised
NPs, i.e. as phrases of category S\(S/NP) or S/(S\NP). The reason for it is to maintain
the parsing process efficient. On the other hand, generalized quantifiers (Montague, 1973;
Barwise and Cooper, 1981) nicely capture monotonic features of quantifiers that are im-
portant for monotonicity reasoning (see §1.3). For instance, with the help of monotonic
features of “most”, it is possible to prove the entailment relation in FraCaS-26. Moreover,
monotonicity features can often lead to shorter and more natural proofs.

72 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

All wrong analyses by the CCG parsers are automatically carried from CCG deriva-
tions to CCG terms. In order to guarantee more adequate logical forms, we design pro-
cedures to fix some of the shortcomings of CCG terms.18 Before correcting a wrong
analysis, first, it has to be found in a term. We find an error by designing a pattern that
reliably matches an error and its context. This pattern may include any information about
a lexical term (e.g., its POS tag19 or lemma) or about a compound term (e.g., its syntactic
type or structure) that is available in a CCG term.

The correction procedure consists of term rewriting rules. The rules have a form of
antecedent ; consequent. Meta-variables ranging over lexical terms are written as lower-
case letters while meta-variables denoted by upper-case letters range over a set of all CCG
terms. In order to have simpler rules, we assume that all properties of lexical terms in an
antecedent are preserved in the consequent, unless stated differently. For a demonstration
purpose, consider a rule in (3) that type-raises quantified NPs:

Vnp,s (qDT
n,np Nn) ; qn,np,s N V (3)

walknp,s
(

everyDTn,np (talln,nmann)
)

; everyDTn,np,s (talln,n mann) walknp,s (3a)

The rule reorders terms and changes the type of q while leaving V and N terms
unchanged and implicitly assuming the POS tag DT for q in the result. New features of
terms are explicitly mentioned in the consequent of a rewriting rule. The transformation
in (3a) demonstrates the rule (3) in action.

3.4.2 Simplifying CCG terms
The simplification process of CCG terms consists of several rewriting rules. These rules
detect certain MWEs and closed class words and replace them with the corresponding
simpler and canonical versions. Also false relational nouns are treated as ordinary nouns.
The process makes CCG terms simpler, semantically more transparent and adequate for
reasoning.

The rules for MWEs identify and convert MWEs into a constant term, i.e. with no
internal structure. These rules are hand-crafted for the MWEs occurring frequently in
training RTE datasets (see § 6.2.1). For instance, (4–7) represent some of the rules for
MWEs. The rules in (4–6) treat specific MWEs frequently found in the SICK dataset
(Marelli et al., 2014b). On the other hand, (7) represents more general rule: given a list
of 〈b,o〉 pairs, it identifies several MWEs like “because of ”, “instead of ” and “prior to”
(7a) as a constant.

innp,α [front (of Tnp)]np ; in front ofnp,α T (4)

nextβ,γ (to Tα) ; next toα,γ T (5)

an,np (fewn,n Nn) ; a fewn,np N (6)

18Identifying and correcting errors in CCG terms are simpler and more deterministic than doing this in
CCG trees. The reason is simple. A CCG term represents a version of a CCG tree that is abstracted from a
word order. Therefore, during finding and fixing errors, one does not need to care about a function-argument
order or even about types of combinatory rule.

19 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_
pos.html

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

3.4. CORRECTING CCG TERMS 73

bpp,vp,vp (oIN|TO
α,pp Tα) ; b oα,vp,vp T (7)

priorpp,vp,vp(toTOnp,pp(then,npshown)) ; prior tonp,vp,vp(the show) (7a)

One way of simplifying a CCG term is to decrease the size of vocabulary. For in-
stance, there are several closed-class words, like “every” and “all”, that are similar from
semantic perspectives. Substituting these lexical items with a canonical one makes the
vocabulary leaner which itself implies less or simpler tableau rules. Such reductions (8a–
d) are carried out by the rule in (8) which replaces a lexical term by the similar term of
the same type.

cα ; dα where similar(c,d) (8)

alln,np ; everyn,np (8a)

ann,np ; an,np (8b)

thatvp,n,n ; whichvp,n,n (8c)

whovp,n,n ; whichvp,n,n (8d)

In the end, a simplified CCG term has more transparent semantics and consists of
fewer lexical terms compared to the initial CCG term. Moreover, it is easier to further
correct wrong analyses in the simplified terms or to reason over them.

3.4.3 Explaining the type-changing rules

Both wide-coverage CCG parsers, C&C and EasyCCG, employ type-changing rules which
have no analogy in the CCG formalism. The rule is adopted by the parsers in order to
make the parsing process efficient and robust.20 The idea behind a type-changing rule is
simple—it mysteriously changes a syntactic category of a constituent into the category
that better fits the context. For instance, if a constituent of category N is followed by an
intransitive verb phrase of category S\NP , then a type-changing rule can change N into
NP and allow the backward application rule to proceed further. For CCG derivations and
CCG terms, all lexical rules can be expressed as a single schematic rule:

X : a ⇒ Y : b Lexical rule in the CCG style

Ax

[.]y7−−→ By Lexical rule for CCG terms

But, of course, X and Y meta-variables are not ranging over all categories. There is a
fixed number of instances for 〈X, Y 〉 pair which induce concrete type-changing rules.

Our goal in this subsection is to define a new logical form b (or a new CCG term B)
given all other components of the lexical rule. From the perspective of CCG terms, the
goal boils down to define the [.]α operator in such a way that B is a well-formed λ-term
of type y that is free from the type-changing operator. Below we give several rewriting
rules that explain type-changes. While doing so, CCG terms are used as operands.

20Initially, type-changing rules were introduced in CCGbank in order to facilitate semi-automatic trans-
lation of phrase structure trees into CCG derivations.

74 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

3.4.3.1 The lexical rule n 7→ np

A rule that alters a category N to NP is the most popular instance of the lexical rule in
the CCG parsers. Usually this category change occurs for bare NPs (i.e. an NP without
an initial determiner or quantifier). Solutions to explain the n 7→ np type-change in CCG
terms can be categorized in five classes.

The first class contains a rewriting rule (9) which directly sets np as a syntactic type of
lexical NP term while ignoring the previous n type. A set of POS tags, written as a regular
expression, puts constraints on the antecedent term. The rule covers lexical terms which
were identified by the C&C POS tagger as a proper noun or a personal pronoun. The
concrete transformations carried out by (9) are given in (9a–9d). Note that the information
attached to lexical terms is preserved unless it is replaced by different information. For
example, a POS tag of the lexical term c remains unchanged in (9) while the syntactic
type changes.

[cNNP|NNPS|PRPn]np ; cnp (9)

[OracleNNPn]np ; Oraclenp (9a)

[StatesNNPSn]np ; Statesnp (9b)

[hePRPn]np ; henp (9d)

The rule in (10) also acts on lexical terms but, unlike (9), it splits them. The rule is
applicable to terms with a determiner POS tag that are possible to be split into a determiner
and a noun (10c). The splitting requirement is checked with the help of split/3 predicate
which holds for a predefined set of triples. Currently (10) is the only rule in the second
class.

[cDTn]np ; dDT
n,np n

NN
np where split(c,d,n) (10)

[nobodyDTn]np ; noDTn,np personNNn (10c)

The third class consists of the rules that explain the n 7→ np type-change for non-bare
compound CCG terms by assigning proper types to the constituent terms. In particular,
the rules in (11) and (12) identify noun modifiers as determiners of type (n, np) that
consequently explain the type-change. The examples of CCG terms processed by these
rules are given below:

[cDT|CDn,n Nn]np ; cn,np N (11)

[manyDTn,n red applen]np ; manyn,np red applen (11a)

[threeCDn,n red applen]np ; threen,np red applen (11b)

[eRB(n,n),n,n c
CD
n,n Nn]np ; e(n,np),n,np cn,np Nn (12)

[exactlyRB(n,n),n,n twoCDn,n red applen]np ; exactly(n,np),n,np twon,np red applen (12a)

The rules from the fourth class pushes the type-change in sub-terms. The first rule
(13) pushes the type-change from a pair of a noun and a relative clause to the noun. This

3.4. CORRECTING CCG TERMS 75

rule is triggered to process a CCG term (13a) for a noun phrase like in “there is [nobody
eating]NP ”. The example shows how the relative clause gets out of the scope of [.]np and
leaves explanation of the shifted type-change of [nobodyn]np to the rule in (10).[

[Vvp]n,n Tn

]
np

; [Vvp]np,np [Tn]np (13)[
[eatvp]n,n nobodyn

]
np

; [eatvp]np,np [nobodyn]np (13a)

The second rule (14) from this class propagates the lexical rule down to sub-terms of
coordination as it is shown by (14a). Explanation of the type-changes in the sub-terms
is later done by the above described rules. In case of (14a), the both sub-terms could be
further processed by (9).

[cn,n,n X Y]np ; cnp,np,np [X]np [Y]np (14)

[andn,n,n Johnn Maryn]np ; andnp,np,np [John]np [Mary]np (14a)

Rules of the last class explain the type-change by inserting a determiner of type
(n, np). The inserting procedure is intended for bare compound CCG terms and takes
into account a POS tag of a head word of a CCG term. The following simple heuristic is
used for detecting a head of a phrase in a CCG tree: (i) a head of a lexical term is itself
the same term; (ii) a head of a CCG term does not change during λ-abstraction and type-
changing; (iii) for the term application, the head of a resulted term coincides with the
head of a function term unless the function is of type (α, α). In that case the head of an
argument becomes the head of the resulted term.

If the head of a noun term is singular, marked with NN, then a term an,np standing for a
canonical indefinite determiner is inserted (15); otherwise a term sn,np is used that stands
for a plural morpheme (16). In case of inserting the plural morpheme, the POS tag of the
head is set to NN, a singular noun.

[T HeadPOS:NN
n]np ; an,np T (15)

[iceNNn]np ; an,np icen (15a)

[T HeadPOS:NNS
n]np ; sn,np T

HeadPOS:NN (16)

[redn,n carNNSn]np ; sn,np (redn,n carNNn) (16a)

The idea behind inserting an,np is that it plays a role of a higher-order existential quan-
tifier. So, despite a term expressing a countable or a non-countable noun, in a positive
context with T, existence of an entity in the extension of the noun will be asserted. A plu-
ral determiner sn,np has the similar function with addition that potentially it can introduce
more than one such kind of item. The inserted determiners play a role of a type-shifter in
the sense of Partee (1987). The insertion rules (15) and (16) can be considered as the last
aid to explain n 7→ np change. Due to this nature, they must have the lowest priority than
any other rule for fixing type-changes (see algorithm 1 in Appendix B); otherwise these
rules can lead to insertion of redundant determiners.

In order to eliminate the n 7→ np type-change in a CCG term, we apply (9–16) rules
to it until they are applicable. We do so by starting it from the root of a term down to its
leaves. Notice that the rules does not guarantee that the processed CCG term will be free

76 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

Clause Noun phrase CCG term

Adjectival (adj) a glass full of water an,np
(
[full of waternp,sadj]n,n glassn

)
Declarative (dcl) a glass John broke an,np

(
[John breaknp,sdcl]n,n glassn

)
Passive (pss) a glass broken by John an,np

(
[break by Johnnp,spss]n,n glassn

)
Participle (ng) a glass falling on the floor an,np

(
[fall on the floornp,sng]n,n glassn

)
Table 3.1: Examples for the lexical rule changing (np, s) into (n, n)

from n 7→ np. For instance, in a few case, the C&C parser wrongly identifies the indefinite
determiner as of category N and later changes the category into NP . Obviously, in such
cases the introduced rules are not able to eliminate the type-change.

3.4.3.2 The lexical rules vp 7→ n and vp 7→ (np, np)

The second and third most frequent instances of the type-changing rule change S\NP
(abbreviated as VP) into N\N or NP\NP . Choice between N\N and NP\NP depends
on whether an adnominal clause is a restrictive or a non-restrictive modifier of an NP, re-
spectively.21 A reduced clause that undergoes these type-changes might get the following
sentential category features dcl, ng, pss, and adj; see the examples in Table 3.1.

In order to explain the vp 7→ (n, n) type-change in CCG terms, a canonical term which
of type (vp, n, n), standing for a relative pronoun, is inserted. This is done by the rule in
(17) which operates on any intransitive VP (e.g., of type vpadj, vpdcl, vppss, vpng):

[Vvp]n,n Nn ; whichvp,n,n Vvp N (17)

[John breakvp]n,n glassn ; whichvp,n,n John breakvp glassn (17b)

The type-change vp 7→ (np, np) is treated in the similar way by (18) where the inserted
relative pronoun is of type (vp, np, np). Note that this rule can also apply to the result of
(13).

[Vvp]np,np Tnp ; whichvp,np,np Vvp Tnp (18)

[runvp]np,np (everyn,np girln) ; whichvp,np,np runvp (everyn,np girln) (18b)

In order to show how (9–18) rules work hand-in-hand, a CCG tree (19) of a noun
phrase “somebody falling on ice” is processed below, where the final CCG term (19d) is
free of type-changing rules.[[

onINnp,vpng ,vpng [iceNNn]np fallVBGvpng

]
n,n

somebodyDTn

]
np

(19)

applying (13) to the whole term ⇓[
onINnp,vpng ,vpng [iceNNn]np fallVBGvpng

]
np,np

[somebodyDTn]np (19a)

21Apart from this distinction, there is also a language factor when it comes to non-restrictive adnominals:
while the Nom-S analysis, with N\N , is argued to be suitable for some languages, the NP-S analysis, with
NP\NP , is suitable for other languages (Bach and Cooper, 1978).

3.4. CORRECTING CCG TERMS 77

applying (18) to [on ice fall]np,np ⇓
whichWDTvp,np,np

(
onINnp,vpng ,vpng [iceNNn]np fallVBGvpng

)
[somebodyDTn]np (19b)

applying (15) to [ice]np ⇓
whichWDTvp,np,np

(
onINnp,vpng ,vpng(aDTn,np iceNNn) fallVBGvpng

)
[somebodyDTn]np (19c)

applying (10) to [somebody]np ⇓
whichWDTvp,np,np

(
onINnp,vpng ,vpng(aDTn,np iceNNn) fallVBGvpng

) (
aDTn,np personNNn

)
(19d)

We have presented rewriting rules which explain three most frequent type-changes
n 7→ np, vp 7→ (n, n) and vp 7→ (np, np) used by the CCG parsers. The rules are able
to eliminate almost all type-changes in the sentences of FraCaS (Cooper et al., 1996) and
the training portion of SICK (Marelli et al., 2014b).22

3.4.4 Fixing wrong analyses
After explaining most of type-changes in CCG terms, it is easier to correct several erro-
neous syntactic analyses coming from the CCG parsers. Most wrong analyses that can be
corrected automatically are related to NPs. The main source of these errors is CCGbank.
Since the sentences in CCGbank were semi-automatically obtained from phrase-structure
trees, some analyses that required manual inspection were treated in s default manner.
For example, all relative clauses in CCGbank are attached to NPs, i.e. all relative clauses
are treated as non-restrictive modifiers. Later, Honnibal et al. (2010) added restrictivity
distinctions in rebanked CCGbank. All NP\NP modifiers that are not preceded by punc-
tuation were changed into N\N and moved inside the NP. Despite this, the CCG parsers
trained on rebanked CCGbank still make mistakes with respect to adnominal attachments.

Since the RTE datasets which we will use later (see §6.1) do not contain non-restrictive
modifiers, we change the NP\NP category of adnominals into N\N . The rule (20)
puts a relative clause under a determiner, and therefore attaches the clause directly to a
noun constituent. In other words, the rule transforms the NP-S analysis of relative clause
into the Nom-S analysis. This transformation is important as the Nom-S analysis offers
compositional semantics of noun phrases in a straightforward manner (Partee, 1975).

wWP|WDT
vp,np,np Vvp (Dn,np Nn) ;D (wvp,n,n V N) (20)

whichWDTvp,np,np runvp (everyn,np girln) ;everyn,np (whichWDTvp,n,n runvp girln) (20a)

The correction in (20a) demonstrates (20) in action. Notice that in (20a) the result of
(18b) is modified. This shows how (20) can further operate on the terms that were already
processed by (18). The rule can also correct results of the rule (13).

Attaching a prepositional phrase to a noun, instead of an NP, is done by (21). This
transformation allows more transparent compositional semantics for a restrictive modifier,
similarly to the Nom-S analysis.

pIN
np,np,np Tnp (Dn,np Nn) ;D (pnp,n,n T N) (21)

22These datasets are discussed in §6.1.

78 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

sdcl

np

n

John
n

john
NNP

n, n

Mary
n

mary
NNP

and
n, n, n
and
CC

vpdcl

vpng

np

n

somebody
n

somebody
DT

n, n

vpng

falling
vpng
fall

VBG

vpng, vpng

np

ice
n

ice
NN

on
np, vpng, vpng

on
IN

watching
np, vpng
watch
VBG

are
vpng, vpdcl

be
VBP

Terms produced
from other terms

Terms with
changed types

Inserted terms

sdcl

np

John
np

john
NNP

np, np

Mary
np

mary
NNP

and
np, np, np

and
CC

vpdcl

vpng

np

n

person
n

person
NN

n, n

vpng

falling
vpng
fall

VBG

vpng, vpng

np

ice
n

ice
NN

a
n, np

a
DT

on
np, vpng, vpng

on
IN

which
vp, n, n

who
WDT

a
n, np

a
DT

watching
np, vpng
watch
VBG

are
vpng, vpdcl

be
VBP

Figure 3.10: Above is a CCG term obtained from a CCG tree for “John and Mary are
watching somebody falling on ice” produced by rebanked C&C. Below is λ-term obtained
from the CCG tree using correction rules described in this section.

3.5. TYPE-RAISING QUANTIFIERS 79

inINnp,np,np Tbilisinp (an,np hoteln) ;an,np (inINvp,n,n Tbilisinp hoteln) (21a)

The CCG parsers often attach a relative clause directly to the first noun on its left side,
e.g., “a good (boxer who is a father)N”. This kind of analysis makes difficult to capture
a constituent “good boxer” and gives raise to the wrong entailment of “a good father”.
Rebanked CCGbank explicitly encourages such analyses because some adjectives, such
as “present” and “former”, require scope over the qualified noun (Honnibal et al., 2010).
Unfortunately, such adjectives occur rarely in FraCaS and SICK. Due to this reason, we
introduce the rule (22) which moves a relative clause from the head noun to the qualified
noun; see (22a).

AHeadPOS:JJ
n,n (wvp,n,n Vvp Nn) ;w V (AN) (22)

goodJJn,n (whichvp,n,n is a fathervp boxern) ;which is a father (good boxer) (22a)

We have described the correction procedure which consists of three parts: (i) simpli-
fication of terms, e.g., identifying several MWEs; (ii) elimination of type-changes, e.g.,
explaining the most common type-change n 7→ np; and (iii) fixing the analysis related to
adnominals. After applying the correction rules to CCG terms, more semantically ade-
quate CCG terms, often free from type-changes, are obtained for the sentences in FraCaS
and SICK. A demonstration of the whole procedure is shown on a non-trivial example
in Figure 3.10, where the final (i.e. corrected) CCG term contains no type-changes. The
pseudocode of the entire correcting procedure can be found in algorithm 1 (Appendix B).

3.5 Type-raising quantifiers
There is the last step left in order to obtain LLFs from corrected CCG terms. This step
involves conversion of quantified NPs like “every man”, “most women” and “exactly three
dogs” into generalized quantifiers (GQs) (Montague, 1973; Barwise and Cooper, 1981).
GQs are crucial for our approach as they capture monotonic features of quantifiers which
are pivotal for monotonicity reasoning (van Benthem, 1986; Sánchez-Valencia, 1991),
discussed in §1.3. In §1.3 and §2.1, we have also demonstrated how monotonicity rea-
soning facilitates proofs in the natural tableau system. In order to treat quantified NPs
as GQs, we type-raise the np type to (vp, s), where vp abbreviates (np, s). More specif-
ically, this is achieved by type-raising the type of a quantifier, e.g., everyn,np mann ;
everyn,vp,s mann.23 In general, the type-raising procedure is not deterministic and might re-
sult in several LLFs differing in terms of order of quantifiers—having all quantifier scopes
resolved.24 First, we discuss GQs and a quantifier scope ambiguity in the CCG formalism
and the CCG parsers. Then, we describe a type-raising procedure, which represents an
improved version of the nested Cooper storage (Keller, 1988; Cooper, 1983).

In categorial grammars, quantified NPs are usually treated as generalized quantifiers
(GQs) since this enables compositional derivation of several semantic readings condi-
tioned by a scope ambiguity. In CCG, quantifiers are usually of category (T/(T\NP))/N

23Strictly speaking, changing n, np into n, vp, s is not type-raising, but we still call it so since the value
type np of n, np undergoes type-raising.

24For an overview of problems and formal approaches to quantifier scope, we refer readers to Ruys and
Winter (2011).

80 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

Every

(S/(S\NP))/N
λpq.∀x px→ qx

man

N
man
>

S/(S\NP)
λq.∀xmanx→ qx

loves

(S\NP)/NP
love

some

(T\(T/NP))/N
λpqz. ∃y py ∧ qyz

woman

N
woman

>
T\(T/NP)

λqz. ∃y woman y ∧ qyz
<

S\NP
λz.∃y woman y ∧ love yz

>
S

∀xmanx→ (∃y woman y ∧ love yx)

(a) Every man with a wide scope

Every

(S/(S\NP))/N
λpq.∀x px→ qx

man

N
man
>

S/(S\NP)
λq.∀xmanx→ qx

loves

(S\NP)/NP
love

>B
S/NP

λz.∀xmanx→ love zx

some

(S\(S/NP))/N
λpq.∃y py ∧ qy

woman

N
woman

>
S\(S/NP)

λq.∃y woman y ∧ qy

<
S

∃y woman y ∧ (∀xmanx→ love yx)

(b) Some woman with a wide scope

Figure 3.11: Resolving quantifier scope ambiguity for a sentence “every man loves some
woman”. Logical forms with different quantifier scopes are obtained from different CCG
derivations. Note the different lexical semantics of some in each derivation.

or (T\(T/NP))/N , where T is a meta-variable. After applying quantifiers to a common
noun of category N , the result is of category T/(T\NP) or T\(T/NP), respectively. These
are the same categories as of type-raised NPs (see (>T) and (<T)). Therefore, quantifiers
of these categories are type-raised, opposed to a non-typed-raised ones of categoryNP/N .

In Figure 3.11, an example shows how CCG can capture semantic readings caused by
quantifier scope ambiguity with the help of type-raised quantifiers. Note that the subject
quantifier “every” maintains its lexical category and semantics in both derivations while
the object quantifier “some” has different lexical categories and semantics. Put differently,
the semantics of a quantifier depends on the syntactic function of the noun phrase. This
is somewhat unappealing treatment of quantifiers in CCG.25

Yet another straightforward way of modeling quantifiers in CCG is to assign them
NP/N category and map NP to (et)t. This leads to uniform types (et)t and (et)(et)t
for logical forms of noun phrases and quantifiers, respectively (unlike the former ap-

25In addition, CCG is not able to derive a semantic reading with wide-scope quantification from a medial
position. For instance, it is not possible to obtain semantics of “someone introduced everyone to John”
where “everyone” takes a wide-scope: for everybody there is someone who introduced him/her to John.

3.5. TYPE-RAISING QUANTIFIERS 81

proach, where only quantified noun phrases have a logical form of type (et)t). Map-
ping NP to (et)t also complicates lexical semantics for several lexical items. For exam-
ple, in this case a transitive verb has two logical forms λOS. S(λy.O(λx. lovex y)) and
λOS.O(λx. S lovex)) of type

(
e(et)

)(
e(et)

)
t corresponding to subject and object wide

scope readings, respectively.
The CCG parsers and CCGbank are created with efficient parsing in mind, which

means that treating quantifiers as type-raised is not an optimal solution: this treatment
often complicates derivations and requires more lexical categories for describing quan-
tifiers (e.g., different categories for a subject and an object quantifiers as shown in Fig-
ure 3.11). Therefore, the parsers opt for the second approach and assign NP/N category
to quantifiers, and also to determiners. Since the parsers are only responsible for syntactic
derivations (i.e. derivations without any logical form), the ambiguity in lexical semantics
caused by the second approach has nothing to do with parsing efficiency. The issue of
ambiguity is then left to those who aim to get logical forms from the derivations.

In order to type-raise quantifiers in a CCG term, first we decompose a syntactic tree
of a CCG term into parts and then several trees can be constructed back from these parts.
Reconstructed trees represent CCG terms with type-raised quantifiers. The procedure af-
fects noun phrases formed from a determiner and a common noun while proper names are
type-raised only in certain cases, e.g., in conjunction with quantified NPs. The procedure
is also robust in the sense that it can process a CCG term with type-changes in it.

The type-raising procedure starts with chopping a syntactic tree of a CCG term of
type s. We do not chop the tree at the root and at the nodes which have λ-abstraction or
the type-changing operator as a child. The tree is chopped at non-terminal nodes that are
labeled with an np type or a syntactic type having s as a final value, denoted by (−, s); for
example, vp is such kind of type. Chopping at nodes of type (−, s), enables to type-raise
a quantified NP in its local clause. For the demonstration, the chopped parts (a–d) of the
CCG term (23a) are given in Figure 3.12.

Every man who ate a burger died (23)

dievp
(

everyn,np
(

whovp,n,n (eatnp,vp (an,np burgern)) mann
))

(23a)

Both copies of each chopped node are labeled with a fresh variable. The name sharing
maintains reference between them. One copy is always a terminal node in a source part
(i.e. serves as a free variable in a source sub-term) and another one becomes a root of a
chopped branch. After the tree is chopped into pieces, reconstruction of a new tree starts
from the part which has the root node of the initial tree, e.g., (a) in Figure 3.12. During
reconstruction cut branches are glued back to the main part. The gluing procedure is not
deterministic as there are several choice points while attaching the branches. Below we
give four rules for gluing branches.

The rules instruct how the main part can further be developed depending on its struc-
ture. While doing so the following notation will be used. Each cut branch, i.e. a sub-tree
or a sub-term, is represented as Xα{ #–u} where X is a variable label for the root (in upper-
case), α is the type of the root, and { #–u} is a set of free variables on the sub-tree, where #–u
is a comma separated (possibly empty) sequence. For the rules, we will employ the vector
representation for terms and types (see §2.0.1). We also denote a sub-tree by its root label
X , in short. For instance, the sub-tree in Figure 3.12b can be denoted by Xnp{y} or by X
shortly.

82 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

(a)

s

1
np

die
vp

(b)

1
np

n

man
n

n, n

2
vp

who
vp, n, n

every
n, np

(c)

2
vp

3
np

ate
np, vp

(d)

3
np

burger
n

a
n, np

(e)

s

vp

s

x 1
np

die
vp

λx 1

vp, s

n

man
n

n, n

2
+

vp

who
vp, n, n

every
n, vp, s

(f)

s

vp

s

die
vp

vp, s

n

man
n

n, n

vp

x 3
np

ate
np, vp

who
vp, n, n

every
n, vp, s

λx 3

vp, s

burger
n

a
n, vp, s

(g)

s

die
vp

vp, s

n

man
n

n, n

vp

s

vp

s

y
np

vp

x 3
np

ate
np, vp

λx 3

vp, s

burger
n

a
n, vp, s

λy

who
vp, n, n

every
n, vp, s

Figure 3.12: A syntactic tree of the CCG term (23a) chopped into 4 parts (a–d). The re-
construction starts from attaching (b) to (a) and type-raising everyn,np according to (DTR);
the result is (e). Since a free variable, denoted by 2 , is marked in (e), there are two ways
to plug (c) in (e), either according to (NTR) or (WTR); results for each case are (f) and
(g), respectively.

3.5. TYPE-RAISING QUANTIFIERS 83

The default type-raising (DTR) rule operates on the main three of type #–αs that has at
least one free variable of type np. The rule application is non-deterministic if there are
more than one free variables of type np. For some selected free variable x, the rule feeds
the main tree X with fresh variables #–v #–α until it becomes of type s and then abstracts x
from it. The type-raised version of the sub-term X is later applied to the latter term.26 In
the end, introduced fresh variables are abstracted back.

T #–αs{xnp, #–y } ⇒ λ #–v . TR(X)(λx. T+ #–v #–α) (DTR)

In the resulted term, the free variables in T are marked with + meaning that they are
in a scope of some quantifier. This information about the scope will be used later to allow
different scope orders. The (DTR) rule is used in Figure 3.12, when (e) is obtained from
the main part (a).

The substitution rule allows to attach a sub-term X of type (−, s) to a main term. The
restriction on the sub-term is that it has no free variables of type np. The sub-term is
directly plugged in the main term by substituting the corresponding free variable x. After
the substitution, the sign g of x is distributed over the free variables of X .

T(−,s){xg(−,s),
#–y } where X{ #–z | unp 6∈ #–z } ⇒ T [Xg/x] (SUB)

The narrow type-raising (NTR) rule is similar to (SUB), but in contrast to it, (NTR)
glues back the sub-term that contains a free variable of type np. Before plugging the
sub-term X in the variable x, first the sub-term of type np corresponding to one of the
free variables of X is type-raised according to (DTR). Put differently, the term of a free-
variable of X is type-raised in a local clause.

T(−,s){xg(−,s),
#–y } where X{ #–z | unp ∈ #–z } ⇒ T [DTRg(X)/x] (NTR)

For example, in Figure 3.12, (g) is obtained by attaching (c) to (e) with the help of (NTR).
The previous rule allows type-raising of an NP term of X with a narrow scope. But

if the variable x occurs under the scope of some quantifier, then the wide scope-raising
(WTR) makes it possible to type-raise an NP term of X with a wide scope.

T #–αs{x+(−,s),
#–y } where X{ #–z | unp ∈ #–z } ⇒ λ #–v . TR(U)(λu. T [X+/x] #–v #–α) (WTR)

Notice that the application of (WTR) is allowed if an NP term of X happens to be
under the scope of some quantifier. On the other hand (NTR) is applicable despite this
condition. In Figure 3.12, (WTR) is applied to (e) and (c) and in order to obtain (f).
The process of type-raising quantifiers for the CCG term in (23a) is shown in Figure 3.12,
where the final reconstructed trees (f) and (g) represent the LLFs found in (23c) and (23b),
respectively.

EVERYn,vp,s

(
who

(
λx.An,vp,s burger (λy. eat ynp xnp)

)
man
)

die (23b)

An,vp,s burger
(
λy.EVERYn,vp,s

(
who (λx. eat ynp xnp)man

)
die
)

(23c)

26TR is a type-raising operator that takes a term of type np and returns a term of type ((np, s), s). This
is done by tracing the leftmost branch of the term in order to find the main lexical function term. After the
term is found its type is changed correspondingly. The operator takes into account the coordination and
modifier terms.

84 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

From a procedural perspective, the presented four rules can be applied to the main
sub-term in different orders. Some application orders result the same LLF while other
orders produce the LLFs with different quantifier orders. There are only two types of
choice point in the presented rules. One is related to (DTR) when choosing a variable of
type np for type-raising. Another choice point is made when choosing the rule between
(NTR) and (WTR). Decision at these points is crucial for an order of quantifiers.

For a sentential coordination like (24a), the procedure of type-raising is determinis-
tic as none of the two choice points occur during rule applications. The obtained LLF
is given in (24b). The alternative LLFs, (24d) and (24c), are semantically equivalent to
(24b) but they push the conjunction deep in a structure. From the viewpoint of tableau
theorem proving, these two LLFs have inefficient structures since the rules for quantifiers
should be applied prior to the rule for a conjunction. Notice that the LLFs in (24d) and
(24c) are prevented with the help of (NTR), which type-raises quantified NPs in a local
clause if they are not under some quantifier scope. By identifying local clauses, the ap-
proach makes an initial attempt to detect scope islands. Future research in this direction
is required to make the account more feasible.

Every man sleeps and some woman worries (24)

ands,s,s
(

sleepvp(everyn,np mann)
)(

worryvp(somen,np womann)
)

(24a)
and (EVERYn,vp,s man sleep)(SOMEn,vp,s woman worry) (24b)

SOMEn,vp,swoman
(
λy.EVERYn,vp,sman

(
λx. and (sleepx)(worry y)

))
(24c)

EVERYn,vp,sman
(
λx. SOMEn,vp,swoman

(
λy. and (sleepx)(worry y)

))
(24d)

The described type-raising procedure shares similarities with the nested Cooper stor-
age (Keller, 1988) technique if chopped branches are seen as nested pairs of a variable and
a term. The original Cooper storage (Cooper, 1983) produces a storage from a syntactic
tree and lexical semantics, and then several semantic readings are reproduced by retriev-
ing elements from the storage in different ways. The nested Cooper storage (Keller, 1988)
improves the original work by allowing a hierarchy in a storage and accounting for nested
NPs in this way. In order to get certain scope orderings, sometimes one needs to start
reconstructing a semantic reading from different nested storages. Our proposed approach
differs from the storage approaches in several aspects. Unlike them, our approach oper-
ates on a tree structure without any additional lexical semantics. We get all our readings
from the same set of chopped branches. We achieve this with four reconstruction rules, in
contrast to their single rule. During reconstruction, our approach takes into account local
clauses.

The current type-raising procedure is not complete in the sense that it is not able to
generate all possible semantic readings. This shortcoming comes from syntactic types
of CCG terms rather than from the procedure itself. The reason is that syntactic types
in CCG terms are less flexible for type-raising. For instance, with syntactic types it is
possible only one semantic reading for a CCG term (25a), in particular (25b), where “a
pub” takes scope over “every man”, i.e. there is a pub in which every man is drunk.
In case of semantic types, both readings (25c) and (25d) corresponding to two orders of
quantifiers are available.27 (25c) is similar to (25b) while (25d) is the uncaptured reading

27In semantic terms, the type p abbreviates et type, i.e. a property type.

3.6. CONCLUSION 85

with a meaning that every man in any pub is drunk. Our type-raising procedure works
also for CCG terms with semantic types if np and (−, s) types are replaced with e and
(−, t), respectively.

Every man in a pub is drunk (25)

isvpadj ,vp drunkvpadj
(

everyn,np (innp,n,n (an,np pubn) mann)
)

(25a)

(An,vp,s pubn)λx.EVERYn,vp,s(innp,n,n xnp mann)(isvpadj ,vp drunkvpadj) (25b)

(Appt pubp)λx. EVERYppt (inepp xe manp)(ispp drunkp) (25c)

EVERYppt
(
λy. Appt pubp(λx. inepp xe manp ye)

)(
ispp drunkp

)
(25d)

This shortcoming of syntactic types is not very significant while dealing with textual
entailments. For example, we could not find the problem in FraCaS and SICK that is sen-
sitive to the order of quantifiers. But if one still wants to consider more semantic readings
of a sentence, then it is one step away from the current approach. More specifically, a
CCG term with semantic types can be obtained by translating syntactic types into seman-
tic ones, and then applying the same algorithm of type-raising to the CCG term will result
more semantic readings.

We have discussed type-raising of quantified NPs in the context of CCG and showed
how a quantifier scope ambiguity is resolved there. Since we do not want to complicate
lexical semantics and types in LLFs, e.g., NP being a subtype of (et)t, we opt for the
procedure that reconstructs λ-terms. In particular, we have presented the type-raising
procedure which first decomposes a CCG term into linked pieces and then reconstructs
possibly several LLFs from them. The reconstruction is guided by four rules. While
sub-terms are combined, the rules also type-raise NP terms. Due to several choice points
in reconstruction, as a result several LLFs with different quantifier orders are obtained.
The process of reconstruction is depicted in Figure 3.12. In general, the procedure is not
able to produce all possible LLFs because syntactic types appear to be less flexible than
semantic ones. Despite this, the type-raising procedure produces most of LLFs. Obtained
LLFs have efficient structures as type-raising with a narrow scope is carried out in a local
clause: (24b) vs. (24c) and (24d).

3.6 Conclusion

In the chapter we have described the procedure how to obtain LLFs automatically from
wide-coverage natural language expressions. Since categorial grammar, like LLFs, model
lexical elements as functions, we start from the CCG derivation trees produced by the
state-of-the-art CCG parsers. The first processing step is to discard directionality from
syntactic categories and combinatory rules. As a result, from a CCG derivation we ob-
tain a structure called a CCG term. Later, a CCG term is corrected through three sub-
procedures consisting of rewriting rules. First, the lexical entries are simplified via reduc-
ing them to canonical forms and several MWEs are identified as a lexical term. Second,
the type-changes, which are heavily used by the parsers, are eliminated to a great ex-
tent. Third, we employ rules to fix some wrong syntactic analyses related to relative
clauses and PP attachments, e.g., to move relative clauses and PP attachments from NPs

86 CHAPTER 3. LAMBDA LOGICAL FORMS FOR WIDE-COVERAGE TEXT

to Nouns. The latter change makes the terms semantically more adequate. The rewriting
rules employed in the correction procedure is collected while exploring FraCaS and the
trial portion of SICK (see §6.2). Notice that the correction process is facilitated by the
absence of word order in CCG terms. The last step to obtain LLFs is to type-raise quan-
tified NPs in corrected CCG terms. The type-raising procedure chops a CCG term and
rebuilds several LLFs from it. The number of LLFs is conditioned by the quantifier scope
ambiguity. The pipeline that converts a CCG derivation into a list of LLFs hereafter will
be referred as the LLF generator.28

The LLF generator is a useful NLP tool as it produces adequate logical forms from
wide-coverage CCG derivations. Its final product, LLFs, can be seen as abstract semantic
representations. They represent semantic composition trees and are valuable structures
for the research on open-domain compositional semantics. One can express linguistic
semantics in his/her favorite semantic representation language by assigning corresponding
lexical semantics to lexical terms in an LLF. For example, it is obvious how to obtain
first-order logic representations or Discourse Representation Structure (DRS) (Kamp and
Reyle, 1993) from LLFs: it is sufficient to annotate lexical terms with λ-terms for first-
order logic or with λ-DRSs (Muskens, 1996; Bos, 2008).

Recently the number of applications of CCG parsers for wide-coverage semantic anal-
ysis is rapidly increasing. Shortcomings of CCG derivations are usually fixed in semantic
lexicons. This means that if one wants to use fixed CCG derivations, either he/she has
to opt for specific semantic representations or fix the derivations for his/her own seman-
tic representation. Advantage of an LLF is that it separates the fixing procedure and the
derivation of semantics from each other. Furthermore, it is obvious that any application
of CCG derivations for wide-coverage semantics is transferable on LLFs.

After knowing how the LLFs for wide-coverage text looks like, now we can design
tableau rules for LLFs that encode wide range of syntactic constructions. In the next
chapter, we present a plethora of such rules.

28At the current state, we did not model the scope ambiguity caused by negation. The reason is that
the phenomenon does not appear crucial when solving the FraCaS and SICK textual entailments with the
natural tableau system. We leave this issue for future work.

APPENDIX B 87

Appendix B

Algorithm 1: Pseudocode of the recursive procedure which fixes CCG terms.
1 input: a CCG term T ;

2 case Rule is applicable to T :

3 (9) [c
NNP|NNPS|PRP
n]np ; cnp: apply it to T ; go to 2;

4 (10) [cDTn]np ; dDT
n,np n

NN
np where split(c,d,n): apply it to T ; go to 2;

5 (11) [c
DT|CD
n,n Nn]np ; cn,np N : apply it to T ; go to 2;

6 (12) [eRB(n,n),n,n c
CD
n,n Nn]np ; e(n,np),n,np cn,np Nn: apply it to T ; go to 2;

7 (13)
[
[Vvp]n,n Tn

]
np

; [Vvp]np,np [Tn]np: apply it to T ; go to 2;

8 (14) [cn,n,n X Y]np ; cnp,np,np [X]np [Y]np: apply it to T ; go to 2;

9 (15) [T HeadPOS:NN
n]np ; an,np T : apply it to T ; go to 2;

10 (16) [T HeadPOS:NNS
n]np ; sn,np T

HeadPOS:NN: apply it to T ; go to 2;

11 (17) [Vvp]n,n Nn ; whichvp,n,n Vvp N : apply it to T ; go to 2;

12 (18) [Vvp]np,np Tnp ; whichvp,np,np Vvp Tnp: apply it to T ; go to 2;

13 case Rule is applicable to T :

14 (20) w
WP|WDT
vp,np,np Vvp (Dn,np Nn) ; D (wvp,n,n V N): apply it to T ; go to 13;

15 (21) pIN
np,np,np Tnp (Dn,np Nn) ; D (pnp,n,n T N): apply it to T ; go to 13;

16 (22) AHeadPOS:JJ
n,n (wvp,n,n Vvp Nn) ; w V (AN): apply it to T ; go to 13;

17 case Term matches to T :

18 x: S := T ;

19 c: S := T ;

20 F A: S :=fixCCG(F) fixCCG(A);

21 λx.F : S := λx.fixCCG(F);

22 [Fα]β: S :=[fixCCG(F)]α;

23 return S;

88
C

H
A

P
TE

R
3.

LA
M

B
D

A
LO

G
IC

A
L

F
O

R
M

S
F

O
R

W
ID

E
-C

O
V

E
R

AG
E

TE
X

T

Combinatory rule C&C rule in Prolog notation Transformation schema

Forward functional application fa(Y,FY/X ,AX)
F(x,y) Ax

Backward functional application ba(Y,AX ,FY \X)

Type-changing rule (i.e. lexical rule) lx(Y,X,AX) [Ax]y

Conjunction conj(X\X,X,Cconj,AX) Cx,x,xAx

Forward type raising tr
(
Y/(Y \X),AX

)
λf(x,y).f(x,y) Ax

Backward type raising tr
(
Y \(Y/X),AX

)
Forward functional composition fc(Z/X,FZ/Y ,GY/X)

λvx.F(y,z) (Gx,y vx)
Backward functional composition fc(Z\X,GY \X ,FZ\Y)

Forward crossing functional composition fxc(Z\X,FZ/Y ,GY \X)

Backward crossing functional composition bxc(Z/X,GY/X ,FZ\Y)

Generalized-2 forward functional composition gfc
(
(W/Y)/X,FW/Z ,G(Z/Y)/X

)
λvxuy.F(z,w) (Gx,(y,z) vx uy)

Generalized-2 backward functional composition gbc
(
(W\Y)\X,G(Z\Y)\X ,FW\Z

)
Generalized-2 forward crossing functional composition gfxc

(
(W\Y)\X,FW/Z ,G(Z\Y)\X

)
Generalized-2 backward crossing functional composition gbxc

(
(W/Y)/X,G(Z/Y)/X ,FW\Z

)
Right punctuation rp(X,AX ,Ppunct)

Ax
Left punctuation lp(X,Ppunct,AX)

Right punctuation type-changing rtc(Y,AX ,Ppunct)
[Ax]y

Left punctuation type changing ltc(Y,Ppunct,AX)

Table 3.2: Transformations for the CCG combinatory rules found in the C&C parser. A Prolog representation of the rules is one of the
supported output formats in the C&C parser. Syntactic categories and types of constituents are written in a subscript. Due to a type changing
operator [.]α, obtained structures are not identical but similar to typed λ-terms.

Chapter 4

Inventory of Tableau Rules

In the previous chapters we have tuned the natural tableau system for wide-coverage nat-
ural reasoning and presented the method for obtaining Lambda Logical Forms (LLFs).
Now, in this chapter, it is time to show how to reason with the tableau system over the
obtained LLFs. Since, in general, reasoning capacity of a tableau system depends on the
inventory of tableau rules, we will present a plethora of tableau rules that account for
various lexical and phrasal semantics.

Tableau rules are inference rules that decompose a formula and express its semantics
in terms of its sub-formulas. More diverse semantic constructions are available in logic
more tableau rules are needed to decompose these constructions. When we talk about se-
mantic constructions, for instance, in propositional case we distinguish P ∧Q from P ∨Q.
Though they have an similar structure, where a binary predicate applies to arguments, as
semantic constructions they differ from each other because ∧ and ∨ have different se-
mantics. So, constants with different predefined semantics can trigger different semantic
constructions.

If we think about natural language as a formal logic, then each lexical item comes
with its own predefined semantics. Roughly speaking, does this mean that each lexical
item will need its own tableau rule? We could do so, but fortunately there are other more
optimal ways. In particular, semantic relations over lexical items, e.g., dog v animal, are
pushed in a Knowledge Base (KB). This enables to model the semantic relations with the
help of a few tableau rules. But still, in order to reduce semantic relations over phrases to
the relations over lexical items, we need tableau rules that decompose phrases. Here, we
should be ready that at least several dozens of rules will be required for this.

The goal of the chapter is exactly this—to present a plethora of tableau rules that
model semantics of various phrases. The rules are inspired by the textual entailment
problems found in the SICK (Marelli et al., 2014b) and FraCaS (Cooper et al., 1996)
datasets.1 Several rules that model specific syntactic phenomena are somewhat biased
towards the analyses provided by the Combinatory Categorial Grammar (CCG) parsers.
The collected set of rules cover constructions involving prepositional phrases (PPs), defi-
nite NPs, adjectives, passives, auxiliaries, phrases with the copula, expletives, open noun
compounds, light verb constructions, passives, etc. The rules are distributed in sections
according to the phenomena they are applicable to. But since there are rules that concern
more than one phenomenon at the same time, these rule are presented only once in one of

1See §6.2.1 for more details about the collection procedure of tableau rules.

89

90 CHAPTER 4. INVENTORY OF TABLEAU RULES

the relevant sections. Each presented rule is supported with a textual entailment example
mostly drawn from the explored RTE datasets.

While our aim is to collect the tableau rules that account for a wide range of linguistic
constructions, we are not interested to have a complete tableau system. In other words,
we prioritize an incomplete proof system for a larger fragment of natural logic rather than
a complete system for a smaller fragment. Additionally, we target to have sound tableau
rules which will allow to have as few wrong proofs as possible.

The rest of the chapter is structured as follows. First, we present rules for modifier
terms, involving adjectives and auxiliaries. Then rules for prepositional phrases are intro-
duced. Some of those rules have functions beyond semantic analysis: they try to surmount
the problem related to PP attachments. We sketch several approaches for modeling defi-
nite NPs and choose the one which treats them as referring expressions. Closure rules are
designed to account for the expletive “there”, verb subcategorization (in an efficient way),
open compound nouns and light verbs. Apart from some additions, rules for the copula
resemble the tableau rules for equality. Rules for passive constructions and attitude verbs
are the last rules to be discussed.

4.0 Preliminaries
Several conventions will be assumed while presenting tableau rules and proofs in the
consequent sections. Most of these conventions were already mentioned in §2.0, but for
completeness of the chapter, we briefly mention them here too.

The tableau rules are presented in a folder format. Antecedent nodes are above the
horizontal line while consequent nodes are below it. In case of branching rule, conse-
quent branches are delimited by a vertical line. The name of a tableau rule is written
above. A possible set of constraints over the entries is written below, in a gray area. We
will use three types of style to indicate the status of a tableau rule. Rules with a transpar-
ent background are ordinary rules. Rules with a light gray background are admissible—in
presence of some (ordinary) rules, they are redundant from completeness point of view.
Rejected rules which are given for the sake of demonstration are with a dark gray back-
ground.

RuleID

Antecedents

Left Nodes Right Nodes

Constraints

Admissible

Antecedent nodes

Consequent nodes

Constraints

Rejected

Antecedent nodes

Consequent nodes

Constraints

The following conventions are made with respect to terms. Uppercase meta-variables
match any term; lowercase meta-variables match only constant terms;

#–

C and #–c match
possibly an empty sequence of terms and constants respectively; X matches either T or F
while X stands for a negation of X, where T = F and F = T. We use the extended format
of tableau entries (18). An empty list of arguments or modifiers is denoted by []. In order
to have leaner tableau entries, empty modifier lists are omitted.

memoryList : LLF : argumentList︸ ︷︷ ︸
ternary format of a term

: truthSign (18)

4.1. RULES FOR MODIFIERS 91

Types written as a subscript of a term act as powerful constraints on terms. Like in
case of terms, several assumptions are also made with respect to types. The lowercase
Greek letters are used as meta-variables over types. The type (np, s), corresponding to
VPs, is abbreviated as vp. We employ the vector representation from §2.0.1. For instance,
#–α, s type represents the sentential type. It can match the types like s, vp and (pp, np, vp).
Often we will put constraints on the final type of a term. (−, α) denotes a type with α as
its final (i.e. the most right) type; for instance, (−, s) can match s, (np, s) or (vp, vp),
where the latter two can also be matched by (−, vp). Notice that (−, α) matches #–γ α but
the former avoids redundant type variables. We also employ Kleene star and Kleene plus
to denote the non-empty sequence or the possibly empty sequence of the same types. For
example, np+s matches vp and (np, vp) but not (pp, vp). We write

#–

C #–α , where the lengths
of the sequences are the same, if the terms in

#–

C are of type the elements of #–α respecting
the order. Sometimes the types of terms are omitted if they are irrelevant for a discussion,
but usually the omitted types can be inferred from the context.

Similarly to the rewriting rules of §3.4, in tableau rules, meta-variables ranging over
terms may be further restricted with the information provided by the parsers (e.g., POS or
NER tags); this information is usually written as a superscript. The algebraic properties
of a term can also be written in a superscript. The terms might be represented by the same
string of characters and still be of different types, in this case these terms are considered
different. If in a tableau rule the same term is mentioned several times, only one of them
is annotated with its type and others are assumed to be of the same type.

4.1 Rules for modifiers

In natural language sentences, it is quite common that a word or phrase modifies another
word or phrase. In the theories of syntax, the former constituent is referred as an adjunct
or a modifier and the latter one as a head.2 The modifiers are usually optional and their
omission in a phrase does not influence on its grammatical status. The number of mod-
ifiers per head can vary in contrast to complements, where the number of complements
are strictly defined via an argument structure of a head. In this section, we present tableau
rules for modifier terms like auxiliaries and adjectives. The rules will complement the
other rules for modifiers already presented in §2.3.2 and §2.4.1.

4.1.1 Rules for auxiliaries
A main function of auxiliary verbs is to express tense and aspect. On the other hand,
textual entailment problems found in Recognizing Textual Entailment (RTE) datasets are
rarely sensitive to tense and aspect. Usually tense and aspect are explicitly ignored by
the annotation guidelines of RTE datasets (Dagan et al., 2006). Furthermore, they are
irrelevant for the datasets we use for collecting tableau rules. Due to these reasons, in the
current version of the natural tableau, we do not model tense and aspect. Therefore, the
auxiliary verbs, like “be” or “do”, that contribute to aspect or tense marking are ignored

2Throughout this work the concepts of an adjunct and a modifier are considered synonyms while some
theories of syntax do not use them synonymously. Similarly, we also do not distinguish arguments and
complements from each other.

92 CHAPTER 4. INVENTORY OF TABLEAU RULES

in LLFs.3 This is done with the help of the (AUX) rule. The rule simply identifies such
lexical terms (they are usually a modifier of a VP) and discards them. In other words,
these terms are interpreted as identity functions.

AUX

[
–

M] : avp,vp V : [C] : X

[
–

M] : V : [C] : X
a ∈ {be, do, have,will}

The rule is one of the frequently used rules since the auxiliaries occur in negative and
passive constructions that are plenty in the RTE datasets. Moreover, the default tense in
the SICK problems is present progressive meaning that there is always a lexical constant
be in the sentences.

The rule in action is demonstrated in several tableau proofs, including Figure 4.10 and
Figure 4.11 in Appendix C. In the implemented tableau system (Chapter 5) the scope of
the rule is extended and (AUX) is also used to discard, for instance, “to” from infinitives
and “that” from embedded clauses.

4.1.2 Rules for adjectives
We give several rules that model the properties usually associated with adjectives. These
are the subsective, intersective and privative properties that are familiar in the works since
late 1960’s (Kamp and Partee, 1995). The subsective and intersective properties of mod-
ifiers were already defined in Definition 12 (§ 2.4). It is straightforward to account for
these properties via tableau rules.

The rule (⊂T) models the subsective property of a modifier. It simply discards a sub-
sective modifier in a true context. The rule automatically works for the subsective adjec-
tives (and PPs) when α = n.4 The rule allows a possibly empty modifier list with certain
properties on its members. After introducing (⊂T), we can consider (⊂MT) in §2.4.1 as a
shortcut for the applications of (⊂T) and (M>). With the help of (⊂T), subsective modi-
fiers are discarded without putting them in a modifier list. Now, if we consider a famous
example in PROB-7, which requires proper treatment of the subsective adjective “skillful”,
then the natural tableau system will correctly classify it as neutral.

⊂T

[
–

M] : A⊂α,αH : [
#–

C] : T

[
–

M] : H : [
#–

C] : T

∀E ∈ # –

M (A
 E) or
–

M↑

PROB-7

Mary is a violinist and a skillful surgeon

Mary is a skillful violinist

3Another evidence of neglecting the tense is demonstrated by representing lexical terms with lemmata.
Hence based on the term representation, it is not possible to distinguish the word forms of the same verb
that are in the present and past simple tenses.

4The subsective adjectives are also referred as standard (Parsons, 1972) or affirmative (Cooper et al.,
1996).

4.1. RULES FOR MODIFIERS 93

As we already mentioned in § 2.4.1, intersective terms are automatically subsective.
This makes (⊂T) applicable to intersective terms, but the rule cannot completely unfold
semantics of intersective terms. For this reason we give more specific rules: (∩T) and
(∩F). To show that a term is intersective, we mark it with ∩ in a superscript.5 Notice
the type-coercion in (∩T): it introduces a new lexical term of type et for the intersective
adjective. Put differently, the intersective adjectives can be seen as dual where the term of
syntactic type models the syntactic part while the term of semantic type carries semantics.
When the construction is in a false context, (∩F) branches. The type-coercion also takes
place in this rule. In both rules, if there is a non-empty modifier list, it is copied to the
node that contains the head noun.6

∩T
[

–

M] : a∩n,nN : [ce] : T

[
–

M] : N : [c] : T
aet : [c] : T

∀E ∈ # –

M (a
 E)

∩F

[
–

M] : a∩n,nN : [ce] : F

[
–

M] : N : [c] : F aet : [c] : F

∀E ∈ # –

M (a
 E)

−T

a−n,nN : [ce] : T

N : [c] : F

There are also adjectives that do not satisfy the subsective property. For example,
“apparent”, “alleged” and “possible” do not satisfy the subsective property since, for ex-
ample, being “apparent success” does not entail being “success”. Such adjectives are
called non-subsective. An interesting subcategory of non-subsective adjectives is priva-
tive. The adjective an,n is privative if and only if it satisfies the property in (1). Usually
the adjectives like “false”, “imaginary”, “fake”, “former” and “fictitious” are considered
to be privative, but the consideration is uncontroversial.7

∀Nn(an,nN v −N) (1)

In spite of the unclear status of privative adjectives, we can still account for the pri-
vative property (1) in the tableau system. The rule (−T) captures this property. The rule
is useful at least for those entailment problems that presuppose the privative property
for certain adjectives, e.g., FraCaS-198 from the FraCaS data (Cooper et al., 1996; Mac-
Cartney and Manning, 2007). In this way, the textual entailment problem is proved as
contradiction with the help of (−T).

5There is no need to annotate the intersective adjectives with both ⊂ and ∩ signs as after the application
of (∩T) there is no need for applying (⊂T).

6The commuting constraints on modifier list members will be relaxed in the implemented tableau prover.
We will assume that subsective and intersective modifiers commute, which is not actually true strictly
speaking. Consider high-paying⊂n,npart-time∩n,njobn and part-time∩n,nhigh-paying⊂n,njobn. The former does
not necessarily mean “high-paying job” while the latter entails this meaning.

7For example, somebody who is “former president” can still be “president” after selecting second time.
Also interpretability of well-formed questions like “is this gun real or fake?” begs a question whether the
class of privative adjectives is itself imaginary. One of the solutions, offered by Partee (2001), is to consider
a privative adjective as subsective while shifting the meaning of the head noun. For instance, “fake gun”
or “stone lion” are understood after “gun” and “lion” extend their meanings to include things having the
corresponding shape.

94 CHAPTER 4. INVENTORY OF TABLEAU RULES

GOLD: cont; FraCaS-198

John is a former university student

John is a university student

We presented the rules that model the most well known properties of adjectives: sub-
sective, intersective and privative. The intuition behind the rules is quite simple as the
properties are themselves simple. While the existence of the privative adjectives is ques-
tionable, from the completeness point of view, we still presented the rule for the privative
property.

4.2 Rules for prepositions

Prepositions are heavily used in unrestricted natural language text.8 Therefore it is very
important to account for them in the wide-coverage tableau system. Prepositions usually
represent a head of a Prepositional Phrase (PP), where a PP itself can be an argument or
a modifier of a noun or verb phrase. Hence the rules for prepositions are expected to deal
with a wide range of constructions.

We start the section with introducing the problem related to PP attachments since, as it
is shown later, several rules for prepositions are significantly influenced by this problem.
Then the new rules for prepositions are introduced along with their supporting examples.
The rules are presented in three groups as the rules of each group account for the similar
phenomenon, in particular: the modifier PPs, a nature of PP attachment and a site of PP
attachment. Some of the rules are unsound and the only reason for adopting them is to
overcome the mistakes in PP analyses made by the parsers. Throughout the section, we
assume transitive prepositions, i.e. those that form and head PPs, while talking about
prepositions. In the last subsection, this convention is dropped as we discuss the rules for
the transitive and intransitive prepositions, the latter often referred as particles. There, the
term “preposition” refers to both types of prepositions.

4.2.1 The problem of PP attachment
In natural language sentences, a PP often brings structural or semantic ambiguity. It can
be ambiguous in terms of the site where the PP is attached to and in terms of a nature
of the attachment. For example, based on the Part of Speech (POS) tags of the words
the sentences in (2–5) are equivalent but differ from each other in terms of a site or a
nature of PP attachments. The sites of PP attachments are different in (2) and (3). The PP
“with his hands” in (2) represents an optional argument of the VP: “his hands” is in the
instrumental thematic relation with the VP. On the other hand, the PP “with Sam” in (3)
modifies the VP. The difference in the nature of PP attachment is demonstrated in (4) and
(5), where the PPs are a modifier and an argument, respectively, for the same noun.

John
[
[ate a roll]VP/PP [with his hands]PP

]
VP (2)

8Baldwin et al. (2009) reports that four out of the top-ten most frequent words in the British National
Corpus are prepositions.

4.2. RULES FOR PREPOSITIONS 95

John
[
[ate a roll]VP [with Sam]VP\VP

]
VP (3)

John ate a
[
rollN [with eel]N\N

]
N (4)

John ate a
[
rollN/PP [of sushi]PP

]
N (5)

The ambiguity associated with PP attachment makes difficult to correctly analyze the
constructions with PPs. This problem is known as PP attachment resolution or PP attach-
ment disambiguation and is regarded as a challenging task in syntactic parsing. Usually
the problems under these names are more specific and aim to resolve only the ambiguity
related to a site of PP attachment.9 PP attachment resolution as a four-way classification
task (Merlo and Ferrer, 2006), demonstrated in (2–5), is less common compared to its
binary counterpart.

John ate a
[
[roll]N [with his hands]N\N

]
N (2a)

John
[
[ate a roll]VP/PP [with Sam]PP

]
VP (3a)

John
[
[ate a roll]VP [with eel]VP\VP

]
VP (4a)

Similarly to other syntactic parsers, the CCG parsers are also imperfect in the analysis
of PPs. The CCG parsers are based on the lexicalized grammar formalism that makes
them sensitive to both dimensions, site and nature, of PP attachments. They might attach
a PP to a wrong phrase, like in (2a) or (4a), or attach it to a correct phrase but in a wrong
way, like in (3a).10 These kinds of mistake in the parse trees are further projected in LLFs
and they may prevent the tableau system from the correct decision. For instance, after
wrongly identifying “with eel” as a VP modifier in (4a), the entailment relation vanishes
between the LLFs obtained from (4) and (4a).

The rules that we present in the following subsections try not only to unfold the se-
mantics of the phrases with PPs but also to abstract from the mistakes made by the parsers
while analyzing PP attachments.

4.2.2 Rules for prepositional phrases
The tableau rules for prepositions are divided into three groups. The first group contains
the rules that are broadly sound for correct LLFs—assuming that the CCG parsers make
no mistakes while analyzing PPs. Since it is a hard problem to identify and correct the
wrong PP attachments made by the CCG parsers, we design the tableau rules that sur-
mount this shortcoming of the parsers. In particular, the second and third groups consist
of the rules that overcome the mistakes made by the parsers with respect to PP attach-
ments. The mistakes involve both types of errors, in terms of a site and a nature of PP
attachment. The presented rules are supported with the concrete examples from the RTE
datasets.

9The RRR dataset by Ratnaparkhi et al. (1994) is a standard benchmark for PP attachment disambigua-
tion. It consists of quadruples of words 〈verb, noun1, preposition, noun2〉 where a system should decide
whether the PP formed by preposition and noun2 is attached to verb or to noun1. Notice that the task
is simplified as only head words are included in a quadruple in contrast to the whole phrases. This binary
simplification of the problem is connected with the phrase structure grammar which usually neglects the
relation between adjacent constituents. As a result, the differences between the analyses of (2) and (3) or
(4) and (5) are erased.

10In the analyses similar to (2a–4a), it is said that semantic-selectional restrictions are violated: although
the sentences are grammatical, they have nonsensical meanings.

96 CHAPTER 4. INVENTORY OF TABLEAU RULES

4.2.2.1 Rules for modifier PPs

We start with presenting the rules for the PPs that act as modifiers, e.g., the PPs in (3)
and (4). Such PPs are syntactically optional and behave in similar way as intersective
adjectives or adverbs. Therefore new rules for modifier PPs are expected to be similar to
the rules for intersective terms.

The rules (PP@NT) and (PP@NF) treat a PP term as an intersective modifier for nouns.
The lexical term p in the antecedent entries of the rules is required to be a preposition
(constrained with the POS tag IN in its superscript) of type (np, n, n). The consequent
entries contain the same prepositional term p but with different (np, pp) type, which itself
is a subtype of eet, i.e. a type of binary relation between entities. Preference to the
syntactic type (np, pp) over the semantic eet is supported by the fact that (np, pp) is
another common type of the prepositional terms in the constructions like (2) and (5). In
this way, (np, pp) can be a canonical type for prepositions instead of the syntactically less
informative eet type.

PP@NT

[
–

M] : pINnp,n,ndN : [c] : T

[
–

M] : N : [c] : T
pnp,pp : [d, c] : T

∀E ∈ # –

M (pINnp,n,nd�N E)

PP@NF

[
–

M] : pINnp,n,ndN : [c] : F

[
–

M] : N : [c] : F pnp,pp : [d, c] : F

∀E ∈ # –

M (pINnp,n,nd�N E)

The rules can also apply to the tableau entries with the non-empty modifier list.
Soundness of the rules is supported by the assumption that the PP term pINnp,n,nd com-
mutes with each term in the modifier list with respect to N . Based on this assumption, the
modifier list is further copied with the head term N in the consequent entries.

Let us consider the tableau that searches a model for a sentence “John ate huge sushi
with avocado”. In the tableau, there will be a node asserting that there is some entity
c that is “huge sushi with d”, where d is “avocado”. Potentially the parsers can return
at least two different analysis of the phrase: (a) “huge” modifies “sushi” first, and (b)
“with d” modifies “sushi” first (see Figure 4.1). But in both cases, it is entailed that c is
“huge sushi” and c is “with d” where d is “avocado”. In the tableaux of Figure 4.1, this
is achieved with the help of (PP@NT)’s ability to copy a modifier list to the consequent
node. Handling the modifier list in such a way, makes the tableau system more immune
towards the mistakes made by the parsers.

Adverbial PPs (i.e. the PPs that modify a VP) can be processed with the rules (M<),
(M>) and (EVT) already presented in §2.3. Assuming that adverbials (including PPs) are
subsective and commute with each other, then it is possible to separately assert them for
a head verb. For example, in case of the adverbial PP this works as follows. First push
the PP in a modifier list, then move it towards the head verb by swapping it with other
adverbials with the help of (
M) from §2.4.1, then use (⊂MT) (from §2.4.1) to discard
other adverbials, and in the end pull the PP from the modifier list via (M>).

4.2. RULES FOR PREPOSITIONS 97

(a) (b)

1 withnp,n,n de (hugen,n sushin) : [ce] : T

2 huge sushi : [c] : T
3 withnp,pp : [d, c] : T

4 sushi : [c] : T

PP@NT[1]

⊂T[2]

1 hugen,n (withnp,n,n de sushin) : [ce] : T

2 [huge] : with d sushi : [c] : T

3 [huge] : sushi : [c] : T
4 withnp,pp : [d, c] : T

5 huge sushi : [c] : T

6 sushi : [c] : T

M<[1]

PP@NT[2]

M>[3]

⊂T[5]

Figure 4.1: Unfolding semantics of the noun phrase “huge sushi with avocado”

4.2.2.2 Rules treating a nature of PP attachment

A nature of PP attachment is either an argument or a modifier with respect to the head.
For NLP systems, it is hard to detect a nature of PP attachment.11 Even human annotators
can disagree on this issue. Consider the sentence in (6). FrameNet (Baker et al., 1998)—a
database of semantic frames of English words—analyzes the PP “into the office” as a core
element for a semantic frame of “walk”. On the other hand, PropBank (Palmer et al.,
2005)—the Penn Treebank annotated with predicate argument relations—counts the PP
in (6) as a modifier rather than an argument.12 It is the same case with (7): according to
FrameNet the PP “into pieces” is an argument of the verb “cut” but PropBank considers it
as a modifier.13 While the argument-modifier distinction for PPs is not a settled problem,
we still need to process such kind of ambiguous PPs in the wide-coverage tableau system.

Mary walked into the office at 7:30 (6)
John cut a carrot into pieces (7)

In order to model an ambiguous nature of PPs, we borrow the idea from the neo-
Davidsonian approach to analyze arguments and modifiers uniformly. For example, the
neo-Davidsonian analyses (6a) and (7a) of the sentences (6) and (7) do not care about
the argument-modifier distinction. With the help of the thematic relations, an argument
“Mary”, a dubious argument “office” and a modifier “7:30” all are interpreted as a modi-
fier of the event entity e.

∃e ∃c(walk e ∧ AGENT Mary e ∧ office c ∧ GOAL c e ∧ TIME 7:30 e) (6a)

11This is one of the main reasons why this aspect of PP attachment is not considered as a part of the PP
attachment disambiguation challenge.

12The FrameNet frame for “walk”: http://bit.ly/self_motion; the PropBank frameset for
“walk”: http://bit.ly/propbank_walk

13The FrameNet frame for “cut”: http://bit.ly/framenet_cutting; the PropBank frameset
for “cut”: http://bit.ly/propbank_cut_v

http://bit.ly/self_motion
http://bit.ly/propbank_walk
http://bit.ly/framenet_cutting
http://bit.ly/propbank_cut_v

98 CHAPTER 4. INVENTORY OF TABLEAU RULES

∃e ∃c(cut e ∧ AGENT John e ∧ carrot c ∧ PATIENT c e ∧ MANNER pieces e) (7a)

Informally speaking, if we consider the prepositions as acting for the thematic rela-
tions, then all modifier and argument PPs can be seen as modifiers of the head verb. This
is automatically achieved for all modifier PPs since they are of type (vp, vp). In order
to treat the argument PPs as a modifier of a VP, we introduce the (V@PP) rule. The rule
introduces a new tableau entry where the preposition p gets the type suitable for adverbial
PPs. The tableau in Figure 4.2 shows this rule in action. It applies to 2 , and in the ob-
tained node 3 the PP term intonp,vp,vp ce becomes a modifier of the verb. Notice also the
similarity between the last two conjuncts of the neo-Davidsonian analysis in (6a) and the
nodes 8 and 5 in Figure 4.2 where the prepositions play a role of the thematic relations.
After the introduction of (V@PP), now it is not crucial whether a PP, e.g. into c, is an
argument or a modifier of a VP.

V@PP

[
–

M] : Vpp,α (pINnp,ppD) : [
#–

C] : X

[
–

M] : pINnp,α,αDVα : [
#–

C] : X
α = (np∗, vp)

Apart from solving the ambiguity caused by the argument-modifier distinction for
PPs, the proposed approach also cures wrong or inconsistent analyses produced by the
parsers. For example, in SICK-9069, the C&C parser gives inconsistent derivations for
the similar sentences. In the premise, “in the ocean” is a modifier while in the conclusion
“in the water” is an argument. Consequently the verbs also obtain different argument
structures based on these analyses.14 This mismatch makes it difficult to find a proof for
the entailment relation. But the presented approach overcomes this difficulty as (V@PP)
transforms the argument “in the water” into a modifier.

C&C, GOLD: ent, SICK-9069

Two boys are
[
[layingVP [in the ocean]VP\VP] [close to the beach]VP\VP

]
Two boys are

[
[layingVP/PP [in the water]PP] [close to the beach]VP\VP

]

An ambiguity in a nature of PP attachment occurs in case of NPs too. Similarly to
VPs, in the NPs a preposition can be seen as an abstract binary relation over entities. For
instance, consider “roll of sushi” in (5). The preposition can be seen there as a relation
ofnp,ppsere where r and s are “roll” and “sushi”, respectively. In order to treat PP argu-
ments of a noun as noun modifiers, we introduce (N@PPT) and (N@PPF). They process the
PP arguments in the same way as (PP@NT) and (PP@NF) process PP modifiers of a noun.

14Though both FrameNet and PropBank agree on that the location is a core argument of “laying”, the
questions arise: which of the two locations, “in the ocean” and “close to the beach”, is an argument? or do
they both form a single compound argument via implicit conjunction? This issue does not pose a problem
for our approach since we treat the both locative PPs uniformly as modifiers.

4.2. RULES FOR PREPOSITIONS 99

1 atnp,vp,vp 7:30np (walkpp,vp (intonp,pp ce) : [Marynp] : T

2 [at 7:30] : walkpp,vp (intonp,pp c) : [Mary] : T

3 [at 7:30] : intonp,vp,vp c walkvp : [Mary] : T

4 [at 7:30] : walkvp : [Mary] : T

5 at 7:30 walkvp : [Mary] : T

6 walkvp : [Mary] : T

7 intonp,vp,vp c walkvp : [Mary] : T

M<[1]

V@PP[2]

⊂T[3]

M>[4]

⊂T[5]

⊂MT[3]

Figure 4.2: Treating the PP argument of a VP as its modifier

N@PPT

[
–

M] : Npp,n Ppp : [ce] : T

[
–

M] : Nn : [c] : T
P : [c] : T

∀E ∈ # –

M (P �N E)

N@PPF
–

M : Npp,n Ppp : [ce] : F
–

M : Nn : [c] : F P : [c] : F

∀E ∈ # –

M (P �N E)

Like in case of a VP (see SICK-9069), the parsers also make mistakes when analyzing
the NPs with PPs. For example, the PP “with a black bag” in the premise of SICK-340 is
incorrectly identified by the C&C parser as an argument of the noun. Despite this mistake,
the entailment relation in SICK-340 is proved as (N@PPT) licenses the equivalence of
with b girl and girl (with b), where b can be any entity, including “black bag”. The tableau
proof for one of the directions of the equivalence is presented in Figure 4.3.

C&C, GOLD: ent, SICK-340

[
schoolgirlN/PP [with a black bag]PP

]
is on a crowded train[

girlN [with a black bag]N\N
]

is on a crowded train

We have presented the rules that treat the modifier and argument PPs in the simi-
lar way—all PPs are converted into modifiers. This approach is suitable for the wide-
coverage analysis and does not expect the parsers to guess a nature of PP attachment.

4.2.2.3 Rules treating the site of PP attachment

The structural ambiguity induced by PP attachments is a pervasive and, at the same time,
an open problem in NLP. In order to prevent this problem hindering the tableau reasoning,

100 CHAPTER 4. INVENTORY OF TABLEAU RULES

1 schoolgirlpp,n (withnp,pp be) : [ge] : T
2 withnp,n,n b girln : [g] : F

3 schoolgirln : [g] : T
4 withnp,pp : [b, g] : T

5 girl : [g] : F

7 ×

6 withnp,pp : [b, g] : F

8 ×

N@PPT[1]

×v[3,5] ×v[4,6]

N@PPF[2]

Figure 4.3: Treating a PP argument of a noun as a modifier

we propose a solution that partially abstracts reasoning from an ambiguous site of PP
attachments. Thus the equivalence of (8) and (9) and the entailment of (10) from them is
proved without resolving the structural ambiguity associated with the PP attachment. The
tableau rules that help to achieve this are not considered as members of the core part of
the tableau rules; they are optional rules that are only helpful in overcoming the mistakes
made by the parsers.

A boy saw a criminal with a telescope (8)
A criminal was seen by a boy with a telescope (9)

A boy saw a criminal with some tool (10)

Incorrect resolution of the ambiguity might be crucial for recognizing textual entail-
ment. Consider SICK-8145 which itself does not represent a difficult entailment problem—
the key is to capture the local entailment between “mit” and “hand” and project it upwards.
Nevertheless, after the C&C parser wrongly attaches PP1 to “ball” in the conclusion, an
easily recognizable entailment problem suddenly becomes hard to prove.15 Another ex-
ample is SICK-7064, where the correct sites of PP attachments are not straightforward.
Additionally, this example also emphasizes that the PP attachment problem is not parser-
bound. Independently from the parsers, there exist expressions where the correct site
of PP attachments is not obvious: either it does not change semantics much, like in the
sentences of SICK-7064, or the site is structurally ambiguous, as in (8–10).16

15As it was already noted, the standard task of PP attachment disambiguation represents a simplified
version of the real problem. In particular, the RRR dataset (Ratnaparkhi et al., 1994) consists of extracted
quadruples of head words, e.g., in case of our example it would be 〈has, ball, in, mitt〉, instead of raw
phrases, e.g., has a yellow ball in the hand. Taking into account that the state-of-the-art systems achieve
around 85% of accuracy on the simplified disambiguation task (Lapata and Keller, 2005), it is clear that
accounting for the site issue of PP attachments is inevitable to obtain high results on the RTE task.

16Notice that the average human annotation for PP attachments based on the whole sentences has accu-
racy of 93.2% and it drops to 88.2% if only quadruples of head words, e.g. 〈perform, trick, on, ramp〉, are
considered (Ratnaparkhi et al., 1994).

4.2. RULES FOR PREPOSITIONS 101

A [pINte] : Vnp,vp : [c, b] : T

(8b), (9b)

Vnp,vp : [c, b] : T
C

pINnp,pp : [t, c] : T

(8a), (11)

Vnp,vp : [c, b] : T
D

pINnp,pp : [t, b] : T

(9a), (12)

B pINte Vnp,vp : [c, b] : T(8b)
(9b)

M>
M<

×PP@VT
×PP@VF

×PP@VT
×PP@VF

×PP@N

Figure 4.4: Abstracting from the site of PP attachments. The states A, B, C and D corre-
spond to the readings caused by the structural ambiguity in PP attachments.

C&C, GOLD: ent, SICK-8145

A woman in blue
[
[has a yellow ball]VP [in the mitt]VP\VP

]
A woman in blue has a yellow

[
ballN [in the hand]1N\N

]

EasyCCG, GOLD: ent, SICK-7064

A trick is being performed by
[
[a rollerblader]NP [on a ramp]1NP\NP

]
NP

A rollerblader is
[
[performing a trick]VP [on a ramp]VP\VP

]
VP

Our aim is to capture the logical relations over LLFs despite the wrong site of PP at-
tachments. In this way, the natural tableau should account for the entailment relations in
SICK-7064, SICK-8145 and (8–10) despite the correct resolutions of the sites of PP attach-
ments. As a solution to this, we suggest to treat certain LLFs as paraphrases differing
from each other only in terms of the site of PP attachments: for example, to make the
LLFs of (8a) and (9a) equivalent to (8b) and (9b), respectively. To achieve this, we treat
the tableau entries of the form [pINte] : V(−,s) : [

#–

A] : X as underspecified representations.
In the entry it is not reliable to assume that the PP term pINt modifies the verb V , because
potentially the source LLF could be obtained from the wrong derivation, where the PP is
wrongly attached to the VP instead of one of the arguments from

#–

A.

A boy saw a
[
criminalN [with a telescope]N\N

]
N (8a)

A boy
[
[saw a criminal]VP [with a telescope]VP\VP

]
VP (8b)

A criminal was seen by a
[
boyN [with a telescope]N\N

]
N (9a)

A criminal
[
[was seen by a boy]VP [with a telescope]VP\VP

]
VP (9b)

To model the entry as underspecified, we design two closure rules, (×PP@VT) and
(×PP@VF). These rules render two LLFs as paraphrases if they differ only in terms of the
site of PP attachment where exactly one site of the attachment is a VP. As a result, the
rules identify the LLFs of (8a) and (8b) as paraphrases, as well the LLFs of (9a) and (9b).

102 CHAPTER 4. INVENTORY OF TABLEAU RULES

1 [pINte] : Vnp,vp : [c, b] : T

2 V : [c, b] : F

4 ×

3 pINnp,pp : [t, c] : F

5 ×
×v[1,2] ×PP@VT[1,3]

(a) A→C

1 Vnp,vp : [c, b] : T
2 pINnp,pp : [te, c] : T

3 [pINt] : V : [c, b] : F

4 ×

×PP@VF[1,2,3]

(b) C→A

Figure 4.5: The tableau proofs for the equivalence of A and C from Figure 4.4

×PP@VT

[pIN t] : V(−,s) : [
#–

A] : T
pINnp,pp : [t, c] : F

×
c ∈ #–

A

×PP@VF

[pIN t] : V(−,s) : [
#–

A] : F
V : [

#–

A] : T
pINnp,pp : [t, c] : T

×
c ∈ #–

A

×PP@N

V(−,s) : [
#–

A] : T
pINnp,pp : [t, c] : T
pINnp,pp : [t, b] : F

×
c, b ∈ #–

A

For illustration let us consider the chart in Figure 4.4. The sets of nodes A–D represent
the states where a PP is attached to a verb, an object and a subject. The cases are labeled
with the corresponding readings of the running examples in (8) and (9).17 The tableau
system with the help of (×PP@VT) and (×PP@VF) is able to prove the equivalence of A
and C; see the tableau proofs in Figure 4.5. The equivalence of A and D is proved in the
analogous way.

The introduced rules together with (M>) and (M<) prove the equivalence of the LLFs
of (8a), (8b), (9a) and (9b) except the equivalence of the LLFs of (8a) and (9a) (see
Figure 4.4). The non-transitivity of the provable entailment relation, exemplified by the
missing entailment link between the C and D states, is caused by treating the entry [pINte] :
Vnp,vp : [c, b] as underspecified representation. We could go further and introduce the rule
(×PP@N) which identifies the states C and D as paraphrases. Particularly it carries a PP
from one argument to another, in contrast to the two previous rules which carry a PP
between a verb and its arguments. From the parsing perspective, (×PP@N) is redundant
as the parsers rarely attaches a PP to a wrong argument rather than to the correct one. We
believe that its adoption more contributes to unsound entailments, like the ones between
(11) and (12), than the sound ones.

A criminal with a telescope was seen by a boy (11)
A boy with a telescope saw a criminal (12)

John ate sushi with eel (13)
John with eel ate sushi (14)

17The analogy between them is established with the following instantiation: p = with, V = see and b, c, t
entities stand for a boy, a criminal and a telescope respectively.

4.2. RULES FOR PREPOSITIONS 103

Obviously our approach does not solve the selectional restriction problem associated
with PPs (see footnote 10 in §4.2.1). For example, depending on LLFs, the introduced
rules might license entailment relations between (13) and (14). The possible unsoundness
introduced by (×PP@VT) and (×PP@VF) is a trade-off between the coverage and precision
of reasoning over incorrect PP attachments. It is important to emphasize that the amount
of introduced unsoundness is minimal. The presented two rules do not introduce any
unsoundness per se as they are closure rules. If a wrong proof is obtained with the help
of them, this means that the source derivation trees from the parsers were erroneous.

So now, the natural tableau system, with the help of the new rules, is able to abstract
from the site of PP attachments—like the surface forms do—and prove the relations with-
out being hinged on the disambiguated sites of PP attachments. As an example, the system
is able to prove the equivalence of (8) and (9), or the entailment of (10) from (8) or (9) re-
gardless the site of PP attachments in the corresponding LLFs. The new rules also enable
to classify the textual entailment problems SICK-8145 and SICK-7064 as entailment.

The proposed solution treats PP attachments to a VP as underspecified. This decision
not only abstracts from the parsers’ mistakes in PP attachments but also from the struc-
turally ambiguous PP attachments. The solution tackles the ambiguity of the site of PP
attachment in efficient, modular and simple manner compared to other possible solutions,
e.g., employing disambiguated LLFs18 or modeling disambiguate readings in terms of
tableau branches.19 The closure nature of the rules makes our solution extremely efficient
for theorem proving as after application of the rules the branch is closed. Also this nature
allows to introduce minimal amount of unsoundness in the tableau system. The modular
character of the solution makes it trivial to suppress the solution simply excluding the
rules (×PP@VT) and (×PP@VF) from the inventory.

4.2.3 Particles vs prepositions
Particles and prepositions are homographs but differ in their functionality. For instance,
“over” can be a particle in the particle-verb construction (PVC) “think it over” and a
preposition in the prepositional verb (PV) “jump over it”. The subtle differences between
them pose challenges for parsers and for any system that relies on the parsers’ output,
including our tableau system.20 In this subsection we introduce rule that help the tableau
system to abstract from the problem raised by the particle-preposition distinction. In other
words, they contribute to account for the RTE problems, like SICK-1483, regardless of
correctly identifying the prepositions and particles.

18The approach assumes the generation of several LLFs from a single CCG derivation that are disam-
biguated readings in terms of the site of PP attachment; Then each combination of LLFs can be checked on
logical relations. This approach requires an extra pre-processor for LLFs and has an extremely inefficient
proof strategy.

19The solution regards certain tableau entries as underspecified, e.g., [pINte] : V(−,s) : [
#–

A] : X, and uses
the rules that unfold its disambiguated readings. If the disambiguated readings are put on separate tableau
branches, then a tableau closes only if any combination of disambiguate readings are in the corresponding
entailment relation. This setup would not capture the desired relations over the discussed textual entail-
ments. If the disambiguated readings are placed on the same branch, then they can interact with each other
which is undesirable. Also this decision ends up with many irrelevant nodes on branches.

20The problems usually occur when analyzing the multiword expressions like phrasal verbs (i.e. PVCs
and PVs). The works that describe these challenges include (Sag et al., 2001), (Baldwin et al., 2009) and
(Baldwin and Kim, 2010).

104 CHAPTER 4. INVENTORY OF TABLEAU RULES

reC&C, GOLD: ent, SICK-1483

(P1) A deer is
[
jumping(VPng/NP)/PR overPR

]
VPng/NP a cyclone fence

(H1) The deer is
[
jumpingVPng/PP [over the fence]PP

]
VPng

C&C, GOLD: ent, SICK-1483

(P2) A deer is
[
jumpingVPng/NP overVPng\VPng

]
VPng/NP a cyclone fence

(H2) The deer is
[
jumpingVPng [over the fence]VPng\VPng

]
VPng

Traditionally prepositions are considered to be transitive—usually they take an NP as
an argument to form a PP. For instance, in the previous subsections we were discussing
transitive prepositions. On the other hand, particles do not take any argument and they are
themselves the arguments of verbs. Sometimes the concept of the preposition is widened
to comprise both particles and traditional (i.e. transitive) prepositions, where particles are
regarded as intransitive prepositions. We adopt the latter terminology for conveniently
referring to both lexical items as prepositions.

In the initial version of CCGbank, the verbs do not subcategorize for particles because
of the difficulty to identify PVCs in the Penn Treebank; instead, the particles are treated as
adverbial modifiers there (Hockenmaier and Steedman, 2007, 7.2). As a result, the parser
trained on this version of CCGbank analyzes particles as of category VP\VP , like “over”
in (P2). After rebanking CCGbank (Honnibal et al., 2010; Constable and Curran, 2009),
the new CCG category PR was introduced for particles and they are the arguments of the
verbs in PVCs. The new analysis of particles is demonstrated by (P1) where the rebanked
C&C wrongly identifies “jumping over” as a PVC and analyzes it accordingly.

Due to the particle and transitive preposition distinction and two different treatments
of particles in the versions of CCGbank, the CCG parsers can analyze the sequence of
a verb, a preposition and an NP at least in four different ways. The examples of these
analyses are given above on the sentences of SICK-1483. Our goal is to map all these
analyses and the corresponding LLFs to the canonical tableau entry (15), i.e. the entry of
the abstract form (16). This reduction automatically leads to the same entries for all those
analyses. In this way, the different or wrong CCG derivations of the same surface forms
will be reduced to the same entry.

overnp,vp,vp ce jumpvp : [de] : X (15)

pINCnp V #–α,vp : [
#–

E,Dnp] : X (16)

The analyses with the transitive preposition of category PP/NP , like (H1), is reduced
to the canonical form (16) with the help of (V@PP) as it was shown in §4.2.2.2. In order
to reduce the analyses with the (possibly fake) particles of category PR or VP\VP , like
(P1) and (P2), to the canonical form, we propose the rules (V@PR) and (PR@V). Both
rules deal with the transitive or ditransitive VPs and interpret the particle as a transitive
preposition. (V@PR) and (PR@V) are specially designed for the analyses similar to (P1)
and (P2), respectively. Notice that (PR@V) makes sure that the lexical term p has a POS
tag usually (by mistake) assigned to the particles. The concrete examples of the rule
applications are also given below.

4.2. RULES FOR PREPOSITIONS 105

V@PR

[
–

M] : Vpr,np,α ppr : [c,
#–

D] : X

[
–

M] : pINnp,α,α c Vα : [
#–

D] : X
α = (np+, s)

PR@V

[
–

M] : pPOS(np,α),np,α Vnp,α : [c,
#–

D] : X

[
–

M] : pINnp,α,α c Vα : [
#–

D] : X
α = (np+, s) and POS ∈ {RB, RP, TO, IN}

jumppr,np,vp overpr : [c, d] : X

overINnp,vp,vp c jumpvp : [d] : X
V@PR∗

overRPvp,vp jumpnp,vp : [c, d] : X

overINnp,vp,vp c jumpvp : [d] : X
PR@V∗

As we showed on the example of SICK-1483, there can be two different analysis of
a particle: one using the category PR and another using VP\VP . It is possible that the
intransitive verb with a particle is analyzed in both fashion. For example, see the analyses
of the sentences of SICK-4117.

reC&C, GOLD: cont, SICK-4117

A cute panda is [lyingVPng/PR downPR]VPng

A cute panda is not [lyingVPng downVPng\VPng]VPng

The case with intransitive verbs is not covered by the above introduced rules. To
relate the structurally different terms of “lying down”, we introduce the additional rule
(PR). The rule simply converts an adverbial modifier particle into an argument of the
verb. This conversion reduces intransitive PVCs, including the one from SICK-4117, to
the canonical form where the particles are treated as arguments. The latter analysis is
set as canonical because it represents a more transparent analysis (Constable and Curran,
2009).

PR

[
–

M] : pPOSvp,vp Vvp : [c] : X

[
–

M] : Vpr,vp ppr : [c] : X
POS ∈ {RB, RP, TO, IN}

downRBvp,vp lievp : [c] : X

liepr,vp downpr : [c] : X
PR∗

The contribution of these rules is demonstrated by the tableau proof for the entailment
in SICK-7755 (see Figure 4.11 in Appendix C). Despite two inconsistent analyses by the
C&C parser for the same VP, the analyses are still found identical after reducing them to
the canonical form with the help of (PR@V).

reC&C, GOLD: ent, SICK-7755

A man and a woman are walking
[
down(VP\VP)/NP [the street of a city]NP

]
VP\VP

A man and a woman are
[
[walking(VP/NP)/PR downPR]VP/NP [a city street]NP

]
VP

We have illustrated several analyses of PVCs and PVs that are used by the CCG
parsers. Since the parsers have hard time with distinguishing these two constructions,
they often make mistakes when parsing them. The mistakes can erase logical relations
between the surface forms of VPs. We have introduced three rules (V@PR), (PR@V) and
(PR) which reduce constructions with verbs and prepositions to the canonical forms. After
the reduction, it is easier to detect the erased logical relations.

106 CHAPTER 4. INVENTORY OF TABLEAU RULES

4.3 Rules for definite noun phrases
The rules for determiners play an important role in the natural tableau system. Remember
that determiners have a type-raised type and are the final functions that return the sen-
tential LLFs (i.e. the LLFs of type s). Due to this reason, the rules for determiners are
the very first rules that start unfolding the semantics of the sentential LLFs. The tableau
rules for logical determiners “every” and “some” are already given by Muskens (2010),
where the rule for “some” also serves as a rule for “a” or “an”. In the section, we model
semantics of a singular definite NPs (i.e. definite descriptions) of the form “theN”, where
N is a bare singular noun. Modeling semantics of the definite NP is itself a problematic
issue. First, we present two mainstream theories of definite descriptions and show that
their straightforward integration in the tableau system gives wrong predictions for textual
entailments. Then, instead of giving a refined theory for definite descriptions, which is
beyond the scope of the thesis, we propose several solutions that are simple, efficient for
theorem proving and adhere to natural reasoning.

4.3.1 Two theories of definite descriptions
There are two main approaches to model semantics of the singular definite NPs in formal
logic. The first approach is due to Frege which later was defended by Strawson (1950),
and the second one is proposed by Russell (1905). We briefly present each approach and
show the problems of integrating them in the natural tableau system.

4.3.1.1 Frege’s analysis

According to Frege and Strawson (1950), the meaning of “the N” is defined if and only
if there exists only one entity in the extension of the noun phrase N . In other words,
the meaning of “the N” presupposes the existence and uniqueness of the entity satisfying
N . From the LLFs’ perspective, this means that the denotation of then,vp,s is the partial
function that is defined on singleton sets. The partiality of then,vp,s raises an issue so-called
gaps in the truth values. In particular, a proposition involving a definite description does
not have a truth value in the situation where the existence and uniqueness presupposition
fails. For example, the truth value of the sentence in (17) is not defined when considering
a situation where (18) holds (and there is no context that singles out a particular boy). On
the other hand, if truth value of (17) is defined in a situation, then a unique boy is assumed
which contradicts the semantics of (18).

The boy is running (17)
Two boys are running (18)

The freckled boy is running (19)

The gaps in the truth values violate the law of excluded middle, which means that
sentences like “the boy is sleeping or the boy is not sleeping” are not necessary truths (e.g.,
consider the case where (18) holds). While having the truth gaps, it seems impossible to
model the entailment relation with a two-signed tableau. For example, the situation where
P is true and Q is false, i.e. {P : T, Q : F}, is not the only counterexample for “P entails
Q” (formally, P |= Q). The situation where P is true and Q’s truth value is undefined

4.3. RULES FOR DEFINITE NOUN PHRASES 107

is also the counterexample for the entailment. So, the closure of the tableau initiated
with {P : T, Q : F} is not sufficient to prove P |= Q. Additionally the tableau built
over {P : T, Q : U} needs to be closed to make sure that there are no counterexamples,
where U is assumed to stand for the undefined truth value. At this stage, introduction
of additional truth values in the natural tableau system seems to us as an unnecessary
complication of the system.

One option for modeling entailment with two signs is to understand validity in terms
of Strawson’s validity (von Fintel, 1999). This change brings a new concept of entailment,
let it be P-entailment, which is defined as follows: S P-entails T if and only if S and R
(classically) entail T , where R is a collection of all presuppositions of S and T . Let us
neglect the obscure concept of presupposition in the tableau system for a moment. It is
easy to check that S-entailment makes “the” downward monotone in its first argument,
e.g., (17) S-entails (19), that is unwanted. Moreover, if S contradicts the presupposition
of T , then S P-entails T . For instance, “there are no boys” P-entails (17). Due to these
reasons we consider the P-entailment as impractical for modeling the natural language
entailment (at least from the RTE perspectives).

4.3.1.2 Russell’s analysis

In contrast to the former approach, Russell (1905) proposes the semantics for the N which
avoids the gaps in truth values. In particular, semantics of a sentence of the form “the N V”
is defined as a conjunction of three statements: there exists an entity that is N , this entity
is the only N , and every N is V . The lexical semantics of “the” is concisely expressed in
first-order logic as:

[[the]] = λSP.
(
∃x
(
Sx ∧ ∀y(Sy → x = y) ∧ Px

))
where S and P are variables for unary predicates standing for a noun subject and an
intransitive verb predicate, respectively.

Russell suggests incorporating the existence and uniqueness presupposition into the
semantics of the definite description. This makes a sentence of the form “the N V” false
when the presupposition is not met; hence the truth value of the sentence is always de-
fined. Unfortunately, the approach has problems as it does not license certain entailments
that seem naturally valid. These kind of entailments are those, similar to SICK-9604,
where the conclusion mainly has definite articles while the premise is using indefinite
ones. For example, according to the Russellian analysis SICK-9604 is neutral as the
premise does not assert the uniqueness of “dog” and “ball” while the conclusion does.21

Another type of textual entailments that are wrongly classified by the Russellian analysis
reveals the upward monotonicity of “the” in the first argument position (see SICK-3039).
The textual entailments similar to SICK-3039 are classified as neutral by the running
approach—the uniqueness presupposition of the conclusion is stronger compared to the
premise.22 Though Russell’s approach is formally well-defined and avoids the gaps in

21The counterexample for the entailment in SICK-9604 would be the situation where there are two black
and white dogs and one of them is jumping for some unique ball. The situation makes the premise true but
the conclusion false.

22For instance, the counterexample for the entailment in SICK-3039 is the situation where the unique

108 CHAPTER 4. INVENTORY OF TABLEAU RULES

truth values, its uniqueness presupposition is not restricted to some relevant context. As a
result the approach fails to capture certain naturally occurring entailments.

GOLD: ent, SICK-9604

A black and white dog is jumping for a ball

The black and white dog is jumping for the ball

GOLD: ent, SICK-3039

The puppy is playing with a plastic container

The dog is playing with a plastic container

To sum up, Frege’s approach comes with truth gaps that occur when the presuppo-
sitions carried by the definite descriptions are not satisfied. At the same time, modeling
the gaps or assuming the presuppositions in the tableau system carries much of compli-
cation or unsound entailments, respectively. On the other hand, Russell’s analysis pushes
presuppositions in the semantics of the definite descriptions; this makes the approach too
harsh and inadequate to some extent for natural reasoning. Both approaches fall short to
account for the entailment relation found in the RTE datasets.

4.3.2 Two options for modeling definite NPs
In the previous subsection, it was shown that neither Frege’s nor Russell’s account for the
definite descriptions, i.e. phrases like the N, are suitable for the natural tableau and natural
reasoning. In this subsection, we suggest two simple, efficient and comparably adequate
analyses of definite descriptions in the tableau system.

4.3.2.1 Definite NPs as indefinite NPs

The first proposal is to treat “the” as the indefinite determiner “a”. This approach is too
simple and is automatically accommodated in the system. Despite its simplicity, the ap-
proach works well concerning the entailment problems similar to SICK-3039 and SICK-
9604. For these reasons, identifying “the” with “a” is a default approach for many RTE
systems in the wide-coverage semantic analysis.

There is one issue with this approach. It fails to render the definite NPs as referring
expressions. For example, if “the” is treated as “a”, then it will not be possible to prove
the entailment relation in FraCaS-99: “the demonstration” in (P2) will not refer to the
entity that is introduced by “the demonstration” in (P1), hence the link between “Smith”
and “the system’s performance” will not be captured. The same issue prevents the tableau
system to capture the contradiction relation in SICK-1869 and SICK-1480.23

puppy is playing with some plastic container and some senior dog is sleeping nearby. There are plenty of
textual entailments similar to SICK-3039 in the SICK datasets (Marelli et al., 2014b), where all of them are
judged by human annotators as entailment.

23In case of SICK-1480, if the negation takes a scope over the entire sentence, then it is possible to prove
the contradiction relation. But this rather seems an ad hoc remedy.

4.3. RULES FOR DEFINITE NOUN PHRASES 109

GOLD: ent, FraCaS-99

P1: Clients at the demonstration were all impressed by the system’s performance
P2: Smith was a client at the demonstration

Smith was impressed by the system’s performance

GOLD: cont, SICK-1869

A parrot is speaking

The parrot is silent in front of the microphone

GOLD: cont, SICK-1480

A deer is jumping over a cyclone fence

The deer is not jumping over the fence

Despite the mentioned drawback, the treatment of the definite NPs as indefinites gives
decent predictions. Moreover, its integration in the natural tableau is for free as it requires
no new rules. Due to these reasons, this approach can be considered as a baseline solution
for modeling the definite NPs in the natural tableau. Another approach, which is presented
next, represents a refined version of the current one.

4.3.2.2 Definite NPs as referring expressions

We present the approach that borrows the idea of treating the definite NPs as indefinites
from the previous one but also tries to interpret them as referring expressions. While
doing so, we aim to come up with the efficient treatment of definite NPs in the tableau
system as they are frequently occurring in open-domain text.

In order to interpret the definite NP as a referring expression, one should design rules
that emulate the search for the referent of the NP. The definite NPs are assumed to have a
unique referent in the context. We have seen in §4.3.1.1 that presupposing the existence
and uniqueness of the referent makes “the” as a downward monotone operator, which
itself leads to the unsound entailments (e.g., (17) entails (19)). Additionally, modeling
the uniqueness condition requires the introduction of the equality operator and the rules
associated with it, which all together is usually challenging to be handled efficiently in
theorem proving. Taking into account the previous approach (see § 4.3.2.1), which is
decent and comes for free, our aim is to suggest another alternative approach that is still
cheap, efficient for theorem proving and better accounts for natural reasoning.

In a new approach, we extend (∀T) in such a way that the rule also applies to the
definite NPs in a true context (i.e. with T). In this way, the definite NPs in a true context
act as restricted universal quantifiers. This interpretation contributes to treat the definite
NPs as referring expressions. According to (∀T), any entity that falls in the description
of N is taken as a referent in the right branch while the left branch immediately closes.
This approach follows the Russellian analysis in the usage of the universal quantifier in
the semantics of “the”, but it does this only in a true context. If no entity satisfies the
description, then the definite article is treated as indefinite one by the (∃T). In a false
context we analyze the definite descriptions as indefinite via (∃F). This prevents them
from introducing a fresh entity in a false context.

110 CHAPTER 4. INVENTORY OF TABLEAU RULES

[[N]] [[V]] [[N]] [[V]][[N]] [[V]]

U All possible situations

A the N V : [] : T
a N V : [] : T

everyN V : [] : T

G Gap (ruled out)
a N V : [] : T

everyN V : [] : F

B the N V : [] : F
a N V : [] : F

Figure 4.6: The partition of possible situations according to the truth values of theNV .
Each partition is accompanied with a Venn diagram, where dotted, gray and white areas
are non-empty, empty and arbitrary, respectively. The situations where the truth value
is not defined represents a case for the truth gap. These situations are ruled out by the
presupposition associated with theNV .

∀T
q N V : [] : T

N : [ce] : F V : [c] : T

q ∈ {every, all, the}
and c is old

∃F
q N V : [] : F

N : [ce] : F V : [c] : F

q ∈ {a, some, the}
and c is old

∃T
q N V : [] : T

N : [ce] : T
V : [c] : T

q ∈ {a, some, the}
c is fresh

Let us see whether the natural tableau, with such treatment of definite NPs, accounts
for the above mentioned problematic entailments. The definite article “the” is not treated
as downward monotone because if the LLF of the form theNV is marked with the false
sign, it does not assert or presuppose the existence of the referent. Therefore, (17) does not
entail (19). With the help of (∃T) and (∃F), “the” is analyzed as the indefinite article, which
allows the proofs for the problems like SICK-3039 and SICK-9604. The definite NPs
marked with the true sign are treated as referring expressions via (∀T), as it was already
discussed in the previous paragraph. As a result, “the demonstration” in the premises
of FraCaS-99 co-refer to the same entity—one of the definite NPs introduces the entity
via (∃T) and another one will co-refer to it via (∀T). The same scenario applies to the
co-references in SICK-1480 and SICK-1869. Notice that the assertions are also made by
(∃F) on any entity that satisfies the description.

In order to see what semantics this approach assigns to the LLFs of the form theNV ,
we give a partition of all possible situations with respect to the truth value of such LLFs
(see Figure 4.6). theNV being false amounts to the semantics of the false aNV because
both types of LLFs are only decomposed with the same (∃F) rule in a false context. The
set of situations that falsify theNV (i.e. aNV) is denoted by B and accompanied with
the corresponding Venn diagram. Let A be the set of situations where theNV holds. We
know that (∃T) and (∀T) are applicable to theNV : [] : T and decomposes it in the same
way as aNV : [] : T and everyNV : [] : T. So, the situations in A are exactly those ones

4.4. CLOSURE RULES 111

that make aNV and everyNV together true.
Apparently the sets A and B do not cover all possible situations. The uncovered set

is denoted by G and represents a collection of those situations where aNV holds and
everyNV does not. In other words, the gap in truth values of theNV occurs if and only
if there are at least two entities that satisfy the description N and are distinguishable
via the predicate V . The truth gap means that the LLFs of the form theNV carry some
presuppositions—ruling out the cases of the gap. Compared to the Fregean analysis, our
approach carries less presuppositions and hence rules out less situations—put differently,
the truth gap here is smaller than in case of the Fregean analysis. If we look at the
presupposition of the current approach closely it seems quite natural. For example, the
truth value of “the boy is running” in the situation where one boy is running and another
is not is ambiguous and depends on the referent. On the other hand, it seems unsurprising
to evaluate “the dog is running” as false in the situations where there are no dogs running.
Moreover, the assertion “the boy is running” in the situations where there are some boys
who are all running can still survive.

We have outlined the Fregean and Russellian analyses of definite descriptions and
showed how they fall short to account for natural reasoning. Two simple and relatively
efficient solutions were proposed for modeling the definite NPs in the tableau system.
None of them require introduction of new rules. While the first one is slightly efficient
than the second one, the latter gives more adequate analysis of the definite descriptions,
i.e. it models them as referring expressions, that goes well with natural reasoning. Both
solutions will be tested against the textual entailment problems in §6.2.2.

4.4 Closure rules
A closure rule is a rule that identifies inconsistency in a tableau branch, and as a result,
introduces the closure sign × that closes the branch. We have already discussed three
general closure rules (×v), (×|) and (×`) in Chapter 2 and another two, but specific,
closure rules (×PP@VT) and (×PP@VF) in §4.2.2.3. In this section additional closure rules
are introduced. According to their nature, the rules are specially design for certain lin-
guistic phenomenon, like subcategorization, or constructions involving expletives, light
verbs and compound nouns. Some of those rules represent efficient but incomplete rules.
Incompleteness is due to the incomplete lists of compound nouns or light verb construc-
tions. Moreover, it is safe to use closure rules for modeling constrictions that are restricted
to a specific list of words. In this way, it is guaranteed that the tableau rules will not infer
any meaningless or unsound entries on tableau branches.

4.4.1 The rule for expletive there
There is significant amount of textual entailment problems in RTE datasets that involve the
expletive expression “there”. For example, nearly 6% and 3% of the sentences in SICK
and FraCaS, respectively, contain the expletive “there”. From the coverage viewpoint, it
is important to model the expletive constructions, like (20), in the natural tableau.

In the sentences like (20), “there” is considered as a semantically vacuous element that
fills the subject position and has no corresponding realization in the logical form (LF) level

112 CHAPTER 4. INVENTORY OF TABLEAU RULES

(Chomsky, 1986). The LF of (20) is derived by substituting “there” with “some animal”,
which is bound by the expletive; this fact is encoded with the subscripts. Hence (20) and
(21) have the same semantics in the end.

There1 is [some animal]1 moving (20)
somen,vp,s (thatvp,n,n movevp animaln)(λx. benp,vp xnp therenpthr) (20a)

Some animal is moving (21)
somen,vp,s animaln movevp (21a)

There are several persons in the room (22)
There are several companies (23)

On the other hand, the expletives are presented in the LLFs that we obtain from the
CCG derivations, e.g., see the LLF in (20a).24 It is possible to carry out the similar
substitution on the LLFs with the help of the (THERE) rule and obtain more semantically
transparent LLFs as a result. Unfortunately, the rule cannot process the LLFs of the
sentences (22) and (23) in the same manner since the common nouns of those LLFs have
different structures than r VvpNn.

THERE

qn,vp,s (r VvpNn)(λx. benp,vp x therenpthr) : [] : X

qn,vp,sN V : [] : X

×THR

benp,vp : [C,D] : F

×
therenpthr ∈ {C,D}

Instead of repairing (THERE) to accommodate (22) and (23) cases, we give different
rules that are more general. The idea that makes those rules general is simple and suggests
interpreting the expletives with the copula as the universal predicate. In other words, the
terms λx. bex there and be there are true for any argument. We introduce the rule (×THR)
that models this universality feature. When D = there, the rule renders the situation
impossible where, for example, there is an individual which is a dog and “there is some
dog” does not hold in the situation. In case of C = there, the rule does the similar job but
for the more rare paraphrase “Some dog is there”. Notice that the modifier list in the rule
is required to be empty.

The tableau proof in Figure 4.7 makes use of (×THR) in order to prove the entailment
relation in PROB-8.25 One could notice that the rule (×THR) makes the sentences, like
“there is John”, always true, i.e. tautology. This fact does not represents a big issue if a
weak reading of the sentence “there is John” is considered, where “there is” is understood
as “exists” rather than presence at a particular location.

PROB-8

Some dog is running

There is some animal moving

24Notice the insertion of the relative pronoun in the LLF. This is the technique adopted in Chapter Y for
explaining the type-changing rule vp 7→ (n, n) for restrictive participial phrases. Moreover, the expletives
are analyzed as NPs by the CCG parsers, but their category comes with the feature thr.

25Another proof that makes use of (×THR) is presented in Figure 4.10 (Appendix C). The proof classifies
1417 as contradiction.

4.4. CLOSURE RULES 113

1 somen,vp,s dogn (bevp,vp runvp) : [] : T
2 somen,vp,s (thatvp,n,n movevp animaln)(λx. benp,vp x therenpthr) : [] : F

3 dog : [ce] : T
4 be run : [ce] : T

5 run : [c] : T

6 that move animal : [c] : F

11 move : [c] : F

13 ×

12 animal : [c] : F

14 ×

7 be c there : [] : F

9 be : [c, there] : F

10 ×

∃T[1]

AUX[4]

×v[5,11] ×v[3,12]

A>,A>[7]

×THR[9]

λ<,∃F[2]

∧F[6]

Figure 4.7: The closed tableau proves PROB-8 as entailment. The rightmost branch is
closed by the (×THR) rule while the rest of the branches are closed by (×v). We use a
sequence of rules in rule applications in order to omit irrelevant intermediate nodes. For
instance, λ<,∃F[2] assumes that 6 is obtained by ∃F and 7 by λ< and ∃F from 2 .

We have presented the rule (×THR) which analyzes the expletive-copula pair “there
is” as the universal predicate of type vp. The rule treats various construction, including
(20), (22) and (23), in a uniform way.

4.4.2 Verb subcategorization
There are several types of verbs that subcategorize for optional arguments. For example,
the verbs, like “eat” and “read”, can take an optional object, see (24) and (25). Also
certain passive constructions can be seen as a case of subcategorization: consider (26)
and (27). In order to prove the entailment of (24) from (25) or the contradiction between
(26) and (27), we could use event semantics and (EVT) from §2.3.2. As we have already
noted there, (EVT) requires information about thematic roles of a verb and its counterpart
rule for F represents an inefficient γ-rule.

John ate yesterday (24)
John ate [khinkali]NP yesterday (25)

Mary sold a car to John (26)
A car was not sold to John (27)

In order to efficiently capture semantic relations licensed by verb subcategorization, we
introduce two rules (×VSC1) and (×VSC2). The rules model subcategorization for active

114 CHAPTER 4. INVENTORY OF TABLEAU RULES

and passive verbs respectively. Notice that the rules do not introduce any event entity or
a new tableau entry; they simply identify contradictions, and this makes them efficient.

×VSC1

[
–

M↑] : U #–α,
#–
β ,si

: [
#–

C #–α ,
#–

D #–
β] : T

[
–

M↑] : V #–
β ,si

: [
#–

D #–α] : F

×
#–

C and
#–

D are nonempty.
#–α,

#–

β involve only pp and np.
If U and V are lexical,

U ≤ V ; otherwise U = V

×VSC2

[
–

M↑] : U #–α,
#–
β ,vpi

: [
#–

C #–α ,
#–

D #–
β , b] : T

[
–

M↑] : V #–
β ,spss

: [
#–

D #–
β] : F

×
#–

D is nonempty. i 6= pss.
#–α,

#–

β involve only pp and np.
If U and V are lexical,

U ≤ V ; otherwise U = V

The first instance of the rule identifies the tableau entries like ones in (28) as contra-
diction; the second instance contrasts passive and non-passive VPs to each other and as
a result finds the entries similar to those in (29) contradictory. Notice that the rules can
apply to the nodes with nonempty modifier lists, e.g., (28). The rule (×VSC1) in action is
demonstrated by the tableau proof of 1417 in Figure 4.10 (Appendix C).26

[yesterdayvp,vp] : swallownp,vpdcl
: [k, j] : T

[yesterdayvp,vp] : atevpdcl : [j] : F
(28)

sellpp,np,vpdcl : [to j, c,m] : T
sellpp,vppss : [to j, c] : F

(29)

VSC

vnp,vpi : [C,D] : T

vvpi : [D] : T
vvppss : [C] : T

i 6= pss

GOLD: ent, SICK-1417

Men are sawing logs

There are no men sawing

Definitely this is not the only way of modeling verb subcategorization in the tableau
system. Another similar solution is to design non-closure rules that shrink the argument
structure of the verb, e.g., if they find the entry eatnp,vp : [k, j] : T they will introduce
eatvp : [j] : T and eatvppss : [k] : T. This solution is represented by the rule (VSC). This
approach, with a non-closure rule, is general but it is inefficient compared to our previous
solution. Moreover, such a non-closure rule can introduce several new entries from the
first LLF of (29), possibly including unsound ones like sellvp : [m] : T. In contrast, our
suggested solution does not introduce any new entries, especially the unsound ones.

The suggested solution employs the closure rules (×VSC1) and (×VSC2), and com-
pared to the alternative solution with event semantics, it is significantly more efficient.
The solution does not introduce any new tableau entries and employs only those that
are derived from the CCG derivations. Moreover, the proposed rules carry out shallow

26Careful observation on the node 6 of the tableau shows that the LLF for the premise is analyzed
according to the distributive reading rather than the cumulative one.

4.4. CLOSURE RULES 115

reasoning over syntactic terms, and hence the solution is faithful to the project of natural
logic. Due to its efficiency, the solution is adopted in a computational model of the natural
tableau prover (Chapter 5).

4.4.3 Open compound nouns

A compound noun is formed from more than one stems and acts as a semantic unit.27

Compound nouns are quite frequent in the wide-coverage text and the RTE datasets. Ac-
cordingly, in this subsection, we introduce a single rule that captures the equivalence re-
lation between open compound nouns and noun phrases that are formed from the similar
words, for example, “beer bottle” is “bottle for beer” and vice versa.

Let us consider the entailment problems SICK-3275 and SICK-7755 from the SICK
dataset. Up to now there is no rule or transformation of LLFs that captures the equivalence
of the noun phrases “waves of the ocean” and “ocean waves” or “street of a city” and “city
street”. Hence, the tableau system fails to classify correctly these problems and similar
ones.

GOLD: ent, SICK-3275

A child is running in and out of the waves of the ocean

A child is running in and out of the ocean waves

GOLD: ent, SICK-7755

A man and a woman are walking down the street of a city

A man and a woman are walking down a city street

We introduce a single closure rule (×CPN) that enables the tableau system to capture
the equivalence relation between a two-word compound noun (e.g., “ocean wave”) and its
paraphrase with a preposition (e.g., “wave of the ocean”). Each instantiation of the truth
variable X corresponds to one of the entailment relations of the equivalence. For instance,
the contradiction in case of X = T models the entailment of “wave of the ocean” from
“ocean wave” while the entailment in the opposite direction is captured by X = F.

×CPN

Nn : [d] : T

[
–

M] : Hpp,n(p
IN
np,pp d) : [c] : X

[
–

M] : An,n Hn : [c] : X

×
N ≈ A or N ≈d A

protectionn : [de] : T
gearpp,n(fornp,pp de) : [ce] : F

protectiven,n gearn : [ce] : T

×
(×CPN∗)

For wider-coverage we allow relaxed constraints on the post-nominal term Nn and the
pre-nominal term An,n. Apart from Nn and An,n having the same string representations,

27The following words are compound nouns: “football”, “whiteboard”, “beer bottle”, “father-in-law”,
etc. Depending on their form they are further classified as solid (e.g., the first two compounds), open (e.g.,
the third compound) and hyphenated (e.g., the last compound).

116 CHAPTER 4. INVENTORY OF TABLEAU RULES

denoted asN ≈ A (e.g., oceann ≈ oceann,n), the terms are also allowed to be derivations of
the same stem, written as N ≈d A.28 This helps to identify the synonyms like “protective
gear” and “gear for protection” as protectionn ≈d protectiven,n, see (×CPN∗). In the same
spirit, to increase the coverage of the rule, we do not specify the prepositional term pINnp,pp.
The tableau proof in Figure 4.11 (Appendix C) demonstrates the usage of (×CPN).

From the perspective of theorem proving, our suggested solution models the syn-
onymy relation in the efficient way. This is explained by two properties of the rule
(×CPN). The first property is the closure nature of the rule—after applying the rule
the entire branch closes. The second property is the subterm property. A rule has this
property if its consequents contain only subterms of the antecedent terms.29 The subterm
property is automatically obtained if a rule is closed. We emphasize the subterm property
of (×CPN) because it is a very important feature for the efficiency when modeling the
open (i.e. varying) class of construction, like compound nouns. Consider the solution
with the rules (CPN1) and (CPN2), which do not have the subterm property.30 Informally
speaking (CPN1) can introduce “ocean wave” from “wave of the ocean” and (CPN1) in the
other way around. These rules can easily produce garbage on the branches. For example,
(CPN1) introduces the term for the non-existing compound “day song” if it is applied to
the corresponding terms modeling “song of a day”. There is also an additional problem
with guessing the preposition pnp,pp in a paraphrase. When (CPN2) introduces a new entry
an adequate preposition needs to be chosen: while “ocean wave” is paraphrased as “wave
of the ocean”, “washing machine” is paraphrased as “machine for washing”. In some
cases, e.g. “cell phone”, there is no corresponding preposition or paraphrase that (CPN2)
can introduce.

CPN1

nn : [d] : T
hpp,n(p

IN
np,pp d) : [c] : T

nn,n hn : [c] : T

CPN2

nNNn,n hn : [c] : T

nn : [d] : T
hpp,n(p

IN
np,pp d) : [c] : T
d is fresh

The rule (×CPN) represents a simple and efficient solution for detecting synonymous
paraphrases of open compound nouns. It contrasts the terms obtained from the linguis-
tic representations and avoids introduction of non-existing compounds or paraphrases.
The specificity of the antecedents of the rule (i.e. three entries with certain structures)
and the relaxed constraints on the terms (i.e. the unspecified preposition and the loose
matching with ≈ and ≈d) can be seen as a balance between precision/soundness and cov-
erage/completeness.

28The string equality modulo derivation ≈d is defined only for lexical terms while the string equality ≈
is defined for any λ-terms, including complex terms too.

29This property is usually called as the subformula property but due to the shift in terminology we refer
it as the subterm property.

30These rules are simplified for the demonstration purpose and do not represent the alternative solution.
We also restrict the meta-variables to lexical terms since changing the type of a term is trivial on lexical
level.

4.5. RULES FOR THE COPULA BE 117

4.4.4 Light verb constructions
A verb is called light if it has little semantic content. The light verbs usually form a VP in
combination with a noun derived from a verb. The examples of light verb constructions
are: “do a dance”, “give a presentation” and “have a sleep”, where “dance”, “present”
and “sleep” are their verb synonyms, respectively. A textual entailment problem involving
a light verb construction is presented in SICK-253.

GOLD: ent, SICK-253

A hiker is on top of the mountain and is doing a joyful dance

A hiker is on top of the mountain and is dancing

In order to capture the semantic equivalence between the light verb constructions and
their verb synonyms, we introduce the closure rule (×LVC) in the rule inventory.

×LVC

[
–

M] : l #–α,vp : [c,
#–

D] : X
un : [c] : T

[
–

M] : v #–α,s : [D] : X

×
l ∈ {do, get, give, have,make, take},

#–α is formed by np and pp, and u ≈d v

donp,vp : [de, he] : T
dancen : [de] : T

dancevp : [he] : F

×
(×LVC∗)

The rule is efficient as it is a closure rule and has the subterm property—introduces
only subterms found in the antecedents. Because we do not employ a predefined list of
light verb constructions, the lexical terms are unspecified.31 In this way we increase the
coverage of the rule. Modeling the phenomena with (×LVC) guarantees that no new terms
are introduced in a tableau: for example, introducing the LLF of the non-existing verb for
“homework” from the entries modeling “do the homework”. The rule contributes to prove
the entailment in SICK-253. In the tableau proof for the entailment relation, the entries to
which (×LVC) applies are given in (×LVC∗).

We suggest the single rule (×LVC) that models the open class of light verb construc-
tions in the same vein as the compound nouns were modeled by (×CPN) in §4.4.3.

4.5 Rules for the copula be
From the semantic point of view, the copula “be” is considered as a semantically vacuous
word in predicative sentences like (30) and (31), and it is usually omitted in logical forms
(Heim and Kratzer, 1998, Ch. 4). Instead of omitting the copula directly in the LLFs, we
keep it there (e.g., see the corresponding LLFs) and discard it later with the help of the
rules during the tableau proof construction.

Xavi is short (30)

31Even un and v #–α are not required to be string equal to each other; they can be forms derived from the
same stem, like in “give a presentation” and “present”.

118 CHAPTER 4. INVENTORY OF TABLEAU RULES

be short Xavi (30a)
Xavi is on the pitch (31)

the pitch
(
λx.be (on x) Xavi

)
(31a)

The rule (ID) treats the copula as the identity function. When beα takes a predicative
adjective as its argument, like in (30a), α = (vp, vpadj) since the predicative adjectives
get vpadj category by the CCG parsers. α matches (pp, vp) whenever the rule is applied to
the copula-PP combination. Notice that when (ID) applies to the term be (on x) Xavi while
analyzing the LLF in (31a), the variable x is already instantiated at that time. Notice that
the rule (ID) comes close to (AUX) as both treat certain lexical terms as identity functions.

ID

[
–

M] : beα P : [
#–

C] : X

[
–

M] : P : [
#–

C] : X
α ∈ {(vp, vpadj), (pp, vp)}

Another type of constructions where the copula (with the indefinite determiner) is
omitted are similar to (32) (Heim and Kratzer, 1998, Ch. 4). Also interpreting the indefi-
nite determiner as vacuous is somewhat unwanted because this brings the lexical ambigu-
ity of the frequently occurring lexical entry such as the indefinite determiner. Below we
show that this ambiguity is unnecessary to extract the simple semantics from the sentences
similar to (32).

Xavi is an intellignet football player (32)

a
(

intellignet (football player)
)(
λx.be x Xavi

)
(32a)

The captina of FC Barcelona is Xavi (33)

the
(

captain (of FC Barcelona)
)(

be Xavi
)

(33a)
All football players are athletes (34)

all
(

football player
)(
λx.s athlete (λy.be y x)

)
(34a)

We offer two rules, (BE1) and (BE2), for simplifying the semantics of the LLFs of
the sentences involving the NP-copula-NP triplet. The rules differ only in terms of the
instantiation of NP arguments. When the first argument of be is instantiated, (BE1) is
applicable and when the second argument is instantiated (BE2) is applicable. For example,
the rule (BE2) is used while decomposing the LLF in (32a) and (BE1) for the LLF in
(33a). The rules are not limited to indefinite NPs, they can also be used for the definite
descriptions (33a) and plurals (34a). The usage of (BE2) for the indefinite and plural NPs
is demonstrated by the tableau in Figure 4.8.

BE1

[
–

M] : qn,vp,sN(be c) : [] : X

[
–

M] : N : ce : X
q ∈ {a, the, s}

BE2

[
–

M] : qn,vp,sN(λx.be x c) : [] : X

[
–

M] : N : ce : X
q ∈ {a, the, s}

4.5. RULES FOR THE COPULA BE 119

1 alln,vp,s
(

footballn,n playern
)(
λx.sn,vp,s athleten (λy.benp,vp ynp xnp)

)
: [] : T

2 an,vp,s
(

intellignetn,n (footballn,n playern)
)(
λx.be xnp Xavinp

)
: [] : T

3 a athleten
(
λx.be xnp Xavi

)
: [] : F

4 athlete : [Xavie] : F

5 intellignet (football player) : [Xavi] : T

6 football player : [Xavi] : T

7 football player : [Xavi] : F

9 ×

8 λx.s athlete (λy.be y x) : [Xavi] : T

10 s athlete (λy.be y Xavi) : [] : T

11 athlete : [Xavi] : T

12 ×

BE2[3]

BE2[2]

⊂T[5]

×v[6,7] λ<[8]

BE2[10]

×v[4,11]

∀T[1,Xavi]

Figure 4.8: The tableau proof demonstrates the usage of the rule (BE2) and shows that “all
football players are athletes” (34) and “Xavi is an intellignet football player” (32) entails
“Xavi is an athlete”.

The rules (BE1) and (BE2) can be seen redundant if we treat be as the equality relation
with the corresponding (BE=1), (BE=2) and (BE×) rules.32 Using this treatment, the
tableau proof in Figure 4.8 would develop as follows. First, based on 2 , an entity p
is introduced that is intellignet (football player), hence football player, and is equal to Xavi.
Then due to 1 , an entity a is introduced that is athlete and is equal to p. Since a is
athlete, according to 2 a is not equal to Xavi. The contradiction in the deduced facts, i.e.
be p Xavi, be a p and the negation of be a Xavi, is further identified by the equality rules
(BE=1), (BE=2) and (BE×).

BE=1

benp,vp : [C,D] : T
[

–

M] : Φ(C) : [
#–

E] : X

[
–

M] : Φ(D) : [
#–

E] : X

BE=2

benp,vp : [C,D] : T
[

–

M] : Φ(D) : [
#–

E] : X

[
–

M] : Φ(C) : [
#–

E] : X

BE×
benp,vp : [C,C] : F

×

32These rules mirror the first-order logic rules for the equality relation (Fitting, 1990, Ch. 8). In fact,
the symmetry and transitivity properties of the equality can be captured by the replacement (modeled by
(BE=1) and (BE=2)) and reflexivity (modeled by (BE×)) properties. From a computational point of view,
(BE=1) and (BE=2) are inefficient as they often drastically increase the choice points of rule applications
during the proof procedure.

120 CHAPTER 4. INVENTORY OF TABLEAU RULES

Comparing the latter tableau scenario, which introduces two fresh constants, and the
one depicted in Figure 4.8 shows that the rules (BE1) and (BE2) offer much more simple
and intuitive poofs than treating the copula as equality. This is the main motivation for
introducing these rules and hence avoiding the usage of (BE=1) and (BE=2) when it is
possible. Unfortunately, it is not always the case that we can avoid (BE=1) and (BE=2).
There are entailments, like PROB-9, that need these rules to be proved.

GOLD: ent, PROB-9

Xavier Hernándes Creus is Xavi
Xavi is the captain of FC Barcelona

Xavier Hernándes Creus is a player of FC Barcelona

In this section we have given various rules for the copula “be”. The rule (ID) treats
the copula as vacuous with predicative adjectives and PPs. For efficient theorem proving,
we introduced (BE1) and (BE2) that help to decompose certain constructions with copula
without introducing unnecessary fresh constants or using the inefficient rules (BE=1) and
(BE=2) for the equality.

4.6 Rules for passives

The passive constructions occur quite regularly in the open-domain text and due to this
reason they are also often included in RTE datasets. Therefore, it is important to account
for this syntactic construction in the natural tableau. In this section we give the rules for
the passives that are supplemented with the by-phrase.

Since LLFs are automatically generated from the CCG derivation trees, the way the
CCG parsers analyze the passive constructions is crucial for the passives rules. Regardless
of passives, the by-phrases are PPs and the parsers assign common PP categories to them.
In the CCGbank (Hockenmaier and Steedman, 2007), VPpss\VPpss and (VPpss\VPpss)/NP
are considered as gold categories for the passive by-phrases and the preposition “by”,
respectively.33 Unsurprisingly, the parsers also do mistakes while analyzing the passive
by-phrases, e.g., sometimes they are analyzed as prepositional complements of category
PP .34

The main idea behind the rules for passives is to identify a passive construction with
its corresponding by-phrase and to recover the underlying argument structure. As a by-
phrase is itself a PP, the rules for PPs, in particular (M>) and (M<) from §2.3.2 and (V@PP)
from §4.2.2.2, are applicable to it. For convenience we restate these rules below.

33The choice is made due to the optional character of the by-phrase (Hockenmaier, 2003, p. 51). The
decision also reduces lexical ambiguity and avoids data spareness to some extent (Hockenmaier and Steed-
man, 2007, Sec. 6)

34 Moreover, the C&C parser is more detailed with respect of the category features than EasyCCG: the
passive by-phrase gets VPpss\VPpss as a gold category from C&C and the featureless VP\VP category from
EasyCCG. Unlike the category from C&C, the EasyCCG category does not necessarily link the phrase to
the passive constructions. While designing the tableau rules, we also take the ambiguity caused by the
EasyCCG category into account.

4.6. RULES FOR PASSIVES 121

M<

[
–

M] : A H : [
#–

C] : X

[
–

M,A] : H : [
#–

C] : X

M>

[
–

M,A] : H : [
#–

C] : X

[
–

M] : A H : [
#–

C] : X

V@PP

[
–

M] : Vpp,α (pINnp,ppD) : [
#–

C] : X

[
–

M] : pINnp,α,αDVα : [
#–

C] : X
α = (np∗, vp)

According to our approach in § 4.2.2.2, all PPs that are arguments of a VP are uni-
formly treated as VP modifiers. Hence a by-phrase, regardless of being a VP modifier or
its argument, is also rendered as a VP modifier. If a by-phrase is modifying a verbal term
in passive (indicated by the type feature pss), then it is reliable to regard the phrase as a
supplement of the passive construction, i.e. as it encoding a subject of the corresponding
active construction.35 The rule (PSS) identifies such a by-phrase with its antecedent and
expands the argument structure of the verbal term v with the argument D provided by
the phrase. The type β is obtained from α by replacing the final type spss with vpdcl, i.e.
inserting an additional type np as the last argument in α and changing the passive feature
of the final sentence type into declarative.

PSS

[
–

M] : bynp,α,αD vα : [
#–

C] : X

[
–

M] : vβ : [
#–

C,D] : X
α = (#–γ , spss) and β = (#–γ , vpdcl)

The rule (PSS) helps not only to reason over the LLFs with passives but, combined
with the rules for prepositions, e.g., (VP@PP), it also correctly interprets certain LLFs
with erroneous passive analyses. For the demonstration, consider SICK-4386 and the
corresponding derivations from EasyCCG. In the premise, the parser wrongly analyzes the
by-phrase as a verb complement. However the entailment relation between the sentences
is still proved (see Figure 4.12 in Appendix C) with the help of (PSS) and (VP@PP).

EasyCCG; GOLD: ent; SICK-4386

A shoe is being
[
tiedVPpss/PP [byPP/NP [a man]NP]PP

]
VPpss

A man is tying a shoe

We described how the passives are analyzed by the CCG parsers and according to it
designed the rule (PSS). The rule identifies the by-phrase for a passive construction and
rewrites the passive LLF into the synonymous active LLF, where the argument structure
of the verbal term has been extended by the subject argument. As the by-phrases are
also PPs, the rules already designed for PPs (in § 4.2) apply to the by-phrases too. We
showed how these rules can be useful while reasoning over the LLFs with wrong analyses
of passives.

35One can think about the sentence like (35) where the by-phrase is modifying the VP but describes the
location of the event.

A man was killed by his car (35)

While such passive construction can be seen as ambiguous, we believe that in its intended/primary semantics
the by-phrase carries the real subject of the construction.

122 CHAPTER 4. INVENTORY OF TABLEAU RULES

4.7 Attitude verbs

This section discusses a range of transitive verbs that allows clauses as their arguments.
In short, we call such verbs the attitude verbs. The attitude verbs comprise so-called im-
plicative verbs like ones in “manage to”, “force somebody to” and “fail to”, or factive
verbs like “know that” and “regret that”. These verbs are interesting as they give rise to
certain presuppositions and entailments.36 First, we discuss the presuppositions and en-
tailments and their relation to those verb constructions that induce them. Depending on
the relations, four major properties of the verbs are presented. To account for these prop-
erties in the tableau system, we introduce four tableau rules, each rule modeling a single
property. The rules subsequently enable the tableau system to prove certain entailments
involving the attitude verbs, for instance, the entailment of (37) from (36).

Suárez managed not to fail to make Neymar score a goal (36)
Neymar scored a goal (37)

4.7.1 Entailment properties of attitude verbs
A main difference between a presupposition and an entailment is that the former is nec-
essary for the well-defined meaning of the source sentence while the latter is necessary
for the truth of the source sentence. Due to the importance of presuppositions for the
meaning, they are able to escape from the scope of negation, questions and if-clauses.
For example, asserting either of the sentences in (38) and (39) presupposes the truth of
the embedded sentence. The verb constructions, or loosely speaking VPs, with this prop-
erty are called factives. The factive VPs are “forget that”, “know that”, “realize that”,
“was glad to”, etc. A VP that regardless of its truth value presupposes the negation of its
sentential argument, e.g., “pretend that”, is considered counterfactive.

Benı́tez forgot that Cheryshev was suspended (38)
Benı́tez did not forget that Cheryshev was suspended (39)

On the other hand, entailments are more sensitive to the truth values than presupposi-
tions. The negation can cause an entailment to disappear or to change radically. Consider
the sentences in (40) and (41). Assertion of (40) entails that Zidane got a red card while
(41) does not entail it. Hence the embedded clause did not survive from the negation.
Notice that “Zidane got a red card” is not implicature of (40) as it cannot be canceled by
adding “but Zidane did not get a red card” as a further comment to (40).37

Materazzi caused Zidane to get a red card (40)
Materazzi did not cause Zidane to get a red card (41)

36The properties of these verbs we are interested in are explored in Lauri Karttunen’s works (Karttunen,
1971, 2012, 2015) inter alia.

37Implicatures are related concept to presuppositions and entailments. In contrast to them, implicatives
heavily rely on Grice (1975)’s cooperative principles and are characterized by several properties including
re-enforceability and cancelability. The relations between implicatives and presuppositions are in details
discussed by Potts (2015).

4.7. ATTITUDE VERBS 123

two-way implicatives one-way implicatives
++ | −− +− | −+ ++ +− −− −+

manage to fail to cause NP to refuse to be able to hesitate to
bother to forget to force NP to prevent NP from attempt to

succeed in neglect to make NP to keep NP from try to

Table 4.1: Constructions with the entailment properties

Nairn et al. (2006) denotes this property of “cause NP to” by ++, meaning that if the
embedding context is positively asserted (denoted by the first sign) then the embedded
clause is entailed positively (denoted by the second sign). “force NP to” and “make NP
to” are among other VPs that have the ++ property (see Table 4.1).

Depending on the polarities of the embedding context and the entailed embedded
clause, there are additional three ± properties +−, −− and −+. The examples of the
VPs with these properties are listed in Table 4.1.The VPs having only one of those four
entailment properties are called one-way implicatives.38 There are also so-called two-way
implicative VPs that have two compatible properties from those four. For instance, such
verb construct is “manage to” which has the ++ and −− properties (i.e. the ++ | −−
property). Informally speaking it transmits the negation to the embedded clause. In the
same vein, the double properties ++ | −+ and +− | −− can be associated with the above
mentioned factive and counterfactive verbs, respectively. The set of verb constructions
that have none of these four implicative properties comprise “hoped to”, “wanted to”,
“believes that”, “offer NP to”, etc.39

It is important to mention that the implicative verbs usually come with certain presup-
positions. For example, “manage to” in (42) and (43) presupposes that the subject at least
tried to score a penalty. It is exactly this presupposition that blocks the entailment of (43)
from (44). Imagine the situation where Neymar is sleeping. This makes (44) true but not
(43) as its presupposition is not supported by the situation.

Neymar managed to score a penalty (42)
Neymar did not manage to score a penalty (43)

Neymar did not score a penalty (44)

4.7.2 Rules for attitude verbs
While talking about presuppositions in the context of the tableau system, one important
issue arises that can be explianed in terms of the following questions: In particular, is the
truth sign F a metalinguistic or linguistic negation? Do presuppositions escape from the

38The reason why the verb phrases with these properties are referred as implicatives is that they also
carry implicatures. For example, when “be able to” is uttered positively like in “Neymar was able to score
a penalty”, one is inclined to conclude that Neymar indeed scored unless the sentence is continued with the
utterance “but he did not score”.

39A valuable collection of lexical resources, collected by the natural language and reasoning group at
Stanford University, that consists of the phrases with adjectives, verbs, and verb-noun collocations anno-
tated with the implicative properties can be found at: http://web.stanford.edu/group/csli_
lnr/Lexical_Resources

http://web.stanford.edu/group/csli_lnr/Lexical_Resources
http://web.stanford.edu/group/csli_lnr/Lexical_Resources

124 CHAPTER 4. INVENTORY OF TABLEAU RULES

scope of F or not? Or are (46) and (47) semantically equivalent entries?

tryvpto,vp
(

tovpb,vpto (λx. a penalty score x)
)

: [Neymar] : T (45)

managevpto,vp
(

tovpb,vpto (λx. a penalty score x)
)

: [Neymar] : F (46)

notvp,vp
(

managevpto,vp
(

tovpb,vpto (λx. a penalty score x)
)

: [Neymar] : T (47)

At this stage, it is simpler to consider F as a linguistic negation. Moreover, since there
is no proper linguistic counterpart of the metalinguistic negation, its introduction in the
natural tableau would deviate the system from the project of natural logic. So, we always
allow the top level term not to change the truth value of a sign.40 The presuppositions
are projected with the help of the tableau rules and they are asserted on a branch like
entailments that escape from the F sign. For instance, if we wish to further analyze the
presupposition triggered by “manage to”, we would design the rule that replaces manage
with try and sets the sign to T, in other words, introduces (45) from (46). By this decision,
the tableau system to some extent adheres to Strawson’s entailment (see §4.3.1.1) in case
of the VPs with presuppositions.

It is sufficient to model the verbs with the ± properties in Table 4.1 by designing the
tableau rules that capture these four properties. Then the terms with the number of the
properties (e.g., two-way implicatives) will be processed with the same number of the cor-
responding rules. The verb constructions with the entailment properties are syntactically
versatile. To capture these constructions in a compact way, we borrow the meta-symbol
“?” from regular expressions that marks terms and argument types as optional. The
schema in (48), represents the abstract LLF that matches the attitude verbs. The con-
crete matched instances of LLFs are presented in (48a–g) along with their corresponding
linguistic expressions.

h?np,β,vp ?Cnp (?pα,β Vα)
)

s.t.(α, β) ∈ {(vp, vp), (vp, pp), (s, s)} (48)
managevpto,vp(tovpb,vpto scorevp) manage to equalize (48a)

succeedvpto,vp(invpng ,pp scorevp) succeed in scoring (48b)

preventnp,vpto,vpPiquenp(fromvpng ,pp
scorevp) prevent Pique from scoring (48c)

gladvpto,vpadj(tovpb,vpto runvp) glad to win (48d)

witnessnp,vp,vpFC Barcelonanp winvp witness FC Barcelona win (48e)
realizesem,vp(thats,sem(scorevp Xavinp)) realize that Xavi scored (48f)

lienp,sem,vpLuisnp(thats,sem(scorevp Xavinp)) lied Luis that Xavi scored (48g)

After identifying such kind of constructions, we need to check the functional term
h?np,β,vp ?Cnp of (48) on the entailment properties. We assume here that the knowl-
edge about these properties are provided by the signature. For example, in the signature,
the +− property of “prevent Pique” can be obtained from the type (np, {+−}pp, vp)
of the prevent term recursively, where I, J,K are subsets of the entailment properties
{++,+−,−−,−+}:

A has the i property if A is of type (Iα, Jβ) and i ∈ I
40More precisely, the adopted interaction between the lexical negation not and the truth sign, does not

commit us to interpret both not and F as linguistic negations but as the negations of the same type—either
linguistic or metalinguistic. The way the entries with the F sign are unfolded further determines the type of
the negation.

4.7. ATTITUDE VERBS 125

AIα,Jβ BKγ is of type Iβ if γ v α

The rules modeling the entailment properties are given below. Besides the requirement
for the corresponding entailment property, they also satisfy the shared constraints.41 The
tableau proof for the entailment of (37) from (36) demonstrates the new rules in action in
Figure 4.9.

++

h?np,β,vp ?Cnp (?pα,β Vα) : [
#–

D] : T

Vα : [
#–

E] : T
h ?C has the property ++

+−
h?np,β,vp ?Cnp (?pα,β Vα) : [

#–

D] : T

Vα : [
#–

E] : F
h ?C has the property +−

−+

h?np,β,vp ?Cnp (?pα,β Vα) : [
#–

D] : F

Vα : [
#–

E] : T
h ?C has the property −+

−−
h?np,β,vp ?Cnp (?pα,β Vα) : [

#–

D] : F

Vα : [
#–

E] : F
h ?C has the property −−

Shared constraints: (α, β) ∈ {(vp, vp), (vp, pp), (s, s)}; #–

E is empty iff α = β = s;

when
#–

E is nonempty,
#–

E = C if C appears, otherwise
#–

E =
#–

D

Notice that the entailment relations licensed by the ± properties of the attitude verb
constructions are decreasing in terms of the length of a sentence: the conclusion is al-
ways shorter that the premise. But one might want to capture the entailments, like (50)
from (49), without decreasing the length of a conclusion. Certain entailments, like the
latter example, can be captured via monotonicity calculus of the tableau system if the
monotonicity features are associated with the attitude verbs, e.g., manage being ↑mon in
the first argument position. This solution is far from being perfect as it also licenses the
unsound entailments like (51) from (49). In general, it requires further analysis of the se-
mantics and pragmatics of the attitude verbs to capture such non-decreasing entailments
adequately.

Neymar managed to score a free kick (49)
Neymar managed to score a goal (50)

Neymar managed to shoot a free kick (51)

In order to model additional properties of certain propositional attitude (e.g., “know”
or “believe”) and modal verbs in the tableau system, it is sufficient to move from exten-
sional types to intensional ones (e.g., the sentential LLFs will be of type st), to introduce
the corresponding reachability relation R over possible worlds in the tableau entries and

41Notice that the rules do not restrict the optional lexical term pα,β . This decision is made in order to
keep the rules general, simpler and fewer. In the application, we do not expect p matching a wrong term,
but if it happens, it would be an interesting example and the evidence for further constraining the rules.

126 CHAPTER 4. INVENTORY OF TABLEAU RULES

1 managevpto,vpdcl
(

not
(

to
(

failvpto,vpb
(

to(makenp,vpb,vp neymar(λx. a goal(λy. score y x)))
))))

suarez : [] : T
2 an,vp,s goaln(λy. scorenp,np,s y neymarnp) : [] : F

3 manage
(

not
(

to
(

fail
(

to(make neymar(λx. a goal(λy. score y x)))
))))

: [suarez] : T

4 not
(

to
(

fail
(

to(make neymar(λx. a goal(λy. score y x)))
)))

: [suarez] : T

5 fail
(

to(make neymar(λx. a goal(λy. score y x)))
)

: [suarez] : F

7 make neymar(λx. a goal(λy. score y x)) : [suarez] : T

8 λx. a goal(λy. score y x) : [neymar] : T

9 a goal(λy. score y neymar) : [] : T

10 ×

M<[1]

++[3]

AUX,¬[4]

AUX,−+[5]

++[7]

λ<[8]

×v[2,9]

Figure 4.9: The tableau proof demonstrates the rules for the attitude verbs. The following
typing is assumed for the rest of the terms: notvp,vp, tovpb,vpto , suareznp and all variables are
of type np. The information about the entailment properties of the attitude verbs are found
in the signature: manage{++,−−}vp,vp, fail{+−,−+}vp,vp and makenp,{++}vp,vp.

to borrow the modal rules from the corresponding propositional modal logics.42 At this
moment, we do not develop a modal reasoning in the natural tableau system as recently
there is no RTE dataset which would evaluate a system on that. The section of SICK
(Cooper et al., 1996) on attitude verbs (with 13 RTE problems) hardly contains the prob-
lems requiring some sort of modal reasoning.

We have presented the tableau rules for the entailment properties associated with the
attitude verbs, including the implicative and (counter) factive verbs. The rules serve as a
swift and simple device for reasoning over the constructions involving the attitude verbs.
At this stage, the coverage of this simple solution is enough for the existing RTE problems.
Hence, there is no need to complicate the tableau system and the underlying semantics to
account for better reasoning over, e.g., the propositional attitude verbs.

42It is not always necessary to state the modal relation R explicitly in tableau entries, there are also
so-called implicit tableau systems where R and its properties are in some way built into the rules (Goré,
1999).

4.8. CONCLUSION 127

4.8 Conclusion
We have presented a collection of the rules which account for semantics of various lex-
ical elements and constructions. The rules were collected in a data-driven fashion, us-
ing FraCaS and the trial portion of SICK, and cover the following expressions and phe-
nomena: adjectives, auxiliaries, prepositional phrases, particles, definite NPs, expletive
“there”, verb subcategorization, open compound nouns, light verbs, copula, passives and
attitude verbs. Since our initial goal is to model those phenomena that occur in textual
entailment datasets, at this stage, we do not account for tense and aspect or mood as they
are officially ignored in RTE datasets (Dagan et al., 2006). As a result, we do not treat
temporal expressions in a special way but as ordinary PPs.

Some of the presented tableau rules do more than unfolding semantics of certain LLFs.
The rules for prepositional phrases are such. Apart from extracting semantics, they also
tackle the problem of PP attachment. Since the parsers often make mistakes with re-
spect to the type and the site of PP attachment, we adopted special rules that treat PP
attachments as ambiguous and consider several scenarios for them. Theoretically, such
rules lead to unsound inferences, but as it turns out later (Chapter 6), the considered RTE
datasets cannot reveal this unsoundness. If the parsers were flawless in PP attachments,
then we could simply ignore these rules. So, the introduced unsoundness is not a draw-
back of the tableau system per se.43

For the rest of the rules we would like to emphasize the following. The definite de-
scriptions are treated as referring expressions as this is their main function in the RTE
problems. The rules for open compound nouns and light verb constructions are economi-
cal in the sense that they do not make up new compounds or constructions. They identify
only contradictions with respect to these phenomena, e.g., ce being “bottle for beer” but
not “beer bottle”. The rules for verb subcategorization are redundant when using event
semantics but they are efficient from a theorem proving perspective. Due to this reason,
the rules will be included in an implemented tableau theorem prover (Chapter 5). In the
next chapter, we present an implemented theorem prover which is faithful to the natural
tableau system. The rule inventory of the prover will mostly constitute the rules presented
in this chapter.

43While talking about the soundness, on might ask a question concerning the completeness of the tableau
system. Of course, the tableau system presented in this thesis is not complete, and that is not surprising.
Our aim is not to have a complete proof system for some fragment of natural logic but to have a sound and
incomplete proof system that covers as much linguistic constructions as possible.

128 CHAPTER 4. INVENTORY OF TABLEAU RULES

Appendix C

1 sn,vp,s mann (bevp,vp (λx. s logn (λy. sawnp,vp ynp xnp))) : [] : T
2 non,vp,s (thatvp,n,n sawvp man) (λx. benp,vp xnp therenpthr) : [] : T

3 man : [me] : T
4 be (λx. s log (λy. saw y x)) : [m] : T

5 λx. s log (λy. saw y x) : [m] : T

6 s log (λy. saw y m) : [] : T

7 NOT[2,m] that saw man : [m] : F

13 ∧F[7] saw : [m] : F

16 ∃T[6] log : [le] : T
17 ∃T[6] λy. saw y m : [l] : T

18 λPULL[17] saw l m : [] : T

19 A>[18] saw l : [m] : T

20 A>[19] saw : [l,m] : T

21 ×VSC1[13,20] ×

14 ∧F[7] man : [m] : F

15 ×

8 λx. be x there : [m] : F

9 be m there : [] : F

10 be m : [there] : F

11 be : [m, there] : F

12 ×

∃T[1]

AUX[4]

λ<[5]

∃T[6]

λ<[17]

A>[18]

A>[19]

×VSC1[13,20]

×v[3,10]

λ<[8]

A>[9]

A>[10]

×THR[11]

NOT[2,m]

∧F[7]

Figure 4.10: The closed tableau proves 1417 as contradiction.

APPENDIX C 129

1 and (a man)(a woman)
(
λx. a cityn

(
λy. the (streetpp,n(of y))(λz. downnp,vp,vp z(be walkvp)x)

))
: [] : T

2 and (a man)(a woman)
(

be
(
λx. a (cityn,nstreetn)(λy.walkpr,np,vpdownpry x)

))
: [] : F

3 λx. a city
(
λy. the (street(of y))(λz. down z(be walk)x)

)
: [he] : T

4 be
(
λx. a (city street)(λy.walk down y x)

)
: [h] : F

5 a (city street)(λy.walk down y h) : [] : F

6 a city
(
λy. the (street(of y))(λz. down z(be walk)h)

)
: [] : T

7 city : [ce] : T
8 the

(
street(of c)

)(
λz. down z(be walk)h

)
: [] : T

9 street(of c) : [se] : T
10 down s(be walk)h : [] : T

11 [down s] : be walk : [h] : T

12 down swalk : [h] : T

13 city street : [s] : F

15 ×

14 walk down s h : [] : F

16 walk down : [s, h] : F

17 down swalk : [h] : F

18 ×

↑v[1,2]

λ<,AUX[4]

λ<[3]

λ<,∃T[6]

λ<,∃T[8]

M<,A>[10]

M>,AUX[11]

×CPN[7,9,13] A>,A>[14]

V@PR[16]

×v[12,17]

λ<,∃F[5,s]

Figure 4.11: The closed tableau classifies SICK-7755 as contradiction. Due to lack of
space, the following information about typing was omitted in the tableau: mann, womann,
and(vp,s),(vp,s),vp,s, aq, theq, ofnp,vp,vp, bevp,vp and all variables are of type np. The rule
applications are written in short; for example, (λ<,∃T[6]) means that first (∃T) is applied
to the node 6 and then (λ<) is applied to one of the resulted consequent nodes. The left
branch that appears after the (↑v[1,2]) rule application is omitted as it closes instantly.

130 CHAPTER 4. INVENTORY OF TABLEAU RULES

1 an,vp,s shoen
(

bevpdcl,vpng (bevppss,vpng (λy. a mann(λx. tiepp,vppss (bynp,pp xnp) ynp)))
)

: [] : T
2 a man

(
bevpng ,vpdcl (λx. a shoe (λy. tienp,vpng ynp xnp))

)
: [] : F

3 shoe : [ce] : T
4 be (be (λy. a man (λx. tie (by x) y))) : [c] : T

7 a man (λx. tie (by x) c) : [] : T

8 man : [me] : T
9 λx. tie (by x) c : [m] : T

10 tie (by m) c : [] : T

11 tie (by m) : [c] : T

12 bynp,vppss,vppssm tievppss : [c] : T

13 tienp,vpdcl : [c,m] : T

14 man : [m] : T

16 ×

15 be (λx. a shoe (λy. tie y x)) : [m] : F

18 a shoe (λy. tie y m) : [] : F

19 shoe : [c] : F

21 ×

20 λy. tie y m : [c] : F

22 tie c m : [] : F

24 tie : [c,m] : F

25 ×

∃T[1]

λ<,AUX,AUX[4]

∃T[7]

λ<[9]

A>[10]

V@PP[11]

PSS[12]

×v[8,14] λ<,AUX[15]

×v[3,18] λ<[20]

A>,A>[22]

×v[13,24]

∃F[2,m]

∃F[18,c]

Figure 4.12: Despite the wrong derivation for the premise returned by EasyCCG, the
tableau system proves SICK-4386 as entailment with the help of (PSS) and (VP@PP).

Chapter 5

Theorem Prover for Natural Language

In this chapter we describe a theorem prover that is based on the natural tableau sys-
tem. It acts like a theorem prover for natural language, i.e. takes natural language ex-
pressions as an input and can provide judgments about the semantic relations between
them. The prover consists of three main components: a syntactic parser, the generator
for Lambda Logical Forms (LLFs) and a sub-prover for the adopted version of natural
logic (see Figure 5.1). The parser component and the generator were already discussed
in Chapter 3. The sub-prover for natural logic, called NLogPro, itself involves four com-
ponents: a signature, a proof engine, an inventory of tableau rules and a knowledge base.
We go through each component of the sub-prover and describe them in details. First, the
extraction of lexical semantic relations from WordNet is presented. Since tableau theorem
proving is all about rule applications, we study four properties of tableau rules that are rel-
evant from a computational point of view. Based on these properties we define efficiency
criteria where each criterion induces an efficiency order over the rules. As it turns out
later, certain efficiency orders lead to shorter tableau proofs. In addition to the efficiency
orders, we also introduce additional tableau rules to encourage short proofs. The proof
engine (PE) is a component which is directly responsible for building tableau proofs.
Given a tableau branch, the engine applies the most efficient rule among all applicable
ones, where the efficiency is defined by an efficiency criterion.

LangPro

CCG parser

C&C

EasyCCG

LLFgen
Tree to term
Fixing terms

Type-raising
Aligner

NLogPro

Signature

Proof engine (PE)

Inventory of rules (IR)

Knowledge base (KB)

CCG
derivations LLFs

Figure 5.1: The architecture of a natural language theorem prover, called LangPro.

After describing each individual component of NLogPro, we return to theorem provers.
In particular, first we introduce the architecture and the functionality of NLogPro. We also
take a closer look at the PE and describe how it builds actual proofs. In the end, we present
the final theorem prover which operates on natural language expressions. We describe its

131

132 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

functionality on a sample entailment problem. For the final prover and its sub-prover, we
give the pseudocodes describing their underlying algorithms. Since the tableau rules are
specially designed for natural language expressions and the implemented prover reasons
in natural language, we regard it as the natural language prover, shortly LangPro.1

5.1 Knowledge base

Textual entailments usually presuppose some kind of knowledge and capturing the latter is
one of the main challenges of Recognizing Textual Entailment (RTE). Lexical knowledge
represents one of such wanted knowledge. Fortunately, there exists WordNet (Fellbaum,
1998)—a high quality lexical database for natural languages. The section describes how
semantic relations over lexical terms can be extracted from WordNet. First, we define
semantic relations over word senses via certain WordNet relations. Then we give two
main approaches for transferring the semantic relations over word senses to the relations
over lexical terms. The transfer is not trivial as in general a single lexical term might have
several word senses. The approaches represent attempts to overcome the problem of word
sense disambiguation in textual entailments. Notice that later we will use the Knowledge
Base (KB) solely based on WordNet. This will be sufficient to obtain competitive results
on certain RTE datasets (§6.4).

WordNet is a lexical database which covers the open-class words, i.e. nouns, verbs,
adjectives and adverbs (also including the phrases that correspond to atomic concepts).2

It contains information about word senses and various conceptual and lexical relations
between them. Word senses are grouped into sets of cognitive synonyms, called synsets,
which are annotated with glosses and sometimes with short sample sentences. For in-
stance, a synset which consists of only two senses cry2v and weep1

v has the gloss “shed
tears because of sadness, rage, or pain”.3 At the same time, “cry” has other 11 senses
(five nouns and six verbs) while “weep” has only a single sense.

WordNet provides around 20 binary relations, where small number of them are con-
ceptual relations, defined over synsets, and the rest are lexical relations defined over word
senses. Below we describe several conceptual and lexical relations. The HyponymyWN

conceptual relation links more specific synsets to more general ones, e.g., a synset {sob1
v}

is a hyponym of {cry2v, weep1
v}. The relation is defined for noun and verb synsets. The re-

versed version of HyponymyWN is called HypernymyWN. The SimilarityWN conceptual re-
lation holds only for the adjective synsets that have similar meanings: {huge1a, immense1a,
vast1a} is similar to {big1

a, large1a} and vice versa. The InstanceWN conceptual relation for
the noun synsets holds when one synset represents an instance of another, e.g., {Tbilisi1n,
Tiflis1n, capital of Georgia2

n} is an instance of {national capital1n}). AntonymyWN is a lex-
ical relation and holds for the opposite word senses, e.g., 〈weep1

v, laugh1
v〉 and 〈back2r ,

1An online demo of LangPro is available at http://www.naturallogic.pro/langpro/
2WordNet is accessible online at http://wordnetweb.princeton.edu/perl/webwn
3We employ the adopted convention in NLP community while presenting word senses. In particular,

each word sense is denoted by wip where w stands for a word, p for the part of speech (i.e. n for nouns, v
for verbs, a for adjectives and r for adverbs) and i for the sense number of wp. It is important to note that
the senses for wp are numbered according to their frequency in SemCor (Miller et al., 1993). For example,
cry2v is the second sense of the verbal “cry” while its first sense cry1v , the most frequent one, means to “utter
a sudden loud cry”.

http://www.naturallogic.pro/langpro/
http://wordnetweb.princeton.edu/perl/webwn

5.1. KNOWLEDGE BASE 133

forward1
r〉 are elements of the antonymy relation. Another lexical relation is DerivationWN.

It connects the word senses that have word forms related with derivational morphology,
e.g., protect1v is in the derivation relation with protection1

n, protection2
n, protector1n and

protective1a. Both AntonymyWN and DerivationWN are symmetric relations by definition.
On the way to define the semantic relations for lexical terms, we first describe the

semantic relations for word senses. In other words, given the WordNet relations over
synsets or senses, we suggest the semantic relations like inclusion (v), exclusion (|),
exhaustion (`) and instance (≺) for word senses. It is obvious that HyponymyTR

WN, the
reflexive and transitive closure of HyponymyWN, is a good candidate for defining semantic
inclusion (vS) over senses. Since HyponymyWN is defined only for noun and verb synsets,
we adopt SimilarityWN for adjective synsets. In particular, for two senses S1 and S2 we
define S1 vS S2 iff there are synsets SS1 and SS2 such that S1∈SS1, S2∈SS2 and SS1

is either in HyponymyTR
WN or SymilarityWN relation with SS2. The InstanceWN relation is

used to define the instance relation (≺S) for noun senses in the similar way: S1 ≺S S2 iff
S1∈SS1, S2∈SS2 and SS1 is in InstanceWN relation with SS2.

The rest of the semantic relations, exhaustion (`) and exclusion (|), do not have anal-
ogous relations in WordNet. While it is not clear how the exhaustion relation can be
extracted from WordNet, there are several ways to obtain the exclusion relation from it.
The word senses in the AntonymyWN relation are excellent candidates for disjoint senses:
S1|SS2 iff S1 ∈ SS1, S2 ∈ SS2 and SS1 is in AntonymyWN relation with SS2. The ex-
clusion relation over senses can be further augmented with co-hyponymy relation, i.e. let
S1|SS2 if S1 ∈ SS1, S2 ∈ SS2 and SS1 and SS2 have the same direct hypernym. In this
way, bookcase1n|Stable2n as their synsets are direct hyponyms of the synset consisting of
furniture1n, piece of furniture1n and article of furniture1n. Alternatively, the exclusion rela-
tion can be made even more general by adding the pairs of noun senses for which no
semantic relation holds (e.g., this general approach is adopted by MacCartney (2009)).
Notice that both augmentations of exclusion for senses introduce unsound pairs. For ex-
ample, in the case of co-hyponyms, puppy1n and poodle1n are falsely considered disjoint
as their corresponding synsets are co-hyponyms dominated by the synset of dog1

n. Such
unsound lexical knowledge can be the source of wrong proofs.

In the previous paragraph, we have discussed how the WordNet relations can be used
to define the semantic relations over word senses. Now we need to transfer these rela-
tions from word senses to lexical terms. One straightforward solution is to use a Word
Sense Disambiguation (WSD) system for identifying the correct sense of a word in a
given context. Unfortunately, WSD is itself an open problem in Natural Language Pro-
cessing (NLP) as the top WSD systems slightly outperform simple baseline approaches.4

Plausibly this is the main reason why RTE systems usually do not use WSD systems for
inference (Dagan et al., 2013, p. 125).

In the current work, we do not employ any existing WSD system for two reasons.
First, we would like to keep the architecture of the theorem prover simple, and second, it
is interesting to find out the upper limits of our method on RTE without any external WSD

4The upper limit for WSD systems with respect to the WordNet senses, so-called fine-grained senses,
is not high. Based on three challenges in WSD, the inter-annotator agreement for all-words, i.e. assigning
a WordNet sense to each open-class word of a sentence, is between 67% and 80% (Navigli, 2009, p. 43).
Moreover, WSD systems do not show big improvement over the baseline, which assigns most frequent
senses to words. Usually difference in accuracy between them is less than 10% and varies based on the
domain of text. For more details on WSD, we refer to Navigli (2009).

134 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

TEP Premise/Text Conclusion/Hypothesis MS MFS
PROB-10 The child is crying The child is weeping N E
PROB-11 The child is crying The child is screaming E E
PROB-12 The child is crying The child is screaming and weeping N E
PROB-13 The child is screaming The child is weeping N N

Table 5.1: Comparison of the MS and MFS approaches in the natural tableau. N and E
stand for neutral and equivalent (i.e. bi-directional entailment) respectively.

system. We propose two main approaches how to link the relations over word senses to
those over lexical terms. The first approach, so-called the multi-sense approach, assumes
that each lexical term has multiple senses independently from the context it occurs in.
According to it, a semantic relation R holds between the lexical terms Aa and Bb (i.e.
AaRBb is in the KB) iff each of them has at least one WordNet sense, Aia and Bj

b re-
spectively, such that AiaRS B

j
b holds, whereRS is a relation over senses defined in terms

of the WordNet relations and a and b indicate a part of speech. For instance, cryvp and
weepvp are equivalent, i.e. cryvp v weepvp and weepvp v cryvp, as they have the synony-
mous senses cry2v and weep2

v. Similarly, the lexical terms A and B are disjoint iff they
have antonymous senses: emptyn,n|fulln,n holds because empty1a|Sfull1a. While using the
multi-sense approach, one might restrict a set of senses per word or allow all the senses
of a word. The latter we call the all-senses approach.

The second approach employs a single sense for each word. In the case of assigning
the most frequent sense to each word, we get the first-sense approach: AaRBb is in the
KB iff A1

aRS B
1
b holds. A WSD task with all-words and WordNet senses (Navigli, 2009)

show that it is challenging for WSD systems to outperform a baseline model that assigns
most frequent senses. Therefore, we think it is worthy to test the first-sense approach on
an RTE task. If we assume that each word in a context can be unambiguously tagged with
a sense, then the gold/correct sense assignment is a member of the space of single-sense
approaches.

It is clear that the tableau system with all-senses is stronger than with the any single-
sense approach (see Table 5.1): if some relation holds for single-sense it automatically
holds for all-senses. For example, the natural tableau system using all-senses proves
PROB-10 and PROB-11 in Table 5.1 as equivalent because it considers all the senses of
“cry” in each proof. With all-senses it is also possible to prove PROB-12 as equivalent.5

On the other hand, the first-sense approach only proves PROB-11 as equivalent because the
most frequent senses of “cry” and “scream” are synonymous and are not related to weep1

v.
Notice that based on all-senses, PROB-13 is not even entailment while PROB-10 and PROB-
11 encode equivalences—no senses of “weep” and “scream” are in the hyponymy or
synonymy relations. This illogical behavior is caused by the sense indeterminism (i.e.
underspecification) of the all-senses approach. All in all, while the first-sense approach
looks kind of poor (e.g., it fails to prove PROB-10), the all-senses approach is too powerful
than it is necessary for natural reasoning. For these reasons, we think both methods are
worth of trying with the natural tableau.

5Notice that no single-sense approach is able to prove entailment in PROB-12. Hence, the all-senses
approach is even stronger than the space of single-sense approaches taken together.

5.2. INVENTORY OF THE RULES 135

We have discussed the population of the KB with the WordNet relations. The inclusion
and instance relations are naturally extracted from WordNet, but there is no direct way of
obtaining the exhaustion and exclusion relations from it. While jointly exhaustive pairs of
words are not common, there are many word pairs in the exclusion relation and WordNet’s
antonymy relation seems too little for modeling it. Future improvements of the exclusion
relation in the KB should await further advances in modeling (in)compatibility of words,
which was recently tackled by Kruszewski and Baroni (2015). We have presented two
general methods, multi-sense and single-sense, for transforming the relations over word
senses into the relations over lexical terms. The approaches do not use any WSD meth-
ods. This will allow us to estimate exclusively the natural tableau system and WordNet
for wide-coverage reasoning. Moreover, taking into account the problem of knowledge
sparsity for rule-based RTE systems, we believe the multi-sense approach might seem an
interesting option for the tableau prover to overcome the problem to some extent.

5.2 Inventory of the rules

The inventory of tableau rules (IR) is the most important component for the natural tableau
system. It contains the inference rules, representing the simplest inference steps, which
underlie reasoning over LLFs. The IR consists of the rules discussed in the previous
chapters, excluding the deprecated rules with a dark gray background. In this subsection,
we discuss the properties of tableau rules that are crucial for theorem proving and, as we
will see later in §5.3, are used to guide the rule application process in the implemented
tableau theorem prover. To have a smart strategy for rule applications and get shorter
tableau proofs, we add derivable rules to the IR. From the theoretical point of view, the
derivable rules do not contribute to the natural tableau proof system per se but they can
guide the theorem prover to shorter proofs. This contribution of the derivable rules is
crucial from the application point of view.

5.2.1 Properties of the rules

The tableau rules are diverse according to their function and structure. Some of them
are branching rules or introduce a fresh entity in a tableau branch. We identify several
properties and based on them define an efficiency feature vector for each tableau rule.
The vectors are then used to compare tableau rules for computational efficiency. Below
we list the properties of tableau rules that are crucial for finding short tableau proofs:

Branching A tableau rule is either branching or non-branching depending on the num-
ber of its consequent branches. For instance, (∃F) is a branching rule while (∃T) is non-
branching (some of the rules are presented in Figure 5.2 for convenience). In general a
branching rule is more efficient than a non-branching one because usually two branches
yield more options of rule application. But sometimes applying a branching rule prior
to a non-branching one might lead to a smaller closed tableau or it can be a strategy for
quickly finding an open branch.

Semantic equivalence Whether the antecedents of a tableau rule is semantically equiva-
lent to or stronger than the consequents, the rule is semantic equivalence or non-equivalence

136 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

∃F
q N V : [] : F

N : [ce] : F V : [c] : F
q ∈ {a, some, the} and c is old

∀T
q N V : [] : T

N : [ce] : F V : [c] : T
q ∈ {every, all, the} and c is old

∃T
q N V : [] : T

N : [ce] : T
V : [c] : T

q ∈ {a, some, the} and c is fresh

∧T

FαααA B : [
#–

C] : T

A : [
#–

C] : T
B : [

#–

C] : T
F ∈ {and, who}

A>

[
–

M] : A B : [
#–

C] : X

[
–

M] : A : [B,
#–

C] : X

⊂T

[
–

M] : A⊂α,αH : [
#–

C] : T

[
–

M] : H : [
#–

C] : T

∀E ∈ # –

M (A
 E) or
–

M↑

A<

[
–

M] : A : [B,
#–

C] : X

[
–

M] : A B : [
#–

C] : X

Figure 5.2: Some of the tableau rules

respectively.6 (⊂T) and (∃F) are examples of a semantic non-equivalence rule while (A>),
(A<) and (∧T) are semantic equivalence rules. After applying a semantic non-equivalence
rule to nodes in a tableau, the nodes have to be accessible for other rule applications; oth-
erwise some semantic information of the nodes will be neglected on the branch possibly
causing unsound results. From an application point of view, nodes should not be deleted
from a branch when a semantic non-equivalence rule is applied to them.

Structural equivalence A tableau rule is structural equivalence with respect to the
IR iff replacing its antecedents with its consequents does not change final status of any
tableau proof; otherwise the rule is structural non-equivalence. Put differently, a rule is
structural equivalence iff it is safe to ignore or discard the entries from the branch after the
rule applies to them. For instance, (A<) and (A>) are structural equivalence rules (with re-
spect to the IR) if both are in the IR. When exactly one of them is absent, then another one
becomes structural non-equivalence. In particular, if there is only (A>) from them in the
IR, then it can push all arguments of some entry in the argument list, make semantics of
the entry inaccessible for other rules, and hence prevent the tableau from closing. Notice
that a structural equivalence rule is automatically semantic equivalence and consequently
a semantic non-equivalence rule is structural non-equivalence. Therefore, (⊂T) and (∃F)
are structural non-equivalence. Since structural equivalence is relative to the IR, it is a
complex task to show whether a particular rule is structural equivalence or not. Due to

6While talking about antecedents and consequents in a collective way, we assume the Boolean connec-
tives over them that are structurally encoded in tableau rules. For example, in case of a binary branching
rule, a conjunction of its antecedents is contrasted to a disjunction of conjunctions of its left consequents
and right consequents.

5.2. INVENTORY OF THE RULES 137

this reason, instead of the structural equivalence feature, we will use semantic equivalence
in an efficiency feature vector.

Consuming A rule that can be triggered by the introduction of a fresh entity term on
a branch is considered a consumer. For example, (∃F) is a consumer rule as it employs
already existing, i.e. old, entities on a branch. On the other hand, none of the other rules in
Figure 5.2 are consumers, i.e. they are non-consumers. In general, consumer rules are not
efficient from computational point of view—more entity terms lie on a branch more rule
application options are there for a consumer rule. Note that a consumer rule is semantic
non-equivalence automatically.

Producing Depending on whether a rule produces a fresh entity term, the rule is con-
sidered as a producer or a non-producer. Producer rules might induce significant ineffi-
ciency in conjunction with consumer rules. If we consider a tableau initiated with an LLF
of a sentence “everybody has somebody” with the true sign where everybody has a wide
scope, then the tableau will not terminate due to the infinite number of rule applications
of consumer (∀T) and producer (∃T) rules that feed each other.

Some of the above mentioned properties have their proper names in the literature
after Smullyan (1968). For instance, binary branching rules are called β-rules and non-
branching ones α-rules. In first-order logic, the analogous rules to (∃F) and (∀T) are
consumers and called γ-rules while the rule similar to (∃T) is a producer and referred as a
δ-rule.

For each above mentioned property, a tableau rule either has it or not. To determine a
computational efficiency of a rule, we associate a binary 4-dimensional feature vector to
each rule where dimensions stand for the features while the values 0 and 1 show attribution
of these features to a rule:

〈nonBranching, semanticEquivalence, nonConsumer, nonProducer〉

In this way, (∃F) has an efficiency feature vector, in short eff-vector, 〈0, 0, 0, 1〉 since it is
branching, semantic non-equivalence, consumer and non-producer. A set of eff-vectors
represents a partition of tableau rules.

A componentwise order over the eff-vectors determines the partial efficiency order
over the rules. Consequently, (∧T) with 〈1, 1, 1, 1〉 is more efficient than (⊂T) with
〈1, 0, 1, 1〉 while the latter is more efficient than (∃F). On the other hand, (∃T) with
〈1, 1, 1, 0〉 is not comparable to (∃F) and (⊂T).

Later we show how the efficiency order over tableau rules can be used in a rule appli-
cation strategy while building tableau proofs.7

5.2.2 Derivable rules
In order to decrease the size of automatically generated tableau proofs and make them
more human-readable, in the computational model of the theorem prover, we add extra

7While talking about inefficiency of the tableau rules, we could also discuss inefficiency of tableau
entries given the IR. For instance, andAB : [

#–

C] : T can be seen as more efficient than andAB : [
#–

C] : F
based on how they are processed by the rules. But since this kind of efficiency property depends on the
IR, which is a variable and dynamic component of the proof system, it will need update whenever the IR
is modified. Moreover, we find it more natural to associate an efficiency measure to each tableau rule and
control building of a tableau proof via selection of the rules.

138 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

derivable rules to the IR. These rules are redundant from the completeness point of view
but their applications represent shortcuts for several rule applications. The derivable rules
can also contribute to a rule application strategy as they are more efficient than the rules
they emulate.

Large tableau proofs are unwanted for two main reasons. First, they are associated
with time consuming computations and second, it is difficult for a human to analyze them.
Unfortunately, it is not always possible to drastically decrease a search time for tableau
proofs, but it is possible to make the proofs short by avoiding redundant rule applications.
While potentially finding a short proof might require (slightly) more time than a long
proof, it is still worthy to invest some effort in it as it significantly simplifies debugging
and development of the theorem prover.

There are two notions of redundant inference rules. A rule is said to be admissible if
its introduction does not yield any new theorem, i.e. for any initial tableau entries if the
tableau does not close, it would not either close in case an admissible rule was adopted.
If we consider the propositional tableau system from §2.0.2, then (CUT) is an admissible
rule there. It is sound and does not contribute to the proof of any new theorem.8

CUT

T : X F : X

X is any proposition

T∨1

T : X ∨ Y
F : Y

T : X

1 T : X ∨ Y
2 F : Y

3 T : X 4 T : Y

5 ×
×[2,4]

F∧[2]

A rule is said to be derivable if there exists a tableau that can mirror it. For example,
(T∨1) is derivable since there is a tableau (see on its right) that can simulate it. A derivable
rule is automatically admissible as it simply represents a shortcut for several rule appli-
cations. On the other hand, not all admissible rules are derivable; for example, (CUT) is
not a derivable rule. In the previous chapters, we already presented several derivable rules
(with light gray background) for the natural tableau. In addition to them, we introduce
new derivable rules below.

We start with the derivable rules related to (A>) and (A<). The latter rules are quite
inefficient from a computational viewpoint; they can be infinitely applied after each other
to a single tableau entry—the loop of pushing an argument and then pulling it back. To
eliminate this dull sequence of rule applications, we replace (A<) with (λ<).9 So, an
argument is pulled from an argument list iff the corresponding LLF is formed from λ-
abstraction.

Pushing arguments of any type with (A>) is often redundant. We restrict (A>) to (np>),
where the latter pushes only the terms of type np (and e per se). Notice that after replacing
(A<) with (λ<), the rules (A>) and (np>) become structural non-equivalence. But what
about pushing the terms of type other than np? When certain constraints are met, the
rules (↑v), (↓v), (↑|̀) and (↓|̀) from Chapter 2 push arguments of relational type in their

8The rule (CUT) is similar to a cut rule of sequent calculus. If a proposition P is derivable from a set of
propositions Γ and Q is derivable from P and ∆, written as Γ ` P and ∆, P ` Q, then Γ,∆ ` Q holds
with the help of (CUT). To show the latter, it is sufficient to apply (CUT) for P to a tableau started with
Γ ∪∆.

9A[x/C] is a term obtained from A by substituting x with C where C has no free occurrence of x.

5.2. INVENTORY OF THE RULES 139

right consequents. To allow more options for argument pushing, we introduce (A2>) which
applies to the LLFs that share an argument (of any type) and pushes the arguments in the
argument lists. Application of (A2>) can be seen as two applications of (A>) that plausibly
leads a proof to a crucial point. In particular, it contrasts A and B while neglecting the
shared argument C. Due to this property, the rule acts as an aligner for LLFs. Since
aligning techniques are crucial for RTE systems (Dagan et al., 2013), we find (A2>) useful
for the tableau theorem prover.

λ<

λx.A : [C,
#–

D] : X

A[x/C] : [
#–

D] : X

np>

ACnp : [
#–

D] : X

A : [C,
#–

D] : X

A2>

AC : [
#–

D] : X
B C : [

#–

D] : Y

A : [C,
#–

D] : X
B : [C,

#–

D] : Y

Half of the rules applicable to the existential and universal quantifiers are consumer
rules, e.g., (∃F) and (∀T). To make application of these rules more efficient, we introduce
two derivable rules for each of the rules. The derivable rules, given below, are incomplete
but non-consumer versions of the quantifier rules. Their efficiency is due to choosing
a relevant entity ce rather than any entity, e.g., (∀nT) chooses the entity that satisfies the
noun term while (∀vT) picks the one unsatisfying the verb term. Moreover, the derivable
rules are not branching unlike their consumer counterparts. In the theorem prover, these
six rules are implemented as three—incorporating a noun and a verb counterparts of the
rules, e.g., (∃nF) and (∃vF), in one.

∃nF
qn,vp,sN V : [] : F

N : [ce] : T

V : [c] : F
q ∈ {a, some, the, s}

∀nT
qn,vp,sN V : [] : T

N : [ce] : T

V : [c] : T
q ∈ {every, the}

NOnT

non,vp,sN V : [] : T
N : [ce] : T

V : [c] : F

∃vF
qn,vp,sN V : [] : F

V : [ce] : T

N : [c] : F
q ∈ {a, some, the, s}

∀vT
qn,vp,sN V : [] : T

V : [ce] : F

N : [c] : F
q ∈ {every, the}

NOvT

non,vp,sN V : [] : T
V : [ce] : T

N : [c] : F

We have presented several derivable rules concerning the argument pushing and pulling
rules and the certain rules for quantifiers. The derivable rules apply to more specific sce-
narios. Compared to the usage of the corresponding general rules, the application of the
derivable rules results in shorter tableaux.

140 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

NLogPro

Signature

Proof engine (PE)

Inventory of rules (IR)

Knowledge base (KB)

Lexicon
most : (n, vp, s)

every : (n, vp, s)

red : (−,−)

fail : (vp, np)

Properties
[∅; {P1, ↑}]
[{↓}; {P1, ↑}]
[{∩}]
[{+−,−+, ↓}]

Annotation

Figure 5.3: The architecture of NLogPro with the structure of the signature

5.3 NLogPro: a theorem prover for natural logic

Based on the natural tableau system, we implement a theorem prover for natural logic,
called NLogPro. The prover can check a finite set of LLFs on consistency or prove the-
orems about LLFs via building a tableau for a finite set of LLFs. Below we describe the
architecture of NLogPro (see Figure 5.3) and the rest of its components: the signature and
the proof engine (PE). We also give the algorithm of the prover.10

NLogPro consists of four components: the signature, the PE, the IR and the KB, where
the latter two have been already discussed in the previous subsections. These components
collaborate as follows. Given a tableau branch, the PE finds a rule from the IR and entries
on the branch such that the rule is applicable to the entries. While choosing a rule and
entries, the PE appeals to the signature and the KB in order to check whether the terms in
entries satisfy the constraints of a rule.

The signature represents a pair of a lexicon and the annotation function A (see §2.1).
The lexicon represents a collection of lexical terms with the optional typing information
(see Figure 5.3). The lexical terms in the lexicon are those terms that have certain alge-
braic properties. The annotation function maps each element of the lexicon to a list of
sets of properties. For instance, most has no properties associated with its first argument
while the second argument is upward monotone and satisfies the property (P1). red has an
unspecified function type (e.g., it can be (n, n) or (et)) and its first argument has the in-
tersective property (and upward monotonicity property automatically, but the latter is not
necessary to be explicated as the rule for intersective adjectives accounts for the mono-
tonicity property too). The implicative verb fail has three properties associated with the
first argument and no properties to its second argument. By convention we omit an empty
property set for trailing argument positions.

The PE is a component responsible for construction of tableau proofs; it also maintains
a rule application strategy. Given a tableau, the PE finds a rule that will be applied to
the entries of the tableau next. To make the rule application strategy deterministic it is
sufficient to have a linear priority order (<pr) over tableau rules: if there are several rule
applications possible, apply the most prior rule among them. A notion of efficiency in the
PE is introduced by an efficiency criterion which represents a linear priority order over
the components of an eff-vector. An efficiency criterion EC induces a linear alphabetical

10The theorem prover is implemented in Prolog. Initially it started as a first-order logic (FOL) prover
following Fitting (1990), but later its was substantially extended for the simple type theory. The prover also
contains a module for the λ-calculus which roughly follows Blackburn and Bos (2005).

5.3. NLOGPRO: A THEOREM PROVER FOR NATURAL LOGIC 141

1

6

7

98

OPEN

2

4

5

×
Rule[Nodes]

3

×
Rule[Nodes]

Br1 : 〈History1, Entities1〉 1 2 3

Br2 : 〈History2, Entities2〉 1 2 4 5

Br3 : 〈History3, Entities3〉 1 6 7 8

Br4 : 〈History4, Entities4〉 1 6 7 9

Figure 5.4: A tree and a list structure developed by the PE

order (<EC) over eff-vectors. For instance, the criterion

EC = [nonProducer, nonBranching, semanticEquivalence, nonConsumer]

where the features are sorted in priority descending, induces the following linear order
over the eff-vectors of the rules discussed in §5.2.1:

(∃T)〈0,1,1,1〉 <EC (∃F)〈1,0,0,0〉 <EC (⊂T)〈1,1,0,1〉 <EC (∧T)〈1,1,1,1〉

where each rule is accompanied by its eff-vector (modified according to EC):

Definition 17 (Linear efficiency order). Given a linear priority order (<pr) and an alpha-
betical order (<EC) induced by some efficiency criterion EC, for any r1 and r2 tableau
rules, a linear efficiency order (<eff) is defined as:

(a) r1 <eff r2 if effvec(r1) <EC effvec(r2);

(b) r1 <eff r2 if effvec(r1) =EC effvec(r2) and r1 <pr r2;
where effvec(r) is the eff-vector of r. We read r1 <eff r2 as r2 is more efficient than r1.

In other words, when deciding which rule is more efficient, we first appeal to the
corresponding eff-vectors and (<EC). If the eff-vectors are the same, i.e. the rules are
in the same efficiency class, then (<pr) is used. Notice that (<eff) could also be trivially
defined as (<pr). The PE employs (<eff) to decide which rule application to carry out
next. Defining (<eff) in terms of (<pr) and (<EC) has the following advantages: (<EC)
facilitates search for an optimal efficiency criterion and (<pr) allows to prioritize rules
according to the phenomena they account for.

We represent natural tableau proofs as upside-down trees because a tree structure
shows a development process of a proof in a compact way. From a theorem proving
perspective, a tree structure is inefficient data structure: accessing a single branch is not
trivial and maintaining all tableau nodes during a proof procedure is not necessary. More
suitable data structure for theorem proving is a list of branches (Fitting, 1990), but it is
difficult to read the development process of a proof from the list. Due to these reasons, the
PE simultaneously builds a tree and a list structure for each tableau proof (see Figure 5.4).
A list structure is used in theorem proving and is maintained in a destructive way—closed
branches and antecedents of equivalence rules are discarded. A tree structure is built in
a constructive way according to the rule applications found on the list structure and it is

142 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

q N A : [] : T X
q N B : [] : F Y

A : [ce] : T T
B : [ce] : F U
N : [ce] : T V

∃F↑: [X,Y] : [T,U,V] : c

q N A : [] : T X

N : [ce] : T V
A : [ce] : T T

∃T : [X] : [V,T] : c

q N B : [] : F Y
N : [ce] : T V

B : [ce] : F U

∃nF : [Y,V] : [U] : c

q N B : [] : F Y

N : [ce] : F B : [ce] : F U

∃F : [Y] : [−,U] : c

q N A : [] : T X
q N B : [] : F Y

A : [ce] : T T
B : [ce] : F U

F↑v: [X,Y] : [T,U] : c

q N A : [] : T X
q N B : [] : F Y

A : [ce] : T T
B : [ce] : F U

q N : [A] : T
q N : [A] : F

↑v: [X,Y] : [T,U,−,−] : c

Figure 5.5: The specificity relation (⇒) over rule applications depicted visually, where
arrows are directed from more specific rule applications to more general ones. The IDs of
nodes that are irrelevant for the given relations are omitted.

intended for analysis of proofs. For each step, first a list structure is developed by finding
a rule and applying it to entries and then a tree structure is expanded according to the rule
application.

In the list structure, in addition to entries on a branch, the PE also tracks down a rule
application history and maintains a set of entities for each branch (see Figure 5.4). A
branch is interpreted as a situation with its own set of entities—the entity terms that occur
in the entries of the branch. Hence, keeping a set of entities for each branch makes rule
application of consumer rules easy and fast. On the other hand, there are semantically or
structurally non-equivalence rules in the IR, and they can be infinitely applied to the same
entries if no history of rule applications is recorded and no duplicate rule applications is
forbidden.

Maintaining a history for each branch is also important from the perspective of deriv-
able rules. For instance, if (∃nF) is applied to the nodes Y and V and introduces a node
U , then it is unnecessary to apply (∃F) to Y and the entity in V (see Figure 5.5). This
information is encoded in terms of a specificity relation (⇒) over rule applications, where
a rule application is a tuple consisting of a rule, the IDs of antecedent and consequent
nodes, and information about entities:

∃nF : [Y,V] : [U] : c⇒ ∃F : [Y] : [−,U] : c

We read the latter as the application of (∃nF) is more specific than of (∃F), i.e. (∃F) is more
general than (∃nF). The relation (⇒) is a partial order over rule applications. For instance,
in Figure 5.5, it is shown how the application of (∃F↑) makes other five rules applications
redundant (two of them in a transitive way). The specificity relation is defined in the IR.
After the PE carries out a rule application on a tableau branch, all rule applications that are
more general than the performed one are also added in the history of the branch. Hence,
later the general rule applications will be banned by the PE.

5.4. LANGPRO: A THEOREM PROVER FOR NATURAL LANGUAGE 143

In order to make sure that each branch gets its fair share of rule applications, after the
PE carries out a rule application on a branch, it processes the next branch; in case of the
last branch, the first branch is processed. In average, this strategy guarantees finding an
open branch, if it exists, earlier compared to the strategy where a shift to a new branch
happens only if the current one closes.

We do not want to wait indefinitely for termination of the prover. Hence, we set a rule
application limit (RAL) serving as an upper bound for the number of rule applications
in a single tableau. As a result, when the prover terminates, there are three outcomes
available: all branches are closed, there is an open branch that cannot be further grown
and there is an open branch but RAL is reached. From these three options, only in the
first case we can say that a proof is found.

The pseudocode of NLogPro is presented in algorithm 2 (Appendix D). Given a list
of signed tableau entries, a RAL number n and an efficiency criterion, NLogPro checks
the list of entries on consistency, i.e. finds a situation that satisfies the entries. The prover
starts with a list structure which contains a single branch involving all input tableau nodes
labeled with IDs (see line 1 in algorithm 2). The local signature of the branch contains
constant terms of type e or np occurring in the input nodes. The history of the branch is
empty in the beginning. To define the efficiency order (<eff), first the rules irrelevant to
the input nodes are filtered out of the IR, and then based on the efficiency criterion the
remaining rules are sorted in descending efficiency. The prover builds both the tree and the
list stricture simultaneously using at most n number of steps. The predicate FINDRULE/3
in line 2 succeeds if r is the most efficient rule applicable to the nodes of a branch. After
the rule is found it is applied to the corresponding nodes in the list and the tree structure.
While applying the rule to nodes, the signature and the history of the branch is updated
accordingly—fresh entities, if any, are added to the signature and the history is augmented
with the rule application and those that are more general than the latter. Closed branches
are deleted from the list and therefore an empty list amounts to a closed tableau.

We have presented NLogPro which checks signed LLFs on consistency. Put differ-
ently, it serves as a tableau proof builder. While building a tableau, the prover takes
into account the linear efficiency order (<eff) over the rules and applies the most efficient
rule first. NLogPro builds a tree and a list structure in parallel: the list structure guides
the proof procedure and the tree structure is used for analyzing proofs. Due to an ample
amount of derivable and semantically non-equivalence rules, a history of rule applications
is recorded for each branch. The latter also takes into account the specificity relation (⇒)
over rule applications in order to avoid redundant rule applications. For more details we
have also presented the pseudocode of NLogPro. In the next subsection, we will describe
how NLogPro is integrated in an RTE system.

5.4 LangPro: a theorem prover for natural language

Up to now we have described all the tools that are necessary to obtain a theorem prover
for natural language based on the natural tableau. In particular, by chaining a CCG parser,
LLFgen (Chapter 3) and NLogPro (§5.3), we get a natural language theorem prove, called
LangPro. Below we describe the architecture (Figure 5.6) and functionality (Figure 5.7
and algorithm 3) of LangPro.

144 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

LangPro

CCG parser

C&C

EasyCCG

LLFgen
Tree to term
Fixing terms

Type-raising
Aligner

NLogPro

Signature

Proof engine (PE)

Inventory of rules (IR)

Knowledge base (KB)

CCG
derivations LLFs

Figure 5.6: The architecture of LangPro

LangPro represents a tableau-based theorem prover for natural language. It takes a
set of premises and a conclusion in English and returns one of the logical relations—
entailment, contradiction or neutral—between their semantics. Input linguistic expres-
sions are not limited to any specific syntactic category but they must be of the same
category. For instance, it can reason over noun, verb phrase or even over prepositional
phrases. If a parser is unable to parse one of the linguistic expressions or does not as-
sign the same syntactic category to each of the expressions, then LangPro does not reason
further; it reports the issue and classifies the input problem as neutral (see line 1 in algo-
rithm 3, Appendix D).

LangPro has a pipeline architecture (see Figure 5.6). Its input expressions are first
parsed by a CCG parser, either C&C (Clark and Curran, 2007) or EasyCCG (Lewis and
Steedman, 2014a). The CCG derivations are then processed by LLFgen which generates
a list of LLFs for each derivation differing in a scope order of quantifiers. In the prover,
LLFgen is augmented with an aligner component that aligns common chunks of terms
(discussed later). Finally, the obtained LLFs are fed into NLogPro where the latter builds
several tableaux to identify a logical relation between the premises and the conclusion.
These procedures are demonstrated on a concrete entailment problem in Figure 5.7.

Often premises and a conclusion share several multiword constituents analysis of
which is not relevant for the correct classification of the problem. Due to this reason,
many RTE systems adopt alignment techniques that help the systems to concentrate on
relevant parts of text (Dagan et al., 2013). In LangPro alignment is carried out by the
term aligner—an optional component. It grabs all fixed CCG terms from LLFgen, finds
compound terms shared by all the terms and replaces them with fresh constant terms.
While doing so, the aligner makes sure that shared terms are not downward monotone;
see the aligner in action in Figure 5.7. The corresponding aligned LLFs are then obtained
by type-raising the aligned fixed CCG terms. We choose to align fixed CCG terms over
type-raised ones because the former terms are closer to surface forms rather than the lat-
ter ones. A tableau initiated with aligned LLFs is shorter than the one with original, i.e.
non-aligned, LLFs. Therefore, employing aligned LLFs increases the chance of finding
a proof in the limited number of rule applications. However, committing only to aligned
LLFs might eliminate a chance of finding a proof—the semantics of shared constituents
are not accessible in a tableau. For this reason, LangPro feeds original LLFs into NLogPro
after the latter is not able to find a proof with the aligned LLFs (see line 2 in algorithm 3).
This implies that in the worst case, e.g. for textual entailments with the neutral relation,
NLogPro ends up with building four tableaux (see Figure 5.7).

5.4. LANGPRO: A THEOREM PROVER FOR NATURAL LANGUAGE 145

{Bearded men are sawing logs} ? There are no bearded men sawing
CCG parser CCG parser

ba[Sdcl]

fa[VP dcl]

fa[VP ng]

lx[NP,N]

logs

N
log
NNS

sawing

VP ng/NP
saw
VBG

are

VP dcl/VP ng

be
VBP

lx[NP,N]

fa[N]

men

N
man
NNS

Bearded

N/N
bearded

JJ

ba[Sdcl]

fa[VP dcl]

fa[NP]

ba[N]

lx[N\N, VP ng]

sawing

VP ng

saw
VBG

fa[N]

men

N
man
NNS

bearded

N/N
bearded

JJ

no

NP/N
no
DT

are

VP dcl

be
VBP

There

NP thr

there
EX

LLFgen(fix) LLFgen(fix)

sdcl

np

n

man

n

man
NN

bearded

n, n
bearded

NN

s

n, np
s

DT

vpdcl

vpng

np

log

n

log
NN

s

n, np
s

DT

sawing

np, vpng
saw
VBG

are

vpng, vpdcl
be
VBP

sdcl

There

npthr
there

EX

vpdcl

np

n

n

man

n

man
NN

bearded

n, n
bearded

NN

n, n

sawing

vpng
saw
VBG

which

vp, n, n
which

WDT

no

n, np
no
DT

are

np, vpdcl
be
VBP

Aligner Aligner

be
(

saw (s log)
) (

s (bearded man)
)

be
(

no (which saw (bearded man))
)

there

LLFgen(type-raise) LLFgen(type-raise)

s bearded man
(

be (λx. s log (λy. saw y x))
)

s log
(
λx. s bearded man (be (saw x))

)
s
(

bearded man
)(

be (λx. s log (λy. saw y x))
)

s log
(
λx. s (bearded man) (be (saw x))

)
no
(

who saw beadred man
)(
λx. be x there

)
no
(

who saw (bearded man)
)(
λx. be x there

)
NLogPro

CHECK ALIGNED LLFS ON CONTRADICTION

s bearded man
(

be (λx. s log (λy. saw y x))
)

: [] : T
no
(

who saw beadred man
)(
λx. be x there

)
: [] : T

CHECK ALIGNED LLFS ON ENTAILMENT

s bearded man
(

be (λx. s log (λy. saw y x))
)

: [] : T
no
(

who saw beadred man
)(
λx. be x there

)
: [] : F

CHECK NON-ALIGNED LLFS ON CONTRADICTION

s
(

bearded man
)(

be (λx. s log (λy. saw y x))
)

: [] : T
no
(

who saw (bearded man)
)(
λx. be x there

)
: [] : T

CHECK NON-ALIGNED LLFS ON ENTAILMENT

s
(

bearded man
)(

be (λx. s log (λy. saw y x))
)

: [] : T
no
(

who saw (bearded man)
)(
λx. be x there

)
: [] : F

Figure 5.7: Reasoning by LangPro: in CCG derivations and trees, constituents with the
type changing rule lx and their fixed versions are framed; the optional aligner component
and its outputs are in dashed boxes. NLogPro is fed with the first type-raised LLFs.

146 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

In order to decrease the number of tableaux per entailment problem, for each linguistic
expression LangPro employs a single CCG derivation11 and a single LLF (modulo align-
ment), demonstrated in Figure 5.7. The prover adopts the most probable CCG derivation
for each expression. Another type of indeterminacy comes from the type-raising proce-
dure of LLFgen when it returns a list of LLFs due to different scope orders of quantifiers.
LangPro employs the very first LLF from a list since its scope order is closest to the order
occurring in a surface form; see Figure 5.7 for an example. For the same reason—to de-
crease the number of tableaux—CCG derivations from different parsers are not coupled.
Moreover, we do not expect a significant improvement from the latter approach as com-
pared to the approaches based on a single parser there is a higher chance that the same
constituents are parsed differently, i.e. parsing is less consistent or deterministic.

Closure rules usually require access to the KB. For efficient theorem proving, LangPro
redefines a small KB for NLogPro relevant to an input entailment problem. It first extracts
lexical elements from fixed CCG terms and then based on the WordNet relations defines
the semantic relations between the elements (see §5.1). This step prevents LangPro from
accessing WordNet more than once for each input problem and from considering irrele-
vant lexical entries. Further details about the functionality of LangPro can be found in
algorithm 3 (Appendix D).

We have described the natural language prover LangPro by outlining its architecture,
described in details how it processes a sample entailment problem in Figure 5.7 and give
its pseudocode in algorithm 3. An online demo of LangPro is available at http://
www.naturallogic.pro/langpro/

5.5 Conclusion
In this chapter we have presented implementation details of the natural tableau-based the-
orem prover. We started with the KB settings and explained how WordNet relations can
be imported in the KB without word sense disambiguation. Based on the four efficiency
properties of tableau rules (i.e. branching, semantic equivalence, consuming and pro-
ducing), we have defined an efficiency feature vector (eff-vector) for each tableau rule.
An eff-vector is supposed to model computational efficiency of the rule. Given a linear
priority order over the efficiency properties (i.e. an eff-criterion), the rules can be par-
tially ordered according to their eff-vectors. The partial order can be linearized with some
default priority order over the rules. The linearized version of the order is used in the
implemented natural logic prover (NLogPro) to identify applicable rules. As we will see
later in §6.2.2, an optimal eff-criteria boosts the accuracy of the theorem prover on certain
RTE datasets.

NLogPro employs a sophisticated procedure to develop a tableau tree. It builds both
a tree and a list structures. The tree structure is easy to read while the list structure
is only intended to be used for finding a next applicable rule. The prover records rule
applications to make sure that no rule applies to the same entries two times. A set of
derivable rules are mainly introduced to decrease tableau proofs in size as shorter proofs
are easy to read. Due to the derivable rules, the specificity relation is maintained in order

11EasyCCG is able to return multiple CCG derivations for a single input while C&C incorporates only
multi suppertagger—returning several CCG categories for each lexical entry.

http://www.naturallogic.pro/langpro/
http://www.naturallogic.pro/langpro/

5.5. CONCLUSION 147

to prevent redundant rule applications. Combining a CCG parser, the LLF generator,
and NLogPro, we obtain the tableau-based theorem prover for natural language, called
LangPro. In addition to this obvious pipeline, we incorporate an optional aligner into the
LLF generator. The aligner searches and aligns shared sub-terms in corrected CCG terms.
Aligned sub-terms are then treated as constant terms by NLogPro. As we will show in
§6.2.2, the aligner significantly increases the performance of the theorem prover.

The architecture of LangPro is a simple pipeline consisting of the WordNet-based
KB, one of the CCG parsers, the LLF generator and the prover NLogPro. So, the prover
is purely compositional and logic-based. One of our goals is to check how well such
logic-based RTE system scales up when employed natural logic-style reasoning.

In the next chapter, we will further develop the theorem prover on a training data.
In particular, we will detect optimal values of several parameters such as the number of
word senses in consideration, an efficiency criterion for rules, settings of the aligner and
an upper bound of rule applications. After the optimal parameters are set, LangPro will
be evaluated against the test data and the results will be compared to related RTE systems.

148 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

Appendix D

Algorithm 2: Pseudocode of the natural logic prover NLogPro. The prover checks

signed nodes on consistency in a limited number of rule applications.

Input: A list of signed nodes Nodes, a rule application limit n and an efficiency

criterion EC

Output: Status of a tableau: either "closed", "limited" or "open"

Sig← ExtractSignature(Nodes) // Extract entities from initial nodes

Nids← AddIDs(Nodes) // Label nodes with IDs

1 List← [[] : Sig : Nids] // List initially is a single branch with an empty history

Tree← CreateTree(Nids) // Create the corresponding tree structure

Rules← RelevantRules(Nodes) // Filter out rules irrelevant to the nodes

Rules← EfficientOrd(EC,Rules) // Sort rules in descending efficiency

Steps← 0

i← 1 // The first branch has an index 1

while Steps ≤ n do
2 if FINDRULE(List[i],Rules, IDs, r) then // Find a rule r which is applicable

to the nodes with the labels IDs

List[i]← ApplyRule(r,List[i], IDs)

GROWTREE(Tree, IDs, r) // Develop Tree according to the rule application

Steps← Steps + 1

if CLOSED(List[i]) then
DELETEELEMENT(List, i) // Discard a closed branch from List

if List = [] then // If all branches are closed

return "closed" // Returns values and halts

else
i← i mod |List| // Choose the next branch

else
i← (i+ 1) mod |List| // Choose the next branch

else
return "open"

return "limited"

APPENDIX D 149

Algorithm 3: Pseudocode of the natural language prover LangPro. Given a list of
premises and a conclusion, the prover detects a logical relation between them.

Input: A list of premises P = [pi]
n
1 and a hypothesis h in English

Output: One of the relations "ent", "cont" and "neut"
1 if

(
Trees← map(CCGparse, P ⊕ [h]) and SAMECAT(Trees)

)
then

// If all the expressions are parsed with the same syntactic category

Terms← map(Der2Term,Trees) // Convert CCG derivations into CCG terms

Fixed← map(FixTerm,Terms) // Fix errors in CCG terms

AFixed← Align(Fixed) // Align fixed CCG terms

LLFs← TypeRaise(Fixed)[1] // Pick the first LLF with type-raise GQs

ALLFs← TypeRaise(AFixed)[1]

Lex← GetLexicon(Fixed) // Induce a lexicon from fixed CCG terms

SETKBFROMLEXWN(Lex) // Set a KB consisting of semantic relations

between the elements of the lexicon defined in terms of the WordNet relations

Align← Solve(ALLFs) // Solve is separately defined below

2 if Align 6= "neut" then
return Align // Adopt a proof of a non-neutral relation over aligned LLFs

else
return Solve(LLFs) // Otherwise classify non-aligned LLFs

else
raise "Error in parsing" // Raise an exception for a mistake in parsing

return "neutral"

// Function Solve is a three-way classifier of textual entailment problems

Function Solve(P : list of LLFs, h : LLF) : String("ent","cont","neut") is
TrueP← map(AddTrueSign, P)

EntNodes← TrueP⊕ [h : F] // ⊕ concatenates lists

ContNodes← TrueP⊕ [h : T]

switch 〈NLogPro(EntNodes), NLogPro(ContNodes)〉 do
// For simplicity we assume that a rule application limit and an efficiency

criterion are already implicitly set in NLogPro (see algorithm 2)

case 〈"closed","closed"〉 do // Usually indicates mistakes of a parser

raise "Entailment& contradiction"

return "neut"
case 〈"closed","open"〉 do

return "ent"
case 〈"open","closed"〉 do

return "cont"
otherwise do

return "neut"

150 CHAPTER 5. THEOREM PROVER FOR NATURAL LANGUAGE

Chapter 6

Evaluation of the theorem prover

We have presented the generator for LLFs and the inventory of tableau rules in Chap-
ter 3 and Chapter 4 respectively. The natural language theorem prover that incorporates
both of these components has been described in Chapter 5. In fact, the development of
the prover and its internal components were done simultaneously. While we were in-
creasing the number of rules in the inventory, at the same time, we kept improving the
LLF generator in terms of the fixing rules. In this chapter we are going to describe this
development phase in details and then evaluate the mature, developed, prover on em-
pirical RTE datasets. For the development and evaluation, we use two datasets FraCaS
and SICK consisting of problems different in nature. While the former concentrates on
deep reasoning over multiple-premised problems, the latter incorporates single-premised
problems requiring relatively shallow reasoning. After we describe these two datasets and
present sample problems from them, we switch to a data-driven learning phase. The phase
represents an umbrella term for what NLP community call adaptation and development.
During the adaptation, the tableau prover is upgraded in order to solve some entailment
problems from a dataset. The upgrade involves introducing either a new tableau rule, a
new fixing rule for the generator, a new entry in the signature or a lacking lexical relation.
But it is not always possible to solve a problem in the adaptation. After the adaptation pro-
cedure, the best configuration of the prover is defined in the development procedure. The
configuration concerns an approach to word senses, the aligner component, an efficiency
criterion and the rule application limit. We also analyze the results of the development
procedure. The developed prover is evaluated on the corresponding datasets. Obtained re-
sults are analyzed and compared to the related RTE systems. We also contrast our prover
and its underlying theory with other systems and their approaches in a qualitative way.
To the best of our knowledge, our theorem prover is the only system that is evaluated on
both the FraCas and SICK datasets.

6.1 RTE datasets

We need specially prepared RTE datasets in order to develop and evaluate the theorem
prover. We choose the Fracas and the SICK datasets for this purpose. The datasets are
chosen because of their relatively short sentences. We expect the CCG parsers to make
fewer mistakes on the short sentences and provide the theorem prover with quality deriva-
tions. On the other hand, the datasets concentrate on different phenomena. Composi-

151

152 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

tionality and lexical knowledge are crucial for the SICK problems while FraCaS covers
semantically challenging phenomena like generalized quantifiers, plurals and attitudes
encoded in multi-premised problems. By employing the datasets, we intend to train and
evaluate the prover for both deep and shallow reasoning.

6.1.1 SICK
SICK (Sentences Involving Compositional Knowledge) by Marelli et al. (2014b) is an
RTE dataset which is intended as a benchmark for Compositional Distributional Seman-
tic Modelss (CDSMs). The data contains the lexical, syntactic and semantic phenomena
that CDSMs are expected to account for; some of these phenomena are contextual syn-
onymy, active/passive alternations, negation and quantifiers. In general, solving the SICK
problems does not require recognizing named entities, identifying multiword expressions,
or having encyclopedic knowledge. SICK contains about 10,000 English sentence pairs
each annotated with two gold answers using crowdsourcing. First is a score (from 1 to
5 points) that measures relatedness of the meanings of sentences. Second is a three-way
label—entailment, contradiction or neutral—encoding the semantic relation from the first
sentence to the second one. Several SICK sentence pairs are given in Table 6.2.

Original pair
S0a: A sea turtle is hunting for fish S0b: The turtle followed the fish

Normalized pair
S1a: A sea turtle is hunting for fish S1b: The turtle is following the fish

Expanded pair
Similar meaning

S2a: A sea turtle is hunting for food S2b: The turtle is following the red fish
Logically contradictory or at least highly contrasting meaning

S3a: A sea turtle is not hunting for fish S3b: The turtle isn’t following the fish
Lexically similar but different meaning

S4a: A fish is hunting for a turtle in the sea S4b: The fish is following the turtle

Table 6.1: Normalized sentences produced from an original pair

The SICK sentence pairs are produced semi-automatically from descriptions of pic-
tures and videos and are annotated by humans. In Table 6.1, there is a real example that
shows how eight sentences S1-S4/a-b are obtained from a single pair S0a-S0b of captions
describing the same picture or video. The final entailment pairs are produced by pairing
all the expanded sentences with the (source) normalized ones (hence, forming 12 prob-
lems) and pairing the normalized ones with each other too. The resulted 13 pairs are then
annotated using crowdsourcing, where a relatedness gold score is an average of assigned
scores and an entailment gold label represents a major assigned label. These 13 pairs with
the gold scores and labels are given in Table 6.2.

The distribution of gold labels and relatedness (i.e. similarity) scores in the SICK data
is given in Table 6.3. The majority of the problems (≈57%) are labeled as neutral. This
is mainly conditioned by cross pairs (SXa, SXb) being logically neutral to each other.
The relation between relatedness scores and the entailment label is clearer than in case
of the neutral and contradiction labels. The reason is that the neutrally labeled problems

6.1. RTE DATASETS 153

Normalized sentence pairs Score Label
S1a: A sea turtle is hunting for fish S2a: A sea turtle is hunting for food 4.5 E
S3a: A sea turtle is not hunting for fish S1a: A sea turtle is hunting for fish 3.4 C
S4a: A fish is hunting for a turtle in the sea S1a: A sea turtle is hunting for fish 3.9 N
S2b: The turtle is following the red fish S1b: The turtle is following the fish 4.6 E
S1b: The turtle is following the fish S3b: The turtle isn’t following the fish 4 C
S1b: The turtle is following the fish S4b: The fish is following the turtle 3.8 C
S1a: A sea turtle is hunting for fish S2b: The turtle is following the red fish 4 N
S1a: A sea turtle is hunting for fish S3b: The turtle isn’t following the fish 3.2 N
S4b: The fish is following the turtle S1a: A sea turtle is hunting for fish 3.2 N
S1b: The turtle is following the fish S2a: A sea turtle is hunting for food 3.9 N
S1b: The turtle is following the fish S3a: A sea turtle is not hunting for fish 3.4 N
S4a: A fish is hunting for a turtle in the sea S1b: The turtle is following the fish 3.5 N
S1a: A sea turtle is hunting for fish S1b: The turtle is following the fish 3.8 N

Table 6.2: SICK entailment pairs with human annotation

have a quite wide range of relatedness scores and, at the same time, most of neutral and
contradiction problems have scores in [3, 4) interval. These facts make the prediction
from scores to the contradiction and neutral problems obscure.

Relatedness NEUTRAL CONTRADICTION ENTAILMENT Total
[1,2) range 10% 0% 0% 10% (923)
[2,3) range 13% 1% 0% 14% (1373)
[3,4) range 28% 10% 1% 29% (3872)
[4,5] range 7% 3% 27% 37% (3672)

Total 56.86% (5595) 14.47% (1424) 28.67% (2821) 9840

Table 6.3: Distribution of gold labels and relatedness scores in SICK

The SICK dataset was used as a benchmark for the shared tasks in semantic relat-
edness and textual entailment at SemEval-14 (Marelli et al., 2014a). For the tasks, the
data was partitioned into three parts: SICK-trial (500), SICK-train (4500) and SICK-test
(4927).1 Hereafter we employ the version of SICK adopted for SemEval-14.2

6.1.2 FraCaS
The FraCaS semantic test suite (Cooper et al., 1996) was carefully designed by members
of the FraCaS consortium in order to create an initial version of a collection of inference
tasks that would serve as the best way for evaluating semantic capacity of NLP systems.
An inference problem in the test suite consists of a set of premises, a single yes-no ques-
tion and a gold answer, which is most of the time either YES, NO or DON’T KNOW; for
example, an exception is FraCaS-12 in Figure 6.1. Sometimes a problem comes with a
comment that explains the answer, e.g., see FraCaS-87, 88. The entailment labels and
comments are provided by the members of the FraCaS consortium (Cooper et al., 1996).

1Notice that the SICK data used for the SemEval challenges (Marelli et al., 2014a) contains slightly
more problems than the data described in Marelli et al. (2014b) and Table 6.3.

2The partitioned dataset is available from http://alt.qcri.org/semeval2014/task1/
index.php?id=data-and-tools

http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools
http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools

154 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

FraCaS-12 Generalized quantifiers:
Few great tenors are poor.
Are there great tenors who are poor?

[Not many]

FraCaS-49 Generalized quantifiers:
A Swede won a Nobel prize.
Every Swede is a Scandinavian.
Dis a Scandinavian win a Nobel prize?

[YES]

FraCaS-258 Temporal reference:
In March 1993 APCOM founded ITEL.
Did ITEL exist in 1992?

[NO]

FraCaS-33 Generalized quantifiers:
An Irishman won a Nobel prize.
Did an Irishman win the Nobel prize for literature?

[DON’T KNOW]

FraCaS-87 Plurals:
Every representative and client was at the meeting.
Was every representative at the meeting?

[YES, on one reading]
Arguably NP conjunction: every representative and every client

FraCaS-88 Plurals:
Every representative and client was at the meeting.
Was every representative at the meeting?

[DON’T KNOW, on one reading]
NBar conjunction: everyone who is both a representative and a client

Figure 6.1: Original problems from the FraCaS test suite

The FraCaS problems, on one hand, resemble tasks found in introductory logic books,
where it is asked to derive a given test sentence as a conclusion from a small number of
premises or to construct a counterexample. On the other hand, they show similarity to
problems for text analysis that consists of a text and a yes-no question related to it. The
test suite contains 346 inference problems where 45% of them have multiple premises; on
average there comes 1.55 premises per problem. The problems are classified in 9 sections,
where each section concentrates on a specific semantic phenomenon: generalized quanti-
fiers, plurals, (nominal) anaphora, ellipsis, adjectives, comparatives, temporal reference,
verbs and attitudes (see Table 6.4).

The test suite became popular in NLP community after it was converted in the format
of RTE data and used for evaluation of an RTE system in (MacCartney and Manning,
2007). During the conversion procedure a hypothesis, which is a declarative equivalent
of a yes-no question, is added to each problem. Also the answers are mapped to canon-
ical values: YES, NO, UNKNOWN and UNDEFINED, where the first three corresponds
to ENTAILMENT, CONTRADICTION and NEUTRAL respectively. Hereafter, we refer the
converted version of the test suite as the FraCaS RTE data or simply the FraCaS data. Fig-
ure 6.2 represents the textual entailment problems from the FraCaS data corresponding to
those problems of Figure 6.1. Statistics of each FraCaS section are given in Table 6.4.3

Compared to other RTE data sets, the FraCaS data is a very small in size, especially,
when taking into account the diversity of phenomena it covers. For instance, phenomena
like adjectives, verbs and attitudes are represented by only 44 problems. Moreover, the
dataset contains short sentences and some of them even ambiguous. Due to ambiguous
sentences, there are some identical RTE problems with different answers, like FraCaS-87,

3More details about the conversion, including information about several noisy problems (e.g., a prob-
lem missing a premise or hypothesis, or having a non-standard gold answer) can be found in (MacCart-
ney, 2009). The FraCaS RTE dataset is available at: http://www-nlp.stanford.edu/˜wcmac/
downloads/fracas.xml

http://www-nlp.stanford.edu/~wcmac/downloads/fracas.xml
http://www-nlp.stanford.edu/~wcmac/downloads/fracas.xml

6.1. RTE DATASETS 155

GOLD: undef, Fr-12

Few great tenors are poor

There are great tenors who are poor

GOLD: ent, Fr-49

A Swede won a Nobel prize
Every Swede is a Scandinavian

A Scandinavian won a Nobel prize

GOLD: cont, Fr-258

In March 1993 APCOM founded ITEL

ITEL existed in 1992

GOLD: neut, Fr-33

An Irishman won a Nobel prize

An Irishman won the Nobel prize for literature

GOLD: ent, Fr-87

Every representative and client was at the meeting

Every representative was at the meeting

GOLD: neut, Fr-88

Every representative and client was at the meeting

Every representative was at the meeting

Figure 6.2: Textual entailment problems from the obtained FraCaS RTE data

88.4 Because of these properties, the FraCaS data is not representative enough for system
evaluation and comparison purposes.

Sec Phenomenon #Prob #Mult-Pr E C N U
1 Generalized quantifiers 80 30 37 5 32 6
2 Plurals 33 9 20 5 8 0
3 (Nominal) anaphora 28 22 23 1 4 0
4 Ellipsis 55 30 41 3 11 0
5 Adjectives 23 8 9 6 7 1
6 Comparatives 31 15 19 3 9 0
7 Temporal reference 75 34 40 9 21 5
8 Verbs 8 0 6 0 2 0
9 Attitudes 13 4 8 1 4 0

Total 346 152 203 33 98 12

Table 6.4: Stats of the FraCaS dataset (MacCartney and Manning, 2007): each section
is characterized with the number of (multi-premised) problems and a distribution of gold
answers, where E, C, N and U stand for ENTAILMENT, CONTRADICTION, NEUTRAL and
UNDEFINED

For the above mentioned reason and the fact that few RTE systems are able to account
for the phenomena in FraCaS or multi-premised problems, the data is rarely used for
developing and assessing the semantic competence of RTE systems. Nevertheless, several
RTE systems (MacCartney and Manning, 2008; Angeli and Manning, 2014; Lewis and
Steedman, 2013; Tian et al., 2014; Mineshima et al., 2015) were trained and evaluated
on (the parts of) the dataset. Usually the goal of these evaluations is to show expressive

4As RTE systems are deterministic classifiers they will always fail at least one such kind of problem,
even if a system is able to solve both problems when a correct reading is indicated. One solution to accom-
modate ambiguous problems in RTE data set is to allow a list of answers as an answer. For instance, having
[YES, DON’T KNOW] answer for FraCaS-87 would solve this issue.

156 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

PPPPPPPPPGold
System Positive / Proof

Negative
No proof

ENTAIL CONTRAD NEUTRAL

ENTAILMENT True ENT False CONT False NEUT

CONTRADICT. False ENT True CONT False NEUT

NEUTRAL False ENT False CONT True NEUT

Acc =
TE + TC + TN

All Problems

Prec =
TE + TC

All Proofs

Rec =
TE + TC

All Gold Posit

Table 6.5: A confusion matrix for three-way classification, related terminology and the
definitions for the evaluation measures: accuracy, precision and recall

power and deep reasoning skills of specific theories or frameworks and the corresponding
RTE systems. Given a FraCaS problem, whether a semantic framework and the system
based on it are able to account for the phenomenon in the problem and correctly classify
it consequently.

We have presented two very different RTE datasets, SICK and FraCaS. Both of them
have relatively short sentences—the average number of words per sentence is 7.3 in Fra-
CaS and 9.7 in SICK—and are three-way annotated. The datasets significantly differ in
size and according to the phenomena they cover. The SICK problems represent relatively
shallow reasoning over a pair of sentences while the FraCaS problems cover wide-range of
semantic phenomena requiring deep reasoning over several premises. None of the datasets
require encyclopedic knowledge (e.g., FC Barcelona is a football club). SICK contains no
proper names and heavily employs lexical knowledge (e.g., a man is a person). In contrast
to SICK, FraCaS contains proper names and requires no lexical knowledge as all required
knowledge are provided by premises.

In the next subsections, we use the presented datasets for learning and evaluation pur-
poses for the LangPro system. Employing both FraCaS and SICK datasets allows us to
assess the performance of the prover on deep and relatively shallow reasoning respec-
tively. While doing so, we employ accuracy, precision and recall as evaluation measures
(see Table 6.5). Accuracy is a ratio of true guesses and total guesses. Precision is a frac-
tion of positive guesses (i.e. proofs) that are correct, and recall is a fraction of positive
problems that were classified correctly.

6.2 Learning

We first presented the natural tableau proof system with its inventory of rules and later, in
this chapter, introduced the natural language prover which based on the system. Unlike
this presentation order, in fact, we simultaneously developed the natural tableau proof
system and LangPro. Here, we describe a data-driven process, which we call training,
that basically represents how the LLF generator (Chapter 3) and the IR (Chapter 4) were
enhanced in parallel with the prover. Training consists of two procedures. First is adapta-
tion which concerns collecting the tableau rules, enriching the KB and designing the fixing
rules. Second is development; it involves study of optimal parameters for the prover from
the efficiency and the performance points of view.

6.2. LEARNING 157

6.2.1 Adaptation
The adaptation procedure represents an incremental improvement of LangPro, which is
driven by textual entailment problems found in the discussed RTE datasets. The procedure
runs with intense assistance of an expert. In particular, given a set of the problems, each
problem is automatically classified by the prover. If the prover misclassifies a problem,
then the expert verifies the corresponding LLFs and tableau proofs, finds out where it
went wrong and attempts to upgrade LangPro accordingly. A comprehensive description
of the procedure is given in algorithm 4 (Appendix E). During the adaptation, we employ
ccLangPro, i.e. LangPro using the C&C parser, and SICK-trail and FraCaS. From the
latter data, we omit FrSec-4 as the prover has poor performance on sentences with ellipsis.
While working with FrSec-3, 6 and 7, we only concentrate on improving LLFgen as the
phenomena covered by the sections are not modeled in the natural tableau system.

In general, at least one of the components of LangPro—the C&C parser, LLFgen and
NLogPro—is responsible for misclassification of a problem. The parser component is
fixed: there is no upgrade of the prover if the parser fails dreadfully—it could not provide
a derivation for one of the sentences in a problem or all returned derivations are not of
the same syntactic category. For instance, (1) from FraCaS-36 could not be parsed while
(2) from SICK-2911 was parsed but as of category VP , differing from the category of the
corresponding hypothesis.

Every European is a person (1)[
[A woman]NP

]
S/VP

[
is putting(VP/NP)/PP [on Makeup]PP

]
VP/NP (2)

When one of the LLFs in a problem is not semantically adequate, sometimes it is
possible to remedy it by introducing a new fixing rule in LLFgen. For example, in case
of (FraCaS-85), we introduce the rules (11) and (12) in LLFgen. As a result, the ob-
tained LLFs (3) and (4) are semantically adequate. This step corresponds to line 14 in the
adaptation procedure.

C&C, GOLD: cont, FraCaS-85

Exactly
(N/N)/(N/N)

two
N/N

lawyers
N

and three
N/N

accountants
N ...

N
lx

NP

signed the contract
VP

[
[SixN/N lawyersN]N

]
NP [signed the contract]VP

It is not always reasonable to correct CCG derivations via new fixing rules. We only
introduce the rules when they fix common errors in CCG derivations, e.g., the errors found
in (FraCaS-85). Examples like the one in Figure 6.3, a CCG derivation for the premise of
FraCaS-48, are not corrected as its remedy seems rather artificial and bound to a narrow
case. The correction rules presented in §3.4 are collected in this way.

[cDT|CDn,n Nn]np ;cn,np N (11)

[sixCDn,n lawyern]np ;sixn,np lawyern

[eRB(n,n),n,n c
CD
n,n Nn]np ;e(n,np),n,np cn,np Nn (12)

158 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

At

(S/S)/NP

most

N/N

ten

N/N

commissioners

N

spend

(VP/PP)/NP

time

N
lx

NP

at

PP/NP

home

N
lx

NP ...
VP

lx
N\N

<
N ...

N
lx

NP
>

S/S

Figure 6.3: A CCG derivation from C&C that is useless to fix with LLFgen

[exactlyRB(n,n),n,n twoCDn,n lawyern]np ;exactly(n,np),n,np twon,np lawyern

and (threeq accountant)(exactlyq,q twoq lawyer)
(
λx. theq contract (λy. sign y x)

)
(3)

sixq lawyer
(
λx. theq contract (λy. sign y x)

)
(4)

Semantically adequate LLFs are not always sufficient for a correct classification of
a problem. As an example, consider FraCaS-85 and its LLFs (3) and (4) obtained from
LLFgen after fixing the corresponding CCG derivations. It is possible to prove the contra-
diction relation in the problem if a new rule (×EXCT) is introduced in the IR. Therefore,
we carry out line 22 and finally ccLangPro proves the problem as contradiction.

×EXCT

Eq,qNq : [
#–

C] : T
Mq : [

#–

C] : T

×
E ∈ {just, exactly}

and M > N

GOLD: neut, FraCaS-56

Many British delegates obtained interesting results from the survey

Many delegates obtained interesting results from the survey

GOLD: ent, FraCaS-76

Few committee members are from southern Europe

Few female committee members are from southern Europe

FraCaS-76 is an entailment problem that forces a new information to be added in the
signature of NLogPro (see line 25). Namely, associating the downward monotonicity
property with the first argument of few in the signature allows the prover to capture the
desired entailment relation. Notice that the FraCaS problems favor to interpret “few” as
an absolute amount rather than proportional. In the latter case, few would not have any
monotonicity property in its first argument. On the other hand, there are FraCaS problems,
e.g., FraCaS-56, that assume the proportional reading of “many”, which is captured by
modeling many as only being upward monotone in the second argument.

6.2. LEARNING 159

WordNet is an extensive lexical knowledge base, but obviously many relations are still
absent there. For example, the lack of lexical knowledge is a reason for not accounting
the entailments in SICK-4734, 5110. In such cases, we introduced required knowledge
in the KB (see line 25), e.g., add fit v appy and food v meal to the KB. Notice that the
prover extracts meal v food relation from WordNet as meal1n is a hyponym of food1n but
not the required one. The relation food v meal is reasonable with “chef ” but not in every
context, e.g., “I ate some food” does not entail “I ate some meal”. Since the theorem
prover is purely compositional and does not take a context into account while computing
semantics, adding relations like food v meal can be seen as a simple and yet reasonable
way of accommodating entailments like SICK-5110. The

C&C, GOLD: ent, SICK-4734

A man is fitting a silencer to a pistol

A man is applying a silencer to a gun

C&C, GOLD: ent, SICK-5110

A chef is preparing some food

A chef is preparing a meal

During the adaptation procedure not all problems are solved by ccLangPro. We have
already mentioned the problems where the parser fails dreadfully in analyzing sentences,
e.g. (1) and (2), or where it is quite unreasonable to fix a CCG derivation; see an example
in Figure 6.3. In order to prevent the prover from fitting the data or from unsoundness, we
leave the problems like SICK-384 and 4505 unsolved. For instance, we could introduce
man v patient relation to prove SICK-4505 (while heal v help is retrieved from WordNet),
or add a corresponding rule or relation that accounts for the entailment from “tall and
green grass” to “field” in SICK-384. The entailment problems where context plays a
crucial role for lexical semantics, e.g. SICK-1584, are also troublesome for the prover.

C&C, GOLD: ent, SICK-384

A white and tan dog is running through the tall and green grass

A white and tan dog is running through a field

C&C, GOLD: ent, SICK-1584

A hole is being burrowed by the badger

A badger is shrewdly digging the earth

C&C, GOLD: ent, SICK-4505

The doctors are healing a man

The doctor is helping the patient

The adaptation is as a human-assisted learning procedure where the components of the
prover are augmented: the IR with tableau rules, the KB – lexical semantic relations, the
signature – algebraic properties of lexical entries and LLFgen – fixing rules. The problems
in SICK-trial and FraCaS barely contribute to the signature and the KB respectively. This
was expected as in general the SICK problems do not require reasoning over algebraic
properties and FraCaS is self-contained in terms of knowledge. The problems with a
neutral answer were hardly explored during the adaptation since the prover makes false
proofs very rarely. This latter significantly decreases human work load.

160 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

6.2.2 Development
The theorem prover has certain parameters adjustment of which may lead to improve-
ment of its performance. For example, what is the most optimal efficiency criterion for
the prover? Which it better to consider single or multiple senses? Does the aligner com-
ponent contributes to better performance? The development phase is used to answer such
kind of questions. During the phase we employ ccLangPro to detect best parameter set-
tings. For experiments we use separate development data: SICK-train (4500 problems).
We consider those parameter settings as best for which the prover achieves the highest
accuracy on the development data. While searching the best combination of parameters
we use a greedy search—assuming that the locally best parameters guide to the globally
best ones, or put differently, parameters are independent from each others.

We start the experiment with adjusting the number of WordNet senses per lexical
entry. In § 5.1 we have discussed the single sense and multi sense approaches for the
KB, where the former includes the most frequent sense approach SS(1)—giving each
lexical entry the most frequent WordNet sense—and the latter associates every lexical
entry with the multiple WordNet senses, also involving the option SS(all) with all senses.
To find the optimal solution for the sense parameter, we test ccLangPro with the following
settings: SS(1), S(1-2), SS(1-3), SS(1-5) and SS(all), where SS(1-n) associates each
word with its first n most frequent senses. Other parameters are set to its default value.
The results show that more senses are under consideration higher is the accuracy on the
data (see Table 6.6). For instance, SS(all) improves upon SS(1) and SS(1-5) with 1.7%
and 0.5% respectively. SICK-1251 and SICK-9350 are problems that require multiple
senses. SICK-1251 is correctly classified with SS(1-5) as amalgamate1v and mix5v are
synonymous senses, but SICK-9350 requires more than the first five most frequent senses
of “rest” because sit1n is a hypernym of rest9n. The high number of considered senses also
yields certain unsound proofs. For example, considering the second most frequent senses,
the prover classifies SICK-1405 as entailment. On the other hand, access to wall7n—the
sense of “a masonry fence (as around an estate or garden)”—enables the prover to prove
SICK-1481 as entailment.

GOLD: ent; SICK-1251

A woman is amalgamating eggs

A woman is mixing eggs

GOLD: ent; SICK-9350

Three women are resting in a village

Three women are sitting in a village

GOLD: neut; SICK-1405

A prawn is being cut by a woman

A woman is cutting shrimps

GOLD: neut; SICK-1481

A deer is jumping over a wall

The deer is jumping over the fence

After finding out that the all senses approach maximizes the accuracy of ccLangPro,
we test different strategies for rule application in the prover. For this, we check all 24
efficiency criteria for tableau rules.5 In other words, we run ccLangPro with each per-
mutation of the efficiency features, where SS(all) is used for the KB and the rest of the

5Recover from §5.2.1 that an efficiency criterion represents a permutation of the efficiency features of
rules: non-branching, equivalence, non-consumer and non-producer. Based on the criterion and (<pr), one
can define the efficiency order (<eff) over tableau rules (see §5.3).

6.2. LEARNING 161

Acc% Prec% Rec% Sense Efficiency criterion Aligner RAL Parser

75.09 98.5 43.6 1 [nonP, nonB, equi, nonC] No 200 C&C
76.42 98.3 46.8 1-5 - - - -
76.89 97.8 48.1 All - - - -
78.44 97.9 51.7 - [equi, nonB, nonP, nonC] - - -
79.33 97.9 53.8 - - Weak - -
81.5 97.7 59.0 - - Strong - -
81.53 97.7 59.1 - - Strong 400 -
81.38 98.0 58.5 - - Strong 400 EasyCCG
82.6 97.7 61.6 - - Strong 400 Both

Table 6.6: Results of the greedy search for the best settings of LangPro over SICK-train.
The grey row represents the default settings of the prover used in the adaptation. Each
omitted parameter borrows the value from the upper setting.

parameters are set to the default values. The results reveal that giving the highest pri-
ority to the non-producer feature leads to poor performance: 1.5% decrease in accuracy
compared to the highest score. This is explained by the fact that in order to identify an
inconsistency in a set of LLFs, one needs to introduce a sufficient number of entities in
branches. Therefore, the introduction of fresh entities at early stage of a tableau is vital
for the natural tableau theorem proving.

[equi, nonBr, nonProd, nonCons] (5)
[nonBr, equi, nonProd, nonCons] (6)
[nonBr, nonProd, equi, nonCons] (7)
[nonBr, nonProd, nonCons, equi] (8)

The prover achieved the highest accuracy with four criteria (5-8). We opt for (5)—
favoring first the equivalence feature, then non-branching, non-producer and non-consumer
in the end—since it produces slightly shorter tableau proofs than the others. For example,
FraCaS-21 is the problem that is proved with these four criteria but not with the default
one.

GOLD: ent; FraCaS-21

The residents of member states have the right to live in Europe
All residents of member states are individuals
Every individual who has the right to live in Europe can travel freely within Europe

The residents of member states can travel freely within Europe

The aligner component of the prover identifies and treats shared sub-terms of LLFs as
constant terms (see §5.4). It excludes those sub-terms from aligning that are downward
monotone or of type np which is not definite description, e.g., no man and a man are not
treated as constants. Augmentation of the prover with the aligner component increases
the accuracy score almost by 1% (see Table 6.6). The increase becomes larger (1.5%) if
the rule application limit is decreased to 50. The aligner not only makes proofs shorter but
also helps to find new proofs that the prover alone is not able to find even given an infinite

162 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

number of rule applications. The reason is that semantics of aligned LLFs are much
simpler than those of non-aligned ones. For example, with the help of the aligner, the
prover solves SICK-1022 and SICK-727, where the underlined constituents correspond
to the aligned sub-terms.6 Notice that in SICK-train there is no problem that is proved
using non-aligned LLFs but not proved with aligned ones. This fact shows that in the
SICK problems the semantics of shared constituents are irrelevant.

GOLD: cont; SICK-1022

A woman is wearing sunglasses of large size and is holding newspapers in both hands

There is no woman wearing sunglasses of large size and holding newspapers in both hands

GOLD: cont; SICK-727

The man in a grey t-shirt is sitting on a rock in front of the waterfall

There is no man in a grey t-shirt sitting on a rock in front of the waterfall

The aligner avoids to align upward monotone GQs if they do not represent definite
descriptions or coordinations of them (e.g., “the boy and the girl”). Hence, the GQs for
definite NPs or bare plurals are not aligned. On the other hand, there are many problems
in SICK assuming that the indefinite, plural or collective NPs shared by a premise and the
conclusion co-refer; see SICK-90 and 423 for the demonstration of it. From the ortho-
dox semantics perspective, endorsed by LangPro, these two problems do not necessarily
encode contradictions. Imagine a situation where there are two men and two swimming
pools, one empty and another full. If each man jumps in a different pool, then the situation
makes both sentences true. The similar counterexample exists for the second problem too.

GOLD: cont; SICK-90

A man is jumping into an empty pool

A man is jumping into a full pool

GOLD: cont; SICK-423

Two men are not holding fishing poles

Two men are holding fishing poles

One option to prove such problems is to force entities to be equal if they satisfy the
same common noun, in other words, to treat all NPs as definite descriptions. Unfor-
tunately, this approach comes with many false proofs too. One might think of captur-
ing contradictions like SICK-423 by giving a wide scope to the negation in LLFs. We
do not opt for this approach as it requires complication of LLFgen and is tailored for
specific problems. To tackle this issue partially, we adopt a simple solution. We make
the aligner stronger by allowing it to align all NPs that are not downward monotone.
Hence, SICK-423 is proved in a straightforward way. On the other hand, the problems

6Without the aligner, a tableau for SICK-1022 does not terminate because in the LLF of the premise
both hand takes scope over s newspaper and both is treated as a universal quantifier. Therefore, without the
knowledge newspaper|hand there are an infinite number of entities introduced in the tableau: for some hand
introduce some newspaper and if the latter is a hand, then introduce some another newspaper, etc. Due
to the shortcoming of syntactic types (see § 3.5), in the LLFs of SICK-727, a grey t-shirt takes scope over
the man and no man. As a result, the existence of some grey t-shirt worn by some man with the property P
does not contradict the existence of another grey t-shirt that is worn by no man with the property P .

6.2. LEARNING 163

10 20 30 50 100 400 1600
%
49
52
55
58

77.5
79.5
81.5

97.5
98

98.5

Sec. 1.4 1.9 2.5 3.5 5.3 16 384

Accuracy
Recall

Precision

Figure 6.4: Performance of LangPro (with the aligner and C&C) on SICK-train for differ-
ent rule application limits. Average runtime in seconds per 100 problems is based on an
8×2.4GHz CPU machine. NB different scales for each measure on the Y axis.

like SICK-90 stay unsolved, which we plan to address in future work. After making the
aligner stronger, the accuracy of the prover with the aligner increases significantly (see
Table 6.6). This shows that the annotation of the dataset mainly endorses co-reference of
the same NPs.

Up to now, the number of rule applications in each tableau was limited to 200. To
find out how the performance of the prover depends on the RAL, we run the prover with
different values of RAL. The results are given in Figure 6.4 with average runtimes per
100 problems. The experiment shows that the RAL of 400 is an effective upper-bound:
if a proof is not found in 400 rule applications, then it will not be found in 1600 rule
applications either.7 On the other hand, the RAL of 50 is efficient: the provers with the
RAL of 50 and of 1600 differ only in five problems (SICK-9554 is one of those). These
five problems were not proved with 50 rule applications because the shared constituents in
the problems were parsed differently by the C&C parser, e.g., see the agent of the verb in
SICK-9554. Such differences apparently require many rule applications to be discovered
and analyzed similarly.

GOLD: ent; SICK-9554

A group of [children in a church basement]NP is playing maracas and tambourines

Tambourines are being played by [a group of children]NP

In addition, for the SICK dataset we found out that intersective treatment of nomi-
nal modifiers, e.g., adjectives, increases the performance. For this reason the results in
Table 6.6 already use intersective treatment for the modifiers by default. If only those
intersective adjectives that are hard-coded in the signature are treated intersectively, then
the accuracy (81.53%) of the best configuration drops by 0.2%. We also tested the two

7In particular, the prover with 400 and 1600 RALs achieves the same results. The same is true for the
RALs of 100 and 200.

164 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

approaches for definite NPs presented in §4.3.2: one treating “the” as the indefinite deter-
miner “a” and another treating definite NPs as referring expressions. The latter approach
works better for FraCaS while for SICK-train the former approach shows slight gain of
0.09% in accuracy. Since the improvement seems insignificant, for both datasets we treat
definite NPs as referring expressions.

Borrowing the best parameter setting from ccLangPro, we try it for easyLangPro—the
language prover based on the EasyCCG parser (Lewis and Steedman, 2014a). easyLang-
Pro scores accuracy of 81.16%, comparable to ccLangPro (81.4%). This show that the
prover, and particularly LLFgen and the IR, are not overfitting the C&C derivations and
can use any CCG derivation successfully that is compatible with the CCGbank format
(Hockenmaier and Steedman, 2007).

Distinct judgments of ccLangpro and easyLangPro are conditioned by the differences
between the CCG derivations of C&C and EasyCCG (discussed in more details in §6.3).
In order to abstract LangPro from parsing mistakes to some extent, we combine the an-
swers of both provers based on different parsers. The combination is simple, if one of
the parser-specific provers classifies a problem positively, i.e. entailment or contradic-
tion, then let this positive judgment be the final guess; otherwise the problem is classified
as neutral. An exception applies to the case when the provers return different positive
answers. In this situation the combined answer is neutral. The combined prover im-
proves upon both ccLangPro and easyLangPro with more than 1% gain in accuracy (see
Table 6.6). The increase is achieved by the boost in the recall while the precision stays
almost the same. There was no problem for which the parser-specific prover returned
different positive answers—for each of the problems at least on of the provers judged it
as neutral. In the context of the parser-specific provers, we refer the combined prover
as coLanPro; but when talking about the performance of LangPro in general, we mean
coLangPro as the latter can be regarded as representative of the language prover that least
depends on a specific CCG parser.

We have described the development phase of LangPro on SICK-train. The phase
includes the adjustment of the following parameters: the number of WordNet senses per
lexical entry, an efficiency criterion, augmentation with the aligner and its strength, the
rule application limit and the parser component. Following the greedy search, the highest
accuracy was achieved by coLangPro, a combination of ccLangPro and easyLangpro,
when all the WordNet senses are under consideration, the strong aligner is incorporated,
the most efficient criteria is chosen and the RAL is set to 400.

6.3 Analysis of the results
In the previous section, we gave the results the provers obtain on the development data.
But what is the actual story behind the results? Why there are proves obtained for neutral
problems? What stops the provers from better performance? To answer the similar ques-
tions, we will explore entailment judgments from the versions of LangPro (see Table 6.7
and Table 6.8) and see what are the reasons behind both incorrect and correct guesses. Be-
low we will do so by describing in details how the prover processes particular entailment
problems drawn from SICK-trial, SICK-train and FraCaS. For each presented problem,
along with its ID and gold answer, we will give two judgments each corresponding to the

6.3. ANALYSIS OF THE RESULTS 165

PPPPPPPPP
Gold
SICK-train

Prover ccLangPro easyLangPro coLangPro
E C N F E C N F E C N

Entailment 701 0 589 9 692 0 607 0 725 0 574
Contradiction 0 459 205 1 0 457 208 0 0 485 180
Neutral 16 11 2483 26 11 12 2513 0 16 13 2507

Table 6.7: Confusion matrices of the versions of LangPro on SICK-train. The F columns
count the problems where the parsers failed dreadfully.

PPPPPPPPP
Gold
FraCaS

Prover ccLangPro easyLangPro coLangPro
E C N F E C N F E C N

Entailment 51 0 23 4 52 0 22 0 59 0 15
Contradiction 1 14 2 0 1 12 4 0 1 14 2
Neutral 1 0 50 6 2 0 49 0 2 0 49

Table 6.8: Confusion matrices of the versions of LangPro on the applicable FraCaS sec-
tions 1, 2, 5 and 9. The F columns count the problems where the parsers failed dreadfully.

answer of a parser-specific prover. The following terminology will be used. We refer the
LLFs obtained from the C&C or the EasyCCG derivations as ccLLFs and easyLLF re-
spectively. Their aligned versions are denoted by ccLLFs and easyLLFs. When we want
to emphasize a decision made by one of the parser-specific provers that was influenced
by the aligner, we talk about ccLangPro and easyLangPro. The selected set of examples
intends to highlight the issues of natural language theorem proving and give the clues for
further improvements.

6.3.1 True entailments and contradictions
First, we are going to discuss the positive problems (i.e. having the entailment or con-
tradiction gold label) that were correctly proved either by ccLangPro or easyLangPro.
Eventually such problems are called true positives as coLangPro correctly guesses them.

cc/easyLP: C/N G: C SICK-1417

CC/Easy: Men are sawingVP/NP [logsN]NP

CC: There are no
[
menN [sawingVP]N/N

]
N Easy: There are no [menN/N sawingN]N

SICK-1417: The problem involves verb subcategorization, the expletive “there” and the
negative universal quantifier “no”. Both parsers correctly analyze the premise while in
case of the conclusion only EasyCCG makes a mistake: “men” is modifying “men” rather
than vice versa. This mistake of EasyCCG is crucial for easyLangPro as it prevents the
prover from finding the proof for contradiction. Fortunately, correct C&C derivations
result in semantically adequate ccLLFs which are proved by LangPro as inconsistent in
10 rule applications.
Conclusion: The proof is not found with EasyCCG due to a wrong derivation but the
C&C derivations salvage the situation.

166 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

cc/easyLP: E/E G: E SICK-8147

The girl [in blue]1 is chasing the base runner
[
with a number [on the jersey]3

]
2

The girl [in blue]1 is chasing the player
[
with a number [on the jersey]3

]
2

SICK-8147: The key in the problem is to regard “base runner” as “player”, but it contains
sentences challenging for the parsers. In particular, both sentences contain three PPs
separately, marked with brackets and indexed. Apart from the different analyses for each
NP,8 the derivations from C&C and EasyCCG also differ in PP attachments. For both
sentences, C&C treats PP3 as an argument of “number” while EasyCCG analyzes it as
a modifier of “a number”. In both sentences, EasyCCG wrongly but in a consistent way
treats PP2 as a VP modifier. PP2 gets mixed analyses from C&C: correctly identified it as
a modifier of “player” in the conclusion but analyzed wrongly in the premise, similarly to
EasyCCG. Due to these differences, the corresponding ccLLFs and easyLLFs, including
their aligned versions, also differ from each other. More specifically, the terms for PP2

are aligned in the easyLLFs; but in the ccLLFs, the shorter sub-terms of “a number on
the jersey” are aligned because C&C analyzes PP2 in the inconsistent ways and assigns
different categories to “with” in the sentences.

For both versions of aligned LLFs, the prover finds proofs for the entailment relation.
Due to the poor alignment for the ccLLFs, the tableau was closed in 20 rule applica-
tions while for the easyLLFs, with a better alignment, in 8 rule applications. Despite
the wrong attachments of PP2 in the easyLLFs, proof search is more efficient because
the attachments were consistent which contributed to the better alignment. In case of the
ccLLFs, the attachments of PP2 were inconsistent (though one of them was correct) which
finally costs much in terms of a lengthy proof. Moreover, finding a proof for the ccLLFs
would be impossible if we did not introduce (×PP@VT) in §4.2.2, which helps to abstract
the ccLLFs from the inconsistency in PP attachments. As a result, the rule identifies the
nodes in (×PP@V′T) as inconsistent: the terms written in CamelCase are the corresponding
aligned sub-terms while the individual constant c stands for “the base runner”.

×PP@VT

[pIN te] : V(−,s) : [
#–

A] : T
pINnp,pp : [t, c] : F

×
c ∈ #–

A

[with NumOnJers] : chase : [c,GirlInBlue] : T
with : [NumOnJers, c] : F

×
(×PP@V′T)

Knowing base runner v player is a main part of solving SICK-8147. This piece of
knowledge is necessary for the tableau to close. Fortunately, the synset of baserunner1n
is an indirect hyponym of the synset of player1n in WordNet. Therefore, the necessary
semantic relation in found in the KB and the tableau closes.9

8EasyCCG usually analyzes NPs with post-modifiers in the NP-S style, i.e. a determiner is grouped
with its head earlier than post-modifiers:

[
[the girl]NP [in blue]NP\NP

]
NP . On the other hand, C&C

trained on rebanked CCGbank (Honnibal et al., 2010) prefers the Nom-S analysis:
[
theNP/N [girlN [in

blue]N\N]N
]
NP .

9In case of the multi-sense approach for the KB, there is alternative option for the prover to access

6.3. ANALYSIS OF THE RESULTS 167

Conclusion: The consistent (possibly wrong) analyses of PP attachments leads to the
better aligned LLFs, which itself contributes to shorter proofs. A wrongly attached struc-
turally ambiguous PP can be identified and correctly interpreted with the help of the spe-
cial tableau rules (presented in § 4.2.2). The (single) most frequent sense approach is
sufficient for the current entailment problem.

cc/easyLP: N/E G: E FraCaS-18

Every European has the right
[
[to live in Europe]VP to

]
N\N

Every European is a person
Every person who has the right [to live in Europe] can travel freely within Europe

Every European can travel freely within Europe

FraCaS-18: The textual entailment problem contains multiple premises but this is not a
problem for LangPro. A challenge in this example is to obtain decent derivations and to
convert them in LLFs. The C&C-based prover fails in the beginning when the parser fails
to return the derivations for the first two sentences, which contain relevant information
for the entailment. Fortunately, EasyCCG gets all the sentences parsed. The produced
easyLLFs are not proper λ-terms since LLFgen, at this moment, does not have a remedy
for the type changing combinatory rule which converts the syntactic category VP to into
N/N . Despite this shortcoming, LangPro is still able to operate on the easyLLFs and find
a proof for entailment in 43 rule applications (actually, only a few of those applications
contribute to the proof). If decomposition of the LLF for “the right ... Europe” was
necessary for the proof, due to the unexplained type-change, the prover would fail to do
so and would not find the proof. Notice that in this example, the aligner is useless as there
is no constituent phrase shared by all the sentences.
Conclusion: C&C failed to parse several sentences, however EasyCCG saved the situa-
tion. The obtained easyLLFs are not well-formed terms; nevertheless the prover is able
to process them as long as the decomposition of the ill-formed sub-terms is not necessary
for the proof.

cc/easyLP: C/C G: C SICK-1207

[A woman]NP is not talking on [a telephone]NP

[A woman]NP is talking on [a telephone]NP

SICK-1207: The problem represents a dubious case. One might identify the problem as
neutral or contradiction depending whether the indefinite NPs “a woman” and “a tele-
phone” are referencing to the same referents respectively. The annotation in SICK show
a strong tendency towards co-reference of the same indefinite NPs; the similar problems,
SICK-363 and 1989, with the similar judgments are given in Table 6.9. Co-reference of
the identical indefinites is simply achieved with the help of the strong aligner. The aligned

base runner v player: first capture base runner v runner using a rule for subsective adjectives and then combine
it with runner v player, which is retrieved from WordNet as baserunner1n and runner4n are in the same
synset. Notice that the multi-sense approach also allows an unwanted entailment from “A runner won” to
“A player won” due to runner v player.

168 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

LLFs for the problem are given in (9) and (10). Using the aligned LLFs, the prover is able
to find a proof for contradiction in 3 rule applications.

notvp,vp beTalkOnATelephonevp aWomannp (9)
beTalkOnATelephonevp aWomannp (10)

Conclusion: the simple solution with the alignment technique accounts enough well for
the co-reference of the same indefinites. It also makes proofs extremely short.10

We have presented the problems that were correctly classified by the prover in spite
of the various shortcomings. Usually this kind of problems is rare but interesting. For
instance, from the four presented examples, the judgments of ccLangPro and easyLang-
Pro diverged in half of the cases, but based on the development set—SICK-train (4500
problems)—the judgments diverge only for 2.9% of the problems.

6.3.2 False entailments and contradictions

Given an almost perfect precision of the prover, the false positive problems represents a
special case of interest.

cc/easyLP: C/C G: N SICK-8461

A man with no hat [is sitting on the ground]1

A man with a backwards hat [is sitting on the ground]1

SICK-8461: The problem is similar to SICK-1207 in terms of possibly co-referring defi-
nite NPs, but it is labeled as neutral by majority of annotators. The ccLLFs and easyLLFs
for both sentences are quite similar; the ccLLF and the easyLLF for the premise are given
in (11) and (12), respectively. The only difference is in the analyses of the verb phrases:
whether be takes only sit or the whole verb phrase as an argument. This difference has no
influence on proof search since the auxiliaries are currently treated as identity functions.

no hat λy
(

a
(

with y man
)
λx
(

the ground λz(on z (be sit) x)
))

(11)

no hat λy
(

a
(

with y man
)(

be λx(the ground λz(on z sit x))
))

(12)

a(et)(et)t λy
(
no(et)(et)t hatet λx(withe(et)et xe manet ye)

)
SitOnGroundet (13)

In contrast to the surface level, no hat takes the widest scope in the LLFs. The reason
is the usage of terms with syntactic types. While using the terms of semantic type, it is
possible that no hat takes a narrow scope, see (13). But in case of the syntactic types, no hat
cannot be type-raised in the PP because a determiner of type (n, (np, s), s) cannot take a

10If in the premise “a woman” is replaced by “a person”, the alignment approach cannot contribute to the
proof. More general solution to the co-reference of indefinites is achieved when the negation takes a wide
scope. Implementation of the latter approach becomes complex when considering sentences with several
clauses. It also does not go hand in hand with reasoning on surface forms. The co-reference of indefinites
without the aligner is left for future work.

6.3. ANALYSIS OF THE RESULTS 169

term of type (np, t) or (e, t) for its second argument; remember that (np, t) and (e, t) are
not subtypes of (np, s).11

It is obvious that if the sentences were understood with “no hat” and “a backwards
hat” having the widest scope, then they would be inconsistent. This is why the prover
classifies the problem as contradiction. The proofs for both versions of LLFs were found
in 5 rule applications. The alignment of VP1 does not affects the proof search as the
relevant terms “no hat” and “a backwards hat” are analyzed and contrasted to each other
before VP1 is processed.
Conclusion: The natural order for the quantifier scopes is not obtained due to less-flexible
syntactic types, which in the end leads to the prediction different from the gold label. This
mistake of the prover seems minor taking into account that the similar problems, e.g.,
SICK-8562 in Table 6.9, receive mixed judgments (neutral or contradiction) by the SICK
annotators.

cc/easyLP: C/C G: N SICK-7402

There is
[
[no man] and [child kayaking through gentle waters]

]
A man and a young boy are riding in a yellow kayak

SICK-7402: The problem is neutral as the sentences are informative with respect to each
other, but both parser-specific provers identify it as contradiction. The reason is wrong
CCG derivations where “no” takes scope only over “man”. In this way, the premise entails
that there is no man while the conclusion asserts the contrary—a man is riding in a kayak.
The provers detect this inconsistency and classify the problem as contradiction.
Conclusion: The mistakes by the C&C and EasyCCG parsers misled the prover. In
general, the parsers do many mistakes but it is very rare that they lead the prover to a false
proof, like in the recent example.

cc/easyLP: N/E G: N FraCaS-64

[
At(S/S)/NP [mostN]NP

]
S/S

[
ten female commissioners spend time at home

]
S[

At(S/S)/NP [mostN]NP
]
S/S

[
ten commissioners spend time at home

]
S

FraCaS-64: Since “at most n” is downward monotone for any number n, the problem
does not represent entailment. The example contains sentences that happen to be difficult
for the parsers. C&C dreadfully fails to analyze both sentences, assigns the S/S category
to both derivations while EasyCCG is able to return the derivations of category S. In spite
of the wrong CCG derivations, it is possible to block the entailment for the easyLLFs
given that the sentential modifier “at most” is not monotone. As there is no information
about monotonicity properties of compound terms in the signature, the term for “at most”
by default is regarded as upward monotone. As easyLangPro is able to prove the entail-
ment relation between the arguments of “at most”, it classifies the problem as entailment.
Conclusion: EasyCCG returned wrong derivations but still better ones than those of
C&C. It is simply unfortunate that the wrong derivations and the absence of monotonicity
properties of compound terms in the signature result in the proof for entailment.

11This issue can be solved by introducing a semantic counterpart of the determiner that is of type
(et)(et)t, but this itself will further require introduction of semantic counterparts of other terms. The
latter approach almost doubles the number of lexical terms in a tableau which consequently complicates a
proof search.

170 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

ID G/LP Premise Conclusion
1405 N/E A prawn is being cut by a woman A woman is cutting shrimps
1481 N/E A deer is jumping over a wall The deer is jumping over the fence
1777 N/E A boy is happily playing the piano A piano is being played by a man
4443 N/E A man is singing to a girl A man is singing to a woman
2870 N/C Two people are riding a motorcycle Nobody is riding a bike
2868 E/N Two people are stopping on a motorcycle Two people are riding a bike
6258 E/N A policeman is sitting on a motorcycle The cop is sitting on a police bike

344 N/C
P: An Asian woman in a crowd is not carrying a black bag
C: An Asian woman in a crowd is carrying a black bag

545 N/C
P: A woman is standing and is not looking at the waterfall
C: A woman is sitting and looking at the waterfall

8913 N/C A couple is not looking at a map A couple is looking at a map
363 C/C A soccer ball is not rolling into a goal net A soccer ball is rolling into a goal net

1989 C/C A girl is playing the guitar A girl is not playing the guitar

8562 C/N
P: A man in a hat is standing outside of a green jeep
C: A man with no hat is standing outside of a green jeep

Table 6.9: The false positive examples and the problems with noisy gold (G) labels. The
problems are drawn from SICK-train. The words that were related to each other by Lang-
Pro (LP) are in bold while the unrelated ones in italic.

cc/easyLP: E/E G: N SICK-5264

A person is folding a sheet

A person is folding a piece [of paper]1

SICK-5264: For the sentences of the problem, there exist readings that validate the entail-
ment relation, but the majority of annotators does not consider those readings and classify
the problem as neutral. The decision of the prover, whether based on C&C or EasyCCG,
does not coincide with the gold label. Different natures of attachment for PP1—as a noun
argument by C&C and as an NP modifier by EasyCCG—do not affect the final judgments
because all the argument PPs are also treated as modifier PPs with the help of the tableau
rules (see §4.2.2).

The reason for the proof for entailment is the relation sheet v paper in the KB retrieved
from WordNet (the synset of sheet2n is a hyponym of the synset of paper1n) and the tableau
rule that identifies “a piece of paper” as “paper”. The entailment is proved in 18 rule
appreciations.
Conclusion: The problem is ambiguous but has the neutral gold label. The multi-sense
approach to the KB allows the readings of the sentences that lead the prover to the proof
for entailment.

The other false positives that are proved in the same vein as SICK-5264 are give in
the upper part of Table 6.9. The problems SICK-1405, 1481 and 1777 are classified as
entailment due to the lexical relations prawn v shripm, wall v fence and boy v man,
respectively, licensed by the multi-sense approach. For proving SICK-4443 and 2870,
the single sense approach with the most frequent sense is sufficient. Notice noise in gold
labels with respect to motorcycle v bike relation. While SICK-2870 rejects it, SICK-2868

6.3. ANALYSIS OF THE RESULTS 171

and 6258 presuppose the relation. Unfortunately, LangPro was not able to capture the
latter two entailments as it failed to relate other lexical entries.

On the SICK dataset, the prover rarely finds false proofs and when it does, the multi-
sense approach or the noisy labels are the reason in around 70% of the cases. Apart from
FraCaS-64, other false proofs of the FraCaS problems involve ambiguous problems—two
identical problems having different gold answers due to the ambiguity of involved sen-
tences. For example, one of the two instances of such ambiguous problems are FraCaS-88
and 109. Since LangPro is a deterministic system, it always fails one of the instances of
ambiguous problems. It is able to correctly classify the counterparts of FraCaS-88 and
109 as entailments. FraCaS-109 is the only problem when the prover confuses entailment
and contradiction.

cc/easyLP: E/E G: N FraCaS-88

Every representative and client was at the meeting

Every representative was at the meeting

cc/easyLP: E/E G: C FraCaS-109

Just one accountant attended the meeting

Some accountants attended the meeting

6.3.3 False neutrals
There can be several reasons for a false neutral: starting from the mistakes by the CCG
parsers finishing with a lack of knowledge. The prover shows a large number of false
neutrals on SICK. In order to find out the reason behind it, we randomly drew 200 prob-
lems from SICK-train and classified the false neutrals found there (see some of the ex-
amples in Table 6.10). Around a half of the false neutrals were due to knowledge spar-
sity. For example, in order to prove the entailment in SICK-4974, one needs to know
hedgehog v small animal, which is not available from WordNet. A lack of tableau rules
was a reason for a quarter of the problems. This kind of problems also include the cases
where an absent paraphrase can be captured with a schema, e.g., X made of Y → Y X ,
like in SICK-4553. The problems concerning cardinality also need assist through tableau
rules. The rest of the false neutrals were evenly triggered by noisy gold labels and the
mistakes coming from the parsers. For instance, in SICK-4720, “monkey” and “chimp”
are disjoint concepts while from a layman’s perspective “monkey” is often regarded as a
superset of “chimp”. In SICK-6447, both parsers choose wrong constituents which in the
end make impossible even for the aligner to align the sub-terms for identical phrases.

There are several reasons behind the FraCaS problems that were not proved by the
prover. Several problems for adjectives were not proved as they contained comparative
constructions, not covered by the prover and the natural tableau. Some problems assume
the universal reading of plurals. A couple of problems involving at most were not solved
as the parsers often analyze the phrase in a wrong way.

In order to highlight the cases where the prover fails or succeeds, we have presented
concrete entailment problems and explained the judgments of both parser-specific provers

172 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

ID G Fail Premise Conclusion
4720 E G A monkey is practicing martial arts A chimp is practicing martial arts
4275 E R A man and a woman are shaking hands Two persons are shaking hands

4553 E R
P: A man is emptying a container made of plastic
C: A man is emptying a plastic container

2763 C K A man and woman are talking A man and a woman are silent
4974 E K Someone is holding a hedgehog Someone is holding a small animal

6447 C P
P:
[
A small boy [in a yellow shirt]

]
is laughing on the beach

C: There is no small boy
[
in a yellow shirt [laughing on the beach]

]
Table 6.10: Examples of false neutrals from SICK. The factors for the failure (Fail) are
noisy gold labels (G), the mistakes by the parsers (P), a lack of rule (R) and a lack of
knowledge (K). Each problem is marked with the reason of failure.

for it. The discussed examples involve true and false proofs and false neutrals drawn
from SICK-train and FraCaS. False positives are due to errors in the CCG derivations,
ambiguous entailment problems or the multi-sense approach. The reasons behind false
neutrals are

6.4 Evaluation & comparison

After the learning phase, we are ready to evaluate the prover against the datasets and
compare the results to related systems. Evaluation is carried out on the relevant sections
of FraCaS and SICK-test, the latter being unseen during the adaptation and the develop-
ment. For the evaluation LangPro uses the best configuration that was obtained after the
learning. In particular, it represents a combination of ccLangPro and easyLangPro, where
both provers employ WordNet, all-sense approach, the efficient criterion (5), the strong
aligner and the rule application number of 400. Apart from quantitative comparison, we
also make qualitative comparison of our prover with related systems.

6.4.1 Based on FraCaS
We have adapted the prover to the FraCaS sections for generalized quantifiers (GQs), plu-
rals, adjectives and attitudes.12 The evaluation measure of coLangPro for each applicable
section are presented in Table 6.11 while the confusion matrix is in Table 6.8. There
are only three false proofs among the FraCaS problems. They are due to wrong parsing
and ambiguous sentences (see §6.3). According to the results, reasoning over monotonic
features of GQs comes easily to the prover. Only four problems from 74 were classified
wrongly: CCG derivations are responsible for three of them while one problem was not
proved as it assumed the universal reading of a bare plural.

The section for plurals represents a tough portion for the prover as it contains am-
biguous conjoined noun phrases, e.g., “Exactly two lawyers and three accountants”, and

12The section for ellipsis was dropped out due to poor performance of the CCG parsers. The rest of the
sections for anaphora, comparatives, temporal reference and verbs were omitted as these phenomena are
not modeled in the natural tableau system yet. For instance, in case of temporal reference and verbs, one
needs to model time and aspect in the natural tableau system.

6.4. EVALUATION & COMPARISON 173

Sections #Prob
coLangPro –HOGQ

Prec% Rec% Acc% Acc%
1 GQs 74 98 93 95 89
2 Plurals 33 89 86 73 70
5 Adjectives 22 100 67 77 77
9 Attitudes 13 100 89 92 92

1,2,5,9 142 96.1 81.3 86.6 82.4

Table 6.11: Evaluation of coLangPro and coLangpro−HOGQ for each applicable section

different readings of bare plurals, e.g., universal, quasi-universal (i.e. almost every) and
strictly more than one. There are also problems with the words, e.g. “another” and
“likely”, semantics of which are not yet handled properly by the prover. The prover ac-
counts for subsective, intersective and privative adjectives in a simple and adequate man-
ner. Wrongly classified problems about adjectives are due to comparative constructions
found there. Only one problem in the section of attitudes was not proved. The reason is
mistakes comping from the parsers. 13

An advantage of a rule based system with high accuracy is that it can be used to
evaluate data. In particular, with the help of the prover, we check the FraCaS section on
how representative they are for higher-order GQs (HOGQs). To do so, we replaced all
occurrences of most, several, many, s and the with the indefinite a in LLFs. The GQs with
downward monotone properties, e.g., few, every and no, were left intact. In this way we
obtain the prover LangPro–HOGQ which is incapable to properly handle HOGQs. Despite
this shortcoming, LangPro–HOGQ achieves overall accuracy of 82.4% over the applicable
sections (see Table 6.11). Compared to LangPro, only six problems were misclassified:
five and one from the sections 1 and 2 respectively. If we do not substitute the, which
allows co-reference of certain NPs, from these six problems four are solved—increasing
the accuracy to 85.2%. In this way, only FraCaS-56 and 58 are sensitive to this change,
which are falsely proved by LangPro–HOGQ. This shows that FraCaS, despite its dedicated
section to GQs, is not representative enough for HOGQs, like “many” and “most”. A
system which does not distinguish indefinite NPs from these HOGQs can also achieve
high results on the dataset.

GOLD: neut; FraCaS-56

Many British delegates obtained interesting results from the survey

Many delegates obtained interesting results from the survey

13The current version of coLangPro differs from coLangPro∗, the version of the prover presented in
Abzianidze (2016), only in two aspects: the usage of the efficiency criterion and treatment of adjectives.
coLangPro employs the efficient criterion (5) while coLangPro∗ uses the default efficiency criterion (see
§6.2.2). From the viewpoint of adjectives, compared to coLangPro, coLangPro∗ more tends to treat adjec-
tives as intersective. Due to these differences the provers disagree in 4 problems. Moreover, coLangPro
classifies two more problems correctly than coLangPro∗, e.g., FraCaS-21 is proved due to the efficient
criterion (5).

174 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

Sec (Sing/All)
Single-premised (Acc %) Multi-premised (Acc %) Overall (Acc %)

BL NL07,08 LS P/G NLI T14a,b M15 LP BL LS P/G T14a,b M15 LP BL LS P/G T14a,b M15 LP
1 GQs (44/74) 45 84 98 70 89 95 80 93 82 93 57 50 80 80 97 73 97 50 62 85 80 95 78 95
2 Plur (24/33) 58 42 75 - 38 - 67 75 67 - - 67 67 61 - - 67 73
5 Adj (15/22) 40 60 80 - 87 - 87 87 43 - - 29 57 41 - - 68 77
9 Att (9/13) 67 56 89 - 22 - 78 100 50 - - 75 75 62 - - 77 92
1,2,5,9 (92/142) 50 - 88 - - - 78 88 56 - - 66 84 52 - - 74 87

Table 6.12: Comparison of RTE systems tested on FraCaS: LP (coLangPro), NL07 (Mac-
Cartney and Manning, 2007), NL08 (MacCartney and Manning, 2008), LS (Lewis and
Steedman, 2013) with Parser and Gold syntax, NLI (Angeli and Manning, 2014), T14a
(Tian et al., 2014), T14b (Dong et al., 2014) and M15 (Mineshima et al., 2015). BL is a
majority (ENTAILMENT/YES) baseline. Results for non-applicable sections are strikeout.

GOLD: neut; FraCaS-58

Most Europeans who are resident in Europe can travel freely within Europe

Most Europeans can travel freely within Europe

In Table 6.12, the performance of LangPro is compared to the other RTE systems that
have been tested on the single or multi-premised FraCaS problems. Since the FraCaS data
is small and the problems are usually seen during system development, the comparison
should be understood in terms of an expressive power of a system and the underlying the-
ory. The comparison shows that the natural tableau system and LangPro improve upon the
related systems and methods almost on every applicable section. Our approach succeeds
in deep reasoning over both single-premised and multi-premised entailment problems.
Below we briefly characterize the related approaches and systems and compare to ours.

The natural logic approach by MacCartney and Manning (2007, 2008); MacCartney
(2009) models monotonicity reasoning with the exclusion relation. It also accounts for
implicatives and factives. Given a premise p and a hypothesis h, the approach employs a
categorial grammar style parse trees tp and th as a semantic representation. A sequence
of atomic edits (i.e. insertion, deletion and substitution of lexical entries) transforming p
into h is used as a guide to reasoning. Then tp is gradually transformed into th following
the sequence. While doing so, for each atomic edit, the corresponding atomic entailment
relation is calculated. The final entailment relation is obtained by joining the atomic ones.
Angeli and Manning (2014) use the similar approach but model the transformation of p
into h elegantly in terms of a finite-state automaton, where the transitions between states
are guided by atomic edits. The latter approach does not employ parse trees that makes it
more robust but imprecise.

Lewis and Steedman (2013) use first-order logic representations while combining log-
ical and distributional semantics. The former is used for modeling function words, e.g. de-
terminers, conjunctions and negation, while the latter models meaning of content words,
e.g., verbs and nouns. Similarly to Bos et al. (2004); Bos (2008), the approach translates
surface forms into first-order logic formulas. All n-ary (n > 2) predicates are binarized—
identifying with a conjunction of binary relations between each pair of arguments. Lewis
and Steedman (2013) employs distributional relation clustering for binary relations. The
clustering is facilitated by tagging entities with types like PER, DAT and LOC. As a re-
sult the approach can map a verbal predicate write〈PER, Book〉 and a relational noun

6.4. EVALUATION & COMPARISON 175

author〈PER, Book〉 to the same relation cluster. Lewis and Steedman (2013) uses the
FraCaS section 1 to evaluate the formal component of the system. Reasoning over first-
order logic formulas is carried out with the help of the Prover9 (McCune, 2010). Taking
into account that the section 1 is not representative enough for HOGQ, as we have shown
above, it is not surprising that their results are decent (see LS with the parser’s and gold
derivations in Table 6.12).

Like the previous approach, Mineshima et al. (2015) also obtains semantic represen-
tation in the style of Bos et al. (2004) but they maintain lexical terms with higher-order
semantics. For example, most

(
λx. man(x)∧ sleep(x), λx. snore(x)

)
is a semantic rep-

resentation of “every man who sleeps snores”. On the other hand, “every”, “a” and “the”
are modeled as the first-order universal (∀) and existential (∃) quantifiers respectively. In
this way, they employ higher-order logic but most of the fragment used for natural seman-
tics is of first-order. Their inference system CCG2λ is implemented in a proof-assistant
Coq (Bertot et al., 2010), which augments the first-order inference of Coq with additional
axioms and inference tactics for natural logic constructions. For instance, the upward
monotonicity property of the second argument of most is captured with the following
axiom:

∀F∀G∀H
(
most(F,G)→

(
∀x(Gx→ Hx)→ most(F,H)

))
(14)

Tian et al. (2014) uses abstract denotations for linguistic semantics what are obtained
from Dependency-based Compositional Semantic trees (Liang et al., 2011). The abstract
denotations are formulas constructed with the operators of relational algebra. For ex-
ample, man ∩ πSUBJ(sleep) is the abstract denotation for “men who sleep”, where πSUBJ

is a projection onto domain of SUBJ. Semantics of declarative sentences are modeled
via statements over abstract denotations, e.g., (15) is a statement for “every man reads a
book”, where W is a universal set containing all entities and × is the Cartesian product.
The semantic representation resembles a version of description logic.14

man ⊂ πSUBJ

(
read ∩ (WSUBJ × bookOBJ)

)
(15)

They implement an inference engine over statements, called TIFMO, which employs ax-
ioms encoding properties of algebraic operators and lexical entries. Dong et al. (2014)
further extends the engine to better account for the properties of GQs, in particular, mono-
tonicity, conservativity and interaction with universal and existential quantifications.

The natural tableau system and LangPro differs from the above mentioned approaches
and systems in several aspects. The natural logic of MacCartney and Manning (2008)
heavily hinges on a sequence of edits which is in an obscure relation with formal logic.
Hence, the approach cannot process multi-premised problems properly. Due to this, also
some simple logical relations like de Morgan’s law for quantifiers, are not captured by
it: MacCartney (2009) shows that it is impossible to entail “some birds do not fly” from
“Not all birds fly”. It is also unclear how the sequence edit-driven approach can account
for paraphrases that are obtained by swapping words rather than deleting, inserting or
substituting them; consider passive alternations. On the other hand, our approach and

14Abstract denotations share similarity with LLFs if their operators are seen as certain lexical terms,
variables or term forming operators: ⊂ as every, π as the λ-abstraction, ∩ as the function application and
W as a variable.

176 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

the prover account for these issues in a natural way. A tableau proof of the mentioned
entailment is given in Figure 2.7.

The other three approaches employ formal logics and are able to reason over multiple
premises. All of them, including our approach, obtain semantic representations from syn-
tactic parse trees. The natural tableau system significantly differs from these approaches
in terms of a semantic representation language. LLFs are similar to CCG derivations with
non-directional categories. Hence, compared to HOL, FOL or abstract denotations, their
automatic generation is simpler. Moreover, shallow reasoning on surface forms comes
easy to LangPro due to resemblance of LLFs and surface forms. On the other hand, it
can be thought that while logical forms come at a higher price for these approaches, their
inference engines are expected to be leaner.

All in all, our system and approach differ from the above mentioned ones in their
unique combination of expressiveness of high-order logic, naturalness of logical forms
(making them easily obtainable) and flexibility of a semantic tableau method. All these
properties together allow to model shallow and deep reasoning successfully in a single
system.

6.4.2 Based on SICK
We evaluate both parser-specific provers and the combined LangPro on SICK-test which
was held out throughout the whole learning phase. The provers use the best configuration
observed in the development procedure (§6.2.2).15

The obtained results for all three provers are in Table 6.13a while the confusion matrix
of the combined LangPro is presented in Table 6.13b. The similar results of the C&C
and EasyCCG based provers show that the LLF generator was not fitted to the C&C
derivations during the adaptation process (see §6.2.1). Like in the case of SICK-train, the
combination of parser-specific provers gives to each prover about 1% increase in accuracy.
The contribution of each prover is almost equal and there is no conflict in their positive
answers (i.e. entailment vs contradiction). The accuracy of coLangPro is slightly lower
than for SICK-train. This shows that the training and test portions are homogeneous.
Marelli et al. (2014b) reports 84% of the inter-annotator agreement for SICK, i.e. on
average major annotations represent 84% of total annotations per problem. The latter
likely suggests that 84% is an approximate upper-bound for the dataset. Taking this into
account, the overall accuracy of the prover is extremely high, especially give that the
prover only uses WordNet relations as a knowledge base.

The combined prover confuses proofs only for two problems. In both cases, a prob-
lem encoding a contradiction was proved as entailment. Since this kind of cases are of
great interest, we discuss them below. In SICK-7709, C&C and EasyCCG analyze the
conclusion in a wrong way that causes the entailment relation. In particular, the second
negation is under the scope of the first one. Informally speaking, the conclusion obtains
the semantics equivalent to “It is false that the girl is smiling and not wearing the glasses”.
The latter semantics is entailed from “the girl is wearing the glasses” which itself is as-
serted by the premise. In other words, the problem resembles the propositional entailment
S ∧W � ¬(S ∧ ¬W).

15Notice that additionally the prover treats unknown nominal modifiers as intersective since this config-
uration boosts the performance on the training dataset.

6.4. EVALUATION & COMPARISON 177

PPPPPPPPPProver
SICK test (4927 problems)

Prec% Rec% Acc%
Baseline (majority) - - 56.69
ccLangPro 97.47 57.73 81.08
easyLangPro 97.47 57.73 81.08
coLangPro 97.35 60.31 82.14

(a) Precision, recall and accuracy of the provers
obtained on SICK-test

PPPPPPPPP
Gold
SICK-test

LangPro
Ent Cont Neut

Entailment 805 0 609
Contradiction 2 482 236
Neutral 26 7 2760

(b) Confusion matrix of coLangPro (i.e.
ccLangPro+easyLangPro) on SICK-test

Table 6.13: Evaluation results of the versions of LangPro on unseen SICK-test

LP: E G: C SICK-3913

There is no group of
[
peopleN [dancingVPng]N\N

]
N

A group of people are dancing

LP: E G: C SICK-7709

The blonde girl with the pink top is smiling and wearing funny glasses with a large nose attached

The blonde girl with the pink top is not smiling and not wearing funny glasses with a large nose attached

The reason for the entailment proof of SICK-3913 is twofold (see the proof in Fig-
ure 6.5). First, the parsers make a mistake and analyze “people dancing” as a constituent
in the premise. From a semantics point of view, this mistake is not crucial but it is deci-
sive for the syntax. Due to this mistake, it is not possible to align terms corresponding to
“a group of people”, otherwise the proof for contradiction is straightforward. Second, the
rigidity of syntactic types—an NP in a PP takes scope over the NP to which PP is attached.
In this way, “people” has wide scope in the LLFs obtained from the CCG derivations. This
allows the premise to introduce an entity c for a person that dances. Taking the entity c
into account, the conclusion and (∃GRP) infer that c is not dancing. This inference is
licensed by the intuition behind (∃GRP)—whatever is case for “a group of A”, the same
is for A. On the side of the prover, we could prevent this kind of false proofs by having
more flexible scope ordering in LLFs. The latter is left for future research.

In Table 6.14, we compare the results of LangPro to other RTE systems that were
evaluated on SICK. In Table 6.14a we present the results of several (top) RTE systems
from the SemEval-14 task16 (Marelli et al., 2014a). The median accuracy in the task
was 77.1% and only five systems were able to overcome the accuracy threshold of 80%.
Along with these top systems, we also include UTexas (Beltagy et al., 2014) due to its
logic-based nature. In Table 6.14b, there are several relevant systems that were evaluated
on SICK outside the SemEval task. For each system in Table 6.14a, we give its precision,
recall and accuracy. To show the impact of our prover on other systems in terms of recall,
we present the improvement (+LP) it gives to a system. In this experiment, a system
blindly adopts the entailment and contradiction judgments of LangPro.17

16The full name of the task is Evaluation of Compositional Distributional Semantic Models on Full
Sentences through Semantic Relatedness and Textual Entailment. More details about the task, including the
dataset and evaluation results, are available at http://alt.qcri.org/semeval2014/task1/

17The improvement scores are presented only for the systems participated in SemEval-14 as their

http://alt.qcri.org/semeval2014/task1/

178 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

1 s (who dance person) (λx. no (group (of x)) (λy. be y there)) : [] : T
2 s person (λx. a (group (of x)) (be dance)) : [] : F

3 who dance person : [ce] : T
4 (λx. no (group (of x)) (λy. be y there)) : [ce] : T

5 no (group (of c)) (λy. be y there) : [] : T

6 dance : [c] : T
7 person : [c] : T

8 person : [c] : F

10 ×

9 (λx. a (group (of x)) (be dance)) : [c] : F

11 a (group (of c)) (be dance) : [] : F

12 be dance : [c] : F

13 dance : [c] : F

14 ×

∃T[1]

λ<[4]

∧[3]

×v[7,8] λ<[9]

∃GRP[11]

AUX[12]

×v[6,12]

∃nF [2,c]

Figure 6.5: A tableau wrongly proves SICK-3913 as entailment instead of contradiction.
The LLFs are obtained from the C&C derivations. LLFgen models “people” as s person.

The four top systems at the SemEval task employ machine learning classifiers to judge
a pair of sentences for an entailment relation. Illinois-LH (Lai and Hockenmaier, 2014)
associates each problem with 10 features (e.g., related to negation, antonyms, alignment,
distributional and denotational similarities) and classifies a set of features with the Maxi-
mum Entropy classifier. ECNU (Zhao et al., 2014) extracts 72 features (involving seman-
tic and surface text similarities, text difference measures, corpus based features, etc.) for
each premise-conclusion pair and based on them a problem is classified with support vec-
tor machine (SVM) method. UNAL-NLP (Jimenez et al., 2014) uses Soft Cardinality for
additional features and decision tree with grafting for classification. SemantiKlue (Proisl
et al., 2014) employs 39 features measuring semantic similarity between two texts, where
a word-to-word alignment plays crucial role. The set of features are then classified by
SVM. Arguably these approaches do not intend to model human reasoning but to identify

runs are available online at http://alt.qcri.org/semeval2014/task1/index.php?id=
data-and-tools

http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools
http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools

6.4. EVALUATION & COMPARISON 179

SemEval-14 systems Prec% Rec% Acc% (+LP) NWS%
Baseline (majority) - - 56.69 39.7
Illinois-LH 81.56 81.87 84.57 (+0.65) 72.8
ECNU 84.37 74.37 83.64 (+1.77) 72.7
UNAL-NLP 81.99 76.80 83.05 (+1.48) 71.2
SemantiKLUE 85.40 69.63 82.32 (+2.84) 71.5
The Meaning Factory 93.63 60.64 81.59 (+2.78) 73.0
UTexas (Prob-FOL) 97.87 38.71 73.23 (+9.44) 62.5
LangPro 97.35 60.31 82.14 74.8

(a) Comparison of LangPro to the top five systems of the
SemEval-14 task on SICK-test. Beside the standard measures,
we also present the increase in accuracy (+LP) LangPro gives to
each system. NWS is a normalized weighted score which is cal-
culated according to the weights presented in Table 6.14c

RTE systems Acc%
Prob-FOL 76.52
Prob-FOL∗+Rules 85.10
Nutcracker+PPDB 79.60
ABCNN-3 86.20
LSTM RNN+SNLI 80.80

(b) Other related systems
evaluated on SICK-test

Gold\System E C N
Entailment 2 −2 0
Contradiction −2 2 0
Neutral −1 −1 1

(c) Weights for each type of
classification

Table 6.14: Comparing LangPro to other RTE systems tested on SICK-test

properties that are successful in recognition of textual entailments. For example, one of
the regularities Lai and Hockenmaier (2014) report is that 86% of the contradiction prob-
lems are recognizable based on presence of a negative word in the sentences. After we
add such an ad-hoc (and trivial) classifier for negative words to LangPro, the accuracy
reaches 83%.

The Meaning Factory (Bjerva et al., 2014) is mainly based on Nutcracker. The latter
dates back to Bos and Markert (2005). Nutcracker employs the wide-coverage semantic
processing tool Boxer (Bos, 2008), in combination with the C&C tools, and first produces
Discourse Representation Structures of DRT (Kamp and Reyle, 1993) and then translates
them into FOL (Curran et al., 2007). Reasoning over FOL formulas is carried out using
off-the-shelf FOL theorem provers and model builders. Bjerva et al. (2014) reports that
Nutcracker (with WordNet by default) achieves accuracy of 77.6% on SICK-test. Adop-
tion of the paraphrases from PPDB (Ganitkevitch et al., 2013) gives the system 2% boost
in accuracy. Finally, the Meaning Factory represents augmentation of Nutcracker with
an SVM classifier. The classifier tries to overcome the problem of low recall; it reclassi-
fies the problems that were judged by Nutcracker as neutral. For this, the classifier takes
a relatedness score as an input from the semantic similarity system—the second system
presented in Bjerva et al. (2014).

The RTE system UTexas (Beltagy et al., 2014) also uses FOL representations ob-
tained from Boxer but compared to Nutcracker it employs probabilistic FOL with Markov
Logic Networks (MLN). Prob-FOL (Beltagy and Erk, 2015) and Prob-FOL+Rules (Belt-
agy et al., 2015) are more advanced versions of the same RTE system. The latest version
of the system (Beltagy et al., 2015) solves an RTE problem 〈T,H〉 as follows. Like our
approach, it employs both C&C and EasyCCG parsers to obtain First-Order Logic (FOL)
formulas t and h through Boxer. Reasoning over the formulas amounts to calculate condi-
tional probabilities P (h|t,KB,Wt,h) and P (¬h|t,KB,Wt,h), where KB is a knowledge
base and Wt,h is the world configuration—it depends on t and h and lists constants and
prior probabilities of atomic formulas. These numbers are then mapped to a final entail-
ment relation by an SVM classifier. A main reason for the high results Beltagy et al.
(2015) obtain on SICK is their KB construction. In addition to WordNet, PPDB and a

180 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

few hand-coded rules, the KB contains automatically extracted, classified and weighted
rules from the dataset. The rules are extracted from SICK-train using a modified version
of Robinson resolution for FOL. Then a classifier is trained over these extracted rules in
order to identify such rule as entailment, contradiction or neutral. The extracted rules are
often long and represent almost solutions for the SICK problems.18 For example, if we
consider the false neural problems in Table 6.10, their KB directly provides the key rela-
tions for the problems, where numbers denote the position of a word in the corresponding
SICK-problem:

“man-2 woman-5”→ “two-1 persons-2” for SICK-4275
“container-6 made-7 of-8 plastic-9”→ “plastic-6 container-7” for SICK-4553

“hedgehog-5”→ “small-5 animal-6” for SICK-4974

The methods using neural networks have also been successful on the dataset. Bow-
man et al. (2015a) achieve their best results with the Long Short-Term Memory Recurrent
Neural Network (LSTM RNN). The model is first trained on the Stanford Natural Lan-
guage Inference (SNLI) corpus, containing more than 500K RTE problems, and then on
SICK-train. Recently, Attention Based Convolutional Neural Network (ABCNN) of Yin
et al. (2015) achieved the highest score on the dataset. In addition to word embeddings,
their model employs features related to word overlaps and a presence of negation words.

The performance of LangPro qualitatively differs from the results obtained at the
SemEval-14 task. Our prover turns out to be extremely reliable with its proofs. It
demonstrates almost perfect precision (>97%) while being competitively accurate. This
is achieved while using only WordNet for the KB, in contrast to other systems employing
several resources. When compared to the Meaning Factory, the system with high pre-
cision, LangPro allows three times less false positives—classifying neutral problems as
entailment or contradiction. To show this difference with the other systems, we suggest
a normalized weighted score (NWS) which takes into account bonuses and penalties for
true positives and false positives respectively. The weights for each type of classification
is given in Table 6.14c.19 For example, according to the weights, it is better to classify a
contradiction problem as neutral rather than as entailment. Weighted scores are normal-
ized by the maximum score, which is obtained by the gold standard. Based on the NWS,
our prover gets the highest results as it makes the least errors in conjunction with high
accuracy.

From a practical point of view, it is interesting to see where the reasoning with the
natural tableau system outperforms other approaches. In Table 6.15, we give some of
those problems fromSICK-test that are correctly proved by LangPro but, on the other
hand, are wrongly classified by all the top five systems of the SemEval task. Among other
problems concerning Booleans, e.g., SICK-247, and verb sub-categorization, e.g., SICK-
3527, 3570, surprisingly there are also some simple problems too, like SICK-2895, 3806
and 4479.

Our approach significantly differs from most of the above presented methods as we
employ logical forms for reasoning rather than a bunch of features extracted from an en-

18The rules are available at https://github.com/ibeltagy/rrr
19The presented weights reflects a simple intuition and is not based on some empirical evidence or ex-

periment. Moreover, we could tweak the weights by taking into account the distribution of gold labels in
the dataset. We owe the idea of using weighted score for comparison to Jan Sprenger.

https://github.com/ibeltagy/rrr

6.4. EVALUATION & COMPARISON 181

ID G Premise Conclusion

247 C
P: The woman is not wearing glasses or a headdress
C: A woman is wearing an Egyptian headdress

406 E
P: A group of scouts are hiking through the grass
C: People are walking

2895 C The man isn’t lifting weights The man is lifting barbells

3527 E
P: A person is jotting something with a pencil
C: A person is writing

3570 C The piece of paper is not being cut Paper is being cut with scissors

3608 N
P: A monkey is riding a bike
C: A bike is being ridden over a monkey

3806 E A man in a hat is playing a harp A man is playing an instrument
4479 E The boy is playing the piano The boy is playing a musical instrument

Table 6.15: The problems from SICK-test that were proved correctly by both ccLangPro
and easyLangPro but failed by all the top five systems at the SemEval-14 task.

tailment problem. Many of those approaches are also crippled for reasoning over multiple
premises. Compared to Nutcracker and Prob-FOL, LangPro and the underlying natural
tableau system differ from them in three main aspects:

(i) Our approach contributes to the project of natural logic, which means that reasoning
is carried out on logical forms that resemble surface forms and contain elements of
natural language syntax. As a result, obtaining such logical forms from linguistic
expressions is cheaper compared to translation into FOL.

(ii) The underling higher-order logic of LLFs is more expressive than FOL. For exam-
ple, it can model GQs and subsective adjectives in a straightforward way.

(iii) Our system and prover are based on a semantic tableau method which represents an
intuitive search for a situation satisfying a set of formulas. The tableau system can
be seen as a model builder and a prover at the same time. Due to these properties,
our approach is self-contained and does not appeal to other systems for reasoning.

On the other hand, the two approaches have their own merits. They both obtain FOL
formulas from Boxer, which means that the pronouns in the formulas are already resolved
with the help of Discourse Representation Theory. While Prob-FOL can easily integrate
distributional semantics and produce fuzzy judgments, Nutcracker does not need to worry
about automated reasoning as there are several off-the-shelf theorem provers available for
FOL and the separate community is lively working on that issue.

We have presented the evaluation results of the prover on the FraCaS and SICK
datasets. The natural tableau prover is successful in deep reasoning over multi-premised
problems and in shallow reasoning for relatively short sentences. The results demonstrate
high accuracy with almost perfect precision meaning that if the prover finds a proof there
is less than 3% chance that it is wrong. The high precision is explained by the set of sound
inference rules. On the other hand, high recall—unusual for rule-based systems—is ex-
plained by the ability of shallow reasoning and the inventory of rules that covers ample
amount of syntactic constructions and semantic phenomena.

182 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

6.5 Conclusion
In the chapter we have described the learning phase that employs the FraCaS and SICK
datasets. After the phase, LangPro has been evaluated against the certain sections of
FraCaS and the unseen test portion of SICK. Both evaluation results are competitive with
an almost perfect precision. The prover rarely finds false proofs and sometimes false
proofs indicate noisy gold labels. On FraCaS, the prover demonstrates state-of-the-art
semantic competence while on SICK there is less than 2% gap between performances of
human and LangPro.

The FraCaS sections such as anaphora, ellipsis, comparatives and temporal refer-
ence were excluded since currently we do not account for these phenomena in the nat-
ural tableau system. In contrast to other RTE systems, LangPro have not learned much
from the training portion of SICK. We used this portion only for development purposes—
mainly measuring the contribution a certain parameter makes to the performance. The
reason for this is that the adaptation procedure is expensive. At this moment, it requires
assistance of an expert to teach the prover how to solve certain entailment problems.20

Despite the high price of learning, learned tableau and term fixing rules are reusable for
future applications.

We would like to emphasize that the high results on the datasets were achieved with a
very simple pipeline: a parser component, a post-processor of parse trees and an inference
engine backed up with WordNet as a KB. This fact has two direct implications. First, it
shows a high reasoning capacity of the natural tableau system. Neither use of a CCG
parser for wide-coverage semantics Bos et al. (2004) nor WordNet as a lexical knowledge
base are novel. But the tableau system for natural logic is the only new component in this
intuitive and simple pipeline. So, it gives evidence that the success of the simple pipeline
lies in the natural tableau system. Second, we showed that with a powerful reasoning
engine it is possible to achieve high results in the RTE task with shallow semantic repre-
sentations, such as LLFs, and with a lexical database, such as WordNet. Our experiment
on the SICK showed that WordNet relations (with several additional relations specific to
the dataset) provide sufficient knowledge for achieving competitive results on SICK.

It is hard to scale up a purely logic-based approach to wide-coverage reasoning, and
many could be skeptical about the current approach and its wide-coverage nature. But we
would like to stress the hybrid reasoning skills of our approach. On one hand, the natural
tableau system carries out shallow reasoning with the help of monotonicity reasoning and
tableau rules that operates on common syntactic constructions. On the other hand, it is
also capable of deep reasoning via the rules that infer semantic terms from syntactic ones,
i.e. shifting from shallow structures to deep structures. In fact, the high results on the
FraCaS sections and the SICK dataset demonstrate success of our approach in deep and
shallow reasoning, respectively. Moreover, we are not aware of a wide-coverage model for
natural language inference that combines shallow and deep logical reasoning on the same
level. It is also an interesting fact that before LangPro, no RTE systems were evaluated
on both FraCaS and SICK datasets.

20In order to overcome this shortcoming to some extent, as future work we suggest automatic lexical
knowledge acquisition from data (§7.2.2).

APPENDIX E 183

Appendix E

Algorithm 4: A human-assisted adaptation procedure of LangPro to a textual en-
tailment problem. The underlined expressions and commands are determined and
carried out respectively by an expert.

Input: A list of premises P , a hypothesis h and a Gold answer
Output: A Boolean value indicating whether the problem is classified correctly

1 try
2 ProAnswer ← ccLangPro(P, h) // LangPro/2 (see algorithm 3) with C&C

3 exception // If an exception is raised by LangPro/2

4 case "Entailment& contradiction" // Indeterminacy case

5 go to line 11;
6 otherwise // Involves the case when a parser does a mistake; see algorithm 3

7 return FALSE

8 if Gold = ProAnswer then
9 return TRUE // LangPro guesses the gold answer

10 else
11 switch Reason do // Explore the reasons for misclassification

12 case at least one of LLFs is not correct
13 if FixTerm/1 can be improved then // See algorithm 3 for FixTerm/1

14 Improve FixTerm/1
15 go to line 1
16 else
17 return FALSE

18 case A semantic relation is missing in the KB
19 Add the missing relation in the KB
20 go to line 1
21 case A rule is missing in the IR
22 Add the missing rule in the IR
23 go to line 1
24 case An information is missing in the signature
25 Add the missing information in the signature
26 go to line 1
27 otherwise
28 return FALSE

184 CHAPTER 6. EVALUATION OF THE THEOREM PROVER

Chapter 7

Conclusion

The chapter concludes the thesis by summarizing its contributions and sketching several
directions of future work. First, we list three main contributions of the thesis: extension
of the natural tableau system, automatic generation of logical forms and automated the-
orem prover for natural language. Then several directions of future work are discussed,
where each direction is provided with a short description or anticipated issues. The de-
scribed future work covers lexical knowledge acquisition, a possible combination with
distributional semantics, employing additional textual entailment datasets and obtaining
the logical forms from dependency trees. The chapter ends with final remarks.

7.1 Summing up

In the thesis, we have presented the natural tableau system for a version of natural logic,
and based on it a tableau theorem prover for natural language, called LangPro, has been
implemented. The natural tableau system and the theorem prover prove natural language
arguments by refuting them: they search a counterexample for the argument, i.e., a situ-
ation which makes the premises true but the conclusion false. The prover demonstrates
competitive results and high semantic competence on specific textual entailment datasets.
The employed formal natural logic (Muskens, 2010) is higher-order type logic. The terms
of the logic, called Lambda Logical Forms (LLFs), represent logical forms of linguistic
expressions, and they resemble linguistic surface forms. Below we summarize the thesis
by listing its three main contributions.

We have extended the tableau system of (Muskens, 2010) in order to make it robust
and suitable for reasoning over wide-coverage natural language text. The extension is
carried out in three directions: (i) integrating syntactic types in the type system; (ii) in-
troducing an extra slot in the format of tableau entries which facilitates accommodation
of event semantic and captures a link between remote modifiers, e.g., adverbial phrases,
and their heads; and finally (iii) the collection of tableau rules that enable reasoning over
open-domain text. The inventory of tableau rules counts around 80 rules. Most of the
rules, apart from the rules found in the initial tableau system (around 25), are designed
manually in a data-driven fashion. We employed the (portions of) RTE datasets and the
LangPro theorem prover to facilitate search of tableau rules. The inventory consists of
two categories of rules concerning formal and linguistic elements. In particular, the for-

185

186 CHAPTER 7. CONCLUSION

mal elements involve Booleans, monotonic operators, argument and modifier lists, events,
semantic inclusion, exclusion and exhaustion, (anti-) additive operators and projectiv-
ity properties. On the other hand, the linguistic elements cover adjectives, prepositional
phrases, passive constructions, verb subcategorization, definite descriptions, open com-
pound nouns, light verb constructions, attitude verbs, expletives and copula.

Theorem proving over wide-coverage natural language sentences is impossible with-
out their logical forms. For this reason, we designed and implement an LLF generator
which produces logical forms from Combinatory Categorial Grammar (CCG) (Steedman,
2000) derivations. First, CCG derivations for linguistic expressions are obtained from
the state-of-the-art CCG parsers: C&C (Clark and Curran, 2004b, 2007) and EasyCCG
(Lewis and Steedman, 2014a). Then the derivations are transformed into λ-term alike
structures, called CCG terms. The latter terms are made further similar to λ-terms and
more semantically adequate by eliminating type-changing rules and correcting systematic
mistakes of the parsers via collected fixing rules, respectively. The final stage in the gen-
eration of LLFs is to type-raise quantified noun phrases in a corrected term and to treat
them as generalized quantifiers (GQs).

An implemented tableau theorem prover for the natural logic, called NLogPro, is
faithful to the developed natural tableau system. While building a tableau proof, NLog-
Pro maintains a list of branches and an optional tableau tree. The latter structure facilitates
reading a flow of tableau proofs. In addition to the collected tableau rules, the prover em-
ploys derivable rules—the rules that represent shortcuts for several rule applications. The
use of the derivable rules decreases size of tableau proofs and makes it easier to read the
proofs. Combining NLogPro with the LLF generator results in a tableau theorem prover
for natural language, LangPro. The prover demonstrates state-of-the-art semantic com-
petence on the certain sections of the FraCaS dataset (Cooper et al., 1996). Using only
WordNet Miller (1995) for the Knowledge Base (KB), LangPro obtains competitive re-
sults on an unseen portion of SICK Marelli et al. (2014b). This fact shows that with a
purely rule-based reasoning and a default lexical database, such as WodNet, it is possible
to achieve the high results comparable to state-of-the-art RTE systems, which employ ma-
chine learning techniques combined with lexical, phrasal or image databases and statistics
from language corpora.

The thesis contributes to the research fields of computational semantics and natural
language processing (NLP) as it tackles the problem of the latter with the methods from
the former. In particular, we employ a formal logic for linguistic semantics and theorem
proving for wide-coverage reasoning. In this way, our work supports the research line
that scales up formal semantics for NLP applications. Furthermore, our theorem prover
represents a novel application of natural logic that is backed up with shallow and formal
logical reasoning at the same time. Before our work, natural logic in NLP community
was understood as a mode of shallow reasoning which is based on phrase substitutions
and is limited to single-premised arguments.

7.2. FUTURE WORK 187

7.2 Future work
A theory that attempts to account for an immense problem such as reasoning in natural
language unsurprisingly has much of future work and applications. Below we mention
future work on the natural tableau that focuses on the four aspects concerning robustness
and extension of the approach. In particular, first we discuss applying our natural tableau
system and theorem prover to other (recognizing textual entailment) RTE datasets that
contain problems of a different kind than FraCas and SICK do. Then we describe an
automatic way of acquiring lexical knowledge from RTE datasets with the help of the
theorem prover. A possible architecture for the prover is presented that employs a classi-
fier for lexical knowledge and incorporates distributional semantics. In the end, we give
an example of obtaining LLFs from widely used structures such as dependency trees.

7.2.1 Trying other RTE datasets
Up to now we have used the FraCaS (Cooper et al., 1996) and SICK (Marelli et al., 2014b)
datasets for developing and evaluating the natural tableau system and the theorem prover.
Although the datasets are collected with different goals, they still share similarities: they
contain short sentences (on average 10 words per sentence) with a relatively simple struc-
ture, the sentences are artificially constructed and the datasets require no world, i.e. ency-
clopedic, knowledge (e.g., Tbilisi is a capital of Georgia).

On the other hand, there are other RTE datasets which differ from the above two
and are constructed with different purposes. Since the first RTE challenge Dagan et al.
(2006), series of RTE datasets were collected based on newswire text (see RTE1-1877).
These datasets are considered hard from different perspectives: their problems assume
world knowledge and contain complex sentences that are difficult for syntactic parsing.
The Stanford Natural Language Inference (SNLI) corpus1 (Bowman et al., 2015a) is ini-
tially constricted to enable “a neural network-based model to perform competitively on
natural language inference benchmarks”. The corpus consists of 570K problems and its
sentences are comparable with those of SICK (see SNLI-1). However, its sentences are
manually constricted using crowdsourcing and intuition behind the CONTRADICTION la-
bel is different from the standard one.2

GOLD: ent; RTE1-1877

The English team arrived last night in Lisbon, Portugal, to play its first Euro 2004’s match

Euro 2004 is held in Portugal

GOLD: cont; SNLI-1

Two men on bicycles competing in a race

A few people are catching fish

1http://nlp.stanford.edu/projects/snli/
2The labeling assumes that sentences in a problem are alternative (but possibly distorted) captions of

some hidden image. This primes annotators that the events in the sentences co-refer. Thus, a pair in SNLI-1,
with the original ID 6170429974.jpg#3r1c, is judged as CONTRADICTION since fishing and cycling
events cannot co-refer.

http://nlp.stanford.edu/projects/snli/

188 CHAPTER 7. CONCLUSION

Adapting and evaluating the tableau system and the prover to these datasets will give
insight into two directions. How flexible and robust is the natural tableau theory? And
how the performance of the theorem prover on these datasets compares to the results of
other RTE systems? Concerning the datasets of RTE challenges, three major challenges
are expected: (i) explaining a wide-range of type-changing rules of the CCG parsers, (ii)
designing tableau rules that surmounts parsing errors to some extent, and (iii) acquiring
world knowledge either automatically from the datasets or from knowledge resources. In
case of the SNLI corpus, we need to account for its specific notion of contradiction. For
example, this can be reached by a tableau rule that enforces co-reference of the events
found in an entailment problem.

7.2.2 Acquisition of lexical knowledge

Knowledge acquisition is considered as one of major bottlenecks for RTE systems (Dagan
et al., 2013, p. 7). One can employ off-the-shelf knowledge resources, e.g., WordNet
(Miller, 1995), FrameNet (Baker et al., 1998), VerbNet (Schuler, 2005) or Cyc (Lenat
and Guha, 1989), but they are never enough. The common practice in NLP is that first
an RTE system automatically acquires knowledge from a training RTE data and then the
trained system is evaluated on an unseen test data, of the same kind as the training data.

One way to acquire lexical (and possibly world) knowledge with the help of the natural
tableau theorem proving is to use abduction. Given an RTE problem and its gold label,
first we construct a candidate tableau, i.e. the tableau that is responsible for a correct
guess. Then we find a semantic relation that would close the tableau if we had it in
the KB. For example, consider the false neutral SICK-4974 from § 6.3.3, which is not
proved due to a lack of hedgehog v small animal in the KB. Let us call a node lexical if its
LLF consists of a lexical head term and optional lexical terms modifying the head. Now,
consider all lexical nodes (see Figure 7.1a) that are shared by every open branch of the
candidate tableau of SICK-4974. Put differently, we take all lexical nodes that are found
in the intersection of all open branches. Taking into account the set of closure rules of the
tableau system, the nodes 2 and 3 are the only lexical ones that can close the tableau,
and it is done in combination with hedgehog v small animal, which is actually the missing
lexical knowledge.

GOLD: ent; SICK-4974

Someone is holding a hedgehog

Someone is holding a small animal

GOLD: cont; SICK-5397

A man is removing some food from a box

The man is putting chicken into the container

Skeptics might consider the knowledge acquisition from SICK-4974 trivial, which can
also be carried out with a simple alignment of phrases. Our suggested method also suc-
cessfully leads to the non-trivial knowledge put | remove3 required by SICK-5397: in
Figure 7.1b, inconsistency of the nodes 4 and 6 is the only evidence that leads to a
contradiction proof for the problem.

3put into | remove from is another alternative relation and the choice between them depends on particular
details.

7.2. FUTURE WORK 189

1 personn : [pe] : T

2 hedgehogn : [ae] : T

3 smalln,n animaln : [ae] : F

4 hedgehogn : [he] : T

5 holdnp,vp : [he, pe] : T

(a) Extracted nodes for SICK-4974

1 mann : [me] : T

2 boxn : [be] : T

3 chickenn : [ce] : T

4 [into be] : putnp,pp,vp : [ce,me] : T

5 foodn : [fe] : T

6 [from be] : removenp,pp,vp : [fe,me] : T

(b) Extracted nodes for SICK-5397

Figure 7.1: Examples of lexical knowledge acquisition from branches. The framed nodes
are clues for the missing knowledge hedgehog v small animal and put into | remove from.

Abduction, known as an inference to the best explanation, is often used with weights
or scores in semantic applications in order to select the best knowledge, axiom or assump-
tion (Hobbs et al., 1993; Fowler et al., 2005; Raina et al., 2005). In the described abductive
knowledge leaning, the length of a term can be seen as a primary indicator for the best
lexical knowledge. We believe that the suggested learning method will significantly boost
the performance of LangPro on RTE datasets such as SICK.

7.2.3 Pairing with distributional semantics

Distributional semantics, i.e. vector space semantics (Turney and Pantel, 2010; Erk,
2012), can be easily integrated in the natural tableau system for modeling lexical seman-
tics. The tableau rules are good at breaking down complex phrases into smaller ones and
modeling semantics of functional words such as quantifiers, negation, Boolean connec-
tives and prepositions. On the other hand, distributional semantics are robust on lexical
level when concerning open class words. In this way, we can combine and complement
these two approaches.4

The combination we have in mind is the following. Let us assume a function or a
fuzzy predicate Rel which assigns a weight to a concrete relation p1Rp2, where p1 and
p2 are short terms and R is one of the three semantic relations |, v,`. The function Rel
will work on a lexical level and provide closure rules with lexical semantic relations at
a certain confidence level. For example, a high weight for hedgehog v small animal will
render the nodes 2 and 3 in Figure 7.1a as inconsistent and will lead to the branch
closure. Similarly, a high weight for put | remove will identify the consequences of 4
and 6 in Figure 7.1b as inconsistent. In the end, a closed tableau can be considered as a

4A similar hybrid approach has already been applied by Lewis and Steedman (2013). They combine
first-order logic semantics and distributional clustering at the level of predicate-argument structure. See
§6.4.1 for more comparison of their work to ours.

190 CHAPTER 7. CONCLUSION

Not all politicians who lie has a bad reputation
RB DT NNS WP VBP VBZ DT JJ NN

root

neg

det

nsubj

nsubj

acl det

amod

dobj

Figure 7.2: A dependency tree represented as a directed acyclic graph. Arcs are going
from a head word to a dependent word. Each arc expresses a certain type of dependency.
A verb is a root of a sentential dependency tree.

proof if all the weights of the employed relations or their combination is above a certain
threshold. Weighted relations can also be used to classify entailment problems with a
confidence score.

Though we are not aware of any implementation of the function Rel as such, there are
several works in this direction that attempt to model the v and | semantic relations using
distributional semantics. Kruszewski and Baroni (2015) tried to model (in)compatible
words while the others including Kotlerman et al. (2010); Levy et al. (2015); Shwartz
et al. (2016) focused on the hypernymy/entailment relation.

7.2.4 Generate LLFs from dependency trees

In Chapter 3, we generated LLFs from the CCG (Steedman, 2000) derivations produced
by the CCG parsers C&C (Clark and Curran, 2007) and EasyCCG (Lewis and Steedman,
2014a). The CCG framework was chosen as it has a transparent syntax-semantic inter-
face. Despite this advantage of CCG, we could opt for a different grammar formalism, for
instance, Dependency Grammar (DG) (Tesnière, 1959), and generate LLFs from depen-
dency trees (see Figure 7.2). Dependency parsing is well-studied and established branch
in NLP (Kubler et al., 2009; Nivre, 2010; Nivre et al., 2016). There are several fast and
accurate parsers5 and a bunch of treebanks (Nivre et al., 2016)6 available for DG. Taking
into account advances in dependency parsing, employing dependency trees as a source
can significantly improve the quality of LLFs.

In order to obtain LLFs from dependency trees, one needs to explain dependencies
in terms of term composition. It is not always the case that a head is a function and the
dependents its arguments: see the nsubj, acl or det dependencies in Figure 7.2. For
the demonstration, we define a simple recursive function Term/1 which transforms the
dependency tree of Figure 7.2 into a CCG term. The function is defined in terms of the
transformation rules in (R1–R7), and they explain dependencies involved in the running
tree. The rules are sorted according to priority: during application, a rule above has a
priority over the below ones. We denote a dependency tree as a headed multiset 〈H | #–c 〉,
where a head H is a root and a tail #–c is a multiset of arc-tree aiTi pairs such that ai goes
from H to the root of Ti. The transformation procedure starts from the initial dependency

5McDonald et al. (2005); Nivre et al. (2007); Martins et al. (2013); Manning et al. (2014) inter alia.
6A collection of multilingual treebanks formatted in the cross-lingual dependency style Universal De-

pendencies: http://universaldependencies.org

http://universaldependencies.org

7.2. FUTURE WORK 191

Not all politicians who lie has a bad reputation
RB DT NNS WP VBP VBZ DT JJ NN

root

neg

det

nsubj

nsubj

acl det

amod

dobj

X, nsubj−Y X Y

(
has a bad reputation

)
det

amod

dobj

(
not all politicians who lie

)
neg

det nsubj

acl

X, dobj−Y X Y X, neg−Y, det−Z Y Z X

has
(
a bad reputation

)
det

amod (
not all (politicians who lie)

)nsubj

acl

X, det−Y Y X X, acl−Y, nsubj−Z Z Y X

has
(
a (bad reputation)

)amod (
not all (who lie politicians)

)
X, amod−Y Y X

has
(
a (bad reputation)

) (
not all (who lie politicians)

)
Figure 7.3: The step by step transformation of a dependency tree into a CCG term. Each
step is accompanied with a simple schematic rule corresponding to a transformation rule.

tree and processes its sub-trees. The rules are applied according to their order, e.g., nsubj
is explained earlier than dobj as (R1) has higher priority than (R2).

Term〈X | #–α, nsubj−Y 〉 Term〈X | #–α〉 Term(Y) (R1)
Term〈X | #–α, dobj−Y 〉 Term〈X | #–α〉 Term(Y) (R2)

Term〈X | #–α, neg−Y, det−Z〉 Term(Y) Term(Z) Term〈X | #–α〉 (R3)
Term〈X | #–α, det−Y 〉 Term(Y) Term〈X | #–α〉 (R4)

Term〈X | #–α, amod−Y 〉 Term(Y) Term〈X | #–α〉 (R5)
Term〈X | #–α, acl−Y, nsubj−Z〉 Term(Z) Term(Y) Term〈X | #–α〉 (R6)

Term〈X, []〉 X (R7)

The whole transformation procedure is presented in Figure 7.3. The transformation
terminates when all terminal nodes are reached. In the end of the procedure, we get a
CCG term. The types of lexical elements can be obtained by (partially) encoding them in

192 CHAPTER 7. CONCLUSION

the transformation rules and using POS tags. Checking the obtained term on typing can
be used to induce the rest of uncovered lexical types. After recovering the types, then it is
possible to obtain corresponding LLFs by type-raising quantified NPs (§3.5).

In addition to the above presented future work, there are several directions that de-
serve to be mentioned. One of them is to model anaphoric expressions in the natural
tableau system. Taking into account that tableau branches correspond to possible situa-
tions, one might think of a tableau rule that applies to an entry with an anaphoric term and
accommodates it in (the situation of) the branch. Accounting for textual entailments with
comparatives is also a possible future work. The current work can borrow ideas from a
syllogistic logic with comparative adjectives (Moss, 2011). The last possible direction is
to employ LLFs without type-raised quantified NPs. It is motivated by the fact that syntac-
tic types in LLFs cannot give certain kinds of scope ordering (see §3.5). This means that
CCG terms (§3.4) will become logical forms and they will have underspecified semantics
with respect to scope ambiguity. After all such underspecification in logical forms is in
accordance with natural logic.

7.3 Final remarks
In the thesis, we have extended the analytic tableau system of natural logic (Muskens,
2010) in order to make it suitable for wide-coverage natural reasoning. The tableau theo-
rem prover based on this system was implemented and adapted to the textual entailment
datasets that require both shallow and deep reasoning. As a result the prover operates on
the logical forms, which resemble syntactic structures, and is able to reason over multiple
premises involving various syntactic or semantic phenomena. High results obtained on
the datasets indicate success of our methodology. Moreover, our approach puts natural
logic and a formal logic together in one system in order to reason over wide range of lin-
guistic expressions. This hybrid combination is novel for the NLP community as before
natural logic was understood as an inference device that is driven by word substitutions
and is restricted to single premises entailment problems. We hope that our work will serve
as a motivation for scaling up existing natural logic calculi and will stimulate applications
of higher-order logic to textual entailment.

7.3. FINAL REMARKS 193

194 CHAPTER 7. CONCLUSION

Acronyms

ACG Abstract Categorial Grammar.

CCG Combinatory Categorial Grammar.

CDSM Compositional Distributional Semantic Models.

DG Dependency Grammar.

DRS Discourse Representation Structure.

DRT Discourse Representation Theory.

FOL First-Order Logic.

GQ Generalized Quantifier.

KB Knowledge Base.

LLF Lambda Logical Form.

MWE Multiword Expression.

NLI Natural Language Inference.

NLP Natural Language Processing.

NP Noun Phrase.

POS Part of Speech.

PP Prepositional Phrase.

PV Prepositional Verb.

PVC Particle-Verb Construction.

QA Question Answering.

RAL Rule Application Limit.

195

196 Acronyms

RTE Recognizing Textual Entailment.

VP Verb Phrase.

WSD Word Sense Disambiguation.

Bibliography

Abzianidze, L. (2015a). A pure logic-based approach to natural reasoning. In Brochha-
gen, T., Roelofsen, F., and Theiler, N., editors, Proceedings of the 20th Amsterdam
Colloquium, pages 40–49. University of Amsterdam.

Abzianidze, L. (2015b). A tableau prover for natural logic and language. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
2492–2502, Lisbon, Portugal. Association for Computational Linguistics.

Abzianidze, L. (2015c). Towards a wide-coverage tableau method for natural logic. In
Murata, T., Mineshima, K., and Bekki, D., editors, New Frontiers in Artificial Intelli-
gence: JSAI-isAI 2014 Workshops, LENLS, JURISIN, and GABA, Kanagawa, Japan,
October 27-28, 2014, Revised Selected Papers, pages 66–82. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Abzianidze, L. (2016). Natural solution to fracas entailment problems. In Proceedings
of the Fifth Joint Conference on Lexical and Computational Semantics (*SEM 2016),
pages 64–74, Berlin, Germany. Association for Computational Linguistics.

Adams, R. (2006). Textual entailment through extended lexical overlap. In In The Second
PASCAL Recognising Textual Entailment Challenge (RTE-2).

Ajdukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica, 1:1–27. En-
glish translation “Syntactic Connexion” by H. Weber in McCall, S. (Ed.) Polish Logic,
pp. 207–231, Oxford University Press, Oxford, 1967.

Angeli, G. and Manning, C. D. (2014). Naturalli: Natural logic inference for common
sense reasoning. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Artzi, Y., Lee, K., and Zettlemoyer, L. (2015). Broad-coverage ccg semantic parsing with
amr. In Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1699–1710, Lisbon, Portugal. Association for Computational
Linguistics.

Bach, E. and Cooper, R. (1978). The np-s analysis of relative clauses and compositional
semantics. Linguistics and Philosophy, 2(1):145–150.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The berkeley framenet project. In
Proceedings of the 36th Annual Meeting of the Association for Computational Linguis-
tics and 17th International Conference on Computational Linguistics - Volume 1, ACL
’98, pages 86–90. Association for Computational Linguistics.

197

198 BIBLIOGRAPHY

Baldwin, T. and Kim, S. N. (2010). Multiword expressions. In Indurkhya, N. and Dam-
erau, F. J., editors, Handbook of Natural Language Processing, Second Edition., pages
267–292. Chapman and Hall/CRC.

Baldwin, T., Kordoni, V., and Villavicencio, A. (2009). Prepositions in applications: A
survey and introduction to the special issue. Computational Linguistics, 35(2):119–
149.

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., and Szpek-
tor, I. (2006). The second pascal recognizing textual entailment challenge. In Proceed-
ings of the Second PASCAL Challenges Workshop on Recognizing Textual Entailment,
pages 1–9.

Bar-Hillel, Y. (1953). A Quasi-Arithmetical Notation for Syntactic Description. Lan-
guage, 29(1):47–58.

Barwise, J. and Cooper, R. (1981). Generalized quantifiers and natural language. Lin-
guistics and Philosophy, 4(2):159–219.

Beltagy, I. and Erk, K. (2015). On the proper treatment of quantifiers in probabilistic
logic semantics. In Proceedings of the 11th International Conference on Computational
Semantics (IWCS-2015), London, UK.

Beltagy, I., Roller, S., Boleda, G., Erk, K., and Mooney, R. (2014). Utexas: Natural
language semantics using distributional semantics and probabilistic logic. In Proceed-
ings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages
796–801, Dublin, Ireland. Association for Computational Linguistics and Dublin City
University.

Beltagy, I., Roller, S., Cheng, P., Erk, K., and Mooney, R. J. (2015). Representing meaning
with a combination of logical form and vectors. CoRR, abs/1505.06816.

Benthem, J. v. (1991). Language in action : categories, lambdas and dynamic logic.
Studies in logic and the foundations of mathematics. North-Holland.

Bertot, Y., Huet, G., Castéran, P., and Paulin-Mohring, C. (2010). Interactive Theorem
Proving and Program Development: Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. An EATCS Series. Springer Berlin Hei-
delberg.

Beth, E. W. (1955). Semantic Entailment and Formal Derivability. Koninklijke Neder-
landse Akademie van Wentenschappen, Proceedings of the Section of Sciences, 18:309–
342.

Bjerva, J., Bos, J., Van der Goot, R., and Nissim, M. (2014). The meaning factory: For-
mal semantics for recognizing textual entailment and determining semantic similarity.
In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014), pages 642–646, Dublin, Ireland.

Blackburn, P. and Bos, J. (2005). Representation and Inference for Natural Language. A
First Course in Computational Semantics. CSLI.

BIBLIOGRAPHY 199

Bos, J. (2008). Wide-coverage semantic analysis with boxer. In Bos, J. and Delmonte, R.,
editors, Semantics in Text Processing. STEP 2008 Conference Proceedings, Research
in Computational Semantics, pages 277–286. College Publications.

Bos, J. (2009). Towards a large-scale formal semantic lexicon for text processing. In
Chiarcos, C., Eckart de Castilho, R., and Stede, M., editors, From Form to Meaning:
Processing Texts Automatically. Proceedings of the Biennal GSCL Conference 2009,
pages 3–14.

Bos, J., Clark, S., Steedman, M., Curran, J. R., and Hockenmaier, J. (2004). Wide-
coverage semantic representations from a ccg parser. In Proceedings of the 20th Inter-
national Conference on Computational Linguistics (COLING ’04), pages 1240–1246,
Geneva, Switzerland.

Bos, J. and Markert, K. (2005). Recognising textual entailment with logical inference. In
Proceedings of Human Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing, pages 628–635.

Bos, J. and Markert, K. (2006). When logical inference helps determining textual entail-
ment (and when it doesn’t). In Magnini, B. and Dagan, I., editors, The Second PASCAL
Recognising Textual Entailment Challenge. Proceedings of the Challenges Workshop,
pages 98–103, Venice, Italy.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015a). A large annotated cor-
pus for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal.
Association for Computational Linguistics.

Bowman, S. R., Potts, C., and Manning, C. D. (2015b). Recursive neural networks can
learn logical semantics. In Proceedings of the 3rd Workshop on Continuous Vector
Space Models and their Compositionality, pages 12–21, Beijing, China. Association
for Computational Linguistics.

Carroll, J., Briscoe, T., and Sanfilippo, A. (1998). Parser evaluation: a survey and a new
proposal. In Proceedings, First International Conference on Language Resources and
Evaluation, pages 447–454. European Language Resources Association.

Champollion, L. (2010). Quantification and negation in event semantics. In Partee, B. H.,
Glanzberg, M., and Skilters, J., editors, Formal Semantics and Pragmatics: Discourse,
Context, and Models, volume 6 of Baltic International Yearbook of Cognition, Logic
and Communication, pages 1–23. New Prairie Press.

Champollion, L. (2014). The interaction of compositional semantics and event semantics.
Linguistics and Philosophy, pages 1–36.

Chomsky, N. (1986). Knowledge of Language: Its Nature, Origin, and Use. Praeger.

Church, A. (1940). A formulation of the simple theory of types. Jurnal of Symbolic Logic,
5(2):56–68.

200 BIBLIOGRAPHY

Clark, S. and Curran, J. (2003). Log-linear models for wide-coverage ccg parsing. In
Collins, M. and Steedman, M., editors, Proceedings of the 2003 Conference on Empir-
ical Methods in Natural Language Processing, pages 97–104.

Clark, S. and Curran, J. R. (2004a). The importance of supertagging for wide-coverage
ccg parsing. In Proceedings of the 20th International Conference on Computational
Linguistics, COLING ’04, Stroudsburg, PA, USA. Association for Computational Lin-
guistics.

Clark, S. and Curran, J. R. (2004b). Parsing the wsj using ccg and log-linear models.
In Proceedings of the 42nd Annual Meeting of the Association for Computational Lin-
guistics (ACL-04).

Clark, S. and Curran, J. R. (2007). Wide-coverage efficient statistical parsing with ccg
and log-linear models. Computational Linguistics, 33.

Clark, S., Steedman, M., and Curran, J. R. (2004). Object-extraction and question-
parsing using ccg. In Lin, D. and Wu, D., editors, Proceedings of the 2004 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages 111–
118, Barcelona, Spain. Association for Computational Linguistics.

Constable, J. and Curran, J. (2009). Integrating verb-particle constructions into ccg pars-
ing. In Proceedings of the Australasian Language Technology Association Workshop
2009, pages 114–118, Sydney, Australia.

Cooper, R. (1983). Quantification and Syntactic Theory, volume 21 of Synthese Language
Library. Springer Netherlands.

Cooper, R., Crouch, D., Eijck, J. V., Fox, C., Genabith, J. V., Jaspars, J., Kamp, H.,
Milward, D., Pinkal, M., Poesio, M., Pulman, S., Briscoe, T., Maier, H., and Konrad,
K. (1996). FraCaS: A Framework for Computational Semantics. Deliverable D16.

Curran, J., Clark, S., and Bos, J. (2007). Linguistically motivated large-scale nlp with c&c
and boxer. In Proceedings of the 45th Annual Meeting of the Association for Compu-
tational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,
pages 33–36, Prague, Czech Republic. Association for Computational Linguistics.

Curran, J. R. and Clark, S. (2003a). Investigating gis and smoothing for maximum entropy
taggers. In Proceedings of the Tenth Conference on European Chapter of the Associa-
tion for Computational Linguistics - Volume 1, EACL ’03, pages 91–98, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Curran, J. R. and Clark, S. (2003b). Language independent ner using a maximum entropy
tagger. In Proceedings of the Seventh Conference on Natural Language Learning at
HLT-NAACL 2003 - Volume 4, CONLL ’03, pages 164–167, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Curry, H. B. and Feys, R. (1958). Combinatory Logic, Volume I. North-Holland. Second
printing 1968.

BIBLIOGRAPHY 201

Dagan, I., Glickman, O., and Magnini, B. (2006). The pascal recognising textual entail-
ment challenge. In Proceedings of the PASCAL Challenges Workshop on Recognising
Textual Entailment.

Dagan, I., Roth, D., Sammons, M., and Zanzotto, F. M. (2013). Recognizing Textual
Entailment: Models and Applications. Synthesis Lectures on Human Language Tech-
nologies. Morgan & Claypool Publishers.

D’Agostino, M., Gabbay, D. M., Hähnle, R., and Posegga, J., editors (1999). Handbook
of Tableau Methods. Springer Netherlands, Dordrecht.

Davidson, D. (1967). The logical form of action sentences. In Rescher, N., editor, The
Logic of Decision and Action, pages 81–120. Univ. of Pittsburgh Press.

de Groote, P. (2001). Towards abstract categorial grammars. In Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics, pages 252–259. Asso-
ciation for Computational Linguistics.

Djordjevic, B., Curran, J., and Clark, S. (2007). Proceedings of the Tenth International
Conference on Parsing Technologies, chapter Improving the Efficiency of a Wide-
Coverage CCG Parser, pages 39–47. Association for Computational Linguistics.

Dong, Y., Tian, R., and Miyao, Y. (2014). Encoding generalized quantifiers in
dependency-based compositional semantics. In Proceedings of the 28th Pacific
Asia Conference on Language, Information, and Computation, pages 585–594,
Phuket,Thailand. Department of Linguistics, Chulalongkorn University.

Dowty, D. (1994). The role of negative polarity and concord marking in natural language
reasoning. Semantics and Linguistic Theory, 4(0).

Eijck, J. V. (2005). Syllogistics = monotonicity + symmetry + existential import.

Erk, K. (2012). Vector space models of word meaning and phrase meaning: A survey.
Language and Linguistics Compass, 6(10):635–653.

Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. MIT Press.

Fitting, M. (1990). First-order Logic and Automated Theorem Proving. Springer-Verlag
New York, Inc., New York, NY, USA.

Fowler, A., Hauser, B., Hodges, D., Niles, I., Novischi, A., and Stephan, J. (2005). Apply-
ing cogex to recognize textual entailment. In In Proceedings of the PASCAL Challenges
Workshop on Recognising Textual Entailment, pages 69–72.

Fyodorov, Y., Winter, Y., and Francez, N. (2003). Order-based inference in natural logic.
Logic Journal of the IGPL, 11(4):385–416.

Gallin, D. (1975). Intensional and Higher-Order Modal Logic: With Applications to
Montague Semantics. American Elsevier Pub. Co.

202 BIBLIOGRAPHY

Ganitkevitch, J., VanDurme, B., and Callison-Burch, C. (2013). PPDB: The paraphrase
database. In Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL 2013), Atlanta, Georgia. Associa-
tion for Computational Linguistics.

Giampiccolo, D., Dang, H. T., Magnini, B., Dagan, I., Cabrio, E., and Dolan, B. (2008).
The fourth PASCAL recognizing textual entailment challenge. In Proceedings of the
First Text Analysis Conference, TAC 2008, Gaithersburg, Maryland, USA, November
17-19, 2008.

Goré, R. (1999). Tableau methods for modal and temporal logics. In D’Agostino, M.,
Gabbay, D. M., Hähnle, R., and Posegga, J., editors, Handbook of Tableau Methods,
pages 297–396. Springer Netherlands, Dordrecht.

Grice, H. (1975). Logic and conversation. In Syntax and Semantics. Academic Press.

Groote, P. and Winter, Y. (2015). A type-logical account of quantification in event seman-
tics. In Murata, T., Mineshima, K., and Bekki, D., editors, New Frontiers in Artificial
Intelligence: JSAI-isAI 2014 Workshops, LENLS, JURISIN, and GABA, Kanagawa,
Japan, October 27-28, 2014, Revised Selected Papers, pages 53–65. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Harabagiu, S. and Hickl, A. (2006). Methods for using textual entailment in open-domain
question answering. In Proceedings of the 21st International Conference on Compu-
tational Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics, pages 905–912. Association for Computational Linguistics.

Harris, Z. (1955). Distributional structure. Word, 10(23):146–162.

Heim, I. and Kratzer, A. (1998). Semantics in generative grammar. Blackwell textbooks
in linguistics. Blackwell publishers, Cambridge (Mass.), Oxford.

Hemann, J., Swords, C., and Moss, L. (2015). Two advances in the implementations of
extended syllogistic logics. In Balduccini1, M., Mileo, A., Ovchinnikova, E., Russo,
A., and Schüuller, P., editors, Joint Proceedings of the 2nd Workshop on Natural Lan-
guage Processing and Automated Reasoning, and the 2nd International Workshop on
Learning and Nonmonotonic Reasoning at LPNMR 2015, pages 1–14.

Henkin, L. (1950). Completeness in the theory of types. J. Symbolic Logic, 15(2):81–91.

Hintikka, J. (1955). Two Papers on Symbolic Logic: Form and Content in Quantification
Theory and Reductions in the Theory of Types. Number 8 in Acta philosophica Fennica.
Societas Philosophica.

Hobbs, J. R., Stickel, M. E., Appelt, D. E., and Martin, P. (1993). Interpretation as
abduction. Artificial Intelligence, 63(1-2):69–142.

Hockenmaier, J. (2003). Data and Models for Statistical Parsing with Combinatory Cat-
egorial Grammar. PhD thesis, University of Edinburgh.

BIBLIOGRAPHY 203

Hockenmaier, J. and Steedman, M. (2007). Ccgbank: A corpus of ccg derivations and
dependency structures extracted from the penn treebank. Comput. Linguist., 33(3):355–
396.

Hoeksema, J. (1983). Negative Polarity and the Comparative. Natural Language and
Linguistic Theory, 1(3):403–434.

Honnibal, M., Curran, J. R., and Bos, J. (2010). Rebanking ccgbank for improved np
interpretation. In Proceedings of the 48th Meeting of the Association for Computational
Linguistics (ACL 2010), pages 207–215, Uppsala, Sweden.

Icard, T. F. (2012). Inclusion and exclusion in natural language. Studia Logica,
100(4):705–725.

Icard, T. F. and Moss, L. S. (2014). Recent progress on monotonicity. Linguistic Issues
in Language Technology, 9.

Jimenez, S., Dueñas, G., Baquero, J., and Gelbukh, A. (2014). Unal-nlp: Combining soft
cardinality features for semantic textual similarity, relatedness and entailment. In Pro-
ceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),
pages 732–742, Dublin, Ireland. Association for Computational Linguistics and Dublin
City University.

Kamp, H. and Partee, B. (1995). Prototype theory and compositionality. Cognition,
57(2):129–191.

Kamp, H. and Reyle, U. (1993). From discourse to logic; an introduction to modeltheo-
retic semantics of natural language, formal logic and DRT. Dordrecht: Kluwer.

Karttunen, L. (1971). Implicative Verbs. Language, 47(2):340–358.

Karttunen, L. (2012). Simple and phrasal implicatives. In *SEM 2012: The First Joint
Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume 2: Proceedings of the Sixth Interna-
tional Workshop on Semantic Evaluation (SemEval 2012), pages 124–131, Montréal,
Canada. Association for Computational Linguistics.

Karttunen, L. (2015). From natural logic to natural reasoning. In Gelbukh, A., editor,
Computational Linguistics and Intelligent Text Processing: 16th International Con-
ference, CICLing 2015, Cairo, Egypt, April 14-20, 2015, Proceedings, Part I, pages
295–309. Springer International Publishing.

Keller, W. R. (1988). Nested cooper storage: The proper treatment of quantification in
ordinary noun phrases. In Reyle, U. and Rohrer, C., editors, Natural Language Parsing
and Linguistic Theories, pages 432–447. Springer Netherlands, Dordrecht.

Kotlerman, L., Dagan, I., Szpektor, I., and Maayan, Z.-G. (2010). Directional distribu-
tional similarity for lexical inference. Natural Language Engineering, 16:359–389.

204 BIBLIOGRAPHY

Kruszewski, G. and Baroni, M. (2015). So similar and yet incompatible: Toward the au-
tomated identification of semantically compatible words. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 964–969, Denver, Colorado. Associa-
tion for Computational Linguistics.

Kubler, S., McDonald, R., Nivre, J., and Hirst, G. (2009). Dependency Parsing. Morgan
and Claypool Publishers.

Lacatusu, F., Hickl, A., Roberts, K., Shi, Y., Bensley, J., Rink, B., Wang, P., and Taylor,
L. (2006). Lcc’s gistexter at duc 2006: Multi-strategy multi-document summarization.
In in Proceedings of DUC 2006.

Lai, A. and Hockenmaier, J. (2014). Illinois-lh: A denotational and distributional ap-
proach to semantics. In Proceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014), pages 329–334, Dublin, Ireland. Association for Compu-
tational Linguistics and Dublin City University.

Lakoff, G. (1970). Linguistics and natural logic. In Davidson, D. and Harman, G., edi-
tors, Semantics of Natural Language, volume 40 of Synthese Library, pages 545–665.
Springer Netherlands.

Lambek, J. (1958). The mathematics of sentence structure. Americal Mathematical
Monthly, 65:154–170.

Lapata, M. and Keller, F. (2005). Web-based models for natural language processing.
ACM Transactions on Speech and Language Processing, 2(1).

Lenat, D. B. and Guha, R. V. (1989). Building Large Knowledge-Based Systems: Repre-
sentation and Inference in the Cyc Project. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition.

Levy, O., Remus, S., Biemann, C., and Dagan, I. (2015). Do supervised distributional
methods really learn lexical inference relations? In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 970–976. Association for Computational Lin-
guistics.

Lewis, M. and Steedman, M. (2013). Combined distributional and logical semantics.
Transactions of the Association for Computational Linguistics (TACL), 1:179–192.

Lewis, M. and Steedman, M. (2014a). A* CCG parsing with a supertag-factored model.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 990–1000, Doha, Qatar. Association for Computational
Linguistics.

Lewis, M. and Steedman, M. (2014b). Improved CCG parsing with semi-supervised
supertagging. Transactions of the Association for Computational Linguistics (TACL),
2:327–338.

BIBLIOGRAPHY 205

Liang, P., Jordan, M. I., and Klein, D. (2011). Learning dependency-based compositional
semantics. In Association for Computational Linguistics (ACL), pages 590–599.

Lis, Z. (1960). Wynikanie semantyczne a wynikanie formalne (logical consequence, se-
mantic and formal). Studia Logica, 10(1):39–60.

MacCartney, B. (2009). Natural language inference. Phd thesis, Stanford University.

MacCartney, B. and Manning, C. D. (2007). Natural logic for textual inference. In Pro-
ceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, RTE
’07, pages 193–200, Stroudsburg, PA, USA. Association for Computational Linguis-
tics.

MacCartney, B. and Manning, C. D. (2008). Modeling semantic containment and exclu-
sion in natural language inference. In Scott, D. and Uszkoreit, H., editors, COLING,
pages 521–528.

MacCartney, B. and Manning, C. D. (2009). An extended model of natural logic. In Pro-
ceedings of the Eighth International Conference on Computational Semantics, IWCS-8
’09, pages 140–156. Association for Computational Linguistics.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and McClosky, D. (2014).
The stanford corenlp natural language processing toolkit. In Proceedings of 52nd An-
nual Meeting of the Association for Computational Linguistics: System Demonstra-
tions, pages 55–60. Association for Computational Linguistics.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., and Zamparelli, R.
(2014a). Semeval-2014 task 1: Evaluation of compositional distributional semantic
models on full sentences through semantic relatedness and textual entailment. In Pro-
ceedings of SemEval 2014 (International Workshop on Semantic Evaluation), pages
1–8, East Stroudsburg PA. ACL.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., and Zamparelli, R.
(2014b). A sick cure for the evaluation of compositional distributional semantic mod-
els. In Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J.,
Moreno, A., Odijk, J., and Piperidis, S., editors, Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland.
European Language Resources Association (ELRA).

Martins, A., Almeida, M., and Smith, A. N. (2013). Turning on the turbo: Fast third-
order non-projective turbo parsers. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 617–622.
Association for Computational Linguistics.

McCune, W. (2005–2010). Prover9 and mace4. http://www.cs.unm.edu/ mccune/prover9.

206 BIBLIOGRAPHY

McDonald, R., Pereira, F., Ribarov, K., and Hajic, J. (2005). Non-projective depen-
dency parsing using spanning tree algorithms. In Proceedings of Human Language
Technology Conference and Conference on Empirical Methods in Natural Language
Processing.

Mehdad, Y., Negri, M., and Federico, M. (2010). Towards cross-lingual textual entail-
ment. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages 321–324.
Association for Computational Linguistics.

Merlo, P. and Ferrer, E. E. (2006). The notion of argument in prepositional phrase attach-
ment. Computational Linguistics, 32(3):341–378.

Miller, G. A. (1995). Wordnet: A lexical database for english. Communications of the
ACM, 38(11):39–41.

Miller, G. A., Leacock, C., Tengi, R., and Bunker, R. T. (1993). A semantic concordance.
In Proceedings of the Workshop on Human Language Technology, HLT ’93, pages
303–308. Association for Computational Linguistics.

Mineshima, K., Martı́nez-Gómez, P., Miyao, Y., and Bekki, D. (2015). Higher-order
logical inference with compositional semantics. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 2055–2061, Lisbon,
Portugal. Association for Computational Linguistics.

Minnen, G., Carroll, J., and Pearce, D. (2001). Applied morphological processing of
english. Nat. Lang. Eng., 7(3):207–223.

Montague, R. (1970). Universal grammar. Theoria, 36(3):373–398.

Montague, R. (1973). The proper treatment of quantification in ordinary English. In Hin-
tikka, K. J. J., Moravcsic, J., and Suppes, P., editors, Approaches to Natural Language,
pages 221–242. Reidel, Dordrecht.

Moss, L. S. (2010a). Logics for natural language inference. Expanded version of lecture
notes from a course at ESSLLI 2010.

Moss, L. S. (2010b). Natural logic and semantics. In Aloni, M., Bastiaanse, H., de Jager,
T., and Schulz, K., editors, Logic, Language and Meaning: 17th Amsterdam Collo-
quium, Amsterdam, The Netherlands, December 16-18, 2009, Revised Selected Papers,
pages 84–93. Springer Berlin Heidelberg, Berlin, Heidelberg.

Moss, L. S. (2011). Syllogistic logic with comparative adjectives. Journal of Logic,
Language and Information, 20(3):397–417.

Moss, L. S. (2012). The soundness of internalized polarity marking. Studia Logica,
100(4):683–704.

Muskens, R. (1996). Combining montague semantics and discourse representation. Lin-
guistics and Philosophy, 19(2):143–186.

BIBLIOGRAPHY 207

Muskens, R. (2001). Categorial grammar and lexical-functional grammar. In Butt, M.
and King, T. H., editors, Proceedings of the LFG01 Conference, pages 259–279. CSLI
Publications.

Muskens, R. (2003). Language, Lambdas, and Logic. In Kruijff, G.-J. and Oehrle, R.,
editors, Resource Sensitivity in Binding and Anaphora, Studies in Linguistics and Phi-
losophy, pages 23–54. Kluwer.

Muskens, R. (2010). An analytic tableau system for natural logic. In Aloni, M., Basti-
aanse, H., de Jager, T., and Schulz, K., editors, Logic, Language and Meaning, volume
6042 of Lecture Notes in Computer Science, pages 104–113. Springer Berlin Heidel-
berg.

Muskens, R. (2011). Towards logics that model natural reasoning. Program Description.

Muskens, R. A. (1995). Meaning and Partiality. CSLI Publications, Stanford.

Nairn, R., Condoravdi, C., and Karttunen, L. (2006). Computing relative polarity for
textual inference. In Proceedings of the Fifth International Workshop on Inference in
Computational Semantics (ICoS-5).

Navigli, R. (2009). Word sense disambiguation: A survey. ACM Computing Surveys,
41(2):1–69.

Nivre, J. (2010). Dependency parsing. Language and Linguistics Compass, 4(3):138–
152.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D., Mc-
Donald, R., Petrov, S., Pyysalo, S., Silveira, N., Tsarfaty, R., and Zeman, D. (2016).
Universal dependencies v1: A multilingual treebank collection. In Chair), N. C. C.,
Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo,
H., Moreno, A., Odijk, J., and Piperidis, S., editors, Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evaluation (LREC 2016), Paris, France.
European Language Resources Association (ELRA).

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi,
E. (2007). Maltparser: A language-independent system for data-driven dependency
parsing. Natural Language Engineering, 13:95–135.

Pado, S., Galley, M., Jurafsky, D., and Manning, D. C. (2009). Robust machine translation
evaluation with entailment features. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 297–305. Association for Computational
Linguistics.

Palmer, M., Kingsbury, P., and Gildea, D. (2005). The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31.

Parsons, T. (1972). Some problems concerning the logic of grammatical modifiers. In
Davidson, D. and Harman, G., editors, Semantics of Natural Language, pages 127–
141. Springer Netherlands, Dordrecht.

208 BIBLIOGRAPHY

Parsons, T. (1990). Events in the semantics of English : a study in subatomic semantics /
Terence Parsons. MIT Press Cambridge, Mass.

Partee, B. (1975). Montague Grammar and Transformational Grammar. Linguistic In-
quiry, 6(2):203–300.

Partee, B. H. (1987). Noun phrase interpretation and type-shifting principles. Studies in
Discourse Representation Theory and the Theory of Generalized Quantifiers, 8:115–
143.

Partee, B. H. (2001). Privative adjectives: subsective plus coercion. In Bauerle, R., Reyle,
U., and Zimmermann, T., editors, Presuppositions and Discourse: Essays Offered to
Hans Kamp, volume 21 of Current Research in the Semantics / Pragmatics Interface,
pages 273–285. BRILL.

Potts, C. (2015). Presupposition and implicature. In Lappin, S. and Fox, C., editors,
The Handbook of Contemporary Semantic Theory, pages 168–202. Wiley-Blackwell,
2 edition.

Proisl, T., Evert, S., Greiner, P., and Kabashi, B. (2014). Semantiklue: Robust semantic
similarity at multiple levels using maximum weight matching. In Proceedings of the
8th International Workshop on Semantic Evaluation (SemEval 2014), pages 532–540,
Dublin, Ireland. Association for Computational Linguistics and Dublin City University.

Raina, R., Ng, A. Y., and Manning, C. D. (2005). Robust textual inference via learning
and abductive reasoning. In Proceedings, The Twentieth National Conference on Arti-
ficial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 1099–1105.

Ratnaparkhi, A., Reynar, J., and Roukos, S. (1994). A maximum entropy model for
prepositional phrase attachment. In Proceedings of the Workshop on Human Language
Technology, HLT ’94, pages 250–255. Association for Computational Linguistics.

Russell, B. (1905). On denoting. Mind, 14(56):479–493.

Ruys, E. and Winter, Y. (2011). Quantifier scope in formal linguistics. In Gabbay, M. D.
and Guenthner, F., editors, Handbook of Philosophical Logic: Volume 16, pages 159–
225. Springer Netherlands, Dordrecht.

Sag, I. A., Baldwin, T., Bond, F., Copestake, A., and Flickinger, D. (2001). Multiword
expressions: A pain in the neck for nlp. In In Proc. of the 3rd International Conference
on Intelligent Text Processing and Computational Linguistics (CICLing-2002, pages
1–15.

Sánchez-Valencia, V. (1991). Categorial grammar and natural reasoning. ILTI Publica-
tion Series for Logic, Semantics, and Philosophy of Language LP-91-08, University of
Amsterdam.

Schuler, K. K. (2005). Verbnet: A Broad-coverage, Comprehensive Verb Lexicon. PhD
thesis, University of Pennsylvania, Philadelphia, PA, USA. AAI3179808.

BIBLIOGRAPHY 209

Shwartz, V., Goldberg, Y., and Dagan, I. (2016). Improving hypernymy detection with
an integrated path-based and distributional method. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2389–2398. Association for Computational Linguistics.

Smullyan, R. M. (1968). First-order Logic. Springer-Verlag.

Steedman, M. (1996). Surface structure and interpretation. Linguistic inquiry mono-
graphs, 30. MIT Press.

Steedman, M. (2000). The Syntactic Process. MIT Press, Cambridge, MA, USA.

Steedman, M. and Baldridge, J. (2011). Combinatory Categorial Grammar. In Borsley,
Robert, D. and Börjars, K., editors, Non-Transformational Syntax: Formal and Explicit
Models of Grammar, pages 181–224. Wiley-Blackwell.

Strawson, P. F. (1950). On referring. Mind, 59(235):320–344.

Tesnière, L. (1959). Elements de syntaxe structurale. Editions Klincksieck.

Tian, R., Miyao, Y., and Matsuzaki, T. (2014). Logical inference on dependency-based
compositional semantics. In Proceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 79–89, Baltimore,
Maryland. Association for Computational Linguistics.

Turian, J., Ratinov, L.-A., and Bengio, Y. (2010). Word representations: A simple and
general method for semi-supervised learning. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics, pages 384–394. Association for
Computational Linguistics.

Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector space models of
semantics. Journal of Artificial Intelligence Research, 37(1):141–188.

van Benthem, J. (1986). Essays in Logical Semantics, volume 29 of Studies in Linguistics
and Philosophy. Springer Netherlands.

van Benthem, J. (1987). Meaning: Interpretation and inference. Synthese, 73(3):451–470.

van Benthem, J. (2008a). A brief history of natural logic. In Technical Report PP-2008-
05. Institute for Logic, Language & Computation.

van Benthem, J. (2008b). Natural logic: A view from the 1980s. In M. K. Chakraborty,
B. Lowe, M. N. Mitra and S. Sarukkai, editor, Logic, Navya-Nayaya & Applications.
Homage to Bimal Krishna Matilal, volume 15 of Studies in Logic. London College
Publications.

van Eijck, J. (2007). Natural logic for natural language. In ten Cate, B. D. and Zeevat,
H. W., editors, Logic, Language, and Computation: 6th International Tbilisi Sympo-
sium on Logic, Language, and Computation,TbiLLC 2005 Batumi, Georgia, Septem-
ber 12-16, 2005. Revised Selected Papers, pages 216–230. Springer Berlin Heidelberg,
Berlin, Heidelberg.

210 BIBLIOGRAPHY

von Fintel, K. (1999). NPI licensing, strawson entailment, and context dependency. Jour-
nal of Semantics, 16:99–148.

Winter, Y. and Zwarts, J. (2011). Event semantics and abstract categorial grammar. In
Kanazawa, M., Kornai, A., Kracht, M., and Seki, H., editors, The Mathematics of Lan-
guage, volume 6878 of Lecture Notes in Computer Science, pages 174–191. Springer
Berlin Heidelberg.

Yin, W., Schütze, H., Xiang, B., and Zhou, B. (2015). ABCNN: attention-based convolu-
tional neural network for modeling sentence pairs. CoRR, abs/1512.05193.

Zamansky, A., Francez, N., and Winter, Y. (2006). A ‘natural logic’ inference system
using the lambek calculus. Journal of Logic, Language and Information, 15(3):273–
295.

Zhao, J., Zhu, T., and Lan, M. (2014). Ecnu: One stone two birds: Ensemble of heteroge-
nous measures for semantic relatedness and textual entailment. In Proceedings of the
8th International Workshop on Semantic Evaluation (SemEval 2014), pages 271–277,
Dublin, Ireland. Association for Computational Linguistics and Dublin City University.

Zwarts, F. (1981). Negatief polaire uitdrukkingen i. GLOT, 4:35–132.

	Acknowledgments
	Abstract
	Introduction
	Natural language inference
	Overview of approaches to textual entailment
	Natural logic and monotonicity
	Natural logic approach to textual entailment
	Overview of what follows

	Natural Tableau for Natural Reasoning
	Preliminaries
	Functional type theory
	Semantic tableau method

	An analytic tableau system for natural logic
	Extending the type system
	Extending the tableau entries
	Event semantics and LLFs
	Modifier list and event semantics

	Extending the inventory of rules
	Rules for modifiers and the memory list
	Rules for semantic exclusion and exhaustion

	Conclusion
	Appendix A

	Lambda Logical Forms for Wide-Coverage Text
	Combinatory Categorial Grammar
	Wide-coverage CCG parsers
	The C&C tools
	EasyCCG

	From CCG derivations to CCG terms
	Correcting CCG terms
	Shortcomings of the CCG derivations
	Simplifying CCG terms
	Explaining the type-changing rules
	Fixing wrong analyses

	Type-raising quantifiers
	Conclusion
	Appendix B

	Inventory of Tableau Rules
	Preliminaries
	Rules for modifiers
	Rules for auxiliaries
	Rules for adjectives

	Rules for prepositions
	The problem of PP attachment
	Rules for prepositional phrases
	Particles vs prepositions

	Rules for definite noun phrases
	Two theories of definite descriptions
	Two options for modeling definite NPs

	Closure rules
	The rule for expletive there
	Verb subcategorization
	Open compound nouns
	Light verb constructions

	Rules for the copula be
	Rules for passives
	Attitude verbs
	Entailment properties of attitude verbs
	Rules for attitude verbs

	Conclusion
	Appendix C

	Theorem Prover for Natural Language
	Knowledge base
	Inventory of the rules
	Properties of the rules
	Derivable rules

	NLogPro: a theorem prover for natural logic
	LangPro: a theorem prover for natural language
	Conclusion
	Appendix D

	Evaluation of the theorem prover
	RTE datasets
	SICK
	FraCaS

	Learning
	Adaptation
	Development

	Analysis of the results
	True entailments and contradictions
	False entailments and contradictions
	False neutrals

	Evaluation & comparison
	Based on FraCaS
	Based on SICK

	Conclusion
	Appendix E

	Conclusion
	Summing up
	Future work
	Trying other RTE datasets
	Acquisition of lexical knowledge
	Pairing with distributional semantics
	Generate LLFs from dependency trees

	Final remarks

	Acronyms
	Bibliography

