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Chapter 1

Structure, representation and
analyticity

In this chapter we provide a bridge from the first part of the thesis and the second
one. The intention is to discuss structural proof theory and its relation to the
central topic of analyticity and, in particular, the analytic content of logic.

Keywords. Cut-elimination and analyticity; extensions of sequent calculi; proofs
and proof representation.

1.1 Reflecting on proofs

The work of a mathematician centers around the activity of proving theorems.
From a pragmatic and descriptive standpoint, a mathematical proof can be con-
ceived of as a procedure which is considered reliable by the community of the
mathematicians. The great success of mathematical proofs as a mean to propagate
information can be thus assimilated to its claim of universal validity.

Indeed, nowadays mathematical proofs are considered to be a rigorous method
in order to communicate and transmit mathematical knowledge. Another relevant
aspect of mathematical proofs, which is connected to the claim of universal
validity, is the uniformity of the rules employed in formal derivations. The rules
are uniform in the sense that they follows the inferential pattern accepted in
classical logic and therefore they are common to any part of mathematics.

Hence, by assuming a descriptive approach, we are led to conceive of proofs
as an object which has a communicative function and thus a linguistic nature.
In fact, proofs are finite strings of symbols which connect certain premises to a
conclusion preserving the validity. It is then unsurprising to realize that proofs
are a central object of inquiry in logic.
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David Hilbert - one of the greatest mathematician of the XX𝑡ℎ century - was
perfectly aware of the relevance of logic in the study of mathematical proofs.
He is responsible for the conceptual shift which initiated the field of studies of
metamathematics. In particular, metamathematics is devoted to investigate the
properties of formal systems and the notion of proof itself. Hilbert’s work in
logic was motivated by ontological concerns as he identified the existence of a
given mathematical object with a proof of consistency, i.e. the unprovability of
contradictions.

As it is well-known, Hilbert program - at least in its original and full-fledged
form - failed due to the incompleteness phenomena highlighted by Gödel. In par-
ticular, the second incompleteness theorem precisely showed that the consistency
of arithmetic was among the propositions 𝐵 such that:

PA ⊬ 𝐵 and PA ⊬ ¬𝐵

However, the investigations promoted by Hilbert were carried on by some of its
students. (?) Two main routes were followed. The first one directly stems from
Hilbert’s original program.

Once one accepts the impossibility of obtaining a purely finitary proof of
consistency of a theory with a modicum of arithmetic, a proof of consistency
can be seen as a way to measure the strength of a certain theory. Roughly
speaking, proofs of consistency are obtained via induction principles on specific
well-orderings. In this sense one can associate an ordinal to a theory: this line of
research is known as ordinal analysis.

The second main research direction is referred to as structural proof theory.
In accordance to the name, structural proof theory investigates the structure of
formal proofs and their properties. The investigations on the structure of proofs
and on their properties follow various directions. For example:

• The analysis of the constructive content of classical proofs;

• The study of the formal properties of a systems, such as the admissibility
of a given rule.

• The development, the analysis and the implementation of calculi for modal
and non-classical logics.

• The introduction of new formalisms and suitable generalizations of methods
to represent proofs.
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These four areas are linked together by a uniform methodology. In particular,
the investigations often make use of analytic calculi. Although the notion of
analyticity is central in the field of proof theory, the definition of analyticity is
neither unique nor unproblematic (87). The concept of analysis is ancient and
has a glorious philosophical tradition. Essentially, there are two ways to conceive
of analyticity. On the one hand, analyticity can be identified with a lack of
information. On the other hand, analyticity could be understood as a method of
proof or reasoning.

The first view can be thought as a static or definitional account of analyticity,
whereas the second one is dynamic, as it is connected with the way proof are
construed and structured.

In this latter sense, a further distinction has to be made, depending on whether
the concept applies to a logic, a formal system or a specific proof. A typical
criterion to establish the analyticity of a calculus is the so called subformula
property:

Every formula occurring in a derivation is a subformula of a formula
in the conclusion.

The present chapter, broadly conceived, has three different aims:

1. Analyze and clarify the notion of analyticity in a logical setting.

2. Make explicit the relevance of the notion in the field of logic and, specifi-
cally, of proof theory.

3. Understand the interplay between the structure and the representation of
proofs and analyticity.

To start with, we shall discuss the first item. In particular, we wish to propose a
new definition of analyticity in a logical setting.

In this context, a definition can be thought of as a kind of biconditional. In
our case, according to the subformula property criterion, a logic is analytic if
and only if every derivation has an analytic presentation, i.e. there is a derivation
enjoying the subformula property. We claim that this is neither a necessary nor
a sufficient criterion.

First, it is not a necessary criterion. In fact, it is reasonable to assume that
classical first-order logic is analytic, yet its presentation does not satisfy the
subformula property, unless we stipulate the principle:

𝐴(𝑡) is a subformula of 𝑄𝑥.𝐴 for every term 𝑡 of the language.
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However, this is rather counterintuitive, as the term 𝑡 is not a proper part of of the
formula 𝑄𝑥.𝐴.

Proof-theorists often tend to consider 𝐴(𝑡) as a subformula of 𝑄𝑥.𝐴 insofar
as it still allows for a predicative proof-theoretical treatment of cut-elimination.
Indeed, eliminating cuts on universal formulas is possible insofar as the number
of connectives does not increase in the normalization procedure. However, we
argue that this is true only if we collapse the notion of subformula on the one of
logical complexity.

Second, the criterion is not sufficient. In fact, we argue that there are calculi
which enjoy a full-fledged subformula property, but they cannot be regarded as
fully analytic. Consider the sequent calculus for classical propositional logic by
Gentzen, the system LK (39). Of course, the law of excluded middle 𝑃 ∨ ¬𝑃
has to be derivable in the form of the sequent ⇒ 𝑃 ∨ ¬𝑃. The naïve attempt at
constructing a derivation via a root-first application of logical rules is doomed to
fail.

𝑃 ⇒ R¬⇒ ¬𝑃 R∨⇒ 𝑃 ∨ ¬𝑃
The key point is that a derivation can be obtained if we - looking at the proof
bottom-up - duplicate the formula 𝑃 ∨ ¬𝑃. Indeed, a step of the contraction rule
needs to be performed:

𝑃 ⇒ 𝑃 R¬⇒ 𝑃,¬𝑃
R∨⇒ 𝑃 ∨ ¬𝑃,¬𝑃

R∨⇒ 𝑃 ∨ ¬𝑃, 𝑃 ∨ ¬𝑃
RC⇒ 𝑃 ∨ ¬𝑃

The resulting derivation surely satisfies a subformula property as all the formulas
occurring within the derivation are subformulas of a formula in the conclusion.
However, it is clear that a new piece information has been introduced looking
bottom-up. Indeed, since standard sequent calculi presentations use multisets,
the multiplicity of formulas is a relevant parameter.

Also, the step of contraction required in order to properly construct the deriva-
tion is not contained by the sequent ⇒ 𝑃 ∨ ¬𝑃. In particular, the only displayed
symbols are 𝑃, ∨ and ¬ which do not indicate the need to duplicate the infor-
mation of the conclusion in the premise. Therefore we argue that the derivation
contains an external piece of information with respect to the conclusion.

We have observed that that the equation:

analyticity = subformula property
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is not satisfactory, therefore we would like to propose an alternative account
of analyticity. Our proposal stems from the practice of proving theorems and
formulas within a formal system. As a provisional attempt we define analyticity
as a property of derivations:

A derivation D is analytic if it can be obtained via the automatic backward
application of rules.

We immediately face a difficulty concerning the extension of the predicate of
analyticity. In fact, we have just given a definition of an analytic derivation. We
deem that it is natural to extend the definition so as to cover also full logical
systems. However, the example that we have given above (the case of LK) shows
that not all sequent-style presentations of classical propositional logic can be
regarded as analytic.

This suggests that different calculi for the same logic may or may not be
analytic. In particular, the G3 presentation is analytic, whereas the one by
Gentzen is not analytic according to the newly introduced definition, as it fails to
eliminate the rule of contraction. We fix the following definition for analyticity
for a logic:

A logic is analytic if there is a calculus in which every derivation is analytic.

This shows that our new definition of analyticity strongly depends on fine-grained
properties of calculi which are in turn specific properties of a logic. In particular,
to assess the analyticity of a certain calculus one needs to take into account the
following three parameters:

1. The structure of the objects manipulated in a derivation.

2. The structure or the form of a derivations considered as formal objects.

3. The design of the rules.

We shall see that depending on the variation of these points the analyticity of a
calculus changes accordingly.

1.2 Axioms and lines

At the end of the XIX𝑡ℎ century the axiomatic method became the prominent
approach to formalize mathematics. Its fortune was determined by the request of
rigour which seemed to be attainable via the individuation of a minimal set of
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axioms for a given area of mathematics. An axiomatic system can be described
as a finite set of axioms (or axiom schemata) equipped with a set of rules (usually
a small one) which allows to combine specific instances of the axioms to obtain
proofs.

To give an example, we recall here the axioms and the rule of classical
propositional logic.

C

Axioms

1.1 ⊢ 𝐴→ (𝐵 → 𝐴)

1.2 ⊢ (𝐴→ (𝐵 → 𝐶)) → ((𝐴→ 𝐵) → (𝐴→ 𝐶))

2.1 ⊢ 𝐴 ∧ 𝐵 → 𝐴 2.2 𝐴 ∧ 𝐵 → 𝐵

2.3 ⊢ (𝐴→ 𝐵) → ((𝐴→ 𝐶) → (𝐴→ 𝐵 ∧ 𝐶))

3.1 ⊢ 𝐴→ 𝐴 ∨ 𝐵 3.2 𝐵 → 𝐴 ∨ 𝐵

3.3 ⊢ (𝐴→ 𝐶) → ((𝐵 → 𝐶) → (𝐴 ∨ 𝐵 → 𝐶))

4.1 ⊢ (𝐴→ 𝐵) → ((𝐴→ ¬𝐵) → ¬𝐴)

4.2 ⊢ 𝐴→ (¬𝐴→ 𝐵)

4.3 ⊢ 𝐴 ∨ ¬𝐴

Inference Rules

⊢ 𝐴 ⊢ 𝐴→ 𝐵 MP⊢ 𝐵

As it is well-known, proving formulas in an axiomatic calculus can be a
daunting task. In fact, when faced with the problem:
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Is the formula 𝐵 provable in the axiomatic system C?

there is not a privileged route to follow. Indeed, if 𝐵 is not a specific instance of
an axiom schema, we need to assume, by inspection of the calculus, that it has
been obtained by an application of the rule of modus pones of the shape:

⊢ 𝐴→ 𝐵 ⊢ 𝐴
⊢ 𝐵

This proof configuration is not revealing with respect to the structure of 𝐴 which
could be extremely different from 𝐵 and possibly more complex. To give a
concrete example of this qualitative argument, let us a consider a proof of the
double negation law in the axiomatic system.

1. ⊢ (𝑃 → (¬¬𝑃 → 𝑃)) → ((¬𝑃 → (¬¬𝑃 → 𝑃)) → (𝑃∨¬𝑃 → (¬¬𝑃 →
𝑃)))

2. ⊢ 𝑃 → (¬¬𝑃 → 𝑃)

3. ⊢ (¬𝑃 → (¬¬𝑃 → 𝑃)) → (𝑃 ∨ ¬𝑃 → (¬¬𝑃 → 𝑃))

4. ⊢ ¬𝑃 → (¬¬𝑃 → 𝑃)

5. ⊢ 𝑃 ∨ ¬𝑃 → (¬¬𝑃 → 𝑃)

6. ⊢ 𝑃 ∨ ¬𝑃

7. ⊢ ¬¬𝑃 → 𝑃

Observe that the formula which occupies the first line of the derivation:

⊢ (𝑃 → (¬¬𝑃 → 𝑃)) → ((¬𝑃 → (¬¬𝑃 → 𝑃)) → (𝑃 ∨ ¬𝑃 → (¬¬𝑃 → 𝑃)))

is way more complex than the conclusion.
Trying to frame axiomatic calculi in the categories that we spelled out in the

previous section we observe that (i) they manipulate formulas of the language,
(ii) they lack structure as they are essentially linear derivations and (iii) there are
few rules and prominence is given to axioms and their instances.

As a consequence, the axiomatic calculus is well-suited to characterize the
notion of logical theorem, i.e. derivation without assumptions, but fails to give
an adequate representation of the notion of derivability. Via the soundness
and completeness theorems, theoremhood is seen to correspond faithfully to the
semantic notions of logical truth.
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It can thus be argued that the axiomatic reasoning does not represent ade-
quately the notion of logical consequence. As pointed out in (113), axiomatic
logic fails to capture naturally hypothetical reasoning. Furthermore, proving in
an axiomatic (or Hilbert style) system in a sense amounts to studying an algebraic
structure and its ordering properties. Although being apparently extremely poor
in terms of structure and extremely close to the syntax of the logic, a Hilbert style
system can be immediately equipped with a certain algebraic structure.

There is a close interplay between algebraic semantics, metalogical reasoning
and axiomatic calculi. In particular, starting from a new logical symbol, one can
introduce an axiom governing the behaviour of the new connective and finally
consider a corresponding a structure satisfying an inequality.

Axiomatic calculi are thus synthetic systems of proof as derivations cannot
be constructed bottom up and they are closely related to an underlying algebraic
structure. Such structure directly stems from the intuition of considering n-ary
operations in a one-to-one correspondence with the connectives of the logic. In
this sense, axiomatic reasoning is close to algebraic reasoning.

1.3 Rules and trees: shaping mathematical reason-
ing

As hinted at in the introductory section of the present chapter, Gerhard Gentzen
irreversibly changed the landscape of proof theory. His principal contribution to
the field of structural proof theory was the introduction of two new formalisms
for classical and intuitionistic logic. In particular, the two systems were natural
deduction and the sequent calculus.Natural deduction falls partially out of the
scope of our discussion, therefore we limit ourselves to highlighting some peculiar
features of the system.

To start with, natural deduction is a calculus which - contrarily to Hilbert
style systems - is mainly based on inference rules. In particular, every connective
is equipped with an introduction and an elimination rule: the first kind of rules
specifies the meaning of the connective, whereas the second one explains the
use of it. The rules manipulate formulas of the language and derivations have a
tree-like structure which can be given a kind of normal form.

However, it can be argued that natural deduction exhibits some weaknesses
from the standpoint of proof-theoretic reasoning and it fails to offer an analytic
presentation of a given logic in the sense specified above. In fact, proofs in natural
deduction work with sets of formulas rather than multisets and thus they are not
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sensible to the multiple application of hypothesis. Also, the rules in natural
deduction are not always local, they can be global in the sense that a certain
criterion needs to be fulfilled in order to apply them. The rule of implication is a
paradigmatic example of this global-like behaviour:

[𝐴]1

... D
𝐵 I→, 1

𝐴→ 𝐵

This feature of the calculus has two unpleasant consequences. First, it com-
plicates the inductive structure of derivations, thus making the investigation of
the metalogical properties of the system less perspicuous. Second, it prevents
the possibility to apply a kind of backward reasoning. Indeed, let us consider a
derivation of the Frege law in natural deduction:

3
𝐴→ (𝐵 → 𝐶)

1
𝐴

E→
𝐵 → 𝐶

2
𝐴→ 𝐵

1
𝐴 E→

𝐵 E→
𝐶 I→, 1

𝐴→ 𝐶 I→, 2
(𝐴→ 𝐵) → (𝐴→ 𝐶)

I→, 3
(𝐴→ (𝐵 → 𝐶)) → ((𝐴→ 𝐵) → (𝐴→ 𝐶))

Notice that the derivation is composed in two stages. First, we apply the intro-
duction rules root-first, discharging the antecedents of the implications, and then
we reason applying the elimination rules to the hypothesis. This latter section of
the derivation requires to apply a certain degree of synthetic reasoning.

The sequent calculus overcomes the difficulties of natural deduction in au-
tomating the process of the construction of the proof. The crucial point is the
choice of the basic syntactic object to manipulate. Indeed, when working with
sequent calculi, one does not work with formulas anymore, but with sequents.
Now, a sequent is a syntactic object of the shape:

Γ ⇒ Δ

where Γ and Δ are finite multisets (or lists) of formulas. This has the key
advantage to allow for reasoning on more complex structures and to manipulate
implications rather than single formulas.

One of the immediate upshots is that every rule is now local and every
connective is equipped with a pair of symmetric rules: one which acts on the left
hand side of the sequent arrow and the other on the right hand side. In sequent
calculi derivations are finite trees in which every node is labelled by a sequent

9



and which are built according to the rules of the calculus. Also, the multiplicity
of formulas is now controlled as we are now working with multisets of formulas,
in which the number of occurrences of a formula counts.

Let us now consider a proof of the same formula - the law of Frege - in a
sequent calculus:

ax
𝐴⇒ 𝐴

ax
𝐴⇒ 𝐴

ax
𝐵 ⇒ 𝐵

ax
𝐶 ⇒ 𝐶 L→

𝐵 → 𝐶, 𝐵 ⇒ 𝐶
L→

𝐴→ (𝐵 → 𝐶), 𝐵, 𝐴⇒ 𝐶
L→

𝐴→ (𝐵 → 𝐶), 𝐴→ 𝐵, 𝐴, 𝐴⇒ 𝐶
RC

𝐴→ (𝐵 → 𝐶), 𝐴→ 𝐵, 𝐴⇒ 𝐶
R→

𝐴→ (𝐵 → 𝐶), 𝐴→ 𝐵 ⇒ 𝐴→ 𝐶
R→

𝐴→ (𝐵 → 𝐶) ⇒ (𝐴→ 𝐵) → (𝐴→ 𝐶)
R→⇒ (𝐴→ (𝐵 → 𝐶)) → ((𝐴→ 𝐵) → (𝐴→ 𝐶))

The most striking property of Gentzen’s calculus is the fact that the rule:

Γ ⇒ Δ, 𝐴 𝐴,Π ⇒ Σ
Cut

Γ,Π ⇒ Δ, Σ

expressing the transitivity of implication and embodying synthetic reasoning in
the form of modus ponens, is redundant. Every derivation containing applications
of the cut rule can be effectively transformed (in the sense that a primitive recursive
operator can be defined) into a derivation which does not contain applications of
cut.

In the context of propositional logic, the elimination of cut stresses the im-
portance of the subformula property, because all the remaining rules enjoy the
subformula property. As we have remarked above, a subformula property in the
case of first-order classical logic is possible only with the caveat of identifying
𝐴(𝑡) as a subformula of 𝑄𝑥.𝐴.

1.4 Going beyond Gentzen

So far we have been dealing with sequent calculi for classical logic which can
be regarded as a paradigmatic example of analyticity. In particular, the G3-style
calculus (109) for classical propositional logic fully satisfies the requirements
of our alternative definition. It does so by i) working with sequents instead of
formulas, ii) absorbing the structural rules within the logical ones and iii) having a
tree-like structure. Indeed, the cut rule is admissible and so synthetic reasoning is
not required in order to find derivations of sequents. Furthermore, the contraction
rules can be dispensed with therefore allowing for a root-first approach.
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However, the logical landscape is not limited to classical logic. Indeed, a high
number of alternative logics have flourished in the XX𝑡ℎ century. The introduction
of non-classical logics has essentially been motivated by two different kind of
criticisms against classical reasoning. The first is normative and a clear example is
intuitionistic logic. Intuitionistic logic codifies a kind of mathematical reasoning,
just like classical logic does, but a radically alternative one. In this sense, classical
logic is simply wrong as it equates existence with consistency of an existential
assumption in the eyes of an intuionistic mathematician (by the equivalence
∃𝑥𝐴↔ ¬¬∃𝑥𝐴).

Other logicians deviated from classical reasoning as they did not consider it fit
to model certain inferential patterns. In these cases the criticism against classical
logic is contextual because it is relative to a specific domain of application. For
example, there are circumstances under which the multiple applications of an
hypothesis is relevant (as in the case of linear logic (40)).

Non-classical logics have posed a significant problem to researchers in the
area of structural proof theory. Indeed, the sequent calculus is surely a flexible
tool to accommodate classical, intuitionistic and substructural logics, but fails to
encompass well-known logical systems which enjoy a perspicuous semantic or
axiomatic presentation (a case is the modal system S5 which can be proved to be
complete with respect to analytic cuts (101)).

The tendency of the researchers in the field was to construct ad hoc calculi
which could work for a specific logic. However, a paradigm shift changed the
perspective on the problem. In particular, instead of adopting an abductive
approach which tried to add new rules depending on the shape of the axioms, the
base syntactic structure was modified. In the words of Blamey and Humberstone
(6):

This strongly suggests that the move from truth-functional to modal
logic is not one best made simply by adding a new primitive con-
nective with new rules governing it, but rather by extending one’s
conception of the objects to be manipulated by such rules.

This intuition was particularly fruitful and perfectly shows how the syntax and
the shape of the derivations is crucial in order to define analytic proof systems.

A first natural generalization of sequent calculi consists in manipulating not
a single sequent, but a finite multiset of sequents. A hypersequent is an object of
the shape:

Γ1 ⇒ Δ1 | . . . | Γ𝑛 ⇒ Δ𝑛
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Hypersequents have been extensively studied by various authors including (1; 18).
They have shown to be particularly suited to model intermediate logics, especially
when linearity axioms are added to the base system. Moreover, they proved to be
a flexible tool also in the field of many-valued and substructural reasoning.

Hypersequent system usually maintain a tree-like structure, but they manip-
ulate more complex objects. The advantage is the possibility to interpret the
structural connective | as a linguistic symbol. Typically, the hypersequent bar
admits a disjunctive reading and therefore hypersequents are promising to offer
a proof-theoretic treatment of axioms containing disjunctions.

In particular, the right disjunction rule is not invertible in the usual presen-
tations of intuitionistic logic, but it can be regained by the addition of parallel
components. For example, the axiom (𝑃 → 𝑄) ∨ (𝑄 → 𝑃) can be decomposed
into the hypersequent:

𝑃 ⇒ 𝑄 |𝑄 ⇒ 𝑃

Also, the presence of multiple components naturally suggests the introduction of
structural rules which act on them by modifying their structure and rearranging
the position of the multisets of formulas occurring therein.

A peculiar feature of the hypersequent calculi is that structural rules now
come in pairs. For each structural rule there is an internal and an external variant.
While the internal ones are the familiar structural rules, the external ones modify
the structure of the hypersequent. In this sense, the rule of external contraction
is particularly relevant as it duplicates an entire sequent:

Γ ⇒ Δ | Γ ⇒ Δ
EC

Γ ⇒ Δ

It is to be remarked that the explicit presence of the rule of external contraction
hinders the analyticity of hypersequent calculi, as it could be applied indefinitely
many times thus allowing duplications of entire sequents.

Hypersequents are a very natural generalization of standard sequent calculi.
One can further enrich the syntactic structure by imposing other properties.
For example, by working with lists instead of multisets, one obtains linear nested
sequents, which are finite lists of sequents in which the order counts (57). Finally,
one can consider nested sequent calculi, in which every node in the derivation
is labelled by a tree of sequents (11; 88). Nested sequents have given cut-free
sequent systems for several modal logics and more recently also intuitionistic and
intermediate logics. We also mention the so-called bunched sequents which add
some structural connectives distinguishing between ; and , assigning an additive
or a multiplicative reading.
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A completely different approach consists in maintaining the familiar structure
of sequents without adding extra structure but enriching the base language. The
display calculi fit into this category, because they internalize a kind of algebraic
semantics by properly extending the language of the calculus (3). The display
systems satisfy a very general cut-elimination theorem that holds whenever some
requirements are met. The latter can be easily checked by inspection of the rules
of the calculus.

Another formalism which builds on a proper extension of the language of a
given logic is labelled deduction. Labelled proof systems explicitly internalize
semantic elements in the syntax (112; 73). In this way semantic properties are
mimicked by the syntax of the calculus. The labelled approach offered a uniform
formulation of analytic calculi for modal logics. In particular, every modal and
non-classical logic whose semantics can be expressed in a first-order language
can be given a labelled sequent calculus which is analytic and preserves the usual
structural properties, i.e. admissibility of the rules of weakening, contraction and
cut.

The reason behind the success of display and labelled systems lies in the
preservation of the relatively simple structure of sequent calculus. This greatly
simplifies the investigations of the metalogical properties of the calculi. The
main conceptual and techinical consequence is that the target logic is - so to say -
embedded in a language which is a conservative extension of it. Indeed, labelled
sequent calculi are not prima facie a tool to reason on a logic, but rather on its
model theory.

The rules directly stem from the truth conditions for a formula, for example
the rules for the modal operator □ immediately follow by the condition:

𝑤 ⊩ □𝐴⇐⇒ ∀𝑢(𝑤𝑅𝑢 ⇒ 𝑢 ⊩ 𝐴)

where the quantifier ∀ has a metalogical reading. Whenever the model theory is
spelled out in a first-order language, one can exploit the well-known properties of
first-order classical logic to study the logic. In particular, labelled sequent calculi
enjoy the invertibility of every rule because first-order logic does and the same
goes for the structural properties.

However, since the language mirrors the model theory of the logic, asking
whether a formula holds in every world of an arbitrary the model amounts to test
its validity. We get the following correspondence result: for every logic X with
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frame properties which can be expressed in a first-order language, we have

X ⊢ 𝐴⇐⇒ G3X ⊢⇒ 𝑤 : 𝐴

where G3X is the corresponding labelled sequent system. Therefore, a certain
fragment of labelled sequents is enough to characterize the derivability in the
given logic.

1.5 The drawbacks of generalizations

We have proposed an overview of the main extensions of the sequent calculus. The
key modification to obtain these enhanced systems consists in a generalization
of the base syntactic element to be manipulated. On the contrary, the tree-
like structure is maintained and the design of the rules varies according to the
framework under consideration.

If Hilbert systems work with single formulas and the sequent calculus contains
rules which act on implications, the hypersequent calculi deal with disjunctions
of implications. The addition of extra-structure allows to model more complex
syntactic configurations and increases the number of invertible connectives.

However, a crucial remark is in order. Is the growing complexity of the
structure always a welcome addition to the toolbox of structural proof theory?
The question is central in order to critically evaluate a large portion of the scientific
production in the field of modern structural proof theory. To answer, we need to
look at the matter both from a conceptual and a technical point of view.

From a conceptual and philosophical perspective, proof theory has always
aimed (at least in purpose) to give a faithful account of logical reasoning (49).

The fundamental idea of my proof theory is none other than to
describe the activity of our understanding, to make a protocol of the
rules according to which our thinking actually proceeds.

Also, as Gentzen himself speaking about natural deduction notes (39):

My starting point was this: The formalization of logical deduction,
especially as it has been developed by Frege, Russell and Hilbert, is
rather far removed from the forms of deduction used in practice in
mathematical proofs. Considerable formal advantages are achieved
in return.

In contrast, I intended to set up a system which comes as close as
possible to actual reasoning.
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The move towards calculus of increased complexity sets a distance between actual
reasoning and the syntactic machinery. While manoeuvring formulas or sequents
can be conceived as a rather intuitive activity, the same cannot be said with
respect to hyper-, nested, display or labelled sequents. These system exhibit a
less perspicuous connection with the logic they axiomatize.

There is, however, another worrying aspect which is essentially technical.
The more complex a structure gets, the harder it is to analyze the properties of the
underlying logic. If the addition of extra-structure often simplifies the analysis
of metalogical properties of systems, even proofs of simple such properties can
prove to be extremely involved. Also, the elimination of the rule of cut - an
essential step towards the analyticity of a system - may be less revealing than in
the case of standard Gentzen-style formalisms. The key point is that while the
new structure provides the desired analyticity requirement, it needs to be carefully
handled and removed in order to unveil the properties of the logic.

To give a concrete example of this qualitative argument, we focus on the
case of the disjunction property for intuitionistic propositional logic. It is com-
mon knowledge that the cut-elimination theorem for the sequent calculus for
intuitionistic logic yields a straightforward proof of the disjunction property, i.e.:

⊢ 𝐴 ∨ 𝐵 =⇒ ⊢ 𝐴 𝑜𝑟 ⊢ 𝐵

In fact, once a proof of ⇒ 𝐴 ∨ 𝐵 is obtained, the inspection of the rules implies
that the last rule applied has to be the rule R∨ which immediately leads to the
desired conclusion.

Working with an hypersequent calculus for intuitionistic logic this is no longer
the case. Indeed, the last rule applied could be in principle an instance of external
contraction:

...

⇒ 𝐴 ∨ 𝐵 | ⇒ 𝐴 ∨ 𝐵
EC⇒ 𝐴 ∨ 𝐵

To obtain a proof of the disjunction property it is mandatory to establish the
validity of a preliminary lemma which asserts that the derivability of each com-
ponent of the hypersequent in the calculus is independent, therefore establishing
the redundancy of the hypersequential structure for intuitionistic propositional
logic.
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1.6 Analyticity and explanations

So far, we have described the interplay between the representation of proofs
articulated according to their shape, the objects which are manipulated and the
design of the rules. We have also explained in which sense analyticity is important
for the working proof-theorist explaining the advantages it offers.

However, we still have not discussed the relevance of the notion of analytic
proof for logic. Indeed, logic has often been considered analytic. According to
our definition of the notion, a logic is analytic if it can be framed into a suit-
ably formulated sequent calculus with certain properties. There is an illustrious
philosphical tradition which conceives logic as tout court analytic, by equating
analyticity with the lack of information.

We would like to maintain the analyticity of logic, especially with respect
to classical propositional and first-order logic, but we reject the idea that logical
reasoning is uninformative (for an extended discussion on the issue the reader
can consult (7)). Indeed, an analytic proof is not - under many respects - the most
common presentation of a proof or of an argument. In these contexts the use of
synthetic proof methods is often employed for reasons of clarity and conciseness.
The use of modus ponens and the argumentation by lemmata is a key ingredient
in mathematical proofs. Also, results in the field of structural proof theory and
on the length of proofs have showed that analytic proofs can be exponentially
longer that proofs containing cuts (97).

Therefore we would like to offer a completely opposite take on the problem.
Analyticity is relevant for logic as it precisely shows its informative content. An
analytic proof can be seen as the unfolding of a standard mathematical proof in
which all the information and the concepts involved in it are explicitly brought to
the fore. In this procedure the flow of information in the proof and the interaction
between the parts which are independent in a proof containing lemmata becomes
evident.

Furthermore, analyticity of the proofs ties to another venerable problem in the
field of proof theory, namely simplicity of proofs. The relevance of the theme was
stressed by Hilbert who had formulated a 24𝑡ℎ problem which was not presented
in his lectures in Paris (50):

The 24th problem in my Paris lecture was to be: Criteria of simplicity,
or proof of the greatest simplicity of certain proofs. Develop a theory
of the method of proof in mathematics in general. Under a given set
of conditions there can be but one simplest proof. Quite generally,
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if there are two proofs for a theorem, you must keep going until you
have derived each from the other, or until it becomes quite evident
what variant conditions (and aids) have been used in the two proofs.

In a sense, out notion of analyticity is strongly related to a criterion of simplicity
of proof. Indeed, the possibility of a bottom-up approach to the search for a
proof indicates a simple way to construct a proof which consists in a backward
application of the rules within a calculus until all the leaves of the proofs are
labelled by initial sequents. Indeed, analyticity entails the fact that each inferential
step in the derivation is justified on the base of the shape of the conclusion. Hence
analyticity can provide a criterion of simplicity in terms of construction of a proof
(although it could be in conflict with the difficulty in reading and interpreting it).

1.7 On the importance of building bridges

We have discussed the relevance of analyticity for proof theory and logic. To con-
clude the present chapter we would like to stress a further conceptual advantage
of developing uniform analytic calculi for non-classical logics. First, presenting
various logics as variations of a base common analytic system is particularly
desirable as it reduces the fragmentation of the landscape of non-classical logics.
Second, the development of uniform analytic calculi is promising in order to
build bridges between different proof systems1.

A key tool in this sense is represented by translations and embeddings. In
particular, a logic can be seen as a fragment of another one. A prominent
example in this respect is given by the modal embedding for intuitionistic logic
which shows that intuitionistic logic can be considereed a fragment of the modal
logic S4. These connections bring to the fore new interpretations and reading of
logical connectives and formulas.

Furthermore, once the embedding is proved to be sound - every proof can be
translated - and faithful - every proof of the translation can be transformed in a
proof of the original formula - it can be exploited to obtain proofs of metalogical
results.

Embeddings and translations between systems are also a central ingredient
in some relatively recent developments in the field of proof-theoretic semantics,
such as the project of ecumenical systems (86).

In this thesis we shall focus on the presentation of syntactic enquiries on
relations between different non-classical logics. The route we follow is thus

1See (? ) for a discussion of this issue in the context of non-monotonicity and paraconsistency.
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described. In Chapter 2 we deal with algebraic and semantical preliminaries
concerning the modal embedding of intuitionistic logic. Chapter 3 discusses a
nested system for intuitionistic propositional logic and a new system for modal
propositional logic which enables to prove a structural refinement of the trans-
lation. In Chapter 4 we propose a case study of the embedding of intuitionistic
logic in the modal logic of arithmetical provability and we obtain, as a byproduct,
terminating sequent calculi for a wide class of intermediate logics. Constructive
mathematical theories are the main focus of Chapter 5 which are given a modal
interpretation base on the logical shape of their axioms. Chapter 6 introduces the
topic of infinitary logics which will be central in the remaining part of the thesis.
Infinitary intuitionistic logic is thoroughly investigated both from the syntactic
and the semantic viewpoint and the modal embedding is extended to the infinitary
setting. The next Chapter 7 is devoted to the study of multiplicative quantifiers
and thus, lato sensu, of infinitary logics in a substructural setting. The Chapter
is connected in a sense to all the previous ones as multiplicative quantifiers can
simulate exponentials and thus, by combinig well-known translations, we can
represent all the previous systems as fragments of this latter. Chapter 8 dis-
cusses a technical point connected to cut-elimination in the presence of infinite
sequents, thus introducing a new proof-theoretic techniques. Finally, some brief
concluding remarks pave the way for future works.
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Chapter 2

The modal interpretation of
intuitionistic logic

In this first chapter we reconstruct the proof of the translation as presented by
Gödel and McKinsey and Tarski. We start by recalling some basic abstract al-
gebraic notions concerning lattices, Heyting algebras and Boolean algebras with
operators. We then give a proof of the algebraic version of Stone’s representation
theorem for lattices and we use this in order to show faithfulness of the translation
along the lines of the work of McKinsey and Tarski.

Keywords: algebraic logic, intuitionistic logic, modal logic

2.1 Algebraic semantics

We shall be mainly concerned with two languages: the one of intuitionistic
(and classical) logic and the one of modal logic. We start by presenting the
propositional parts of those languages.

Definition 2.1.1. The language FM of intuitionistic propositional logic contains
a denumerable set 𝐴𝑇 of propositional atomic formulas 𝑝1, 𝑝2, ... and binary
connectives ∧,∨,→ and a zeroary connective ⊥.

Definition 2.1.2. The language FM□ of modal propositional logic contains a
denumerable set 𝐴𝑇 of propositional atomic formulas 𝑝1, 𝑝2, ..., the binary con-
nectives ∧,∨,→, a unary connective □ and a zeroary connective ⊥.

Negation ¬𝐴 is defined as 𝐴→ ⊥ and logical equivalence 𝐴↔ 𝐵 is defined
as (𝐴→ 𝐵) ∧ (𝐵 → 𝐴). ⊤ is defined as ⊥ → ⊥. ♢𝐴 abridges ¬□¬𝐴.
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We also recall the axiomatic presentations of intuitionistic and (some) modal
logics. By I we denote the axiomatic calculus for intuitionistic propositional logic.
An axiomatic calculus C (see also the previous chapter) for classical propositional
logic is obtained by adding the axiom schema of the double negation law:

𝐴 ∨ ¬𝐴

Finally, a calculus for the minimal normal modal logic K is obtained by adding
the axiom:

K. □(𝐴→ 𝐵) → (□𝐴→ □𝐵)

and the inference rule 𝑅𝑁: ⊢ 𝐴 RN⊢ □𝐴 , i.e. the rule of necessitation.

I

Axioms

1.1 𝐴→ (𝐵 → 𝐴)

1.2 (𝐴→ (𝐵 → 𝐶)) → ((𝐴→ 𝐵) → (𝐴→ 𝐶))

2.1 𝐴 ∧ 𝐵 → 𝐴 2.2 𝐴 ∧ 𝐵 → 𝐵

2.3 (𝐴→ 𝐵) → ((𝐴→ 𝐶) → (𝐴→ 𝐵 ∧ 𝐶))

3.1 𝐴→ 𝐴 ∨ 𝐵 3.2 𝐵 → 𝐴 ∨ 𝐵

3.3 (𝐴→ 𝐶) → ((𝐵 → 𝐶) → (𝐴 ∨ 𝐵 → 𝐶))

4.1 (𝐴→ 𝐵) → ((𝐴→ ¬𝐵) → ¬𝐴)

4.2 𝐴→ (¬𝐴→ 𝐵)

Inference Rules

⊢ 𝐴 ⊢ 𝐴→ 𝐵 MP⊢ 𝐵
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The modal systems which will be studied in the present work are obtained
from the base system K via the modular addition of suitable axiom schemata:

• T. □𝐴→ 𝐴

• 4. □𝐴→ □□𝐴

• S4. T ⊕ 4

• S5. S4 ⊕ 𝐴→ □♢𝐴

Definition 2.1.3. Given an axiomatic system L, 𝐴 is derivable in L, in symbols
⊢L 𝐴, if and only if 𝐴 is an instance of an axiom schema or is obtained via
applications of the rules of the calculus.

Before the development of Kripkean semantics, for a long time the approach to
modal and intuitionistic logics was mainly based on algebraic methods. Kripkean
semantics interprets logical operators in relational structures and the relations
allows for the interpretation of the intensional connectives. Algebraic semantics
differs from the kripkean one since it abstracts from the meaning of logical
connectives, because it treats them as operations on a given set 𝐴.

In this section we will give a presentation of algebraic semantics for intuition-
istic logic and modal logic and the representation theorem for Heyting algebras
(92). In what follows we will be mainly dealing with axiomatic systems, as it is
customary in the field of algebraic logic, hence it is important to specify these
points.

Definition 2.1.4. Given an axiomatic system L, the logic L corresponds to the
set of theorems of L, L = {𝐴| ⊢L 𝐴}.

Thus, for example, in the present chapter when we will talk about intuitionistic
logic we will be actually referring to the set of theorems of the axiomatic calculus
I and the same holds for classical logic and normal modal logics.

Definition 2.1.5. Given a non-empty set 𝐴 and a collection of n-ary maps 𝑜𝑛 :
𝐴𝑛 → 𝐴, with 𝑛 ⩾ 01, 𝔄 = (𝐴, 𝑜1, ..., 𝑜𝑚) is an algebra with universe A. An
algebra is finite if 𝐴 is finite. An algebra is degenerate if 𝐴 is a singleton.

In what follows we will be dealing exclusively with non degenerate algebras.

1If 𝑛 = 0, then o is an element in A
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Definition 2.1.6. Given two algebras 𝔄, 𝔅 they are similar if they have the same
number of operations defined on them and if their arity coincides.

Definition 2.1.7. Algebras of the type 𝔄 = (𝐴,∧2,∨2,→2,⊥0) are called FM-
algebras.
Algebras of the type 𝔄 = (𝐴,∧2,∨2,→2,⊥0,□1) are called FM□-algebras.

Every formula 𝐹 (𝑝1, ..., 𝑝𝑛) gives rise to an n-ary operation in a FM, FM□-
algebra interpreting 𝐹’s connectives as the corresponding operations in 𝔄 and the
propositional variables 𝑝1, ..., 𝑝𝑛 as variables over 𝐴. A formula 𝐹 that defines
such an operation is called an FM(FM□)-term.
By 𝐹 (𝑎1, ..., 𝑎𝑛) we denote the result of applying the operation associated to 𝐹
to the elements 𝑎1, ..., 𝑎𝑛.

Definition 2.1.8. A valuation on a FM□-algebra 𝔄 is a map 𝑣 : 𝐴𝑇 → 𝐴. Its
definition is inductively extended to cover every 𝐹 ∈ FM□. For every formula
𝐹, 𝐺 ∈ FM□:

• 𝑣(⊥) = ⊥

• 𝑣(𝐹 ∧ 𝐺) = 𝑣(𝐹) ∧ 𝑣(𝐺)

• 𝑣(𝐹 ∨ 𝐺) = 𝑣(𝐹) ∨ 𝑣(𝐺)

• 𝑣(𝐹 → 𝐺) = 𝑣(𝐹) → 𝑣(𝐺)

• 𝑣(□𝐹) = □𝑣(𝐹)

Clearly, the symbols on the left hand side of the definition are the usual
connectives and the modal operator, whereas those on the right hand side represent
the corresponding algebraic operations defined on 𝐴. The definition of a valuation
for the case of FM-algebras is a restriction of the previous one, as we only need
to consider the first four items of the definition. In the next pages we will
give definitions and results for FM□-algebras, since those for FM-algebras are
particular cases of the latter.

Definition 2.1.9. Given 𝐹, 𝐺 terms of the FM□-algebra 𝔄, 𝐹 = 𝐺 is true in 𝔄

if and only if the value of F and G in 𝔄 under 𝑣 are the same (𝑣(𝐹) = 𝑣(𝐺)) for
every 𝑣.

Definition 2.1.10. Given an FM□-algebra 𝔄, 𝑍 ⊆ 𝐴, 𝑍 ≠ ∅, we say that (𝔄, 𝑍)
is a matrix and 𝑍 is the set of its distinguished elements. 𝐹 ∈ FM□ is valid in a
matrix if for every valuation 𝑣 in 𝔄 we have 𝑣(𝐹) ∈ 𝑍 .
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We will deal with algebras where 𝑍 contains only an element, i.e. ⊤ = ⊥ → ⊥,
so that the previous definition reduces to the following:

Definition 2.1.11. 𝐹 ∈ FM is valid in the matrix (𝔄,⊤), in symbols 𝔄 ⊨ 𝐹 iff
𝐹 = ⊤ is true in 𝔄.

Definition 2.1.12. Given two similar algebras 𝔄, 𝔅, a map 𝜙 : 𝔄 → 𝔅 is a
homomorphism from 𝔄 to 𝔅 if for every operation 𝑜𝑖 ∈ 𝔄 of arity m and every
element 𝑎1, ..., 𝑎𝑚 ∈ 𝔄, we have: 𝜙(𝑜𝑖 (𝑎1, ..., 𝑎𝑚))) = 𝑜𝑖 (𝜙(𝑎1), ..., 𝜙(𝑎𝑚)).

If 𝜙 is injective we say that 𝜙 is an embedding; if 𝜙 is onto then 𝜙 is an
epimorphism. If 𝜙 is both injective and onto we say that it is an isomorphism and
𝔄 and 𝔅 are isomorphic.

Given a normal modal logic L (i.e. an extension of K), its associated matrix
is the pair (𝔄𝐿 , 𝐿), such that 𝔄𝐿 = (FM□,∧,∨,→,⊥,□).2

Definition 2.1.13. Given a modal logic L we say that L is characterised by a class
of matrices if L coincides with the set of formulas that are valid in all matrices
in the class.

Theorem 2.1.1. Given a modal logic 𝐿, its associated matrix (𝔄𝐿 , 𝐿) is a char-
acteristic matrix for L.

Proof. From left to right we proceed as follows. Given a formula 𝐹 (𝑝1, ..., 𝑝𝑛) ∈
L, i.e. ⊢L 𝐹 (𝑝1, ..., 𝑝𝑛), for every valuation 𝑣 we have:

𝑣(𝐹) = 𝐹 (𝑝1/𝑣(𝑝1), ..., 𝑝𝑛/𝑣(𝑝𝑛))

but since 𝐿 is closed under substitution we have 𝐹 (𝑝1/𝑣(𝑝1), ..., 𝑝𝑛/𝑣(𝑝𝑛)) ∈ L,
hence (𝔄, 𝐿) ⊨ 𝐹.

From right to left we prove the contrapositive. Let us assume 𝐹 ∉ L. Hence
we consider the valuation 𝑣 on 𝔄𝐿 such that 𝑣(𝑝) = 𝑝 for every 𝑝 ∈ 𝐴𝑇 , hence
via a trivial induction we immediately obtain that 𝑣(𝐹) = 𝐹, but by hypothesis
𝐹 ∉ L, hence (𝔄𝐿 , 𝐿) ⊭ 𝐹. qed.

We will now present an important construction in algebraic logic, that is often
exploited in order to prove completeness with respect to algebraic semantics,
namely the Lindenbaum-Tarski algebras.

Definition 2.1.14. Given a logic L, given the set FM□ we define the relation ∼L

such that for every 𝐹, 𝐺 ∈ FM□ we have 𝐹 ∼ 𝐺 if and only if ⊢L 𝐹 ↔ 𝐺.

2The case for intuitionistic logic is obtained not considering □.
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Lemma 2.1.2. ∼ is an equivalence relation.

Proof. We have to check that ∼ is reflexive, symmetric and transitive.

• We easily obtain ⊢L 𝐹 ↔ 𝐹, thus 𝐹 ∼ 𝐹, hence ∼ is reflexive.

• Given 𝐹, 𝐺 ∈ FM□, we suppose 𝐹 ∼ 𝐺, hence ⊢L 𝐹 ↔ 𝐺, thus by
definition of↔ and commutativity of∧we immediately obtain ⊢L 𝐺 ↔ 𝐹,
that is 𝐺 ∼ 𝐹.

• Given 𝐹, 𝐺, 𝐻 ∈ FM□, we suppose 𝐹 ∼ 𝐺 and 𝐺 ∼ 𝐻, hence we have
⊢L 𝐹 ↔ 𝐺 and ⊢L 𝐺 ↔ 𝐻, so by definition of ↔ and transitivity of → we
obtain ⊢L 𝐹 ↔ 𝐻.

qed.

Since ∼ is an equivalence relation we can now consider the quotient of the
set FM□, in symbols FM□∼. The elements of the quotient are equivalence classes
of the form [𝐹]∼ = {𝐺 | ⊢L 𝐹 ↔ 𝐺}. As we will see the Lindenbaum algebra is
actually the quotient algebra naturally induced by (𝔄, 𝐿): the advantage is that
Lindenbaum algebras have a matrix with a single element.

Theorem 2.1.3 (Lindenbaum Algebra). Every normal modal logic and intuition-
istic logic has a characteristic matrix with a single distinguished element.

Proof. We deal with the Lindenbaum algebra for modal logics, the case for
intuitionistic logic is obtained analogously. For a modal logic L we consider
the following algebra 𝔄/𝐿 = (FM□∼𝐿

,∧,∨,→,⊥,□), we choose as distinguished
element [⊤]. The operations are so defined:

• [𝐹] ∧ [𝐺] = [𝐹 ∧ 𝐺]

• [𝐹] ∨ [𝐺] = [𝐹 ∨ 𝐺]

• [𝐹] → [𝐺] = [𝐹 → 𝐺]

• □[𝐹] = [□𝐹]

• ⊥ = [⊥]

It is routine to check that these operations are well defined in the sense that their
definition does not depend on the choice of the representatives of the class.

We now have to prove that for every formula 𝐹 ∈ FM□: ⊢L 𝐹 iff 𝔄 ⊨ 𝐹. In
order to do so we state the following proposition (the proof is a trivial induction
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on the complexity of 𝐹 and thus we omit it).

Claim For every formula 𝐹 in which the propositional variables 𝑝1, ..., 𝑝𝑛 occur,
for every formula𝐺1, ..., 𝐺𝑛, we have: 𝐹 ( [𝐺1], ..., [𝐺𝑛]) = [𝐹 (𝑝1/𝐺1, ..., 𝑝𝑛/𝐺𝑛)].

From left to right we assume ⊢L 𝐹 (𝑝1, ..., 𝑝𝑛). Let 𝑣 be a valuation on 𝔄 and
we consider a substitution 𝑝𝑖/𝐺𝑖 such that 𝑣(𝑝𝑖) = [𝐺𝑖] for every 𝑝 ∈ 𝐴𝑇 . Hence
if ⊢L 𝐹 (𝑝1, ..., 𝑝𝑛), then we have ⊢L 𝐹 ↔ ⊤, hence we have ⊢L 𝐹 (𝐺1, ..., 𝐺𝑛) ↔
⊤ because L is closed under substitution, so by definition [𝐹 (𝐺1, ..., 𝐺𝑛)] = [⊤].
Combining the chains of equalities above we obtain:

𝑣(𝐹) = 𝐹 (𝑣(𝑝1), ..., 𝑣(𝑝𝑛)) = 𝐹 ( [𝐺1], ..., [𝐺𝑛]) = [𝐹 (𝐺1, ..., 𝐺𝑛)] = [⊤].

where the third equality is justified by the Claim above. So we obtain 𝔄 ⊨ 𝐹.
From right to left we prove the contrapositive, so let us assume 𝐹 (𝑝1, ..., 𝑝𝑛) ∉

𝐿, then ⊬L 𝐹 ↔ ⊤ (otherwise 𝐹 ∈ L). So we have [𝐹] ≠ [⊤], but we now
consider the valuation 𝑣 such that 𝑣(𝑝) = [𝑝] for every 𝑝 ∈ 𝐴𝑇 . Clearly we have
𝑣(𝐹) = 𝐹 (𝑣(𝑝1), ..., 𝑣(𝑝𝑛)) = 𝐹 ( [𝑝1], ..., [𝑝𝑛]) = [𝐹 (𝑝1, ..., 𝑝𝑛)] ≠ [⊤], which
entails 𝔄 ⊭ 𝐹. qed.

Corollary. Normal modal logics and intuitionistic logic are characterised by
their corresponding Lindenbaum algebra.

This gives us a completeness theorem for intuitionistic and normal modal
logics. We shall see how this construction constitutes a case of a larger class of
algebras both for intuitionistic and modal logics.

We would like to characterise a class of algebras in which every intuitionistic
formula is valid.

Definition 2.1.15. An FM-algebra 𝔄 = (𝐴,∧,∨,→,⊥) is a Heyting algebra if
for every term of the algebra 𝐹, 𝐺: 𝔄 ⊨ 𝐹 = 𝐺 iff ⊢I 𝐹 ↔ 𝐺. We indicate with
𝐴𝐻 the class of all Heyting algebras.

We shall at times use 0 to refer to ⊥ and ⊤ or 1 to refer to ⊥ → ⊥. By
the definition it is clear that the Lindenbaum algebra for intuitionistic logic is
an Heyting algebra. This gives us the following theorem of completeness for
intuitionistic logic with respect to the class of Heyting algebras.

Theorem 2.1.4 (Algebraic completeness). For every 𝐹 ∈ FM and 𝔄 ∈ 𝐴𝐻, ⊢𝐼 𝐹
iff 𝔄 ⊨ 𝐹.
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Proof. From left to right if ⊢I 𝐹, then we have ⊢𝐼 𝐹 ↔ ⊤, then by definition of
Heyting algebra we have 𝔄 ⊨ 𝐹 = ⊤, that is 𝔄 ⊨ 𝐹.

From right to left we prove the contrapositive, hence we suppose that ⊬I 𝐹,
but then the Lindenbaum-Tarski intuitionistic algebra 𝔄/𝐼 ⊭ 𝐴 and 𝔄/𝐼 ∈ 𝐴𝐻 by
definition, hence contradiction. qed.

Definition 2.1.16. Given 𝔄 = (𝐴,∧,∨,→,⊥), we define over 𝐴 a relation ⩽
such that 𝑥 ⩽ 𝑦 if and only if 𝑥 ∧ 𝑦 = 𝑥.

Next we have an important theorem that gives an alternative characterisation
of Heyting algebras; to keep the presentation self contained we do not give the
details of the proof, the interested reader may find them in (15).3

Theorem 2.1.5. 𝔄 = (𝐴,∧,∨,→,⊥) ∈ 𝐴𝐻 if and only if for every 𝑥, 𝑦 ∈ 𝐴:

1.1 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥 1.2 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥

2.1 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧 2.2 𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧

3.1 (𝑥 ∧ 𝑦) ∨ 𝑦 = 𝑦 3.2 (𝑥 ∨ 𝑦) ∧ 𝑦 = 𝑦

4.1 𝑧 ∧ 𝑥 ⩽ 𝑦 iff 𝑧 ⩽ 𝑥 → 𝑦 4.2 ⊥ ⩽ 𝑥

The first pair of axioms expresses the commutativity of ∧ and ∨, the second
one their associativity and the third is the absorption law. An algebra with two
operations ∧,∨ that respect the laws 1.-3. is a lattice. Moreover in a lattice the
relation ⩽ introduced above defines a partial order (22).

Theorem 2.1.6. Given a lattice 𝐴 = (𝐴,∧,∨) a relation ⩽ such that for every
𝑥, 𝑦 we have 𝑥 ⩽ 𝑦 iff 𝑥 ∧ 𝑦 = 𝑥 defines a partial order on it.

Proof. We have to check that ⩽ is reflexive, transitive and antisymmetric.

• Reflexivity. 𝑥 ∧ 𝑥 = 𝑥 ∧ (𝑥 ∨ (𝑥 ∧ 𝑥)) = 𝑥 (exploiting twice the law of
absorption).

• Antisymmetry. Let us suppose 𝑥 ⩽ 𝑦 and 𝑦 ⩽ 𝑥, hence we have: 𝑥 ∧ 𝑦 = 𝑥
and 𝑦 ∧ 𝑥 = 𝑦, so by transitivity of equalities we have 𝑥 = 𝑦.

3We recall that this is only one among the various possible presentation of Heyting algebras.
For the opposite strategy, i.e. starting with an algebraic characterisation of Heyting algebras see
for example (92) (13).
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• Transitivity. Let us suppose 𝑥 ⩽ 𝑦 and 𝑦 ⩽ 𝑧, so we have 𝑥 ∧ 𝑦 = 𝑥 and
𝑦 ∧ 𝑧 = 𝑦, hence we build the following chain of equalities:
𝑥 = 𝑥 ∧ 𝑦 = 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧 = 𝑥 ∧ 𝑧.

qed.

Dually, we also have 𝑥 ⩽ 𝑦 iff 𝑥∨ 𝑦 = 𝑦. A lattice in which there are elements
0 and 1 that are the minimum and the maximum with respect to the order is a
bounded lattice. A lattice that has property 4.1 is a relatively pseudocomple-
mented lattice.
Finally we highlight that from properties 1.-4. it is possible to obtain the follow-
ing properties:

5.1 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) 5.2 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)
Lattices with this property are called distributive lattices. We observe that every
Heyting algebra is a bounded pseudocomplemented distributive lattice where the
minimum and the maximum are ⊥ and ⊤, respectively.

Now we will present the theory of filters, a crucial instrument to our devel-
opment (which will be central in Chapter 6), often employed in model theoretic
contruction both in classical and modal logic. In Heyting algebras we use filters
in order to represent at a pure set theoretic level propositional theories; i.e. sets of
formulas closed under modus ponens and containing all intuitionistic tautologies.

Definition 2.1.17. Given 𝔄 ∈ 𝐴𝐻, ▽ ⊆ 𝐴 is a filter if for every 𝑥, 𝑦 ∈ 𝔄:

• ⊤ ∈ ▽

• If 𝑥 ∈ ▽ and 𝑥 → 𝑦 ∈ ▽, then 𝑦 ∈ ▽ for every 𝑥, 𝑦 ∈ 𝐴.

We give an alternative and equivalent characterisation of the concept of filter,
that does not contain an explicit reference to →.

Theorem 2.1.7. Given 𝔄 ∈ 𝐴𝐻, ▽ ⊆ 𝐴 is a filter if and only if for every 𝑥, 𝑦 ∈ 𝔄:

1. ▽ ≠ ∅

2. If 𝑥 ∈ ▽ and 𝑦 ∈ ▽, then 𝑥 ∧ 𝑦 ∈ ▽ for every 𝑥, 𝑦 ∈ 𝐴.

3. If 𝑥 ∈ ▽ and 𝑥 ⩽ 𝑦 then 𝑦 ∈ ▽.

Proof. From left to right we suppose that ▽ is a filter, so ⊤ ∈ ▽, hence ▽ ≠ ∅.
Moreover, let us suppose 𝑥 ∈ ▽ and 𝑦 ∈ ▽, but since 𝔄 ⊨ 𝑥 → (𝑦 → 𝑥 ∧ 𝑦) = ⊤,
we have 𝑥 → (𝑦 → 𝑥 ∧ 𝑦) ∈ ▽, so by definition we have 𝑥 ∧ 𝑦 ∈ ▽. Finally, let
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us suppose 𝑥 ∈ ▽ and 𝑥 ⩽ 𝑦, so we have 𝑥 ∧ 𝑦 = 𝑥 hence 𝑥 ∧ 𝑦 ∈ ▽, but again
𝔄 ⊨ 𝑥 ∧ 𝑦 → 𝑦 = ⊤, so 𝑥 ∧ 𝑦 → 𝑦 ∈ ▽ and by the separation property 𝑦 ∈ ▽.

From right to left let us suppose that ▽ satisfies properties 1.-3., so ▽ ≠ ∅
hence there is 𝑥 ∈ ▽, but 𝑥 ⩽ ⊤, so ⊤ ∈ ▽. Furthermore, let us suppose 𝑥 ∈ ▽
and 𝑥 → 𝑦 ∈ ▽, so 𝑥 ∧ (𝑥 → 𝑦) ∈ ▽. Since 𝔄 ⊨ 𝑥 ∧ (𝑥 → 𝑦) = 𝑥 ∧ 𝑦 we have
𝑥 ∧ 𝑦 ∈ ▽, but 𝑥 ∧ 𝑦 ⩽ 𝑦 hence 𝑦 ∈ ▽ by 3. qed.

Now we will take into account a specific class of filters, the filters generated
by a set 𝑋 .

Definition 2.1.18. Given a lattice 𝐴, 𝑋 ⊂ 𝐴,

[𝑋⟩ = {𝑦 ∈ 𝐴 | 𝑥1 ∧ ... ∧ 𝑥𝑛 ⩽ 𝑦 for some 𝑥1, ..., 𝑥𝑛 ∈ 𝑋}

is the filter generated by 𝑋 in 𝐴.

Lemma 2.1.8. Given a non-empty set 𝑋 , [𝑋⟩ is the smallest filter on 𝐴 that
contains 𝑋 .

Proof. We first have to check that [𝑋⟩ is a filter.

• 𝑋 ≠ ∅, so [𝑋⟩ ≠ ∅ as well.

• Given 𝑥, 𝑦 ∈ [𝑋⟩, then by definition there are 𝑥1, ..., 𝑥𝑛 and 𝑦1, ..., 𝑦𝑚 such
that: 𝑥1 ∧ ... ∧ 𝑥𝑛 ⩽ 𝑥 and 𝑦1 ∧ ... ∧ 𝑦𝑚 ⩽ 𝑦. Hence we build the following
chain of equivalences:

𝑥1 ∧ ... ∧ 𝑥𝑛 ∧ 𝑦1 ∧ ... ∧ 𝑦𝑚 = 𝑥1 ∧ ... ∧ 𝑥𝑛 ∧ 𝑦1 ∧ ... ∧ 𝑦𝑚 ∧ 𝑥 ∧ 𝑦 iff
𝑥1 ∧ ... ∧ 𝑥𝑛 ∧ 𝑦1 ∧ ... ∧ 𝑦𝑚 ⩽ 𝑥 ∧ 𝑦 iff

𝑥 ∧ 𝑦 ∈ [𝑋⟩.

• Let us suppose 𝑥 ∈ [𝑋⟩ and 𝑥 ⩽ 𝑦, then by definition of [𝑋⟩ there
are 𝑥1, ..., 𝑥𝑛 such that 𝑥1, ..., 𝑥𝑛 ⩽ 𝑥, so by transitivity of ⩽ we obtain
𝑥1, ..., 𝑥𝑛 ⩽ 𝑦, hence 𝑦 ∈ [𝑋⟩.

Then we must verify that [𝑋⟩ is the smallest filter that contains 𝑋 and let ▽
be a filter on 𝔄 that contains 𝑋 , let 𝑦 ∈ [𝑋⟩. Hence by definition there are
𝑥1, ..., 𝑥𝑛 ∈ 𝑋 such that 𝑥1 ∧ ... ∧ 𝑥𝑛 ⩽ 𝑦. But by hypothesis 𝑥1, ..., 𝑥𝑛 ∈ ▽, hence
by definition of filter 𝑦 ∈ ▽. Thus [𝑋⟩ ⊆ ▽ and we have proved that [𝑋⟩ is the
minimum element in the set of filters on 𝔄 that contain 𝑋 . qed.

We now discuss a relevant property of a class of filters: primality.

28



Definition 2.1.19. Given a lattice 𝐴 a filter ▽ on 𝐴 is prime iff for every 𝑥, 𝑦 ∈ 𝐴:

• ▽ ≠ 𝐴 (i.e. ▽ is proper)

• If 𝑥 ∨ 𝑦 ∈ ▽, then 𝑥 ∈ ▽ or 𝑦 ∈ ▽

If filters correspond to theories, prime filters intuitively correspond to prime
or complete theories. The key point is that theories are, in a sense, closed
under implications and conjunctions, whereas prime theories are closed under
disjunctions too.

Definition 2.1.20. Given a lattice 𝐴, 𝑥 ∈ 𝐴 is prime iff:

• 𝑥 ≠ ⊥

• If 𝑥 = 𝑦 ∨ 𝑧 then 𝑥 = 𝑦 or 𝑥 = 𝑧

Lemma 2.1.9. Given a distributive lattice 𝐴 and 𝑥 ∈ 𝐴 then [{𝑥}⟩4 is prime iff
𝑥 is prime.

Proof. From left to right we suppose [𝑥⟩ is a prime filter. Hence 𝑥 ≠ ⊥, for
otherwise [𝑥⟩ = 𝐴. Then let us assume 𝑥 = 𝑦 ∨ 𝑧, then we have 𝑦 ∨ 𝑧 ∈ [𝑦 ∨ 𝑧⟩,
then 𝑦 ∈ [𝑦 ∨ 𝑧⟩ or 𝑧 ∈ [𝑦 ∨ 𝑧⟩ since [𝑦 ∨ 𝑧⟩ is prime. We consider the first case.
By definition of generated filter we have 𝑦∨ 𝑧 ⩽ 𝑦 and by definition of ⩽ we have
𝑦 ⩽ 𝑦 ∨ 𝑧, which yields 𝑦 = 𝑦 ∨ 𝑧 = 𝑥. The other case follows analogously.

From right to left let us suppose that 𝑥 is a prime element of 𝐴 and let us
assume 𝑦∨ 𝑧 ∈ [𝑥⟩, then by definition of generated filter we have 𝑥 ⩽ 𝑦∨ 𝑧, which
is equivalent to 𝑥 = 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) by distributivity. Since 𝑥 is
prime we obtain 𝑥 = 𝑥 ∧ 𝑦 or 𝑥 = 𝑥 ∧ 𝑧, that is equivalent by definition to 𝑥 ⩽ 𝑦
or 𝑥 ⩽ 𝑧. So we have 𝑦 ∈ [𝑥⟩ or 𝑧 ∈ [𝑥⟩ by definition of generated filter. qed.

Corollary. Given a distributive lattice 𝐴, 𝑥 ∈ 𝐴, if 𝑥 is prime then for every
𝑦, 𝑧 ∈ 𝐴 we have: if 𝑥 ⩽ 𝑦 ∨ 𝑧, then 𝑥 ⩽ 𝑦 or 𝑥 ⩽ 𝑧.

Proof. Let us assume 𝑥 ⩽ 𝑦 ∨ 𝑧, with 𝑥 ∈ 𝐴 prime, then by definition of ⩽ we
have 𝑥 = 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧), so by primality 𝑥 = 𝑥 ∧ 𝑦 or 𝑥 = 𝑥 ∧ 𝑧,
therefore 𝑥 ⩽ 𝑦 or 𝑥 ⩽ 𝑧. qed.

Definition 2.1.21. A filter is maximal iff every filter that extends it is not proper.

Definition 2.1.22. A filter ▽ on 𝔄 ∈ 𝐴𝐻 is an ultrafilter if for every 𝑥 ∈ 𝔄 we
have: 𝑥 ∈ ▽ or −𝑥 = 𝑥 → ⊥ ∈ ▽.

4From now on simply [𝑥⟩.
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A filter ▽ is maximal if, whenever a filter ▽′ ⊇ ▽, ▽′ = ▽.

Lemma 2.1.10. Given 𝔄 ∈ 𝐴𝐻, a filter ▽ on 𝔄 is maximal iff it is an ultrafilter.

In Heyting algebras maximal filters are ultrafilters and they are also prime
filters, but the converse does not hold in general. For a proper subclass of
Heyting algebras, Boolean algebras, which correspond to C as Heyting algebras
correspond to I, the three properties are equivalent. These algebraic results
mirror the differences between classical logic and intuitionistic logic. In view of
the representation theorem we limit ourselves to giving a concise presentation of
boolean algebras.

Definition 2.1.23. A boolean algebra 𝔅 is a Heyting algebra such that for every
𝐹, 𝐺 ∈ FM: ⊢C 𝐹 ↔ 𝐺 iff 𝔅 ⊨ 𝐹 = 𝐺. We indicate with BA the class of all
boolean algebras.

A Boolean algebra may be characterised as a Heyting algebra that for all of
its elements 𝑥 has their complement −𝑥 (definable as 𝑥 → ⊥) that satisfies the
following property: 𝑥 ∨ −𝑥 = ⊤.We also say that Boolean algebras are Heyting
algebras that are closed under the operation of complement. A classical example
of boolean algebra is the power set of a given set 𝑋 , with the operations of
intersection, union and complement (corresponding to 𝑋 \ 𝑌 for 𝑌 ⊆ 𝑋). In
this case we could define the boolean complement of 𝑌 relative to 𝑋 , 𝑌 → 𝑋

as −𝑌 ∪ 𝑋 ,intuitively corresponding to the classical reading of the implication.
Hence it is possible to give the following characterisation of Boolean algebras;
for the details of the proof see (15).

Lemma 2.1.11. A Heyting algebra 𝔅 in which for every 𝑥 ∈ 𝔅, 𝔅 ⊨ 𝑥 ∨ ¬𝑥 is a
boolean algebra.

We shall present a theorem that allows us to extend a filter to a prime filter.
This is a central result that we will use to prove the Stone representation theorem
for Heyting’s algebras, but it is non-constructive as it relies essentially on the
Zorn lemma which is in turn equivalent to choice axiom.5

Lemma 2.1.12 (Zorn). Given a partial order 𝑃, if every totally ordered subset
C ⊆ 𝑃 (i.e. a chain) has an upper bound, then 𝑃 has a maximal element.

Theorem 2.1.13 (Prime filter). Given a filter ▽ in a distributive lattice 𝐴 and
𝑥 ∉ ▽, there is a prime filter ▽′ such that ▽ ⊆ ▽′ and 𝑥 ∉ ▽′.

5Although we should mention that there have been recent interesting developments in the
field of algebraic logic that showed how to avoid the use of the choice axiom to get the prime
filter theorem.(5)
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Proof. Let a filter ▽ be given and 𝑥 ∉ ▽. We consider the set of all proper filters
extending ▽ and not containing 𝑥, i.e. 𝔉𝑥▽ = {𝐻 filter on 𝐴 | ▽ ⊆ 𝐻 and 𝑥 ∉ 𝐻}.
Given a chain C in 𝔉𝑥▽ it is easy to notice that

⋃C is an element of 𝔉𝑥▽ and is an
upper bound of C with respect to the ordering. Hence by Zorn’s lemma 𝔉𝑥▽ has
a maximal element ▽′. Thus there is a filter ▽′ such that ▽ ⊆ ▽′, 𝑥 ∉ ▽′ and for
every filter 𝐻 if ▽′ ⊊ 𝐻, then 𝑥 ∈ 𝐻. We claim that ▽′ is prime.

We argue by contradiction, so let us suppose that ▽′ is not prime, hence there
are 𝑦, 𝑧 ∈ 𝔄 such that 𝑦 ∨ 𝑧 ∈ ▽′, but 𝑦, 𝑧 ∉ ▽′. So we consider the generated
filters (▽′, 𝑦) = [▽′ ∪ {𝑦}⟩, (▽′, 𝑧) = [▽′ ∪ {𝑧}⟩, now (▽′, 𝑦), (▽′, 𝑧) ⊃ ▽′, so
since ▽′ is the maximal element in the set of filters that do not contain 𝑥 we have
𝑥 ∈ (▽′, 𝑦) ∩ (▽′, 𝑧). So by definition there are 𝑤1, 𝑤2 ∈ ▽′ such that 𝑤1 ∧ 𝑦 ⩽ 𝑥
and 𝑤2 ∧ 𝑧 ⩽ 𝑥, hence we have 𝑤1 ∧ 𝑤2 ∧ 𝑦 ⩽ 𝑥 and 𝑤1 ∧ 𝑤2 ∧ 𝑧 ⩽ 𝑥 and so
(𝑤1 ∧ 𝑤2 ∧ 𝑦) ∨ (𝑤1 ∧ 𝑤2 ∧ 𝑧) ⩽ 𝑥, which is equivalent, by distributivity, to
(𝑤1 ∧ 𝑤2) ∧ (𝑦 ∨ 𝑧) ⩽ 𝑥.
But 𝑤1 ∧ 𝑤2 ∈ ▽′ and 𝑦 ∨ 𝑧 ∈ ▽′, so by definition of filter we have (𝑤1 ∧ 𝑤2) ∧
(𝑦 ∨ 𝑧) ∈ ▽′, so again via the properties of filters we have 𝑥 ∈ ▽′, which is a
contradiction. qed.

Now that we have presented the main algebraic instruments we are going to
present modal algebras that constitute the analogue of Heyting algebras for modal
systems.

Definition 2.1.24. An FM□-algebra 𝔄 = (𝐴,∧,∨,→,⊥,□) is a K∗ modal al-
gebra if for every 𝐹, 𝐺 ∈ FM□, 𝐹 ↔ 𝐺 ∈ K∗ iff 𝔄 ⊨ 𝐹 = 𝐺, where
K∗ ∈ {K,T, 4, S4, S5}.

Theorem 2.1.14. Given a modal logic K∗, 𝐹 ∈ FM□ we have:

⊢K∗ 𝐹 iff 𝔄 ⊨ 𝐹

for every K∗ modal algebra 𝔄.

As in the case of Heyting algebras we give another (more perspicuous) char-
acterisation that will highlight the connection between the algebraic semantics
and the system considered.

Theorem 2.1.15. An FM□-algebra 𝔄 = (𝐴,∧,∨,→,⊥,□) is a K modal algebra
iff 𝔄 satisfies for every 𝑥, 𝑦 ∈ 𝐴:

1. 𝔄 ∈ 𝐵𝐴

2. □(𝑥 ∧ 𝑦) = □𝑥 ∧ □𝑦
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3. □⊤ = ⊤.

Proof. From left to right let us suppose 𝔄 is a K modal algebra, hence 1. holds
because K includes classical logic and thus we have that 𝔄 is a boolean algebra.
Moreover ⊢𝐾 □(𝐹∧𝐺) ↔ □𝐹∧□𝐺, so by definition 𝔄 ⊨ □(𝐹∧𝐺) = □𝐹∧□𝐺,
therefore 2. holds. Finally 3. easily follows, because ⊢𝐾 □⊤ ↔ ⊤ (the implication
from left to right is obtained via a fortiori and the one from right to left via the
use of the rule RN). Thus we have 𝔄 ⊨ □⊤ = ⊤.

From right to left instead we must show that if an algebra 𝔄 satisfies 1., 2., 3.
then for every formula 𝐹 ∈ FM□: if ⊢𝐾 𝐹, then 𝔄 ⊨ 𝐹. We proceed by induction
on the height of derivations.

• Since 𝔄 is a boolean algebra we only have to show that the axiom K is true
in 𝔄. So since 𝔄 ∈ 𝐵𝐴 we have:

𝔄 ⊨ (𝑥 → 𝑦) ∧ 𝑥 ∧ 𝑦 = (𝑥 → 𝑦) ∧ 𝑥

so we apply the operation □ to the left and to the right, hence we obtain the
following chain of equalities:

□((𝑥 → 𝑦) ∧ 𝑥 ∧ 𝑦) = □((𝑥 → 𝑦) ∧ 𝑥) == □(𝑥 → 𝑦) ∧□𝑥 ∧□𝑦 = □(𝑥 →
𝑦) ∧ □𝑥.

Then by definition we obtain □(𝑥 → 𝑦) ∧□𝑥 ⩽ □𝑦. But a boolean algebra
is a Heyting algebra as well, hence □(𝑥 → 𝑦) ⩽ □𝑥 → □𝑦, so we have
□(𝑥 → 𝑦) → (□𝑥 → □𝑦).

• 𝔄 is closed under RN. But this is immediate via property 3.We suppose that
⊢𝐾 𝐹, hence we have ⊢𝐾 𝐹 ↔ ⊤, so by induction hypothesis 𝔄 ⊨ 𝐹 = ⊤,
so we have 𝔄 ⊨ □𝐹 = □⊤, but by 3. 𝔄 ⊨ □𝐹 = ⊤.

qed.

It is evident that the algebra we have just described mirrors the axioms of the
modal system K. In particular 2. corresponds to the distributivity axiom K, 3. to
the rule of necessitation RN.

2.2 Modal embedding

We are now ready to present the main tool that will allow us to reconstruct a model
theoretic proof of the embedding of I into S4 with purely algebraic instruments.
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The main ingredient of this procedure is the Stone representation theorem. Stone
representation theorem constitutes a turning point in the algebraic approach to
philosophical logic. There are two variants of the Stone theorem: a purely
algebraic one and a topological one.

As we will see, the algebraic representation theorem for Heyting algebras
shows that they are isomorphic to an algebra of the open elements of a topological
boolean algebra, i.e. a modal algebra corresponding to the modal logic S4,
whereas the topological representation theorem for Heyting algebras shows that
they are isomorphic to the open sets of a topological space. This duality rests on
the fact that the modal operator □ in S4 modal algebras has the same properties of
an interior operator in a topological space (13) and (65) and therefore it constitutes
a conceptualization of the latter. However, in what follows we will focus on the
algebraic result, because we will exploit it in order to prove the embedding (98).

Definition 2.2.1. Given a distributive lattice 𝔄 = (𝐴,∧,∨), its associated Stone
space𝑊𝔄 is the set of all its prime filters.

Definition 2.2.2. Given 𝔄, 𝑊𝔄 the Stone function is an application 𝜙𝔄 : 𝐴 →
P(𝑊𝔄) such that for every 𝑥 ∈ 𝐴, 𝜙(𝑥) = {▽ ∈ 𝑊𝔄 | 𝑥 ∈ ▽}.

Definition 2.2.3. Given 𝑃𝔄 = {𝜙𝔄 (𝑥) |𝑥 ∈ 𝐴},we say that (𝑃𝔄,∩,∪) is the Stone
lattice of 𝔄.

The next theorem is crucial from a conceptual point of view and it represents
a cornerstone in the field of algebraic approaches to non-classical logics. Its
relevance lies in the fact that it gives a - so to say - concrete topological structure
which is isomorphic to the purely algebraic one.

Theorem 2.2.1 (Stone representation). For every distributive lattice 𝔄:

𝔄 ≃ (𝑃𝔄,∩,∪)

Proof. We claim that the Stone function is an isomorphism from 𝔄 to the Stone
lattice of 𝔄. Hence we must prove that 𝜙𝔄 is a bĳection and a morphism, i.e. a
function which commutes with the operations.

• 𝜙𝔄 is clearly onto, because by definition 𝑃𝔄 is the image of 𝐴 through 𝜙𝔄.

• 𝜙𝔄 is injective. Given 𝑥, 𝑦 ∈ 𝐴 let us suppose 𝑥 ≠ 𝑦, then 𝑥 ⩽̸ 𝑦 or
𝑦 ⩽̸ 𝑥. Hence without loss of generality we deal with the first case. So we
consider the filter generated by 𝑥, [𝑥⟩ that does not contain 𝑦 (otherwise
by definition of generated filters we would obtain 𝑥 ⩽ 𝑦) and so we apply
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Theorem 2.1.13 and we obtain a prime filter ▽′ such that [𝑥⟩ ⊆ ▽′, 𝑥 ∈ ▽′

and 𝑦 ∉ ▽′. By definition of 𝜙𝔄 we obtain ▽′ ∈ 𝜙𝔄 (𝑥) and ▽′ ∉ 𝜙𝔄 (𝑦),
which entails 𝜙𝔄 (𝑥) ≠ 𝜙𝔄 (𝑦).

• We have to check that 𝜙𝔄 preserves the operations. So given 𝑥, 𝑦 ∈ 𝐴, we
consider 𝜙𝔄 (𝑥 ∧ 𝑦) = {▽ ∈ 𝑊 | 𝑥 ∧ 𝑦 ∈ ▽}, but since ▽ is a filter we have
{▽ ∈ 𝑊 | 𝑥 ∈ ▽ and 𝑦 ∈ ▽} = 𝜙𝔄 (𝑥) ∩ 𝜙𝔄 (𝑦).

• Given 𝑥, 𝑦 ∈ 𝐴, we consider 𝜙𝔄 (𝑥 ∨ 𝑦) = {▽ ∈ 𝑊 | 𝑥 ∨ 𝑦 ∈ ▽}, since ▽ is a
prime filter we have {▽ ∈ 𝑊 | 𝑥 ∈ ▽ or 𝑦 ∈ ▽} = 𝜙𝔄 (𝑥) ∪ 𝜙𝔄 (𝑦).

Hence the theorem holds, so 𝔄 ≃ (𝑃𝔄,∩,∪). qed.

Before proceeding with the last part of our brief exposition of these algebraic
instruments, we will spend a few words on the Stone representation theorem. We
observe that if we took as Stone space not the set of all the prime filters on 𝔄, but
merely the set of all filters we could not have completed the proof, because we
require the primality property when we are dealing with the presevation of∨ under
the Stone function. Notice that in contrast this was not necessary with respect
to ∧, because filters are closed under intersection. This leads us to consider a
crucial point: if surjectivity is easily obtained by construction, injectivity comes
at a cost. In fact the proof given above makes an essential use of the prime filter
theorem, which in turn relies on the Zorn lemma, a non constructive principle,
thus introducing - in the words of Hilbert - an ideal element in the proof.

We are finally in the position to clarify the relation between the modal system
S4 and intuitionistic logic, working at a pure algebraic level. We recall few
definitions and lemmata before stating the main results.

Definition 2.2.4. An algebra 𝔄 = (𝐴,∧,∨,→,⊥,□) is an S4-algebra (or a
topological boolean algebra) if it satisfies the following conditions for every
𝑥, 𝑦 ∈ 𝐴:

• 𝔄 is a K-modal algebra;

• □𝑥 ⩽ 𝑥

• □□𝑥 = □𝑥

Our first step is to show that we can obtain a Heyting algebra from a topological
boolean algebra.
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Definition 2.2.5. Given an S4 algebra 𝔄 = (𝐴,∧,∨,→,⊥,□), an element 𝑥 ∈ 𝔄

such that □𝑥 = 𝑥 is an open element of 𝔄. We indicate the set of open elements
of 𝔄 with O(𝐴).

Lemma 2.2.2. For every S4-algebra and every open elements 𝑥, 𝑦 in it we have
□(𝑥 ∨ 𝑦) = 𝑥 ∨ 𝑦.

Proof. Clearly due to properties of □ we have □(𝑥 ∨ 𝑦) ⩽ 𝑥 ∨ 𝑦.
Instead in the other direction we have 𝑥 ⩽ 𝑥 ∨ 𝑦, so we apply □ and we have
𝑥 = □𝑥 ⩽ □(𝑥 ∨ 𝑦). The same can be argued for 𝑦, hence 𝑦 ⩽ □(𝑥 ∨ 𝑦). Thus we
have 𝑦∧□(𝑥∨ 𝑦) = 𝑦, hence 𝑥∨ 𝑦 = 𝑥∨ (𝑦∧□(𝑥∨ 𝑦)) = (𝑥∨ 𝑦) ∧ (𝑥∨□(𝑥∨ 𝑦)),
and, since 𝑥 ⩽ □(𝑥 ∨ 𝑦), we have (𝑥 ∨ 𝑦) ∧□(𝑥 ∨ 𝑦), thus 𝑥 ∨ 𝑦 ⩽ □(𝑥 ∨ 𝑦). qed.

Definition 2.2.6. Given an S4 algebra 𝔄 = (𝐴,∧,∨,→,⊥,□) we say that 𝔄𝑜 =

(O(𝐴),∧,∨,→□,⊥), with 𝑥 →□ 𝑦 = □(𝑥 → 𝑦) is the algebra of its open
elements.

Theorem 2.2.3. Given an S4 algebra, its algebra of the open elements is a
Heyting algebra.

Proof. First of all we have to check that the algebra of open elements is closed
with respect to ∧,∨, but this is immediate by the properties of □ and by the
previous lemma respectively.
Then we show that it is a Heyting algebra. Due to the characterization of Heyting
algebras given by Theorem 2.1.5 we have to check that conditions 1.-4. are
respected, but since it is closed under ∧,∨, we can limit ourselves to check
whether 4. is satisfied or not.

From left to right let us suppose 𝑥∧ 𝑦 ⩽ 𝑧, then we have 𝑥 ⩽ 𝑦 → 𝑧. Applying
by both sides the operator □ we have □𝑥 ⩽ □(𝑦 → 𝑧) and since 𝑥 is an open
element we have 𝑥 ⩽ 𝑦 →□ 𝑧.

From right to left we suppose 𝑥 ⩽ 𝑦 →□ 𝑧, hence we have 𝑥 ⩽ □(𝑦 → 𝑧), so
since □(𝑦 → 𝑧) ≤ □𝑦 → □𝑧 we have 𝑥 ⩽ □𝑦 → □𝑧, so we have 𝑥 ∧ □𝑦 ⩽ □𝑧.
Since 𝑦, 𝑧 are open elements we obtain 𝑥 ∧ 𝑦 ⩽ 𝑧. qed.

It can be easily seen that given a topological boolean algebra 𝔄 and its
associated Heyting algebra of the open elements 𝔄𝑜 we have: if 𝔄 ⊨ 𝐹∗ then 𝔄𝑜 ⊨

𝐹, for every formula 𝐹 ∈ FM, where ∗ is a modification of Gödel’s translation
(42). Hence this constitutes a proof of the faithfulness of the embedding result of
intuitionistic logic into S4 modulo the theorems of algebraic completeness and
the representation theorem for Heyting algebras. As a historical note, we recall
that the original Gödel translation was so defined:
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• (𝑝)𝔤 := 𝑝

• (⊥)𝔤 := ⊥

• (𝐴 ∧ 𝐵)𝔤 := 𝐴𝔤 ∧ 𝐵𝔤

• (𝐴 ∨ 𝐵)𝔤 := □𝐴𝔤 ∨ □𝐵𝔤

• (𝐴→ 𝐵)𝔤 := □𝐴𝔤 → □𝐵𝔤

Definition 2.2.7. The function ∗ : FM → FM□ is so defined:

• (𝑝)∗ = □𝑝

• (⊥)∗ = ⊥

• (𝐹 ∧ 𝐺)∗ = 𝐹∗ ∧ 𝐺∗

• (𝐹 ∨ 𝐺)∗ = 𝐹∗ ∨ 𝐺∗

• (𝐹 → 𝐺)∗ = □(𝐹∗ → 𝐺∗)

is the Gödel translation from I to S4.

Lemma 2.2.4. Let a topological boolean algebra 𝔄 = (𝐴,∧,∨,→,⊥,□) and its
algebra of the open elements 𝔄𝑜 = (O(𝐴),∧,∨,→□,⊥) be given. Then for every
formula 𝐹 ∈ FM if 𝔄 ⊨ 𝐹∗ then 𝔄𝑜 ⊨ 𝐹.

Proof. We prove the contrapositive, so let us suppose that 𝔄𝑜 ⊭ 𝐹, hence there
is a valuation 𝑣 : 𝐴𝑇 → O(𝐴) such that 𝑣(𝐹) ≠ ⊤. Hence we consider the
valuation function 𝑣′ : 𝐴𝑇 → 𝐴 such that 𝑣′(𝑝) = □𝑣(𝑝).
Claim For every 𝐹 ∈ FM we have 𝑣′(𝐹) = 𝑣(𝐹∗).

We proceed by induction on 𝐹.

• If 𝐹 ≡ 𝑝, then 𝑣′(𝑝) = □𝑣(𝑝) = 𝑣(□𝑝) = 𝑣((𝑝)∗).

• If 𝐹 ≡ 𝐶 ∧ 𝐷, then 𝑣′(𝐶 ∧ 𝐷) = 𝑣′(𝐶) ∧ 𝑣′(𝐷), by induction hypothesis
we obtain 𝑣(𝐶∗) ∧ 𝑣(𝐷∗) and so by definition of the valuation function
𝑣((𝐶 ∧ 𝐷)∗). The case for 𝐶 ∨ 𝐷 is analogous and thus we omit it.

• If 𝐹 ≡ 𝐶 → 𝐷, then 𝑣′(𝐶 → 𝐷) = 𝑣′(𝐶) →□ 𝑣′(𝐷), which by induction
hypothesis is equal to 𝑣(𝐶∗) →□ 𝑣(𝐷∗), that by definition is equal to
□(𝑣(𝐶∗) → 𝑣(𝐷∗)) = 𝑣(□(𝐶∗ → 𝐷∗)) = 𝑣((𝐶 → 𝐷)∗).

Thus since 𝑣(𝐹) ≠ ⊤, 𝑣′(𝐹∗) ≠ ⊤, there is a valuation on 𝔄 that falsifies 𝐹∗, so
𝔄 ⊭ 𝐹∗. qed.
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Hence our last step, following the path crossed by McKinsey and Tarski is to
prove that every Heyting algebra is isomorphic to the algebra of open elements
of an S4-algebra.

Theorem 2.2.5 (Algebraic representation theorem for Heyting algebras). Given
a Heyting algebra 𝔄, then 𝔄 ≃ (𝔅)𝑜, for some S4-algebra 𝔅.

Proof. Given 𝔄 we consider its isomorphic Stone lattice (𝑃𝔄,∩,∪)6 and then its
extension 𝔅 = (P(𝑊𝔄),∩,∪) ∈ 𝐵𝐴, where P(𝑋) denotes the powerset of 𝑋 .

Lemma 2.2.6. (𝑃𝔄,∩,∪) is a sublattice7 of (P(𝑊𝔄),∩,∪). Moreover every
element 𝑋 ∈ 𝔅 is of the form 𝑋 = (−𝑌1 ∪ 𝑍1) ∩ ... ∩ (−𝑌𝑛 ∪ 𝑍𝑛) for some
𝑌𝑖, 𝑍𝑖 ∈ 𝑃𝔄, where − indicates the operation of complement in Boolean algebras
defined as −𝑌 := 𝑌 → ⊥.

Proof. For the details of the proof see (92; 15). qed.

We then define the interior operator □ in 𝔅 as follows: for every 𝑋 ∈ 𝔅, if
𝑋 = (−𝑌1 ∪ 𝑍1) ∩ ... ∩ (−𝑌𝑛 ∪ 𝑍𝑛), then □𝑋 = (𝑌1 → 𝑍1) ∩ ... ∩ (𝑌𝑛 → 𝑍𝑛),
where → is the (intuitionistic) relative pseudocomplement.

Hence we have that for every 𝑋,𝑌 ∈ 𝔅:

• □𝑋 ∈ (𝑃𝔄,∩,∪). Immediate since Heyting algebras are closed with
respect to the operation of relative pseudocomplement.

• For every 𝑋 ∈ 𝑃𝔄,□𝑋 = 𝑋 . This easily follows, in fact let us write 𝑋 ∈ 𝑃𝔄

as −𝑊𝔄 ∪ 𝑋 ∈ (P(𝑊𝔄),∩,∪) (notice that 𝑊𝔄 corresponds to ⊤). Hence
□𝑋 = ⊤ → 𝑋 . But since (𝑃𝔄,∩,∪) is a Heyting algebra and moreover
⊢𝐼 (⊤ → 𝑋) ↔ 𝑋 , we can conclude □𝑋 = ⊤ → 𝑋 = 𝑋 .

• □(𝑋 ∩𝑌 ) = □𝑋 ∩ □𝑌 , in fact let 𝑋 = (−𝑊1 ∪ 𝑍1) ∩ ... ∩ (−𝑊𝑛 ∪ 𝑍𝑛), 𝑌 =

(−𝑈1 ∪𝑉1) ∩ ...∩ (−𝑈𝑚 ∪𝑉𝑚), then □(𝑋 ∩𝑌 ) = (𝑊1 → 𝑍1) ∩ ...∩ (𝑊𝑛 →
𝑍𝑛) ∩ (𝑈1 → 𝑉1) ∩ ... ∩ (𝑈𝑚 → 𝑉𝑚), that is equal to □𝑋 ∩ □𝑌 .

• □𝑋 ⩽ 𝑋 . Now let 𝑋 = (−𝑊1 ∪ 𝑍1) ∩ ... ∩ (−𝑊𝑛 ∪ 𝑍𝑛), then □𝑋 = (𝑊1 →
𝑍1) ∩ ... ∩ (𝑊𝑛 → 𝑍𝑛), but as it can be shown (𝑊1 → 𝑍1) ∩ ... ∩ (𝑊𝑛 →
𝑍𝑛)∩(−𝑊1∪𝑍1)∩ ...∩(−𝑊𝑛∪𝑍𝑛) is equal to (𝑊1 → 𝑍1)∩ ...∩(𝑊𝑛 → 𝑍𝑛)
(92).

• □□𝑋 = □𝑋 . It is sufficient to observe that since□𝑋 ∈ 𝑃𝔄, then□□𝑋 = □𝑋 .

6Here the order is simply the set inclusion, the zero element is the empty set and → is
uniquely determined by the lattice order and ∩.

7 (𝐴,∧′,∨′) is a sublattice of (𝐵,∧′,∨′) if 𝐴 ⊆ 𝐵 and 𝐴 is closed under ∧ and ∨.
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• ⊤ ∈ 𝑃𝔄, hence ⊤ = □⊤.

Thus (𝔅,□) is a topological boolean algebra. We consider

𝔅𝑜 = (O(P(𝑊𝔄)),∩,∪,→□, ∅)

the algebra of the open elements of 𝔅. It clearly coincides with (𝑃𝔄,∩,∪), hence
by transitivity of the isomorphism the Stone function is an isomorphism 𝔄 ≃ 𝔅𝑜.

This concludes the theorem. qed.

Combining Lemma 2.2.4 and Theorem 2.2.5 we obtain the embedding result
(actually the faithfulness side that had only been conjectured by Gödel)8 of
intuitionistic logic modulo algebraic completeness, analogously to what Tarski
and McKinsey achieved in 1948 (65).

Theorem 2.2.7 (Modal Interpretation). For every formula 𝐴 ∈ FM:

⊢𝐼 𝐴 if and only if ⊢𝑆4 𝐴
∗.

Proof. From left to right the proof follows by an induction on the height of
derivations, showing that the translation of every axiom scheme for I can be
derived in S4 and proving the closure under modus ponens. For example, we show
the admissibility of the translation of modus ponens. The induction hypothesis
yields derivations of ⊢ 𝐴∗ and of ⊢ □(𝐴∗ → 𝐵∗) and we construct the following
derivation:

⊢ 𝐴∗ RN⊢ □𝐴∗
⊢ □(𝐴∗ → 𝐵∗) ⊢ □(𝐴∗ → 𝐵∗) → (□𝐴∗ → □𝐵∗)

MP⊢ □𝐴∗ → □𝐵∗
MP⊢ □𝐵∗

From right to left we prove the contrapositive. We assume ⊬𝐼 𝐴, hence
by algebraic completeness for the intuitionistic propositional calculus there is a
Heyting algebra 𝔄 such that 𝔄 ⊭ 𝐴. By Theorem 2.2.5 𝔄 is isomorphic to the
algebra of open elements of a S4-modal algebra 𝔅, we call it 𝔅𝑜.
So we have 𝔅𝑜 ⊭ 𝐴 and by Lemma 2.2.4 we have 𝔅 ⊭ 𝐴∗, which entails ⊬𝑆4 𝐴

∗

modulo the validity side of algebraic completeness theorem for S4. qed.

8The validity of the embedding had been already proved by Gödel himself via an induction
on the height of derivations in the axiomatic calculus I.
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2.3 Kripke semantics

We would like to sketch the proof of the soundness and of the faithfulness of the
translation via Kripke semantics. The proof essentially follows the same pattern9,
except that in this case we work with relational structures instead of algebraic
ones.

2.3.1 Modal logics

In this section we are going to outline some of the main features of the semantics
for modal logic, that will turn out to be essential in the analysis of other calculi.
We will deal with kripkean frame-based semantics, that is a framework flexible
enough to treat various non classical logics (not only modal logic as we will see).
This also gives the opportunity to introduce basic definitions for Kripke-style
semantics.

Definition 2.3.1. A frame F = ⟨𝑊, 𝑅⟩ is an ordered pair where𝑊 is a non empty
set and 𝑅 is a binary relation on𝑊 .

Definition 2.3.2. A Kripke model M = ⟨𝑊, 𝑅, v⟩ is an ordered triple where
⟨𝑊, 𝑅⟩ is a frame and v is a function v : 𝐴𝑇 → P(𝑊). We say that M is based
on the frame (𝑊, 𝑅).

We call the elements of 𝑊 possible worlds or states, the relation 𝑅 is the
accessibility relation: given two worlds 𝑥, 𝑦 ∈ 𝑊 , when 𝑥𝑅𝑦 we say that 𝑥 sees
𝑦. Intuitively the function v assigns to every propositional variable 𝑝 the subset
𝑋 ⊆ 𝑊 in which 𝑝 is true. Now we are going to introduce the satisfiability
relation for Kripke models.

Definition 2.3.3. Given a Kripke model M = ⟨𝑊, 𝑅, v⟩, 𝑥 ∈ 𝑊 and 𝐴 ∈ 𝐹𝑀□,
the relation M, 𝑥 ⊩ 𝐴, i.e. 𝐴 is true at world 𝑥 in the model M, is inductively
defined:

• M, 𝑥 ⊩ 𝑝 iff 𝑥 ∈ v(𝑝).

• M, 𝑥 ⊮ ⊥;

• M, 𝑥 ⊩ 𝐵 ∧ 𝐶 iff M, 𝑥 ⊩ 𝐵 and M, 𝑥 ⊩ 𝐶;

9This not casual. Indeed, the reason behind this uniformity rests on the so-called duality
which brings together four different disciplines: logic, algebra, topology and category theory.
The treatment of the topic is beyond the scope of this book and we refer the reader to (30) for an
extensive introduction.
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• M, 𝑥 ⊩ 𝐵 ∨ 𝐶 iff M, 𝑥 ⊩ 𝐵 or M, 𝑥 ⊩ 𝐶;

• M, 𝑥 ⊩ 𝐵 → 𝐶 iff M, 𝑥 ⊮ 𝐵 or M, 𝑥 ⊩ 𝐶;

• M, 𝑥 ⊩ □𝐵 iff for every 𝑦 ∈ 𝑊 : if 𝑥𝑅𝑦 then M, 𝑦 ⊩ 𝐵;

Definition 2.3.4. Given a Kripke model M = ⟨𝑊, 𝑅, v⟩ and 𝐴 ∈ FM□, 𝐴 is true
in the model M, ⊨M 𝐴 iff for every 𝑥 ∈ 𝑊 M, 𝑥 ⊩ 𝐴.

Definition 2.3.5. 𝐴 is a logical truth of K, in symbols ⊨K 𝐴, iff ⊨M 𝐴 for every
Kripke model M.

Definition 2.3.6. A class of frames C is a set of frames. Classes of frames are
classified basing on their accessibility relation:

• K is the class of all frames;

• SER is the class of all serial frames, where the relation 𝑅 is serial
(∀𝑥∃𝑦(𝑥𝑅𝑦));

• REF is the class of all the reflexive frames, where the relation 𝑅 is reflexive
(∀𝑥(𝑥𝑅𝑥));

• SYM is the class of all the symmetric frames, where the relation 𝑅 is
symmetric (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥));

• TRS is the class of all transitive frames, where the relation 𝑅 is transitive
(∀𝑥∀𝑦∀𝑧(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 → 𝑥𝑅𝑧));

• EUC is the class of all the euclidean frames, where the relation 𝑅 is
euclidean (∀𝑥∀𝑦∀𝑧(𝑥𝑅𝑦 ∧ 𝑥𝑅𝑧 → 𝑦𝑅𝑧));

• EQ is the class of all the frames in which 𝑅 is an equivalence relation (𝑅 is
symmetric, reflexive and transitive or alternatively reflexive and euclidean);

• GL is the class of all the frames in which 𝑅 is transitive and noetherian
(i.e. there are not infinite ascending chains).10

Definition 2.3.7. 𝐴 ∈ FM□ is a logical truth with respect to a class of frames C,
in symbols ⊨C 𝐴, iff ⊨M 𝐴 for every Kripke model M whose frame belongs to
C.

10We underline that in contrast with the classes listed above, GL’s accessibility relation does
not admit a first order formulation, since we are quantifying over sets.
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Definition 2.3.8. Given Γ ⊆ FM□, 𝐴 ∈ FM□, 𝐴 is a logical consequence of Γ
with respect to a class of frames C, in symbols Γ ⊨C 𝐴, iff for every model M
based on a frame in C, for every 𝑥 ∈ M, if 𝑥 ⊩ 𝐵 for every 𝐵 ∈ Γ, then 𝑥 ⊩ 𝐴.

The table below summarizes the correspondence results between modal ax-
ioms and frame properties (9).

Table of correspondences

Name Axiom Semantic Frame Property

K □(𝐴→ 𝐵) → (□𝐴→ □𝐵) none

D □𝐴→ ♢𝐴 serial

T □𝐴→ 𝐴 reflexive

4 □𝐴→ □□𝐴 transitive

B 𝐴→ □♢𝐴 symmetric

5 ♢𝐴→ □♢𝐴 euclidean

GL □(□𝐴→ 𝐴) → □𝐴 transitive and noetherian

To conclude our brief overview of the semantics of modal logics11 we will
build a bridge between the syntactic level and the semantic one.

Definition 2.3.9. Given an axiomatic modal calculus X we say that X is sound
with respect to a class of frames C iff for every formula 𝐴 ∈ FM□: if ⊢𝑋 𝐴, then
⊨C 𝐴.

Definition 2.3.10. Given an axiomatic modal calculus 𝑋 we say that 𝑋 is complete
with respect to a class of frames C iff for every formula 𝐴 ∈ FM□: if ⊨C 𝐴, then
⊢𝑋 𝐴.

Theorem 2.3.1. The modal calculi K,T, 4,B, S4, S5,GL are sound and complete
with respect to the corresponding classes of frames.

11We will speak again of kripkean semantics when we will be dealing with intuitionistic and
intermediate logic.

41



Proof. The reader is referred to (15) for a proof of these results. qed.

2.3.2 Intuitionistic logic

Definition 2.3.11. Given a non empty set 𝑃, a relation ⩽⊆ 𝑃 × 𝑃 is a partial
order relation if:

• ∀𝑥 ∈ 𝑃(𝑥 ⩽ 𝑥) (reflexivity)

• ∀𝑥∀𝑦∀𝑧 ∈ 𝑃(𝑥 ⩽ 𝑦 ∧ 𝑦 ⩽ 𝑧 → 𝑥 ⩽ 𝑧) (transitivity)

• ∀𝑥∀𝑦 ∈ 𝑃(𝑥 ⩽ 𝑦 ∧ 𝑦 ⩽ 𝑥 → 𝑥 = 𝑦) (antisymmetry)

We say that ⟨𝑃, ⩽⟩ is a partial order.

Definition 2.3.12. Given a partial order ⟨𝑃, ⩽⟩, O(𝑃) ⊆ P(𝑃), where 𝐴 ∈ O(𝑃)
iff ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝑃(𝑥 ⩽ 𝑦 → 𝑦 ∈ 𝐴), is the set of the open subsets of 𝑃.

Now we are in the position to specify the concept of kripkean model for
intuitionistic logic:

Definition 2.3.13. A kripkean model for intuitionistic logic M is an ordered pair
⟨𝑃, 𝑣⟩, where:

• 𝑃 is a partial order;

• 𝑣 : 𝐴𝑇 → O(𝑃) is a function.

We say that the model M is based on the partial order 𝑃.

The elements of a 𝑃 are often called worlds or states. Intuitively, 𝑣 assigns
to every propositional variable 𝑝 one of the open subsets of the partial order 𝑃.
If an atomic formula holds in a world in a model, then it holds in every world
accessible from.

From a philosophical viewpoint, kripkean semantics for intuitionistic logic
gives us an insight into many of the features of Brouwer’s conception of math-
ematical knowledge. First of all the worlds can be conceptualized as epistemic
states, moreover reflexivity and transitivity are coherent with the interpretation of
the working mathematician who has constant access to his ideas. The condition
imposed by the formulation of the valuation function is the persistence and it
represents the fact that once we have obtained a proof of a certain assertion its
validity does not cease.
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Definition 2.3.14. Given a kripkean model M = ⟨𝑃, 𝑣⟩ for intuitionistic logic
and a world 𝑥 ∈ 𝑃 and a formula 𝐴 ∈ FM we inductively define the relation
M, 𝑥 ⊩ 𝐴 (i.e. 𝐴 is true at world 𝑥):

• M, 𝑥 ⊩ 𝑝 iff 𝑥 ∈ 𝑣(𝑝)

• M, 𝑥 ⊮ ⊥

• M, 𝑥 ⊩ 𝐵 ∧ 𝐶 iff M, 𝑥 ⊩ 𝐵 and M, 𝑥 ⊩ 𝐶

• M, 𝑥 ⊩ 𝐵 ∨ 𝐶 iff M, 𝑥 ⊩M 𝐵 or M, 𝑥 ⊩ 𝐶

• M, 𝑥 ⊩ 𝐵 → 𝐶 iff for every 𝑦 such that 𝑥 ⩽ 𝑦, if M, 𝑦 ⊩ 𝐵 then M, 𝑦 ⊩ 𝐶

We prove the lemma of the extension of the persistence property to formulas
of whichever form, not only atomic.

Lemma 2.3.2 (Persistence). Let a formula 𝐴 ∈ FM, M a kripkean intuitionistic
model, 𝑥 ∈ M, if M, 𝑥 ⊩ 𝐴, then M, 𝑦 ⊩ 𝐴 for every 𝑦 ∈ M such that 𝑥 ⩽ 𝑦.

Proof. The proof is by induction on the complexity of the formula 𝐴. qed.

Now we have to give the usual definitions of truth in a model, intuitionistic
truth and logical consequence.

Definition 2.3.15. 𝐴 is true in a intuitionistic model M, in symbols ⊨M 𝐴, iff for
every 𝑥 ∈ M, M, 𝑥 ⊨ 𝐴.

Definition 2.3.16. 𝐴 is an intuitionistic truth, in symbols ⊨I 𝐴, iff for every
intuitionistic model M we have ⊨M 𝐴.

Definition 2.3.17. 𝐴 is an intutionistic logical consequence from Γ ⊆ FM, in
symbols Γ ⊨I 𝐴, iff for every intuitionistic model M, for every 𝑥 ∈ M we have:
if M, 𝑥 ⊩

∧
Γ, then M, 𝑥 ⊩ 𝐴.

Theorem 2.3.3 (Completeness). For every 𝐴 ∈ FM, ⊢𝐼 𝐴 if and only if ⊨I 𝐴.

The advantage offered by the approach via Kripke models is that the proof of
the modal embedding is easily seen to be modularly extendable to intermediate
logics, i.e. axiomatic extensions of intuitionistic logic. The strategy is again
indirect: we first sketch the general structure of the proof without entering the
details. We argue by contraposition, supposing that a formula 𝐴 is not derivable
in the intuitionistic system I or an extension thereof. By completeness there is a
relational countermodel to such formula. The key point is that the frame on which
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the model is built is already a frame of the corresponding modal logic. Therefore
we leave the valuation unchanged and the resulting structure is the desired modal
countermodel. The final step consists in showing by means of an induction on the
degree of the formulas that the worlds in the model are equivalent with respect to
validity and this suffices to conclude the proof. It is worth noticing that the proof
can be easily read in the opposite direction as well, thus leading to a simultaneous
proof of soundness and faithfulness of the translation. The main drawback of
the present approach (just as in the case of the algebraic proof) is the fact that
it is spurious, because it builds on semantic results in order to establish a fact
concerning derivability in a logical setting.

Theorem 2.3.4. For every formula 𝐴 ∈ FM: ⊢𝐼 𝐴 ⇐⇒⊢𝑆4 𝐴
∗

Proof. We limit ourselves to sketching the right-to-left direction (for the details
consult (15)). We argue by contraposition. If ⊬𝐼 𝐴, then by completeness of
intuitionistic logic there is a model ⟨𝑃, 𝑣⟩ a world 𝑥 which is a countermodel to
𝐴, i.e. 𝑥 ⊮ 𝐴. We observe ⟨𝑃, 𝑣⟩ is already an S4 countermodel. We claim that
for every world 𝑦 in the model we show:

𝑦 ⊩ 𝐵 ⇐⇒ 𝑦 ⊩ 𝐵∗

Hence we get 𝑥 ⊮ 𝐴∗, therefore we get an S4 countermodel which gives the
desired conclusion by soundness. qed.
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Chapter 3

A syntactic proof of the embedding

In this chapter we shall be concerned with a presentation of a purely proof-
theoretic proof of the soundness and the faithfulness of the translation. We
work with standard Gentzen style calculi for intuitionistic and modal logic. We
introduce nested sequent calculi for intuitionistic logic and for modal logic,
we recall their structural properties and then we prove the soundness and the
faithfulness of the translation.

Keywords: proof theory, intuitionistic logic, termination

3.1 Preliminaries

In this section we shall be concerned with a first syntactic proof of the modal em-
bedding of intuitionistic logic and some subintuitionistic logic. Analogous proofs
have been obtained using standard sequent-style presentations for intuitionistic
logic and S4 modal logic.

We will offer a new proof which uses nested sequents. The choice is motivated
by the three following observations:

• Once the structural properties of the systems are spelled out, the proof is
rather elegant and concise.

• The proof transformations are minimal in the sense that the structure of
intuitionistic and modal proofs are closely related and they preserve the
height of the derivations.

• They can be employed to obtain a rather straightforward generalization to
the case of subintuitionistic logics, i.e. weakenings of intuitionistic logic.
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A nested sequent is a finite tree of multisets of formulas. In ordinary sequents
for intuitionistic logic we distinguish between the left and the right hand side
of the turnstile. To make this distinction in nested sequents, we use polarities
on formulas. There are two polarities, input (intuitively as if on the left of the
turnstile in the conventional sequent calculus), denoted by a • superscript and
output (intuitively as if on the right of the turnstile), denoted by a ◦ superscript.
Now, a nested sequent can be written as:

Γ = 𝐴•1, ..., 𝐴
•
𝑚, 𝐵

◦
1, ..., 𝐵

◦
𝑛, [Γ1], ..., [Γ𝑘 ] (3.1)

where 𝐴•1, ..., 𝐴
•
𝑚, 𝐵

◦
1, ..., 𝐵

◦
𝑛 is the multiset of formulas at the root of the sequent

tree of Γ, and where Γ1, . . . , Γ𝑘 are its immediate subtrees. We use ∅ the empty
sequent, i.e., where 𝑚 = 𝑛 = 𝑘 = 0 in (3.1) above. We use capital Greek letters
Γ, Δ, Σ, . . . , to denote nested sequents, and we assume that the associativity and
commutativity of the comma is implicit in our systems, and that acts as its unit.
We write Γ• for 𝐴•1, ..., 𝐴

•
𝑚 and Γ◦ for 𝐵◦

1, ..., 𝐵
◦
𝑛, [Γ1], ..., [Γ𝑘 ] if Γ is as in (3.1)

above. In other words, for every nested sequent Γ we have that Γ = Γ•, Γ◦. More
generally, we will write Γ•, Δ•, Σ•, . . . , for multisets of input formulas (i.e., all
formulas have •-polarity, and there are no nestings), and we will write Γ◦, Δ◦,
Σ◦, . . . , for sequents that have only ◦-formulas at their root nodes (i.e., there are
no •-formulas at the root, but there can be nestings with •-formulas inside).

The corresponding formula of the sequent in (3.1) above is defined as

fm(Γ) =
𝑚∧
𝑖=1

𝐴𝑖 →
( 𝑛∨
𝑗=1
𝐵 𝑗 ∨

𝑘∨
𝑙=1

fm(Γ𝑙)
)

(3.2)

A (sequent) context is a nested sequent with a hole { }, taking the place of a
formula. Contexts are denoted by Γ{ }, and Γ{Δ} is the sequent obtained from
Γ{ } by replacing the occurrence of { } with Δ. We write Γ{} for the sequent
obtained from Γ{ } by removing the { } (i.e., the hole is filled with nothing). The
depth of a context Γ{ }, denoted by dp(Γ{ }), is the length of the path in the
sequent tree from the root to the hole { }. It is defined inductively as follows:
dp({ }) = 0 and dp(Γ′, Γ{ }) = dp(Γ{ }) and dp( [Γ{ }]) = dp(Γ{ }) + 1.

We will also use the notation Γ{[Δ]} as abbreviation for Γ{[Δ]}.

Example. LetΓ{ }= 𝐴•, 𝐵◦, [{ }, [𝐷•, 𝐶◦]]. We have thatΓ{𝐵◦}= 𝐴•, 𝐵◦, [𝐵◦, [𝐷•, 𝐶◦]]
andΓ{}= 𝐴•, 𝐵◦, [[𝐷•, 𝐶◦]]. LetΔ = 𝐹•, [𝐺◦], thenΓ{Δ}= 𝐴•, 𝐵◦, [𝐹•, [𝐺◦], [𝐷•, 𝐶◦]]
and Γ{[Δ]} = 𝐴•, 𝐵◦, [[𝐹•, [𝐺◦]], [𝐷•, 𝐶◦]].
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Initial Sequents

Γ{𝑝•,Δ{𝑝◦}} ⊥•
Γ{⊥•}

Logical Rules

Γ{𝐴•, 𝐵•}
∧•

Γ{𝐴 ∧ 𝐵•}
Γ{𝐴◦} Γ{𝐵◦}

∧◦
Γ{𝐴 ∧ 𝐵◦}

Γ{𝐴•} Γ{𝐵•}
∨•

Γ{𝐴 ∨ 𝐵•}
Γ{𝐴◦, 𝐵◦}

∨◦
Γ{𝐴 ∨ 𝐵◦}

Γ{𝐴→ 𝐵•,Δ{Σ, 𝐴◦}} Γ{𝐴→ 𝐵•,Δ{Σ, 𝐵•}}
→•

Γ{𝐴→ 𝐵•,Δ{Σ}}
Γ{[𝐴•, 𝐵◦]}

→◦
Γ{𝐴→ 𝐵◦}

Figure 3.1: The calculus NIPL

Γ{𝐴◦} Γ{𝐴•}
cut

Γ{∅}

Figure 3.2: The cut rule

Γ{∅}
w

Γ{Δ}
Γ{Δ,Δ}

c
Γ{Δ}

Γ{[Δ]}
t

Γ{Δ}
Γ{Σ◦}

4
Γ{[Σ◦]}

Γ{[Σ•,Δ]}
l

Γ{Σ•, [Δ]}
Γ{Σ◦, [Δ]}

lw
Γ{[Σ◦,Δ]}

Figure 3.3: Admissible structural rules

3.2 Nested Sequent Calculus for intuitionistic propo-
sitional logic

An elegant nested sequent calculus for intuitionistic propositional logic was in-
troduced by Fitting (35), as a notational variant of prefixed tableaux. The lack of
a direct cut elimination proof in his calculus has prevented its extension to cover
intermediate logics. Indeed, to the best of our knowledge there are no analytic
nested calculi for any intermediate logic (other than classical or intuitionistic
logic), and for this purpose the nested sequent formalism has been extended in
various ways, giving rise to, e.g., linear nested calculi (57), and injective nested
calculi (55). In general, proving syntactic cut elimination for nested calculi is
harder than for other proof theoretic formalisms, e.g., (hyper)sequent or display
calculus. Often this result is obtained by translating the nested calculus at hand
to other formalisms, as e.g. in (45; 34).

In this section we present NIPL, a variant of Fitting’s calculus for designed to
have all invertible rules, and to admit a direct cut elimination proof. The system
NIPL, whose rules are shown in Figure 3.1, is obtained from Fitting’s calculus by
using multisets instead of sets and by absorbing the rule l into the initial sequents
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and the rule →•. Observe indeed that ax and →• can be simulated in Fitting’s
calculus by repeated applications of l. As an immediate consequence follows the
soundness of NIPL w.r.t. intuitionistic propositional logic.

Terminology: As in standard sequent calculi, we call context the part left
unchanged from premises to conclusions, we call principal the introduced formula
in a logical rule, and the rest active part/formulas (active formulas in the initial
sequents are 𝑝•, 𝑝◦, and ⊥•).

We recall that a rule is admissible, whenever the derivability of the premises
entails the derivability of the conclusion. A rule is invertible if, whenever the
conclusion is derivable, so is each of its premises. The height of a derivation is
the number of nodes minus one in a branch of maximal length. These notions
can be strengthened with the property of being height-preserving, i.e. the height
does not increase in passing from the premises to the conclusion.

As we will show in the next section, NIPL satisfies the following properties
that guarantee a relatively simple proof of the elimination of the cut rule depicted
in Figure 3.2.

(N1) All rules are height-preserving invertible.

(N2) Dedicated structural rules are height-preserving admissible. These rules,
displayed in Figure 3.3, are the usual weakening (w) and contraction (c),
the l-rule from (35), variations of the rules for the modal axioms t and 4,
from (63), and the new lw-rule which can be seen as the inverse of lift.

(N3) A cut over formulas that are not principal can be shifted upwards over
its premises. This condition is implied by Belnap’s sufficient conditions
(C2)–(C7) for cut elimination in display calculi (3).

(N4) All logical rules are reductive. This means that they allow the replacement
of a cut whose cut formula is principal in the left and right premise of the cut
rule by cuts on smaller formulas (possibly using the dedicated structural
rules from (N2)). This property is the nested sequent formulation of
Belnap’s (C8) condition (3).

(N5) Cuts having an initial sequent as one of their premises can be removed.

Let us mention two useful features of NIPL. The first is standard in well-
designed sequent-style calculi: the general form of the ax-rule is derivable.

Lemma 3.2.1 (Axiom expansion). The sequent Γ{𝐴•,Π{𝐴◦,Δ}} is derivable in
NIPL for every context Γ,Π,Δ and every formula 𝐴.

48



Proof. By induction on the degree of the formula 𝐴. We detail the case in which
𝐴 is of the shape 𝐵 → 𝐶, the other cases being similar.

Γ{𝐵 → 𝐶•,Π{[𝐵•, 𝐵◦, 𝐶◦],Δ}} Γ{𝐵 → 𝐶•,Π{[𝐵•, 𝐶•, 𝐶◦],Δ}}
→•

Γ{𝐵 → 𝐶•,Π{[𝐵•, 𝐶◦],Δ}}
→◦

Γ{𝐵 → 𝐶•,Π{𝐵 → 𝐶◦,Δ}}
The premises are derivable by induction hypothesis.

qed.

The second feature concerns the admissibility of the necessitation rule

Γ
[Γ]

Note that unlike all other rules, is shallow, as it cannot be applied inside a context.

Proposition 3.2.2. If a sequent Γ is derivable, then so is [Γ].

3.3 Cut elimination for NIPL

We are going to show that NIPL satisfies conditions (N1)–(N5) and the conse-
quent cut elimination theorem.

The preservation of the height of a derivation is crucial for all our arguments.
Formally, the height of a derivation is the length of the longest path in the tree
from its root to one of its leaves. A inference rule with premises Γ1, . . . , Γ𝑛 and
conclusion Γ is height-preserving invertible, if for every derivation of Γ, there
are derivations of Γ1, . . . , Γ𝑛 with at most the same height. The rule is height-
preserving admissible if, whenever the premises are derivable, the conclusion
has a derivation whose height is not bigger than any derivation of a premise.

Lemma 3.3.1. The weakening rule w is height-preserving admissible in NIPL.

Proof. By induction on the height 𝑛 of the derivation of Γ{∅}. If 𝑛 = 0, then
Γ{∅} is an initial sequent and so is Γ{Δ}. If 𝑛 > 0, we apply the induction
hypothesis to the premise(s) of the last rule applied and then the rule again. qed.

Lemma 3.3.2. Every rule in NIPL is height-preserving invertible.

Proof. By induction on the height 𝑛 of the derivation of the conclusion of each
rule. The proofs for conjunction and disjunction are standard. The rule →• is
height-preserving invertible by the height-preserving admissibility of the rule of
weakening. We discuss the rule →◦. If Γ{𝐴→ 𝐵◦} is an initial sequent, then
Γ{[𝐴•, 𝐵◦]} is an initial sequent too. If 𝑛 > 0, then we apply the induction
hypothesis to each of the premise(s) and then we apply the rule again. qed.

49



Lemma 3.3.3. The contraction rule c is height-preserving admissible in NIPL.

Proof. By induction on the height 𝑛 of the derivation. If Γ{Δ,Δ} is an initial
sequent, the conclusion easily follows. If 𝑛 > 0 and the principal formula is not
in Δ, we apply the induction hypothesis to each of the premises and then the rule
again. If 𝑛 > 0 and the principal formula is in Δ we exploit the height-preserving
invertibility of the logical rules as shown below:

Γ{Δ′,Δ}
𝜌

Γ{Δ,Δ}
c

Γ{Δ}
{

Γ{Δ′,Δ}
Inv𝜌

Γ{Δ′,Δ′}
c

Γ{Δ′}
𝜌

Γ{Δ}
The application of c is removed invoking the induction hypothesis. The case of
a binary rule is analogous and we omit the details. qed.

The way we formulated the rules in NIPL allows us to establish the admis-
sibility of the lift-rule. A variant of this rule was instead explicitly present in
Fitting’s system. Its absence (in combination with w and c) permits the use of
the additive version of cut, which simplifies the cut elimination argument.

Lemma 3.3.4. The lift-rule is height-preserving admissible in NIPL.

Proof. Proceed by induction on the height 𝑛 of the derivation of the premise
Γ{[Σ•,Δ]} of the rule. If 𝑛 = 0 and no formula in Σ• is active, then we can
remove it. Otherwise, Γ{Σ•, [Δ]} is again an instance of ax. If 𝑛 > 0 and no
formula in Σ is principal, we apply the induction hypothesis to the premise(s) of
the rule and then the rule again.
If a formula 𝐴• in Σ• is principal in ∧• or ∨•, we apply the induction hypothesis
(possibly twice). E.g.,

Γ{[Σ′•, 𝐴•, 𝐵•,Δ]}
∧•

Γ{[Σ′•, 𝐴 ∧ 𝐵•,Δ]}
{

Γ{[Σ′•, 𝐴•, 𝐵•,Δ]}
lift

Γ{Σ′•, 𝐴•, 𝐵•, [Δ]}
∧•

Γ{Σ′•, 𝐴 ∧ 𝐵•, [Δ]}
If a formula 𝐴• in Σ• is principal in →• as in

Γ{[Σ′•, 𝐴→ 𝐵•,Δ{Π, 𝐴◦}]} Γ{[Σ′•, 𝐴→ 𝐵•,Δ{Π, 𝐵•}]}
→•

Γ{[Σ′•, 𝐴→ 𝐵•,Δ{Π}]}
we apply the induction hypothesis and the rule →•, as in

Γ{[Σ′•, 𝐴→ 𝐵•,Δ{Π, 𝐴◦}]}
lift

Γ{Σ′•, 𝐴→ 𝐵•, [Δ{Π, 𝐴◦}]}
Γ{[Σ′•, 𝐴→ 𝐵•,Δ{Π, 𝐵•}]}

lift
Γ{Σ′•, 𝐴→ 𝐵•, [Δ{Π, 𝐵•}]}

→•
Γ{Σ′•, 𝐴→ 𝐵•, [Δ{Π}]}

qed.
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Note that with the admissibility of the lift-rule we immediately obtain com-
pleteness of NIPL with respect to intuitionistic propositional logic via Fitting’s
system (35).

Lemma 3.3.5. The 4-rule is height-preserving admissible in NIPL.

Proof. By induction on the height 𝑛 of the derivation of the rule premise. If
Γ{Σ◦} is an initial sequent, then so is Γ{[Σ◦]}. If 𝑛 > 0 we assume that a
formula in Σ◦ is principal, otherwise the proof is trivial. We apply the induction
hypothesis to the premise(s) of the rule and then the rule again. For example, if
the last rule applied is →◦, we have:

Γ{Δ◦, [𝐴•, 𝐵◦]}
→◦

Γ{Δ◦, 𝐴→ 𝐵◦}
{

Γ{Δ◦, [𝐴•, 𝐵◦]}
4

Γ{[Δ◦, [𝐴•, 𝐵◦]]}
→◦

Γ{[Δ◦, 𝐴→ 𝐵◦]}
qed.

Lemma 3.3.6. The lw-rule is height-preserving admissible in NIPL.

Proof. The lw-rule is derivable with the following height-preserving steps:

Γ{Σ◦, [Δ]}
4

Γ{[Σ◦], [Δ]}
w

Γ{[Σ◦,Δ], [Σ◦,Δ]}
c

Γ{[Σ◦,Δ]}
qed.

Lemma 3.3.7. The t-rule is height-preserving admissible in NIPL.

Proof. By induction on the height 𝑛 of the premise Γ{[Δ]}. If 𝑛 = 0, then Γ{[Δ]}
is an initial sequent and so is Γ{Δ}. If 𝑛 > 0, we apply the induction hypothesis
to the premise(s) and then the rule again. As an example, consider the case in
which the last rule applied is →• and formulas are introduced (bottom-up) in [Δ].
We have:

Γ{𝐴→ 𝐵•, [Δ, 𝐴◦]} Γ{𝐴→ 𝐵•, [Δ, 𝐵•]}
→•

Γ{𝐴→ 𝐵•, [Δ]}
We construct the following derivation:

Γ{𝐴→ 𝐵•, [Δ, 𝐴◦]}
t

Γ{𝐴→ 𝐵•,Δ, 𝐴◦}
Γ{𝐴→ 𝐵•, [Δ, 𝐵•]}

t
Γ{𝐴→ 𝐵•,Δ, 𝐵•}

→•
Γ{𝐴→ 𝐵•,Δ}

where the applications of 𝑡 are removed by induction hypothesis. qed.

This completes the proof of the properties (N1) and (N2). To eliminate cut,
we also need (N3)–(N5), which will be shown below.
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Theorem 3.3.8 (Cut elimination). The cut-rule is admissible for NIPL.

Proof. We consider a uppermost cut and proceeds by induction on the lexico-
graphically ordered pair (𝑐, 𝑛) where 𝑐 is the degree of its cut formula and 𝑛 is
the height of the derivation of Γ{𝐴•}.1

(N5) If 𝑛 = 0, then Γ{𝐴•} is an initial sequent. If 𝐴• is not active, Γ{∅} is
an initial sequent too. If 𝐴• is active in , we have:

Γ{𝑝◦,Δ{𝑝◦}} Γ{𝑝•,Δ{𝑝◦}}
cut

Γ{Δ{𝑝◦}}
The cut is eliminated as follows:

Γ{𝑝◦,Δ{𝑝◦}}
lw

Γ{Δ{𝑝◦, 𝑝◦}}
c

Γ{Δ{𝑝◦}}
The case of axiom ⊥• is handled similarly, noticing that from the derivability in
NIPL of Γ{⊥◦} follows the derivability of Γ{∅}.

(N3) If 𝑛 > 0 and 𝐴• is not principal, we apply the invertibility of the cor-
responding rule to Γ{𝐴◦}, permute the cut upwards, and remove it by secondary
induction hypothesis. E.g., in the case of a binary rule we have:

Γ{𝐴◦}
Γ′{𝐴•} Γ′′{𝐴•}

𝜌

Γ{𝐴•}
cut

Γ{∅}
We construct the following derivation:

Γ{𝐴◦}
Inv𝜌

Γ′{𝐴◦} Γ′{𝐴•}
cut

Γ′{∅}

Γ{𝐴◦}
Inv𝜌

Γ′′{𝐴◦} Γ′′{𝐴•}
cut

Γ′′{∅}
𝜌

Γ{∅}
(N4) If 𝐴• is principal in ∧ or ∨, the case is handled in the usual way using

the rules invertibility. For example

Γ{𝐵 ∨ 𝐶◦}
Γ{𝐵•} Γ{𝐶•}

∨•
Γ{𝐵 ∨ 𝐶•}

cut
Γ{∅}

is eliminated as follows (each cut is on a formula of lesser degree):

Γ{𝐵 ∨ 𝐶◦}
Inv

Γ{𝐵◦, 𝐶◦}
Γ{𝐵•}

w
Γ{𝐵•, 𝐶◦}

cut
Γ{𝐶◦} Γ{𝐶•}

cut
Γ{∅}

The case below in which 𝐴• is principal in →•

1It is enough to consider only the height of the left premise as every right rule is invertible.
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Γ{𝐵 → 𝐶◦,Π{Σ}}
Γ{𝐵 → 𝐶•,Π{𝐵◦, Σ}} Γ{𝐵 → 𝐶•,Π{𝐶•, Σ}}

→•
Γ{𝐵 → 𝐶•,Π{Σ}}

cut
Γ{Π{Σ}}

is handled using some of the structural rules from (N2). We first construct a
derivation of Γ{Π{𝐵◦, Σ}}:

Γ{𝐵 → 𝐶◦,Π{Σ}}
w

Γ{𝐵 → 𝐶◦,Π{𝐵◦, Σ}} Γ{𝐵 → 𝐶•,Π{𝐵◦, Σ}}
cut

Γ{Π{𝐵◦, Σ}}
The cut is removed by secondary induction hypothesis. A symmetrical derivation
yields Γ{Π{𝐶•, Σ}}, and the reduction is completed as follows:

Γ{Π{𝐵◦, Σ}}
w

Γ{Π{𝐵◦, 𝐶◦, Σ}}

Γ{𝐵 → 𝐶◦,Π{Σ}}
lw

Γ{Π{𝐵 → 𝐶◦, Σ}}
Inv

Γ{Π{[𝐵•, 𝐶◦], Σ}}
t

Γ{Π{𝐵•, 𝐶◦, Σ}}
cut

Γ{Π{𝐶◦, Σ}} Γ{Π{𝐶•, Σ}}
cut

Γ{Π{Σ}}
The cuts are removed by the primary induction hypothesis on the degree of the
cut formula. qed.

We can now also show completeness independently from Fitting’s calculus:

Corollary. NIPL is complete with respect to intuitionistic propositional logic.

Proof. It is easy to check that every axiom of intuitionistic propositional logic
can be proved in NIPL and modus ponens can be simulated by cut. The claim
follows by Theorem 3.3.8. qed.

3.4 A new nested sequent system for S4

We now present a new nested sequent system for S4 which is specifically tailored
to prove the soundness and the faithfulness of the modal interpretation of intu-
itionistic logic. The rules are displayed in Figure 3.4. The modal rules are split
according to the shape of the formulas in the scope of the modal operator □.

We now start the structural analysis of our calculus.

Lemma 3.4.1. The sequent Γ{𝐴•, 𝐴◦} is derivable for every formula 𝐴.

Proof. The proof is by induction on the degree of 𝐴. qed.

Lemma 3.4.2. The rule of weakening is height-preserving admissible.
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Initial Sequents
ax1

Γ{□𝑝•,Δ{□𝑝◦}} ⊥•
Γ{⊥•}

ax2
Γ{𝑝•, 𝑝◦}

ax3
Γ{□𝑝•,Δ{𝑝◦}}

Logical Rules

Γ{𝐴•, 𝐵•}
∧•

Γ{𝐴 ∧ 𝐵•}
Γ{𝐴◦} Γ{𝐵◦}

∧◦
Γ{𝐴 ∧ 𝐵◦}

Γ{𝐴•} Γ{𝐵•}
∨•

Γ{𝐴 ∨ 𝐵•}
Γ{𝐴◦, 𝐵◦}

∨◦
Γ{𝐴 ∨ 𝐵◦}

Γ{𝐴◦} Γ{𝐵•}
→•

Γ{𝐴→ 𝐵•}
Γ{𝐴•, 𝐵◦}

→◦
Γ{𝐴→ 𝐵◦}

Γ{□(𝐴 ∧ 𝐵)•,Δ{Σ, 𝐴•, 𝐵•}}
□•∧

Γ{□(𝐴 ∧ 𝐵)•,Δ{Σ}}
Γ{[𝐴◦]} Γ{[𝐵◦]}

□◦∧
Γ{□(𝐴 ∧ 𝐵)◦}

Γ{□(𝐴 ∨ 𝐵)•,Δ{Σ, 𝐴•}} Γ{□(𝐴 ∨ 𝐵)•,Δ{Σ, 𝐵•}}
□•∨

Γ{□(𝐴 ∨ 𝐵)•,Δ{Σ}}
Γ{[𝐴◦, 𝐵◦]}

□◦∨
Γ{□(𝐴 ∨ 𝐵)◦}

Γ{□(𝐴→ 𝐵)•,Δ{Σ, 𝐴◦}} Γ{□(𝐴→ 𝐵)•,Δ{Σ, 𝐵•}}
□•→

Γ{□(𝐴→ 𝐵)•,Δ{Σ}}
Γ{[𝐴•, 𝐵◦]}

□◦→
Γ{□(𝐴→ 𝐵)◦}

Γ{□□𝐴•,Δ{Σ, 𝐴•}}
□•□

Γ{□□𝐴•,Δ{Σ}}
Γ{[[𝐴◦]]}

□◦□
Γ{□□𝐴◦}

Figure 3.4: The calculus NS4

Proof. By straightforward induction on the height of the derivation. qed.

An interesting result concerning our calculus is that we do not need explicit
rules to handle formulas of the shape □𝑝.

Theorem 3.4.3. The rules:

Γ{□𝑝•,Δ{𝑝•, Σ}}
□•𝑎𝑡

Γ{□𝑝•,Δ{Σ}}
Γ{[𝑝◦]}

□◦𝑎𝑡
Γ{□𝑝◦}

Γ{□𝑝◦}
𝐼𝑛𝑣□◦𝑎𝑡

Γ{[𝑝◦]}

are height-preserving admissible in NS4.

Proof. The proof is by induction on the height of the derivation. Since □𝑝 cannot
be principal in an application of a rule, we need to discuss only the cases in which
the premises are initial sequents. In all three cases it is enough to observe that
if the premise is an initial sequent, so is the conclusion. For example, let us
consider the case of the rule 𝐼𝑛𝑣□◦𝑎𝑡 . If it is an initial sequent and □𝑝◦ is not
active, then Γ{[𝑝◦]} is an initial sequent too. If it is an initial sequent and □𝑝◦ is
active, then the sequent is an instance of ax1 of the shape Γ{□𝑝•,Δ{□𝑝◦}} and
so Γ{□𝑝•,Δ{[𝑝◦]}} is an instance of ax3. qed.
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Lemma 3.4.4. Every rule is height-preserving invertible.

Proof. By induction on the height of the derivation. The modal rules which act on
input formulas are height-preserving invertible by height-preserving admissibility
of weakening. We consider the case of the modal rule □◦∨. If Γ{□(𝐴 ∨ 𝐵)◦} is an
initial sequent, so is Γ{[𝐴◦, 𝐵◦]}. If it is the conclusion of a rule and □(𝐴 ∨ 𝐵)◦

is principal, we take the premise. Otherwise we apply the induction hypothesis
to the premises of the rule applied and then the rule again. qed.

Lemma 3.4.5. The contraction rule is height-preserving admissible.

Proof. By induction on the height of the derivation exploiting the invertibility of
the rules. The proof follows the structure of the one detailed for NIPL, so we
avoid giving the details. qed.

Lemma 3.4.6. The rules:

Γ{[Δ]}
4

Γ{[[Δ]]}
Γ{[Δ]}

t
Γ{Δ}

are height-preserving admissible.

Proof. The proof follows the structure of the one detailed for NIPL, so we avoid
giving the details. qed.

A similar strategy as the one presented before yields a proof of the cut-
elimination theorem.

Theorem 3.4.7. The cut rule is admissible in NS4.

Proof. The proof is by double induction, with main induction hypothesis on the
degree of the cut formula and secondary induction hypothesis on the height of
the derivation of the right premise of the cut. We distinguish cases according to
the shape of the cut formula.

If the cut formula is atomic, then the proof is immediate.
If the cut formula is of the shape 𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵 or 𝐴 → 𝐵 we appeal to

the invertibility of the corresponding connective to replace the cut with cuts on
formulas of lesser degree.

If the formula is □𝐴 we have to distinguish two cases. Either □𝐴• is principal
in the right premise of the cut or not. If it is not principal, then we can permute
the cut upwards and replace it with cuts of lesser height (since all the right rules
are invertible). If it is principal we need to consider five subcases. We limit
ourselves to deal with the ones in which 𝐴 ≡ □𝑝, 𝐴 ≡ □(𝐵 → 𝐶) and 𝐴 ≡ □𝐵.
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Γ{□𝑝◦} Γ{□𝑝•}
𝐶𝑢𝑡

Γ{}
We distinguish two subcases. Either Γ{□𝑝•} is an initial sequent or not. If not,
then □𝑝 is never principal and the cut can be permuted upwards. If it is an
initial sequent we assume that □𝑝 is active (otherwise the reduction is trivial)
and we distiguish cases. The premise is of the shape: Γ{□𝑝,Δ{Σ, 𝑝◦}•} or
Γ{□𝑝•,Δ{Σ,□𝑝◦}}. In the second case the cut is eliminated as follows:

Γ{□𝑝◦,Δ{Σ,□𝑝◦}}
𝐼𝑛𝑣□◦𝑎𝑡

Γ{[𝑝◦],Δ{Σ,□𝑝◦}}
w, 4, c

Γ{Δ{Σ, [𝑝◦],□𝑝◦}}
𝐼𝑛𝑣□◦𝑎𝑡

Γ{Δ{Σ, [𝑝◦], [𝑝◦]}}
𝑐

Γ{Δ{Σ, [𝑝◦]}}
□◦𝑎𝑡

Γ{Δ{Σ,□𝑝◦}}
The other case is analogous and so we omit the details. If the cut formula is
□(𝐴→ 𝐵) we have:

Γ{[𝐴•, 𝐵◦],Δ{Σ}}
□◦→

Γ{□(𝐴→ 𝐵)◦,Δ{Σ}}
Γ{□(𝐴→ 𝐵)•,Δ{Σ, 𝐴◦}} Γ{□(𝐴→ 𝐵)•,Δ{Σ, 𝐵•}}

□•→
Γ{□(𝐴→ 𝐵)•,Δ{Σ}}

𝐶𝑢𝑡
Γ{Δ{Σ}}

First, we apply height-preserving admissibility of weakening to getΓ{□(𝐴→ 𝐵)◦,Δ{Σ, 𝐴◦}}
and Γ{□(𝐴→ 𝐵)◦,Δ{Σ, 𝐵•}}. Hence we perform two cross-cuts to obtain:
Γ{Δ{Σ, 𝐵•}} and Γ{Δ{Σ, 𝐴◦}}.

Γ{Δ{Σ, 𝐴◦}}
w

Γ{Δ{Σ, 𝐴◦, 𝐵◦}}

Γ{[𝐴•, 𝐵◦],Δ{Σ}}
4, c

Γ{Δ{Σ, [𝐴•, 𝐵◦]}}
t

Γ{Δ{Σ, 𝐴•, 𝐵◦}}
𝐶𝑢𝑡

Γ{Δ{Σ, 𝐵◦}} Γ{Δ{Σ, 𝐵•}}
𝐶𝑢𝑡

Γ{Δ{Σ}}
The corsscuts are removed by secondary induction hypothesis, whereas the dis-
played cuts are removed by induction on the degree of the cut formula.

If the cut formula is □□𝐵, we have:

Γ{[[𝐵◦]],Δ{Σ}}
□◦□

Γ{□□𝐵◦,Δ{Σ}}
Γ{□□𝐵•,Δ{Σ, 𝐵•}}

□•□
Γ{□□𝐵•,Δ{Σ}}

𝐶𝑢𝑡
Γ{Δ{Σ}}

We construct the following derivation:

Γ{[[𝐵◦]],Δ{Σ}}
4, c

Γ{Δ{Σ, [[𝐵◦]]}}
t

Γ{Δ{Σ, 𝐵◦}}

Γ{□□𝐵◦,Δ{Σ}}
w

Γ{□□𝐵◦,Δ{Σ, 𝐵•}} Γ{□□𝐵•,Δ{Σ, 𝐵•}}
𝐶𝑢𝑡

Γ{Δ{Σ, 𝐵•}}
𝐶𝑢𝑡

Γ{Δ{Σ}}
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The topmost cut is removed by secondary induction hypothesis, whereas the
lowermost is removed by primary induction hypothesis on the degree of the cut
formula. qed.

Theorem 3.4.8. NS4 is sound and complete with respect to Kripke semantics for
S4.

Proof. Soundness is easily established by induction on the height of the deriva-
tions. Completeness is established by observing that the axioms of S4 are
derivable and that the modus ponens can be simulated via cut. qed.

We are now in the position to state and prove the embedding of intuitionistic
logic into the modal logic S4 and to give a syntactic proof of the result. Compared
to other proofs, our result has the following advantages:

• The proof follows from a trivial induction.

• The proof is completely syntactic.

• The height of the derivation is preserved in both directions.

In essence, it could be argued that the two calculi are strongly similar in the sense
that there is a step to step correspondence in the translation.

Theorem 3.4.9. NIPL ⊢ Γ if and only if NS4 ⊢ Γ∗ and the height is preserved.

Proof. The proof is by induction on the height of the derivation in both directions.

⇒ If Γ is an initial sequent in NIPL, then Γ∗ is an initial sequent in NS4. If
𝑛 > 0, the proof follows by applying the induction hypothesis and then the
rule. For example, we have:

Γ{[𝐴•, 𝐵◦]}
→◦

Γ{𝐴→ 𝐵◦}

We transform the derivation as follows:

Γ∗{[𝐴∗•, 𝐵∗◦]}
□◦→

Γ∗{□(𝐴∗ → 𝐵∗)◦}

⇐ If 𝑛 = 0, then Γ is an initial sequent in NIPL. In all the other cases the proof
immediately follows by applying the induction hypothesis to the premise(s)
of the last rule applied and then the corresponding rule in NIPL.

qed.
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3.5 Concluding remarks

In this chapter we have proposed a syntactic proof of the modal embedding of
intuitionistic logic into the modal logic S4. Other proofs in the literature can
be found in (109) and, more recently, in (24). A future research direction to be
explored might be to exploit these nested sequents in order to study subintuition-
istic logics, see (19) and (14) for an introduction. The use of nested calculi seems
particularly promising to obtain an extension of the present result to such setting.
We would like to point out that the present approach has been extended in order
to get analytic and internal (which means without the explicit use of semantic
labelling) calculi for the family of intermediate logics of bounded depth (106).
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Chapter 4

A formal provability interpretation

In this chapter we deal with the proof of the modal embedding for the logic of
provability GL. In order to give a syntactic proof of the embedding, we introduce
a new semantic characterization of intuitionistic propositional logic. Hence we
extract a new labelled sequent calculus which allows us to prove the embedding
via a straightfoward induction on the height of the derivations. In doing so, we
also analyze the properties of the new calculus which enjoys terminating proof
search and can be extended to all intermediate logics with a universal frame
condition.

Keywords: proof theory, intuitionistic logic, termination, intermediate logics,
provability logic.

4.1 Introduction

The modal embedding of intuitionistic logic gives an interpretation in terms of
informal provability. Indeed, interpreting intuitionistic logic in S4 brings to the
fore an epistemic reading of the constructive content of intuitionistic logic. The
notion of informal proof is crucial, as S4 cannot be understood as a logic of
formal provability, say, in an arithmetic system. This stems from the fact that
S4 validates the reflection schema □𝐴 → 𝐴 and, as a consequence, the schema
¬□⊥, intuitively asserting the consistency of arithmetic.

However, it is natural to ask whether it is possible to recover an interpretation
of intuitionistic propositional logic in terms of provability in a formal system.
The answer is positive, because embedding of intuitionistic logic into the modal
logics of provability Grz and GL have been provided. The embeddings have
been established first by semantic means, see (31; 56). We have already observed
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that syntactic proofs of the embedding have been proposed by various authors for
the modal logic S4. With respect to Grz, a syntactic proof was given in (28).

However, a syntactic proof of the embedding for the logic GL still was not
established. The problem seems to be connected to the difference between the
calculi for intuitionistic logic and the modal logic of provability GL. In order to
propose a solution to this problem we shall introduce a new calculus for intuition-
istic propositional logic. As a byproduct, we shall obtain a general methodology
to obtain terminating sequent calculi for intuitionistic and intermediate logics.
This connects the present work with the extensively discussed topic of terminat-
ing sequent calculi for intuitionistic logic and their extensions which we briefly
summarize below.

We proceed by considering a slight modification of the usual semantics of
intuitionistic logic: we take Kripke frames based on strict orders rather than on
partial orders. Then it is easily checked that intuitionistic logic is complete with
respect to the class of finite strict orders.

Accordingly, we modify the definition of the truth condition for the implica-
tion, by internalizing the finiteness condition of the models (for a similar approach
in the context of the modal logic GL, see (73)). Thus, by adopting a suitable
extension of the basic language of intuitionistic logic, we are in the position to ex-
tract a labelled calculus G3I< from such semantics and we establish its structural
properties and then we prove the termination of the proof search.

It is well known that the first proof of decidability of the propositional fragment
of intuitionistic logic is due to Gerhard Gentzen. He showed by means of a purely
syntactic argument based on the sequent calculus LJ that the proof search space
could be finitized (39). However, the calculus LJ is not totally satisfactory in
terms of proof search. This is one of the reasons why modifications of LJ have
been proposed. In particular, Kleene introduced a single-succedent calculus in
which structural rules are absorbed in logical rules (53). Then Maehara devised
a multi-succedent calculus G3i (59). However, although the contraction rule is
not explicitly present in both calculi, it is, so to say, hidden in the left rule for
implication which requires the repetition of the principal formula in the antecedent
of the premise. Furthermore, although we gain the invertibility of the right rule
for disjunction, we lose the invertibility of the right rule for implication.

Hudelmaier (51) and Dyckhoff (24) (independently) elaborating on an idea
by Vorob’ev (114), introduced the calculus G4ip. In G4ip every proof search
terminates, because the rule of contraction is eliminated from the calculus by
splitting the left implication rule in four different rules according to the shape
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of the antecedent of the principal formula. The calculus, which has been given
also a multisuccedent variant as well as a syntactic proof of cut-elimination (26),
eliminates the need of loop-checking, but does not enjoy invertibility of every
rule.

More recently, other approaches have been considered to obtain a decision
procedure for intuitionistic logic. In particular, Corsi and Tassi (20) presented
a calculus which enjoys the subformula property and terminates without the use
of global metarules. Global metarules are rules which govern the application
of the rules of the calculus and whose scope extends to the entire derivation.
However, the syntax of the system is rather complex, the rules of the calculi
are not invertible and the methodology does not seem to easily extend to other
intermediate logics.

Semantic-oriented approaches to the proof theory of intuitionistic logic, such
as tableaux calculi and labelled sequent calculi (27) yield systems with good
structural properties, but with a more complex decision procedure which requires
a loop-checking mechanism in order to obtain termination (74).

As observed by Dyckhoff in (29), there remain some open problems:

1. Find a simple calculus for propositional intuitionistic logic that has the
termination property without loop-checking and avoids backtracking via
invertibility of the rules. Furthermore, the system should allow for an
extraction of a finite countermodel out of a failed proof search.

2. Find a modular approach, i.e. an approach which can be extended so as to
cover various superintuitionistic logics.

3. Develop a uniform method for ensuring termination in labelled calculi.

We provide - to the best of our knowledge - the first solution to these problems.
In fact, our calculus satisfies the following desiderata: invertibility of every rule,
extraction of a finite countermodel from failed derivations, an easy termination
procedure without loop-checking and the possibility to modularly extend the
approach to stronger systems.

The termination of the proof search without loop-checking and backtracking is
proved for the system G3I< exploiting the height-preserving invertibility of every
rule as well as the height-preserving admissibility of contraction. Termination is
established by showing that the number of variables generated in the proof search
process is finite due to the peculiar formulation of the rules. Furthermore, we can
directly extract a finite intuitionistic countermodel out of a failed proof search.
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We then generalize even further the method to a large class of intermediate
logics. In particular, exploiting the modularity of the framework of labelled
sequent calculi, we provide a terminating calculus without backtracking and with
finite countermodel extraction for every intermediate logic whose frame condition
is a universal formula. All the logics discussed, except for Gödel-Dummett logic
(25), did not have a terminating calculus.

Finally, we use the new calculi for intuitionistic and universal intermediate
logics to obtain a uniform proof of the modal embedding for the logic GL and
its extensions. The proof is carried out by an induction on the height of the
derivation distinguishing cases according to the last rule applied and exploiting
the invertibility of the rules of the calculus.

The structure of the chapter is as follows. In the second section we introduce
a variation with respect to the usual semantics for intuitionistic logic. In the
third section we present the labelled sequent calculus G3I< and we discuss its
structural properties. In the fourth section we prove completeness and termination
and we also show how to extract a finite countermodel from a failed proof search.
The fifth section is devoted to the study of the extensions of the methodology
to intermediate propositional logics. In particular, we show that a large class
of intermediate propositional logics can be given a terminating calculus, thus
yielding an effective decision procedure.

4.2 An alternative semantics for propositional intu-
itionistic logic

Intuitionistic logic is complete with respect to the class of finite partial orders
(15). We refer to these models with the name of standard models.

Definition 4.2.1. A standard frame for intuitionistic logic is a pair ⟨𝑃, ⩽⟩ where
𝑃 is a finite set and ⩽ is a partial order defined on 𝑃. A standard model is a
triple M = ⟨𝑃, ⩽, 𝑣⟩, where ⟨𝑃, ⩽⟩ is a standard frame and 𝑣 : 𝐴𝑇 → P(𝑃) is
a function such that if 𝑥 ∈ 𝑣(𝑝) and 𝑥 ⩽ 𝑦, then 𝑦 ∈ 𝑣(𝑝). Truth conditions for
formulas are inductively defined:

• M, 𝑥 ⊩ 𝑝 iff 𝑥 ∈ 𝑣(𝑝)

• M, 𝑥 ⊩ 𝐴 ∧ 𝐵 iff M, 𝑥 ⊩ 𝐴 and M, 𝑥 ⊩ 𝐵

• M, 𝑥 ⊩ 𝐴 ∨ 𝐵 iff M, 𝑥 ⊩ 𝐴 or M, 𝑥 ⊩ 𝐵
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• M, 𝑥 ⊩ 𝐴→ 𝐵 iff ∀𝑦(𝑖 𝑓 𝑥 ⩽ 𝑦 𝑎𝑛𝑑 M, 𝑦 ⊩ 𝐴, 𝑡ℎ𝑒𝑛 M, 𝑦 ⊩ 𝐵)

A formula 𝐴 is valid in a standard model, M ⊨ 𝐴, if and only if M, 𝑥 ⊩ 𝐴 for
every 𝑥 in M. A formula 𝐴 is valid in a standard frame F , ⊨F 𝐴, if and only if
it is valid in every standard model based on that frame. A formula 𝐴 is valid in
a class C of standard frames, ⊨C 𝐴, if and only if it is valid in every frame in the
class.

We introduce a variant of such semantic, based on strict orders rather than
partial orders, i.e. orders with an irreflexive and transitive relation.

Definition 4.2.2. A strict frame for intuitionistic logic is a pair ⟨𝑄, <⟩ where 𝑄
is a finite set and < is a strict order defined on 𝑄. A strict model is a triple
M = ⟨𝑄, <, 𝑣⟩, where ⟨𝑄, <⟩ is a strict frame and 𝑣 : 𝐴𝑇 → P(𝑄) is a function
such that if 𝑥 ∈ 𝑣(𝑝) and 𝑥 < 𝑦, then 𝑦 ∈ 𝑣(𝑝).

Truth conditions for formulas are unchanged with respect to standard models,
except for the implication:

M, 𝑥 ⊩ 𝐴→ 𝐵 iff ∀𝑦(𝑖 𝑓 𝑥 < 𝑦 𝑎𝑛𝑑 M, 𝑦 ⊩ 𝐴, 𝑡ℎ𝑒𝑛 M, 𝑦 ⊩ 𝐵) and (if
M, 𝑥 ⊩ 𝐴, then M, 𝑥 ⊩ 𝐵)

The notions of validity in a strict model, in a strict frame and in a class of strict
frames are defined as above.

We now show that given a standard model it is always possible to construct a
strict model which satisfies the same formulas.

Theorem 4.2.1. For every standard model M = ⟨𝑃, ⩽, 𝑣⟩, there is a strict model
N and such that every formula 𝐴 ∈ FM,

M ⊨ 𝐴 if and only if N ⊨ 𝐴

Proof. Given the model M = ⟨𝑃, ⩽, 𝑣⟩, we consider the strict model N = ⟨𝑃, <
, 𝑣⟩, where 𝑥 < 𝑦 iff 𝑥 ⩽ 𝑦 and 𝑥 ≠ 𝑦 for every 𝑥, 𝑦 ∈ 𝑃. The relation < is clearly
irreflexive and transitive.

We check the claim of the theorem by showing that for every 𝑥 in 𝑃, M, 𝑥 ⊩ 𝐴

if and only if N , 𝑥 ⊩ 𝐴. We argue by induction on the complexity of the formula
𝐴.

The atomic case follows by definition of 𝑣, the cases of conjunction and
disjunction are immediate by induction hypothesis.

We discuss the case of implication. We consider the direction from left to
right, the other is similar and we omit the details.
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Let us assume M, 𝑥 ⊩ 𝐴→ 𝐵 and we suppose 𝑥 < 𝑦 and N , 𝑦 ⊩ 𝐴. If 𝑥 < 𝑦,
then 𝑥 ⩽ 𝑦 in M, therefore by induction hypothesis we obtain M, 𝑦 ⊩ 𝐴 and by
definition M, 𝑦 ⊩ 𝐵. Again, by induction hypothesis we conclude that N , 𝑦 ⊩ 𝐵.

Furthermore, if N , 𝑥 ⊩ 𝐴, since 𝑥 ⩽ 𝑥 in M, then, by using induction
hypothesis twice, we obtain N , 𝑥 ⊩ 𝐵. This yields N , 𝑥 ⊩ 𝐴→ 𝐵. qed.

We now show that we can present an alternative reformulation of the truth
condition for the implication which incorporates information relative to the finite-
ness of the model. We introduce an abbreviation: for every strict model M and
for every world 𝑥 in M:

𝑥 ⊩ 𝐴 > 𝐵⇐⇒ for every 𝑦, if 𝑥 < 𝑦 and 𝑦 ⊩ 𝐴, then 𝑦 ⊩ 𝐵

Lemma 4.2.2. For every intuitionistic strict model M, every world 𝑥 in M, the
following are equivalent:

1. 𝑥 ⊩ 𝐴 > 𝐵

2. For every 𝑦: if 𝑥 < 𝑦 and 𝑦 ⊩ 𝐴 > 𝐵 and 𝑦 ⊩ 𝐴, then 𝑦 ⊩ 𝐵

Proof. 1 ⇒ 2 is immediate.
We discuss 2 ⇒ 1. Let us assume that 2 holds for 𝑥. Let 𝑥 < 𝑦 and 𝑦 ⊩ 𝐴,

we suppose by contradiction that 𝑦 ⊩ 𝐴 > 𝐵 does not hold. Therefore there
is 𝑧, 𝑦 < 𝑧, 𝑧 ⊩ 𝐴 and 𝑧 ⊮ 𝐵. Now 𝑧 ⊮ 𝐴 > 𝐵, otherwise, since 𝑥 < 𝑧

(by transitivity), 𝑧 ⊩ 𝐵, which yields a contradiction, therefore there is 𝑢 such
that 𝑧 < 𝑢. By iterating this procedure we obtain an infinite chain, against the
finiteness condition. Thus 𝑦 ⊩ 𝐴 > 𝐵 and by 2 we obtain 𝑦 ⊩ 𝐵, which concludes
the proof. qed.

This allows us to reformulate the truth condition for implication in strict models.
(∗) 𝑥 ⊩ 𝐴→ 𝐵 iff the following conditions hold:

1. for every 𝑦: if 𝑥 < 𝑦 and 𝑦 ⊩ 𝐴 > 𝐵 and 𝑦 ⊩ 𝐴, then 𝑦 ⊩ 𝐵

2. if 𝑥 ⊩ 𝐴, then 𝑥 ⊩ 𝐵

A sequent is a syntactic object of the form Γ ⇒ Δ where Γ and Δ are finite
multisets of formulas in FM. Let G3i be the multisuccedent sequent calculus for
intuitionistic propositional logic displayed in Figure 4.1. The notion of derivation
is defined as follows.

Definition 4.2.3. A derivation in G3i of a sequent Γ ⇒ Δ is a finite tree in which
topmost nodes are instances of an initial sequent and the lower nodes are formed
by applications of the rules.
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Initial Sequents

𝑎𝑥
𝑝, Γ ⇒ Δ, 𝑝

𝐿⊥⊥, Γ ⇒ Δ

Logical Rules

𝐴, 𝐵, Γ ⇒ Δ
𝐿∧

𝐴 ∧ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴 Γ ⇒ Δ, 𝐵
𝑅∧

Γ ⇒ Δ, 𝐴 ∧ 𝐵

𝐴, Γ ⇒ Δ 𝐵, Γ ⇒ Δ
𝐿∨

𝐴 ∨ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴, 𝐵
𝑅∨

Γ ⇒ Δ, 𝐴 ∨ 𝐵

𝐴→ 𝐵, Γ ⇒ Δ, 𝐴 𝐵, Γ ⇒ Δ
𝐿 →

𝐴→ 𝐵, Γ ⇒ Δ

𝐴, Γ ⇒ 𝐵
𝑅 →

Γ ⇒ Δ, 𝐴→ 𝐵

Figure 4.1: The multisuccedent sequent calculus for intuitionistic propositional
logic G3i.

Exploiting the completeness of G3i with respect to standard Kripke semantics
(107), we obtain a result of completeness of intuitionistic logic with respect to
finite strict orders in which the truth condition for the implication is rephrased as
in (∗).

Theorem 4.2.3 (Completeness). G3i ⊢⇒ 𝐴 if and only if 𝐴 is valid in every
strict frame.

Proof. From left to right the proof is straightforward by induction on the height
of derivation in the calculus G3i.
From right to left we argue by contraposition. If ⇒ 𝐴 is not derivable in G3i,
then there is a standard intuitionistic model M based on a finite partial order and
a world in M such that 𝑥 ⊮ 𝐴. By Theorem 4.2.1 and Lemma 4.2.2 we obtain
the desired conclusion. qed.

4.3 The labelled sequent calculus G3I<
We are now in the position to define a labelled sequent calculus from the semantics
we introduced in the previous section. Let FM+ be the set of formulas built from
propositional atoms, the zeroary connective ⊥ and the binary connectives ∧, ∨,
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Initial Sequents

𝑎𝑥1
𝑥 : 𝑝, Γ ⇒ Δ, 𝑥 : 𝑝

𝑎𝑥2
𝑥 < 𝑦, 𝑥 : 𝑝, Γ ⇒ Δ, 𝑦 : 𝑝

𝐿⊥
𝑥 : ⊥, Γ ⇒ Δ

Logical Rules

𝑥 : 𝐴, 𝑥 : 𝐵, Γ ⇒ Δ
𝐿∧

𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 : 𝐴 Γ ⇒ Δ, 𝑥 : 𝐵
𝑅∧

Γ ⇒ Δ, 𝑥 : 𝐴 ∧ 𝐵

𝑥 : 𝐴, Γ ⇒ Δ 𝑥 : 𝐵, Γ ⇒ Δ
𝐿∨

𝑥 : 𝐴 ∨ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 : 𝐴, 𝑥 : 𝐵
𝑅∨

Γ ⇒ Δ, 𝑥 : 𝐴 ∨ 𝐵

𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ, 𝑥 : 𝐴 𝑥 : 𝐵, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ
𝐿 →

𝑥 : 𝐴→ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵 𝑥 : 𝐴, Γ ⇒ Δ, 𝑥 : 𝐵
𝑅 →

Γ ⇒ Δ, 𝑥 : 𝐴→ 𝐵

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ, 𝑦 : 𝐴 𝑦 : 𝐵, 𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ
𝐿 >

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ

𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑦 : 𝐵
𝑅 >, 𝑦 fresh

Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵

Relational Rules

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, Γ ⇒ Δ
𝑇𝑟𝑠

𝑥 < 𝑦, 𝑦 < 𝑧, Γ ⇒ Δ

𝐼𝑟𝑟𝑒 𝑓
𝑥 < 𝑥, Γ ⇒ Δ

Figure 4.2: The labelled sequent calculus G3I<.

→ and >. The language of the calculus G3I< contains a countable set of labels
𝑥0, 𝑥1, 𝑥2, ...

The expressions in the calculus are either labelled formulas or relational
atoms. A labelled formula is a syntactic object of the form 𝑥 : 𝐴, where 𝐴 ∈ FM+.
A relational atom is a syntactic object of the form 𝑥 < 𝑦, where 𝑥, 𝑦 are labels and
< is a binary relation symbol. Labelled sequents are objects of the form Γ ⇒ Δ,
where Γ is a finite multiset of labelled formulas and relational atoms and Δ is a
finite multiset of labelled formulas.

The rules are directly obtained by the truth conditions for the logical operators,
for the details concerning the general procedure the reader is referred to (73). The
initial sequent 𝑎𝑥2 is added in order to express the monotonicity of the valuation
function of intuitionistic models. The rule R> directly stems from the right to
left side of the truth definition for >. The freshness condition imposed on the
rule R> implies that the variable 𝑦 does not occur in the conclusion of the rule:
we say that 𝑦 is the eigenvariable of the inference.

We aim at establishing the structural properties of the calculus G3I< by syn-
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tactic means. The rules of the system G3I< are height-preserving invertible and
the structural rules of weakening and contraction are height-preserving admis-
sible. We shall then establish cut-free completeness of the calculus G3I< by
showing that every derivation in the calculus for intuitionistic propositional logic
G3i can be transformed into a derivation in G3I<.

In order to proceed with the structural analysis of the calculus we need to fix
some notation and parameters. The principal formula of a rule is the labelled
formula displayed in the conclusion. The formulas displayed in the initial sequents
are said to be active. The height of a derivation is again defined as the length of
a maximal branch in the derivation.

Definition 4.3.1. Given a formula 𝐴 in FM+, its degree 𝑑𝑔(𝐴) is thus defined:

• 𝑑𝑔(𝑝) = 𝑑𝑔(⊥) = 0

• 𝑑𝑔(𝐴 ∧ 𝐵) = 𝑑𝑔(𝐴 ∨ 𝐵) = 𝑑𝑔(𝐴 > 𝐵) = 𝑚𝑎𝑥{𝑑𝑔(𝐴), 𝑑𝑔(𝐵)} + 1

• 𝑑𝑔(𝐴→ 𝐵) = 𝑑𝑔(𝐴 > 𝐵) + 1

The degree of a labelled formula 𝑥 : 𝐴 coincides with the degree of the formula
𝐴.

Lemma 4.3.1. For every Γ, Δ and 𝐴 in FM+, the sequent 𝑥 : 𝐴, Γ ⇒ Δ, 𝑥 : 𝐴 is
derivable in G3I<.

Proof. The proof is by induction on the degree of the labelled formula 𝑥 : 𝐴, we
discuss the case in which the labelled formula is of the form 𝑥 : 𝐵 > 𝐶.

𝑥 : 𝐵 > 𝐶, 𝑥 < 𝑦, 𝑦 : 𝐵 > 𝐶, 𝑦 : 𝐵, Γ ⇒ Δ, 𝑦 : 𝐶, 𝑦 : 𝐵 𝑥 : 𝐵 > 𝐶, 𝑥 < 𝑦, 𝑦 : 𝐵 > 𝐶, 𝑦 : 𝐶, 𝑦 : 𝐵, Γ ⇒ Δ, 𝑦 : 𝐶
L>

𝑥 : 𝐵 > 𝐶, 𝑥 < 𝑦, 𝑦 : 𝐵 > 𝐶, 𝑦 : 𝐵, Γ ⇒ Δ, 𝑦 : 𝐶
R>

𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑥 : 𝐵 > 𝐶

The topmost sequents are derivable by induction hypothesis. qed.

A rule is height-preserving admissible whenever there are derivations of each
of its premises, there is a derivation of the conclusion of the same height or of
less height. Given a sequent Γ ⇒ Δ, we denote by Γ[𝑥/𝑦] ⇒ Δ[𝑥/𝑦] the sequent
obtained by replacing all the occurrences of 𝑥 in Γ ⇒ Δ with 𝑦.

Lemma 4.3.2. The rule:

Γ ⇒ Δ
𝑆𝑢𝑏[𝑥/𝑦 ]

Γ[𝑥/𝑦] ⇒ Δ[𝑥/𝑦]

is height-preserving admissible in G3I<.
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Proof. The proof runs by induction on the height 𝑛 of the derivation of the
sequent Γ ⇒ Δ in G3I<. If 𝑛 = 0, then Γ ⇒ Δ is an initial sequent and so is
Γ[𝑥/𝑦] ⇒ Δ[𝑥/𝑦]. If 𝑛 > 0 and the last rule applied is different from R>, we
apply the induction hypothesis and then the rule again. If 𝑛 > 0 and the last rule
applied is R>, we distinguish two subcases: 𝑦 coincides with the eigenvariable of
the rule or not. If not, we apply the induction hypothesis and then the rule again.
If it does, then we apply the induction hypothesis to replace the eigenvariable of
the rule with another fresh variable not occurring in Γ and Δ, then we apply again
the induction hypothesis to substitute 𝑥 with 𝑦 and then we apply the rule R> to
obtain the desired conclusion. qed.

Lemma 4.3.3. The rule:

Γ ⇒ Δ
𝑊𝑒𝑎𝑘

Γ′, Γ ⇒ Δ,Δ′

is height-preserving admissible in G3I<.

Proof. The proof is straightforward by induction on the height 𝑛 of derivation of
Γ ⇒ Δ in G3I<. qed.

We now show that a generalized version of the initial sequent 𝑎𝑥2 is derivable.

Lemma 4.3.4. For every formula 𝐴 and every multiset Γ,Δ, the sequent 𝑥 <
𝑢1, ..., 𝑢𝑛 < 𝑦, 𝑥 : 𝐴, Γ ⇒ 𝑦 : 𝐴,Δ is derivable in G3I<.

Proof. By induction on the degree of the formula 𝐴. If 𝐴 is atomic, then we
apply the rule 𝑇𝑟𝑠 to the sequent 𝑥 < 𝑢1, ..., 𝑢𝑛 < 𝑦, 𝑥 : 𝐴, Γ ⇒ 𝑦 : 𝐴,Δ until we
reach an instance of 𝑎𝑥2. If 𝐴 is a compound formula not of the form 𝐵 > 𝐶, the
conclusion easily follows by the induction hypothesis. If it is of form 𝐵 > 𝐶, we
proceed as follows (where [...] abridges 𝑥 < 𝑢1, ..., 𝑢𝑛 < 𝑦, 𝑥 < 𝑦, 𝑦 < 𝑧, 𝑧 : 𝐵 >
𝐶):

[...], 𝑥 < 𝑧, 𝑧 : 𝐵, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑧 : 𝐶, 𝑧 : 𝐵 [...], 𝑥 < 𝑧, 𝑧 : 𝐵, 𝑥 : 𝐵 > 𝐶, 𝑧 : 𝐶, Γ ⇒ Δ, 𝑧 : 𝐶
L>

𝑥 < 𝑢1, ..., 𝑢𝑛 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, 𝑧 : 𝐵 > 𝐶, 𝑧 : 𝐵, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑧 : 𝐶
several Trs

𝑥 < 𝑢1, ..., 𝑢𝑛 < 𝑦, 𝑦 < 𝑧, 𝑧 : 𝐵 > 𝐶, 𝑧 : 𝐵, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑧 : 𝐶
R>

𝑥 < 𝑢1, ..., 𝑢𝑛 < 𝑦, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑦 : 𝐴 > 𝐵

where the topmost sequents are derivable by Lemma 4.3.1. qed.

Example. We now give an example of a derivation in the system G3I< of the
labelled sequent ⇒ 𝑥 : 𝐴 → (𝐵 → 𝐴). First we construct a derivation D of the
sequent ⇒ 𝑥 : 𝐴 > (𝐵 → 𝐴):
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𝑥 < 𝑦, 𝑦 : 𝐴 > (𝐵 → 𝐴), 𝑦 : 𝐴, 𝑧 : 𝐵 > 𝐴, 𝑧 : 𝐵 ⇒ 𝑧 : 𝐴
R>

𝑥 < 𝑦, 𝑦 : 𝐴 > (𝐵 → 𝐴), 𝑦 : 𝐴⇒ 𝑦 : 𝐵 > 𝐴 𝑥 < 𝑦, 𝑦 : 𝐴 > (𝐵 → 𝐴), 𝑦 : 𝐴, 𝑦 : 𝐵 ⇒ 𝑦 : 𝐴
R→

𝑥 < 𝑦, 𝑦 : 𝐴 > (𝐵 → 𝐴), 𝑦 : 𝐴⇒ 𝑦 : 𝐵 → 𝐴
R>⇒ 𝑥 : 𝐴 > (𝐵 → 𝐴)

Then we construct the following derivation:

... D
⇒ 𝑥 : 𝐴 > (𝐵 → 𝐴)

𝑥 < 𝑢, 𝑢 : 𝐴 > 𝐵, 𝑢 : 𝐵, 𝑥 : 𝐴⇒ 𝑢 : 𝐴
R→

𝑥 : 𝐴⇒ 𝑥 : 𝐵 > 𝐴 𝑥 : 𝐴, 𝑥 : 𝐵 ⇒ 𝑥 : 𝐴
R→

𝑥 : 𝐴⇒ 𝑥 : 𝐵 → 𝐴
R→⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴)

A rule is invertible if, whenever the conclusion is derivable, so is each of its
premises. The calculus G3I< is shown to enjoy height-preserving invertibility
of every rule. Invertibility is a desirable property, because it allows to avoid
backtracking when searching for a derivation.

Lemma 4.3.5. Every rule is height-preserving invertible in G3I<.

Proof. The rule L> is height-preserving invertible by height-preserving admis-
sibility of weakening. The proof of the invertibility of the rules different from
R> follows the usual pattern as detailed in (109). With respect to the rule
R>, we need to prove that whenever Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵 is derivable, so is
𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑦 : 𝐵 for every label 𝑦 and the height is
preserved. We argue by induction on the height 𝑛 of the derivation of the sequent
Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵 in G3I<. If 𝑛 = 0, then Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵 is an initial
sequent and so is 𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑦 : 𝐵. If 𝑛 > 0, we distinguish
cases according to the last rule applied. If 𝑥 : 𝐴 > 𝐵 is principal in the last rule
applied, then the derivation of the premise yields the desired conclusion applying
height-preserving substitution if needed. If 𝑥 : 𝐴 > 𝐵 is not principal, we apply
the induction hypothesis to the premise(s) and then we apply again the rule. For
example, if the last rule applied is 𝑅 > and 𝑥 : 𝐴 > 𝐵 is not principal we have:

𝑤 < 𝑢, 𝑢 : 𝐶 > 𝐷, 𝑢 : 𝐶, Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵, 𝑢 : 𝐷
R>

Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵, 𝑤 : 𝐶 > 𝐷

We can assume that 𝑢 does not coincide with 𝑦, otherwise we apply height-
preserving substitution to replace 𝑢 with a fresh variable 𝑜. Hence we apply the
induction hypothesis to obtain a derivation of the sequent 𝑤 < 𝑢, 𝑥 < 𝑦, 𝑢 : 𝐶 >

𝐷, 𝑦 : 𝐴 > 𝐵, 𝑢 : 𝐶, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑢 : 𝐷, 𝑦 : 𝐵 and then we apply again the rule
to get 𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑦 : 𝐵, 𝑤 : 𝐶 > 𝐷 which is the desired
conclusion. qed.

We are in the position to state and prove the height-preserving admissibility
of the rules of contraction in G3I<.
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Lemma 4.3.6. The rule:

Γ, Γ,Π ⇒ Δ,Δ, Σ
𝐶𝑡𝑟

Γ,Π ⇒ Δ, Σ

is height-preserving admissible in G3I<.

Proof. We argue by induction on the height 𝑛 of the derivation. If 𝑛 = 0, then
Γ, Γ,Π ⇒ Δ,Δ, Σ is an initial sequent and so is Γ,Π ⇒ Δ, Σ. If 𝑛 > 0 and no
formula in Γ or Δ is principal we apply the induction hypothesis to the premise(s)
of the rule and then we apply the rule again. If 𝑛 > 0 and a formula is principal
in a unary rule 𝜌, we have:

Γ, Γ′,Π ⇒ Δ,Δ′, Σ
𝜌

Γ, Γ,Π ⇒ Δ,Δ, Σ

We proceed as follows:

Γ, Γ′,Π ⇒ Δ,Δ′, Σ
𝐼𝑛𝑣𝜌

Γ′, Γ′,Π ⇒ Δ′,Δ′, Σ
𝐶𝑡𝑟

Γ′,Π ⇒ Δ′, Σ
𝜌

Γ,Π ⇒ Δ, Σ

where 𝐼𝑛𝑣𝜌 denotes the application of the invertibility lemma with respect to the
rule 𝜌. The applications of 𝐶𝑡𝑟 are removed by invoking the induction on the
height of the derivation. The case of binary rules is analgous and we omit the
details. qed.

In order to show the cut-free completeness of the system G3I<, we need the
proof of the admissibility of the following rule.

Lemma 4.3.7. The rule:

𝑥 < 𝑦, 𝑥 : 𝐴, 𝑦 : 𝐴, Γ ⇒ Δ
Mon

𝑥 < 𝑦, 𝑥 : 𝐴, Γ ⇒ Δ

is admissible in G3I<.

Proof. We argue by induction on lexicographically ordered pairs where the first
component is 𝑑𝑔(𝐴) and the second component is the height 𝑛 of the derivation
of 𝑥 < 𝑦, 𝑥 : 𝐴, 𝑦 : 𝐴, Γ ⇒ Δ.

If 𝑥 < 𝑦, 𝑥 : 𝐴, 𝑦 : 𝐴, Γ ⇒ Δ is an initial sequent, we distinguish subcases.
If 𝑦 : 𝐴 is not active, then 𝑥 < 𝑦, 𝑥 : 𝐴, Γ ⇒ Δ is an initial sequent as well.
If 𝑦 : 𝐴 is active in ax1, then 𝑥 < 𝑦, 𝑥 : 𝐴, Γ ⇒ Δ is an instance of ax2.
If 𝑦 : 𝐴 is active in ax2, then 𝑥 < 𝑦, 𝑥 : 𝐴, 𝑦 : 𝐴, Γ ⇒ Δ is of the form
𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 : 𝑝, 𝑦 : 𝑝, Γ ⇒ Δ′, 𝑧 : 𝑝. In this case we proceed as follows:

ax2
𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, 𝑥 : 𝑝, Γ ⇒ Δ′, 𝑧 : 𝑝

Trs
𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 : 𝑝, Γ ⇒ Δ′, 𝑧 : 𝑝
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If 𝑛 > 0, then we need to distinguish cases according to the last rule applied.
If neither 𝑥 : 𝐴 nor 𝑦 : 𝐴 are principal, then we apply the secondary induction
hypothesis and then the rule again. If 𝑥 : 𝐴 or 𝑦 : 𝐴 are principal, then
we can assume that 𝐴 is not an atomic formula by inspection of the rules.
Hence, if 𝐴 is not of the form 𝐵 > 𝐶, we exploit height-preserving invertibility
of the rules and the induction hypothesis. For example, if the conclusion is
𝑥 < 𝑦, 𝑥 : 𝐵 → 𝐶, 𝑦 : 𝐵 → 𝐶, Γ ⇒ Δ, we proceed as follows. First, we construct
a derivation of 𝑥 < 𝑦, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑥 : 𝐵:

𝑥 < 𝑦, 𝑥 : 𝐵 → 𝐶, 𝑦 : 𝐵 → 𝐶, Γ ⇒ Δ
Inv

𝑥 < 𝑦, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶, 𝑦 : 𝐶, Γ ⇒ Δ, 𝑥 : 𝐵
Mon

𝑥 < 𝑦, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐶, Γ ⇒ Δ, 𝑥 : 𝐵

𝑥 < 𝑦, 𝑥 : 𝐵 → 𝐶, 𝑦 : 𝐵 → 𝐶, Γ ⇒ Δ
Inv

𝑥 < 𝑦, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑥 : 𝐵, 𝑦 : 𝐵
Mon

𝑥 < 𝑦, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑥 : 𝐵, 𝑦 : 𝐵
L>

𝑥 < 𝑦, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑥 : 𝐵

and we obtain the desired conclusion as follows:

𝑥 < 𝑦, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑥 : 𝐵

𝑥 < 𝑦, 𝑥 : 𝐵 → 𝐶, 𝑦 : 𝐵 → 𝐶, Γ ⇒ Δ
Inv

𝑥 < 𝑦, 𝑥 : 𝐶, 𝑦 : 𝐶, 𝑦 : 𝐵 > 𝐶, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ
Mon

𝑥 < 𝑦, 𝑥 : 𝐶, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ
L→

𝑥 < 𝑦, 𝑥 : 𝐵 → 𝐶, Γ ⇒ Δ

the applications of 𝑀𝑜𝑛 are removed by the induction hypothesis on the degree
of 𝐴. The cases in which 𝑦 : 𝐴 is 𝑦 : 𝐵∧𝐶 or 𝑦 : 𝐵∨𝐶 are similar. If 𝐴 is of the
form 𝐵 > 𝐶, we need to consider two subcases. If 𝑥 : 𝐵 > 𝐶 is principal, then
we apply the induction hypothesis on the height of the derivation to the premises
and then the rule again. If 𝑦 : 𝐵 > 𝐶 is principal, then we have:

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑧 : 𝐵 𝑥 < 𝑦, 𝑦 < 𝑧, 𝑧 : 𝐶, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶, Γ ⇒ Δ
L>

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶, Γ ⇒ Δ

We construct the following derivation:

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑧 : 𝐵
Weak

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑧 : 𝐵
Mon

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ, 𝑧 : 𝐵

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑧 : 𝐶, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶, Γ ⇒ Δ
Weak

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, 𝑧 : 𝐶, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶, Γ ⇒ Δ
Mon

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, 𝑧 : 𝐶, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ
L>

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ
Trs

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 : 𝐵 > 𝐶, Γ ⇒ Δ

The applications of𝑀𝑜𝑛 are removed by invoking the induction hypothesis on the
height of the derivation which is preserved by the application of weakening. qed.

We now show that every derivation in the system G3i can be transformed into
a derivation in the calculus G3I<. Given a multiset of formulas, we denote by
𝑥 : Γ the multiset of labelled formulas in which every formula is labelled by 𝑥.

Theorem 4.3.8. For every multiset of formulas in FM, if Γ ⇒ Δ is derivable in
G3i, then 𝑥 : Γ ⇒ 𝑥 : Δ is derivable in G3I< for every label 𝑥.

Proof. The proof is by induction on the height 𝑛 of the derivation of Γ ⇒ Δ in
G3i. If 𝑛 = 0, then 𝑥 : Γ ⇒ 𝑥 : Δ is an initial sequent in G3I<. If 𝑛 > 0, then
we distinguish cases according to the last rule applied. If the last rule applied is
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different from 𝐿 → and 𝑅 →, then we apply the induction hypothesis and the
rule again.

If the last rule applied is R→, we have:
𝐴, Γ ⇒ 𝐵

𝑅 →
Γ ⇒ Δ, 𝐴→ 𝐵

We construct the following derivation:

... IH
𝑦 : 𝐴, 𝑦 : Γ ⇒ 𝑦 : 𝐵

Weak
𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, 𝑦 : Γ, 𝑥 : Γ ⇒ 𝑥 : Δ, 𝑦 : 𝐵

Mon
𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, 𝑥 : Γ ⇒ 𝑥 : Δ, 𝑦 : 𝐵

R>
𝑥 : Γ ⇒ 𝑥 : Δ, 𝑥 : 𝐴 > 𝐵

... IH
𝑥 : 𝐴, 𝑥 : Γ ⇒ 𝑥 : 𝐵

Weak
𝑥 : 𝐴, 𝑥 : Γ ⇒ 𝑥 : Δ, 𝑥 : 𝐵

R→
𝑥 : Γ ⇒ 𝑥 : Δ, 𝑥 : 𝐴→ 𝐵

where IH denotes an application of the inductive hypothesis.
If the last rule applied is L→, we have:

𝐴→ 𝐵, Γ ⇒ Δ, 𝐴 𝐵, Γ ⇒ Δ
𝐿 →

𝐴→ 𝐵, Γ ⇒ Δ

We construct the following derivation.

... IH
𝑥 : 𝐴→ 𝐵, 𝑥 : Γ ⇒ 𝑥 : Δ, 𝑥 : 𝐴

Inv
𝑥 : 𝐴 > 𝐵, 𝑥 : Γ ⇒ 𝑥 : Δ, 𝑥 : 𝐴, 𝑥 : 𝐴

Ctr
𝑥 : 𝐴 > 𝐵, 𝑥 : Γ ⇒ 𝑥 : Δ, 𝑥 : 𝐴

... IH
𝑥 : 𝐵, 𝑥 : Γ ⇒ 𝑥 : Δ

Weak
𝑥 : 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 : Γ ⇒ 𝑥 : Δ

𝐿 →
𝑥 : 𝐴→ 𝐵, 𝑥 : Γ ⇒ 𝑥 : Δ

where IH indicates an application of the induction hypothesis. qed.

Notice that every in order to prove the embedding of the system G3i into the
system G3I< we used implicitly or explicitly all the previous lemmata.

Theorem 4.3.9. For every formula 𝐴 in FM:

If 𝐴 is intuitionistically valid, then G3I< ⊢⇒ 𝑥 : 𝐴.

Proof. If 𝐴 is intuitionistically valid, then the sequent ⇒ 𝐴 is derivable in G3i.
Furthermore, every derivation of a sequent ⇒ 𝐴 in G3i can be transformed into a
derivation of the sequent ⇒ 𝑥 : 𝐴 in G3I< by Theorem 4.3.8. As a consequence,
we get the desired conclusion. qed.
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Remark. The above theorem entails the cut-free derivability of every intuition-
istically valid formula in the system G3I<. Another strategy to obtain this
result consists in proving cut-elimination for the system G3I<. However, the
cut-elimination theorem seems difficult to obtain directly for G3I<.

We have concluded that the calculus G3I< enjoys cut-free completeness with
respect to intuitionistically valid formulas. Contrarily to the standard sequent
calculi for intuitionistic logic (109), the system G3I< does not enjoy the subfor-
mula property. The violation of the subformula property is double. First, as in
the tradition of labelled calculi, there are relational symbols and labels, which do
not belong to the language of intuitionistic logic. Second, in G3I< the language
of intuitionistic logic is extended by formulas of the shape 𝐴 > 𝐵 which are not
subformulas of 𝐴 → 𝐵. However, the calculus satisfies a relaxed version of the
subformula property.

Definition 4.3.2. Given a formula 𝐴 the set of its generalized subformulas, G(𝐴)
is defined as follows:

• 𝐴 ∈ G(𝐴)

• If 𝐵 ∧ 𝐶, 𝐵 ∨ 𝐶, 𝐵 > 𝐶 ∈ G(𝐴), then 𝐵,𝐶 ∈ G(𝐴)

• If 𝐵 → 𝐶 ∈ G(𝐴), then 𝐵,𝐶, 𝐵 > 𝐶 ∈ G(𝐴)

The generalized subformulas of a sequent Γ ⇒ Δ are the union of the sets of
generalized subformulas of the formulas in Γ and Δ.

This yields the following result which is crucial to establish the termination
of our system.

Corollary (Generalized subformula property). The calculus G3I< enjoys the
generalized subformula property, i.e. every derivation of a sequent Γ ⇒ Δ

contains only labelled formulas in which labels are either eigenvariables or
variables in the conclusion and formulas are generalized subformulas of the
formulas in the conclusion.

Proof. Immediate by inspection of the rules. qed.

As we shall see, the partial loss of analyticity will allow us to get an easy
termination procedure.
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4.4 Completeness and termination of G3I<
We aim at proving termination of the proof search in the labelled sequent calculus
G3I<. We start recalling the notion of validity of a labelled sequent.

Definition 4.4.1. Let M = ⟨𝑊, <, 𝑣⟩ be a strict model for intuitionistic proposi-
tional logic. An interpretation is a function | | | | : 𝐿𝑎𝑏 → 𝑊 . A labelled sequent
is valid in M with respect to an interpretation | | | | if for every labelled formula
𝑥 : 𝐴, for every relational atom 𝑦 < 𝑧 in Γ, whenever | | 𝑥 | | ⊩ 𝐴 and | | 𝑦 | | < | | 𝑧 | |,
then for some 𝑢 : 𝐵 in Δ, | | 𝑢 | | ⊩ 𝐵.

A labelled sequent Γ ⇒ Δ is valid in a model M if it is valid under every
interpretation. A labelled sequent is valid in a class of frame C if for every model
M based on a frame in C, Γ ⇒ Δ is valid in M.

Theorem 4.4.1 (Soundness). If G3I< ⊢ Γ ⇒ Δ, then Γ ⇒ Δ is valid in every
strict model based on a strict frame.

Proof. The proof is by induction on the height of derivation. qed.

In the previous section we have established that if we restrict ourselves to
consider formulas of the language of intuitionistic logic, i.e. FM, G3I< and the
axiomatic intuitionistic calculus prove the same theorems. Thus we have obtained
that the calculus G3I< is a conservative extension of the axiomatic calculus for
intuitionistic logic. We will show how to obtain a more direct completeness
result which also enables us to establish the termination of the proof search
and to define a procedure to extract a finite countermodel. We first prove some
auxiliary lemmata which enable us to avoid redundant applications of rules.

Lemma 4.4.2. Given a derivation of a sequent Γ ⇒ Δ in G3I<, there is a
derivation of Γ ⇒ Δ in G3I< in which rule 𝑅 > has been applied at most once to
the same labelled formula 𝑥 : 𝐴 > 𝐵 in each branch and the height is preserved.

Proof. The proof is by induction on the height 𝑛 of the derivation of Γ ⇒ Δ in
G3I<. If 𝑛 = 0 there is nothing to prove. If 𝑛 > 0, but the last rule is not 𝑅 > the
proof follows by applying the induction hypothesis to the premise(s) and then the
rule again. If 𝑛 > 0 and the last rule is 𝑅 > we have:

𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑦 : 𝐵
𝑅 >

Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵
By induction hypothesis there is a derivation of 𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ ⇒
Δ, 𝑦 : 𝐵 which contains at most one application of 𝑅 > to every formula of the
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form 𝑥 : 𝐶 > 𝐷 in every branch. If it does not contain an application of R> to
𝑥 : 𝐴 > 𝐵, then we apply 𝑅 > and we obtain the desired conclusion.

If it contains an application of the rule R> to 𝑥 : 𝐴 > 𝐵, we have:

...D
𝑥 < 𝑧, 𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑧 : 𝐴 > 𝐵, 𝑧 : 𝐴, Γ′′ ⇒ Δ′′, 𝑧 : 𝐵

𝑅 >
𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, Γ′′ ⇒ Δ′′, 𝑥 : 𝐴 > 𝐵

...E
𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑦 : 𝐵

We construct the following derivation:

...D
𝑥 < 𝑧, 𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑧 : 𝐴 > 𝐵, 𝑧 : 𝐴, Γ′′ ⇒ Δ′′, 𝑧 : 𝐵

Sub[𝑧/𝑦 ]
𝑥 < 𝑦, 𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ′′ ⇒ Δ′′, 𝑦 : 𝐵

𝐶𝑡𝑟
𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ′′ ⇒ Δ′′, 𝑦 : 𝐵

Weak
𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ′′ ⇒ Δ′′, 𝑦 : 𝐵, 𝑥 : 𝐴 > 𝐵

...E
𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑦 : 𝐵, 𝑦 : 𝐵, 𝑥 : 𝐴 > 𝐵

𝐶𝑡𝑟
𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑦 : 𝐵, 𝑥 : 𝐴 > 𝐵

𝑅 >
Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵

𝐶𝑡𝑟
Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵

The steps of substitution, contraction and weakening are height-preserving ad-
missible and it can be easily checked (by looking at the corresponding lemmata)
that they do not introduce new applications of R>, so we have obtained the desired
conclusion.

qed.

Lemma 4.4.3. Given a derivation of a sequent Γ ⇒ Δ in G3I<, there is a
derivation of the same sequent in G3I< in which the rule L> has been applied at
most once to the same pair of formulas 𝑥 : 𝐴 > 𝐵 and 𝑥 > 𝑦 in every branch of
the derivation and the height is preserved.

Proof. The proof is by induction on the height 𝑛 of the derivation of Γ ⇒ Δ in
G3I<. If 𝑛 = 0, there is nothing to prove. If 𝑛 > 0 and the last rule is different
from L>, then we apply the induction hypothesis to the premise and then we
apply the rule again. If the last rule applied is L>, then we have the following
situation:

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ, 𝑦 : 𝐴 𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵, Γ ⇒ Δ
L>

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ

75



We apply the induction hypothesis to the premises of the rule. Therefore we
obtain that there are derivations D′′ and D′′′ of the premises 𝑥 < 𝑦, 𝑥 : 𝐴 >

𝐵, Γ ⇒ Δ, 𝑦 : 𝐴 and 𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵, Γ ⇒ Δ, respectively, in which the
rule L> has not been applied twice to the same pair of formulas 𝑜 : 𝐶 > 𝐷 and
𝑜 < 𝑤. The only problematic case is that in which the rule L> has been applied
to the formulas 𝑥 : 𝐴 > 𝐵 and 𝑥 < 𝑦 in D′′ or D′′′ or both. We deal with the case
in which it has been applied in D′′ as an example (the other cases are similar).
We have:

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ′ ⇒ Δ′ , 𝑦 : 𝐴 𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵, Γ′ ⇒ Δ′
L>

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ′ ⇒ Δ′

.

.

.E
𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ, 𝑦 : 𝐴 𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵, Γ ⇒ Δ

L>
𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ

We construct the following derivation:

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ′ ⇒ Δ′, 𝑦 : 𝐴
...E

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ, 𝑦 : 𝐴, 𝑦 : 𝐴
RC

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ, 𝑦 : 𝐴 𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, 𝑦 : 𝐵, Γ ⇒ Δ
L>

𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ ⇒ Δ

Since the steps of left and right contraction are height-preserving (and they do
not introduce new applications of the rule L>) and since we have removed an
application of the rule L>, we have obtained the desired conclusion. qed.

We observe that it can be easily proved that an analogous result holds with
respect to the rule 𝑇𝑟𝑠 which needs not be applied twice to the same principal
relational atoms in the same branch.
We are now ready to present the main result of the section, namely the termination
of the proof search in the calculus G3I<. Given a sequent Γ ⇒ Δ, the strategy of
the proof of termination consists in constructing a reduction tree, i.e. a tree built
from bottom-up applications of the rules of the calculus to Γ ⇒ Δ in a given
order. The construction goes on until we reach derivable leaves or a topmost
sequent to which the rules cannot be further applied. The key point is that it can
be shown that the reduction tree is always finite and it yields either a derivation
or a failed proof search from which we can extract a countermodel.

Theorem 4.4.4. Given a sequent Γ ⇒ Δ it is decidable whether it is derivable
in G3I<. If it is not derivable we can extract a finite strict countermodel.

Proof. We define a procedure to construct a reduction tree and then we show that
the tree is finite and yields either a derivation or a finite countermodel.
Construction of the reduction tree
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The reduction tree is defined inductively in stages. Stage 0: The root is the
sequent Γ ⇒ Δ.
Stage n>0: We distinguish two cases. If every topmost sequent is of the form
𝑥0 < 𝑥1, ..., 𝑥𝑛−1 < 𝑥𝑛, 𝑥0 : 𝐴 > 𝐵, Γ′′ ⇒ Δ′′, 𝑥𝑛 : 𝐴 > 𝐵 (which is derivable
by Lemma 4.3.4) or is an instance of 𝑎𝑥1, 𝑎𝑥2, 𝐿⊥ or 𝐼𝑟𝑟𝑒 𝑓 we have obtained a
derivation and we stop. Otherwise, we continue the construction of the tree by
writing on top of the topsequents which are not of the form 𝑥0 < 𝑥1, ..., 𝑥𝑛−1 <

𝑥𝑛, 𝑥0 : 𝐴 > 𝐵, Γ′′ ⇒ Δ′′, 𝑥𝑛 : 𝐴 > 𝐵 nor instances of 𝑎𝑥1, 𝑎𝑥2, 𝐿⊥ or 𝐼𝑟𝑟𝑒 𝑓
other sequents obtained by the applications of the rules of the calculus in a given
order. There are 9 different stages, because there are 8 logical rules in the system
G3I< and the rule 𝑇𝑟𝑠. At stage 10 we repeat stage 1, at stage 11 we repeat stage
2 and so on. The order is as follows: 𝐿∧, 𝑅∧, 𝐿∨, 𝑅∨, 𝐿 →, 𝑅 →, 𝐿 >, 𝑅 > and
𝑇𝑟𝑠. We give the details of cases 𝐿 > and 𝑅 >, the other cases are analogous.

For 𝑛 = 7 we consider each topmost sequent of the form:

𝑥1 < 𝑦1, ..., 𝑥𝑚 < 𝑦𝑚, 𝑥1 : 𝐴1 > 𝐵1, ..., 𝑥𝑚 : 𝐴𝑚 > 𝐵𝑚, Γ ⇒ Δ

where 𝑥1 < 𝑦1, ..., 𝑥𝑚 < 𝑦𝑚, 𝑥1 : 𝐴1 > 𝐵1, ..., 𝑥𝑚 : 𝐴𝑚 > 𝐵𝑚 and 𝑥1 <

𝑦1, ..., 𝑥𝑚 < 𝑦𝑚 are all the labelled formulas of the shape 𝑜 : 𝐶 > 𝐷 and
𝑜𝑅𝑤, respectively we write on top of it 2𝑚 sequents obtained by the applications
of the rule L>:

𝑥1 : 𝐴1 > 𝐵1, ..., 𝑥𝑚 : 𝐴𝑛 > 𝐵𝑚, 𝑦𝑖1 : 𝐵𝑖1 , ..., 𝑦𝑖𝑘 : 𝐵𝑖𝑘 , Γ ⇒ Δ, 𝑦 𝑗𝑘+1 : 𝐴 𝑗𝑘+1 , ..., 𝑦 𝑗𝑚 : 𝐴 𝑗𝑚

where {𝑖1, ..., 𝑖𝑘 } ⊆ {1, ..., 𝑚} and 𝑗𝑘+1, ..., 𝑗𝑚 ∈ {1, ..., 𝑚} − {𝑖1, ..., 𝑖𝑘 }.
For 𝑛 = 8 we consider each topmost sequent of the form:

Γ ⇒ Δ, 𝑥1 : 𝐴1 > 𝐵1, ..., 𝑥𝑚 : 𝐴𝑛 > 𝐵𝑚

where 𝑥1 : 𝐴1 > 𝐵1, ..., 𝑥𝑚 : 𝐴𝑛 > 𝐵𝑚 are all the labelled formulas of the form
𝑜 : 𝐶 > 𝐷 in the succedent and we write on top of it the sequent:

𝑥1 < 𝑦1, ..., 𝑥𝑚 < 𝑦𝑚, 𝑦1 : 𝐴1 > 𝐵1, ..., 𝑦𝑚 : 𝐴𝑚 > 𝐵𝑚, 𝑦1 : 𝐴, ..., 𝑦𝑚 : 𝐴, Γ ⇒ Δ, 𝑦1 : 𝐵, ..., 𝑦𝑚 : 𝐵

obtained by the applications of the rule R>, where 𝑦1, ..., 𝑦𝑚 are variables not
occurring in Γ and Δ.

Because of Lemma 4.4.3, we do not need to apply more than once the rule
L> to the same principal formulas in the same branch and the same holds for the
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rule 𝑇𝑟𝑠. The reduction tree could be infinite, because the construction might not
stop. However, we show that this is not the case. By Corollary 4.3 the formulas
occurring in the reduction tree are generalized subformulas of the formulas in
Γ ⇒ Δ and this set is finite.

As a consequence, if there is an infinite derivation, there must be infinite
labels. However, we claim that:

1. Each chain of labels in a branch is finite.

2. Each label in a branch has a finite number of immediate successors.

From the two claims we obtain termination. With respect to item 1., since the set
of the generalized subformulas of the formulas in Γ ⇒ Δ is finite, it is enough to
show that the rule 𝑅 > cannot be applied twice to the same formula 𝐴 > 𝐵 in a
chain of labels in a branch, because the rule R> is the only rule which generates
new labels in the proof.

Suppose that there is a subchain 𝑥0 < ... < 𝑥𝑛 where 𝑥0 and 𝑥𝑛 label the same
formula 𝐴 > 𝐵 in the succedent of two sequents in a branch of a derivation.
Therefore we have the following situation:

...

𝑥0 < 𝑥1, ..., 𝑥𝑛−1 < 𝑥𝑛, 𝑥1 : 𝐴 > 𝐵, Γ′′ ⇒ Δ′′, 𝑥𝑛 : 𝐴 > 𝐵
...

𝑥0 < 𝑥1, 𝑥1 : 𝐴 > 𝐵, 𝑥1 : 𝐴, Γ′ ⇒ Δ′, 𝑥1 : 𝐵
𝑅 >

Γ′ ⇒ Δ′, 𝑥0 : 𝐴 > 𝐵
The sequent 𝑥0 < 𝑥1, ..., 𝑥𝑛−1 < 𝑥𝑛, 𝑥1 : 𝐴 > 𝐵, Γ′′ ⇒ Δ′′, 𝑥𝑛 : 𝐴 > 𝐵 is derivable
in G3I< by Lemma 4.3.4. Therefore the search can be interrupted, the chain is
finite and item 1. is proved.

To show item 2., suppose there is a label which has an infinite number of
immediate successors. Due to the generalized subformula property and to the
finiteness of the endsequent we can conclude that the rule 𝑅 > has been applied
at least twice to the same labelled formula 𝑥 : 𝐴 > 𝐵 in the branch, but this is
prevented by Lemma 4.4.2.

Therefore the construction of the reduction tree in G3I< is terminating
without loop-checking. If all the leaves in the reduction tree are of the form
𝑥0 < 𝑥1, ..., 𝑥𝑛−1 < 𝑥𝑛, 𝑥0 : 𝐴 > 𝐵, Γ′′ ⇒ Δ′′, 𝑥𝑛 : 𝐴 > 𝐵 or instances
of 𝑎𝑥1, 𝑎𝑥2, 𝐼𝑟𝑟𝑒 𝑓 or 𝐿⊥, we have obtained a derivation of Γ ⇒ Δ. Other-
wise Γ ⇒ Δ is not derivable and the topsequents which are not of the form
𝑥0 < 𝑥1, ..., 𝑥𝑛−1 < 𝑥𝑛, 𝑥0 : 𝐴 > 𝐵, Γ′′ ⇒ Δ′′, 𝑥𝑛 : 𝐴 > 𝐵 nor instances of
𝑎𝑥1, 𝑎𝑥2, 𝐼𝑟𝑟𝑒 𝑓 or 𝐿⊥ are called saturated.
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Construction of the countermodel
Let us suppose Γ ⇒ Δ is not derivable in G3I<, then the proof search terminates
and there is a leaf in the reduction tree which is not of the form 𝑥0 < 𝑥1, ..., 𝑥𝑛−1 <

𝑥𝑛, 𝑥1 : 𝐴 > 𝐵, Γ′′ ⇒ Δ′′, 𝑥𝑛 : 𝐴 > 𝐵, is not an instance of 𝑎𝑥1, 𝑎𝑥2, 𝐼𝑟𝑟𝑒 𝑓 or 𝐿⊥
and is closed under every available rule. Therefore the leaf is a saturated sequent.

Let 𝚪 and 𝚫 be the unions of the antecedents and the succedents, respectively,
of all the sequents Γ𝑖 ⇒ Δ𝑖 of the branch up to the saturated sequent. We define a
Kripke model that forces all the formulas in 𝚪 and no formula in𝚫 and is therefore
a countermodel to the sequent Γ ⇒ Δ.

We consider the frame obtained by taking as worlds the labels occurring in 𝚪

with their mutual relations expressed by the relational atoms 𝑥 < 𝑦 in 𝚪; we use 𝑅
to refer to the relation in the model. By the closure under the rules of transitivity
we obtain that the frame is a finite strict order.

The valuation is defined as follows: for every atomic labelled formula 𝑥 : 𝑝
in 𝚪, we stipulate 𝑥 ∈ 𝑣(𝑝) and if 𝑥 : 𝑝 and 𝑥 < 𝑦 are in 𝚪, then 𝑦 ∈ 𝑣(𝑝): since
the sequent is not an instance of 𝑎𝑥1 nor of 𝑎𝑥2 the definition is sound.

It is then easy to show by induction on the complexity of 𝐴 that 𝑥 ⊩ 𝐴 holds
in the model if 𝑥 : 𝐴 is in 𝚪 and that 𝑥 ⊮ 𝐴 if 𝑥 : 𝐴 is in 𝚫.

We limit ourselves to discussing the case in which the formula is of the form
𝑥 : 𝐴 > 𝐵. If 𝑥 : 𝐴 > 𝐵 is in 𝚪 and 𝑥𝑅𝑦, then by the saturation condition we get
that either 𝑦 : 𝐴 is in 𝚫 or 𝑦 : 𝐵 is in 𝚪. By induction hypothesis we obtain either
𝑦 ⊮ 𝐴 or 𝑦 ⊩ 𝐵, which yields 𝑥 ⊩ 𝐴 > 𝐵.

If 𝑥 : 𝐴 > 𝐵 is in 𝚫, then by the saturation condition 𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵

and 𝑦 : 𝐴 are in 𝚪 and 𝑦 : 𝐵 is in 𝚫. By induction hypothesis we obtain 𝑥𝑅𝑦,
𝑦 ⊩ 𝐴 and 𝑦 ⊮ 𝐵. Suppose now, towards a contradiction, that 𝑥 ⊩ 𝐴 > 𝐵, then
𝑦 ⊮ 𝐴 > 𝐵, otherwise 𝑦 ⊩ 𝐵. Therefore there is 𝑧, 𝑦𝑅𝑧 and 𝑧 ⊩ 𝐴 > 𝐵, 𝑧 ⊩ 𝐴
and 𝑧 ⊮ 𝐵. Again, 𝑧 ⊮ 𝐴 > 𝐵; iterating this procedure we obtain an infinite chain
against the finiteness of the model.

We have obtained the desired countermodel for the sequent Γ ⇒ Δ. qed.

As an immediate corollary, we get the closure under cut of the system G3I<.

Corollary. The rule:

Γ ⇒ Δ, 𝑥 : 𝐴 𝑥 : 𝐴, Γ′ ⇒ Δ′
Cut

Γ, Γ′ ⇒ Δ,Δ′

is admissible in G3I<.

Proof. Let us assume that we have two derivations of the sequents Γ ⇒ Δ, 𝑥 : 𝐴
and 𝑥 : 𝐴, Γ′ ⇒ Δ′. By the soundness theorem the sequents are valid and so
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is Γ, Γ′ ⇒ Δ,Δ′. Therefore, by the completeness theorem, Γ, Γ′ ⇒ Δ,Δ′ is
derivable in G3I<. qed.

Before we proceed, we would like to briefly sum up the results that we have
obtained in the following corollary.

Corollary. The calculus G3I< enjoys termination without loop-checking and
without backtracking due to the height-preserving invertibility of every rule.
Furthermore, we can easily extract a finite countermodel out of a failed proof
search and there are syntactic proofs of admissibility of the rules of weakening
and contraction.

These results come at the cost of a relaxation of the subformula property. In
particular, our system satisfies a generalized subformula property.

Remark. It may be objected that our termination procedure still contains some
kind of loop-checking hidden in the Lemmata which ensure the possibility to
avoid redundant applications of the rules L> and R>. This is only a local form of
loop-checking which could be totally dispensed with by resorting to cumulative
rules , i.e. for example:

𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵, 𝑦 : 𝐴, Γ ⇒ Δ, 𝑦 : 𝐵, 𝑥 : 𝐴 > 𝐵
R>𝑐 , 𝑦!

Γ ⇒ Δ, 𝑥 : 𝐴 > 𝐵

with the local side condition that either 𝑥 < 𝑦, 𝑦 : 𝐴 > 𝐵 or 𝑦 : 𝐴 is not in Γ

or 𝑦 : 𝐵 is not in Δ. It is immediate to observe that this way we do not require
any kind of preliminary lemma and that this formulation of the rules allows for a
strong termination property, namely the number of rules applicable to a sequent
bottom up are finite. We do not opt for this version of the rules to keep the
presentation smooth and easy to follow.

4.5 Extending the methodology

This section is devoted to extend the approach to some families of superintu-
itionistic (or intermediate) logics which enjoy the finite model property. This
can be regarded as a desideratum, because the current approaches to termination
for intuitionistic logic do not easily generalize to other logical systems. On the
contrary, labelled calculi have the advantage of being modular, in the sense that
a calculus for an intermediate logic can be obtained by adding some relational
rules to the base system.
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We start by focussing on Gödel Dummett logic (an interpolable intermediate
logic (61)).1 The systems thus obtained are sound and complete. In particular,
completeness, which entails closure under cut, is shown via the extraction of a
finite countermodel out of a failed proof search.

Before we proceed, let us recall that the first-order language of standard Kripke
models is the language of partial orders L⩽ = {⩽, =}, whereas the language of
strict orders is L< = {<, =}. We also recall that an intermediate logic is said to
be characterized by a class of frames C if and only if every formula derivable in
the logic is valid in C. We shall also be referring to the method of conversion
of frame conditions into relational rules in a labelled sequent calculus, for the
details the reader is referred to (73).

4.5.1 Gödel-Dummett logic

We now focus on Gödel-Dummett logic, axiomatized by adding the axiom schema
(𝐴 → 𝐵) ∨ (𝐵 → 𝐴) and the cut rule to the calculus G3i or, equivalently, by
adding the axiom schema to the axiomatic calculus for intuitionistic propositional
logic. It is characterized by strongly connected Kripke frames. The condition of
strong connectedness, expressed by the first order formula:

∀𝑥𝑦𝑧(𝑥 ⩽ 𝑦 ∧ 𝑥 ⩽ 𝑧 → 𝑦 ⩽ 𝑧 ∨ 𝑧 ⩽ 𝑦)

is easily seen to correspond to the first-order condition

∀𝑥𝑦𝑧(𝑥 < 𝑦 ∧ 𝑥 < 𝑧 → 𝑦 < 𝑧 ∨ 𝑧 < 𝑦 ∨ 𝑦 = 𝑧)

with respect to strict frames in the language L<. This condition can be converted
into a three-premise rule:

𝑦 < 𝑧, 𝑥 < 𝑦, 𝑥 < 𝑧, Γ ⇒ Δ 𝑧 < 𝑦, 𝑥 < 𝑦, 𝑥 < 𝑧, Γ ⇒ Δ 𝑦 = 𝑧, 𝑥 < 𝑦, 𝑥 < 𝑧, Γ ⇒ Δ
𝐿𝑖𝑛

𝑥 < 𝑦, 𝑥 < 𝑧, Γ ⇒ Δ

Due to the presence of equality, we also need to add suitable rules to handle the
new symbol, see Figure 4.3. The rules of symmetry and transitivity of the equality
relation are easily shown to be derivable. The addition of rule 𝐿𝑖𝑛 and the rules
of equality to the system G3I<, which yields the system G3IGD<, preserves
all the structural properties of the system G3I<. In particular, substitution,
weakening and contraction are height-preserving admissible and every rule is

1The interpolable intermediate logics are seven and they also include intuitionistic and
classical logic.
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𝑦 = 𝑧, 𝑥 = 𝑦, 𝑥 = 𝑧, Γ ⇒ Δ
𝐸𝑢𝑐

𝑥 = 𝑦, 𝑥 = 𝑧, Γ ⇒ Δ

𝑥 = 𝑥, Γ ⇒ Δ
𝑅𝑒 𝑓

Γ ⇒ Δ

𝑧 < 𝑦, 𝑥 < 𝑦, 𝑥 = 𝑧, Γ ⇒ Δ
𝐿𝐸𝑞

𝑥 < 𝑦, 𝑥 = 𝑧, Γ ⇒ Δ

𝑥 < 𝑧, 𝑥 < 𝑦, 𝑦 = 𝑧, Γ ⇒ Δ
𝑅𝐸𝑞

𝑥 < 𝑦, 𝑦 = 𝑧, Γ ⇒ Δ

𝑦 : 𝑝, 𝑥 : 𝑝, 𝑥 = 𝑦, Γ ⇒ Δ
𝐴𝑡𝑅𝑒𝑝𝑙

𝑥 : 𝑝, 𝑥 = 𝑦, Γ ⇒ Δ

Figure 4.3: Rules for equality.

height-preserving invertible. These properties hold for every extension of G3I<
with equality and relational rules and the proof are essentially the same as in the
case of G3I<, thus we avoid giving the details. The generalization of the rule of
replacement, i.e. AtRepl in Figure 4.3, to the case of arbitrary formulas is also
admissible.

Lemma 4.5.1. The rules:

𝑦 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ
𝑅𝑒𝑝𝑙>

𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ

𝑥 = 𝑦, Γ ⇒ Δ, 𝑥 : 𝑝, 𝑦 : 𝑝
𝑅𝑅𝑒𝑝𝑙𝑎𝑡

𝑥 = 𝑦, Γ ⇒ Δ, 𝑥 : 𝑝

are admissible in every extension of G3I< with the rules for equality.

Proof. We prove the admissibility of Repl> by induction on the height 𝑛 of the
derivation of the sequent 𝑦 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ. If it is an initial
sequent, so is 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ. If 𝑛 > 0 and 𝑦 : 𝐴 > 𝐵 is not principal,
we apply the induction hypothesis to the premise and then the rule again. If 𝑛 > 0
and 𝑦 : 𝐴 > 𝐵 is principal, we have:

𝑦 < 𝑧, 𝑦 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ, 𝑧 : 𝐴 𝑦 < 𝑧, 𝑧 : 𝐵, 𝑦 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ
𝐿 >

𝑦 < 𝑧, 𝑦 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ

We then proceed as follows:

𝑦 < 𝑧, 𝑦 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ, 𝑧 : 𝐴
𝑅𝑒𝑝𝑙>

𝑦 < 𝑧, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ, 𝑧 : 𝐴
𝑊𝑒𝑎𝑘

𝑥 < 𝑧, 𝑦 < 𝑧, 𝑥 : 𝐴 > 𝐵, 𝑦 = 𝑥, 𝑥 = 𝑦, Γ ⇒ Δ, 𝑧 : 𝐴

𝑦 < 𝑧, 𝑧 : 𝐵, 𝑦 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ
𝑅𝑒𝑝𝑙>

𝑦 < 𝑧, 𝑧 : 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ
𝑊𝑒𝑎𝑘

𝑥 < 𝑧, 𝑦 < 𝑧, 𝑧 : 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑦 = 𝑥, 𝑥 = 𝑦, Γ ⇒ Δ
𝐿 >

𝑥 < 𝑧, 𝑦 < 𝑧, 𝑥 : 𝐴 > 𝐵, 𝑦 = 𝑥, 𝑥 = 𝑦, Γ ⇒ Δ
𝐿𝐸𝑞

𝑦 < 𝑧, 𝑥 : 𝐴 > 𝐵, 𝑦 = 𝑥, 𝑥 = 𝑦, Γ ⇒ Δ
admissible rule

𝑦 < 𝑧, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ

The applications of 𝑅𝑒𝑝𝑙> are removed by the induction hypothesis on the height
of the derivation.

We argue by induction on the height 𝑛 of the derivation of 𝑥 = 𝑦, Γ ⇒ Δ, 𝑥 :
𝑝, 𝑦 : 𝑝 to prove the admissibility of RRepl𝑎𝑡 . If 𝑛 = 0 and 𝑦 : 𝑝 is not principal
we remove it. If it is principal it can be principal either in 𝑎𝑥1 or in 𝑎𝑥2. In the
first case it is of the form 𝑥 = 𝑦, 𝑦 : 𝑝, Γ′ ⇒ Δ, 𝑥 : 𝑝, 𝑦 : 𝑝 and we construct the
following derivation:
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ax1
𝑥 = 𝑦, 𝑦 = 𝑥, 𝑥 : 𝑝, 𝑦 : 𝑝, Γ′ ⇒ Δ, 𝑥 : 𝑝

AtRepl
𝑥 = 𝑦, 𝑦 = 𝑥, 𝑦 : 𝑝, Γ′ ⇒ Δ, 𝑥 : 𝑝

Admissible rule
𝑥 = 𝑦, 𝑦 : 𝑝, Γ′ ⇒ Δ, 𝑥 : 𝑝

If it is principal in 𝑎𝑥2, the strategy is similar with the addition of a REq step. If
𝑛 > 0, 𝑦 : 𝑝 is never principal, hence we apply the induction hypothesis to the
premise(s) of the last rule applied rule and then the rule again. qed.

Proposition 4.5.2. The rules:

𝑦 : 𝐴, 𝑥 : 𝐴, 𝑥 = 𝑦, Γ ⇒ Δ
𝐿𝑅𝑒𝑝𝑙

𝑥 : 𝐴, 𝑥 = 𝑦, Γ ⇒ Δ

𝑥 = 𝑦, Γ ⇒ Δ, 𝑥 : 𝐴, 𝑦 : 𝐴
RRepl

𝑥 = 𝑦, Γ ⇒ Δ, 𝑥 : 𝐴

are admissible in every extension of G3I< with the rules for equality.

Proof. We prove the admissibility of the rules simultaneously by induction on
the degree of the formula 𝑦 : 𝐴. We start discussing 𝐿𝑅𝑒𝑝𝑙. If 𝑦 : 𝐴 is of
the form 𝑦 : 𝑝 or 𝑦 : 𝐵 > 𝐶, then the conclusion follows from an application
of the rule 𝐴𝑡𝑅𝑒𝑝𝑙 or by the admissibility of 𝑅𝑒𝑝𝑙>. In the other cases we use
the invertibility of the rules and then the primary induction hypothesis followed
again by the rule. For example, if 𝑦 : 𝐴 is of the form 𝑦 : 𝐵 → 𝐶 we proceed as
follows:

𝑦 : 𝐴→ 𝐵, 𝑥 : 𝐴→ 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ
Inv L→

𝑦 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ, 𝑥 : 𝐴, 𝑦 : 𝐴
LRepl, RRepl

𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ, 𝑥 : 𝐴

𝑦 : 𝐴→ 𝐵, 𝑥 : 𝐴→ 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ
Inv L→

𝑦 : 𝐵, 𝑥 : 𝐵, 𝑦 : 𝐴 > 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ
LRepl

𝑥 : 𝐵, 𝑥 : 𝐴 > 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ
L→

𝑥 : 𝐴→ 𝐵, 𝑥 = 𝑦, Γ ⇒ Δ

The applications of LRepl and RRepl are removed by applying the induction
hypothesis on the degree of the formula.

We now discuss the rule RRepl. If 𝑦 : 𝐴 is of the form 𝑦 : 𝑝 we use previous
lemma. If 𝑦 : 𝐴 is of the form 𝑦 : 𝐵#𝐶, where # ∈ {∧,∨,→}, we apply the
height-preserving invertibility to 𝑦 : 𝐴 and 𝑥 : 𝐴 and then the primary induction
hypothesis followed again by the rule. If it is of the form 𝑦 : 𝐵 > 𝐶, then we
have:

𝑥 = 𝑦, Γ ⇒ Δ, 𝑥 : 𝐵 > 𝐶, 𝑦 : 𝐵 > 𝐶
Inv R>

𝑥 = 𝑦, 𝑥 < 𝑢, 𝑦 < 𝑢, 𝑢 : 𝐵 > 𝐶, 𝑢 : 𝐵 > 𝐶, 𝑢 : 𝐵, 𝑢 : 𝐵, Γ ⇒ Δ, 𝑢 : 𝐶, 𝑢 : 𝐶
LEq

𝑥 = 𝑦, 𝑥 < 𝑢, 𝑢 : 𝐵 > 𝐶, 𝑢 : 𝐵 > 𝐶, 𝑢 : 𝐵, 𝑢 : 𝐵, Γ ⇒ Δ, 𝑢 : 𝐶, 𝑢 : 𝐶
LC,RC

𝑥 = 𝑦, 𝑥 < 𝑢, 𝑢 : 𝐵 > 𝐶, 𝑢 : 𝐵, Γ ⇒ Δ, 𝑢 : 𝐶
R>

𝑥 = 𝑦, Γ ⇒ Δ, 𝑥 : 𝐵 > 𝐶
qed.

As it is well known, Gödel-Dummett logic enjoys the finite model property
(15), thus the rule 𝑅 > is sound with respect the semantics based on linear models.
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Theorem 4.5.3 (Soundness). If G3IGD< ⊢ Γ ⇒ Δ, then Γ ⇒ Δ is valid in every
model based on a linear strict frame.

Proof. The proof is by induction on the height of derivation. qed.

The proof of termination detailed in Section 4 holds when rule 𝐿𝑖𝑛 is added
to the calculus G3I<.

Theorem 4.5.4 (Completeness). Given a sequent Γ ⇒ Δ the proof search termi-
nates without loop-checking and backtracking in G3IGD<. If it is not derivable
we can extract a finite linear strict countermodel.

Proof. We need to introduce some slight modifications to the construction of the
reduction tree and of the countermodel.

In particular, we need to add the intuitive steps for equality with the usual
proviso of avoiding to apply the same rule to the same active formula(s) (which is
justified by height-preserving admissibility of contraction as in 4.4.3). We then
need to check that Lemma 4.4.2 still holds, but this is straightforward. The proof
search terminates because the rule 𝐿𝑖𝑛 does not introduce new labels in the proof
search.

Finally, with respect to the countermodel we do not take the labels as worlds.
We consider instead the following relation between labels occurring in the finite
reduction tree:

𝑥 ∼ 𝑦 if and only if there is an equality atom 𝑥 = 𝑦 in the reduction tree.

Due to the steps for equality in the construction of the reduction tree ∼ is an
equivalence relation and thus we take as worlds of the countermodel the equiv-
alence classes induced by ∼. The valuation function is modified accordingly:
[𝑥] ∈ 𝑣(𝑝) iff 𝑦 : 𝑝 is in 𝚪 for some 𝑦 ∼ 𝑥. The order of the model is defined as:
[𝑥]𝑅[𝑦] iff 𝑧 < 𝑢 is in 𝚪 for some 𝑧 ∼ 𝑥 and 𝑢 ∼ 𝑦. qed.

As a consequence of cut-free completeness we obtain closure under cut.

4.5.2 A general termination result

The termination procedure can be further expanded.

Definition 4.5.1. A universal formula is a first order formula of the form ∀𝑥𝜑(𝑥),
where 𝜑 is quantifier-free and all its variables are bound. A frame condition is
universal if and only if it is a finite conjunction of universal formulas.
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Let us now observe that any universal formula is logically equivalent to a
formula of the shape∀𝑥(𝐴→ 𝐵), where 𝐴 is a finite (possibly empty) conjunction
of atomic formulas and 𝐵 is a finite disjunction of atomic formulas or⊥. Therefore
any universal formula in the language L< is equivalent to a formula of the shape:

∀𝑥(𝑝1 ∧ ... ∧ 𝑝𝑛 → 𝑞1 ∨ ... ∨ 𝑞𝑚)

where 𝑝1, ..., 𝑝𝑛 and 𝑞1, ..., 𝑞𝑚 are either relational atoms 𝑥 < 𝑦 or equality atoms
𝑥 = 𝑦 or ⊥. Every universal formula ∀𝑥(𝑝1 ∧ ... ∧ 𝑝𝑛 → 𝑞1 ∨ ... ∨ 𝑞𝑚) can be
transformed into a relational rule of the form:

𝑝1, ..., 𝑝𝑛, 𝑞1, Γ ⇒ Δ ... 𝑝1, ..., 𝑝𝑛, 𝑞𝑚, Γ ⇒ Δ
R

𝑝1, ..., 𝑝𝑛, Γ ⇒ Δ

if 𝑚 = 1 and 𝑞1 is ⊥ the resulting rule is a zeroary rule; for the details of the
procedure in the context of modal logics, see (73). We refer to rules obtained
from universal formulas as universal rules.

Definition 4.5.2. An application of a universal rule or 𝑅𝑒 𝑓 is strongly analytic
if all the variables occurring in the premises occur in the conclusion too. A
derivation D is strongly analytic if all the applications of universal rules and of
𝑅𝑒 𝑓 in D are strongly analytic.

LetR be a set of universal rules. We denote by G3I<+R the calculus obtained
by adding to G3I< the rules in R and, whenever needed, the rules for equality.

Theorem 4.5.5. For every set R of universal rules the system G3I< + R en-
joys height-preserving admissibility of the rules of substitution, weakening and
contraction. Every rule in the system is height-preserving invertible.

Proof. The proof follows the pattern detailed for the base system G3I<, because
the rules in R preserve the structural properties of the system. qed.

We now show that every derivation in a system extended with universal rules
corresponding to a frame condition can be transformed in a strongly analytic
derivation (see also (27)).

Lemma 4.5.6. For every set R of universal rules and every strongly analytic
derivation of Γ ⇒ Δ in G3I< + R, there is a strongly analytic derivation of
Γ[𝑥/𝑦] ⇒ Δ[𝑥/𝑦] in G3I< + R provided that 𝑥 occurs in Γ ⇒ Δ.

Proof. Straightforward by induction on the height of the derivation. qed.
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Lemma 4.5.7. Let R be a set of universal rules obtained from a strict frame
condition. Any derivation of Γ ⇒ Δ in G3I< + R can be transformed in a
strongly analytic derivation of Γ ⇒ Δ in G3I< + R and the height is preserved.

Proof. We argue by induction on the height 𝑛 of the derivation of Γ ⇒ Δ in
G3I< + R. If 𝑛 = 0, there is nothing to prove. If 𝑛 > 0, the critical case is
whenever a universal relational rule or 𝑅𝑒 𝑓 introduce in the premises one or
more labels not occurring in the conclusion. Then we have:

𝑝1, ..., 𝑝𝑛, 𝑞1, Γ ⇒ Δ ... 𝑝1, ..., 𝑝𝑛, 𝑞𝑚, Γ ⇒ Δ
𝑅

𝑝1, ..., 𝑝𝑛, Γ ⇒ Δ

where at least one among 𝑞1, ..., 𝑞𝑚 contains a variable not occurring in the
conclusion. By induction hypothesis we have a strongly analytic derivation of
𝑝1, ..., 𝑝𝑛, 𝑞𝑖, Γ ⇒ Δ for every 𝑖 ∈ {1, ..., 𝑚}. We apply height-preserving admis-
sibility of substitution to substitute every label not occurring in the conclusion
with labels already occurring in the conclusion.By Lemma 4.5.6 the resulting
derivations are strongly analytic and then we apply again the rule 𝑅 to get the
desired conclusion. qed.

We now show that every universal relational rule need not be instantiated
more than once on the same principal formulas in the same branch.

Lemma 4.5.8. Let R be a set of universal relational rules. Given a derivation
of a sequent Γ ⇒ Δ in G3I< + R, there is a derivation of Γ ⇒ Δ in G3I< + R
in which every universal rule has been applied only once to the same principal
formulas in a branch and the height is preserved.

Proof. The proof is by induction on the height 𝑛 of the derivation of the sequent
Γ ⇒ Δ in G3I< + R. The interesting case is that in which the last rule applied is
a universal rule.

𝑞1, 𝑝, Γ ⇒ Δ ... 𝑞𝑚, 𝑝, Γ ⇒ Δ
𝑅

𝑝, Γ ⇒ Δ

where 𝑝 is an abbreviation for 𝑝1, ..., 𝑝𝑛. We apply the induction hypothesis to
every premise of the rule. We distinguish cases: either every derivation of the
premises does not contain any application of the rule 𝑅 to the formulas 𝑝 or it
does. In the first case we can apply the rule 𝑅. Otherwise let us suppose there
is one premise 𝑞𝑖, 𝑝, Γ ⇒ Δ in which there is an application of the rule 𝑅 to the
formulas 𝑝 (the argument can be easily generalized if there are more premises
with this property). We have the following situation:
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𝑞1, 𝑞𝑖, 𝑝, Γ
′ ⇒ Δ′ . . . 𝑞𝑖, 𝑞𝑖, 𝑝, Γ

′ ⇒ Δ′ . . . 𝑞𝑚, 𝑞𝑖, 𝑝, Γ
′ ⇒ Δ′

𝑅
𝑞𝑖, 𝑝, Γ

′ ⇒ Δ′

... D
𝑞𝑖, 𝑝, Γ ⇒ Δ

We construct the following derivation:

𝑞1, 𝑝, Γ ⇒ Δ . . .

𝑞𝑖, 𝑞𝑖, 𝑝, Γ
′ ⇒ Δ′

... D
𝑞𝑖, 𝑞𝑖, 𝑝, Γ ⇒ Δ

Ctr
𝑞𝑖, 𝑝, Γ ⇒ Δ . . . 𝑞𝑚, 𝑝, Γ ⇒ Δ

𝑅
𝑝, Γ ⇒ Δ

which yields the desired conclusion. qed.

Since relational rules corresponding to universal formulas do not introduce
new variables in the derivation (looking bottom-up) by Lemma 4.5.7, we can
obtain a new decidability criterion via terminating proof search and easy counter-
model extraction for all the intermediate logics with the finite model property and
characterized by a universal frame condition. First, we show that every formula
𝐴 is valid in a class of finite standard frames with a universal condition if and
only if is valid in a certain class of finite strict frames with a universal condition.
Given a formula 𝜑 in the language L⩽, we denote by 𝜑∗ the L< formula obtained
by replacing every occurrence of 𝑥 ⩽ 𝑦 by 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 (notice that if 𝜑 is
universal, so is 𝜑∗).

Proposition 4.5.9. Let L(C) be the set of formulas valid in the class of finite
standard frames C with the universal frame condition 𝜑 in the language L⩽, then
L(C) = L(C∗), where C∗ is the class of finite strict frames with the universal
frame condition 𝜑∗.

Proof. We prove the right to left inclusion (the other direction is easier). We
observe that 𝜑 is of the form:

∀𝑥(𝑥1 ⩽ 𝑦1 ∧ ... ∧ 𝑥𝑛 ⩽ 𝑦𝑛 ∧ 𝐸𝑄1 → 𝑢1 ⩽ 𝑧1 ∨ ... ∨ 𝑢𝑘 ⩽ 𝑧𝑘 ∨ 𝐸𝑄2)

where 𝐸𝑄1 (𝐸𝑄2) is a finite conjunction (disjunction) of equality atoms. We
assume that 𝐴 is valid in the class C∗ of strict frames. Let F = ⟨𝑃, ⩽⟩ be a
standard frame in C, M a model based on F and 𝑥 a world in M. We consider
the strict frame F ′ = ⟨𝑃, <⟩ where 𝑥 < 𝑦 if and only if 𝑥 ⩽ 𝑦 and 𝑥 ≠ 𝑦 in F .
We claim that F ′ ∈ C∗, i.e. that 𝜑∗ holds in F ′. In fact, 𝜑∗ is:

∀𝑥 ( (𝑥1 < 𝑦1 ∨ 𝑥1 = 𝑦1 ) ∧ ... ∧ (𝑥𝑛 < 𝑦𝑛 ∨ 𝑥𝑛 = 𝑦𝑛 ) ∧ 𝐸𝑄1 → (𝑢1 < 𝑧1 ∨ 𝑢1 = 𝑧1 ) ∨ ... ∨ (𝑢𝑘 < 𝑧𝑘 ∨ 𝑢𝑘 = 𝑧𝑘 ) ∨ 𝐸𝑄2 )
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Let us assume that (𝑥1 < 𝑦1 ∨ 𝑥1 = 𝑦1) ∧ ... ∧ (𝑥𝑛 < 𝑦𝑛 ∨ 𝑥𝑛 = 𝑦𝑛) ∧ 𝐸𝑄1

holds in F ′, by definition of < we get 𝑥1 ⩽ 𝑦1 ∧ ... ∧ 𝑥𝑛 ⩽ 𝑦𝑛 ∧ 𝐸𝑄1 in F since
(𝑥𝑖 ⩽ 𝑦𝑖 ∧ ¬(𝑥𝑖 = 𝑦𝑖)) ∨ 𝑥𝑖 = 𝑦𝑖 is equivalent to 𝑥𝑖 ⩽ 𝑦𝑖 in every partial order.
Since 𝜑 holds in F , we get 𝑢1 ⩽ 𝑧1 ∨ ... ∨ 𝑢𝑘 ⩽ 𝑧𝑘 ∨ 𝐸𝑄2 in F . This holds if
and only if:

((𝑢1 ⩽ 𝑧1 ∧ ¬(𝑢1 = 𝑧1)) ∨ 𝑢1 = 𝑧1) ∨ ... ∨ ((𝑢𝑘 ⩽ 𝑧𝑘 ∧ ¬(𝑢𝑘 = 𝑧𝑘)) ∨ 𝑢𝑘 = 𝑧𝑘) ∧ 𝐸𝑄2

holds in F . By definition of < we get (𝑢1 < 𝑧1 ∨ 𝑢1 = 𝑧1) ∨ ...∨ (𝑢𝑘 < 𝑧𝑘 ∨ 𝑢𝑘 =
𝑧𝑘 ) ∨ 𝐸𝑄2 in F ′ and so F ′ satisfies 𝜑∗ and thus is in C∗. We consider the strict
model N = ⟨F ′, 𝑣⟩, where 𝑣 coincides with the valuation function of M. We can
check by induction on the complexity of the formulas that N ⊨ 𝐵 if and only if
M ⊨ 𝐵 for every formula 𝐵 as in Theorem 4.2.1. Since by hypothesis 𝐴 is valid
in every strict frame with the property 𝜑∗, we get N , 𝑥 ⊩ 𝐴 and so M, 𝑥 ⊩ 𝐴.
Therefore 𝐴 ∈ L(C). qed.

Theorem 4.5.10. Let L be an intermediate logic with the finite model property
and characterized by a class of strict frames with a universal frame condition.
L has a sound and complete labelled sequent calculus with termination without
loop-checking and backtracking.

Proof. To every intermediate logic L with the finite model property and char-
acterized by a class of strict frames with a universal frame condition we can
associate a labelled calculus G3IL<. G3IL< is obtained by adding to the base
calculus G3I< the set of relational rules R corresponding to the universal condi-
tions imposed on the frames and the equality rules whenever needed. Since the
logic L enjoys the finite model property, the rules of the calculus - in particular
the rule R> which internalizes the finiteness of the strict frames - are sound.

Furthermore, universal rules do not introduce new labels in the search of a
derivation by Lemma 4.5.7 and therefore Theorem 4.4.4 still holds with obvious
modifications such as the ones for equality detailed in Theorem 4.5.4 or adding
extra steps corresponding to the relational rules in R in the construction of the
reduction tree. As a consequence, the proof search terminates and it yields either
a derivation or a finite countermodel and therefore we have a decision procedure
for the logic L. qed.

The union of Theorem 4.5.10 and Proposition 4.5.9 easily entails that every
intermediate logic with the finite model property and a universal frame condition
has a terminating sequent calculus.
The class of intermediate logics characterized by a class of frames with a universal
frame condition is wide and it includes also logics which we did not analyze, such
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as the logics with bounded depth, width and the logics with bounded cardinality
which are two countable families of intermediate logics (15).

4.6 The provability interpretation of intuitionistic
logic

The definition of the calculus G3I< for intuitionistic logic brings it closer to the
provability logic GL. Indeed, first we overcome the difficulty tied with working
with an irreflexive calculus. Second, the finiteness condition is indirectly built in
the rule for the implication.

We now recall the rule of the labelled sequent calculus for the modal logic of
provability, GL, which are displayed in Figure 4.4. The calculus was introduced
in (73) and it is obtained from the semantics for the modal logic of provability
exploiting the fact that the truth condition for the modal operator can be rewritten
as:

𝑥 ⊩ □𝐴⇐⇒ ∀𝑦(𝑥𝑅𝑦 ∧ 𝑦 ⊩ □𝐴⇒ 𝑦 ⊩ 𝐴)

The calculus satisfies the usually desirable structural properties.

Theorem 4.6.1. The calculus G3GL enjoys height-preserving invertibility of
every rule, height-preserving admissibility of weakening and contraction and
admissibility of cut.

Proof. See (73). qed.

We now recall the modal translation from intuitionistic logic into GL prov-
ability logic.

Definition 4.6.1. The ∗ : FM → FM□ is inductively defined:

• (⊥)∗ = ⊥

• (𝑝)∗ = □𝑝 ∧ 𝑝

• (𝐴#𝐵)∗ = 𝐴∗#𝐵∗, where # ∈ {∧,∨}

• (𝐴→ 𝐵)∗ = □(𝐴∗ → 𝐵∗) ∧ (𝐴∗ → 𝐵∗)

We extend the ∗ translation to the full language of G3I< by imposing that
(𝐴 > 𝐵)∗ = □(𝐴∗ → 𝐵∗) and that (𝑥 < 𝑦)∗ = 𝑥 < 𝑦 and (𝑥 : 𝐴) = 𝑥 : 𝐴∗. We
first prove that the soundness lemma holds.
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Initial Sequents

𝑎𝑥
𝑥 : 𝑝, Γ ⇒ Δ, 𝑥 : 𝑝 𝐿⊥

𝑥 : ⊥, Γ ⇒ Δ

𝐼𝑟𝑟𝑒 𝑓
𝑥𝑅𝑥, Γ ⇒ Δ

Logical Rules

𝑥 : 𝐴, 𝑥 : 𝐵, Γ ⇒ Δ
𝐿∧

𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 : 𝐴 Γ ⇒ Δ, 𝑥 : 𝐵
𝑅∧

Γ ⇒ Δ, 𝑥 : 𝐴 ∧ 𝐵

𝑥 : 𝐴, Γ ⇒ Δ 𝑥 : 𝐵, Γ ⇒ Δ
𝐿∨

𝑥 : 𝐴 ∨ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 : 𝐴, 𝑥 : 𝐵
𝑅∨

Γ ⇒ Δ, 𝑥 : 𝐴 ∨ 𝐵

Γ ⇒ Δ, 𝑥 : 𝐴 𝑥 : 𝐵, Γ ⇒ Δ
𝐿 →

𝑥 : 𝐴→ 𝐵, Γ ⇒ Δ

𝑥 : 𝐴, Γ ⇒ Δ, 𝑥 : 𝐵
𝑅 →

Γ ⇒ Δ, 𝑥 : 𝐴→ 𝐵

𝑥𝑅𝑦, 𝑥 : □𝐴, 𝑦 : 𝐴, Γ ⇒ Δ
𝐿□

𝑥𝑅𝑦, 𝑥 : □𝐴, Γ ⇒ Δ

𝑥𝑅𝑦, 𝑦 : □𝐴, Γ ⇒ Δ, 𝑦 : 𝐴
𝑅□, 𝑦 fresh

Γ ⇒ Δ, 𝑥 : □𝐴

Relational rules

𝑥𝑅𝑦, 𝑦𝑅𝑧, 𝑥𝑅𝑧, Γ ⇒ Δ
𝑇𝑟𝑠

𝑥𝑅𝑦, 𝑦𝑅𝑧, Γ ⇒ Δ

Figure 4.4: The labelled calculus G3GL
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Theorem 4.6.2. If G3I< ⊢ Γ ⇒ Δ, then G3GL ⊢ Γ∗ ⇒ Δ∗.

Proof. By induction on the height of derivation in G3I<. If 𝑛 = 0, then Γ ⇒ Δ

is either an instance of 𝑎𝑥1, 𝑎𝑥2 or 𝐿⊥. If it is 𝑎𝑥1 or 𝐿⊥ then Γ∗ ⇒ Δ∗ is easily
seen to be derivable. If it is 𝑎𝑥2, then we have 𝑥 < 𝑦, 𝑥 : 𝑝, Γ ⇒ Δ, 𝑦 : 𝑝. We
show that the sequent 𝑥 < 𝑦, 𝑥 : □𝑝∧ 𝑝, Γ ⇒ Δ, 𝑦 : □𝑝∧ 𝑝 is derivable in G3GL.

𝑎𝑥

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, 𝑥 : □𝑝, 𝑧 : □𝑝, 𝑥 : 𝑝, 𝑧 : 𝑝, Γ∗ ⇒ Δ∗, 𝑧 : 𝑝
𝐿□

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 < 𝑧, 𝑥 : □𝑝, 𝑧 : □𝑝, 𝑥 : 𝑝, Γ∗ ⇒ Δ∗, 𝑧 : 𝑝
𝑇𝑟𝑠

𝑥 < 𝑦, 𝑦 < 𝑧, 𝑥 : □𝑝, 𝑧 : □𝑝, 𝑥 : 𝑝, Γ∗ ⇒ Δ∗, 𝑧 : 𝑝
𝑅□

𝑥 < 𝑦, 𝑥 : □𝑝, 𝑥 : 𝑝, Γ∗ ⇒ Δ∗, 𝑦 : □𝑝

𝐴𝑥
𝑥 < 𝑦, 𝑥 : □𝑝, 𝑦 : 𝑝, 𝑥 : 𝑝, Γ∗ ⇒ Δ∗, 𝑦 : 𝑝

𝐿□
𝑥 < 𝑦, 𝑥 : □𝑝, 𝑥 : 𝑝, Γ∗ ⇒ Δ∗, 𝑦 : 𝑝

𝑅∧
𝑥 < 𝑦, 𝑥 : □𝑝, 𝑥 : 𝑝, Γ∗ ⇒ Δ∗, 𝑦 : □𝑝 ∧ 𝑝

𝐿∧
𝑥 < 𝑦, 𝑥 : □𝑝 ∧ 𝑝, Γ∗ ⇒ Δ∗, 𝑦 : □𝑝 ∧ 𝑝

If 𝑛 > 0 the cases are routine and we leave them to the reader. qed.

We now prove the main result of the section, which is a syntactic proof of the
faithfulness of the embedding of intuitionistic logic in provability logic GL.

Theorem 4.6.3. Let Γ, Δ be multisets of labelled formulas of the language of
G3I<, Ω a multiset of relational atoms, Γ′,Δ′ a multiset of labelled atomic
formulas and Θ a multiset of formulas of the form 𝑥 : □𝑝.

If G3GL ⊢ Ω, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′, then G3I< ⊢ Ω, Γ, Γ′,Θ′ ⇒ Δ,Δ′

where Θ′ = {𝑥 : 𝑝 | 𝑥 : □𝑝 ∈ Θ}.

Proof. We proceed by induction on the height of derivation in the calculus
G3GL. If 𝑛 = 0, then Ω, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′ is an initial sequent and so is
Ω, Γ, Γ′,Θ′ ⇒ Δ,Δ′.

If 𝑛 > 0, we distinguish cases according to the last rule applied. Notice that
the last rule cannot be 𝐿 → or 𝑅 →. If the last rule applied is 𝐿∨ or 𝑅∨ we
simply apply the induction hypothesis to the premises and we apply again the
rule in G3I<.

If the last rule is 𝑅∧ we have to distinguish three subcases.

• If the principal formula is 𝑥 : 𝐴∗ ∧ 𝐵∗, we apply the induction hypothesis
to the premises and the we apply again the rule.

• If the principal formula is 𝑥 : □𝑝∧𝑝, we consider the premiseΩ, Γ∗, Γ′,Θ ⇒
Δ∗,Δ′, 𝑥 : 𝑝, we apply the induction hypothesis and we obtain the desired
conclusion.

• If the principal formula is 𝑥 : □(𝐴∗ → 𝐵∗) ∧ (𝐴∗ → 𝐵∗), then we have the
following situation:
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Ω, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′, 𝑥 : □(𝐴∗ → 𝐵∗) Ω, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′, 𝑥 : 𝐴∗ → 𝐵∗
𝑅∧

Ω, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′, 𝑥 : □(𝐴∗ → 𝐵∗) ∧ (𝐴∗ → 𝐵∗)

We proceed as follows:

Ω, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′, 𝑥 : □(𝐴∗ → 𝐵∗)
IH

Ω, Γ, Γ′,Θ′ ⇒ Δ,Δ′, 𝑥 : 𝐴 > 𝐵

Ω, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′, 𝑥 : 𝐴∗ → 𝐵∗
𝐼𝑛𝑣R→

Ω, Γ∗, 𝑥 : 𝐴∗, Γ′,Θ ⇒ Δ∗,Δ′, 𝑥 : 𝐵∗
IH

Ω, Γ, 𝑥 : 𝐴, Γ′,Θ′ ⇒ Δ,Δ′, 𝑥 : 𝐵
R→

Ω, Γ, Γ′,Θ′ ⇒ Δ,Δ′, 𝑥 : 𝐴→ 𝐵

If the last rule is 𝐿∧ we must once again distinguish three subcases:

• If the principal formula is 𝑥 : 𝐴∗ ∧ 𝐵∗ we apply the induction hypothesis
to the premise and then we apply the rule again.

• If the principal formula is 𝑥 : □𝑝 ∧ 𝑝, we consider the premise Ω, 𝑥 :
□𝑝, 𝑥 : 𝑝, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′ and we apply the induction hypothesis to
obtain Ω, 𝑥 : 𝑝, 𝑥 : 𝑝, Γ, Γ′,Θ′ ⇒ Δ,Δ′ and the desired result follows from
the admissibility of 𝐶𝑡𝑟 in the calculus G⊯I<.

• If the principal formula is 𝑥 : □(𝐴∗ → 𝐵∗) ∧ (𝐴∗ → 𝐵∗), the case is similar
to the one detailed for the case in which the last rule applied is R→ and
thus we omit the details.

If the last rule is 𝑅□, then the principal formulas has to be of the form 𝑥 : □(𝐴∗ →
𝐵∗). We have:

𝑥 < 𝑦,Ω, Γ∗, Γ′,Θ, 𝑦 : □(𝐴∗ → 𝐵∗) ⇒ Δ∗,Δ′, 𝑦 : 𝐴∗ → 𝐵∗
R□

Ω, Γ∗, Γ′,Θ,⇒ Δ∗,Δ′, 𝑥 : □(𝐴∗ → 𝐵∗)
We construct the following derivation:

𝑥 < 𝑦,Ω, Γ∗, Γ′,Θ, 𝑦 : □(𝐴∗ → 𝐵∗) ⇒ Δ∗,Δ′, 𝑦 : 𝐴∗ → 𝐵∗
𝐼𝑛𝑣R→

𝑥 < 𝑦,Ω, Γ∗, Γ′,Θ, 𝑦 : □(𝐴∗ → 𝐵∗), 𝑦 : 𝐴∗ ⇒ Δ∗,Δ′, 𝑦 : 𝐵∗
𝐼𝐻

𝑥 < 𝑦,Ω, Γ, 𝑦 : 𝐴, Γ′,Θ′, 𝑦 : 𝐴 > 𝐵,⇒ Δ,Δ′, 𝑦 : 𝐵
R>

Ω, Γ, Γ′,Θ,⇒ Δ,Δ′, 𝑥 : 𝐴 > 𝐵
The last case we must discuss is that in which the last rule applied is 𝐿□. In

this case we distinguish two subcases.

• The principal formula is 𝑥 : □𝑝, so the premise is Ω, 𝑥 < 𝑦, 𝑥 : □𝑝, 𝑦 :
𝑝, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′. We perform the following transformation:

Ω, 𝑥 < 𝑦, 𝑥 : □𝑝, 𝑦 : 𝑝, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′
IH

Ω, 𝑥 < 𝑦, 𝑥 : 𝑝, 𝑦 : 𝑝, Γ, Γ′,Θ ⇒ Δ,Δ′
Mon

Ω, 𝑥 < 𝑦, 𝑥 : 𝑝, Γ, Γ′,Θ ⇒ Δ,Δ′
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• The principal formula is 𝑥 : □(𝐴∗ → 𝐵∗), so the premise is Ω, 𝑥 < 𝑦, 𝑥 :
□(𝐴∗ → 𝐵∗), 𝑦 : 𝐴∗ → 𝐵∗, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′. We proceed as follows:

Ω, 𝑥 < 𝑦, 𝑥 : □(𝐴∗ → 𝐵∗), 𝑦 : 𝐴∗ → 𝐵∗, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′
𝐼𝑛𝑣L→

Ω, 𝑥 < 𝑦, 𝑥 : □(𝐴∗ → 𝐵∗), Γ∗, Γ′,Θ ⇒ Δ∗,Δ′, 𝑦 : 𝐴∗
IH

Ω, 𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ, Γ′,Θ ⇒ Δ,Δ′, 𝑦 : 𝐴

Ω, 𝑥 < 𝑦, 𝑥 : □(𝐴∗ → 𝐵∗), 𝑦 : 𝐴∗ → 𝐵∗, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′
𝐼𝑛𝑣L→

Ω, 𝑥 < 𝑦, 𝑥 : □(𝐴∗ → 𝐵∗), 𝑦 : 𝐵∗, Γ∗, Γ′,Θ ⇒ Δ∗,Δ′
IH

Ω, 𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ, 𝑦 : 𝐵, Γ′,Θ ⇒ Δ,Δ′
L>

Ω, 𝑥 < 𝑦, 𝑥 : 𝐴 > 𝐵, Γ, Γ′,Θ ⇒ Δ,Δ′

This concludes the proof. qed.

As a corollary we obtain:

Corollary. For every formula 𝐴 ∈ FM:

G3GL ⊢⇒ 𝑥 : 𝐴∗ iff G3I< ⊢⇒ 𝑥 : 𝐴

Proof. Immediate by the soundness and the faithfulness theorem. qed.

The result is preserved by adding relational rules corresponding to the frame
conditions of intermediate logics and extensions of GL. In particular, the result
can be straightforwardly extended so as to encompass all the logics characterized
by a universal condition. The proof is unchanged, as relational rules are preserved
by the translation.

Corollary. Let L be an intermediate logic characterized by a universal frame
condition and G3I∗< its corresponding labelled calculus. We have:

G3I∗< ⊢⇒ 𝑥 : 𝐴 if and only if G3GL∗ ⊢⇒ 𝑥 : 𝐴∗

Remark. This result is interesting for three different reasons. First, it constitutes
the first proof-theoretic version of the embedding of intuitionistic logic into the
provability logic GL. The only available proofs thus far appealed to transfor-
mations of Kripke models. Our result is instead direct and constructive and it
shows precisely how to transform an intuitionistic derivation in a modal one and
vice versa. The second reason is that GL - contrarily to S4 - offers a full-fledged
formal provability interpretation of intuitionistic logic, as due to Solovay theorem
(96) GL is the logic capturing the notion of provability in Peano arithmetic. A
third and final advantage of the present approach is that it is modular and it can be
also seen as a way to import structural results from modal logics to intuitionistic
and intermediate ones.
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4.7 Conclusion

We have introduced a new terminating calculus for propositional intuitionistic
logic. G3I< is - to the best of our knowledge - the first system which satisfies
all the desiderata that we mentioned in the introduction. In particular, every rule
is invertible and the structural properties are established by syntactic arguments.
The proof search is terminating without loop-checking and it allows the extraction
of a countermodel out of a failed proof search. Furthermore, the method is ex-
tended modularly to every superintuitionistic logic with the finite model property
and a universal frame condition.

The novelty of the approach consists in the definition of a calculus in which the
rules directly internalize the finite model property of the logics. In our opinion,
although the finite model property implies the decidability of intuitionistic logic,
this move is not circular. In fact, we aimed at obtaining a terminating sequent
calculus rather than at proving a decidability result. In fact, the decidability of a
logic (which is well known for intuitionistic propositional logic) does not imply
the existence of a terminating sequent calculus for it, whereas the converse clearly
holds.

Finally, the newly defined calculus has been exploited to present the first
syntactic proof of the modal embedding of intuitionistic logic in the logic of
provability GL. This shows how the Gödel-McKinsey-Tarski embedding proves
to be a flexible tool which inspires also new methodology to solve old open
problems. In fact, a syntactic version of the proof of the modal embedding
motivated the search for an alternative calculus which exhibited strong structural
properties.

There are various future research directions which might be further explored.
First of all, it would be tempting to extend the methodology to first-order inter-
mediate logics. In particular, we deem that this method allows the construction
of labelled sequent calculi for the first-order intermediate logics characterized by
finite Kripke frames. Second, it could be interesting to devise a direct and syntac-
tic cut-elimination theorem for the system G3I<. Finally, it would be interesting
to see whether it is possible to extend the methodology to other non-classical
logics characterized by relational semantics or neighborhood semantics which
enjoy the finite model property.
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Chapter 5

Modalizing mathematical theories

We present a uniform proof-theoretic proof of the Gödel-McKinsey-Tarski em-
bedding for a class of first-order theories. This is achieved by adapting to the case
of modal logic the methods of proof analysis in order to convert axioms into rules
of inference of a suitable sequent calculus. The soundness and the faithfulness
of the embedding are proved by induction on the height of the derivations in
the augmented calculi. Finally, we apply the result in order to obtain alternative
proofs of some metalogical results and we point out new possible lines of research.

Keywords: modal embedding, proof theory, constructive theories, cut-elimination

5.1 Introduction

It was shown how to extend the translation to the setting of first-order intuitionistic
logic (92) and to various intermediate logics (23; 15). In this chapter we take a
different route and we study the soundness and the faithfulness of the embedding
with respect to first-order theories. Previous works in this area focused on
specific theories, specifically on the interpretation of Heyting arithmetic in Peano
arithmetic extended with modal operators (38; 44; 66). However, a general and
uniform approach to the problem has not been developed yet. We identify a class
of theories, determined by the shape of their axioms, for which the soundness
and the faithfulness of the translation holds.

Proof analysis of first-order theories has obtained considerable results in the
last twenty years. For example, the program axioms as rules has shown how to
convert mathematical axioms into sequent rules while preserving cut-elimination.
The resulting system does not enjoy a full subformula property, but a weaker
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version thereof, which often allows a good structural analysis of the theory.
In particular, a procedure was found in order to transform geometric axioms

into rules (72) and to obtain a proof of the proof-theoretic content of first-order
Barr’s theorem in the form of a conservativity result for geometric formulas.

We show how to use methods of proof analysis to present a uniform proof of the
soundness and the faithfulness of the Gödel-McKinsey-Tarski embedding for first-
order Horn theories. Furthermore, the proof that we offer is both constructive,
in the sense that it avoids appeal to Zorn’s lemma or variants thereof and it
is also direct. In fact, the methods that we use are purely proof-theoretic and
we explicitly define a proof transformation procedure which enables to obtain a
modal proof from an intuitionistic one and vice versa.

This is interesting because it yields a modal interpretation of many construc-
tive mathematical theories in terms of (informal) provability and furthermore it
allows to exploit modal systems in order to obtain metalogical properties. In
particular, we exploit the embedding result to obtain a syntactic proof of the dis-
junction property and of the witness property for first-order Horn theories which
would be harder to obtain working in a multisuccedent intuitionistic sequent cal-
culus. We opted for a sequent calculus style presentation instead of one based
on nested sequents as in Chapter 3 mainly because nested sequents are not suited
to handle the rules for the intuitionistic universal quantifier as they encode the
constant domain condition on the models.

The first section is devoted to the presentation of the sequent calculus for first
order S4 and to the extension of the methods of proof analysis to such system,
establishing the usual desired structural properties, especially cut admissibility.
The second section discusses Horn theories, which are a subclass of universal
theories and we describe some mathematical examples of theories which are
axiomatized by Horn sentences. In sections 3. and 4. we present the extension of
Gödel-McKinsey-Tarski embedding to Horn theories. Such result is obtained by
two separate (non trivial) lemmas of soundness and faithfulness of the translation.
We exploit the translation in order to give an alternative proof of the disjunction
property and of the witness property for Horn theories. We conclude the chapter
by sketching some possible future lines of research.

5.2 Theories based on S4

The language of first-order modal logic is the extension of the language of
propositional modal logic FM□ with the universal and the existential quantifiers
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Initial Sequents

𝐴𝑥
Γ, 𝑝 ⇒ 𝑝,Δ

𝐿⊥
Γ,⊥ ⇒ Δ

Logical Rules

𝐴, 𝐵, Γ ⇒ Δ
𝐿∧

𝐴 ∧ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴 Γ ⇒ Δ, 𝐵
𝑅∧

Γ ⇒ Δ, 𝐴 ∧ 𝐵

𝐴, Γ ⇒ Δ 𝐵, Γ ⇒ Δ
𝐿∨

𝐴 ∨ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴, 𝐵
𝑅∨

Γ ⇒ Δ, 𝐴 ∨ 𝐵

Γ ⇒ Δ, 𝐴 𝐵, Γ ⇒ Δ
𝐿 →

𝐴→ 𝐵, Γ ⇒ Δ

𝐴, Γ ⇒ Δ, 𝐵
𝑅 →

Γ ⇒ Δ, 𝐴→ 𝐵

□𝐴, 𝐴, Γ ⇒ Δ
𝐿□

□𝐴, Γ ⇒ Δ

□Γ, Γ ⇒ 𝐴
𝑅□

Γ′,□Γ ⇒ Δ,□𝐴

∀𝑥𝐴, 𝐴[𝑥/𝑡], Γ ⇒ Δ
𝐿∀∀𝑥𝐴, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴[𝑥/𝑦]
𝑅∀, 𝑦 fresh

Γ ⇒ Δ,∀𝑥𝐴

𝐴[𝑥/𝑦], Γ ⇒ Δ
𝐿∃, 𝑦 fresh∃𝑥𝐴, Γ ⇒ Δ

Γ ⇒ Δ, ∃𝑥𝐴, 𝐴[𝑥/𝑡]
𝑅∃

Γ ⇒ Δ, ∃𝑥𝐴

Figure 5.1: The G3s4 sequent calculus.

∀ and ∃. Sequents are syntactic objects of the form Γ ⇒ Δ, where Γ and Δ are
finite multisets of formulas. □Γ is the multisets which contains the formulas □𝐴
for every 𝐴 in Γ.

The degree of a formula is here defined as the number of logical symbols
occurring in it. The symbol ≡ expresses syntactic equivalence. We consider the
sequent calculus G3s4 for the modal logic S4 in Figure 5.1.

We show that the calculus G3s4 can be extended with rules corresponding to
certain axioms while preserving the structural properties of the original system.

Definition 5.2.1. A geometric formula is a sentence of the form: ∀𝑥(𝐴 → 𝐵),
where 𝐴 and 𝐵 do not contain → and ∀.

Any geometric formula can be equivalently reformulated as a sentence of the
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shape:
∀𝑥(𝑝1 ∧ ... ∧ 𝑝𝑚 → ∃𝑦1M1 ∨ ... ∨ ∃𝑦𝑛M𝑛)

where M 𝑗 is a finite conjunction of atomic formulas and 𝑦 𝑗 are not free in 𝑝𝑖 for
every 𝑖 ∈ {1, ..., 𝑚} (72). A geometric theory is a theory whose axioms are all
geometric sentences.

Definition 5.2.2. For every geometric axiom:

∀𝑥(𝑝1 ∧ ... ∧ 𝑝𝑚 → ∃𝑦1M1 ∨ ... ∨ ∃𝑦𝑛M𝑛)

the geometric rule scheme is:

𝑞1 [𝑧1/𝑦1], 𝑝, Γ ⇒ Δ ... 𝑞𝑛 [𝑧𝑛/𝑦𝑛], 𝑝, Γ ⇒ Δ
Geom

𝑝, Γ ⇒ Δ

where 𝑝 ≡ 𝑝1, ..., 𝑝𝑛 and, for every 𝑘 , 𝑞𝑘 ≡ 𝑞𝑘1, ..., 𝑞𝑘𝑛𝑘 , with M𝑘 ≡ 𝑞𝑘1 ∧ ... ∧
𝑞𝑘𝑛𝑘 . 𝑞𝑘 [𝑧𝑘/𝑦𝑘 ] denotes the substitution of 𝑧𝑘 with 𝑦𝑘 in each 𝑞𝑘 𝑗 and 𝑦𝑘 do not
occur in the conclusion.

If needed, in order to ensure admissibility of contraction it is necessary to add
to the system the closure condition.
Closure condition. Given a system of geometric rules, for every instance of the
form:

𝑞1 [𝑧1/𝑦1], 𝑝1, ..., 𝑝𝑚−2, 𝑝, 𝑝, Γ ⇒ Δ ... 𝑞𝑛 [𝑧𝑛/𝑦𝑛], 𝑝1, ..., 𝑝𝑚−2, 𝑝, 𝑝, Γ ⇒ Δ
Geom

𝑝1, ..., 𝑝𝑚−2, 𝑝, 𝑝, Γ ⇒ Δ

We need to add its closure under contraction:

𝑞1 [𝑧1/𝑦1], 𝑝1, ..., 𝑝𝑚−2, 𝑝, Γ ⇒ Δ ... 𝑞𝑛 [𝑧𝑛/𝑦𝑛], 𝑝1, ..., 𝑝𝑚−2, 𝑝, Γ ⇒ Δ

𝑝1, ..., 𝑝𝑚−2, 𝑝, Γ ⇒ Δ

To give a concrete example, consider the case of a theory L = {𝑅}, where 𝑅 is
euclidean, i.e. ∀𝑥∀𝑦∀𝑧(𝑥𝑅𝑦∧ 𝑥𝑅𝑧 → 𝑦𝑅𝑧), and consider the following instance:

𝑥𝑅𝑦, 𝑥𝑅𝑦, 𝑦𝑅𝑦, Γ ⇒ Δ
Euc

𝑥𝑅𝑦, 𝑥𝑅𝑦, Γ ⇒ Δ

In this case the closure condition is:

𝑥𝑅𝑦, 𝑦𝑅𝑦, Γ ⇒ Δ
Euc c.c.

𝑥𝑅𝑦, Γ ⇒ Δ
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For further discussion on geometric theories and examples thereof, the interested
reader is referred to (72).

Given a set of geometric axioms T, we denote with G3s4T the sequent
calculus obtained by adding to G3s4 the corresponding geometric rules. We
proceed with the structural analysis of the calculus.

Lemma 5.2.1. For every variable 𝑥 and every term 𝑡, the rule:

Γ ⇒ Δ Sub[𝑥/𝑡 ]
Γ[𝑥/𝑡] ⇒ Δ[𝑥/𝑡]

is height-preserving admissible in G3s4T.

Proof. The proof follows the pattern of (72). qed.

Lemma 5.2.2. The rules:

Γ ⇒ Δ
𝐿𝑊

𝐴, Γ ⇒ Δ
Γ ⇒ Δ

𝑅𝑊
Γ ⇒ Δ, 𝐴

are height-preserving admissible in G3s4T.

Proof. By induction on the height of the derivations in G3s4T, exploiting Lemma
5.2.1 in order to avoid possible clashes of variables with respect to the rules 𝐿∃,
𝑅∀ and 𝐺𝑒𝑜𝑚. qed.

A rule is invertible if, whenever the conclusion is derivable so is (are) the
premise(s).

Lemma 5.2.3. Every rule except for 𝑅□ is height-preserving invertible in G3s4T.

Proof. The rules 𝐿□ and 𝐺𝑒𝑜𝑚 are invertible by Lemma 5.2.2. We limit our-
selves to discuss the case of 𝑅∀ as an example. If 𝑛 = 0, then Γ ⇒ Δ,∀𝑥𝐴
is an initial sequent and so is Γ ⇒ Δ, 𝐴[𝑥/𝑡]. If 𝑛 > 0, we distinguish cases
according to the last rule applied. If the last rule is any rule different from 𝑅□,
apply the induction hypothesis to the premise(s) (together with height-preserving
substitution to avoid clashes of variables) and then apply the rule again. If the
last rule is 𝑅□, we have:

□Γ, Γ ⇒ 𝐵
R□

□Γ, Γ′ ⇒ □𝐵,Δ,∀𝑥𝐴
In this case we simply apply again the rule 𝑅□ to obtain □Γ, Γ′ ⇒ □𝐵,Δ, 𝐴[𝑥/𝑡].

qed.

Lemma 5.2.4. The rules:

𝐴, 𝐴, Γ ⇒ Δ
𝐿𝐶

𝐴, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴, 𝐴
𝑅𝐶

Γ ⇒ Δ, 𝐴
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are height-preserving admissible in G3s4T.

Proof. By simultaneous induction on the height of the derivations.
We discuss the left rule of contraction. If 𝑛 = 0, then 𝐴, 𝐴, Γ ⇒ Δ is an initial

sequent and so is 𝐴, Γ ⇒ Δ. If 𝑛 > 0, then we distinguish cases according to the
last rule applied. If 𝐴 is not principal, or if it is principal in 𝐿∀ or 𝐿□ or is an
active formula in the antecedent of rule 𝑅□, apply the induction hypothesis to the
premise(s) and the apply the rule again. If it is principal in a propositional rule or
in 𝐿∃ we apply invertibility of the corresponding rule by Lemma 5.2.3 and then
we apply induction hypothesis. If 𝐴 is principal in a geometric rule we distinguish
two subcases. If only one 𝐴 is principal, we apply the induction hypothesis to the
premise and then we apply the rule again. If both 𝐴’s are principal, we exploit
the closure condition.

The case of the right rule of contraction is similar, the most significant case
to discuss is that in which the last rule applied is 𝑅□:

□Γ, Γ ⇒ 𝐴
R□

□Γ, Γ′ ⇒ □𝐴,□𝐴,Δ
In this case the conclusion follows by applying again the rule to the premise. qed.

Theorem 5.2.5 (Cut-elimination). The rule:

Γ ⇒ Δ, 𝐴 𝐴, Γ′ ⇒ Δ′
Cut

Γ, Γ′ ⇒ Δ,Δ′

is admissible in G3s4T.

Proof. The proof runs by double induction, with main induction hypothesis on
the degree of the cut formula and secondary induction hypothesis on the sum of
the height of the derivations. We distinguish cases.

1. If the left premise is the conclusion of an application of a zeroary geometric
rule, then the conclusion of the cut is an instance of the rule again. If it is the
conclusion of an 𝑛-ary geometric rule, we have:

Γ, 𝑝, 𝑞1 [𝑧1/𝑦1] ⇒ Δ, 𝐴 ... Γ, 𝑝, 𝑞𝑛 [𝑧𝑛/𝑦𝑛] ⇒ Δ, 𝐴
Geom

Γ, 𝑝 ⇒ Δ, 𝐴 𝐴, Γ′ ⇒ Δ′
Cut

Γ, Γ′, 𝑝 ⇒ Δ,Δ′

In this case the cuts are replaced by 𝑛-cuts of lesser height and the conclusion is
obtained by applying the rule again:

Γ, 𝑝, 𝑞1 [𝑧1/𝑦1] ⇒ Δ, 𝐴 𝐴, Γ′ ⇒ Δ′
Cut

Γ, Γ′, 𝑝, 𝑞1 [𝑧1/𝑦1] ⇒ Δ,Δ′ ...

Γ, 𝑝, 𝑞𝑛 [𝑧𝑛/𝑦𝑛] ⇒ Δ, 𝐴 𝐴, Γ′ ⇒ Δ′
Cut

Γ, Γ′, 𝑝, 𝑞𝑛 [𝑧𝑛/𝑦𝑛] ⇒ Δ,Δ′
Geom

Γ, Γ′, 𝑝 ⇒ Δ,Δ′
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We can assume that no clashes of variables occur by height-preserving substitu-
tion. The 𝑛-cuts are removed by the secondary induction hypothesis.

2. If a geometric rule is applied in the right premise of the cut, then we
distinguish two subcases.
2.1. If the cut formula is not principal, we consider two further subsubcases. If
the geometric rule is a zeroary rule, then the conclusion is also an instance of it.
If it is an 𝑛-ary rule, we reason as in the analogous case in 1.
2.2. If the cut formula is principal we have:

Γ ⇒ Δ, 𝑝1

Γ′, 𝑝1, 𝑝2, .., 𝑝𝑚, 𝑞1 [𝑧1/𝑦1] ⇒ Δ′ ... Γ′, 𝑝1, 𝑝2, .., 𝑝𝑚, 𝑞𝑛 [𝑧𝑛/𝑦𝑛] ⇒ Δ′
Geom

Γ′, 𝑝1, 𝑝2, .., 𝑝𝑚 ⇒ Δ′
Cut

Γ, Γ′, 𝑝2, .., 𝑝𝑚 ⇒ Δ,Δ′

In this case we reason by induction on the height of the left premise Γ ⇒ Δ, 𝑃1

of the cut. If 𝑝1 is principal, since it is an atomic formula in the succedent, it
must be principal in an initial sequent and so 𝑝1 occurs in Γ. In this case, the
proof follows by applying weakening to Γ′, 𝑝1, 𝑝2, .., 𝑝𝑛 ⇒ Δ′.

If 𝑝1 is not principal we distinguish cases according to the last rule applied.
The cases in which the last rule is a geometric one have been dealt with in
1. As regards logical rules, if the last rule applied it different from 𝑅□ we
permute the cut upwards and we eliminate it by secondary induction hypothesis,
applying height-preserving admissibility of substitution in order to avoid clashes
of variables. If it is 𝑅□ we have:

□Γ′′, Γ′′ ⇒ 𝐵
𝑅□

□Γ′′, Γ′′′ ⇒ Δ′′,□𝐵, 𝑝1 Γ′, 𝑝1, 𝑝2, .., 𝑝𝑛 ⇒ Δ′
Cut

□Γ′′, Γ′′′, Γ′, 𝑝2, .., 𝑝𝑛 ⇒ Δ′′,□𝐵,Δ′

In this case the desired is obtained by applying rule 𝑅□ to □Γ′′, Γ′′ ⇒ 𝐵.
3. The last rule applied is not a geometric rule in both premises.

3.1. If the cut formula is not principal in the left premise of the cut in a rule
different from 𝑅□ we permute the cut upwards, we eliminate it by secondary
induction hypothesis and then we apply the rule again. If it is not principal in
𝑅□ the conclusion follows by applying again the rule 𝑅□ with weakening to the
premise. The case in which the cut formula is not principal in the right premise
of the cut is analogous.
3.2. If the cut formula is principal in both premises, we discuss only the modal
cases (for the other cases the reader is referred to (109)). The possible combina-
tions are ⟨𝑅□, 𝑅□⟩ and ⟨𝑅□, 𝐿□⟩. In the first case we have:

□Γ, Γ ⇒ 𝐴
R□

□Γ, Γ′′ ⇒ Δ,□𝐴
□𝐴, 𝐴,□Γ′, Γ′ ⇒ 𝐵

R□
□𝐴,□Γ′, Γ′′′ ⇒ Δ′,□𝐵

Cut
□Γ,□Γ′, Γ′′, Γ′′′ ⇒ Δ,Δ′,□𝐵
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We construct the following derivation:

□Γ, Γ ⇒ 𝐴

□Γ, Γ ⇒ 𝐴
R□

□Γ, Γ ⇒ □𝐴 □𝐴, 𝐴,□Γ′, Γ′ ⇒ 𝐵
Cut

𝐴,□Γ,□Γ′, Γ′ ⇒ 𝐵
Cut

□Γ,□Γ,□Γ′, Γ, Γ, Γ′ ⇒ 𝐵
R□

□Γ,□Γ′, Γ′′, Γ′′′ ⇒ Δ,Δ′,□𝐵

The cut is removed by main induction hypothesis on the complexity of the cut
formula.

Finally, in the second case we have:

□Γ, Γ ⇒ 𝐴
R□

□Γ, Γ′′ ⇒ Δ,□𝐴
𝐴,□𝐴, Γ′ ⇒ Δ′

L□
□𝐴, Γ′ ⇒ Δ′

Cut
□Γ, Γ′, Γ′′ ⇒ Δ,Δ′

The proof is transformed as follows:

□Γ, Γ ⇒ 𝐴

□Γ, Γ′′ ⇒ Δ,□𝐴 𝐴,□𝐴, Γ′ ⇒ Δ′
Cut

𝐴,□Γ, Γ′, Γ′′ ⇒ Δ,Δ′
Cut

(□Γ)2, Γ, Γ′, Γ′′ ⇒ Δ,Δ′
several L□

(□Γ)3, Γ′, Γ′′ ⇒ Δ,Δ′
Ctr

□Γ, Γ′, Γ′′ ⇒ Δ,Δ′

The topmost cut is removed by secondary induction hypothesis on the sum of
the height of the derivations and the lower cut is removed by main induction
hypothesis on the degree of the cut formula. qed.

Let G3s4 ⊕ T denote the sequent calculus obtained by adding every axiom of
the theory T as an initial sequent.

Corollary. For every geometric theory T:

G3s4 ⊕ T ⊢⇒ 𝐴 if and only if G3s4T ⊢⇒ 𝐴

Proof. The direction from left to right easily follows by showing that every
axiom of T is derivable in G3s4T. The direction from right to left we exploit the
admissibility of cut and contraction. qed.

5.3 Horn theories and rules

In the previous section we have shown how to add rules corresponding to geo-
metric axioms while preserving the structural properties of the underlying modal
calculus. However, the class of geometric axioms is too large to establish the
soundness of the Gödel-McKinsey-Tarski translation. Therefore we focus our
attention on a proper subclass of geometric theories.
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Definition 5.3.1. A Horn theory is a theory whose axioms are of the form

∀𝑥(𝑝1 ∧ ... ∧ 𝑝𝑛 → 𝑞)

where 𝑝𝑖 are atomic for every 𝑖 and 𝑞 is either an atomic formula or ⊥.

Roughly speaking, Horn axioms are are universal closure of implications in
which the succedent is an atomic formula and the antecedent is a conjunction of
atomic formulas.
There are numerous examples of mathematical Horn theories.

• Groups Consider the language L = {·, 1,−1 , =}. The axioms are:

1. ∀𝑥𝑦𝑧(𝑥 · (𝑦 · 𝑧) = (𝑥 · 𝑦) · 𝑧) associativity

2. ∀𝑥(𝑥 · 1 = 𝑥) right unit

3. ∀𝑥(1 · 𝑥 = 𝑥) left unit

4. ∀𝑥(𝑥 · 𝑥−1 = 1) right inverse

5. ∀𝑥(𝑥−1 · 𝑥 = 1) left inverse

In order to avoid the presence of existential quantifiers we have considered
an equivalent formulation of the theory obtained by expanding the lan-
guage, adding the inverse and the unit as a unary and a zeroary operation
symbol, respectively (108). To obtain commutative groups we add the
axiom ∀𝑥∀𝑦(𝑥 = 𝑦 → 𝑦 = 𝑥).

• Rings Consider the language L = {·, +,−, ·, =, 0, 1}. The axioms are:

Addition

1. ∀𝑥𝑦𝑧(𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧) associativity

2. ∀𝑥𝑦(𝑥 + 𝑦 = 𝑦 + 𝑥) commutativity

3. ∀𝑥(𝑥 + 0 = 𝑥) unit

4. ∀𝑥(𝑥 + (−𝑥) = 0) inverse

Multiplication

1. ∀𝑥𝑦𝑧(𝑥 · (𝑦 · 𝑧) = (𝑥 · 𝑦) · 𝑧) associativity

2. ∀𝑥(𝑥 · 1 = 𝑥) right unit

3. ∀𝑥(1 · 𝑥 = 𝑥) left unit

Distributivity
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1. ∀𝑥𝑦𝑧(𝑥 · (𝑦 + 𝑧) = (𝑥 · 𝑦) + (𝑥 · 𝑧)) left distributivity

2. ∀𝑥𝑦𝑧((𝑦 + 𝑧) · 𝑥 = (𝑦 · 𝑥) + (𝑦 · 𝑧)) right distributivity

A commutative ring is obtained by adding the axiom ∀𝑥𝑦(𝑥 · 𝑦 = 𝑦 · 𝑥).
Once again we considered a suitable formulation of ring theory, by adding
a specific function symbol for the inverse of the sum +.

• Irreflexive graphs. Consider the language {𝑅}, where 𝑅 is a binary
relation symbol. The axioms are:

1. ∀𝑥¬𝑅(𝑥, 𝑥) irreflexivity

2. ∀𝑥∀𝑦(𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑥)) symmetry

• Partial orders. Consider the language {⩽,=}. The axioms are:

1. ∀𝑥(𝑥 ⩽ 𝑥) Reflexivity

2. ∀𝑥𝑦𝑧(𝑥 ⩽ 𝑦 ∧ 𝑦 ⩽ 𝑧 → 𝑥 ⩽ 𝑧) Transitivity

3. ∀𝑥𝑦(𝑥 ⩽ 𝑦 ∧ 𝑦 ⩽ 𝑥 → 𝑥 = 𝑦) Antisymmetry

Clearly, also strict orders, i.e. irreflexive and transitive orders can be
treated.

• Equivalence relations. Consider the language {∼}. The axioms are:

1. ∀𝑥(𝑥 ∼ 𝑥) reflexivity

2. ∀𝑥𝑦𝑧(𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧) transitivity

3. ∀𝑥𝑦(𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥) symmetry

• Lattices. Consider the language {⊓,⊔, =}. The axioms are dual for ⊓ and
⊔:

1. ∀𝑥𝑦𝑧(𝑥 ⊓ (𝑦 ⊓ 𝑧) = (𝑥 ⊓ 𝑦) ⊓ 𝑧) associativity

2. ∀𝑥𝑦(𝑥 ⊓ 𝑦 = 𝑦 ⊓ 𝑥) commutativity

3. ∀𝑥𝑦(𝑥 ⊓ (𝑥 ⊔ 𝑦) = 𝑥) absorption

As examples of theories which are not Horn theories we indicate linear orders
and Robinson’s arithmetic. In particular, the first is a regular theory (72), whereas
Robinson’s arithmetic is a geometric theory (72), due to the presence of the axiom
∀𝑥(𝑥 = 0 ∨ ∃𝑦(𝑥 = 𝑠(𝑦))).

The rules obtained from Horn axioms are a particular case of geometric
rules: in particular, they have a single premise and they do not contain variable
restrictions.
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Quantifier rules

𝐴[𝑥/𝑦], Γ ⇒ Δ
𝐿∃, 𝑦 fresh∃𝑥𝐴, Γ ⇒ Δ

Γ ⇒ Δ, ∃𝑥𝐴, 𝐴[𝑥/𝑡]
𝑅∃

Γ ⇒ Δ, ∃𝑥𝐴

∀𝑥𝐴, 𝐴[𝑥/𝑡], Γ ⇒ Δ
𝐿∀∀𝑥𝐴, Γ ⇒ Δ

Γ ⇒ 𝐴[𝑥/𝑦]
𝑅∀, 𝑦 fresh

Γ ⇒ Δ,∀𝑥𝐴

Figure 5.2: The quantifier rulesfor intuitionistic logic.

Definition 5.3.2. For every Horn axiom ∀𝑥(𝑝1 ∧ ... ∧ 𝑝𝑛 → 𝑞), the Horn rule
scheme is as follows:

𝑝1, ..., 𝑝𝑛, 𝑞, Γ ⇒ Δ
Horn

𝑝1, ..., 𝑝𝑛, Γ ⇒ Δ

Since Horn rules are a subclass of geometric rules, the results of the previous
section hold with respect to these rules as well.

Theorem 5.3.1. For every Horn theory T, the calculus G3s4T enjoys admissi-
bility of weakening, contraction and cut.

Proof. See the previous section. qed.

5.4 Soundness of the translation

The sequent calculus for first-order intuitionistic logic is obtained from G3i (see
Chapter 4, Figure 4.1) by adding the rules for quantifiers displayed in Figure 5.2,
where sequents are built from multisets of formulas. A few comments to the
formulation of G3i are in order. First, we opted for a multi-succedent version of
the system as it is closer to the modal system G3s4 and this is important in order
to establish the faithfulness of the translation. Second, the principal formula of
rule 𝐿 → is repeated in the left premise and the rules 𝑅 → and 𝑅∀ have a context
restriction on the premise (otherwise the rules would be unsound).

From now on we denote by G3iT and G3s4T the extensions of G3i and of
G3s4 by rules corresponding to Horn theories, respectively. We summarize the
results of proof analysis for the calculus G3iT.

Theorem 5.4.1. The rules of substitution, weakening and contraction are height
preserving admissible in G3iT. Every rule except for 𝑅 → and 𝑅∀ is height-
preserving invertible. The cut rule is admissible.
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Proof. See (72). qed.

We recall the formulation of the modal translation. The present formulation
can be found in (15) and differs from the original from Gödel (see (42)).

Definition 5.4.1. The Gödel-McKinsey-Tarski translation is a map from the lan-
guage of intuitionistic logic to that of modal logic. It is extended to first-order
logic as follows:

• (∃𝑥𝐴)∗ = ∃𝑥𝐴∗

• (∀𝑥𝐴)∗ = □∀𝑥𝐴∗

In this section we will show that every intuitionistic derivation can be trans-
formed into a derivation in the modal calculus of the translation of the endsequent.
We first prove an auxiliary lemma, see also (109).

Lemma 5.4.2. The sequent ⇒ 𝐴∗ ↔ □𝐴∗ is provable in G3s4.

Proof. One direction, namely □𝐴∗ ⇒ 𝐴∗ immediately follows by an application
of rule 𝐿□. The other direction is proved by induction on the degree of 𝐴. If 𝐴
is atomic, then □𝑝 ⇒ □□𝑝 is easily seen derivable by two applications of 𝑅□. If
𝐴 is 𝐵 → 𝐶, then □(𝐵∗ → 𝐶∗) ⇒ □□(𝐵∗ → 𝐶∗) is easily seen to be provable;
the same argument applies to the universal quantifier.
If 𝐴 is of the form 𝐵 ∧ 𝐶, then we proceed as follows:

...IH

𝐵∗ ⇒ □𝐵∗

...IH

𝐶∗ ⇒ □𝐶∗ □𝐵∗,□𝐶∗ ⇒ □(𝐵∗ ∧ 𝐶∗)
Cut

□𝐵∗, 𝐶∗ ⇒ □(𝐵∗ ∧ 𝐶∗)
Cut

𝐵∗, 𝐶∗ ⇒ □(𝐵∗ ∧ 𝐶∗)
L∧

𝐵∗ ∧ 𝐶∗ ⇒ □(𝐵∗ ∧ 𝐶∗)
The topsequent on the right is easily derivable by applying rule 𝑅□ and 𝑅∧.
If 𝐴 is of the form 𝐵 ∨ 𝐶, we have:

...IH

𝐵∗ ⇒ □𝐵∗ □𝐵∗ ⇒ □(𝐵∗ ∨ 𝐶∗)
Cut

𝐵∗ ⇒ □(𝐵∗ ∨ 𝐶∗)

...IH

𝐶∗ ⇒ □𝐶∗ □𝐶∗ ⇒ □(𝐵∗ ∨ 𝐶∗)
Cut

𝐶∗ ⇒ □(𝐵∗ ∨ 𝐶∗)
𝐿∨

𝐵∗ ∨ 𝐶∗ ⇒ □(𝐵∗ ∨ 𝐶∗)
The sequents □𝐵∗ ⇒ □(𝐵∗ ∨ 𝐶∗) and □𝐶∗ ⇒ □(𝐵∗ ∨ 𝐶∗) are derivable by
applying rule 𝑅□ followed by 𝑅∨.
If 𝐴 is of the form ∃𝑥𝐵, then we proceed as follows.

...IH

𝐵∗ [𝑥/𝑦] ⇒ □𝐵∗ [𝑥/𝑦] □𝐵∗ [𝑥/𝑦] ⇒ □∃𝑥𝐵∗
Cut

𝐵∗ [𝑥/𝑦] ⇒ □∃𝑥𝐵∗
L∃∃𝑥𝐵∗ ⇒ □∃𝑥𝐵∗
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Once again the topsequent on the right is easily derivable by applying rule 𝑅□
and then rule 𝑅∃. qed.

We finally prove the soundness of the translation by a proof-theoretic argument
based on induction on the height of the derivations.

Theorem 5.4.3 (Soundness). If G3iT ⊢ Γ ⇒ Δ, then G3s4T ⊢ Γ∗ ⇒ Δ∗.

Proof. The proof is by induction on the height of the derivations in G3iT. If
𝑛 = 0, the proof is immediate. If 𝑛 > 0 we distinguish cases according to the
rule applied. If the last rule applied is a rule whose principal formula is a finite
conjunction, a disjunction or an existential quantifier, then apply the induction
hypothesis to the premises and then apply the rule again.

If the last rule applied is 𝐿 → or 𝐿∀, then apply the induction hypothesis
to the premise, apply the corresponding rule again (an extra weakening step is
required only in the case of 𝐿 → due to the repetition of the principal formula in
the left premise of the rule), then the desired conclusion follows by an application
of rule 𝐿□. We give an example of this qualitative analysis:

𝐴→ 𝐵, Γ ⇒ Δ, 𝐴 𝐵, Γ ⇒ Δ
𝐿 →

𝐴→ 𝐵, Γ ⇒ Δ

We transform the proof as follows:

□(𝐴∗ → 𝐵∗), Γ∗ ⇒ Δ∗, 𝐴∗
𝐵∗, Γ∗ ⇒ Δ∗

Weak
□(𝐴∗ → 𝐵∗), 𝐵∗, Γ∗ ⇒ Δ∗

𝐿 →
□(𝐴∗ → 𝐵∗), 𝐴∗ → 𝐵∗, Γ∗ ⇒ Δ∗

𝐿□
□(𝐴∗ → 𝐵∗), Γ∗ ⇒ Δ∗

If the last rule applied is a Horn rule we have:

Γ, 𝑝1, 𝑝2, .., 𝑝𝑛, 𝑞 ⇒ Δ
Horn

Γ, 𝑝1, .., 𝑝𝑛 ⇒ Δ

By applying the induction hypothesis to the premise we obtain a derivation of the
sequent Γ∗,□𝑝1, ..,□𝑝𝑛,□𝑞 ⇒ Δ∗. We proceed as follows:

ax
□𝑝1, ...,□𝑝𝑛, 𝑝1, ..., 𝑝𝑛, 𝑞 ⇒ 𝑞

Horn□𝑝1, ...,□𝑝𝑛, 𝑝1, ..., 𝑝𝑛 ⇒ 𝑞
R□□𝑝1, ...,□𝑝𝑛 ⇒ □𝑞 Γ∗,□𝑝1, ..,□𝑝𝑛,□𝑞 ⇒ Δ∗

Cut
Γ∗, (□𝑝1, ..,□𝑝𝑛)2 ⇒ Δ∗

Ctr
Γ∗,□𝑝1, ..,□𝑝𝑛 ⇒ Δ∗

The other cases are rather routine. In particular, consider the case of 𝑅∀, we
have:

Γ ⇒ 𝐴[𝑥/𝑦]
𝑅∀

Γ ⇒ ∀𝑥𝐴(𝑥),Δ
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By applying the induction hypothesis we get a derivation of Γ∗ ⇒ 𝐴∗ [𝑥/𝑦]. We
exploit the fact that, for every 𝐴, the sequent 𝐴∗ ⇒ □𝐴∗ is provable in G3s4T by
Lemma 5.4.2 by invertibility of the rules 𝑅∧ and 𝑅 →. Then we complete the
transformation as follows:

Γ∗ ⇒ 𝐴∗ [𝑥/𝑦]
𝑅∀

Γ∗ ⇒ ∀𝑥𝐴∗(𝑥)
Weak

Γ∗,□Γ∗ ⇒ ∀𝑥𝐴∗(𝑥)
𝑅□

□Γ∗ ⇒ □∀𝑥𝐴∗(𝑥),Δ∗
admissible rule

Γ∗ ⇒ □∀𝑥𝐴∗(𝑥),Δ∗

The rule is admissible via cuts with 𝐴∗ ⇒ □𝐴∗ for every formula 𝐴 in the multiset
Γ. qed.

Notice that soundness is a delicate passage, which requires the restriction of
the class of geometric theories to the smaller class of Horn theories. In particular,
it is necessary to exclude the presence of disjunctions and existential quantifiers
in the succedent.

In fact, try to consider the case of the axiom of trichotomy in linear orders on
the language {<, =}:

∀𝑥∀𝑦(𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦)

It is easy to observe that its ∗-translation is not provable in G3s4T, where T is
the theory of linear orders.

Proposition 5.4.4. The sequent ⇒ □∀𝑥□∀𝑦(□(𝑥 < 𝑦) ∨□(𝑦 < 𝑥) ∨□(𝑥 = 𝑦)) is
not derivable in G3s4LO, i.e. the sequent calculus obtained by adding the rule
corresponding to the linearity axiom.

Proof. If the sequent ⇒ □∀𝑥□∀𝑦(□(𝑥 < 𝑦) ∨□(𝑦 < 𝑥) ∨□(𝑥 = 𝑦)), via cuts we
can easily infer the derivability of the sequent ⇒ □(𝑥 < 𝑦),□(𝑦 < 𝑥),□(𝑥 = 𝑦).
It is easy to observe that this sequent is derivable if and only if one among
⇒ 𝑥 < 𝑦, ⇒ 𝑦 < 𝑥 or ⇒ 𝑥 = 𝑦, which is not the case. qed.

5.5 Faithfulness of the translation

A proof of the faithfulness of the embedding for pure logic was presented in
(109). Furthermore, embedding results of intuitionistic logic into modal logics
have been obtained by exploiting the methodology of labelled sequent calculi
(27; 29). By adopting labelled system the faithfulness proof follows from a
straightforward induction on the height of derivations in the modal calculus. Our
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proof extends these results to first-order Horn theories: we reason by induction
on the height of the derivations and we use the standard cut-free sequent calculus
G3s4T.

In order to prove the faithfulness lemma directly, i.e. by induction on the
height of the derivations in the modal calculus, we need to devise a suitable
strengthening of the induction hypothesis which takes into account the built-in
contraction contained in the left rule for the universal quantifier.

Lemma 5.5.1 (Faithfulness). Let Π and Σ be multisets of atomic formulas, Γ∀ a
multiset of formulas ∀𝑥𝐴∗, Λ and Δ multisets of formulas. Then:

If G3s4T ⊢ Π, Γ∀,Λ∗ ⇒ Δ∗, Σ, then G3iT ⊢ Π, Γ∀−,Λ ⇒ Δ, Σ

where Γ∀− contains formulas ∀𝑥𝐴 for every ∀𝑥𝐴∗ in Γ∀.

Proof. The proof is by induction on the height of the derivations in G3s4T. If
𝑛 = 0, then the proof is immediate. If 𝑛 > 0, we distinguish cases according to
the last rule applied. If the last rule is different from 𝐿□ or 𝑅□, we can simply
apply the induction hypothesis and then the rule again (if necessary, as in the case
of 𝐿∀, we add an extra step of contraction). In particular, if the last rule applied is
a Horn rule, we apply the induction hypothesis and then the rule again, because
the active formulas of the rule are all atomic.

If the last rule is 𝐿□, we have:

Π, Γ∀,Λ∗,□𝐴∗, 𝐴∗ ⇒ Δ∗, Σ
L□

Π, Γ∀,Λ∗,□𝐴∗ ⇒ Δ∗, Σ

where □𝐴∗ ≡ 𝐵∗ for some formula 𝐵. If 𝐵 ≡ ∀𝑥𝐶 or 𝑃, with 𝑃 atomic, we apply
the induction hypothesis to the premise and then we apply height-preserving
admissibility of contraction to obtain the desired conclusion. If 𝐵 ≡ 𝐶 → 𝐷 we
have:

Π, Γ∀,Λ∗,□(𝐶∗ → 𝐷∗), 𝐶∗ → 𝐷∗ ⇒ Δ∗, Σ
L□

Π, Γ∀,Λ∗,□(𝐶∗ → 𝐷∗) ⇒ Δ∗, Σ

In this case we apply height-preserving invertibility of rule 𝐿 → to the premise,
to obtain two derivations of:

1. Π, Γ∀,Λ∗,□(𝐶∗ → 𝐷∗) ⇒ Δ∗, Σ, 𝐶∗

2. Π, Γ∀, 𝐷∗Λ∗,□(𝐶∗ → 𝐷∗) ⇒ Δ∗, Σ

We proceed as follows:
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Π, Γ∀,Λ∗,□(𝐶∗ → 𝐷∗) ⇒ Δ∗, Σ, 𝐶∗
IH

Π, Γ∀,Λ, 𝐶 → 𝐷 ⇒ Δ, Σ, 𝐶
Weak

Π, Γ∀,Λ, 𝐶 → 𝐷,𝐶 → 𝐷 ⇒ Δ, Σ, 𝐶

Π, Γ∀, 𝐷∗,Λ∗,□(𝐶∗ → 𝐷∗) ⇒ Δ∗, Σ
IH

Π, Γ∀, 𝐷,Λ, 𝐶 → 𝐷 ⇒ Δ, Σ
L→

Π, Γ∀,Λ, 𝐶 → 𝐷,𝐶 → 𝐷 ⇒ Δ, Σ
Ctr

Π, Γ∀,Λ, 𝐶 → 𝐷 ⇒ Δ, Σ

where 𝐼𝐻 denotes the application of the inductive hypothesis.
If the last rule is 𝑅□ we distinguish subcases according to the shape of the

principal formula in Δ∗. If it is of the form □𝑃, we have:

□Λ′′′,Λ′′′ ⇒ 𝑃
𝑅□

Π, Γ∀, (Λ′′)∗, (Λ′)∗ ⇒ Δ′∗,□𝑃, Σ

with Λ∗ ≡ (Λ′′)∗, (Λ′)∗ and (Λ′′)∗ ≡ □Λ′′′. Now, formulas in Λ′′′ can be of three
types: atomic formulas, implications and universal quantifiers. Namely,

Λ′′′ ≡ 𝑞1, ..., 𝑞𝑛,∀𝑥𝐷∗
1(𝑥), ...,∀𝑥𝐷

∗
𝑙 (𝑥), 𝐵

∗
1 → 𝐶∗

1 , ..., 𝐵
∗
𝑗 → 𝐶∗

𝑗

We apply height-preserving invertibility of 𝐿 → to reduce the complexity of
the implication formulas. Then we apply the induction hypothesis to the 2 𝑗

derivations thus obtained. To simplify the explanation and the notation, we
assume that there is a single occurrence for each of the three types of formulas,
i.e. 𝑛 = 𝑙 = 𝑗 = 1, the generalization is straightforward. So we have Λ′′′ ≡
𝑞,∀𝑥𝐷∗(𝑥), 𝐵∗ → 𝐶∗.
By height-preserving invertibility of 𝐿 → we obtain two derivations of the form:

1. □Λ′′′, 𝑞,∀𝑥𝐷∗(𝑥) ⇒ 𝑝, 𝐵∗

2. □Λ′′′, 𝑞,∀𝑥𝐷∗(𝑥), 𝐶∗ ⇒ 𝑝

Applying the induction hypothesis gives derivations of:

1. Λ′′, 𝑞,∀𝑥𝐷 (𝑥) ⇒ 𝑝, 𝐵

2. Λ′′, 𝑞,∀𝑥𝐷 (𝑥), 𝐶 ⇒ 𝑝

We apply weakening to 1. to add 𝐵 → 𝐶 to the antecedent, then we apply 𝐿 →,
which yields

Λ′′, 𝐵 → 𝐶, 𝑞,∀𝑥𝐷 (𝑥) ⇒ 𝑃 ≡ Λ′′,Λ′′ ⇒ 𝑝

Finally admissibility of contraction gives:

Λ′′ ⇒ 𝑝
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and the conclusion follows by admissibility of weakening.
The cases in which the formula is of the shape □(𝐴∗ → 𝐵∗) or □∀𝑥𝐴∗(𝑥)

are actually similar. In particular, we apply the invertibility of the right rule for
→ and ∀ in order to be able to apply the induction hypothesis and we repeat the
procedure described for the atomic case. We sketch the case of the universal
quantifier:

□Λ′′′,Λ′′′ ⇒ ∀𝑥𝐵∗
𝑅□

Π, Γ∀, (Λ′′)∗, (Λ′)∗ ⇒ Δ′∗,□∀𝑥𝐵∗, Σ

We apply height-preserving invertibility of 𝑅∀ and we obtain □Λ′′′,Λ′′′ ⇒
𝐵∗ [𝑥/𝑦] where 𝑦 is a fresh variable. We then apply height-preserving invert-
ibility of 𝐿 → to implicative formulas in Λ′′′ and thus we can apply the induction
hypothesis. Finally, we conclude the proof by an application of 𝑅∀ and weakening
admissibility to add the missing contexts. qed.

By combining the faithfulness lemma with the results presented in the previ-
ous section, we obtain the embedding result.

Theorem 5.5.2 (Embedding). Let T be a Horn theory, then:

G3iT ⊢⇒ 𝐴 if and only if G3s4T ⊢⇒ 𝐴∗

Proof. From left to right we exploit the soundness theorem and from right to left
we exploit the faithfulness lemma. qed.

We can exploit the soundness and faithfulness result in order to obtain an
alternative proof of the disjunction property and of the witness property for Horn
theories in a multisuccedent intuitionistic calculus. Namely, instead of searching
a proof in the multisuccedent intuitionistic system we can solve the problem by
working in the modal calculus.

Theorem 5.5.3 (Disjunction property). For every Horn theory T, if G3iT ⊢⇒
𝐴 ∨ 𝐵, then G3iT ⊢⇒ 𝐴 or G3iT ⊢⇒ 𝐵.

Proof. If G3iT ⊢⇒ 𝐴 ∨ 𝐵, then by soundness we obtain G3s4T ⊢⇒ 𝐴∗ ∨ 𝐵∗.
By invertibility of rule R∨ and cuts with 𝐴∗ ⇒ □𝐴∗ and 𝐵∗ ⇒ □𝐵∗, we get
G3s4T ⊢⇒ □𝐴∗,□𝐵∗. The derivation must have the following form:

...

⇒ 𝐶 R□
Γ ⇒ □𝐴∗,□𝐵∗

...D
⇒ □𝐴∗,□𝐵∗

111



where D contains only applications of Horn rules, Γ is a multiset of atomic
formulas and 𝐶 is either 𝐴∗ or 𝐵∗, depending on the principal formula of R□.
This yields G3s4T ⊢⇒ 𝐴∗ or G3s4T ⊢⇒ 𝐵∗. By faithfulness of the translation
we get the desired conclusion. qed.

Theorem 5.5.4 (Witness property). Every Horn intuitionistic theory enjoys the
witness property, i.e. if G3iT ⊢⇒ ∃𝑥𝐴(𝑥), then G3iT ⊢⇒ 𝐴[𝑥/𝑡] for some term
𝑡.

Proof. Assume G3iT ⊢⇒ ∃𝑥𝐴(𝑥), by soundness of the translation we get
G3s4T ⊢⇒ ∃𝑥𝐴∗(𝑥). By a cut with ∃𝑥𝐴∗(𝑥) ⇒ ∃𝑥□𝐴∗(𝑥), we get G3s4T ⊢⇒
∃𝑥□𝐴∗(𝑥). By analyzing the derivation of such sequent, we observe that the
derivation must have the following structure:

...

⇒ 𝐴∗ [𝑥/𝑡𝑖]
R□

Γ ⇒ ∃𝑥□𝐴∗(𝑥),□𝐴∗ [𝑥/𝑡1], ...,□𝐴∗ [𝑥/𝑡𝑛]
...D

⇒ ∃𝑥□𝐴∗(𝑥)
whereD contains only applications of Horn rules and of the rule R∃, 𝑖 ∈ {1, ..., 𝑛}
and Γ contains only atomic formulas. By the faithfulness of the translation we
get that ⇒ 𝐴[𝑥/𝑡𝑖] is derivable in G3iT, then take 𝑡𝑖 ≡ 𝑡.

qed.

5.6 Geometric logic and the modal embedding

As we have already observed, the soundness of the modal translation breaks down
in the presence of geometric axioms or, more in general, of axioms containing
disjunctions or existential quantifiers in the succedent.

Indeed, the modal intepretation still holds for pure logic, in the sense that
given an axiom 𝐴 in first-order geometric logic, we have:

G3i ⊕ 𝐴 ⊢ Γ ⇒ Δ if and only if G3s4 ⊕ 𝐴∗ ⊢ Γ∗ ⇒ Δ∗

However, this solution cannot be regarded as satisfactory. In general, the axiom 𝐴

is not equivalent over S4 to its ∗-translation. Therefore we are actually considering
a different theory and not the same theory over a modal base.

A very natural question consists in asking which kind of modal system is
suitable to reach the following result:

G3i ⊕ 𝐴 ⊢ Γ ⇒ Δ if and only if G3? ⊕ 𝐴 ⊢ Γ∗ ⇒ Δ∗
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To obtain such system we need to properly extend S4 with an infinite set of
axioms. In particular, we require:

𝑝 → □𝑝 for every atomic first-order formula 𝑝

To obtain an analytic system for this logic, we need to slightly modify the rule
governing the modal operator.

Γ𝑎𝑡 ,□Π,Π ⇒ 𝐴
R□+

Γ𝑎𝑡 ,□Π,Π′ ⇒ Δ,□𝐴

In other words we require that the atomic propositional formulas are not removed
by the application of the rule for the modal operator. Let G3s4T+ be the system
obtained by replacing the rule R□ with the rule R□+.

Lemma 5.6.1. The rules of substitution, weakening and contraction are height-
preserving admissible in the calculus G3s4T+. Every rule except for R□+ is
height-preserving admissible.

Proof. The proofs run by induction and they are minor modifications of the ones
for G3s4T, therefore we omit the details. qed.

Theorem 5.6.2. The cut rule is admissible in G3s4T+.

Proof. The proof runs by double induction with main induction hypothesis on
the degree of the cut formula and secondary induction hypothesis on the sum of
the height of the derivations of the premises of the cut.

The new relevant case is the one in which the cut formula is atomic and
principal in an application of the rule R□+ in the right premise of the cut.

Γ ⇒ Δ, 𝑝

𝑝,Π𝑎𝑡 ,□Θ,Θ ⇒ 𝐴
R□+

𝑝,Π𝑎𝑡 ,□Θ,Θ′ ⇒ □𝐴,Λ
Cut

Γ,Π𝑎𝑡 ,□Θ,Θ′ ⇒ □𝐴,Λ,Δ
The cut cannot be simply permuted upwards as the rule R□+ might not be
applicable. Hence, we argue by induction on the left premise of the cut. The case
in which it is an initial sequent is trivial. If it is the conclusion of a rule, then 𝑝
is not principal. If the last rule applied is R□+ we consider the premise and we
apply the rule again to get the desired conclusion. If the last rule applied is any
other rule, we permute the cut upwards and we apply the rule again.

qed.

Although this section is devoted to a syntactic approach to the issue, we would
like to point out that a very natural semantics for the system G3s4T+ emerges by
considering first-order Kripke models for modal logic with increasing domains
and by imposing a monotonicity condition on atomic formulas.
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Lemma 5.6.3. Let T be a geometric theory. The following statements hold:

1. G3s4T+ ⊢⇒ 𝑝 → □𝑝

2. There is not a collapse of the modality in G3s4T+, i.e. there is a formula
𝐴 such that G3s4T+ does not prove ⇒ 𝐴↔ □𝐴.

Proof. Item 1. follows from a routing root-first application of the rule R→ and
R□+. Notice that the sequent is not provable in G3S4T.

Item 2. follows by noticing that (𝑝 → 𝑞) → □(𝑝 → 𝑞) is not derivable.
Suppose towards a contradiction that it is derivable, then by invertibility of the
rule L→ so is ⇒ 𝑝,□(𝑝 → 𝑞). However, the only applicable rule is R□+ which
gives ⇒ 𝑝 → 𝑞, an underivable sequent. qed.

The crucial result for G3s4T+ is that for every formula 𝐴, we have 𝐴𝑙 ↔ 𝐴∗,
where 𝑙 is a light translation thus defined.

Definition 5.6.1. The light Gödel-McKinsey-Tarski translation is a map from the
language of intuitionistic logic to that of modal logic. It is inductively defined as
follows:

• (𝑝)𝑙 = 𝑝, for 𝑝 atomic.

• (⊥)𝑙 = ⊥

• (𝐴#𝐵)𝑙 = 𝐴𝑙#𝐵𝑙 , where # ∈ {∧,∨}

• (𝐴→ 𝐵)𝑙 = □(𝐴𝑙 → 𝐵𝑙)

• (∃𝑥𝐴)𝑙 = ∃𝑥𝐴𝑙

• (∀𝑥𝐴)𝑙 = □∀𝑥𝐴𝑙

Lemma 5.6.4. G3s4T+ ⊢⇒ 𝐴𝑙 ↔ 𝐴∗ for every formula 𝐴.

Proof. Immediate by induction on the degree of the formula 𝐴. qed.

To complete our investigations, we show the following.

Theorem 5.6.5. G3s4T+ ⊕ 𝐴𝑙 is equivalent to G3s4T+ ⊕ 𝐴

Proof. It is trivial to observe that 𝐴𝑙 → 𝐴, so one direction is easily established
via suitable cuts. The converse does not hold in general, so we look at the
structure of the derivations. Suppose we have a derivation employing an axiom
⇒ 𝐴𝑙 as initial sequent. It will be of the form:
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⇒ □∀𝑥□(𝑝1 ∧ ... ∧ 𝑝𝑚 → ∃𝑦1𝑞1 ∨ ... ∨ ∃𝑦𝑛𝑞𝑛)

This can be simulated as follows:

⇒ ∀𝑥(𝑝1 ∧ ... ∧ 𝑝𝑚 → ∃𝑦1𝑞1 ∨ ... ∨ ∃𝑦𝑛𝑞𝑛) Inv R∀⇒ 𝑝1 ∧ ... ∧ 𝑝𝑚 → ∃𝑦1𝑞1 ∨ ... ∨ ∃𝑦𝑛𝑞𝑛 R□+⇒ □(𝑝1 ∧ ... ∧ 𝑝𝑚 → ∃𝑦1𝑞1 ∨ ... ∨ ∃𝑦𝑛𝑞𝑛) R∀⇒ ∀𝑥□(𝑝1 ∧ ... ∧ 𝑝𝑚 → ∃𝑦1𝑞1 ∨ ... ∨ ∃𝑦𝑛𝑞𝑛) R□+⇒ □∀𝑥□(𝑝1 ∧ ... ∧ 𝑝𝑚 → ∃𝑦1𝑞1 ∨ ... ∨ ∃𝑦𝑛𝑞𝑛)
qed.

The modal embedding is established for geometric axiomatic extensions by
the following theorem.

Theorem 5.6.6. For every geometric theory T, G3iT ⊢ Γ ⇒ Δ if and only if
G3s4T+ ⊢ Γ𝑙 ⇒ Δ𝑙 .

Proof. From left to right we argue by induction on the height of the derivation.
The only new case to check is the one of the geometric rules. Due to the definition
of the translation, it is enough to apply the induction hypothesis and then the rule
again.

From right to left the strategy follows the pattern detailed in the case of
G3s4T. qed.

Theorem 5.6.7. For every geometric theory T, G3iT ⊢ Γ ⇒ Δ if and only if
G3s4T+ ⊢ Γ∗ ⇒ Δ∗.

Proof. We consider the following chain of equivalences. Clearly, G3iT ⊢ Γ ⇒ Δ

if and only if G3s4T+ ⊢ Γ𝑙 ⇒ Δ𝑙 . The latter is equivalent to G3s4T+ ⊢ Γ∗ ⇒ Δ∗,
which yields the desired conclusion. qed.

5.7 Concluding remarks

We have applied the methods of proof analysis to systems of modal logics and
we have proved an extension of the Gödel-McKinsey-Tarski embedding to for
first-order Horn theories.

There are various points which might be interesting future line of research.
First, it would be interesting to study a similar approach in terms of labelled
sequent calculi. This would be convenient as it would greatly simplify the proof
of soundness and faithfulness of the embedding and furthermore it could be
used to explore the possibility of a Tait-Schütte-Takeuti style completeness for
first-order theories based on first-order intuitionistic and modal logic.
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Second, it is worth investigating the possibility of extending the approach
to systems with first-order axioms containing modal formulas. For example,
consider the formula: ∀𝑥(𝑝(𝑥) → ♢∃𝑦𝑞(𝑥, 𝑦)), which inside a labelled sequent
calculus might be converted into the rule:

𝑎 ∈ 𝐷 (𝑤), 𝑤 : 𝑝(𝑎), 𝑤𝑅𝑜, 𝑏 ∈ 𝐷 (𝑜), 𝑜 : 𝑞(𝑎, 𝑏), Γ ⇒ Δ
Geom, 𝑜, 𝑏 fresh

𝑎 ∈ 𝐷 (𝑤), 𝑤 : 𝑝(𝑎), Γ ⇒ Δ

with a double variable condition on worlds and elements of the domain. It is
worth considering the scope of such an approach, also in connection with the
work of Linnebo and Shapiro (58).

Third, in this chapter we have applied the methods of proof analysis to a
domain which lies outside of classical and intuitionistic logic. This naturally
poses the intriguing question whether the conversion of axioms into rules can be
obtained also considering as a base calculus another non-classical system.

116



Chapter 6

Infinitary logic and the embedding

The Gödel-McKinsey-Tarski embedding allows to view intuitionistic logic through
the lenses of modal logic. In this chapter, an extension of the modal embedding
to infinitary intuitionistic logic is introduced. First, infinitary intuitionistic logic
is thoroughly investigated, both from a semantic and a syntactic point of view.
Next, a neighborhood semantics for a family of axiomatically presented infinitary
modal logics is given and soundness and completeness are proved via the method
of canonical models. The semantics is then exploited to obtain labelled sequent
calculi with good structural properties. Hence, soundness and faithfulness of the
embedding are established by transfinite induction on the height of derivations:
the proof is obtained directly without resorting to non-constructive principles. Fi-
nally, the modal embedding is employed in order to relate classical, intuitionistic
and modal derivability in infinitary logic extended with axioms.

6.1 Introduction

Infinitary languages have been extensively studied in logic and especially in
proof theory. They are obtained by adding to the language expressions of the
shape

∧
𝑘>0 𝐴𝑘 and

∨
𝑘>0 𝐴𝑘 that denote countable conjunctions and disjunc-

tions, respectively. The proof theory for systems with rules with infinitely many
premises has been systematically exploited in order to determine the proof-
theoretic strength of arithmetical theories such as Peano arithmetic and ramified
analysis.

The works in the area have thoroughly investigated the structural and semantic
properties of classical infinitary logic. However, the study of infinitary languages
in non-classical contexts is still underdeveloped. The need to extend the proof
theoretical analysis to infinitary intuitionistic logic comes from the fact that in-
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finitary intuitionistic logic is the natural ground to formulate geometric theories,
i.e. theories axiomatized by universally closed implications whose antecedent
is a finite conjunction of atomic formulas and the succedent is a (possibly) infi-
nite disjunction of existentially quantified finite conjunctions of atomic formulas.
Geometric theories are ubiquitous in mathematics as they form the basis of large
portions of algebraic theories. Furthermore, in this context the interaction be-
tween intuitionistic and classical reasoning obtains a well-defined identification:
by Barr’s theorem, for derivability of geometric formulas in geometric theories
classical and intuitionistic provability coincide.

The most famous interpretation of intuitionistic logic is the 𝐵𝐻𝐾 interpreta-
tion of logical connectives (107), which is based on the conception of truth as
a constructive mathematical proof. However such interpretation is informal, as
it is based on the elusive notion of construction: this led logicians to consider
different formal semantics for intuitionistic logic by exploiting the connections
between intuitionistic logic and topology.

The main semantics which were developed are Kripkean semantics (54), Beth
semantics (4), topological semantics (66) and algebraic semantics. Among these
the most popular one is indeed the Kripke style semantics due to its flexibility.
It is to be noted however that from the point of view of validity they are all
equivalent with respect to propositional intuitionistic logic.

Nevertheless things change when we consider extensions of intuitionistic
logic. In particular if we deal with intuitionistic infinitary logic, that is in-
tuitionistic logic augmented with countable disjunctions and conjunctions, we
immediately notice that the equivalence between the different semantics is lost.
The infinitary version of the distributivity axiom:∧

𝑘>0
(𝑝𝑘 ∨ 𝑞) →

∧
𝑘>0
𝑝𝑘 ∨ 𝑞

is not intuitionistically acceptable, but it holds in the Kripkean models extended
with satisfiability conditions for infinitary conjunctions and disjunctions (71).
The reason of this difference is that Kripkean frames are partial orders which in
turn correspond to Alexandroff topologies, i.e. topologies closed under infinite
intersections (79). This is reflected in the definition of the satisfiability condition
for the infinitary conjunction

∧
in Kripkean semantics:

𝑥 ⊩
∧
𝑘>0
𝐴𝑘 iff 𝑥 ⊩ 𝐴𝑘 for every 𝑘 > 0

which generalises the finitary case.
Infinitary intutionistic logic was first introduced by Kalicki in (52) in which a

semantics and a tableau system are presented. The semantics is that of complete
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Heyting algebras, therein called pseudoboolean algebras, which are Heyting
algebras in which sups and infs exist for every subset in the algebra.

Nadel (71) studied intuitionistic infinitary logic and the relations between
algebraic, kripkean and Beth’s semantics. With respect to algebraic semantics
he discusses algebraic models for countable fragments of the language in the
more general setting of Heyting algebras rather than complete Heyting algebras
(requiring the existence of a sufficient quantity of sups and infs). He also intro-
duced a sequent calculus and proved completeness with respect to the algebraic
semantics. More recently a multisuccedent sequent calculus G3i𝜔 along with a
cut-elimination procedure was given in (72) with an application to Barr’s the-
orem (for further discussion on these topics, see also (93)). G3i𝜔 enjoys good
structural properties, namely height-preserving admissibility of weakening and
contraction, but it lacks full invertibility of every rule. In fact, the right rule for
the implication has a single-succedent restriction in the premise as in the finitary
case and the same holds for the right rule for the infinitary conjunction.

The restriction in the case of finitary intuitionistic logic can be avoided by
resorting to a labelled sequent calculus based on kripkean semantics, see (27).
However this strategy cannot be directly adopted in the case of infinitary intuition-
istic logic, because kripkean semantics is not adequate for infinitary intuitionistic
logic. This suggests that we should search for a more fine grained structure.

Propositional intuitionistic logic and first-order intuitionistic logic are com-
plete with respect to topological semantics (92), (66) and (110). However, to our
best knowledge there is no proof of completeness for intuitionistic infinitary logic
with respect to topological semantics. We shall therefore give a proof of the result
for countable fragments of infinitary intuitionistic logic which ensures complete-
ness with respect to G3i𝜔. Completeness with respect to topological semantics in
turn allows to obtain a neighborhood semantics for infinitary intuitionistic logic.

Neighborhood semantics for intuitionistic logic was introduced in (69). Neigh-
borhood semantics is a generalisation of Kripkean semantics and it has been ex-
tensively used in order to study non-normal modal logics, i.e. logics weaker than
the minimal normal modal system K. Neighborhood semantics models infinitary
intuitionistic logic through restrictions on the closure under intersections between
neighborhoods.

We will establish completeness for infinitary intuitionistic logic with respect to
neighborhood semantics and exploit it in order to obtain a labelled calculus G3I𝜔,
along the lines of (76). The calculus enjoys good structural properties: every
rule is height-preserving invertible and structural rules are admissible and cut
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elimination is established in a standard fashion via a double transfinite induction.
The identification between intuitionistic and classical reasoning obtained

through Barr’s theorem is limited to the geometric fragment. Other fragments
have been identified by what are known as Givenko sequent classes. However,
there is another - more global - way in which one can give a constructive sense
to classical reasoning. In fact, intuitionistic logic can be seen through a modal
lens, by extending classical propositional logic with a modality that takes to the
object language the intuitionistic notion of provability. This was indeed the orig-
inal motivation of Gödel’s 1933 translation of intuitionistic logic into the modal
system S4, in which the modal operator □ received an interpretation in terms of
an informal notion of provability (42). Gödel also conjectured the faithfulness
of the translation, namely that if the translation of an intuitionistic formula is
provable in S4 then the formula is a theorem of intuitionistic logic. A proof of
this fact was published only in 1948 by Tarski and McKinsey (65)1. The proof
was both indirect, since it used semantic methods, and non-constructive, because
the proof essentially required Stone representation theorem, which in turn needs
Zorn’s lemma.

Extensions of the Gödel-McKinsey-Tarski embedding were considered with
respect to first-order intuitionistic logic and first-order modal logic S4 with in-
creasing domains (91). To our knowledge, no translation has yet been considered
for infinitary intuitionistic logic. In order to introduce this generalization we first
offer a presentation of infinitary modal logic in terms of neighborhood semantics.

We start by introducing an axiomatization of infinitary S4𝜔 modal logic
obtained with the addition of lattice-like axioms for the infinitary connectives∧

and
∨

to S4. We prove the deduction theorem for such system and then
completeness with respect to a class of neighborhood frames. See also (102) for
a study of neighborhood frames and infinitary modal logic from the perspective
of duality theory.

The semantic and its labelled calculus shed further light on the relation be-
tween intuitionistic and modal logic. In particular, we present an extension of
the Gödel-McKinsey-Tarski embedding of intuitionistic logic into the S4 modal
system (see (15) for an extensive treatment) and prove its soundness and faith-
fulness both by semantic and proof-theoretic methods. The method presented is
of independent interest as it is general and can thus be extended so as to cover
even subsystems of the infinitary modal logic S4𝜔. Furthermore, working with

1An unpublished proof by Gödel himself was found from the transcription of his stenographic
notebooks Resultate Grundlagen (43)
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labelled calculi we can show how to transform the modal derivation of a translated
formula into an intuitionistic derivation of the formula.

The natural - so to say - extension of the ∗ translation to infinitary intuitionistic
logic is obtained by adding the following conditions: ( ∧

𝑘>0
𝐴𝑘 )∗ =

∧
𝑘>0
𝐴∗
𝑘

and

( ∨
𝑘>0
𝐴𝑘 )∗ =

∨
𝑘>0
𝐴∗
𝑘
. As we will see this translation, although sound, is not faithful

and infinitary conjunction has to be translated in another way. In particular, it is
necessary to modify the interpretation as follows:

( ∧
𝑘>0
𝐴𝑘 )∗ = □

∧
𝑘>0
𝐴∗
𝑘

This interpretation shows that the elements of non-classicality within intuitionistic
logic can be precisely isolated using an S4 modality even in the infinitary setting.

We conclude the chapter by relating derivability in axiomatic extensions of in-
finitary intuitionistic, classical and modal logic, by identifying a class of sequents
in which derivability coincides under the modal interpretation. Interestingly, we
show that the class coincides, in a sense, with a modified version of geometric
logic once we add to the infinitary modal logic S4𝜔 the axiom 𝑃 → □𝑃 for every
atomic formula 𝑃.

6.2 Topological completeness theorem for infinitary
intuitionistic logic

The language of intuitionistic infinitary propositional logic is uncountable and
in what follows we will refer to suitable countable fragments of such language.
In this section we show the completeness theorem of countable fragments of
infinitary intuitionistic logic with respect to topological semantics. First of all
we recall that formulas in intuitionistic infinitary propositional logic are built
extending the usual definition with countable conjunctions and disjunctions. We
denote the set of propositional intuitionistic infinitary formulas with FM𝜔.

Before we proceed with the study of the different semantics, we briefly recall
the sequent calculus G3i𝜔 for infinitary propositional intuitionistic logic and its
properties. The calculus is obtained by adding to the calculus G3i (see Figure
4.1) the rules governing the infinitary connectives. Sequents are finite multisets
of formulas in the language of infinitary intuitionistic logic.
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G3i𝜔

Infinitary rules

∧
𝑘>0
𝐴𝑘 , 𝐴𝑘 , Γ ⇒ Δ

𝐿
∧∧

𝑘>0
𝐴𝑘 , Γ ⇒ Δ

{Γ ⇒ 𝐴𝑘 | 𝑘 > 0}
𝑅
∧

Γ ⇒ Δ,
∧
𝑘>0
𝐴𝑘

{𝐴𝑘 , Γ ⇒ Δ | 𝑘 > 0}
𝐿
∨∨

𝑘>0
𝐴𝑘 , Γ ⇒ Δ

Γ ⇒ Δ,
∨
𝑘>0
𝐴𝑘 , 𝐴𝑘

𝑅
∨

Γ ⇒ Δ,
∨
𝑘>0
𝐴𝑘

Theorem 6.2.1. The rules of weakening and contraction are height-preserving
admissible in G3i𝜔. Cut is admissible. Every rule except 𝑅 → and 𝑅

∧
is

height-preserving invertible.

Proof. (72). qed.

We recall the algebraic semantics for infinitary intuitionistic logic, which is
based on complete Heyting algebras (see Chapter 2 for an introduction to basic
algebraic tools).

Definition 6.2.1. A complete Heyting algebra is a Heyting algebra in which the
infs and the sups exist for every subset and in which the following distributivity
law holds:

𝑥 ∧ sup 𝐵 = sup
𝑦∈𝐵

(𝑥 ∧ 𝑦)

for every 𝑥 ∈ 𝐻 and every 𝐵 ⊆ 𝐻.

Definition 6.2.2. An algebraic model for infinitary intuitionistic logic is an or-
dered pair ⟨𝐻, 𝑣⟩ where 𝐻 is a complete Heyting algebra and 𝑣 : 𝐴𝑇 → 𝐻 is a
function such that:

• 𝑣(𝐴 ∧ 𝐵) = 𝑣(𝐴) ∧ 𝑣(𝐵)

• 𝑣(𝐴 ∨ 𝐵) = 𝑣(𝐴) ∨ 𝑣(𝐵)
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• 𝑣(𝐴→ 𝐵) = 𝑣(𝐴) → 𝑣(𝐵)

• 𝑣( ∧
𝑘>0
𝐴𝑘 ) = 𝑖𝑛 𝑓 {𝑣(𝐴𝑘 ) | 𝑘 > 0}

• 𝑣( ∨
𝑘>0
𝐴𝑘 ) = 𝑠𝑢𝑝{𝑣(𝐴𝑘 ) | 𝑘 > 0}

A formula 𝐴 in Γ is true in the algebraic model H , H ⊨ 𝐴, iff for every valuation
function 𝑣 we have 𝑣(𝐴) = 1. A formula is true in the intuitionistic algebraic
semantics, ⊨𝐻 𝐴, iff it is true in every intuitionistic algebraic model.

Another viable approach consists in considering completeness with respect to
Heyting algebras. As pointed out by Nadel this approach turns out to be equivalent
to the one presented above (71), due to the fact that every Heyting algebra can be
isomorphically embedded in a complete Heyting algebra preserving every infinite
sups and infs ((92) IV.9).

The language of infinitary intuitionistic logic is uncountably infinite, however
it is often convenient to restrict ourselves to countable fragments thereof, in doing
so we borrow some terminology from (68).

Definition 6.2.3. Let 𝐴 be a formula, the set of subformulas of 𝐴, 𝑆𝑢𝑏(𝐴) is
inductively defined:

• 𝑆𝑢𝑏(𝑝) = {𝑝}

• 𝑆𝑢𝑏(𝐴#𝐵) = 𝑆𝑢𝑏(𝐴) ∪ 𝑆𝑢𝑏(𝐵) ∪ {𝐴#𝐵}, where # ∈ {∧,∨,→}

• 𝑆𝑢𝑏( ∧
𝑘>0
𝐴𝑘 ) =

⋃
𝑘>0
𝑆𝑢𝑏(𝐴𝑘 ) ∪ {∧

𝑘>0
𝐴𝑘 }

• 𝑆𝑢𝑏( ∨
𝑘>0
𝐴𝑘 ) =

⋃
𝑘>0
𝑆𝑢𝑏(𝐴𝑘 ) ∪ {∨

𝑘>0
𝐴𝑘 }

Lemma 6.2.2. For every 𝐴 ∈ FM𝜔, |𝑆𝑢𝑏(𝐴) | ⩽ ℵ0, where |𝑋 | denotes the
cardinality of the set 𝑋 .

Proof. We prove this fact by induction on the complexity of the formula 𝐴. If 𝐴
is an atomic formula, then |𝑆𝑢𝑏(𝐴) | = 1.

If 𝐴 ≡ 𝐵#𝐶, where # ∈ {∧,∨,→}, then |𝑆𝑢𝑏(𝐵#𝐶) | = |𝑆𝑢𝑏(𝐵) ∪ 𝑆𝑢𝑏(𝐶) | +
1 ⩽ ℵ0, because by induction hypothesis |𝑆𝑢𝑏(𝐵) |, |𝑆𝑢𝑏(𝐶) | ⩽ ℵ0.

If 𝐴 ≡ ∧
𝑘>0
𝐵𝑘 , then |𝑆𝑢𝑏( ∧

𝑘>0
𝐵𝑘 ) | = | ⋃

𝑘>0
𝑆𝑢𝑏(𝐵𝑘 ) | + 1 ⩽ ℵ0, because, by

induction hypothesis, for every 𝑘 < 0, |𝑆𝑢𝑏(𝐵𝑘 ) | ⩽ ℵ0 and a countable union of
countable sets is countable. qed.

Definition 6.2.4. Let Γ ⊆ 𝐹𝑂𝑅 be given. The environment of Γ, E(Γ) is the
least subset of FM𝜔 such that:
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1. ⊥ ∈ E(Γ), 𝐴𝑇 ⊆ E(Γ).

2. 𝑆𝑢𝑏(Γ) ⊆ E(Γ) is closed under subformulas.

3. E(Γ) is closed under finite conjunctions, disjunctions and implications.

4. The following distributivity condition holds: if 𝐴,
∨
𝑘>0
𝐵𝑘 ∈ E(Γ), then∨

𝑘>0
(𝐴 ∧ 𝐵𝑘 ) ∈ E(Γ).

It is easy to observe that if Γ is countable, then E(Γ) is countable too. When
we are dealing with a single formula 𝐴 we write E(𝐴) instead of E({𝐴}).

We now recall the notion of a topological model for countable fragments of
the language.

Definition 6.2.5. A topological space is a pair ⟨𝑊, 𝜏⟩ such that 𝑊 ≠ ∅ and
𝜏 ⊆ P(𝑊), where 𝜏 contains and𝑊 , is closed under arbitrary unions and under
finite intersections.

The elements in 𝜏 are called the open subsets of𝑊 .

Definition 6.2.6. Given a topological space ⟨𝑊, 𝜏⟩, 𝑥 ∈ 𝑊 , the set of open
subsets of𝑊 which contain 𝑥 is denoted by 𝜏𝑥 = {𝑎 ∈ 𝜏 | 𝑥 ∈ 𝑎}.

We now turn to topological models:

Definition 6.2.7. Let ⟨𝑊, 𝜏⟩ be a topological space, a topological model M for
a countable fragment Γ is a triple M = ⟨𝑊, 𝜏, 𝑣⟩, where 𝑣 maps atomic formulas
in 𝜏, 𝑣 : 𝐴𝑇 → 𝜏. The definition of 𝑣 is thus extended to arbitrary formulas in
E(Γ) as follows:

• 𝑣(⊥) = ∅

• 𝑣(𝐴 ∧ 𝐵) = 𝑣(𝐴) ∩ 𝑣(𝐵)

• 𝑣(𝐴 ∨ 𝐵) = 𝑣(𝐴) ∪ 𝑣(𝐵)

• 𝑣(𝐴→ 𝐵) = ⋃{𝑎 ∈ 𝜏 | 𝑎 ⊆ (𝑊 \ 𝑣(𝐴)) ∪ 𝑣(𝐵)} = 𝐼𝑛𝑡 (𝑣(𝐴)𝑐 ∪ 𝑣(𝐵))

• 𝑣( ∨
𝑘>0
𝐴𝑘 ) =

⋃
𝑘>0
𝑣(𝐴𝑘 )

• 𝑣( ∧
𝑘>0
𝐴𝑘 ) =

⋃{𝑎 ∈ 𝜏 | 𝑎 ⊆ ⋂
𝑘>0
𝑣(𝐴𝑘 )} = 𝐼𝑛𝑡 (

⋂
𝑘>0
𝑣(𝐴𝑘 ))

A formula 𝐴 is valid in M iff 𝑣(𝐴) = 𝑊 . A formula 𝐴 is valid in a topological
space ⟨𝑊, 𝜏⟩, in symbols ⊨𝑇𝑜𝑝 𝐴, iff for every valuation 𝑣, 𝑣(𝐴) = 𝑊 .
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Definition 6.2.8. A base B𝜏 for a topological space ⟨𝑊, 𝜏⟩ is a subset of 𝜏 such
that every set in 𝜏 can be obtained by the union of some elements of B𝜏.

In what follows we will make use of the fact that when we consider the
interpretation of the connectives → and

∧
we can restrict ourselves to consider

the open sets of any base B𝜏 of the topology instead of every open sets in 𝜏 (110).
Therefore we can conclude that: 𝑣( ∧

𝑘>0
𝐴𝑘 ) =

⋃{𝑎 ∈ B𝜏 | 𝑎 ⊆ ⋂
𝑘>0
𝑣(𝐴𝑘 )} =

𝐼𝑛𝑡 ( ⋂
𝑘>0
𝑣(𝐴𝑘 )) and 𝑣(𝐴 → 𝐵) =

⋃{𝑎 ∈ B𝜏 | 𝑎 ⊆ (𝑊 \ 𝑣(𝐴)) ∪ 𝑣(𝐵)} =

𝐼𝑛𝑡 (𝑣(𝐴)𝑐 ∪ 𝑣(𝐵)), where B𝜏 is a base for 𝜏.
The next step is to show that every countable Heyting algebra can be embedded

into a topological space and this yields the desired completeness result with
respect to topological semantics. In order to achieve this, we refer to a strategy
detailed in (110).

Definition 6.2.9. Let H be a Heyting algebra, ▽ a filter, 𝐵 a subset of H which
has a 𝑠𝑢𝑝 in H . ▽ respects 𝐵 if whenever 𝑠𝑢𝑝(𝐵) ∈ ▽, there is 𝑏 ∈ ▽ ∩ 𝐵.

The crucial lemma is the following, which shows that there are prime filters
which respect a countable quantity of suprema. The following lemma was first
stated and proved in (110).

Lemma 6.2.3. Let H be a Heyting algebra, 𝑥, 𝑦 ∈ H such that 𝑥 ⩽̸ 𝑦 and
𝐵1, ..., 𝐵𝑛, ... a countable quantity of subsets of H which have a supremum in H .
Then there exists a prime filter ▽ of H which contains 𝑥, does not contain 𝑦 and
respects all subsets 𝐵𝑖.

Proof. We consider the filter ▽0 =↑ 𝑥 = {𝑧 | 𝑥 ⩽ 𝑧}. We construct a new list
𝐶1, 𝐶2, ... of subsets of H such that for every 𝑖, 𝐵𝑖 appears in the list countable
times.2 Now let 𝑥 = 𝑤0, so ▽0 =↑ 𝑤0. Let us suppose that we have 𝑤𝑛 such that
𝑤𝑛 ⩽̸ 𝑦 and ▽𝑛 =↑ 𝑤𝑛, then we define 𝑤𝑛+1 as follows.

If 𝑠𝑢𝑝(𝐶𝑛) ∉ ▽𝑛, then 𝑤𝑛+1 = 𝑤𝑛. If 𝑠𝑢𝑝(𝐶𝑛) ∈ ▽𝑛, then 𝑤𝑛+1 = 𝑤𝑛 ∧ 𝑏𝑛, for
some 𝑏𝑛 ∈ 𝐶𝑛 and 𝑤𝑛 ∧ 𝑏𝑛 ⩽̸ 𝑦. We claim that such 𝑏𝑛 always exists. In fact, by
hypothesis 𝑠𝑢𝑝(𝐶𝑛) ∈ ▽𝑛 =↑ 𝑤𝑛, so 𝑤𝑛 ⩽ 𝑠𝑢𝑝(𝐶𝑛). Now if for every 𝑏 ∈ 𝐶𝑛 we
have 𝑤𝑛∧𝑏 ⩽ 𝑦, then 𝑤𝑛 = 𝑤𝑛∧ 𝑠𝑢𝑝(𝐶𝑛) = 𝑠𝑢𝑝𝑏∈𝐶𝑛

(𝑤𝑛∧𝑏) ⩽ 𝑦, contradicting
the fact that 𝑤𝑛 ⩽̸ 𝑦.

Thus we set ▽𝑛+1 =↑ 𝑤𝑛+1. We observe that if 𝑤𝑛+1 = 𝑤𝑛 ∧ 𝑏𝑛 ∈ ▽𝑛+1, then
𝑤𝑛, 𝑏𝑛 ∈ ▽𝑛+1 by the properties of filters. Clearly ▽𝑛 ⊆ ▽𝑛+1 and 𝑦 ∉ ▽𝑛+1,
because 𝑤𝑛+1 ⩽̸ 𝑦. We fix ▽ =

⋃
𝑛∈𝜔
▽𝑛, which can be easily seen to be a filter such

that 𝑥 ∈ ▽ and 𝑦 ∉ ▽.

2For example the list: 𝐶1 = 𝐵1, 𝐶2 = 𝐵1, 𝐶3 = 𝐵2, 𝐶4 = 𝐵1, 𝐶5 = 𝐵2, 𝐶6 = 𝐵3....

125



Furthermore, for every 𝑖, ▽ respect 𝐵𝑖. In fact, if 𝑠𝑢𝑝(𝐵𝑖) ∈ ▽, then there
is 𝑛 ∈ 𝜔 such that 𝑠𝑢𝑝(𝐵𝑖) ∈ ▽𝑛. Since every 𝐵𝑖 appears in the list 𝐶1, 𝐶2, .. a
countable number of times, there is a 𝑗 ∈ 𝜔 such that 𝑛 ⩽ 𝑗 and 𝐵𝑖 = 𝐶 𝑗 , thus
𝑠𝑢𝑝(𝐵𝑖) = 𝑠𝑢𝑝(𝐶 𝑗 ) ∈ ▽𝑛 ⊆ ▽ 𝑗 and so there is 𝑏 𝑗 ∈ 𝐵𝑖 such that 𝑏 𝑗 ∈ ▽ 𝑗+1 ⊆ ▽.
This concludes the proof. qed.

Notice that in the proof above we have exploited the validity of the infinitary
distributive law 𝑤𝑛 ∧ 𝑠𝑢𝑝(𝐶𝑛) = 𝑠𝑢𝑝𝑏∈𝐶𝑛

(𝑤𝑛 ∧ 𝑏), which is the reason why we
required the environment to be closed under some distributivity properties.

Given an Heyting algebra H and a countable quantity of subsets 𝐵1, 𝐵2, ... of
H , we consider a topological space ⟨𝑃𝑡 (H), 𝜏H ⟩, where

𝑃𝑡 (H) = {▽ | ▽ prime filter of H and for every 𝑖, ▽ respects 𝐵𝑖}

We choose the set B𝜏H , which contains all the subsets:

𝑒𝑥𝑡 (𝑥) = {▽ ∈ 𝑃𝑡 (H) | 𝑥 ∈ ▽}

as the base of 𝜏H .

Theorem 6.2.4. Given a countable Heyting algebra H and the topological space
⟨𝑃𝑡 (H), 𝜏H ⟩, 𝑒𝑥𝑡 is an injective morphism from H to ⟨P(𝑃𝑡 (H)),∩,∪,→,⊥⟩,
where 𝑥 → 𝑦 = 𝐼𝑛𝑡 ((𝑥)𝑐 ∪ (𝑦)), for every 𝑥, 𝑦 ∈ P(𝑃𝑡 (H)).

Proof. We prove that for every 𝑥, 𝑦 ∈ H , 𝑥 ⩽ 𝑦 iff 𝑒𝑥𝑡 (𝑥) ⊆ 𝑒𝑥𝑡 (𝑦). From left to
right let us suppose 𝑥 ⩽ 𝑦, then for every ▽ ∈ 𝑒𝑥𝑡 (𝑥) we have 𝑥 ∈ ▽ and 𝑥 ⩽ 𝑦
and since ▽ is a filter we obtain 𝑦 ∈ ▽, which entails ▽ ∈ 𝑒𝑥𝑡 (𝑦). From right to
left we assume 𝑒𝑥𝑡 (𝑥) ⊆ 𝑒𝑥𝑡 (𝑦) and we argue by contradiction. So we assume
𝑥 ⩽̸ 𝑦, so by lemma 2.4 there is a prime filter ▽ which respects all the suprema
and furthermore 𝑥 ∈ ▽ and 𝑦 ∉ ▽. So by definition we have ▽ ∈ 𝑒𝑥𝑡 (𝑥), but
𝑒𝑥𝑡 (𝑥) ⊆ 𝑒𝑥𝑡 (𝑦) and therefore 𝑦 ∈ ▽, contradiction.

Now we prove that 𝑒𝑥𝑡 respects all the operations.
𝑒𝑥𝑡 (𝑥 ∧ 𝑦) = {▽ ∈ 𝑃𝑡 (H) | 𝑥 ∧ 𝑦 ∈ ▽} = {▽ ∈ 𝑃𝑡 (H) | 𝑥 ∈ ▽} ∩ {▽ ∈

𝑃𝑡 (H) | 𝑦 ∈ ▽} = 𝑒𝑥𝑡 (𝑥) ∩ 𝑒𝑥𝑡 (𝑦). This is clear, because for every filter ▽, for
every 𝑥, 𝑦, 𝑥 ∧ 𝑦 ∈ ▽ iff 𝑥 ∈ 𝐹 and 𝑦 ∈ ▽.

𝑒𝑥𝑡 (𝑥 ∨ 𝑦) = {▽ ∈ 𝑃𝑡 (H) | 𝑥 ∨ 𝑦 ∈ ▽} = {▽ ∈ 𝑃𝑡 (H) | 𝑥 ∈ ▽} ∪ {▽ ∈
𝑃𝑡 (H) | 𝑦 ∈ ▽} = 𝑒𝑥𝑡 (𝑥) ∪ 𝑒𝑥𝑡 (𝑦). We exploit the fact that in prime filters
𝑥 ∨ 𝑦 ∈ ▽ iff 𝑥 ∈ ▽ or 𝑦 ∈ ▽.

𝑒𝑥𝑡 (𝑥 → 𝑦) = {▽ ∈ 𝑃𝑡 (H) | 𝑥 → 𝑦 ∈ ▽} =
⋃{𝑒𝑥𝑡 (𝑧) | 𝑧 ⩽ 𝑥 → 𝑦} =⋃{𝑒𝑥𝑡 (𝑧) | 𝑧 ∧ 𝑥 ⩽ 𝑦} = ⋃{𝑒𝑥𝑡 (𝑧) | 𝑒𝑥𝑡 (𝑧 ∧ 𝑥) ⊆ 𝑒𝑥𝑡 (𝑦)} = ⋃{𝑒𝑥𝑡 (𝑧) | 𝑒𝑥𝑡 (𝑧) ∩
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(𝑥) ⊆ 𝑒𝑥𝑡 (𝑦)} = 𝑒𝑥𝑡 (𝑥) → 𝑒𝑥𝑡 (𝑦). This is due to the fact that in every Heyting
algebra 𝑧 ∧ 𝑥 ⩽ 𝑦 iff 𝑧 ⩽ 𝑥 → 𝑦.

We also show that the embedding 𝑒𝑥𝑡 preserves the existing infs and sups.
𝑒𝑥𝑡 ( ∧

𝑘>0
𝑥𝑘 ) = {▽ ∈ 𝑃𝑡 (H) | ∧

𝑘>0
𝑥𝑘 ∈ ▽} =

⋃{𝑒𝑥𝑡 (𝑧) | 𝑧 ⩽ ∧
𝑘>0
𝑥𝑘 } =

⋃{𝑒𝑥𝑡 (𝑧) | 𝑧 ⩽
𝑥𝑘 for every 𝑘 > 0} =

⋃{𝑒𝑥𝑡 (𝑧) | 𝑒𝑥𝑡 (𝑧) ⊆ 𝑒𝑥𝑡 (𝑥𝑘 ) for every 𝑘 > 0} =⋃{𝑒𝑥𝑡 (𝑧) | 𝑒𝑥𝑡 (𝑧) ⊆ ⋂
𝑘>0
𝑒𝑥𝑡 (𝑥𝑘 )} = 𝐼𝑛𝑡 ( ⋂

𝑘>0
𝑒𝑥𝑡 (𝑥𝑘 )) and 𝐼𝑛𝑡 ( ⋂

𝑘>0
𝑒𝑥𝑡 (𝑥𝑘 )) =

𝑖𝑛 𝑓 ({𝑒𝑥𝑡 (𝑥𝑘 ) | 𝑘 > 0}) with respect to the partial order induced by ⊆.
𝑒𝑥𝑡 ( ∨

𝑘>0
𝑥𝑘 ) = {▽ ∈ 𝑃𝑡 (H) | ∨

𝑘>0
𝑥𝑘 ∈ ▽} =

⋃{𝑃 ∈ 𝑃𝑡 (H) | 𝑥𝑘 ∈ ▽ for

some 𝑘 > 0} =
⋃
𝑘>0
𝑒𝑥𝑡 (𝑥𝑘 ), because for every prime filter in 𝑃𝑡 (H) we have∨

𝑘>0
𝑥𝑘 = 𝑠𝑢𝑝({𝑥𝑘 }𝑘>0) ∈ ▽ iff 𝑥𝑘 ∈ ▽ for some 𝑘 > 0, because {𝑥𝑘 }𝑘>0 is a

countable subset of H and ▽ respects {𝑥𝑘 }𝑘>0. Clearly
⋃
𝑘>0
𝑒𝑥𝑡 (𝑥𝑘 ) is equal to

𝑠𝑢𝑝({𝑒𝑥𝑡 (𝑥𝑘 ) | 𝑘 > 0}.
We check that 𝑒𝑥𝑡 is injective: if 𝑥 ≠ 𝑦, then 𝑥 ⩽̸ 𝑦 or 𝑦 ⩽̸ 𝑥, in both cases

clearly 𝑒𝑥𝑡 (𝑥) ≠ 𝑒𝑥𝑡 (𝑦). qed.

By exploiting the above theorem we obtain the desired proof of completeness
with respect to topological semantics.

Theorem 6.2.5 (Topological completeness). For every formula 𝐴 in FM𝜔: if
⊨𝑇𝑜𝑝 𝐴, then G3i𝜔 ⊢⇒ 𝐴.

Proof. We proceed by contradiction. Let 𝐴 be given and let us suppose G3i𝜔 ⊬⇒
𝐴. We construct the Lindenbaum algebra associated to E(𝐴):

A = ⟨E(𝐴)/∼,∧,∨,→,⊥⟩

where E(𝐴)/∼ is the quotient of the environment of Γ modulo the equivalence
relation 𝐵 ∼ 𝐶 iff G3i𝜔 ⊢⇒ 𝐵 ↔ 𝐶. We observe that E(𝐴) is countable and so
is E(𝐴)/∼.

The element 0 corresponds to [⊥], that is the equivalence class associated to
⊥, 1 is [⊥ → ⊥]. The operation are thus defined: for every ◦ ∈ {∧,∨,→} and
every equivalence classes [𝐵], [𝐶] we have [𝐵] ◦ [𝐶] = [𝐵 ◦𝐶], where ◦ on the
left side is an operation in the algebra, whereas on the right side of the equality
sign it denotes the corresponding connective.

We define a partial order associated to the Lindenbaum algebra: [𝐵] ⩽
[𝐶] iff G3i𝜔 ⊢ 𝐵 ⇒ 𝐶. Thus we observe that for every 𝑘 > 0 we have
𝑖𝑛 𝑓 {[𝐵]𝑘 | 𝑘 > 0} = [∧

𝑘>0
𝐵𝑘 ] and 𝑠𝑢𝑝{[𝐵]𝑘 | 𝑘 > 0} = [∨

𝑘>0
𝐵𝑘 ], provided that∧

𝑘>0
𝐵𝑘 ,

∨
𝑘>0
𝐵𝑘 ∈ E(𝐴). By definition of E(𝐴) for every [𝐵], [𝐶] ∈ E(𝐴)/∼
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there is a pseudo complement [𝐵] → [𝐶] such that: [𝐵] ∧ [𝐷] ⩽ [𝐶] iff
[𝐷] ⩽ [𝐵 → 𝐶]. ThusA is a Heyting algebra. We observe that [𝐴] ≠ [⊥ → ⊥],
otherwise G3i𝜔 ⊢⇒ 𝐴 against the hypothesis.

Since A is countable we embed it in its associated topology ⟨𝑃𝑡 (A), 𝜏A⟩ and
we equip the latter with the valuation 𝑣(𝐵) = 𝑒𝑥𝑡 ( [𝐵]). We show by transfinite
induction on the complexity of the formulas 𝐵 ∈ E(𝐴) that 𝑣 is a valuation
function.

If 𝐵 is a propositional atom the claim holds by definition. If 𝐵 ≡ ⊥, 𝑣(⊥) =
𝑒𝑥𝑡 ( [⊥]) = .

Cases∧,∨ and
∨

follow by induction hypothesis. If 𝐵 ≡ 𝐶 → 𝐷, then 𝑣(𝐶 →
𝐷) = 𝑒𝑥𝑡 ( [𝐶 → 𝐷]) = 𝐼𝑛𝑡 (𝑒𝑥𝑡 ( [𝐶])𝑐 ∪ 𝑒𝑥𝑡 ( [𝐷])) =𝐼𝐻 𝐼𝑛𝑡 (𝑣(𝐶)𝑐 ∪ 𝑣(𝐷)).

We deal with the infinitary case. 𝑣( ∧
𝑘>0
𝐶𝑘 ) = 𝑒𝑥𝑡 ( [

∧
𝑘>0
𝐶𝑘 ]) = 𝐼𝑛𝑡 (

⋂
𝑘>0
𝑒𝑥𝑡 ( [𝐶𝑘 ]))

=𝐼𝐻 𝐼𝑛𝑡 ( ⋂
𝑘>0
𝑣(𝐶𝑘 )).

So we conclude that ⟨𝑃𝑡 (A), 𝑡A , 𝑣⟩ is a topological model. Since [𝐴] ≠

[⊥ → ⊥], we have that 𝑣(𝐴) = 𝑒𝑥𝑡 ( [𝐴]) ≠ 𝑊 = 𝑒𝑥𝑡 ( [⊥ → ⊥]) due to injectivity
of 𝑒𝑥𝑡. We have obtained a topological countermodel and this concludes the
proof. qed.

The theorem that provides the desired topological countermodel crucially
relies on the cardinality of the Lindenbaum algebra associated to the environment
of the formula 𝐴. Moreover the open sets of the topological model thus obtained
actually form a complete Heyting algebra and thus Theorem 6.2.5 can also be
seen as a further proof of completeness with respect to algebraic semantics for
countable fragments of the language. Furthermore, this is interesting insofar
as it introduces a more concrete structure (from the mathematical viewpoint) to
interpret infinitary intuitionistic logic.

6.3 Neighborhood semantics for infinitary intuition-
istic logic

In this section we present the neighborhood semantics for intuitionistic infinitary
logic and we discuss some of its properties.

Definition 6.3.1. A neighborhood frame for intuitionistic infinitary logic is an
ordered pair ⟨𝑊, 𝑁⟩ with𝑊 ≠ ∅, 𝑁 : 𝑊 → P(P(𝑊)) such that:

1. 𝑊 ∈ 𝑁 (𝑥)

2. If 𝑎, 𝑏 ∈ 𝑁 (𝑥) then 𝑎 ∩ 𝑏 ∈ 𝑁 (𝑥)
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3. If 𝑎 ∈ 𝑁 (𝑥) and 𝑎 ⊆ 𝑏 then 𝑏 ∈ 𝑁 (𝑥)

4. If 𝑎 ∈ 𝑁 (𝑥) then 𝑥 ∈ 𝑎

5. If 𝑎 ∈ 𝑁 (𝑥) then {𝑦 | 𝑎 ∈ 𝑁 (𝑦)} ∈ 𝑁 (𝑥)

Condition 1. requires that every set of neighborhoods of a point 𝑥 contains
the unit, condition 3. is closure under supersets and conditions 4.-5. actually
correspond to reflexivity and transitivity in the preorder associated to the neigh-
borhood frame. The key point is condition 2.which expresses closure under finite
intersections. We now present neighborhood models for intuitionistic infinitary
logic.

Definition 6.3.2. A neighborhood modelM is a triple ⟨𝑊, 𝑁, 𝑣⟩ such that ⟨𝑊, 𝑁⟩
is a neighborhood frame for intuitionistic infinitary logic and 𝑣 is a map from
propositional variables to P(𝑊) such that 𝑣(𝑝) ∈ 𝑁 (𝑥) for any 𝑥 ∈ 𝑣(𝑝).

In order to give a compact presentation of the satisfiability conditions for
formulas in neighborhood models of intuitionistic infinitary logic we use the local
forcing conditions presented in (75). For every world 𝑥 and every neighborhood
𝑎:

𝑎 ⊩∀ 𝐴 is true iff 𝑥 ⊩ 𝐴 for every 𝑥 ∈ 𝑎

Furthermore we introduce two abbreviations: 𝑥 ⊩ 𝐴 ⊃ 𝐵 means that if 𝑥 ⊩ 𝐴
then 𝑥 ⊩ 𝐵 and 𝑥 ⊩ &

𝑘>0
𝐴𝑘 means that 𝑥 ⊩ 𝐴𝑘 for every 𝑘 > 0. In a sense,

⊃ and & reflect the classical meaning of implication and infinitary conjunction,
respectively, whereas → and

∧
are the proper intuitionistic connectives for

implication and infinitary conjunction.

Definition 6.3.3. Given a neighborhood modelM = ⟨𝑊, 𝑁, 𝑣⟩, 𝑥 ∈ 𝑊 , a formula
𝐴 ∈ FM𝜔, the relation 𝑥 ⊩ 𝐴 is inductively defined as follows:

• 𝑥 ⊩ 𝑝 iff 𝑥 ∈ 𝑣(𝑝)

• 𝑥 ⊩ 𝐵 ∧ 𝐶 iff 𝑥 ⊩ 𝐵 and 𝑥 ⊩ 𝐶

• 𝑥 ⊩ 𝐵 ∨ 𝐶 iff 𝑥 ⊩ 𝐵 or 𝑥 ⊩ 𝐶

• 𝑥 ⊩ 𝐵 → 𝐶 iff ∃𝑎 ∈ 𝑁 (𝑥) (𝑎 ⊩∀ 𝐵 ⊃ 𝐶)

• 𝑥 ⊩
∨
𝑘>0
𝐵𝑘 iff 𝑥 ⊩ 𝐵𝑘 for some 𝑘 > 0

• 𝑥 ⊩
∧
𝑘>0
𝐵𝑘 iff ∃𝑎 ∈ 𝑁 (𝑥) (𝑎 ⊩∀ &

𝑘>0
𝐵𝑘 )
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A formula 𝐴 is valid in a neighborhood model M = ⟨𝑊, 𝑁, 𝑣⟩, in symbols ⊨
M
𝐴,

iff 𝑥 ⊩ 𝐴 for every 𝑥 in 𝑊 . 𝐴 is an infinitary intuitionistic logical truth, in
symbols ⊨N 𝐴, iff ⊨

M
𝐴 for every model M based on an intuitionistic infinitary

neighborhood frame, i.e. for every valuation 𝑣.

Given 𝐴 ∈ FM𝜔, let 𝑣(𝐴) = {𝑥 ∈ 𝑊 | 𝑥 ⊩M 𝐴}. We prove the following
useful lemma.

Lemma 6.3.1 (Persistence). For every 𝐴 ∈ FM𝜔, if 𝑥 ∈ 𝑣(𝐴), then 𝑣(𝐴) ∈ 𝑁 (𝑥).

Proof. The proof is by induction on the complexity of formulas.
The atomic case and cases for the connectives {∧,∨} are treated in (69). We

notice that we never make use of closure under infinite intersections.
We deal with the case of the implication. If 𝑥 ⊩ 𝐴 → 𝐵, then there is

𝑎 ∈ 𝑁 (𝑥) such that 𝑎 ⊩∀ 𝐴 ⊃ 𝐵. By condition 5. of neighborhood frame we
have 𝑚(𝑎) ∈ 𝑁 (𝑥) and we easily observe that 𝑚(𝑎) ⊩∀ 𝐴 → 𝐵. However, since
𝑚(𝑎) ⊆ {𝑦 | 𝑦 ⊩ 𝐴 → 𝐵} = 𝑣(𝐴 → 𝐵), by closure under supersets we conclude
that 𝑣(𝐴→ 𝐵) ∈ 𝑁 (𝑥).

We deal with the infinitary connectives. Let us suppose 𝑥 ⊩
∨
𝑘>0
𝐴𝑘 , so by

definition 𝑥 ⊩ 𝐴𝑘 for some 𝑘 > 0. By induction hypothesis 𝑣(𝐴𝑘 ) ∈ 𝑁 (𝑥), but
𝑣(𝐴𝑘 ) ⊆ 𝑣(

∨
𝑘>0
𝐴𝑘 ), hence by closure under supersets 𝑣( ∨

𝑘>0
𝐴𝑘 ) ∈ 𝑁 (𝑥).

If 𝑥 ∈ 𝑣( ∧
𝑘>0
𝐵𝑘 ) by definition there is 𝑎 ∈ 𝑁 (𝑥) such that 𝑎 ⊩∀ &

𝑘>0
𝐵𝑘 . By

condition 5. we have {𝑦 | 𝑎 ∈ 𝑁 (𝑦)} ∈ 𝑁 (𝑥) and {𝑦 | 𝑎 ∈ 𝑁 (𝑦)} ⊆ 𝑣( ∧
𝑘>0
𝐵𝑘 ),

hence by closure under supersets we have 𝑣( ∧
𝑘>0
𝐵𝑘 ) ∈ 𝑁 (𝑥), which is the desired

conclusion. qed.

We observe that we could have defined the finitary conjunction ∧ in terms of
the infinitary one

∧
by the following lemma.

Lemma 6.3.2. 𝑥 ⊩ 𝐴 ∧ 𝐵 iff ∃𝑎 ∈ 𝑁 (𝑥) (𝑎 ⊩∀ 𝐴 and 𝑎 ⊩∀ 𝐵).

Proof. From left to right we assume 𝑥 ⊩ 𝐴 ∧ 𝐵, so 𝑥 ⊩ 𝐴 and 𝑥 ⊩ 𝐵. By the
persistence lemma there are 𝑎 ∈ 𝑁 (𝑥) and 𝑏 ∈ 𝑁 (𝑥) such that 𝑎 ⊩∀ 𝐴 and 𝑏 ⊩∀ 𝐵.
By closure under intersection we obtain 𝑎 ∩ 𝑏 ∈ 𝑁 (𝑥) which clearly yields the
desired conclusion.

From right to left we observe that if 𝑎 ∈ 𝑁 (𝑥), then 𝑥 ∈ 𝑎 and thus 𝑥 ⊩ 𝐴 and
𝑥 ⊩ 𝐵. qed.

The above lemma yields the interdefinability. In fact, it is easy to check that,
if 𝐴 = 𝐶0 and 𝐶𝑘 = 𝐵 for every 𝑘 ⩾ 1, 𝑥 ⊩ 𝐴 ∧ 𝐵 iff 𝑥 ⊩

∧
𝑘>0
𝐶𝑘 .
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We now prove soundness of the unlabelled sequent calculus G3i𝜔 (as pre-
sented in (72)) for intuitionistic infinitary logic with respect to neighborhood
semantics. Given finite multisets Γ,Δ of formulas which consist of the formulas
𝐴1, ..., 𝐴𝑛 and 𝐵1, ..., 𝐵𝑚 respectively, 𝑥 ⊩ Γ → Δ means 𝑥 ⊩ 𝐴1 ∧ ... ∧ 𝐴𝑛 →
𝐵1 ∨ ... ∨ 𝐵𝑚.

Theorem 6.3.3 (Soundness). If ⊢G3i𝜔 Γ ⇒ Δ, then ⊨N Γ → Δ

Proof. We proceed by induction on the height of derivations. The atomic cases
as well as the cases for the connectives ∧,∨ and

∨
are straightforward. We

discuss the cases of implication and infinitary conjunction.
Let us suppose that the last rule applied is 𝑅 →. Let N = ⟨𝑊, 𝑁⟩ be a

neighborhood frame, M a model based on N and 𝑥 a world in𝑊 . Let us suppose
𝑥 ⊩ Γ. By persistence, for every 𝐶𝑖 ∈ Γ there is 𝑎𝑖 ∈ 𝑁 (𝑦) such that for every 𝑖
𝑎𝑖 ⊩

∀ 𝐶𝑖. By closure under finite intersections3, 𝑎1 ∩ ... ∩ 𝑎𝑛 ∈ 𝑁 (𝑥). We claim
that 𝑎1 ∩ ... ∩ 𝑎𝑛 ⊩∀ 𝐴 ⊃ 𝐵. In fact, let 𝑦 ∈ 𝑎1 ∩ ... ∩ 𝑎𝑛 and let us suppose
𝑦 ⊩ 𝐴. Since 𝑦 ∈ 𝑎1 ∩ ... ∩ 𝑎𝑛 we have 𝑦 ⊩ Γ, so by induction hypothesis
𝑦 ⊩ 𝐵. Since 𝑎1 ∩ ... ∩ 𝑎𝑛 ⊩

∀ 𝐴 ⊃ 𝐵 and 𝑎1 ∩ ... ∩ 𝑎𝑛 ∈ 𝑁 (𝑥), we have
𝑥 ⊩ 𝐴 → 𝐵 and thus 𝑥 ⊩ Δ ∨ (𝐴 → 𝐵). This yields the desired conclusion,
because𝑊 ⊩∀ Γ ⊃ Δ ∨ (𝐴→ 𝐵) and𝑊 ∈ 𝑁 (𝑥), thus 𝑥 ⊩ Γ → Δ ∨ (𝐴→ 𝐵).

If the last rule is 𝐿 →, then we assume 𝑥 ⊩ Γ and 𝑥 ⊩ 𝐴 → 𝐵. By definition
there is 𝑎 ∈ 𝑁 (𝑥) such that for every 𝑦 in 𝑎, 𝑦 ⊮ 𝐴 or 𝑦 ⊩ 𝐵, but we have (item 4.
def. 1.1) 𝑥 ∈ 𝑎, thus 𝑥 ⊮ 𝐴 or 𝑥 ⊩ 𝐵. In the first case by induction hypothesis we
obtain 𝑥 ⊩

∨
Δ ∨ 𝐴, but since 𝑥 ⊮ 𝐴, 𝑥 ⊩

∨
Δ. In the second case the induction

hypothesis immediately yields the desired conclusion.
If the last rule is 𝐿

∧
, we assume 𝑥 ⊩ Γ∧ ∧

𝑘>0
𝐴𝑘 , therefore by definition there

is 𝑎 ∈ 𝑁 (𝑥) such that for every 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘 . Since we have 𝑥 ∈ 𝑎, in particular

𝑥 ⊩ 𝐴𝑘 and by induction hypothesis we conclude.
If the last rule is 𝑅

∧
, we assume 𝑥 ⊩ Γ, therefore for every 𝐶𝑖 ∈ Γ there is

𝑎𝑖 ∈ 𝑁 (𝑥) such that 𝑎𝑖 ⊩∀ 𝐶𝑖 and 𝑎1 ∩ ... ∩ 𝑎𝑛 ∈ 𝑁 (𝑥). We claim 𝑎1 ∩ ... ∩ 𝑎𝑛 ⊩∀

&
𝑘>0
𝐴𝑘 . In fact if 𝑦 ∈ 𝑎1 ∩ ... ∩ 𝑎𝑛, 𝑦 ⊩ Γ, thus by induction hypothesis 𝑦 ⊩ 𝐴𝑘 ,

so 𝑦 ⊩ &
𝑘>0
𝐴𝑘 . Therefore 𝑥 ⊩

∧
𝑘>0
𝐴𝑘 from which follows 𝑥 ⊩ Δ ∨ ∧

𝑘>0
𝐴𝑘 . qed.

Notice that the above proof would not go through if we had the rule 𝑅
∧′:

{Γ ⇒ 𝐴𝑘 ,Δ | 𝑘 > 0}
𝑅
∧′

Γ ⇒ ∧
𝑘>0 𝐴𝑘 ,Δ

3Recall that Γ is a finite multiset of formulas.
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This is due to the fact that such a rule is not sound, in fact G3i′𝜔 obtained
by substituting 𝑅

∧
with 𝑅

∧′ proves
∧
𝑘>0

(𝑝𝑘 ∨ 𝑞) → ∧
𝑘>0
𝑝𝑘 ∨ 𝑞. However,

such formula is not provable: in order to establish it we provide the following
countermodel (for similar examples see also (111) and (71)).

Let 𝑊 = R and 𝑁 (𝑥) = {𝑎 | ∃𝑟 > 0((𝑥 − 𝑟, 𝑥 + 𝑟) ⊆ 𝑎)}. We define the
valuation 𝑣 : 𝐴𝑇 → R such that 𝑣(𝑞) = R \ {0} and 𝑣(𝑝𝑘 ) = (− 1

𝑘
, 1
𝑘
) for every

𝑘 > 0. We leave it to the reader to verify that this is a neighborhood model.
We observe that R ⊩∀ &

𝑘>0
(𝑝𝑘 ∨ 𝑞) and R ∈ 𝑁 (0), thus 0 ⊩

∧
𝑘>0(𝑝𝑘 ∨ 𝑞).

However
⋂
𝑘>0 𝑣(𝑝𝑘 ) = {0} ∉ 𝑁 (0), thus we can easily conclude that 0 ⊮

∧
𝑘>0
𝑝𝑘 .

Furthermore 0 ∉ R \ {0}, hence 0 ⊮ 𝑞. Thus 0 ⊮
∧
𝑘>0
𝑝𝑘 ∨ 𝑞, hence we have

provided a countermodel.

6.4 Completeness of the semantics

In order to conclude that our neighborhood semantics is adequate we have to
establish completeness with respect to the sequent calculus G3i𝜔. There are
various ways in which we could proceed: the first consists in an adaptation
of the Tait-Schutte-Takeuti style completeness, obtained via the construction
of a suitable reduction tree. However this is hard to achieve due to the lack
of invertibility of rules in G3i𝜔. Another possibility is to exploit the standard
method of the canonical model, however since we are dealing with a language with
uncountably many formulas, some modifications should be taken in order to prove
the usual Lindenbaum lemma. We will instead show the correspondence between
our neighborhood models and topological ones, thus obtaining an indirect form
of completeness. We first sketch the proof and then provide the details. The
first step consists in showing that given a topological model, we can obtain
a neighborhood model which satisfies the same formulas. The argument to
show completeness then goes as follows: we suppose ⊬G3i𝜔 Γ ⇒ Δ, hence by
topological completeness we obtain a topological modelM such that ⊭M Γ → Δ,
hence by our representation theorem we obtain a neighborhood model N such
that ⊭N Γ → Δ and thus we obtain completeness.

Definition 6.4.1. Given a topological space ⟨𝑊, 𝜏⟩ its associated neighborhood
system is ⟨𝑊, 𝑁𝜏⟩, with 𝑁𝜏 : 𝑊 → P(P(𝑊)) such that 𝑁𝜏 (𝑥) = {𝑏 | ∃𝑎 ∈ 𝜏𝑥 (𝑎 ⊆
𝑏)}, i.e. supersets of open sets which contain 𝑥.

Lemma 6.4.1. The neighborhood system ⟨𝑊, 𝑁𝜏⟩ associated to the topological
space ⟨𝑊, 𝜏⟩ has the following properties:
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1. For every 𝑥 ∈ 𝑊 𝑁𝜏 (𝑥) is closed under finite intersections, closed under
supersets, contains the unit and does not contain the empty set.

2. For every 𝑥 ∈ 𝑊 , if 𝑎 ∈ 𝑁𝜏 (𝑥), then 𝑥 ∈ 𝑎.

3. For every 𝑥 ∈ 𝑊 , if 𝑎 ∈ 𝑁𝜏 (𝑥), then {𝑦 | 𝑎 ∈ 𝑁𝜏 (𝑦)} ∈ 𝑁𝜏 (𝑥).

Proof. Items 1.-2. are easy (see also Exercise 1.16 in (79)). We limit ourselves
to proving 3. Let us suppose 𝑎 ∈ 𝑁𝜏 (𝑥), then there is 𝑏 ∈ 𝜏𝑥 such that 𝑏 ⊆ 𝑎.
We want to prove {𝑦 | 𝑎 ∈ 𝑁𝜏 (𝑦)} ∈ 𝑁𝜏 (𝑥) This holds iff there is a 𝑐 ∈ 𝜏𝑥 s.t.
𝑐 ⊆ {𝑦 | 𝑎 ∈ 𝑁𝜏 (𝑦)} iff there is a 𝑐 ∈ 𝜏𝑥 s.t. 𝑐 ⊆ {𝑦 | ∃𝑑 ∈ 𝜏𝑦 (𝑑 ⊆ 𝑎)}.

We have that 𝑏 ∈ 𝜏𝑥 , furthermore, let us suppose 𝑦 ∈ 𝑏 ∈ 𝜏, then 𝑏 ∈ 𝜏𝑦 and
by hypothesis 𝑏 ⊆ 𝑎, hence 𝑏 ⊆ {𝑦 | ∃𝑑 ∈ 𝜏𝑦 (𝑑 ⊆ 𝑎)} = {𝑦 | 𝑎 ∈ 𝑁𝜏 (𝑦)}, hence
{𝑦 | 𝑎 ∈ 𝑁𝜏 (𝑦)} ∈ 𝑁𝜏 (𝑥). qed.

Theorem 6.4.2. Given a topological space ⟨𝑊, 𝜏⟩, the induced neighborhood
system N𝜏 is an intuitionistic infinitary neighborhood frame.

Proof. Immediate by the previous lemma. qed.

Before proceeding we recall that an open set which contains 𝑥 is called an
open neighborhood of 𝑥, moreover as it is immediate to notice, if 𝑎 ∈ 𝜏𝑥 then
𝑎 ∈ 𝑁𝜏 (𝑥) (whereas the converse does not always hold).

We observe that the satisfiability conditions for topological models defined
in the previous section can be reformulated as follows. A point 𝑥 satisfies 𝐴 with
respect to 𝑣 iff 𝑥 ∈ 𝑣(𝐴). Given a point 𝑥 ∈ 𝑊 it is easy to see (8) that the
satisfiability conditions in a topological model are equivalent to the following:

• 𝑥 ⊩ 𝑝 iff 𝑥 ∈ 𝑣(𝑝)

• 𝑥 ⊮ ⊥

• 𝑥 ⊩ 𝐴 ∧ 𝐵 iff 𝑥 ⊩ 𝐴 and ⊩ 𝐵

• 𝑥 ⊩ 𝐴 ∨ 𝐵 iff 𝑥 ⊩ 𝐴 or ⊩ 𝐵

• 𝑥 ⊩ 𝐴→ 𝐵 iff ∃𝑎 ∈ 𝜏𝑥∀𝑦 ∈ 𝑎(if 𝑦 ⊩ 𝐴 then 𝑦 ⊩ 𝐵)

• 𝑥 ⊩
∨
𝑘>0
𝐴𝑘 iff 𝑥 ⊩ 𝐴𝑘 for some 𝑘 > 0

• 𝑥 ⊩
∧
𝑘>0
𝐴𝑘 iff ∃𝑎 ∈ 𝜏𝑥∀𝑦 ∈ 𝑎(𝑦 ⊩ 𝐴𝑘 for every 𝑘 > 0)

Now are now ready to prove the last result.
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Theorem 6.4.3 (Representation). Let M = ⟨𝑊, 𝜏, 𝑣⟩ be a topological model. Let
⟨𝑊, 𝑁𝜏⟩ be its associated neighborhood frame. We consider the neighborhood
model N = ⟨𝑊, 𝑁𝜏, 𝑣𝜏⟩, with 𝑣𝜏 (𝑝) = 𝑣(𝑝), then:

For every 𝑥 ∈ 𝑊 , for every 𝐴, 𝑥 ⊩M 𝐴 iff 𝑥 ⊩N 𝐴

Proof. We proceed by induction on the complexity of 𝐴.

• If 𝐴 ≡ 𝑝, 𝑝 ∈ 𝐴𝑇 , then by definition of 𝑣, 𝑣𝜏 we have 𝑥 ⊩M 𝑝 iff 𝑥 ⊩N 𝑝.

• If 𝐴 ≡ 𝐵 ∧ 𝐶, 𝐴 ≡ 𝐵 ∨ 𝐶 and 𝐴 ≡ ∨
𝑘>0
𝐴𝑘 the proposition follows by

induction hypothesis.

• If 𝐴 ≡ 𝐵 → 𝐶 we consider the two directions. From left to right let us
suppose 𝑥 ⊩M 𝐵 → 𝐶, then there is 𝑎 ∈ 𝜏𝑥 such that ∀𝑦 ∈ 𝑎( if 𝑦 ⊩M 𝐵

then 𝑦 ⊩M 𝐶). Then 𝑎 ∈ 𝑁𝜏 (𝑥), so let us suppose 𝑦 ∈ 𝑎 and 𝑦 ⊩N 𝐵,
hence by induction hypothesis 𝑦 ⊩M 𝐵, so 𝑦 ⊩M 𝐶 by the assumption,
which by induction hypothesis yields 𝑦 ⊩N 𝐶. Therefore 𝑥 ⊩N 𝐵 → 𝐶.

From right to left we suppose 𝑥 ⊩N 𝐵 → 𝐶, then there is 𝑎 ∈ 𝑁𝜏 (𝑥) such
that∀𝑦 ∈ 𝑎(if 𝑦 ⊩N 𝐵 then 𝑦 ⊩N 𝐶). By definition of 𝑁𝜏 (𝑥) there is 𝑏 ∈ 𝜏𝑥
such that 𝑏 ⊆ 𝑎. Thus let us suppose 𝑦 ∈ 𝑏 and 𝑦 ⊩M 𝐵. Since 𝑦 ∈ 𝑎, by
induction hypothesis and the assumption we obtain 𝑦 ⊩N 𝐶, which, again
by induction hypothesis, yields 𝑦 ⊩M 𝐶. Therefore 𝑥 ⊩M 𝐵 → 𝐶.

• If 𝐴 ≡ ∧
𝑘>0
𝐵𝑘 we consider the two directions. From left to right let us

suppose 𝑥 ⊩M
∧
𝑘>0
𝐵𝑘 , then there is 𝑎 ∈ 𝜏𝑥 such that ∀𝑦 ∈ 𝑎(𝑦 ⊩M 𝐵𝑘 for

every 𝑘 > 0). Hence 𝑎 ∈ 𝑁𝜏 (𝑥), thus we suppose 𝑦 ∈ 𝑎, hence by the
assumption 𝑦 ⊩M 𝐵𝑘 for every 𝑘 > 0, therefore by induction hypothesis
𝑦 ⊩N 𝐵𝑘 for every 𝑘 > 0, so by definition 𝑥 ⊩N

∧
𝑘>0
𝐵𝑘 .

From right to left we suppose 𝑥 ⊩N
∧
𝑘>0
𝐵𝑘 , so by definition there is 𝑎 ∈

𝑁𝜏 (𝑥) such that ∀𝑦 ∈ 𝑎(𝑦 ⊩N 𝐵𝑘 for every 𝑘 > 0). By definition of 𝑁𝜏 (𝑥)
there is 𝑏 ∈ 𝜏𝑥 such that 𝑏 ⊆ 𝑎. Hence let us suppose 𝑦 ∈ 𝑏, so 𝑦 ∈ 𝑎 and
by the assumption 𝑦 ⊩N 𝐵𝑘 for every 𝑘 > 0, thus, by induction hypothesis
𝑦 ⊩M 𝐵𝑘 for every 𝑘 > 0, so 𝑥 ⊩M

∧
𝑘>0
𝐵𝑘 .

qed.

Corollary (Completeness). ⊢G3i𝜔⇒ 𝐴 iff ⊨N 𝐴.

Proof. We have already proved the direction from left to right. For the direction
from right to left we assume ⊨N 𝐴, therefore by theorem 4.3 we obtain ⊨𝑇𝑜𝑝 𝐴
which, by topological completeness, yields G3i𝜔 ⊢⇒ 𝐴. qed.
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Initial Sequents

𝐴𝑥
𝑥 : 𝑝, Γ ⇒ Δ, 𝑥 : 𝑝 𝐿⊥

𝑥 : ⊥, Γ ⇒ Δ

Logical Rules

𝑥 : 𝐴, 𝑥 : 𝐵, Γ ⇒ Δ
𝐿∧

𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 : 𝐴 Γ ⇒ Δ, 𝑥 : 𝐵
𝑅∧

Γ ⇒ Δ, 𝑥 : 𝐴 ∧ 𝐵

𝑥 : 𝐴, Γ ⇒ Δ 𝑥 : 𝐵, Γ ⇒ Δ
𝐿∨

𝑥 : 𝐴 ∨ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 : 𝐴, 𝑥 : 𝐵
𝑅∨

Γ ⇒ Δ, 𝑥 : 𝐴 ∨ 𝐵

Γ ⇒ Δ, 𝑥 : 𝐴 𝑥 : 𝐵, Γ ⇒ Δ
𝐿 ⊃

𝑥 : 𝐴 ⊃ 𝐵, Γ ⇒ Δ

𝑥 : 𝐴, Γ ⇒ Δ, 𝑥 : 𝐵
𝑅 ⊃

Γ ⇒ Δ, 𝑥 : 𝐴 ⊃ 𝐵

𝑥 : &
𝑘>0
𝐴𝑘 , 𝑥 : 𝐴𝑘 , Γ ⇒ Δ

𝐿&𝑘

𝑥 : &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

{Γ ⇒ Δ, 𝑥 : 𝐴𝑘 | 𝑘 > 0}
𝑅&

Γ ⇒ Δ, 𝑥 : &
𝑘>0
𝐴𝑘

{𝑥 : 𝐴𝑘 , Γ ⇒ Δ | 𝑘 > 0}
𝐿
∨

𝑥 :
∨
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 :
∨
𝑘>0
𝐴𝑘 , 𝑥 : 𝐴𝑘

𝑅
∨

𝑘

Γ ⇒ Δ, 𝑥 :
∨
𝑘>0
𝐴𝑘

Figure 6.1: The calculus G3C𝜔

Thus we provided a neighborhood semantics for infinitary intuitionistic logic.
Our aim is to exploit this framework to develop an analytic calculus for intuition-
istic infinitary logic without context restrictions, as opposed to G3i𝜔.

6.5 The labelled sequent calculus G3I𝜔
We first present a classical base for our labelled calculus which in a sense corre-
sponds to the propositional fragment of infinitary classical logic. The satisfiability
conditions for → and

∧
are factorised through those for ⊃ and & respectively

and thus their rules are given in two steps through the rules for ⊃ and &. The
intuitionistic calculus is thus obtained as an extension of a classical one (for an
approach similar in spirit, see (86)).

135



In detail, the rules for the intuitionistic connectives, namely → and
∧

, are
obtained as follows.

We first consider the case of
∧

and we recall the definition of the forcing
condition:

𝑥 ⊩
∧
𝑘>0
𝐴𝑘 iff ∃𝑎 ∈ 𝑁 (𝑥) (𝑎 ⊩∀ &

𝑘>0
𝐴𝑘 )

Therefore the rules for
∧

are:

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝐿
∧

, 𝑎 fresh
𝑥 :

∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐴𝑘

𝑅
∧

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘

Following the same procedure the forcing condition for → yields the rules:

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴 ⊃ 𝐵, Γ ⇒ Δ
𝐿 →, 𝑎 fresh

𝑥 : 𝐴→ 𝐵, Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 : 𝐴→ 𝐵, 𝑎 ⊩∀ 𝐴 ⊃ 𝐵
𝑅 →

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 : 𝐴→ 𝐵

This concludes the list of the logical rules. We now have to introduce rules for
the local forcing conditions and for the properties of our neighborhood frames.
We introduce the following abbreviation: 𝑚(𝑎) = {𝑦 | 𝑎 ∈ 𝑁 (𝑦)}, thus the
fifth condition imposed on neighborhood frames for intuitionistic infinitary logic
becomes:

If 𝑎 ∈ 𝑁 (𝑥), then 𝑚(𝑎) ∈ 𝑁 (𝑥)

Clearly, for every 𝑥 and for every 𝑎 ∈ 𝑁 (𝑥), we have: if 𝑦 ∈ 𝑚(𝑎), then 𝑎 ∈ 𝑁 (𝑦).
The condition imposed on the valuation function, i.e. if 𝑥 ∈ 𝑣(𝑝) then

𝑣(𝑝) ∈ 𝑁 (𝑥) actually corresponds to:

[𝑀𝑜𝑛′] If 𝑥 ⊩ 𝑝, there is 𝑎 ∈ 𝑁 (𝑥) s.t. 𝑎 ⊩∀ 𝑝 and for every 𝑦, if 𝑦 ⊩ 𝑝, 𝑦 ∈ 𝑎

However the following lemma easily shows that in monotonic neighborhood
frames the condition can be simplified:

[Mon] If 𝑥 ⊩ 𝑝, there is 𝑎 ∈ 𝑁 (𝑥) s.t. 𝑎 ⊩∀ 𝑝

Lemma 6.5.1. In every infinitary intuitionistic neighborhood model 𝑀𝑜𝑛 and
𝑀𝑜𝑛′ are equivalent.

Proof. Clearly 𝑀𝑜𝑛′ implies 𝑀𝑜𝑛. For the converse we assume 𝑀𝑜𝑛 and let us
suppose 𝑥 ⊩ 𝑝. Hence by 𝑀𝑜𝑛 there is 𝑎 ∈ 𝑁 (𝑥) such that 𝑎 ⊩∀ 𝑝. However
𝑎 ⊆ {𝑦 | 𝑦 ⊩ 𝑝}, hence by closure under supersets {𝑦 | 𝑦 ⊩ 𝑝} ∈ 𝑁 (𝑥), thus we
have obtained the desired conclusion. qed.
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Hence 𝑀𝑜𝑛 justifies the following rule:

𝑎 ⊩∀ 𝑝, 𝑎 ∈ 𝑁 (𝑥), 𝑥 : 𝑝, Γ ⇒ Δ
𝑀𝑜𝑛, 𝑎 fresh

𝑥 : 𝑝, Γ ⇒ Δ

A similar simplification can be obtained with respect to the unit condition, in fact
it can be easily shown, by exploiting closure under supersets, that the following
lemma holds.

Lemma 6.5.2. In every neighborhood model for infinitary intuitionistic logic for
every 𝑥 ∈ 𝑊: 𝑁 (𝑥) ≠ ∅ iff𝑊 ∈ 𝑁 (𝑥).

Proof. From right to left the proof is immediate. From left to right let us suppose
that 𝑁 (𝑥) ≠ ∅, so there is 𝑎 ∈ 𝑁 (𝑥). Clearly 𝑎 ⊆ 𝑊 and by closure under
supersets we obtain𝑊 ∈ 𝑁 (𝑥). qed.

This justifies the rule 𝑁𝑜𝑛𝑑𝑒𝑔:

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝑁𝑜𝑛𝑑𝑒𝑔, 𝑎 fresh

Γ ⇒ Δ

Furthermore, the condition of closure under finite under finite intersections can
be replaced by a weaker condition, which we call prebasic.

Lemma 6.5.3. For every infinitary intuitionistic frame the following are equiva-
lent:

1. If 𝑎 ∈ 𝑁 (𝑥) and 𝑏 ∈ 𝑁 (𝑥), then 𝑎 ∩ 𝑏 ∈ 𝑁 (𝑥)

2. If 𝑎 ∈ 𝑁 (𝑥) and 𝑏 ∈ 𝑁 (𝑥), then there is 𝑐 ∈ 𝑁 (𝑥) and 𝑐 ⊆ 𝑎 and 𝑐 ⊆ 𝑏

Proof. Clearly 1 implies 2. With respect to the other direction let us assume
𝑎 ∈ 𝑁 (𝑥) and 𝑏 ∈ 𝑁 (𝑥). By 2 there is 𝑐 ∈ 𝑁 (𝑥) such that 𝑐 ⊆ 𝑎 and 𝑐 ⊆ 𝑏,
which implies 𝑐 ⊆ 𝑎∩𝑏. By closure under supersets we obtain 𝑎∩𝑏 ∈ 𝑁 (𝑥). qed.

This actually tells us that we can replace the requirement of closure under
finite intersections with the condition prebasic. We extract the following rule
from the condition above:

𝑐 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝑃𝑟𝑒𝑏𝑎𝑠𝑖𝑐, 𝑐 fresh

𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), Γ ⇒ Δ

We also add to it the rules for the subset relation:

𝑥 ∈ 𝑎, 𝑎 ⊆ 𝑏, 𝑥 ∈ 𝑏, Γ ⇒ Δ
𝐿 ⊆

𝑥 ∈ 𝑎, 𝑎 ⊆ 𝑏, Γ ⇒ Δ

𝑎 ⊆ 𝑎, Γ ⇒ Δ
𝑅𝑒 𝑓 ⊆

Γ ⇒ Δ

𝑎 ⊆ 𝑏, 𝑏 ⊆ 𝑐, 𝑎 ⊆ 𝑐, Γ ⇒ Δ
𝑇𝑟𝑠 ⊆

𝑎 ⊆ 𝑏, 𝑏 ⊆ 𝑐, Γ ⇒ Δ

We can now give a complete formulation of the labelled calculus G3I𝜔 in Figure
6.2.
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Initial Sequents

𝐴𝑥
𝑥 : 𝑝, Γ ⇒ Δ, 𝑥 : 𝑝 𝐿⊥

𝑥 : ⊥, Γ ⇒ Δ

Logical Rules

The classical base 𝐺3𝐶𝜔, plus:

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴 ⊃ 𝐵, Γ ⇒ Δ
𝐿 →, 𝑎 fresh

𝑥 : 𝐴→ 𝐵, Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 : 𝐴→ 𝐵, 𝑎 ⊩∀ 𝐴 ⊃ 𝐵
𝑅 →

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 : 𝐴→ 𝐵

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝐿
∧

, 𝑎 fresh
𝑥 :

∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐴𝑘

𝑅
∧

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘

Auxiliary rules

𝑥 ∈ 𝑎, 𝑎 ⊩∀ 𝐴, 𝑥 : 𝐴, Γ ⇒ Δ
𝐿 ⊩∀

𝑥 ∈ 𝑎, 𝑎 ⊩∀ 𝐴, Γ ⇒ Δ

𝑦 ∈ 𝑎, Γ ⇒ Δ, 𝑦 : 𝐴
𝑅 ⊩∀ , 𝑦 fresh

Γ ⇒ Δ, 𝑎 ⊩∀ 𝐴

𝑥 : 𝑝, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝑝, Γ ⇒ Δ
𝑀𝑜𝑛, 𝑎 fresh

𝑥 : 𝑝, Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), 𝑥 ∈ 𝑎, Γ ⇒ Δ
𝑅𝑒 𝑓

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝑁𝑜𝑛𝑑𝑒𝑔, 𝑎 fresh

Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), 𝑚(𝑎) ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝑇𝑟𝑠

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ

𝑥 ∈ 𝑚(𝑎), 𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝐿𝑚

𝑥 ∈ 𝑚(𝑎), Γ ⇒ Δ

𝑐 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝑃𝑟𝑒𝑏𝑎𝑠𝑖𝑐, 𝑐 fresh

𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), Γ ⇒ Δ

𝑎 ⊆ 𝑎, Γ ⇒ Δ
𝑅𝑒 𝑓 ⊆

Γ ⇒ Δ

𝑎 ⊆ 𝑏, 𝑏 ⊆ 𝑐, 𝑎 ⊆ 𝑐, Γ ⇒ Δ
𝑇𝑟𝑠 ⊆

𝑎 ⊆ 𝑏, 𝑏 ⊆ 𝑐, Γ ⇒ Δ

Figure 6.2: The calculus G3I𝜔
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6.6 Structural analysis of G3I𝜔
In this section we shall study the structural properties of the calculus G3I𝜔. A
derivation in G3I𝜔 is a tree which is possibly infinitely branching and every
branch is of finite length. Given a derivation D, its height ℎ(D) is thus defined:

1. If D is an initial sequent, then ℎ(D) = 0

2. If D is of the form:

...

... D𝑛

Γ𝑛 ⇒ Δ𝑛 ...

Γ ⇒ Δ

with possibly countable premises, then ℎ(D) = 𝑠𝑢𝑝𝑛 (ℎ(D𝑛)) + 1, where
the latter is a countable ordinal.

The next step is to introduce an appropriate measure for the complexity of labelled
formulas: this is crucial in order to carry out our proofs by induction. We recall
that labelled formulas may have the following forms: 𝑥 : 𝐴, 𝑎 ⊩∀ 𝐴, whereas
relational formulas are 𝑎 ∈ 𝑁 (𝑥), 𝑥 ∈ 𝑎.

Definition 6.6.1. The label of a formula 𝑥 : 𝐴 is 𝑥, the label of a formula 𝑎 ⊩∀ 𝐴
is 𝑎. The label of a formula 𝜙 is denoted by 𝑙 (𝜙). The pure part of a labelled
formula 𝜙 is obtained removing from 𝜙 the label and the forcing relation and is
denoted by 𝑝(𝜙). The notion of weight is defined for labels and pure parts of
formulas:

• For every 𝑥 and for every 𝑎, 𝑤(𝑥) = 0 and 𝑤(𝑎) = 1 + 𝑛(𝑚), where 𝑛(𝑚)
is the number of the occurrences of 𝑚 in 𝑎.

• The weight of a pure formula 𝐴, 𝑤(𝐴) is defined as follows:

– 𝑤(𝑝) = 𝑤(⊥) = 1

– 𝑤(𝐴 ◦ 𝐵) = 𝑠𝑢𝑝({𝑤(𝐴), 𝑤(𝐵)}) + 1, where ◦ ∈ {∧,∨, ⊃}

– 𝑤(𝐴→ 𝐵) = 𝑠𝑢𝑝({𝑤(𝐴), 𝑤(𝐵)}) + 2

– 𝑤( ∨
𝑘>0
𝐴𝑘 ) = 𝑠𝑢𝑝𝑘 (𝑤(𝐴𝑘 )) + 1

– 𝑤( &
𝑘>0
𝐴𝑘 ) = 𝑠𝑢𝑝𝑘 (𝑤(𝐴𝑘 )) + 1

– 𝑤( ∧
𝑘>0
𝐴𝑘 ) = 𝑠𝑢𝑝𝑘 (𝑤(𝐴𝑘 )) + 2
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The degree of a labelled formula 𝜙 is an ordered pair 𝑑𝑒𝑔(𝜙) = (𝑤(𝑝(𝜙)), 𝑤(𝑙 (𝜙))).
For relational formulas we stipulate 𝑑𝑒𝑔(𝑥 ∈ 𝑎) = 𝑑𝑒𝑔(𝑎 ∈ 𝑁 (𝑥)) = (0, 𝑤(𝑎)).
Degrees of labelled formulas are ordered lexicographically.

From the above definition it is clear that in general for every 𝑥, 𝑎 and 𝐴 we
have 𝑑𝑒𝑔(𝑥 : 𝐴) < 𝑑𝑒𝑔(𝑎 ⊩∀ 𝐴) and 𝑑𝑒𝑔(𝑎 ⊩ &

𝑘>0
𝐴𝑘 ) < 𝑑𝑒𝑔(

∧
𝑘>0
𝐴𝑘 ).

Lemma 6.6.1. Sequents of the form 𝜙, Γ ⇒ Δ, 𝜙 are derivable in G3I𝜔 for every
labelled formulas 𝜙 and for every Γ,Δ:

Proof. We proceed by transfinite induction on 𝑑𝑒𝑔(𝜙). We discuss the case of
𝜙 ≡ 𝑥 :

∧
𝑘>0
𝐴𝑘 .

... 𝐼𝐻

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ, 𝑥 :

∧
𝑘>0
𝐴𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐴𝑘

𝑅
∧

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ, 𝑥 :

∧
𝑘>0
𝐴𝑘

𝐿
∧

𝑥 :
∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ, 𝑥 :

∧
𝑘>0
𝐴𝑘

The top-sequent is derivable by induction hypothesis because 𝑑𝑒𝑔(𝑎 ⊩ &
𝑘>0
𝐴𝑘 ) <

𝑑𝑒𝑔( ∧
𝑘>0
𝐴𝑘 ). qed.

In the calculus G3I𝜔 labels are of two different kinds: either world labels
𝑥, 𝑦, 𝑧, ... or neighborhood labels 𝑎, 𝑏, 𝑐, .... In the system there are some rules
the sound application of which requires special condition on such labels, such
as the condition of being fresh. Therefore we need to prove height preserving
admissibility of substitution of labels. For every labelled or relational formula
𝜙 the operation of substitution can assume two different forms: 𝜙[𝑥/𝑦], i.e. the
substitution of every occurrence of 𝑥 in 𝜙 with 𝑦, and 𝜙[𝑎/𝑏] the substitution
of every occurrence of the neighborhood label 𝑎 with 𝑏. Given a multiset of
labelled formulas Γ we indicate with Γ[𝑥/𝑦] (Γ[𝑎/𝑏]) the multiset obtained by
substituting 𝑥 (𝑎) with 𝑦 (𝑏) in every labelled or relational formula 𝜙 which
occurs in Γ.

Lemma 6.6.2. The rules

Γ ⇒ Δ Sub [𝑥/𝑦 ]
Γ[𝑥/𝑦] ⇒ Δ[𝑥/𝑦]

Γ ⇒ Δ Sub [𝑎/𝑏]
Γ[𝑎/𝑏] ⇒ Δ[𝑎/𝑏]

are height-preserving admissible in G3I𝜔.

Proof. By induction on the height of the derivation D.
qed.
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Now we are in the position to prove height-preserving admissibility of weak-
ening.

Lemma 6.6.3. The rules:

Γ ⇒ Δ
𝐿𝑊

𝜙, Γ ⇒ Δ
Γ ⇒ Δ

𝑅𝑊
Γ ⇒ Δ, 𝜙

are height-preserving admissible for every multiset Γ,Δ and every 𝜙 labelled
formula 𝑥 : 𝐴, 𝑎 ⊩∀ 𝐴 or relational formula 𝑥 ∈ 𝑎, 𝑎 ∈ 𝑁 (𝑥).4

Proof. Straightforward by induction on the height of derivation, using height-
preserving admissibility of substitution whenever needed in order to avoid clashes
of variables. qed.

A rule is invertible if whenever the conclusion is derivable so are the premises.
We now show invertibility of the rules of G3I𝜔. We stress that this is one of
the main differences with respect to the unlabelled sequent calculus for infinitary
intuitionistic logic. In fact in the latter the right rules for

∧
and → are not

invertible due to the context restriction imposed on the premis(es). This has some
desirable consequences: first of all invertibility of the rules avoids backtracking,
furthermore it simplifies the structural analysis of the calculus and finally it
enables a direct proof of completeness via the construction of a suitable reduction
tree.

Lemma 6.6.4. Every rule of G3I𝜔 is height-preserving invertible.

Proof. We deal with the rule L→ and argue by induction on the height of
derivation. If 𝑛 = 0, then 𝑥 : 𝐴 → 𝐵, Γ ⇒ Δ is an initial sequent and so is
⊢G3I𝜔 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴 ⊃ 𝐵, Γ ⇒ Δ. If 𝑛 > 0, then we distinguish cases:
either 𝑥 : 𝐴 → 𝐵 is principal or not. In the first case we take the premise
applying, if necessary, height-preserving substitution. In the second case we
have to distinguish cases according to the last rule. If the last rule does not
have any restriction on neighborhood labels we apply the induction hypothe-
sis to the (possibly infinite) premise(s) and we conclude by an application of
the rule. If the last rule contains a condition on neighborhood labels, say, for
example, 𝐿

∧
, the premise is 𝑥 : 𝐴 → 𝐵, 𝑏 ∈ 𝑁 (𝑦), 𝑏 ⊩∀ &

𝑘>0
𝐴𝑘 , Γ

′ ⇒ Δ

and we can assume (due to admissibility of height-preserving substitution) that
𝑎 . 𝑏, hence we apply the induction hypothesis to the premise and we obtain

4Notice that relational formulas are not needed for 𝑅𝑊 , because due to the formulation of
the rules they are never active.
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𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴 ⊃ 𝐵, 𝑏 ∈ 𝑁 (𝑦), 𝑏 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ

′ ⇒ Δ, then we conclude by an
application of 𝐿

∧
.

We deal with the rule R& and we argue by induction on the height of deriva-
tion. If 𝑛 = 0, then Γ ⇒ Δ, 𝑥 : &

𝑘>0
𝐴𝑘 is an initial sequent and so is Γ ⇒ Δ, 𝑥 : 𝐴𝑘

for every 𝑘 > 0. If 𝑛 > 0, then either 𝑥 : &
𝑘>0
𝐴𝑘 is principal in the last rule

applied or not. In the first case we take the premises, in the second case we
distinguish cases according to the last rule applied. The general strategy consists
in applying the induction hypothesis and then concluding with an application of
the rule. We discuss the case in which the last rule applied is 𝐿

∨
with principal

formula 𝑦 :
∨
𝑡>0
𝐵𝑡 . For every 𝑘 > 0 we consider the (countably) infinite premises:

{𝑦 : 𝐵𝑡 , Γ′ ⇒ Δ, 𝑥 : &
𝑘>0
𝐴𝑘 | 𝑡 > 0}, hence we apply the induction hypothesis to

every premise to obtain {𝑦 : 𝐵𝑡 , Γ′ ⇒ Δ, 𝑥 : 𝐴𝑘 | 𝑡 > 0} and then we apply again
𝐿
∨

and we obtain the desired result.

qed.

The following lemma shows that the rules of contraction are height-preserving
admissible in G3I𝜔.

Lemma 6.6.5. The rules:

𝜙, 𝜙, Γ ⇒ Δ
𝐿𝐶

𝜙, Γ ⇒ Δ

Γ ⇒ Δ, 𝜙, 𝜙
𝑅𝐶

Γ ⇒ Δ, 𝜙

are height-preserving admissible.

Proof. The proof is by simultaneous induction on the height of derivations.
Base. If 𝑛 = 0, then 𝜙, 𝜙, Γ ⇒ Δ is an initial sequent and the same holds for

𝜙, Γ ⇒ Δ.
Induction step If 𝑛 > 0, then we distinguish cases: either 𝜙 is principal in the

last rule applied or not. In the latter case we apply the induction hypothesis to
the (possibly infinite) premise(s) and we apply the rule again.

If 𝜙 is principal then we distinguish between two kinds of rules. If in the last
rule the principal formula 𝜙 is repeated in the premise5 we apply the induction
hypothesis and then the rule again.6

We discuss the other cases, which are 𝐿∧, 𝑅∧, 𝐿∨, 𝑅∨, 𝐿 ⊃, 𝑅 ⊃, 𝐿 →
, 𝐿

∧
, 𝐿

∨
, 𝑅&, 𝑅 ⊩∀. Propositional cases 𝐿∧, 𝑅∧, 𝐿∨, 𝑅∨, 𝑅 ⊃, 𝐿 ⊃ are dealt

with as usual, making use of height-preserving invertibility of the usual rules.
With respect to 𝐿 → we consider the following situation:

5Notice that such rules are single premise ones.
6The only problematic case could be 𝐶 if the conclusion is 𝑎 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, but

that case is dealt with the closure condition.
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𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴 ⊃ 𝐵, 𝑥 : 𝐴→ 𝐵, Γ ⇒ Δ
𝐿 →, 𝑎 fresh

𝑥 : 𝐴→ 𝐵, 𝑥 : 𝐴→ 𝐵, Γ ⇒ Δ

We apply height-preserving invertibility to the premise to obtain 𝑎 ∈ 𝑁 (𝑥), 𝑎 ∈
𝑁 (𝑥), 𝑎 ⊩∀ 𝐴 ⊃ 𝐵, 𝑎 ⊩∀ 𝐴 ⊃ 𝐵, Γ ⇒ Δ, then we apply the induction hypothesis
and we obtain 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴 ⊃ 𝐵, Γ ⇒ Δ and we conclude by 𝐿 → (notice
that the freshness condition is respected).

If the last rule is an infinitary one, say 𝐿
∨

, we have:

{𝑥 : 𝐴𝑘 , 𝑥 :
∨
𝑘>0
𝐴𝑘 , Γ ⇒ Δ | 𝑘 > 0}

𝐿
∨

𝑥 :
∨
𝑘>0
𝐴𝑘 , 𝑥 :

∨
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

We apply height-preserving invertibility to every premise and we obtain countably
infinite derivations {𝑥 : 𝐴𝑘 , 𝑥 : 𝐴𝑘 , Γ ⇒ Δ | 𝑘 > 0}, hence we apply to every
such derivation the induction hypothesis which yields {𝑥 : 𝐴𝑘 , Γ ⇒ Δ | 𝑘 > 0}
and we conclude by 𝐿

∨
.

Finally we deal with 𝑅 ⊩∀:

𝑥 ∈ 𝑎, Γ,⇒ Δ, 𝑥 : 𝐴, 𝑎 ⊩∀ 𝐴
𝑅 ⊩∀ , 𝑥 fresh

Γ ⇒ Δ, 𝑎 ⊩∀ 𝐴, 𝑎 ⊩∀ 𝐴

We apply height-preserving invertibility to the premise to obtain a derivation of
𝑥 ∈ 𝑎, 𝑥 ∈ 𝑎, Γ,⇒ Δ, 𝑥 : 𝐴, 𝑥 : 𝐴 of the same height, then we apply the induction
hypothesis which yields 𝑥 ∈ 𝑎, Γ,⇒ Δ, 𝑥 : 𝐴 and then we apply again the rule
(notice that the freshness condition is respected). qed.

Now we can prove the admissibility of the rule:

𝑥 : 𝐴, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴, Γ ⇒ Δ
𝑀𝑜𝑛+

𝑥 : 𝐴, Γ ⇒ Δ

which corresponds in a sense to the semantical persistence lemma. In order to
do so we have to prove some preliminary results.

Lemma 6.6.6. The following rules are admissible:

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑐 ⊩∀ 𝐴 ∧ 𝐵, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ
𝑀𝑜𝑛∧

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ

𝑎 ⊩∀
∨
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝑀𝑜𝑛∨
𝑎 ⊩∀ 𝐴𝑘 , Γ ⇒ Δ

𝑎 ⊩∀ 𝐴 ∨ 𝐵, Γ ⇒ Δ
𝑀𝑜𝑛∨

𝑎 ⊩∀ 𝐴, Γ ⇒ Δ

𝑚(𝑎) ⊩∀ ∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝑀𝑜𝑛∧
𝑎 ⊩∀ &

𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝑚(𝑎) ⊩∀ 𝐴→ 𝐵, Γ ⇒ Δ
𝑀𝑜𝑛→

𝑎 ⊩∀ 𝐴 ⊃ 𝐵, Γ ⇒ Δ
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Proof. We proceed by induction on the height of derivations. We discuss the
cases [𝑀𝑜𝑛∧] and [𝑀𝑜𝑛∧], the other cases are analogous.

𝑀𝑜𝑛∧. If 𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑐 ⊩∀ 𝐴 ∧ 𝐵, 𝑎 ⊩∀

𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ is an initial sequent, then so is the conclusion. If 𝑐 ⊩∀ 𝐴 ∧ 𝐵
is not principal we apply the induction hypothesis to the premises and then we
the rule again. If the last rule is 𝐿 ⊩ with 𝑐 ⊩∀ 𝐴 ∧ 𝐵 we have:

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑦 ∈ 𝑐, 𝑦 : 𝐴∧𝐵, 𝑐 ⊩∀ 𝐴∧𝐵, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ

We proceed as follows:

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑦 ∈ 𝑐, 𝑦 : 𝐴 ∧ 𝐵, 𝑐 ⊩∀ 𝐴 ∧ 𝐵, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ
𝑊𝑒𝑎𝑘

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑦 ∈ 𝑐, 𝑦 ∈ 𝑎, 𝑦 ∈ 𝑏, 𝑦 : 𝐴 ∧ 𝐵, 𝑐 ⊩∀ 𝐴 ∧ 𝐵, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ
𝐼𝑛𝑣𝐿∧

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑦 ∈ 𝑐, 𝑦 ∈ 𝑎, 𝑦 ∈ 𝑏, 𝑦 : 𝐴, 𝑦 : 𝐵, 𝑐 ⊩∀ 𝐴 ∧ 𝐵, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ
𝐼𝐻

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑦 ∈ 𝑐, 𝑦 ∈ 𝑎, 𝑦 ∈ 𝑏, 𝑦 : 𝐴, 𝑦 : 𝐵, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ
𝐿 ⊩∀

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑦 ∈ 𝑐, 𝑦 ∈ 𝑎, 𝑦 ∈ 𝑏, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ
𝐿 ⊆

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑦 ∈ 𝑐, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, Γ ⇒ Δ

𝑀𝑜𝑛∧. If 𝑚(𝑎) ⊩∀ ∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ is an initial sequent, so is 𝑎 ⊩∀ &

𝑘>0
𝐴𝑘 , Γ ⇒ Δ.

If 𝑚(𝑎) ⊩∀ ∧
𝑘>0
𝐴𝑘 is not principal the proof is straightforward via induction

hypothesis. If 𝑚(𝑎) ⊩∀ ∧
𝑘>0
𝐴𝑘 is principal we have:

𝑥 ∈ 𝑚(𝑎), 𝑚(𝑎) ⊩∀ ∧
𝑘>0
𝐴𝑘 , 𝑥 :

∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝐿 ⊩∀

𝑥 ∈ 𝑚(𝑎), 𝑚(𝑎) ⊩∀ ∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

Thus we construct the following derivation:

𝑥 ∈ 𝑚(𝑎), 𝑚(𝑎) ⊩∀ ∧
𝑘>0
𝐴𝑘 , 𝑥 :

∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝐼𝑛𝑣
∧

𝑥 ∈ 𝑚(𝑎), 𝑎 ∈ 𝑁 (𝑥), 𝑚(𝑎) ⊩∀ ∧
𝑘>0
𝐴𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝐼𝐻

𝑥 ∈ 𝑚(𝑎), 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝐶𝑡𝑟

𝑥 ∈ 𝑚(𝑎), 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝐿𝑚

𝑥 ∈ 𝑚(𝑎), 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

qed.

Theorem 6.6.7. For every 𝐴 ∈ FM𝜔, the rule:

𝑥 : 𝐴, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴, Γ ⇒ Δ
𝑀𝑜𝑛+, 𝑎 fresh

𝑥 : 𝐴, Γ ⇒ Δ

is admissibile in G3I𝜔.
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Proof. We proceed by induction on the degree of the formula 𝐴 ∈ FM𝜔.7 If
𝐴 ≡ 𝑝, then 𝑀𝑜𝑛+ reduces to 𝑀𝑜𝑛.

If 𝐴 ≡ 𝐵 ∧ 𝐶 we proceed as follows:

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑐 ⊩∀ 𝐴 ∧ 𝐵, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, 𝑥 : 𝐴, 𝑥 : 𝐵, 𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ
𝑀𝑜𝑛∧

𝑐 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, 𝑥 : 𝐴, 𝑥 : 𝐵, 𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ
𝑃𝑟𝑒𝑏𝑎𝑠𝑖𝑐

𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴, 𝑏 ⊩∀ 𝐵, 𝑥 : 𝐴, 𝑥 : 𝐵, 𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ
𝐼𝐻

𝑥 : 𝐴, 𝑥 : 𝐵, 𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ
𝐿∧

𝑥 : 𝐴 ∧ 𝐵, 𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ
𝐶𝑡𝑟

𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ

If 𝐴 ≡ ∧
𝑘>0
𝐵𝑘 , we proceed as follows:

𝑎 ∈ 𝑁 (𝑥), 𝑚(𝑎) ∈ 𝑁 (𝑥), 𝑥 :
∧
𝑘>0
𝐵𝑘 , 𝑚(𝑎) ⊩∀ ∧

𝑘>0
𝐵𝑘 , Γ ⇒ Δ

𝑀𝑜𝑛∧
𝑎 ∈ 𝑁 (𝑥), 𝑚(𝑎) ∈ 𝑁 (𝑥), 𝑥 :

∧
𝑘>0
𝐵𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐵𝑘 , Γ ⇒ Δ

𝐿𝑚

𝑎 ∈ 𝑁 (𝑥), 𝑥 :
∧
𝑘>0
𝐵𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐵𝑘 , Γ ⇒ Δ

𝐿
∧

𝑥 :
∧
𝑘>0
𝐵𝑘 , 𝑥 :

∧
𝑘>0
𝐵𝑘 , Γ ⇒ Δ

𝐶𝑡𝑟
𝑥 :

∧
𝑘>0
𝐵𝑘 , Γ ⇒ Δ

The other cases are similar to the ones discussed. qed.

We give an example of a derivation: ⊢G3I𝜔⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴).

𝑎 ∈ 𝑁 (𝑥), 𝑦 ∈ 𝑎, 𝑧 ∈ 𝑏, 𝑏 ∈ 𝑁 (𝑦), 𝑏 ⊩∀ 𝐴, 𝑦 : 𝐴, 𝑧 : 𝐵, 𝑧 : 𝐴⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴), 𝑦 : 𝐵 → 𝐴, 𝑧 : 𝐴
𝐿 ⊩∀

𝑎 ∈ 𝑁 (𝑥), 𝑦 ∈ 𝑎, 𝑧 ∈ 𝑏, 𝑏 ∈ 𝑁 (𝑦), 𝑏 ⊩∀ 𝐴, 𝑦 : 𝐴, 𝑧 : 𝐵 ⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴), 𝑦 : 𝐵 → 𝐴, 𝑧 : 𝐴
𝑅 ⊃

𝑎 ∈ 𝑁 (𝑥), 𝑦 ∈ 𝑎, 𝑧 ∈ 𝑏, 𝑏 ∈ 𝑁 (𝑦), 𝑏 ⊩∀ 𝐴, 𝑦 : 𝐴⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴), 𝑦 : 𝐵 → 𝐴, 𝑧 : 𝐵 ⊃ 𝐴
𝑅 ⊩∀

𝑎 ∈ 𝑁 (𝑥), 𝑦 ∈ 𝑎, 𝑏 ∈ 𝑁 (𝑦), 𝑏 ⊩∀ 𝐴, 𝑦 : 𝐴⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴), 𝑦 : 𝐵 → 𝐴, 𝑏 ⊩∀ 𝐵 ⊃ 𝐴
𝑅 →

𝑎 ∈ 𝑁 (𝑥), 𝑦 ∈ 𝑎, 𝑏 ∈ 𝑁 (𝑦), 𝑏 ⊩∀ 𝐴, 𝑦 : 𝐴⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴), 𝑦 : 𝐵 → 𝐴
𝑀𝑜𝑛+

𝑎 ∈ 𝑁 (𝑥), 𝑦 ∈ 𝑎, 𝑦 : 𝐴⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴), 𝑦 : 𝐵 → 𝐴
𝑅 ⊃

𝑎 ∈ 𝑁 (𝑥), 𝑦 ∈ 𝑎 ⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴), 𝑦 : 𝐴 ⊃ (𝐵 → 𝐴)
𝑅 ⊩∀

𝑎 ∈ 𝑁 (𝑥) ⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴), 𝑎 ⊩∀ 𝐴 ⊃ (𝐵 → 𝐴)
𝑅 →

𝑎 ∈ 𝑁 (𝑥) ⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴)
𝑁𝑜𝑛𝑑𝑒𝑔

⇒ 𝑥 : 𝐴→ (𝐵 → 𝐴)

The topsequent is derivable.
We are now in the position to state and prove the main structural property

of our calculus G3I𝜔, namely cut elimination. However since our calculus is
infinitary we have to make some modifications: in particular the notion of sum
of the heights of the derivations has to be changed. We use the natural sum of
ordinals, denoted by #, which has the following two useful properties: 𝛼#𝛽 = 𝛽#𝛼
and if 𝛼 < 𝛼′, then 𝛼#𝛽 < 𝛼′#𝛽 (100).

7FM𝜔 is the language of intuitionistic infinitary logic, thus 𝐴 does not contain & or ⊃: in
those cases the lemma would not hold.
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Theorem 6.6.8. The rule:

Γ ⇒ Δ, 𝜙 𝜙, Γ′ ⇒ Δ′
𝐶𝑢𝑡

Γ, Γ′ ⇒ Δ,Δ′

where 𝜙 is a labelled formula8 is admissible in G3I𝜔.

Proof. We proceed by double transfinite induction on lexicographically ordered
pairs with main induction hypothesis on the weight of the cut formula and sec-
ondary induction hypothesis on the natural sum of height of derivations of the
premises of the cut.

We distinguish five cases: ⟨𝐼𝑛, ?⟩ and ⟨?, 𝐼𝑛⟩, i.e. the cases in which one of
the two premises is an initial sequent, ⟨𝑃𝑟, 𝑃𝑟⟩, i.e. the case in which the cut
formula is principal in both premises, ⟨𝑛𝑃𝑟, ?⟩ and ⟨?, 𝑛𝑃𝑟⟩, i.e. cases in which
cut formula is not principal in one of the two premises.

The first and the second case are similar. We deal with the first. Then we
have the following situation:

𝐴𝑥
Γ ⇒ Δ, 𝜙 𝜙, Γ′ ⇒ Δ′

𝐶𝑢𝑡
Γ, Γ′ ⇒ Δ,Δ′

Hence we distinguish two subcases: either 𝜙 is active in Γ,⇒ Δ, 𝜙 or not. In the
first case then 𝜙 ≡ 𝑥 : 𝑝 and Γ ≡ Γ′′, 𝑥 : 𝑝, therefore we apply admissibility of
weakening to the second premise of cut to obtain the desired conclusion. In the
second case the sequent Γ, Γ′ ⇒ Δ,Δ′ is an initial sequent as well.

We deal with the cases in which the cut formula is principal in both premises.9
Propositional cases in which the cut formula is of the form 𝐴∨𝐵, 𝐴 ⊃ 𝐵 or 𝐴∧𝐵
are dealt with as usual, thus we consider the other cases. Let us first consider a
case in which the cut formula is

∧
𝑘>0
𝐴𝑘 .

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐴𝑘

𝑅
∧

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘

𝑏 ∈ 𝑁 (𝑥), 𝑏 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ

′,⇒,Δ′

𝐿
∧

𝑥 :
∧
𝑘>0
𝐴𝑘 , Γ

′ ⇒ Δ′

𝐶𝑢𝑡
𝑎 ∈ 𝑁 (𝑥), Γ, Γ′ ⇒ Δ,Δ′

Then we proceed as follows:

8We can restrict to such cases, because relational formulas are never principal in the succedent
of a sequent due to the formulation of the rules.

9Notice that 𝑥 : 𝑝 cannot be principal in both premises, in fact although it can be principal in
an application of 𝑀𝑜𝑛 in the right premise of cut, in the left premise it can principal only in an
initial sequent and that case has already been detailed above.
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𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐴𝑘 𝑥 :

∧
𝑘>0
𝐴𝑘 , Γ

′ ⇒ Δ′

𝐶𝑢𝑡

𝑎 ∈ 𝑁 (𝑥), Γ, Γ′ ⇒ Δ,Δ′, 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘

𝑏 ∈ 𝑁 (𝑥), 𝑏 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ

′,⇒,Δ′

𝑆𝑢𝑏[𝑎/𝑏]
𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ &

𝑘>0
𝐴𝑘 , Γ

′,⇒,Δ′

𝐶𝑢𝑡
𝑎 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), Γ, Γ′, Γ′ ⇒ Δ,Δ′,Δ′

𝐶𝑡𝑟
𝑎 ∈ 𝑁 (𝑥), Γ, Γ′ ⇒ Δ,Δ′

The first cut is removed by secondary induction hypothesis on the natural sum
of the height of derivations, whereas the second one is removed by primary
induction hypothesis on the degree of the cut formula. The case for 𝐿 → is
analogous.

We deal with the case in which the principal formula is &
𝑘>0
𝐴𝑘 :

{Γ ⇒ Δ, 𝑥 : 𝐴𝑘 | 𝑘 > 0}
𝑅&

Γ ⇒ Δ, 𝑥 : &
𝑘>0
𝐴𝑘

𝑥 : &
𝑘>0
𝐴𝑘 , 𝑥 : 𝐴𝑘 , Γ′,⇒,Δ′

𝐿&
𝑥 : &

𝑘>0
𝐴𝑘 , Γ

′ ⇒ Δ′

𝐶𝑢𝑡
Γ, Γ′ ⇒ Δ,Δ′

We observe that Γ ⇒ Δ, 𝑥 : 𝐴𝑘 has to be among the premises of the left premise
of the inference. The reduction procedure is as follows:

Γ ⇒ Δ, 𝑥 : 𝐴𝑘

Γ ⇒ Δ, 𝑥 : &
𝑘>0
𝐴𝑘 𝑥 : &

𝑘>0
𝐴𝑘 , 𝑥 : 𝐴𝑘 , Γ′,⇒,Δ′

𝐶𝑢𝑡
𝑥 : 𝐴𝑘 , Γ, Γ′ ⇒ Δ,Δ′

𝐶𝑢𝑡
Γ, Γ, Γ′ ⇒ Δ,Δ,Δ′

𝐶𝑡𝑟
Γ, Γ′ ⇒ Δ,Δ′

As before the left cut is eliminated via secondary induction hypothesis and the
second one via primary induction induction hypothesis on the degree of the cut
formula. The case of

∨
is dual.

If the cut formula is not principal in one of the two premises, we adopt the usual
strategy: in particular we permute upwards the application of cut and we apply
the secondary induction hypothesis on the sum of the heights of the derivations
in order to remove the cut formula (if necessary we apply height-preserving
substitution to avoid clashes of eigenvariables). qed.

In order to establish completeness for our labelled sequent system we first
have to prove that there is an embedding from the unlabelled sequent calculus
G3i𝜔 into it. Given a finite multiset of formulas Γ, 𝑥 : Γ denotes the multiset
obtained labelling each formula in Γ by 𝑥.

Lemma 6.6.9. If G3i𝜔 ⊢ Γ ⇒ Δ, then G3I𝜔 ⊢ 𝑥 : Γ ⇒ 𝑥 : Δ

Proof. The proof is by induction on the height of derivations in G3i𝜔.
If 𝑛 = 0, then Γ ⇒ Δ is an initial sequent in G3i𝜔 and 𝑥 : Γ ⇒ 𝑥 : Δ is an

initial sequent in G3I𝜔.
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If 𝑛 > 0 we distinguish cases according to the last rule applied. Cases
𝐿∧, 𝑅∧, 𝐿∨, 𝑅∨, 𝐿∨ and 𝑅

∨
are straightforward by induction hypothesis. We

discuss the cases for the connectives → and
∧

.
If the last rule applied is 𝑅 → we have:

𝐴, Γ ⇒ 𝐵
R→

Γ ⇒ Δ, 𝐴→ 𝐵

Let 𝐴1, ..., 𝐴𝑛 be the formulas in Γ. We construct the following derivation:

𝑥 : 𝐴1, ..., 𝑥 : 𝐴𝑛, 𝑥 : 𝐴⇒ 𝑥 : 𝐵
𝑆𝑢𝑏[𝑥/𝑦 ]

𝑦 : 𝐴1, ..., 𝑦 : 𝐴𝑛, 𝑦 : 𝐴⇒ 𝑦 : 𝐵
𝐿∧

𝑦 : 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑦 : 𝐴⇒ 𝑦 : 𝐵
𝑊𝑒𝑎𝑘

𝑦 ∈ 𝑎, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑦 : 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑦 : 𝐴, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 : 𝐴→ 𝐵, 𝑦 : 𝐵
𝐿 ⊩∀

𝑦 ∈ 𝑎, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑦 : 𝐴, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 : 𝐴→ 𝐵, 𝑦 : 𝐵
𝑅 ⊃

𝑦 ∈ 𝑎, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 : 𝐴→ 𝐵, 𝑦 : 𝐴 ⊃ 𝐵
𝑅 ⊩∀

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 : 𝐴→ 𝐵, 𝑎 ⊩∀ 𝐴 ⊃ 𝐵
𝑅 →

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 : 𝐴→ 𝐵
𝑀𝑜𝑛+

𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 : 𝐴→ 𝐵
𝐼𝑛𝑣∧

𝑥 : 𝐴1, ..., 𝑥 : 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 : 𝐴→ 𝐵

We can apply the admissible rule 𝑀𝑜𝑛+ because every formula 𝐴𝑖 is a formula
in the language of infinitary intuitionistic logic and therefore the same holds for
𝐴1 ∧ ... ∧ 𝐴𝑛.

The case of 𝐿
∧

is similar to the one of 𝐿 → and we omit the details, instead
we focus on 𝑅

∧
. If the last rule applied is 𝑅

∧
we have:

{Γ ⇒ 𝐵𝑘 | 𝑘 > 0}
R
∧

Γ ⇒ Δ,
∧
𝑘>0
𝐵𝑘

Let 𝐴1, ..., 𝐴𝑛 be the formulas in Γ. We construct the following derivation:

{𝑥 : 𝐴1, ..., 𝑥 : 𝐴𝑛 ⇒ 𝑥 : 𝐵𝑘 | 𝑘 > 0}
𝑆𝑢𝑏[𝑥/𝑦 ]

{𝑦 : 𝐴1, ..., 𝑦 : 𝐴𝑛 ⇒ 𝑦 : 𝐵𝑘 | 𝑘 > 0}
𝐿∧

{𝑦 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑦 : 𝐵𝑘 | 𝑘 > 0}
𝑊𝑒𝑎𝑘

{𝑦 ∈ 𝑎, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑦 : 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 :
∧
𝑘>0
𝐵𝑘 , 𝑦 : 𝐵𝑘 | 𝑘 > 0}

𝐿 ⊩∀

{𝑦 ∈ 𝑎, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 :
∧
𝑘>0
𝐵𝑘 , 𝑦 : 𝐵𝑘 | 𝑘 > 0}

𝑅&
𝑦 ∈ 𝑎, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 :

∧
𝑘>0
𝐵𝑘 , 𝑦 : &

𝑘>0
𝐵𝑘

𝑅 ⊩∀

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 :
∧
𝑘>0
𝐵𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐵𝑘

𝑅
∧

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴1 ∧ ... ∧ 𝐴𝑛, 𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 :
∧
𝑘>0
𝐵𝑘

𝑀𝑜𝑛+
𝑥 : 𝐴1 ∧ ... ∧ 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 :

∧
𝑘>0
𝐵𝑘

𝐼𝑛𝑣∧
𝑥 : 𝐴1, ..., 𝑥 : 𝐴𝑛 ⇒ 𝑥 : Δ, 𝑥 :

∧
𝑘>0
𝐵𝑘

qed.

Corollary (Completeness). G3I𝜔 ⊢⇒ 𝑥 : 𝐴 iff ⊨ 𝐴.
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Proof. From left to right (soundness) the proof is straightforward by induction
on the height of derivation.

From right to left, if ⊨N 𝐴, then by completeness of G3i𝜔 we have G3i𝜔 ⊢⇒ 𝐴

and thus by the embedding we obtain G3I𝜔 ⊢⇒ 𝑥 : 𝐴. qed.

We have obtained a cut free sequent calculus for intuitionistic infinitary logic
with full invertibility of every rule, thus it is also possible to obtain a more direct
proof of completeness via the construction of a suitable reduction tree.

6.7 Neighborhood semantics for infinitary S4 modal
logic

6.7.1 Infinitary S4 modal logic

Before proceeding, we have to briefly recall some notions relative to the language
and the semantics of modal logic.

Definition 6.7.1. The language of infinitary modal logic contains a countably
infinite set of propositional atoms 𝐴𝑇 and connectives ⊥,∧,∨,→,

∨
,
∧

and □.
The set of formulas of modal infinitary logic FM□𝜔 is defined inductively as usual.

The notation¬𝐴 abridges 𝐴→ ⊥. We first introduce a measure of complexity
for formulas which requires to be formulated in terms of ordinals, as formulas
now include expressions of infinitary length.

Definition 6.7.2. The weight of a formula 𝐴, 𝑤(𝐴), is defined as follows:

• 𝑤(𝑝) = 𝑤(⊥) = 1

• 𝑤(𝐴 ◦ 𝐵) = 𝑠𝑢𝑝({𝑤(𝐴), 𝑤(𝐵)}) + 1, where ◦ ∈ {∧,∨,→}

• 𝑤(□𝐴) = 𝑤(𝐴) + 1

• 𝑤( ∨
𝑘>0
𝐴𝑘 ) = 𝑠𝑢𝑝𝑘 (𝑤(𝐴𝑘 )) + 1

• 𝑤( ∧
𝑘>0
𝐴𝑘 ) = 𝑠𝑢𝑝𝑘 (𝑤(𝐴𝑘 )) + 1

We recall neighborhood semantics for modal logics: since we will be mainly
focused on system S4, we will discuss neighborhood frames for system K and its
extensions, namely for normal modal logics (16).

Definition 6.7.3. A K neighborhood frame is a pair ⟨𝑊, 𝑁⟩ with 𝑊 ≠ ∅ and
𝑁 : 𝑊 → P(P(𝑊)) such that:
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1. If 𝑎, 𝑏 ∈ 𝑁 (𝑥), then 𝑎 ∩ 𝑏 ∈ 𝑁 (𝑥)

2. If 𝑎 ∈ 𝑁 (𝑥) and 𝑎 ⊆ 𝑏, then 𝑏 ∈ 𝑁 (𝑥)

3. 𝑊 ∈ 𝑁 (𝑥) for every 𝑥 ∈ 𝑊

A T neighborhood frame is a frame in which for every 𝑥 ∈ 𝑊 , if 𝑎 ∈ 𝑁 (𝑥), then
𝑥 ∈ 𝑎. An S4 neighborhood frame is a T frame in which for every 𝑥 ∈ 𝑊 , if
𝑎 ∈ 𝑁 (𝑥), then {𝑦 | 𝑎 ∈ 𝑁 (𝑦)} ∈ 𝑁 (𝑥).

It is easy to observe that S4 neighborhood frames actually coincide with in-
finitary intuitionistic neighborhood frames (69; 103).10 We now introduce neigh-
borhood models for infinitary modal logics and their satisfiability conditions. In
what follows, we introduce the following abbreviations. Given a neighborhood
frame ⟨𝑊, 𝑁⟩ and a neighborhood 𝑎 in 𝑁 (𝑥) where 𝑥 is a world in 𝑊 , we de-
note by 𝑚(𝑎) the set {𝑦 | 𝑎 ∈ 𝑁 (𝑦)} ∈ 𝑁 (𝑥). We now introduce the notion
of neighborhood model for infinitary modal logic and the truth conditions for a
formula at a world. With a slight abuse of notation, we sometimes use first-order
quantifiers in an informal manner as an abbreviation of for every and for some in
the metalanguage.

Definition 6.7.4. An S4 neighborhood model for infinitary modal logic is a triple
M = ⟨𝑊, 𝑁, 𝑣⟩ where ⟨𝑊, 𝑁⟩ is a S4 neighborhood frame and 𝑣 : 𝐴𝑇 → 𝑃(𝑊)
is a valuation function. For every world 𝑥 ∈ 𝑊 and every formula 𝐴 ∈ FM□𝜔 the
satisfiability condition in the model M, 𝑥 ⊩ 𝐴, is defined inductively as follows:

• 𝑥 ⊩ 𝑝 if and only if 𝑥 ∈ 𝑣(𝑝)

• 𝑥 ⊮ ⊥

• 𝑥 ⊩ 𝐵 ∧ 𝐶 if and only if 𝑥 ⊩ 𝐵 and 𝑥 ⊩ 𝐶

• 𝑥 ⊩ 𝐵 ∨ 𝐶 if and only if 𝑥 ⊩ 𝐵 or 𝑥 ⊩ 𝐶

• 𝑥 ⊩ 𝐵 → 𝐶 if and only if 𝑥 ⊮ 𝐵 or 𝑥 ⊩ 𝐶

• 𝑥 ⊩
∨
𝑘>0
𝐵𝑘 if and only if 𝑥 ⊩ 𝐵𝑘 for some 𝑘 > 0

• 𝑥 ⊩
∧
𝑘>0
𝐵𝑘 if and only if 𝑥 ⊩ 𝐵𝑘 for every 𝑘 > 0

• 𝑥 ⊩ □𝐵 if and only if ∃𝑎 ∈ 𝑁 (𝑥)∀𝑦 ∈ 𝑎 (𝑦 ⊩ 𝐵)

10See also (102) for a study of neighborhood frames and infinitary modal logic from the
perspective of duality theory.
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Axioms

The axioms of the classical logic 𝐶, plus:

C1.
∧
𝑘>0
𝐴𝑘 → 𝐴𝑘 (for every 𝑘) C2. 𝐴𝑘 →

∨
𝑘>0
𝐴𝑘 (for every 𝑘)

C3.
∧
𝑘>0

(𝐴→ 𝐵𝑘 ) → (𝐴→ ∧
𝑘>0
𝐵𝑘 ) C4.

∧
𝑘>0

(𝐴𝑘 → 𝐵) → ( ∨
𝑘>0
𝐴𝑘 → 𝐵)

4 □𝐴→ □□𝐴 T □𝐴→ 𝐴

K □(𝐴→ 𝐵) → (□𝐴→ □𝐵)

Inference Rules

Γ ⊢ 𝐴 Γ ⊢ 𝐴→ 𝐵 MP
Γ ⊢ 𝐵

⊢ 𝐴
𝑅𝑁

Γ ⊢ □𝐴
{Γ ⊢ 𝐴𝑘 }𝑘>0

𝐴𝑑 𝑗
Γ ⊢ ∧

𝑘>0
𝐴𝑘

Figure 6.3: S4𝜔

A formula 𝐴 is true in a neighborhood model M if it is true at every world in the
model. A formula 𝐴 is valid in a class of frames C, in symbols ⊨C 𝐴, if it is true
in every world in every model based on a frame in the class.

Furthermore, we recall the notion of universal forcing: we write 𝑎 ⊩∀ 𝐴 to
express the fact that every world in 𝑎 satisfies 𝐴. The satisfiability condition for the
modality operator is usually presented as 𝑥 ⊩ □𝐵 if and only if ∃𝑎 ∈ 𝑁 (𝑥) (𝑎 ⊩∀

𝐵) and for every 𝑦, if 𝑦 ⊩ 𝐵, then 𝑦 ∈ 𝑎, but in the case of neighborhood models
based on monotonic frames the condition can be streamlined as above (79).

We write ⊨𝑆4 𝐴 to denote that 𝐴 is valid in the class of infinitary S4 neighbor-
hood frames. We are now going to prove that the axiomatisation in Figure 6.3 is
complete with respect to the semantic of infinitary S4 neighborhood frames. We
define derivations in the axiomatic calculus as infinitary branching well-founded
trees.

Definition 6.7.5. A derivation in the axiomatic calculus S4𝜔 is a (possibly)
infinitely branching well-founded tree where leaves are labelled by expressions
of the form Γ ⊢ 𝐴, where Γ is a finite set of formulas and either 𝐴 ∈ Γ or 𝐴 is an
instance of an axiom of the calculus, the tree is built according to locally correct
applications of the rules 𝑅𝑁 , 𝐴𝑑𝑗 and 𝑀𝑃 and the conclusion is the root of the
tree.
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This definition clearly subsumes the standard one in axiomatic calculi: a
derivation of a formula ⊢ 𝐴 is simply a derivation of 𝐴 from the empty set ∅. The
presence of the set of assumptions Γ models the derivability under assumptions
in a Hilbert-style system and - together with the built-in weakening in the rule
RN - allows one to establish the deduction theorem. Since derivation are now
(possibly) infinitely branching well-founded rooted tree, the height of a derivation
in S4𝜔 needs to be measured by ordinals.

Definition 6.7.6. The height of a derivation in S4𝜔 is the length of its longest
branch. Given a derivation D, its height ℎ(D) is thus defined:

1. If D is axiom, then ℎ(D) = 0

2. If D is of the form:

...

... D𝑛

Γ𝑛 ⇒ Δ𝑛 ...

Γ ⇒ Δ

with possibly countable premises, then ℎ(D) = 𝑠𝑢𝑝𝑛 (ℎ(D𝑛)) + 1, where
the latter is a countable ordinal.

We first show the following fact.

Lemma 6.7.1. ⊢𝑆4𝜔
□
∧
𝑘>0
𝐴𝑘 →

∧
𝑘>0
□𝐴𝑘 .

Proof. We construct the following derivation.

. . .

C1⊢ ∧
𝑘>0
𝐴𝑘 → 𝐴𝑘

RN⊢ □( ∧
𝑘>0
𝐴𝑘 → 𝐴𝑘 )

K⊢ □( ∧
𝑘>0
𝐴𝑘 → 𝐴𝑘 ) → (□∧

𝑘>0
𝐴𝑘 → □𝐴𝑘 )

MP⊢ □∧
𝑘>0
𝐴𝑘 → □𝐴𝑘 . . .

Adj
⊢ ∧𝑘>0(□

∧
𝑘>0
𝐴𝑘 → □𝐴𝑘 )

C3⊢ ∧𝑘>0(□
∧
𝑘>0
𝐴𝑘 → □𝐴𝑘 ) → (□∧

𝑘>0
𝐴𝑘 →

∧
𝑘>0 □𝐴𝑘 )

MP⊢ □∧
𝑘>0
𝐴𝑘 →

∧
𝑘>0 □𝐴𝑘

qed.

In other words the infinitary variant of the converse Barcan formula is deriv-
able in S4𝜔 and need not be explicitly added to the list of axioms. However, the
same does not hold with respect to the infinitary variant of the Barcan formula
which is not provable in S4𝜔, due to the fact that S4 neighborhood frames are
closed under finite intersections and not under infinite intersections.
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6.7.2 Soundness and completeness

In order to show the underivability of the Barcan formula we shall prove the
soundness theorem for our axiomatization and then provide a countermodel to
the Barcan formula.

Theorem 6.7.2 (Soundness). If ⊢𝑆4𝜔
𝐴, then ⊨𝑆4 𝐴.

Proof. The proof runs by induction on the height of the derivation of the formula
𝐴 in the calculus S4𝜔. The cases of the infinitary axioms and rules are straight-
forward by the truth conditions for the infinitary connectives. With respect to the
modal axioms the strategy follows the pattern detailed in (79). We limit ourselves
to observing that closure under infinite intersections is not required in order to
show the soundness of the axioms K, T and 4. In other words, closure under
finite intersections is sufficient in order to establish the soundness result for the
modal logic S4𝜔 (the same holds for the finitary modal system S4). qed.

We now can show that the (infinitary variant) of the Barcan formula is not
provable in S4𝜔.

Lemma 6.7.3. ⊬S4𝜔

∧
𝑘>0 □𝑝𝑘 → □

∧
𝑘>0 𝑝𝑘 .

Proof. Consider the following countermodel (see also (111) for a similar exam-
ple). Let 𝑊 = R and 𝑁 (𝑥) = {𝑎 | ∃𝑟 > 0((𝑥 − 𝑟, 𝑥 + 𝑟) ⊆ 𝑎)}. We define the
valuation 𝑣 : 𝐴𝑇 → R such that 𝑣(𝑞) = R \ {0} and 𝑣(𝑝𝑘 ) = (− 1

𝑘
, 1
𝑘
) for every

𝑘 > 0. We leave it to the reader to check that this is an S4 neighborhood model. It
is immediate to verify that 0 ⊩

∧
𝑘>0
□𝑝𝑘 , but 0 ⊮ □

∧
𝑘>0
𝑝𝑘 , therefore, by soundness

we obtain ⊬𝑆4𝜔

∧
𝑘>0
□𝑝𝑘 → □

∧
𝑘>0
𝑝𝑘 . Informally speaking, the intuition is that

each 𝑝𝑘 can be forced by a different neighborhood, but their intersection need not
be a neighborhood. qed.

We now focus on the proof of completeness, in which we make use once
again of the notion of environment introduced in (68) in the context of relational
semantics, albeit with some modifications. The notion of environment - in
this casa employed in a modal setting - is crucial in order to restrict ourselves to
consider countable sets of formulas with certain properties. The key insight is that
the environment of a countable multiset of formulas Γ contains enough formulas
so as to show useful properties of maximal consistent sets, but is not closed
under infinitary conjunctions and disjunctions. The upshot of the definition of
environment is that the environment of a countable set of formulas is a countable
set as well.
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We shall exploit this in order to prove the Lindenbaum lemma. We recall
that for every set of formulas Γ, 𝑆𝑢𝑏(Γ) denotes the set of subformulas of the
formulas in Γ.

Definition 6.7.7. Given a set of modal formulas Γ, the environment of Γ, E(Γ)
is the least subset of FM□ such that:

• 𝐴𝑇 ⊆ E(Γ) and ⊥ ∈ E(Γ).

• 𝑆𝑢𝑏(Γ) ⊆ E(Γ).

• E(Γ) is closed under subformulas and under ∧,∨,→,□.

• For every 𝐴 ∈ E(Γ) and every
∧
𝑘>0
𝐵𝑘 ∈ E(Γ), ∧

𝑘>0
(𝐴 ∨ 𝐵𝑘 ) ∈ E(Γ).

• For every 𝐴 ∈ E(Γ) and every
∧
𝑘>0
𝐵𝑘 ∈ E(Γ), if

∧
𝑘>0

(𝐴 → 𝐵𝑘 ) ∈ E(Γ),
then 𝐴→ ∧

𝑘>0
𝐵𝑘 ∈ E(Γ).

As before we observe that if Γ is countable, so is E(Γ). In order to show
that the calculus is complete it is convenient to show the admissibility of the so
called deduction theorem (see also (47) for an extensive discussion in the context
of finitary modal logic). We show that it holds for S4𝜔.

Theorem 6.7.4. If Γ, 𝐴 ⊢𝑆4𝜔
𝐵, then Γ ⊢𝑆4𝜔

𝐴→ 𝐵.

Proof. We argue by transfinite induction on the height of derivation in S4𝜔. We
limit ourselves to discussing the case of rule 𝐴𝑑𝑗 .

We have:

. . . Γ, 𝐴 ⊢ 𝐵𝑘 . . .
Adj

Γ, 𝐴 ⊢ ∧𝑘>0 𝐵𝑘

We proceed as follows:

. . .

Γ, 𝐴 ⊢ 𝐵𝑘 IH
Γ ⊢ 𝐴→ 𝐵𝑘 . . .

Adj
Γ ⊢ ∧𝑘>0(𝐴→ 𝐵𝑘 )

C3
Γ ⊢ ∧𝑘>0(𝐴→ 𝐵𝑘 ) → (𝐴→ ∧

𝑘>0 𝐵𝑘 ) MP
Γ ⊢ 𝐴→ ∧

𝑘>0 𝐵𝑘

qed.

Definition 6.7.8. Let Γ ⊆ FM□𝜔 be given, then:

1. Γ is consistent if Γ ⊬𝑆4𝜔
⊥.

2. Γ is saturated if:
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(a) Γ is consistent.

(b) Γ ∪ ¬Γ = E(Γ) where ¬Γ = {¬𝐴 | 𝐴 ∈ Γ}.

(c) If
∧
𝑘>0
𝐴𝑘 ∈ E(Γ), then: if for every 𝑘 > 0 𝐴𝑘 ∈ Γ, then

∧
𝑘>0
𝐴𝑘 ∈ Γ.

We start proving some properties of saturated sets.

Lemma 6.7.5. Let Γ be a saturated set of formulas, then the following statements
hold:

1. For every 𝐴 ∈ E(Γ), either 𝐴 ∈ Γ or ¬𝐴 ∈ Γ and not both.

2. For every 𝐴 ∈ E(Γ): if Γ ⊢𝑆4𝜔
𝐴, then 𝐴 ∈ Γ.

3. If
∧
𝑘>0
𝐴𝑘 ∈ E(Γ), then 𝐴𝑘 ∈ Γ for all 𝑘 > 0 if and only if

∧
𝑘>0
𝐴𝑘 ∈ Γ.

4. If
∨
𝑘>0
𝐴𝑘 ∈ E(Γ), then 𝐴𝑘 ∈ Γ for some 𝑘 > 0 if and only if

∨
𝑘>0
𝐴𝑘 ∈ Γ.

Proof. 1. Let us suppose that ¬𝐴 ∉ Γ. If ¬𝐴 ∉ Γ, then, since ¬𝐴 ∈ E(Γ),
we have that ¬𝐴 ∈ ¬Γ. Therefore, by definition of saturated set, we get
𝐴 ∈ Γ. Furthermore, it cannot be the case that 𝐴,¬𝐴 ∈ Γ, otherwise by
modus ponens we would get Γ ⊢𝑆4𝜔

⊥, against the definition of saturated
sets.

2. Let us assume that Γ ⊢𝑆4𝜔
𝐴. We observe that by 1. either 𝐴 ∈ Γ or

¬𝐴 ∈ Γ. In the first case we obtain the desired conclusion. In the second
case we observe that Γ would be inconsistent, against the definition of
saturated set.

3. From left to right we observe that the proof easily follows by the definition
of saturated set. From right to left we observe that if

∧
𝑘>0
𝐴𝑘 ∈ Γ, then by

the axiom
∧
𝑘>0
𝐴𝑘 → 𝐴𝑘 and modus ponens we obtain 𝐴𝑘 ∈ Γ for every

𝑘 > 0.

4. From left to right the claim easily follows. From right to left we assume
that

∨
𝑘>0
𝐴𝑘 ∈ Γ and we suppose that for every 𝑘 > 0 𝐴𝑘 ∉ Γ, thus ¬𝐴𝑘 ∈ Γ

for every 𝑘 > 0. By 𝐴𝑑𝑗 we obtain Γ ⊢ ∧
𝑘>0

(𝐴𝑘 → ⊥). By applying modus

ponens to Γ ⊢ ∧
𝑘>0

(𝐴𝑘 → ⊥) and the instance
∧
𝑘>0

(𝐴𝑘 → ⊥) → ( ∨
𝑘>0
𝐴𝑘 →

⊥) of the axiom C4, we get Γ ⊢ ∨
𝑘>0
𝐴𝑘 → ⊥, therefore Γ is inconsistent,

which is against the definition of saturated sets.
qed.
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We now proceed in the standard fashion, by proving the Lindenbaum lemma.

Lemma 6.7.6. Given a countable set of formulas Γ, if Γ is consistent, then for
every 𝐴 ∈ E(Γ), Γ ∪ {𝐴} or Γ ∪ {¬𝐴} is consistent.

Proof. Let us suppose that Γ is consistent and that Γ ∪ {𝐴} and Γ ∪ {¬𝐴} are
inconsistent, then it is easy to obtain, by the deduction theorem and the modus
ponens rule, that Γ is inconsistent. qed.

Lemma 6.7.7. Let Γ be a countable consistent set of formulas, then there is a
saturated set Δ and Δ ⊇ Γ.

Proof. We enumerate E(Γ) and construct the following sequence of sets:

• Γ0 = Γ

• Γ𝑛+1 =

– Γ ∪ {𝐴𝑛} if Γ ∪ {𝐴𝑛} is consistent.

– Γ ∪ {¬𝐴𝑛} if Γ ∪ {¬𝐴𝑛} is consistent and 𝐴𝑛 .
∧
𝑘>0
𝐵𝑘 .

– Γ ∪ {¬∧
𝑘>0
𝐵𝑘 ,¬𝐵𝑘 } for some 𝑘 > 0 if 𝐴𝑛 ≡

∧
𝑘>0
𝐵𝑘 and Γ ∪ {¬𝐴𝑛} is

consistent, where Γ ∪ {¬∧
𝑘>0
𝐵𝑘 ,¬𝐵𝑘 } is consistent.

We show that such 𝐵𝑘 always exists. Suppose otherwise, hence for every
𝑘 > 0 we have Γ,¬∧

𝑘>0
𝐵𝑘 ,¬𝐵𝑘 ⊢𝑆4𝜔

⊥. Thus by the deduction theorem we

get Γ,¬∧
𝑘>0
𝐵𝑘 ⊢𝑆4𝜔

¬¬𝐵𝑘 and, by propositional classical reasoning, we get

Γ,¬∧
𝑘>0
𝐵𝑘 ⊢𝑆4𝜔

𝐵𝑘 . An application of 𝐴𝑑𝑗 yields Γ,¬∧
𝑘>0
𝐵𝑘 ⊢𝑆4𝜔

∧
𝑘>0
𝐵𝑘 . As a

result, we obtain Γ,¬∧
𝑘>0
𝐵𝑘 ⊢𝑆4𝜔

⊥, against the hypothesis.

We now set Δ =
⋃
𝑛⩾0

Γ𝑛 and it is immediate to prove that Δ is a saturated set.

In fact, Δ is consistent and clearly Δ ∪ ¬Δ = E(Δ) = E(Γ). Let us suppose that∧
𝑘>0
𝐴𝑘 ∈ E(Δ) and that 𝐴𝑘 ∈ Δ for every 𝑘 > 0. If

∧
𝑘>0
𝐴𝑘 ∉ Δ, then ¬∧

𝑘>0
𝐴𝑘 ∈ Δ

by construction, therefore, again by construction, we have ¬𝐴𝑘 ∈ Δ for some
𝑘 > 0, against the consistency of Δ. qed.

We now proceed with the standard construction of a canonical neighborhood
model in order to complete our completeness proof. The proof is mostly standard
and follows the strategy detailed in (79). We introduce the following notation:
⟦𝐴⟧ = {𝑥 ∈ 𝑊 | 𝑥 ⊩ 𝐴} where 𝑊 is the set of worlds of a given neighborhood
model and |𝐴| = {Δ 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 | 𝐴 ∈ Δ}. As usual, the definitions are calibrated
in order to build a bridge between syntax and semantics. We now prove some
further properties of saturated sets.
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Lemma 6.7.8. The following statements hold:

1. |⊥| = ∅

2. |𝐴 ∧ 𝐵 | = |𝐴| ∩ |𝐵 |.

3. |𝐴 ∨ 𝐵 | ⊆ |𝐴| ∪ |𝐵 |. For every Γ ∈ |𝐴| ∪ |𝐵 |, if 𝐴 ∨ 𝐵 ∈ E(Γ), then
Γ ∈ |𝐴 ∨ 𝐵 |.

4. | ∧
𝑘>0
𝐴𝑘 | ⊆

⋂
𝑘>0

|𝐴𝑘 |. For every Γ ∈ ⋂
𝑘>0

|𝐴𝑘 |, if
∧
𝑘>0
𝐴𝑘 ∈ E(Γ), then Γ ∈

| ∧
𝑘>0
𝐴𝑘 |

5. | ∨
𝑘>0
𝐴𝑘 | ⊆

⋃
𝑘>0

|𝐴𝑘 |. For every Γ ∈ ⋃
𝑘>0

|𝐴𝑘 |, if
∨
𝑘>0
𝐴𝑘 ∈ E(Γ), then Γ ∈

| ∨
𝑘>0
𝐴𝑘 |

6. If |𝐴| ⊆ |𝐵 | then ⊢𝑆4𝜔
𝐴 → 𝐵. If ⊢𝑆4𝜔

𝐴 → 𝐵, Γ ∈ |𝐴| and 𝐴 → 𝐵 ∈
E(Γ), then Γ ∈ |𝐵 |.

Proof. Straightforward by the definition of the calculus S4𝜔 and the properties
of saturated sets. We prove in detail only items 4., 5. and 6., since 1 − 3 are
immediate.

4. If Γ ∈ | ∧
𝑘>0
𝐴𝑘 |, then Γ is saturated and

∧
𝑘>0
𝐴𝑘 ∈ Γ. Since Γ ⊢ ∧

𝑘>0
𝐴𝑘 → 𝐴𝑘

for every 𝑘 > 0, by properties of saturated sets we have 𝐴𝑘 ∈ Γ for every
𝑘 > 0, thus Γ ∈ ⋂

𝑘>0
|𝐴𝑘 |. The other side of the statement is thus proved:

let Γ ∈ ⋂
𝑘>0

|𝐴𝑘 | such that
∧
𝑘>0
𝐴𝑘 ∈ E(Γ) be given. We have 𝐴𝑘 ∈ Γ for

every 𝑘 > 0 and thus, again by the properties of saturated sets, we have∧
𝑘>0
𝐴𝑘 ∈ Γ and by definition Γ ∈ | ∧

𝑘>0
𝐴𝑘 |.

5. If Γ ∈ | ∨
𝑘>0
𝐴𝑘 |, then

∨
𝑘>0
𝐴𝑘 ∈ Γ and

∨
𝑘>0
𝐴𝑘 ∈ E(Γ). By the properties of

saturation of Γ, there is 𝑘 > 0 such that 𝐴𝑘 ∈ Γ, therefore Γ ∈ |𝐴𝑘 | ⊆⋃
𝑘>0

|𝐴𝑘 |. In the other direction we suppose Γ ∈ ⋃
𝑘>0

|𝐴𝑘 |, so there is 𝑘 > 0

such that Γ ∈ |𝐴𝑘 |. Thus 𝐴𝑘 ∈ Γ and
∨
𝑘>0
𝐴𝑘 ∈ E(Γ), since Γ ⊢𝑆4𝜔

𝐴𝑘 →∨
𝑘>0
𝐴𝑘 , by properties of saturated sets we obtain

∨
𝑘>0
𝐴𝑘 ∈ Γ and Γ ∈ | ∨

𝑘>0
𝐴𝑘 |.

6. Let us suppose |𝐴| ⊆ |𝐵 | and ⊬𝑆4𝜔
𝐴 → 𝐵, then {𝐴 ∧ ¬𝐵} is consistent.

There is a saturated set Γ such that 𝐴 ∧ ¬𝐵 ∈ Γ, thus Γ ∈ |𝐴| and Γ ∉ |𝐵 |,
but by hypothesis |𝐴| ⊆ |𝐵 |, so Γ ∈ |𝐵|, a contradiction. For the second
part of the proof, we assume that ⊢𝑆4𝜔

𝐴 → 𝐵 and Γ ∈ |𝐴|, so 𝐴 ∈ Γ and
Γ ⊢𝑆4𝜔

𝐵. Since 𝐵 ∈ E(Γ), by the properties of saturated sets, we have
𝐵 ∈ Γ and Γ ∈ |𝐵|.
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qed.

Definition 6.7.9. The canonical neighborhood model for S4𝜔 is a triple

M𝑐 = ⟨MAX, 𝑁, 𝑣⟩

where:

• MAX = {Γ ⊆ FM□𝜔 | |Γ| ⩽ ℵ0, 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑}

• 𝑁 : MAX → P(P(MAX)) such that for every Γ ∈ MAX,

𝑁 (Γ) = {𝑋 ⊆ MAX | 𝑒𝑥𝑖𝑠𝑡𝑠 𝐴 ( □𝐴 ∈ Γ 𝑎𝑛𝑑 |𝐴| ⊆ 𝑋) }

• 𝑣 : 𝐴𝑇 → P(MAX) such that 𝑣(𝑝) = {Γ ∈ 𝑀𝐴𝑋 | 𝑝 ∈ Γ}.

We now need to check that the neighborhood function 𝑁 is well defined and
that the canonical model is an S4 model. We start by showing that the function
𝑁 is well defined. In particular, we need to show that given two sets |𝐴| and |𝐵 |,
with |𝐴| = |𝐵 | and |𝐴| ∈ 𝑁 (Γ), it is never the case that ¬□𝐵 ∈ Γ (79). If 𝐵 is not
in E(Γ), then ¬□𝐵 ∉ E(Γ) and thus ¬□𝐵 ∉ Γ. The other case is discussed in the
following lemma.

Lemma 6.7.9. If |𝐴| ∈ 𝑁 (Γ), |𝐴| = |𝐵 | and 𝐵 ∈ E(Γ), then □𝐵 ∈ Γ.

Proof. Let us suppose that |𝐴| ∈ 𝑁 (Γ), |𝐴| = |𝐵 | and 𝐵 ∈ E(Γ). By definition
of 𝑁 there is |𝐶 | such that □𝐶 ∈ Γ and |𝐶 | ⊆ |𝐴|, from which we conclude that
⊢𝑆4𝜔

𝐶 → 𝐴. By applying the rule of necessitation and the rule of modus ponens
with a suitable instance of axiom 𝐾 we get ⊢𝑆4𝜔

□𝐶 → □𝐴. Furthermore,
by |𝐴| = |𝐵 | we get ⊢𝑆4𝜔

□𝐴 ↔ □𝐵 and by pure implicational reasoning we
conclude that Γ ⊢𝑆4𝜔

□𝐵, which yields □𝐵 ∈ Γ. qed.

Lemma 6.7.10. For every countable saturated setΓ and every formula 𝐴 ∈ E(Γ):

□𝐴 ∈ Γ if and only if |𝐴| ∈ 𝑁 (Γ)

Proof. From left to right the proof is immediate. From right to left we suppose
|𝐴| ∈ 𝑁 (Γ), then there is |𝐵| ∈ 𝑁 (Γ) such that |𝐵 | ⊆ |𝐴| and □𝐵 ∈ Γ by
definition of 𝑁 , therefore 𝐵 ∈ E(Γ). Since ⊢ 𝐵 → 𝐴, we get ⊢ □𝐵 → □𝐴.
Hence, we obtain Γ ⊢𝑆4𝜔

□𝐴 by modus ponens, which yields □𝐴 ∈ Γ. qed.

We now show that our canonical model is actually an S4 neighborhood model.
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Theorem 6.7.11. M𝑐 = ⟨𝑀𝐴𝑋, 𝑁, 𝑣⟩ is an S4 neighborhood model.

Proof. We verify the conditions imposed on the neighborhood S4 modal frames.

1. Let us suppose 𝑋,𝑌 ∈ 𝑁 (Γ), then by definition there are 𝐴, 𝐵 ∈ FM□𝜔 such
that |𝐴| ⊆ 𝑋 and |𝐵 | ⊆ 𝑌 and □𝐴 ∈ Γ, □𝐵 ∈ Γ. We have □(𝐴∧𝐵) ∈ E(Γ)
and so since Γ ⊢ □𝐴→ (□𝐵 → □(𝐴 ∧ 𝐵)), we conclude that □(𝐴 ∧ 𝐵) ∈
Γ. Furthermore |𝐴 ∧ 𝐵 | = |𝐴| ∩ |𝐵| and |𝐴| ∩ |𝐵 | ⊆ 𝑋 ∩ 𝑌 , therefore
𝑋 ∩ 𝑌 ∈ 𝑁 (Γ).

2. If 𝑋 ∈ 𝑁 (Γ) and 𝑋 ⊆ 𝑌 , then there is 𝐴 such that |𝐴| ⊆ 𝑋 ⊆ 𝑌 and
□𝐴 ∈ Γ, therefore we immediately obtain 𝑌 ∈ 𝑁 (Γ).

3. For every Γ ∈ 𝑀𝐴𝑋 , ⊥ → ⊥ ∈ Γ, therefore we also have □(⊥ → ⊥) ∈ Γ.
Since |⊥ → ⊥| = 𝑀𝐴𝑋 , we have 𝑀𝐴𝑋 ∈ 𝑁 (Γ).

4. For every 𝑋 ∈ 𝑁 (Γ) and every Γ ∈ 𝑀𝐴𝑋 , there is |𝐴| ⊆ 𝑋 and □𝐴 ∈ Γ.
Since ⊢𝑆4𝜔

□𝐴→ 𝐴 we have 𝐴 ∈ Γ, therefore Γ ∈ |𝐴|, thus Γ ∈ 𝑋 .

5. For every 𝑋 and every Γ ∈ 𝑀𝐴𝑋 , if 𝑋 ∈ 𝑁 (Γ), then there is |𝐴| ⊆ 𝑋 and
□𝐴 ∈ Γ. Since ⊢𝑆4𝜔

□𝐴→ □□𝐴 and□□𝐴 ∈ E(Γ), we have□□𝐴 ∈ Γ. We
claim that |□𝐴| ⊆ 𝑚(𝑋) = {Σ ∈ 𝑀𝐴𝑋 | 𝑋 ∈ 𝑁 (Σ)}, which immediately
yields that 𝑚(𝑋) is in 𝑁 (Γ). Let Σ ∈ |□𝐴|, then □𝐴 ∈ Σ, but |𝐴| ⊆ 𝑋 by
hypothesis, hence 𝑋 ∈ 𝑁 (Σ) and this proves the claim.

qed.

Lemma 6.7.12. Given the canonical model M𝑐, for every Γ ∈ 𝑀𝐴𝑋 , for every
𝐴 ∈ E(Γ):

Γ ∈ ⟦𝐴⟧ if and only if Γ ∈ |𝐴|

Proof. The proof is by transfinite induction on the complexity of 𝐴. The case in
which 𝐴 is atomic is immediate by the definition of 𝑣. Cases ∧,∨, ⊃ are routine
via induction hypothesis.

If 𝐴 is
∧
𝑘>0
𝐵𝑘 , Γ ∈ ⟦∧

𝑘>0
𝐵𝑘⟧, then Γ ⊩ 𝐴𝑘 for every 𝑘 > 0. By induction

hypothesis we have Γ ∈ |𝐵𝑘 | for every 𝑘 > 0, i.e. Γ ∈ ⋂
𝑘>0

|𝐵𝑘 | and since∧
𝑘>0
𝐵𝑘 ∈ E(Γ) by hypothesis, we obtain Γ ∈ | ∧

𝑘>0
𝐵𝑘 |. In the other direction we

assume that Γ ∈ | ∧
𝑘>0
𝐵𝑘 | ⊆

⋂
𝑘>0

|𝐵𝑘 |, therefore Γ ∈ |𝐵𝑘 | for every 𝑘 > 0. By

induction hypothesis we have Γ ∈ ⟦𝐵𝑘⟧ for every 𝑘 > 0 and thus Γ ∈ ⟦∧
𝑘>0
𝐵𝑘⟧.
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If 𝐴 is
∨
𝑘>0
𝐵𝑘 , observe that ⟦∨

𝑘>0
𝐵𝑘⟧ =

⋃
𝑘>0

⟦𝐵𝑘⟧, so Γ ∈ ⋃
𝑘>0

⟦𝐵𝑘⟧. This is

equivalent to Γ ∈ ⋃
𝑘>0

|𝐵𝑘 | if and only if Γ ∈ | ∨
𝑘>0
𝐵𝑘 | (notice that in the direction

from left to right we make use of the fact that
∨
𝑘>0
𝐵𝑘 ∈ E(Γ)).

The case in which 𝐴 is □𝐵 goes as follows. Γ ∈ ⟦□𝐵⟧ if and only if
⟦𝐵⟧ ∈ 𝑁 (Γ) if and only if (by induction hypothesis) |𝐵 | ∈ 𝑁 (Γ) if and only if
□𝐵 ∈ Γ if and only if Γ ∈ |□𝐵|. qed.

We are now in the position to state and prove the completeness theorem for
S4𝜔.

Theorem 6.7.13. For every 𝐴 ∈ FM□𝜔 we have:

⊢𝑆4𝜔
𝐴 if and only if ⊨𝑆4𝜔

𝐴.

Proof. The direction from left to right is the content of the soundness theorem.
For the direction from right to left we proceed by contraposition. We suppose
⊬𝑆4𝜔

𝐴, thus {¬𝐴} is a consistent set. Therefore there exists Γ ∈ 𝑀𝐴𝑋 such that
¬𝐴 ∈ Γ. We have Γ ∈ |¬𝐴| if and only if Γ ∈ ⟦¬𝐴⟧ and thus Γ ⊮ 𝐴 in the
canonical model. qed.

6.8 The labelled sequent calculus G3S4𝜔
We now introduce a labelled sequent calculus based on neighborhood semantics
for infinitary S4 modal logic.

The relational rules directly stem from the conditions imposed on S4 neigh-
borhood frames. However, before we proceed we shall reformulate some semantic
conditions in order to extract simpler rules.

The unit condition can be streamlined. In fact it can be easily shown, by
exploiting closure under supersets, that the following lemma holds as before.

Lemma 6.8.1. Let N = ⟨𝑊, 𝑁⟩ be a neighborhood frame for infinitary S4 logic.
Condition (3) of Definition 6.7.3, i.e. 𝑊 ∈ 𝑁 (𝑥), is equivalent to 𝑁 (𝑥) ≠ ∅.

Proof. Immediate. qed.

The above lemma justifies the rule Ndeg:

𝛼 ∈ 𝑁 (𝑥), Γ ⇒ Δ
Ndeg, 𝛼 fresh

Γ ⇒ Δ

Lemma 6.8.2. For every infinitary S4 frame the following are equivalent:

1. If 𝑎 ∈ 𝑁 (𝑥) and 𝑏 ∈ 𝑁 (𝑥), then 𝑎 ∩ 𝑏 ∈ 𝑁 (𝑥)
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2. If 𝑎 ∈ 𝑁 (𝑥) and 𝑏 ∈ 𝑁 (𝑥), then there is 𝑐 ∈ 𝑁 (𝑥) and 𝑐 ⊆ 𝑎 and 𝑐 ⊆ 𝑏

Proof. Immediate. qed.

The calculus G3S4𝜔 is an extension of the labelled sequent calculi for non-
normal modal logics based on neighborhood semantics, thus we limit ourselves
to listing the usual structural properties that the calculus enjoys. A derivation
in G3S4𝜔 is a tree which is possibly infinitely branching and every branch is of
finite length. Given a derivation D, its height ℎ(D) is thus defined:

1. If D is an initial sequent, then ℎ(D) = 0

2. If D is of the form:

...

... D𝑛

Γ𝑛 ⇒ Δ𝑛 ...

Γ ⇒ Δ

with possibly countable premises, then ℎ(D) = 𝑠𝑢𝑝𝑛 (ℎ(D𝑛)) + 1, where
the latter is a countable ordinal.

The measures of complexity for the labelled formulas of infinitary modal logic
are essentially the same as those for infinitary intuitinoistic logic and thus we
omit the details.

Lemma 6.8.3. The rules

Γ ⇒ Δ Sub [𝑥/𝑦 ]
Γ[𝑥/𝑦] ⇒ Δ[𝑥/𝑦]

Γ ⇒ Δ Sub [𝛼/𝛽 ]
Γ[𝛼/𝛽] ⇒ Δ[𝛼/𝛽]

are height-preserving admissible in G3S4𝜔.

Proof. By simultaneous transfinite induction on the height of the derivation in
G3S4𝜔. qed.

The structural rule of weakening is admissible as well.

Lemma 6.8.4. The rule:

Γ ⇒ Δ
𝑊𝑒𝑎𝑘

Γ′, Γ ⇒ Δ,Δ′

is height-preserving admissible for every multiset Γ′,Δ′.

Proof. By transfinite induction on the height of the derivation. The proof is
straightforward, we apply the substitution lemma in order to avoid clashes of
variables whenever the last rule has a freshness condition. qed.
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Initial Sequents

𝐴𝑥
𝑥 : 𝑝, Γ ⇒ Δ, 𝑥 : 𝑝 𝐿⊥

𝑥 : ⊥, Γ ⇒ Δ

Logical Rules

𝑥 : 𝐴, 𝑥 : 𝐵, Γ ⇒ Δ
𝐿∧

𝑥 : 𝐴 ∧ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 : 𝐴 Γ ⇒ Δ, 𝑥 : 𝐵
𝑅∧

Γ ⇒ Δ, 𝑥 : 𝐴 ∧ 𝐵

𝑥 : 𝐴, Γ ⇒ Δ 𝑥 : 𝐵, Γ ⇒ Δ
𝐿∨

𝑥 : 𝐴 ∨ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 : 𝐴, 𝑥 : 𝐵
𝑅∨

Γ ⇒ Δ, 𝑥 : 𝐴 ∨ 𝐵

Γ ⇒ Δ, 𝑥 : 𝐴 𝑥 : 𝐵, Γ ⇒ Δ
𝐿 →

𝑥 : 𝐴→ 𝐵, Γ ⇒ Δ

𝑥 : 𝐴, Γ ⇒ Δ, 𝑥 : 𝐵
𝑅 →

Γ ⇒ Δ, 𝑥 : 𝐴→ 𝐵

𝑥 :
∧
𝑘>0
𝐴𝑘 , 𝑥 : 𝐴𝑘 , Γ ⇒ Δ

𝐿
∧

𝑥 :
∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

{Γ ⇒ Δ, 𝑥 : 𝐴𝑘 | 𝑘 > 0}
𝑅
∧

Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘

{𝑥 : 𝐴𝑘 , Γ ⇒ Δ | 𝑘 > 0}
𝐿
∨

𝑥 :
∨
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

Γ ⇒ Δ, 𝑥 :
∨
𝑘>0
𝐴𝑘 , 𝑥 : 𝐴𝑘

𝑅
∨

Γ ⇒ Δ, 𝑥 :
∨
𝑘>0
𝐴𝑘

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴, Γ ⇒ Δ
𝐿□, 𝑎 fresh

𝑥 : □𝐴, Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 : □𝐴, 𝑎 ⊩∀ 𝐴
𝑅□

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 : □𝐴

Relational rules

𝑥 ∈ 𝑎, 𝑎 ⊩∀ 𝐴, 𝑥 : 𝐴, Γ ⇒ Δ
𝐿 ⊩∀

𝑥 ∈ 𝑎, 𝑎 ⊩∀ 𝐴, Γ ⇒ Δ

𝑦 ∈ 𝑎, Γ ⇒ Δ, 𝑦 : 𝐴
𝑅 ⊩∀ , 𝑦 fresh

Γ ⇒ Δ, 𝑎 ⊩∀ 𝐴

𝑎 ∈ 𝑁 (𝑥), 𝑥 ∈ 𝑎, Γ ⇒ Δ
𝑅𝑒 𝑓

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝑁𝑑𝑒𝑔, 𝑎 fresh

Γ ⇒ Δ

𝑎 ∈ 𝑁 (𝑥), 𝑚(𝑎) ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝑇𝑟𝑠

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ

𝑥 ∈ 𝑚(𝑎), 𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝐿𝑚

𝑥 ∈ 𝑚(𝑎), Γ ⇒ Δ

𝑎 ⊆ 𝑎, Γ ⇒ Δ
𝑅𝑒 𝑓 ⊆

Γ ⇒ Δ

𝑎 ⊆ 𝑏, 𝑏 ⊆ 𝑐, 𝑎 ⊆ 𝑐, Γ ⇒ Δ
𝑇𝑟𝑠 ⊆

𝑎 ⊆ 𝑏, 𝑏 ⊆ 𝑐, Γ ⇒ Δ

𝑐 ∈ 𝑁 (𝑥), 𝑐 ⊆ 𝑎, 𝑐 ⊆ 𝑏, 𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), Γ ⇒ Δ
𝑃𝑟𝑒𝑏𝑎𝑠𝑖𝑐, 𝑐 fresh

𝑎 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), Γ ⇒ Δ

Figure 6.4: The labelled sequent calculus G3S4𝜔.
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A rule is invertible whenever the derivability of the conclusion entails the
derivability of the premise(s). As opposed to the unlabelled calculi for modal
logics, labelled systems ensure height-preserving invertibility of every rule.

Lemma 6.8.5. The calculus G3S4𝜔 enjoys height preserving invertibility of every
rule.

Proof. The proof is by transfinite induction on the height of the derivation: the
structure is analogous to the one detailed in (75). We limit ourselves to discussing
the case of rule 𝐿□. If 𝑛 = 0, then Γ, 𝑥 : □𝐴 ⇒ Δ is an initial sequent and so is
Γ, 𝑎 ⊩∀ 𝐴, 𝑎 ∈ 𝑁 (𝑥) ⇒ Δ. If 𝑛 > 0 and 𝑥 : □𝐴 is principal, we simply take the
premise. If 𝑛 > 0 and 𝑥 : □𝐴 is not principal we apply the induction hypothesis
to the premise(s) of the rule and then we apply the rule again. qed.

The rules of contraction are height-preserving admissible as well.

Lemma 6.8.6. The rules:

𝜙, 𝜙, Γ ⇒ Δ
𝐿𝐶

𝜙, Γ ⇒ Δ

Γ ⇒ Δ, 𝜙, 𝜙
𝑅𝐶

Γ ⇒ Δ, 𝜙

are height-preserving admissible.

Proof. The proof is by simultaneous induction on the height of the derivation.
The general structure is as follows. If the derivation is of height 0, then the
proof is trivial. If 𝜙 is not principal in the last rule applied or if 𝜙 is principal
and is repeated in the premise(s), then apply the induction hypothesis and the
rule again. In the remaining cases, i.e. 𝜙 is principal and is not repeated in
the premise(s), apply height-preserving invertibility of the rule, then apply the
induction hypothesis to every rule and apply the rule again to obtain the desired
conclusion. We limit ourselves to discussing the case of infinitary conjunction
as an example. Suppose we have a derivation of Γ ⇒ Δ, 𝑥 :

∧
𝑘 𝐴𝑘 , 𝑥 :

∧
𝑘 𝐴𝑘 .

If ℎ = 0, then 𝑥 :
∧
𝑘 𝐴𝑘 is not principal and it can be removed. If ℎ > 0

and 𝑥 :
∧
𝑘 𝐴𝑘 is not principal, then we apply the induction hypothesis to the

premise(s) and then the rule again. If ℎ > 0 is principal we have the following
situation:

{Γ ⇒ Δ, 𝑥 :
∧
𝑘 𝐴𝑘 , 𝑥 : 𝐴𝑘 | 𝑘 > 0}

R
∧

Γ ⇒ Δ, 𝑥 :
∧
𝑘 𝐴𝑘 , 𝑥 :

∧
𝑘 𝐴𝑘

For every 𝑘 > 0 we apply the invertibility lemma to obtain Γ ⇒ Δ, 𝑥 : 𝐴𝑘 , 𝑥 : 𝐴𝑘 ,
then we apply the induction hypothesis to get Γ ⇒ Δ, 𝑥 : 𝐴𝑘 and we conclude
the proof by applying the rule R

∧
. qed.
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We can now state and prove the main syntactic property of the system G3S4𝜔,
namely cut elimination.

Theorem 6.8.7. The rule:

Γ ⇒ Δ, 𝜙 𝜙, Γ′ ⇒ Δ′
𝐶𝑢𝑡

Γ, Γ′ ⇒ Δ,Δ′

is admissible in G3S4𝜔.

Proof. We proceed by double transfinite induction with primary induction hy-
pothesis on the degree of the cut formula and secondary induction hypothesis on
the natural sum, denoted by #, of the height of the premises of cut. The natural
ordinal sum has the following two useful properties: 𝛼#𝛽 = 𝛽#𝛼 and if 𝛼 < 𝛼′,
then 𝛼#𝛽 < 𝛼′#𝛽 (100; 99; 72). We distinguish cases: if one of the two premise
is an initial sequent, if the cut formula is principal in both premises of the cut and
if the cut formula is not principal in at least one premise of the cut. The first case
is straightforward.

With respect to the case in which the cut formula is principal in both premises
of the cut we limit ourselves to discussing the case in which it is of the form □𝐴.
We have:

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 : □𝐴, 𝑎 ⊩∀ 𝐴
𝑅□

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 : □𝐴
𝑏 ∈ 𝑁 (𝑥), 𝑏 ⊩∀ 𝐴, Γ′ ⇒ Δ′

𝐿□
𝑥 : □𝐴, Γ′ ⇒ Δ′

𝐶𝑢𝑡
𝑎 ∈ 𝑁 (𝑥), Γ, Γ′ ⇒ Δ,Δ′

In this case we construct the following derivation:

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 : □𝐴, 𝑎 ⊩∀ 𝐴 𝑥 : □𝐴, Γ′ ⇒ Δ′
𝐶𝑢𝑡

𝑎 ∈ 𝑁 (𝑥), Γ, Γ′ ⇒ Δ,Δ, 𝑎 ⊩∀ 𝐴

𝑏 ∈ 𝑁 (𝑥), 𝑏 ⊩∀ 𝐴, Γ′ ⇒ Δ′
𝑆𝑢𝑏[𝑏/𝑎]

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝐴, Γ′ ⇒ Δ′
𝐶𝑢𝑡

𝑎 ∈ 𝑁 (𝑥), 𝑎 ∈ 𝑁 (𝑥), Γ, Γ′, Γ′ ⇒ Δ,Δ′,Δ′
𝐶𝑡𝑟

𝑎 ∈ 𝑁 (𝑥), Γ, Γ′ ⇒ Δ,Δ′

where the topmost cut is removed by secondary induction hypothesis and the
lower cut is removed by primary induction hypothesis on the degree of the cut
formula.

If the cut formula is not principal, the strategy consists in permuting the cut
upwards and then removing it by invoking the secondary induction hypothesis.
For example, let us consider the case in which the cut formula is not principal in
the left premise and the last rule applied is 𝑅

∧
:

{Γ ⇒ Δ, 𝑥 : 𝐴𝑘 , 𝜙 | 𝑘 > 0}
Γ ⇒ Δ, 𝑥 :

∧
𝑘>0
𝐴𝑘 , 𝜙 𝜙, Γ′ ⇒ Δ′

𝐶𝑢𝑡
Γ, Γ′ ⇒ Δ,Δ′, 𝑥 :

∧
𝑘>0
𝐴𝑘
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For every 𝑘 > 0, we apply a cut between Γ ⇒ Δ, 𝑥 : 𝐴𝑘 , 𝜙 and 𝜙, Γ′ ⇒ Δ′ which is
removed by secondary induction hypothesis and we obtain Γ, Γ′ ⇒ Δ,Δ′, 𝑥 : 𝐴𝑘 ,
we then apply rule 𝑅

∧
to obtain the desired conclusion. qed.

Corollary. If ⊢𝑆4𝜔
𝐴, then G3S4𝜔 ⊢⇒ 𝑥 : 𝐴.

Proof. We argue by induction on the height of the derivation in the calculus
S4𝜔. Every axiom is derivable and the rules are admissible. In particular, modus
ponens is admissible by invertibility of R→ and admissibility of Cut. qed.

Corollary. The calculus G3S4𝜔 is sound and complete with respect to the neigh-
borhood semantics for S4𝜔.

Proof. Soundness is proved by induction on the height of derivations. With
respect to completeness we observe that if ⊨𝑆4𝜔

𝐴, then ⊢𝑆4𝜔
𝐴 and thus, by

Corollary 6.8, G3S4𝜔 ⊢⇒ 𝑥 : 𝐴. qed.

Remark. The above corollary shows that when restricted to formulas and to
sequents of the shape 𝑥 : Γ ⇒ 𝑥 : Δ (where Γ and Δ are multisets of formulas)
the derivability in the axiomatic system and in the labelled sequent calculus
coincide. The labelled sequent calculus has a richer language which properly
extends the language of the logic. This has a number of advantages: every rule
is now height-preserving invertible and working in a calculus with good analytic
properties makes structural analysis available.

6.9 An infinitary extension of the Gödel-McKinsey-
Tarksi embedding

In this section we discuss the extension of the embedding of infinitary intuition-
istic logic into infinitary S4 modal logic. The proof that we present exploits the
labelled sequent calculi for both systems and proceeds by transfinite induction on
the height of derivations in both directions. The natural (or naive) extension to the
full language of infinitary intuitionistic is obtained by adding the two following
conditions for the infinitary conjunction and disjunction:

• (∧𝑘 𝐹𝑘 )∗ =
∧
𝑘 𝐹

∗
𝑘

• (∨𝑘 𝐹𝑘 )∗ =
∨
𝑘 𝐹

∗
𝑘
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We now can prove the claim concerning the failure of the faithfulness of the
natural extension of the embedding ∗.

Theorem 6.9.1. There is a formula 𝐴 ∈ FM𝜔 such that G3S4𝜔 ⊢⇒ 𝑥 : 𝐴∗ and
G3I𝜔 ⊬⇒ 𝑥 : 𝐴.

Proof. Let us consider the infinitary distributive law:
∧
𝑘>0

(𝑝𝑘 ∨ 𝑞) →
∧
𝑘>0
𝑝𝑘 ∨ 𝑞.

Its natural translation would be:

□(
∧
𝑘>0

(□𝑝𝑘 ∨ □𝑞) →
∧
𝑘>0
□𝑝𝑘 ∨ □𝑞)

We have that G3S4 ⊢⇒ 𝑥 : □( ∧
𝑘>0

(□𝑝𝑘 ∨ □𝑞) →
∧
𝑘>0
□𝑝𝑘 ∨ □𝑞).

{𝑥 :
∧
𝑘>0

(□𝑝𝑘 ∨ □𝑞), 𝑥 : □𝑝𝑘 ∨ □𝑞 ⇒ 𝑥 : □𝑝𝑘 , 𝑥 : □𝑞 | 𝑘 > 0}
𝐿
∧

{𝑥 :
∧
𝑘>0

(□𝑝𝑘 ∨ □𝑞) ⇒ 𝑥 : □𝑝𝑘 , 𝑥 : □𝑞 | 𝑘 > 0}
𝑅
∧

𝑥 :
∧
𝑘>0

(□𝑝𝑘 ∨ □𝑞) ⇒ 𝑥 :
∧
𝑘>0
□𝑝𝑘 , 𝑥 : □𝑞

𝑅∨
𝑥 :

∧
𝑘>0

(□𝑝𝑘 ∨ □𝑞) ⇒ 𝑥 :
∧
𝑘>0
□𝑝𝑘 ∨ □𝑞

Admissible Rule⇒ 𝑥 : □( ∧
𝑘>0

(□𝑝𝑘 ∨ □𝑞) →
∧
𝑘>0
□𝑝𝑘 ∨ □𝑞)

The topmost sequent is clearly derivable. Were the natural translation faithful,
we would have G3I𝜔 ⊢⇒ 𝑥 :

∧
𝑘>0

(𝑝𝑘 ∨ 𝑞) → ∧
𝑘>0
𝑝𝑘 ∨ 𝑞, but the infinitary

distributivity law is not valid in intuitionistic logic (103). qed.

We propose a modification of the ∗ embedding which changes the condition
for the translation of the infinitary conjunction:

(
∧
𝑘>0
𝐵𝑘 )∗ = □(

∧
𝑘>0
𝐵∗
𝑘 )

It is now possible to show that the translation of the infinitary distributive law:

□(□(
∧
𝑘>0

(□𝑝𝑘 ∨ □𝑞)) → □(
∧
𝑘>0
□𝑝𝑘 ) ∨ □𝑞)

is not provable in S4𝜔.

Lemma 6.9.2. The translation of the formula
∧
𝑘>0(𝑝𝑘 ∨ 𝑞) →

∧
𝑘>0 𝑝𝑘 ∨ 𝑞 is

not derivable in S4𝜔.

Proof. To show this impossibility we give a countermodel. Let 𝑊 = R and
𝑁 (𝑥) = {𝑎 | ∃𝑟 > 0((𝑥 − 𝑟, 𝑥 + 𝑟) ⊆ 𝑎)}. We define the valuation 𝑣 : 𝐴𝑇 → R
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such that 𝑣(𝑞) = R \ {0} and 𝑣(𝑝𝑘 ) = (− 1
𝑘
, 1
𝑘
) for every 𝑘 > 0. We leave it to the

reader to verify that this is an S4 neighborhood model.
We observe thatR ⊩∀ □

∧
𝑘>0

(□𝑝𝑘∨□𝑞) andR ∈ 𝑁 (0), thus 0 ⊩ □
∧
𝑘>0(□𝑝𝑘∨

□𝑞). However,
⋂
𝑘>0 𝑣(□𝑝𝑘 ) = {0} ∉ 𝑁 (0), thus we can easily conclude that 0 ⊮

□( ∧
𝑘>0
□𝑝𝑘 ). Furthermore 0 ∉ R \ {0}, hence 0 ⊮ □𝑞. Thus 0 ⊮ □( ∧

𝑘>0
□𝑝𝑘 ) ∨□𝑞,

hence we have provided a countermodel. qed.

Therefore we have obtained a neighborhood countermodel for the ∗ transla-
tion of the infinitary distributivity axiom. We observe that the countermodel here
discussed is identical to the neighborhood countermodel to the infinitary distribu-
tivity law for infinitary intuitionistic logic. Furthermore, it is worth observing
that if we added closure under arbitrary intersections, i.e. if we considered neigh-
borhood systems based on Alexandroff topologies, the formula could easily be
shown to hold.

Remark. It is now a routine matter to verify that for every formula in the language
of intuitionistic infinitary logic 𝐴, the following holds: 𝐴∗ ↔ □𝐴∗. This parallels
the case of finitary intuitionistic and modal logic. This failed in the case of
the naive translation, because: (∧𝑘>0 𝑝𝑘 )∗ =

∧
𝑘>0 □𝑝𝑘 is not equivalent to

□
∧
𝑘>0 □𝑝𝑘 . Also the new interpretation isolates the constructive features of

infinitary intuitionistic logic through the use of an S4-like modality. In this way,
the constructive content of the infinitary conjunction is clearly visible.

We now prove the faithfulness theorem with respect to neighborhood seman-
tics.

Lemma 6.9.3. Given a model of intuitionistic logic M = ⟨𝑊, 𝑁, 𝑣⟩, for every
intuitionistic formula 𝐵, for every 𝑥 ∈ 𝑊:

𝑥 ⊩𝐼𝑛𝑡 𝐴 if and only if 𝑥 ⊩𝑆4 𝐴
∗

Proof. We proceed by induction on the complexity of the formula 𝐵. If 𝐵 is
atomic, we have 𝑥 ⊩𝐼𝑛𝑡 𝑝 if and only if there is 𝑎 ∈ 𝑁 (𝑥) and 𝑎 ⊩∀ 𝑝 if and only
if 𝑥 ⊩𝑆4 □𝑝.

If 𝐵 ≡ 𝐶 ∧ 𝐷,𝐶 ∨ 𝐷, ∨
𝑘>0
𝐶𝑘 the proof is immediate by induction hypothesis.

If 𝐵 ≡ 𝐶 → 𝐷, then if 𝑥 ⊩𝐼𝑛𝑡 𝐶 → 𝐷 if and only if there is 𝑎 ∈ 𝑁 (𝑥)
and 𝑎 ⊩∀ 𝐶 ⊃ 𝐷. Now it is sufficient to show, via induction hypothesis, that
𝑎 ⊩∀ 𝐶 ⊃ 𝐷 if and only if 𝑎 ⊩∀ 𝐶∗ → 𝐷∗, hence we can conclude that
𝑥 ⊩𝑆4 □(𝐶∗ → 𝐷∗) by the definition.

If 𝐵 ≡ ∧
𝑘>0
𝐶𝑘 , then 𝑥 ⊩𝐼𝑛𝑡

∧
𝑘>0
𝐶𝑘 if and only if there is 𝑎 ∈ 𝑁 (𝑥) and

𝑎 ⊩∀ &
𝑘>0
𝐶𝑘 if and only if 𝑎 ⊩∀

∧
𝑘>0
𝐶∗
𝑘

if and only if 𝑥 ⊩ □ &
𝑘>0
𝐶∗
𝑘
. qed.

167



Theorem 6.9.4. For every formula 𝐴 ∈ FM𝜔, if ⊨𝑆4 𝐴
∗, then ⊨𝐼𝑛𝑡 𝐴.

Proof. We proceed by contraposition. If ⊭𝐼𝑛𝑡 𝐴, there is a neighborhood model
M = ⟨𝑊, 𝑁, 𝑣⟩ for intuitionistic infinitary logic, a world 𝑥 ∈ 𝑊 such that 𝑥 ⊮ 𝐴.
By Lemma 6.9.3 we obtain 𝑥 ⊮ 𝐴∗ and this concludes the proof. qed.

The proof we have provided is semantic and thus, in a sense, indirect. In the
remaining of the section we will give a proof-theoretic proof of the faithfulness
of the translation by exploiting the structural properties of both the calculi G3I𝜔
and G3S4𝜔.

We first define an extension 𝑡 of the ∗ translation with respect to the language
of our labelled sequent calculus G3I𝜔. In particular we supplement the definition
of the following two clauses for the added connectives:

(𝐴 ⊃ 𝐵)𝑡 = 𝐴𝑡 → 𝐵𝑡 and ( &
𝑘>0
𝐵𝑘 )𝑡 =

∧
𝑘>0
𝐵𝑡
𝑘

We then extend the translation to the labelled syntax in a way that acts only on
the pure part of the sequents.

• (𝑎 ⊩∀ 𝐵)𝑡 = 𝑎 ⊩∀ 𝐵𝑡

• (𝑥 : 𝐵)𝑡 = 𝑥 : 𝐵𝑡

• (𝑥 ∈ 𝑎)𝑡 = 𝑥 ∈ 𝑎

• (𝑎 ∈ 𝑁 (𝑥))𝑡 = 𝑎 ∈ 𝑁 (𝑥)

We first prove prove the soundness lemma.

Theorem 6.9.5. If G3I𝜔 ⊢ Γ ⇒ Δ, then G3S4𝜔 ⊢ Γ𝑡 ⇒ Δ𝑡 .

Proof. We proceed by induction on the height of derivation in G3I𝜔. If 𝑛 = 0
this is immediate.

If 𝑛 > 0 and the last rule is a rule for connectives ∧,∨, ⊃,∨,&, 𝑅 ⊩∀, 𝐿 ⊩∀
or a relational rule it is straightforward by induction hypothesis.

If 𝑛 > 0 and the last rule is Mon we have the following situation:

𝑥 : 𝑝, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ 𝑝, Γ ⇒ Δ
Mon, 𝑎 fresh

𝑥 : 𝑝, Γ ⇒ Δ

The induction hypothesis yields a derivation of 𝑥 : □𝑝, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ □𝑝, Γ𝑡 ⇒
Δ𝑡 . We construct the following derivation:
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𝑥 : □𝑝 ⇒ 𝑥 : □□𝑝
𝑥 : □𝑝, 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ □𝑝, Γ𝑡 ⇒ Δ𝑡

𝐿□
𝑥 : □𝑝, 𝑥 : □□𝑝, Γ𝑡 ⇒ Δ𝑡

𝐶𝑢𝑡
𝑥 : □𝑝, 𝑥 : □𝑝, Γ𝑡 ⇒ Δ𝑡

𝐶𝑡𝑟
𝑥 : □𝑝, Γ𝑡 ⇒ Δ𝑡

Where the topmost sequent 𝑥 : □𝑝 ⇒ 𝑥 : □□𝑝 on the left is derivable in G3S4𝜔.
If 𝑛 > 0 and the last rule applied is 𝐿 →, 𝐿

∧
we limit ourselves to considering

the second case:

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀ &
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

𝐿
∧

, 𝑎 fresh
𝑥 :

∧
𝑘>0
𝐴𝑘 , Γ ⇒ Δ

We apply the induction hypothesis to the premise and obtain 𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩∀∧
𝑘>0
𝐴𝑡
𝑘
, Γ𝑡 ⇒ Δ𝑡 ; an application of 𝐿□ yields the desired conclusion, namely

𝑥 : □
∧
𝑘>0
𝐴𝑡
𝑘
, Γ𝑡 ⇒ Δ𝑡 .

If 𝑛 > 0 and the last rule applied is 𝑅 →, 𝑅
∧

we deal with the second case:

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐴𝑘

𝑅
∧

𝑎 ∈ 𝑁 (𝑥), Γ ⇒ Δ, 𝑥 :
∧
𝑘>0
𝐴𝑘

We apply the induction hypothesis to the premise and obtain 𝑎 ∈ 𝑁 (𝑥), Γ𝑡 ⇒
Δ𝑡 , 𝑥 : □

∧
𝑘>0
𝐴𝑡
𝑘
, 𝑎 ⊩∀

∧
𝑘>0
𝐴𝑡
𝑘
; an application of 𝑅□ gives 𝑎 ∈ 𝑁 (𝑥), Γ𝑡 ⇒ Δ𝑡 , 𝑥 :

□
∧
𝑘>0
𝐴𝑡
𝑘
. qed.

We now are ready to prove the main lemma, that will make essential use of a
suitable strengthening of the induction hypothesis.

Lemma 6.9.6. Let Γ,Δ be multisets of labelled formulas, Γ′ a multiset of rela-
tional atoms and of labelled formulas of the form 𝑎 ⊩∀ 𝑝, Δ′ a multiset of labelled
formulas, Ω a multiset of relational atoms:

if G3S4𝜔 ⊢ Ω, Γ𝑡 , Γ′ ⇒ Δ𝑡 ,Δ′, then G3I𝜔 ⊢ Ω, Γ, Γ′ ⇒ Δ,Δ′

Proof. We proceed by induction on the height of derivation in G3S4𝜔. If 𝑛 = 0,
then it is trivial.

If 𝑛 > 0 and the last rule applied is a rule for connectives ∧,∨,→,
∨
,
∧

or a
relational rule the proof is straightforward by induction hypothesis.

If 𝑛 > 0 and the last rule is 𝐿□ the principal formula can be of the form
𝑥 : □𝑝, 𝑥 : □(𝐴𝑡 → 𝐵𝑡) or 𝑥 : □( ∧

𝑘>0
𝐵𝑡
𝑘
). In the first case we have:

𝑎 ∈ 𝑁 (𝑥),Ω, Γ𝑡 , 𝑎 ⊩∀ 𝑝, Γ′ ⇒ Δ𝑡 ,Δ′
𝐿□

Ω, Γ𝑡 , 𝑥 : □𝑝, Γ′ ⇒ Δ𝑡 ,Δ′
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The induction hypothesis yields a derivation of 𝑎 ∈ 𝑁 (𝑥),Ω, Γ, 𝑎 ⊩∀ 𝑝, Γ′ ⇒
Δ,Δ′, we add 𝑥 : 𝑝 to the antecedent via admissibility of weakening and we
obtain the desired conclusion by Mon.

In the second case we have :

𝑎 ∈ 𝑁 (𝑥),Ω, Γ𝑡 , 𝑎 ⊩∀ 𝐵𝑡 → 𝐶𝑡 , Γ′ ⇒ Δ𝑡 ,Δ′
𝐿□

Ω, Γ𝑡 , 𝑥 : □(𝐵𝑡 → 𝐶𝑡), Γ′ ⇒ Δ𝑡 ,Δ′

The induction hypothesis yields a derivation of 𝑎 ∈ 𝑁 (𝑥),Ω, Γ, 𝑎 ⊩∀ 𝐵 ⊃
𝐶, Γ′ ⇒ Δ,Δ′ and thus an application of 𝐿 → yields Ω, Γ, 𝑥 : 𝐵 → 𝐶, Γ′ ⇒
Δ,Δ′. The case of 𝑥 : □( ∧

𝑘>0
𝐵𝑡
𝑘
) is analogous, so we omit the details.

If 𝑛 > 0 and the last rule is 𝑅□ we have to discuss the same three subcases.
If the principal formula is 𝑥 : □𝑝 we have:

𝑎 ∈ 𝑁 (𝑥),Ω, Γ𝑡 , Γ′ ⇒ Δ𝑡 , 𝑥 : □𝑝, 𝑎 ⊩∀ 𝑝,Δ′
𝑅□

𝑎 ∈ 𝑁 (𝑥),Ω, Γ𝑡 , Γ′ ⇒ Δ𝑡 , 𝑥 : □𝑝,Δ′

By height-preserving invertibility of 𝑅 ⊩∀ we obtain a derivation of 𝑎 ∈ 𝑁 (𝑥), 𝑥 ∈
𝑎,Ω, Γ𝑡 , Γ′ ⇒ Δ𝑡 , 𝑥 : □𝑝, 𝑥 : 𝑝,Δ′. By induction hypothesis we obtain a deriva-
tion of 𝑎 ∈ 𝑁 (𝑥), 𝑥 ∈ 𝑎,Ω, Γ, Γ′ ⇒ Δ, 𝑥 : 𝑝, 𝑥 : 𝑝,Δ′ and by admissibility of
contraction we obtain 𝑎 ∈ 𝑁 (𝑥), 𝑥 ∈ 𝑎,Ω, Γ, Γ′ ⇒ Δ, 𝑥 : 𝑝,Δ′. An application
of 𝑅𝑒 𝑓 finally yields the desired conclusion.

If the principal formula is 𝑥 : □
∧
𝑘>0
𝐵𝑡
𝑘

we have:

𝑎 ∈ 𝑁 (𝑥),Ω, Γ𝑡 , Γ′ ⇒ Δ𝑡 , 𝑥 : □
∧
𝑘>0
𝐵𝑡
𝑘
, 𝑎 ⊩∀

∧
𝑘>0
𝐵𝑡
𝑘
,Δ′

𝑅□
𝑎 ∈ 𝑁 (𝑥),Ω, Γ𝑡 , Γ′ ⇒ Δ𝑡 , 𝑥 : □

∧
𝑘>0
𝐵𝑡
𝑘
,Δ′

By induction hypothesis we obtain a derivation of 𝑎 ∈ 𝑁 (𝑥),Ω, Γ, Γ′ ⇒ Δ, 𝑥 :∧
𝑘>0
𝐵𝑘 , 𝑎 ⊩

∀ &
𝑘>0
𝐵𝑘 ,Δ

′ and we obtain the desired conclusion via an application of

𝑅
∧

. The case for 𝑥 : □(𝐵𝑡 → 𝐶𝑡) is similar and we omit the details.
If the last rule applied is 𝐿 ⊩∀ then the principal formula is either 𝑎 ⊩∀ 𝐴𝑡

or 𝑎 ⊩∀ 𝑝. In the first case we consider the premise, we apply the induction
hypothesis and conclude by 𝐿 ⊩∀. In the other case we have:

Ω, 𝑥 ∈ 𝑎, Γ𝑡 , 𝑎 ⊩∀ 𝑝, 𝑥 : 𝑝, Γ′ ⇒ Δ𝑡 ,Δ′
𝐿 ⊩∀

Ω, 𝑥 ∈ 𝑎, Γ𝑡 , 𝑎 ⊩∀ 𝑝, Γ′ ⇒ Δ𝑡 ,Δ′

In this case we apply the induction hypothesis to the premise and obtain Ω, 𝑥 ∈
𝑎, Γ, 𝑎 ⊩∀ 𝑝, 𝑥 : 𝑝, Γ′ ⇒ Δ,Δ′ (this is possible due to the stronger induction
hypothesis); then we obtain the desired conclusion by 𝐿 ⊩∀.

If the last rule applied is 𝑅 ⊩∀ we have:

Ω, 𝑦 ∈ 𝑎, Γ𝑡 , Γ′ ⇒ Δ𝑡 ,Δ′, 𝑦 : 𝐵𝑡
𝑅 ⊩∀

Ω, Γ𝑡 , Γ′ ⇒ Δ𝑡 ,Δ′, 𝑎 ⊩∀ 𝐵𝑡
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We apply the induction hypothesis to obtain Ω, 𝑦 ∈ 𝑎, Γ, Γ′ ⇒ Δ,Δ′, 𝑦 : 𝐵 and
obtain the desired conclusion by 𝑅 ⊩∀. qed.

As a corollary we obtain that if G3S4𝜔 ⊢⇒ 𝑥 : 𝐴𝑡 , then G3I𝜔 ⊢⇒ 𝑥 : 𝐴,
namely a proof of faithfulness of the embedding.

Corollary. Given 𝐴 ∈ FM𝜔, G3I𝜔 ⊢⇒ 𝑥 : 𝐴 if and only if G3S4𝜔 ⊢⇒ 𝑥 : 𝐴∗.

Proof. From left to right (soundness) we exploit Theorem 8.12. From right to
left (faithfulness) we use Lemma 8.13 and we obtain G3S4𝜔 ⊢⇒ 𝑥 : 𝐴𝑡 . But
𝑡 |FM𝜔

= ∗, i.e., the 𝑡 translation restricted to the language of intuitionistic infinitary
logic coincides with the ∗ translation, and thus 𝐴∗ ≡ 𝐴𝑡 and this concludes the
proof. qed.

6.10 Relating classical, intuitionistic and modal in-
finitary derivability

In this final section we relate derivability in classical, intuitionistic and modal
infinitary logic extended with suitably formulated axioms. By G3C𝜔 we denote
a labelled infinitary sequent calculus for classical logic obtained from G3S4𝜔 by
removing the rules for the modal operator and all the auxiliary rules.

First, we identify a class of infinitary formulas where derivability coincides
in G3C𝜔, G3I𝜔 and G3S4𝜔.

Definition 6.10.1. A simple implication is a formula of the shape 𝑝1∧ ...∧ 𝑝𝑚 →
𝑞, where 𝑝𝑖 and 𝑞 are atomic propositional formulas. An infinitary Horn formula
is an infinitary conjunction of simple implications.

Before proceeding, we consider the extension of the calculi obtained by the
methodology of conversion of axioms into rules (? )11. An axiom of the shape∧
𝑘>0(𝑝𝑘,1 ∧ ... ∧ 𝑝𝑘,𝑚(𝑘) → 𝑞𝑘 ) is now converted into infinitely many rules:

𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , 𝑥 : 𝑞𝑘 , Γ ⇒ Δ
Horn𝑘

𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , Γ ⇒ Δ

to add to a given infinitary labelled calculus.
It is a routine task to check that the structural properties of the calculi G3C𝜔,

G3I𝜔 and G3S4𝜔 are preserved. Indeed, weakening, contraction and cut remain

11Recently, the methodology of conversion of axioms into rules has been analyzed and studied
through the lens of focussing in (64).
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admissible and every rule is height-preserving invertible.Given a set of infinitary
Horn formulas T denote by G3XT𝜔, where X ∈ {I, S4,C}, the calculus obtained
by adding to G3X𝜔 the rules corresponding to the axioms in T.

Theorem 6.10.1. The calculi G3CT𝜔, G3IT𝜔 and G3S4T𝜔, where T is a set of
infinitary Horn formulas, enjoy height-preserving invertibility of every rule and
height preserving admissibility of the rules of weakening and contraction. The
cut rule is admissible.

Proof. Routine. qed.

Furthermore, it can be shown that given a set T of infinitary Horn axioms, the
calculus G3XT𝜔, where X ∈ {S4,C, I}, is equivalent to G3X ⊕ {⇒ 𝐴 | 𝐴 ∈ T},
where ⊕ denotes the addition of a set of initial sequents or rules to a base calculus.

Lemma 6.10.2. Let T be a set of infinitary Horn formulas, then

G3XT𝜔 ⊢ Γ ⇒ Δ if and only if G3X𝜔 ⊕ T ⊕ {𝐶𝑢𝑡,𝑊𝑒𝑎𝑘, 𝐶𝑡𝑟} ⊢ Γ ⇒ Δ

Proof. From left to right we show that the infinitary Horn rule can be simulated
in the calculus G3X𝜔 ⊕ T ⊕ {𝐶𝑢𝑡,𝑊𝑒𝑎𝑘, 𝐶𝑡𝑟} ⊢ Γ ⇒ Δ. We have:

𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 : 𝑞𝑘 𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , 𝑥 : 𝑞𝑘 , Γ ⇒ Δ
Cut

𝑥 : 𝑝2
𝑘,1, ..., 𝑥 : 𝑝2

𝑘,𝑚(𝑘) , Γ ⇒ Δ
Ctr

𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , Γ ⇒ Δ

From right to left we exploit the admissibility of the structural rules of weakening,
contraction and cut. Hence the equivalence follows by showing that the axioms
are provable, which follows from a routine root-first application of the rules. qed.

Theorem 6.10.3. Let T be a set of infinitary Horn theories and 𝐵 be infinitary
Horn formula, then the following are equivalent:

1. G3CT𝜔 ⊢⇒ 𝑥 : 𝐵

2. G3IT𝜔 ⊢⇒ 𝑥 : 𝐵

3. G3S4T𝜔 ⊢⇒ 𝑥 : 𝐵∗

Proof. The equivalence between 1. and 2. is essentially a restricted form of
Barr’s theorem (cf. (93; 32), and references therein); a proof using labelled
systems is presented in Theorem 6.10.11 below. For the equivalence between 2.
and 3. we need to extend the embedding to systems with rules for axioms.

2.⇒ 3. We argue by induction on the height of the derivations in the calculus
G3I𝜔. The case to be checked is that of rules for axiomatic extensions. In
particular, we have:
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𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , 𝑥 : 𝑞𝑘 , Γ ⇒ Δ
Horn𝑘

𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , Γ ⇒ Δ

which gets transformed into:

𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , 𝑥 : 𝑞𝑘 , Γ ⇒ Δ
Weak

𝑎1 ∈ 𝑁 (𝑥), . . . , 𝑎𝑚 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑥 ∈ 𝑎1, . . . , 𝑥 ∈ 𝑎𝑚, 𝑥 ∈ 𝑏, 𝑎1 ⊩
∀ 𝑝1𝑘 , . . . , 𝑎𝑚 ⊩

∀ 𝑝𝑚𝑘 , 𝑏 ⊩ 𝑞, 𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , 𝑥 : 𝑞𝑘 , Γ ⇒ Δ
L⊩

𝑎1 ∈ 𝑁 (𝑥), . . . , 𝑎𝑚 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑥 ∈ 𝑎1, . . . , 𝑥 ∈ 𝑎𝑚, 𝑥 ∈ 𝑏, 𝑎1 ⊩
∀ 𝑝𝑘,1, . . . , 𝑎𝑚 ⊩∀ 𝑝𝑘,𝑚(𝑘) , 𝑏 ⊩ 𝑞, Γ ⇒ Δ

Ref
𝑎1 ∈ 𝑁 (𝑥), . . . , 𝑎𝑚 ∈ 𝑁 (𝑥), 𝑏 ∈ 𝑁 (𝑥), 𝑎1 ⊩

∀ 𝑝𝑘,1, . . . , 𝑎𝑚 ⊩∀ 𝑝𝑘,𝑚(𝑘) , 𝑏 ⊩ 𝑞, Γ ⇒ Δ
L□

𝑥 : □𝑝𝑘,1, . . . , 𝑥 : □𝑝𝑘,𝑚(𝑘) , 𝑥 : □𝑞𝑘 , Γ ⇒ Δ

We then conclude the proof with the following application of cut:

𝑥 : □𝑝𝑘,1, . . . , 𝑥 : □𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 : □𝑞𝑘 𝑥 : □𝑝𝑘,1, . . . , 𝑥 : □𝑝𝑘,𝑚(𝑘) , 𝑥 : □𝑞𝑘 , Γ ⇒ Δ
Cut

(𝑥 : □𝑝𝑘,1, . . . , 𝑥 : □𝑝𝑘,𝑚(𝑘))2, Γ ⇒ Δ
Ctr

𝑥 : □𝑝𝑘,1, . . . , 𝑥 : □𝑝𝑘,𝑚(𝑘) , Γ ⇒ Δ

where the leftmost sequent is easily seen to be provable by root-first applications
of the rules. The direction 3.⇒ 2. is a straightforward extension of the faithfulness
theorem, as the rules for theories only work with atomic formulas. qed.

Remark. The above result cannot be extended to larger classes of axioms. Indeed,
any axiom of the form 𝑝∨𝑞 can be added to intuitionistic logic and to its labelled
calculus by converting it into a rule 𝑅 of the shape:

𝑥 : 𝑝, Γ ⇒ Δ 𝑥 : 𝑞, Γ ⇒ Δ
𝑅

Γ ⇒ Δ

However, its ∗ translation □𝑝∨□𝑞 is not provable in the modal calculus extended
with the same rule. This depends on the fact that 𝑝 ∨ 𝑞 is not a Horn formula.

We now show that a small axiomatic extension of S4𝜔 can be used to extend
the result to a larger class of theories. Let us denote by S4+𝜔 the axiomatic system
obtained by adding to S4𝜔 the set of axioms:

{𝑝 → □𝑝 | for every atomic formula 𝑝}

First, we observe that this does not lead to the collapse of the modalities. Indeed,
we do not have 𝐴 → □𝐴 for every 𝐴. To witness the failure of the validity of
the schema it is enough to consider the formula 𝑝 → 𝑞, because (𝑝 → 𝑞) →
□(𝑝 → 𝑞) is not derivable.

It is not difficult to observe that S4+𝜔 is sound and complete with respect to
the class of S4 neighborhood models in which the following holds:
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𝑥 ∈ 𝑣(𝑝) =⇒ 𝑣(𝑝) ∈ 𝑁 (𝑥) for every world 𝑥 and atomic formula 𝑝

Soundness follows by induction on the height of the derivations in the calculus
S4+𝜔. To prove completeness it is enough to check that the construction of the
canonical model can be repeated for S4+𝜔 too. Hence, completeness follows from
the next proposition.

Lemma 6.10.4. The canonical model for S4+𝜔 satisfies 𝑥 ∈ 𝑣(𝑝) =⇒ 𝑣(𝑝) ∈
𝑁 (𝑥).

Proof. Suppose Γ ∈ 𝑣(𝑝), then Γ ⊩ 𝑝, i.e. 𝑝 ∈ Γ. Therefore, since Γ ⊢ 𝑝 → □𝑝
we get □𝑝 ∈ Γ. This entails 𝑣(𝑝) ∈ 𝑁 (Γ). qed.

A labelled sequent calculus for the logic S4+𝜔 is obtained by adding rule Mon
to the calculus G3S4𝜔. It is immediate to observe that the axiom 𝑝 → □𝑝 is
derivable.

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩ 𝑝, 𝑥 : 𝑝 ⇒ 𝑥 : □𝑝, 𝑎 ⊩ 𝑝
R□

𝑎 ∈ 𝑁 (𝑥), 𝑎 ⊩ 𝑝, 𝑥 : 𝑝 ⇒ 𝑥 : □𝑝
Mon

𝑥 : 𝑝 ⇒ 𝑥 : □𝑝

Definition 6.10.2. An infinitary geometric implication is an infinitary conjunction
of formulas of the shape: 𝑝1∧...∧𝑝𝑚 → ∨

𝑘>0 𝑞𝑘 , where 𝑞𝑘 is a finite conjunction
of atomic formulas.

Infinitary geometric implications can be transformed into the equivalent rules:

{𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , 𝑥 : ®𝑞𝑘, 𝑗 (𝑘) , Γ ⇒ Δ | 𝑗 > 0}
Geom𝑘

𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) , Γ ⇒ Δ

where 𝑥 : ®𝑞𝑘, 𝑗 (𝑘) ≡ 𝑥 : 𝑞𝑘, 𝑗 (𝑘)1 , ..., 𝑥 : 𝑞𝑘, 𝑗 (𝑘)𝑛 𝑗 (𝑘 ) . We show that the calculus
G3S4+𝜔 satisfies the usual desirable structural properties.

Lemma 6.10.5. The rules of substitution of labels and weakening are height-
preserving admissible in G3S4+T𝜔.

Proof. Routine induction. qed.

Lemma 6.10.6. Every rule is height-preserving invertible in G3S4+T𝜔. The rule
of contraction is height-preserving admissible in G3S4+T𝜔.

Proof. Invertibility of the rule Mon follows from the height-preserving admissi-
bility of the weakening rule. With respect to contraction, we argue by transfinite
induction. We only need to check the additional case in which the last rule applied
is Mon.
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𝑎 ⊩ 𝑃, 𝑎 ∈ 𝑁 (𝑥), 𝑥 : 𝑝, 𝑥 : 𝑝, Γ ⇒ Δ
Mon

𝑥 : 𝑝, 𝑥 : 𝑝, Γ ⇒ Δ

We proceed as follows:

𝑎 ⊩ 𝑃, 𝑎 ∈ 𝑁 (𝑥), 𝑥 : 𝑝, 𝑥 : 𝑝, Γ ⇒ Δ
IH

𝑎 ⊩ 𝑃, 𝑎 ∈ 𝑁 (𝑥), 𝑥 : 𝑝, Γ ⇒ Δ
Mon

𝑥 : 𝑃, 𝑥 : 𝑃, Γ ⇒ Δ

The application of contraction is removed by the induction hypothesis. Notice that
the repetition of the atomic formula is crucial to make the proof go through. qed.

Theorem 6.10.7. The cut rule is admissible in G3S4+T𝜔.

Proof. The proof is by double transfinite induction. With respect to the proof
of cut elimination for G3S4𝜔 we need to check the case in which one of the last
rule applied is Mon. The interesting case is the one in which the cut formula is
principal in an application of Mon, i.e.

Γ ⇒ Δ, 𝑥 : 𝑝
𝑎 ⊩ 𝑝, 𝑎 ∈ 𝑁 (𝑥), 𝑥 : 𝑝, Γ′ ⇒ Δ′

Mon
𝑥 : 𝑝, Γ′ ⇒ Δ′

Cut
Γ, Γ′ ⇒ Δ,Δ′

The cut cannot be immediately permuted upwards, as this would yield 𝑎 ⊩ 𝑝, 𝑎 ∈
𝑁 (𝑥), Γ, Γ′ ⇒ Δ,Δ′. In this case we consider the left premise of the cut. If
it is an initial sequent, the proof is trivial. Otherwise, 𝑥 : 𝑝 is never principal
in the succedent and so the cut can be permuted upwards over the premises of
Γ ⇒ Δ, 𝑥 : 𝑝 and eliminated invoking the secondary induction hypothesis. qed.

To establish the claim we made about equivalence concerning derivability
of geometric formulas it is enough to show that we can streamline the modal
interpretation of intuitionistic logic. Indeed, due to the axiom 𝑝 → □𝑝, we can
define a light translation 𝑙 as follows:

• 𝑝𝑙 = 𝑝

• (𝐴#𝐵)𝑙 = 𝐴𝑙#𝐵𝑙 , where # ∈ {∧,∨}

• (𝐴→ 𝐵)𝑙=□(𝐴𝑙 → 𝐵𝑙)

• (∨𝑘>0 𝐴𝑘 )𝑙 =
∨
𝑘>0 𝐴

𝑙
𝑘

• (∧𝑘>0 𝐴𝑘 )𝑙 = □
∧
𝑘>0 𝐴

𝑙
𝑘

Lemma 6.10.8. For every formula 𝐴, S4+𝜔 ⊢ 𝐴∗ ↔ 𝐴𝑙 .
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Proof. Straightforward by transfinite induction on the weight of the formula 𝐴.
The only interesting case is the one in which the formula 𝐴 is atomic, which
follows since S4+𝜔 ⊢ 𝑝 ↔ □𝑝. The remaining cases are dealt with by the
induction hypothesis. qed.

Theorem 6.10.9. Let T be a set of infinitary geometric axioms:

G3IT𝜔 ⊢ Γ ⇒ Δ if and only if G3S4+T𝜔 ⊢ Γ∗ ⇒ Δ∗.

Proof. (⇒). By the previous lemma, the proof is reduced to showing that
G3S4+T𝜔 ⊢ Γ𝑙 ⇒ Δ𝑙 . The proof is by induction on the height of the derivations.
If Γ ⇒ Δ is an initial sequent, then so is Γ𝑙 ⇒ Δ𝑙 . Otherwise, we distinguish
cases according to the last rule applied. The proof follows the pattern detailed
for G3S4𝜔. If the last rule applied is an infinitary geometric rule, the proof is
immediate (as the 𝑙-translation does not affect atomic formulas).

(⇒). The proof is analogous the the faithfulness result for G3S4𝜔 and thus
we omit the details. qed.

We now prove a result which enables removing redundant applications of the
monotonicity rule in intuitionistic logic. This is a crucial move in order to bring
closer intuitionistic and classical logic in the setting of labelled calculi.

Lemma 6.10.10. Given a derivation of

Ω, 𝑎1 ⊩ 𝑝1, . . . , 𝑎𝑛 ⊩ 𝑝𝑛, 𝑥 : 𝑝1, . . . , 𝑥 : 𝑝𝑛 ⇒ 𝑥 :
∨
𝑗>0
𝑞 𝑗 , 𝑥 : 𝑞1, . . . , 𝑥 : 𝑞𝑡

in G3S4+T𝜔, whereΩ contains relational atoms of the shape 𝑎𝑖 ∈ 𝑁 (𝑥), 𝑚𝑛 (𝑎𝑖) ∈
𝑁 (𝑥), 𝑐 ⊆ 𝑎𝑖, 𝑥 ∈ 𝑎𝑖, there is a derivation of

𝑥 : 𝑝1, . . . , 𝑥 : 𝑝𝑛 ⇒ 𝑥 :
∨
𝑗>0
𝑞 𝑗 , 𝑥 : 𝑞1, . . . , 𝑥 : 𝑞𝑡

in G3S4+T𝜔 which does not use any relational rule.

Proof. The proof is by induction on the height of the derivation. If Ω, 𝑎1 ⊩

𝑝1, . . . , 𝑎𝑛 ⊩ 𝑝𝑛, 𝑥 : 𝑝1, . . . , 𝑥 : 𝑝𝑛 ⇒ 𝑥 :
∨
𝑗>0 𝑞 𝑗 , 𝑥 : 𝑞1, . . . , 𝑥 : 𝑞𝑡 is an initial

sequent, so is 𝑥 : 𝑝1, . . . , 𝑥 : 𝑝𝑛 ⇒ 𝑥 :
∨
𝑗>0 𝑞 𝑗 , 𝑥 : 𝑞1, . . . , 𝑥 : 𝑞𝑡 , otherwise we

distinguish cases according to the last rule applied. We discuss the case in which
the last rule applied is L⊩. We have:

Ω′, 𝑥 ∈ 𝑎1, 𝑥 : 𝑝1, 𝑎1 ⊩ 𝑝1, . . . , 𝑎𝑛 ⊩ 𝑝𝑛, 𝑥 : 𝑝1, . . . , 𝑥 : 𝑝𝑛 ⇒ 𝑥 :
∨
𝑗>0 𝑞 𝑗 , 𝑥 : 𝑞1, . . . , 𝑥 : 𝑞𝑡

L⊩
Ω′, 𝑥 ∈ 𝑎1, 𝑎1 ⊩ 𝑝1, . . . , 𝑎𝑛 ⊩ 𝑝𝑛, 𝑥 : 𝑝1, . . . , 𝑥 : 𝑝𝑛 ⇒ 𝑥 :

∨
𝑗>0 𝑞 𝑗 , 𝑥 : 𝑞1, . . . , 𝑥 : 𝑞𝑡

176



We proceed as follows:

Ω′, 𝑥 ∈ 𝑎1, 𝑥 : 𝑝1, 𝑎1 ⊩ 𝑝1, . . . , 𝑎𝑛 ⊩ 𝑝𝑛, 𝑥 : 𝑝1, . . . , 𝑥 : 𝑝𝑛 ⇒ 𝑥 :
∨
𝑗>0 𝑞 𝑗 , 𝑥 : 𝑞1, . . . , 𝑥 : 𝑞𝑡

IH
𝑥 : 𝑝1, 𝑥 : 𝑝1, . . . , 𝑥 : 𝑝𝑛 ⇒ 𝑥 :

∨
𝑗>0 𝑞 𝑗 , 𝑥 : 𝑞1, . . . , 𝑥 : 𝑞𝑡

Ctr
𝑥 : 𝑝1, . . . , 𝑥 : 𝑝𝑛 ⇒ 𝑥 :

∨
𝑗>0 𝑞 𝑗 , 𝑥 : 𝑞1, . . . , 𝑥 : 𝑞𝑡

It can be checked (we avoid doing so for reasons of space) that the admissible
step of contraction does not add any application of relational rules. qed.

We can finally relate the derivability in theories based on infinitary classical,
intuitionistic and modal logics.

Theorem 6.10.11. Let T be a set of infinitary geometric theories and 𝐵 be
infinitary geometric formula, then the following are equivalent:

1. G3CT𝜔 ⊢⇒ 𝑥 : 𝐵

2. G3IT𝜔 ⊢⇒ 𝑥 : 𝐵

3. G3S4+T𝜔 ⊢⇒ 𝑥 : 𝐵∗

Proof. The equivalence 2. ⇔ 3. follows from the extending of the modal em-
bedding to infinitary geometric theories.

Assume that G3IT𝜔 ⊢⇒ 𝑥 : 𝐵. Let 𝐵 be the formula
∧
𝑘>0(𝑝𝑘,1 ∧ ... ∧

𝑝𝑘,𝑚(𝑘) →
∨
𝑗 (𝑘)>0 𝑞𝑘, 𝑗 (𝑘)). We have:

⇒ 𝑥 : 𝐵 𝑥 : 𝐵, 𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 :
∨
𝑗 (𝑘)>0 ®𝑞 𝑗 (𝑘)

Cut
𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 :

∨
𝑗 (𝑘)>0 ®𝑞 𝑗 (𝑘)

Since by Lemma 6.10.10 we can assume that the derivation of 𝑥 : 𝑝𝑘,1, ..., 𝑥 :
𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 :

∨
𝑗 (𝑘)>0 ®𝑞 𝑗 (𝑘) does not contain any application of a relational rule,

then 𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 :
∨
𝑗 (𝑘)>0 ®𝑞 𝑗 (𝑘) is derivable in the classical

calculus G3CT𝜔. Hence the conclusion follows by applying the rules 𝐿∧, R→
and R

∧
in G3CT𝜔.

To prove 1. ⇒ 2. assume G3CT𝜔 ⊢⇒ 𝑥 : 𝐵. We apply the invertibility of
the rules to obtain the derivability of the sequents 𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 :∨
𝑗 (𝑘)>0 ®𝑞 𝑗 (𝑘) for every 𝑘 > 0. By inspection of the rules, the proof is already an

intuitionistic derivation and the conclusion is obtained as follows:
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{𝑥 : 𝑝𝑘,1, ..., 𝑥 : 𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 :
∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘) | 𝑘 > 0}

L∧
{𝑥 : 𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 :

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘) | 𝑘 > 0}

Weak
{𝑎 ∈ 𝑁 (𝑦), 𝑥 ∈ 𝑎, 𝑥 : 𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) ⇒ 𝑥 :

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘) , 𝑦 : 𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘) | 𝑘 > 0}

R⊃
{𝑎 ∈ 𝑁 (𝑦), 𝑥 ∈ 𝑎 ⇒ 𝑥 : 𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) ⊃

∨
𝑗 (𝑘)>0 ®𝑞 𝑗 (𝑘) , 𝑦 : 𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘) | 𝑘 > 0}

R⊩
{𝑎 ∈ 𝑁 (𝑦) ⇒ 𝑎 ⊩ 𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) ⊃

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘) , 𝑦 : 𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘) | 𝑘 > 0}

R→
{𝑎 ∈ 𝑁 (𝑦) ⇒ 𝑦 : 𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘) | 𝑘 > 0}

Ndeg
{⇒ 𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘) | 𝑘 > 0}

R&
⇒ 𝑦 : &𝑘>0(𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘))

Weak
𝑎 ∈ 𝑁 (𝑥), 𝑦 ∈ 𝑎 ⇒ 𝑦 : &𝑘>0(𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘)), 𝑥 :

∧
𝑘>0(𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘))

R⊩
𝑎 ∈ 𝑁 (𝑥) ⇒ 𝑎 ⊩ &𝑘>0(𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘)), 𝑥 :

∧
𝑘>0(𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘))

R
∧

𝑎 ∈ 𝑁 (𝑥) ⇒ 𝑥 :
∧
𝑘>0(𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘))

Ndeg
⇒ 𝑥 :

∧
𝑘>0(𝑝𝑘,1 ∧ . . . ∧ 𝑝𝑘,𝑚(𝑘) →

∨
𝑗 (𝑘)>0 ®𝑞𝑘, 𝑗 (𝑘))

qed.

6.11 Concluding remarks

We introduced an axiomatic system for an infinitary extension of the modal
logic S4 and proved its soundness and completeness with respect to a class of
neighborhood frames. The proof was obtained by adapting the standard canonical
model construction to the infinitary setting. The method here employed is of
independent interest. In fact, it can easily be generalized so as to cover first-order
extensions of the logics here considered as well as non-normal modal logics.

The new semantics allowed for the extraction of an infinitary labelled sequent
calculus in which every rule is height-preserving invertible and the rules of
weakening, contraction and cut are shown admissible by means of classical
proof-theoretic arguments. The calculus thus obtained has the desirable feature
that each rule is height-preserving invertible.

Hence, we have exploited the new system and its similarity to a labelled
system for intuitionistic infinitary logic in order to obtain a proof of the Gödel-
McKinsey-Tarski translation for infinitary languages. The proof explicitly shows
the steps required in order to transform an intuitionistic derivation into a modal
one and vice versa. The proof is syntactic, appealing to semantics only through
the labelling. We observe that this result could not be achieved if we worked
within Kripke style semantics, because it is inadequate for infinitary intuitionistic
logic.

Finally, we have explored the connections between classical, intuitionistic
and modal derivability in an infinitary setting. In particular, we have considered
axiomatic extensions of the labelled calculi here presented and we have provided
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a cut-free presentation for them. Next, we have shown that with respect to Horn-
like infinitary axioms there is a correspondence between derivability in classical,
intuitionistic and S4𝜔 logics. The result is extended to a class analogous to the
one of geometric axioms by considering an axiomatic extension of S4𝜔. This
presents a uniform logical landscape for the study of geometric logic which can
be studied through the lens of classical, intuitionistic and modal logic.

An interesting theme for future work may consist in the extension of the
present methodology to some intermediate logics, such as Gödel-Dummett logic.
Finally, we believe that the extension of the present result to a first-order setting
should pose no significant difficulties.
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Chapter 7

Infinitary substructural logics and
truth theories

The chapter investigates from a proof-theoretic perspective various non-contractive
logical systems circumventing logical and semantic paradoxes. Until recently,
such systems only displayed additive quantifiers (Grišin, Cantini). Systems with
multiplicative quantifers have also been proposed in the 2010s (Zardini), but they
turned out to be inconsistent with the naive rules for truth or comprehension.
We start by presenting a first-order system for disquotational truth with additive
quantifiers and we compare it with Grišin set theory. We then analyze the rea-
sons behind the inconsistency phenomenon affecting multiplicative quantifers:
after interpreting the exponentials in affine logic as vacuous quantifiers, we show
how such a logic can be simulated within a truth-free fragment of a system with
multiplicative quantifiers. Finally, we prove that the logic of these multiplicative
quantifiers (but without disquotational truth) is consistent, by showing that an
infinitary version of the cut rule can be eliminated. This paves the way to a
syntactic approach to the proof theory of infinitary logic with infinite sequents.

7.1 Introduction

Since (33) it is well-known that the contraction rule plays an essential role in
the derivation of logical and semantic paradoxes such as the Liar, Russell’s and
Curry’s. In the last few decades, there has been a renewed interest in non-
contractive logical systems, as Fitch called them, that block these paradoxes by
dropping contraction from their sequent calculus formulation. (46) established
the consistency of unrestricted abstraction based on what is nowadays called affine
logic, i.e. linear logic equipped with the weakening rule. (81) further elaborates on
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Grišin’s proposal by giving a proof-theoretic analysis of a system with unrestricted
abstraction and some additional axioms. Moreover, Cantini embeds combinatory
logic in Grišin set theory, thereby establishing its undecidability (12). It is well-
known – and it will be recalled below – that Grišin’s set theory gives rise to a
consistent theory of disquotational truth.

Nevertheless, it also clear that the solution thus provided cannot be the whole
story since it only features additive quantifiers, which are in effect classical quan-
tifiers in disguise. Indeed, as stressed in (70) and (80), the difference between
the additive universal quantifier and the multiplicative one may be roughly un-
derstood as the one between any and every. Given the splitting phenomenon
of the connectives into additive and multiplicative ones determined by the ab-
sence of contraction, the additive quantifiers generalize additive connectives, but
there is no logical device corresponding to the generalization of multiplicative
ones (10; 70; 62). One spontaneous way of conceiving of multiplicative quan-
tifiers is to identify the universal and the existential quantifiers with infinitary
multiplicative conjunctions and disjunctions, respectively

∀𝑥𝐴 ≡ 𝐴(𝑥/𝑡1) ⊗ 𝐴(𝑥/𝑡2) ⊗ . . .
∃𝑥𝐴 ≡ 𝐴(𝑥/𝑡1) ` 𝐴(𝑥/𝑡2) ` . . .

Following this intuition, (115) presented a theory of disquotational truth based
on a purely multiplicative fragment of affine logic featuring infinitary quantifiers.
However, this theory has received enough attention to make it clear that: (i)
it cannot be extended with suitable primitive recursive functions (21); (ii) the
attempted proof of consistency of the system via cut-elimination contains a gap
(36); and (iii) the system is outright inconsistent given some plausible principles
for vacuous quantification (37)

In this chapter we aim to contribute to the understanding of the non-contractive
landscape by addressing a set of interconnected issues. Specifically:

• We simplify the cut-elimination proof for Grišin’s set theory presented in
(12), while also fixing a problem in Cantini’s strategy. Furthermore, we
show that the seemingly weaker theory of disquotational truth based on
affine logic supports Cantini’s derivation of Löb’s principle given a K4
modality.

• We show that the rules for vacuous quantification, which are responsible for
the inconsistency of Zardini’s system, can actually be employed to recover
full classical logic in the context of affine logic. We prove that there exists
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an exact translation of (predicate, infinitary) classical logic into affine logic
with vacuous quantification.

• We show that the rules for vacuous quantification, which are responsible for
the inconsistency of Zardini’s system, can actually be employed to recover
full classical logic in the context of affine logic. We prove that there exists
an exact translation of (predicate, infinitary) classical logic into affine logic
with vacuous quantification.

• We show that the rules for vacuous quantification, which are responsible for
the inconsistency of Zardini’s system, can actually be employed to recover
full classical logic in the context of affine logic. We prove that there exists
an exact translation of (predicate, infinitary) classical logic into affine logic
with vacuous quantification.

• In the field of linear logic, the dismissed contraction and weakening can
be recovered and controlled using exponentials: !, ?, which essentially
behave as S4 modalities. We provide a new perspective on exponentials
by interpreting them as vacuous quantifiers. In particular, we show how
to simulate affine linear logic within a proper fragment of the system of
multiplicative quantifiers by giving a sound and faithful translation. In
doing this, we implement Girard’s old (but so far unexplored) idea to
interpret exponentials as infinitary operations (40).

• We directly show that Zardini’s cut-elimination algorithm is based on a
proof-manipulation that does not preserve provability.

• Finally, we show that an infinitary version of the cut rule can be eliminated
from the purely logical system featuring infinitary quantifiers.

The last point also answers to a question recently posed by (82). However, the
proof-theoretic interest of this result extends beyond a non-contractive approach
to paradoxes. The proof theory of well-founded infinitely branching derivations
has been extensively studied and has found significant application in the context
of ordinal analysis (95) and structural proof theory (104). Well-founded infinitary
derivations involving sequents with infinitely many formulas have received less
attention. The investigations concerning this kind of calculi have been conducted
using semantical methods (see (100)).

A semantic argument can be employed to show the cut-free completeness of
a calculus for infinitary classical logic with infinite sequents. However, since
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the logic of multiplicative quantifiers does not enjoy a semantic presentation,
this indirect strategy here is not available. We present a syntactic proof of cut-
elimination for the system involving sequents with infinitely many formulas for
the logic of multiplicative quantifiers.

The chapter is structured as follows: Section 2 discusses a contraction-free and
cut-free system for disquotational truth in relation to Grišin set theory. Section 3
shows how the exponentials ! and ? can be demodalized by conceptualizing them
in terms of vacuous quantifiers within (a truth-free fragment of) Zardini’s system.
Section 4 is divided into two parts, a pars destruens that investigates the reasons
for the inconsistency of Zardini’s system and a pars construens that presents
the cut-elimination procedure for multiplicative quantifiers. Finally, Section 5
concludes by outlining open problems generated by the results of the chapter.

7.2 Contraction and the paradoxes

Non-contractive approaches to the logical and semantic paradoxes are known to
be formally successful. Without contraction, it’s possible to extend a standard cut-
elimination procedure for first-order affine logic without exponentials (henceforth,
affine logic AL) to its extension with naïve rules for truth, (class-)membership,
predication.

Definition 7.2.1 (Affine Logic AL). Γ,Δ,Θ,Λ... range over finite multisets of
formulae of a countable, first-order Tait language FMLL.

(in)
⇒ Γ, 𝑃, 𝑃

⇒ Γ, 𝐴𝑖 (𝐴𝑖,𝑖 = 1, 2)⇒ Γ, 𝐴1 ⊕ 𝐴2

⇒ Γ, 𝐴 ⇒ Γ, 𝐵 (&)⇒ Γ, 𝐴 & 𝐵

⇒ Γ, 𝐴, 𝐵 (`)⇒ Γ, 𝐴 ` 𝐵

⇒ Γ, 𝐴 ⇒ Δ, 𝐵 (⊗)⇒ Γ,Δ, 𝐴 ⊗ 𝐵

⇒ Γ, 𝐴(𝑦/𝑥) (∀, 𝑦!)⇒ Γ,∀𝑥𝐴
⇒ Γ, 𝐴(𝑡/𝑥) (∃)⇒ Γ, ∃𝑥𝐴

where 𝑦! expresses the fact that the variable 𝑦 does not occur in the conclusion.
We follow the linear logic tradition and use ⊕ and & for, respectively, ad-

ditive disjunction and conjunction, and ` and ⊗ for, respectively, multiplicative
disjunction and conjunction. Furthermore, we use ∃ and ∀ for the additive quan-
tifiers. Lastly, we use 𝐴 for the negation of the formula 𝐴. In following the Tait
convention for negation (see also (107)), however, we take A to be defined as
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follows:

• If 𝐴 is the atomic formula 𝑃, then 𝐴 = 𝑃.

• If 𝐴 is the atomic formula 𝑃, then 𝐴 = 𝑃.

• If 𝐴 is the formula 𝐵 ⊕ 𝐶, then 𝐴 = 𝐵 & 𝐶.

• If 𝐴 is the formula 𝐵 & 𝐶, then 𝐴 = 𝐵 ⊕ 𝐶.

• If 𝐴 is the formula 𝐵 ` 𝐶, then 𝐴 = 𝐵 ⊗ 𝐶.

• If 𝐴 is the formula 𝐵 ⊗ 𝐶, then 𝐴 = 𝐵 ` 𝐶.

• If 𝐴 is the formula ∀𝑥𝐴, then 𝐴 = ∃𝑥𝐴.

• If 𝐴 is the formula ∃𝑥𝐴, then 𝐴 = ∀𝑥𝐴.

Linear logic without exponentials is obtained from affine logic by restricting
the initial sequents to those of the form initial sequents of the form ⇒ 𝑃, 𝑃. We
use a double line to denote a multiple, but finite, application of the rules of the
calculi.

Let FMLL+ be a language featuring:

• For 𝑛, 𝑚 ∈ N, 𝑛-ary predicates S𝑛,𝑚 and their negated dual S𝑛,𝑚;

• The logical symbols of AL;

• The _ term forming operator _ · .·;

• Variables 𝑣1, 𝑣2, . . . (we employ 𝑥, 𝑦, 𝑧 for metavariables).

In the predicate S𝑛,𝑚 the superscript 𝑛 denotes the arity, whereas 𝑚 indicates the
number of free variables.. For formulae 𝐴 ∈ FMLL+, _𝑥𝐴 is a term whose free
variables are the free variables of 𝐴 minus 𝑥. We abbreviate:

_𝑥1 . . . 𝑥𝑛 𝐴 := _𝑥1.(. . . _𝑥𝑛 𝐴 . . .).

Notice that we allow for “self-referential” names to be built in the system. For
instance, we allow for the existence of terms 𝑙 such that

𝑙 := ⌜S1,0(𝑙)⌝.

The term 𝑙, as we shall see shortly, plays the role of a name for a Liar sentence.
Similar terms are available for other paradoxical sentences such as Russell’s,
Curry’s, and so on.
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Definition 7.2.2 (Semantic Extensions of AL).

(i) The system UTS𝑛,𝑚 is obtained by formulating AL in FMLL+ and by adding
the rules

⇒ Γ, 𝐴(𝑡1, . . . , 𝑡𝑛) (S𝑛,𝑚)⇒ Γ, S𝑛,𝑚 (_𝑥1 . . . 𝑥𝑛 𝐴, 𝑡1 . . . 𝑡𝑛)

⇒ Γ, 𝐴(𝑡1, . . . , 𝑡𝑛) (S𝑛,𝑚)
⇒ Γ, S𝑛,𝑚 (_𝑥1 . . . 𝑥𝑛 𝐴, 𝑡1 . . . 𝑡𝑛)

for all formulae 𝐴 with exactly 𝑚 free variables.

(ii) UTS comprises rules for S𝑛,𝑚 for all 𝑛, 𝑚 ∈ N.

Remark. The template provided by the theories UTS𝑛,𝑚 enables us to define
several systems that are relevant for the analysis of the paradoxes in a non-
contractive setting. As we shall see shortly, the systems UTS1,𝑚, for each 𝑚 ∈ N,
correspond to Grišin set theory1. A non-contractive theory of disquotational
truth corresponds to UTS1,0.

Derivations in AL and extensions thereof are finite trees that are locally correct
with respect to the rules just given. (12) provides a cut-elimination strategy for
the system UTS1,𝑚. The strategy relies on a triple induction on, respectively,
the number of naïve comprehension rules, the depth of the cut-formula, i.e. the
number of logical symbols occurring in it, and the level of the cut. The strategy,
as it stands, cannot deal satisfactorily with some of the cases, for instance the
one in which the last inference in one of the branches before a cut is an additive
conjunction and in which the cut formula is not principal in the last inference.2
We circumvent the problem by showing that an induction on a single parameter
suffices. In order to do this, we provide a slightly nonstandard measure of length
of the derivation.3

Definition 7.2.3. Given a proof D, its height ℎ(D) is given by the following
recursion:

• ℎ(D) = 1 for D an instance of (in);

1Grišin calls his theory a set theory, but since it is non-extensional it ought rather to be viewed
as a property theory.

2The triple induction may be repairable – as suggested by Cantini in personal communication
– by redefining what Cantini calls ∈-complexity for additive rules, by taking in particular the
maximum of the ∈-complexity of the premisses instead of their sum.

3After circulating a preprint version of this article, Pierluigi Minari brought to our attention
the manuscript (? ), which contains essentially the same fix to Cantini’s strategy.
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• ℎ(D) = max(ℎ(D0), ℎ(D1)) + 1, with D ending with an application of
(&) to D0 and D1;

• ℎ(D) = ℎ(D0) + ℎ(D1), with D ending with an application of (⊗) to D0

and D1;

• ℎ(D) = ℎ(D0) + 1 in all other cases.

Proposition 7.2.1. Cut is admissible in UTS. Therefore, UTS is consistent.

Proof. The proof rests on the following reduction lemma:

(r) if D0 and D1 are cut-free proofs of Γ, 𝐴 and Δ, 𝐴, respectively, then there
is a cut-free proof D of Γ,Δ with ℎ(D) ≤ ℎ(D0) + ℎ(D1).

(r) is proved by an induction on ℎ(D0) + ℎ(D1). We consider two cases for
illustration. If the “cut formulae” are principal in the last inference, and they are
obtained by (for notational simplicity) S𝑛,𝑛 and S𝑛,𝑛, respectively, then we have

D00
⇒ Γ, 𝐴(𝑥1 . . . 𝑥𝑛)
⇒ Γ, S𝑛,𝑛 (_®𝑥𝐴, ®𝑥)

D10

⇒ Δ, 𝐴(𝑥1 . . . 𝑥𝑛)
⇒ Δ, S𝑛,𝑛 (_®𝑥𝐴, ®𝑥)

We can then simply apply the induction hypothesis to D00 and D10. If the last
rules applied are (⊗) and (`), respectively, we have:

D00
⇒ Γ, 𝐴

D01
⇒ Δ, 𝐵

⇒ Γ,Δ, 𝐴 ⊗ 𝐵

D10

⇒ Θ, 𝐴, 𝐵

⇒ Θ, 𝐴 ` 𝐵

Then the desired D is obtained by applying the induction hypothesis to, e.g., D00

and D10, and then to the resulting derivation and D01.4 qed.

Cantini shows that the addition of a K4 modality to Grišin set theory – that
is, a rule corresponding to the modal principle 4 – and a necessitation rule is
strong enough to derive the Löb’s principle □(□𝐴 → 𝐴) → □𝐴. We strengthen
Cantini’s observation and show that the schema UTS1,0 suffices for the task. In
what follows, it will be convenient to refer to the canonical name ⌜𝐴⌝ of a
sentence 𝐴 of FMLL, and to the corresponding truth-ascription Tr⌜𝐴⌝. We let,
for 𝐴 a sentence:

⌜𝐴⌝ := _𝑣0 𝐴, Tr⌜𝐴⌝ :↔ S1,0(⌜𝐴⌝, 𝑣0).
4It’s here that the definition of ℎ(·) plays a role: if length was defined as the number of nodes

in the maximal branch of the proof-tree, then the induction would not go through in this case as,
potentially, ℎ(D) > ℎ(D0) + ℎ(D1).
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Definition 7.2.4. The system UTS1,0 + K4 is obtained by extending UTS1,0 with
the rules:

⇒ ^Γ, Γ, 𝐴 (nec)⇒ Δ,^Γ,□𝐴
⇒ ^Γ,Δ, 𝐴 ⇒ ^Γ,Θ, 𝐵 (□⊗)⇒ ^Γ,Δ,Θ, 𝐴 ⊗ 𝐵

⇒ Γ, 𝐴 ⇒ Δ, 𝐴 (Cut)⇒ Γ,Δ

Lemma 7.2.2. UTS1,0 + K4 derives the schema □(□𝐴→ 𝐴) → □𝐴.

Proof. Let 𝐶 :↔ (□Tr⌜𝐶⌝ → 𝐴), for arbitrary 𝐴. We show that if ^𝐴, 𝐴 is
derivable, then so is 𝐴. We proceed as follows:

⇒ ^Tr⌜𝐶⌝,□Tr⌜𝐶⌝ ⇒ 𝐴, 𝐴 (⊗)
⇒ ^Tr⌜𝐶⌝,□Tr⌜𝐶⌝ ⊗ 𝐴, 𝐴

(Tr)
⇒ ^Tr⌜𝐶⌝,Tr⌜𝐶⌝, 𝐴 (nec)

⇒ ^Tr⌜𝐶⌝,□𝐴 ⇒ ^𝐴, 𝐴 (Cut)
⇒ ^Tr⌜𝐶⌝, 𝐴 (`)
⇒ ^Tr⌜𝐶⌝ ` 𝐴 ⇒ □Tr⌜𝐶⌝ ⊗ 𝐴,𝐶 (Cut)⇒ 𝐶 (Tr)⇒ Tr⌜𝐶⌝ (nec)⇒ □Tr⌜𝐶⌝ ⇒ ^Tr⌜𝐶⌝, 𝐴 (Cut)⇒ 𝐴

Since⇒ ^(□(^𝐴∨𝐴)∧^𝐴),^(□𝑃∧𝑃)∨□𝑃 is easily seen to be derivable, we
immediately get the desired conclusion as reported also in (12, Thm 2.8). qed.

By translating the box modality as 𝑃 ` 𝑃 for a designated atom 𝑃, we
immediately obtain the conservativity of UTS1,0 + K4 over UTS1,0 which in turns
immediately yields the consistency of the former system.

We would like to conclude this section by observing that the calculus UTS1,0+
K4 provably does not admit cut-elimination. To witness this it is enough to
consider the sequent ⇒ ^(□𝑃 ⊗ 𝑃),□𝑃. The latter is indeed provable via cut as
shown by the above derivation, but does not admit a cut-free proof by inspection
of the rules.

Open problem 1. Can we obtain a cut-free system equivalent to UTS1,0 + K4? A
natural approach would be to substitute the modal rule with:

⇒ ^Γ, Γ,^𝐴, 𝐴
⇒ ^Γ,□𝐴

The systems considered so far feature only additive quantifiers, which can
be viewed as straightforward generalizations of the additive conjunction and
disjunction. However, this straightforward solution to the logical paradoxes
may not be completely satisfactory: the system lacks quantifiers that generalize
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(in)
⇒ Γ, 𝑃, 𝑃

⇒ Γ, 𝐴 (Tr)⇒ Γ,Tr(⌜𝐴⌝)
⇒ Γ, 𝐴

(Tr)
⇒ Γ,Tr(⌜𝐴⌝)

⇒ Γ, 𝐴, 𝐵 (`)⇒ Γ, 𝐴 ` 𝐵

⇒ Γ, 𝐴 ⇒ Δ, 𝐵 (⊗)⇒ Γ,Δ, 𝐴 ⊗ 𝐵

. . . ⇒ Γ𝑖, 𝐴(𝑡𝑖/𝑥) . . . (∀)⇒ ⊎
𝑖<𝜔 Γ𝑖,∀𝑥𝐴

⇒ Γ, 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), . . . (∃)⇒ Γ, ∃𝑥𝐴

Figure 7.1: IKT𝜔

multiplicative connectives. Several logicians and philosophers encouraged such
a strengthening of the basic non-contractive theory (10; 70; 62). The challenge
was taken up by Zardini in (115).

7.3 Multiplicative quantifiers and inconsistency

(115) attempts to establish a cut elimination theorem for the multiplicative frag-
ment of affine logic extended with a combination of multiplicative quantifiers
and naïve truth (IKT𝜔), see Figure 7.3. We opted for a Tait style presentation
of the original calculus by Zardini. Indeed, the two calculi are easily seen to be
equivalent in terms of provability. By

⊎
𝑖∈𝐼 Γ𝑖 we denote the infinitary multiset

union of the Γ𝑖. Terms 𝑡1, 𝑡2, 𝑡3, ... constitutes an exhaustive enumeration of the
terms of the language.

Zardini motivates the theory by emphasizing that additive connectives are not
compatible with the solutions to the semantic paradoxes he defends; as a conse-
quence, multiplicative quantifiers become the natural extension of multiplicative
conjunction and disjunction. The proposal consists in equating multiplicative
universal and existential quantifiers with an infinitary multiplicative conjunction
and disjunction, respectively. This move is not without consequences from the
point of view of the structural analysis of the system. In particular, the choice
of such a reading of quantifiers has the immediate consequence of working with
sequents with infinite multisets of formulas.

It is worth noting a nonstandard feature of the multiset notion employed
by Zardini, which is specifically required by his formulation of the (∀) rule.5

5Thanks to Francesco Paoli for highlighting this point in personal communication.
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While standard multisets (even infinite ones) allow only for finite multiplicities
of formulas, Zardini’s multisets permit𝜔-many repetitions of formulae. However,
one of the problems with Zardini’s notion is that it does not allow for tracking
copies of different infinite multiplicities (which may be made up of infinite
repetitions of the same formula), thereby reintroducing a form of contraction into
the system. Many of the results that follow are based on the consequences of this
choice. Formally, multisets are not, as usual, functions Γ : FMLL → 𝜔, but rather
functions Γ : FMLL → 𝜔 + 1. We write Γ(𝐴) > 0 to denote the fact that 𝐴 occurs
in Γ (possibly infinitely many times).

Several problems have been found with Zardini’s proposal, but his work con-
tains insightful ideas that prompted interest in the study of infinitary systems
with multiplicative quantifiers and their interaction with paradox-breeding no-
tions. Da Ré and Rosenblatt showed that extending Zardini’s system with basic
arithmetical axioms leads to inconsistency (21), while Fjellstad identified a gap
in the cut-elimination proof (36). In §7.4.1, we directly show that Zardini’s cut-
elimination algorithm is based on a proof-manipulation that does not preserve
provability. In a recent paper, Fjellstad also show that the system IKT𝜔 is out-
right inconsistent, if the rules for the multiplicative quantifiers are used to deal
with vacuous quantification in a natural way (37). In this section we show how,
even without a truth predicate or similar semantic resources, the implicit rules
for vacuous quantification in IKT𝜔 are problematic. In particular, we prove that
vacuous quantification simulates the role played by exponentials in linear logic.
Therefore, vacuous quantification in the setting of Zardini’s system allows one to
faithfully interpret classical logic as a fragment.

Since the system IKT𝜔 and its fragment obtained from removing the truth
predicate are systems in which derivations are infinitely branching well-founded
trees, we need to suitably modify the notion of height in order to carry out
inductive arguments. To deal with infinitary derivations we assign ordinals to
measure the heights of the derivations (as in Section 6 of the present work). The
assignment is the standard one as can be found in (95), the key point is that for
every rule 𝜌:

. . . ⇒ Γ𝑖 . . . (𝜌)⇒ Γ

the height of the premise Γ𝑖 is strictly less than the height of the conclusion Γ for
every 𝑖. More generally, the height of a derivation D is inductively defined as
follows: with ℎ𝑖 the heights of the direct sub-derivations of D, 𝑖 ∈ 𝐼, the height
of D is 𝑠𝑢𝑝𝑖∈𝐼 (ℎ𝑖) + 1.
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7.3.1 Vacuous quantifiers and classical logic

We recall that a rule is said to be (height-preserving) invertible if the derivability
of the conclusion entails the derivability of each of its premises (and the height
is less or equal). We start by showing that the rule for the existential quantifier is
height-preserving invertible.

Lemma 7.3.1. The rule ∃ is height-preserving invertible.

Proof. By induction on the height of the derivation. If the sequent ⇒ Γ, ∃𝑥𝐴
is an initial sequent, then so is ⇒ Γ, 𝐴(𝑡0/𝑥), 𝐴(𝑡1/𝑥), ... since ∃𝑥𝐴 is not an
atomic formula and initial sequents are all on the form ⇒ Γ, 𝑃, 𝑃 for atomic 𝑃’s.
If the formula ∃𝑥𝐴 is principal, the premise gives the desired conclusion. If the
last rule applied is any other rule, we apply the induction hypothesis to each of
the premise(s) and then the rule again. For example, if the last rule applied is ∀,
we have:

. . . ⇒ Γ𝑖, 𝐵(𝑡𝑖/𝑦), ∃𝑥𝐴 . . . (∀)⇒ ⊎
𝑖<𝜔 Γ𝑖,∀𝑦𝐵, ∃𝑥𝐴

We construct the following derivation:

. . .

...IH

⇒ Γ𝑖, 𝐵(𝑡𝑖/𝑦), 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), ... . . . (∀)⇒ ⊎
𝑖<𝜔 Γ𝑖,∀𝑦𝐵, 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), ...

where 𝐼𝐻 denotes the application of the inductive hypothesis. qed.

We also observe that the weakening rule (Weak) is height-preserving ad-
missible in the system IZ𝜔. This fact will shortly be employed in the proof of
Proposition 7.3.3.

Lemma 7.3.2. The weakening rule:

⇒ Γ Weak⇒ Γ,Δ

is height-preserving admissible for every multiset Δ.

Proof. Straightforward by induction on the height of the derivation. qed.

Definition 7.3.1. The translation from classical logic in a language containing
signed propositional atoms, conjunctions and disjunctions (in what follows we
assume that the quantifiers are vacuous).
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• (𝑃)∗ = 𝑃

• (𝑃)∗ = 𝑃

• (𝐴 ∨ 𝐵)∗ = ∃𝑥𝐴∗ ` ∃𝑦𝐵∗

• (𝐴 ∧ 𝐵)∗ = ∃𝑥𝐴∗ ⊗ ∃𝑦𝐵∗

The translation extends to multisets: if Γ is a finite multiset of formulae in the
classical language, we let Γ∗ = ∃𝑥Γ∗, where ∃𝑥Γ∗ stands for the multiset obtained
by prefixing every formula in Γ with a vacuous quantifier. We write 𝐴∞ to denote
the multiset of formula containing infinitely many copies of 𝐴. The definition
naturally extends to multisets of formulas.

Definition 7.3.2 (ALV). ALV extends AL with the following rules for vacuous
quantification:

⇒ Γ, 𝐴∞ (v∃)⇒ Γ, ∃𝑥𝐴
. . . ⇒ Γ𝑖, 𝐴 . . . (v∀)⇒ ⊎

𝑖<𝜔Γ𝑖,∀𝑥𝐴

Proposition 7.3.3. Classical propositional logic is a subsystem of affine propo-
sitional logic extended with infinitary rules for vacuous quantification (ALV).

The proof of the proposition rests on the following Lemma which ensures
the admissibility of an infinitary form of contraction for vacuously existentially
quantified formulas.

Lemma 7.3.4. The following rule is admissible in ALV:

⇒ Γ, ∃𝑥𝐴∞
⇒ Γ, ∃𝑥𝐴

Proof. We argue by induction on the height of the derivation. If ⇒ Γ, ∃𝑥𝐴∞ is
an initial sequent, so is ⇒ Γ, ∃𝑥𝐴, because only literals can be principal in initial
sequents. If one of the existential quantifiers is principal, we have:

⇒ Γ, 𝐴∞, ∃𝑥𝐴∞ (v∃)⇒ Γ, ∃𝑥𝐴∞

By applying the invertibility of the rule for the existential quantifier we get a
derivation of ⇒ Γ, 𝐴∞, because the countable union of a countable multiset of
formulas is a countable multiset. The desired conclusion follows by an application
of the rule ∃.
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⇒ Γ, 𝑃, 𝑃 (cin)

⇒ Γ, 𝐴 ⇒ Γ, 𝐵 (∧)⇒ Γ, 𝐴 ∧ 𝐵
⇒ Γ, 𝐴, 𝐵 (∨)⇒ Γ, 𝐴 ∨ 𝐵

Figure 7.2: CPL

If the last rule is a unary rule and ∃𝑥𝐴 is not principal, we apply the induction
hypothesis to the premise and then the rule again. If the last rule applied is ⊗, we
have:

⇒ Γ, 𝐵, ∃𝑥𝐴∞ ⇒ Δ, 𝐶, ∃𝑥𝐴∞ (⊗)⇒ Γ,Δ, 𝐵 ⊗ 𝐶, ∃𝑥𝐴∞

In this case we construct the following derivation:

⇒ Γ, 𝐵, ∃𝑥𝐴∞ (IH)⇒ Γ, 𝐵, ∃𝑥𝐴 (inv)⇒ Γ, 𝐵, 𝐴∞

⇒ Δ, 𝐶, ∃𝑥𝐴∞ (IH)⇒ Γ, 𝐶, ∃𝑥𝐴 (inv)⇒ Γ, 𝐶, 𝐴∞ (⊗)⇒ Γ,Δ, 𝐵 ⊗ 𝐶, 𝐴∞ (v∃)⇒ Γ,Δ, 𝐵 ⊗ 𝐶, ∃𝑥𝐴

qed.

Proof of Proposition. We first prove that, for ⇒ Γ a finite sequent in the classical
logical language,

CPL derives ⇒ Γ only if ALV derives ⇒ ∃𝑥Γ∗ (7.1)

where CPL is a Tait-style formulation of classical logic – cf. Figure 7.2. (7.1) is
obtained by induction on the length 𝑛 of the proof of ⇒ Γ in CPL, where length
can be taken to be the number of nodes in the maximal path of the derivation
tree. If 𝑛 = 1, we have the following derivation of ⇒ ∃𝑥𝑃, ∃𝑥𝑃 in ALV6

⇒ ∃𝑥Γ, 𝑃∞, 𝑃
∞

(v∃)
⇒ ∃𝑥Γ, ∃𝑥𝑃, ∃𝑥𝑃

For 𝑛 > 1, we consider the two different cases of (∧) and (∨). In the former case,
we reason as follows:

6For a definition of the convention involving the double line, we refer to p. 184.
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⇒ ∃𝑥Γ∗, ∃𝑥𝐴∗ ⇒ ∃𝑥Γ∗, ∃𝑥𝐵∗
(⊗)

⇒ (∃𝑥Γ∗)2, ∃𝑥𝐴∗ ⊗ ∃𝑥𝐵∗
(Lemma 7.3.4)⇒ ∃𝑥Γ∗, ∃𝑥𝐴∗ ⊗ ∃𝑥𝐵∗
(Weak)⇒ ∃𝑥Γ∗, (∃𝑥𝐴∗ ⊗ ∃𝑥𝐵∗)∞ (v∃)⇒ ∃𝑥Γ∗, ∃𝑥(∃𝑥𝐴∗ ⊗ ∃𝑥𝐵∗)

In the latter, we consider the following proof in ALV:

⇒ ∃𝑥Γ∗, ∃𝑥𝐴∗, ∃𝑥𝐵∗
(`)⇒ ∃𝑥Γ∗, ∃𝑥𝐴∗ ` ∃𝑥𝐵∗

(Weak)⇒ ∃𝑥Γ∗, (∃𝑥𝐴∗ ` ∃𝑥𝐵∗)∞ (v∃)⇒ ∃𝑥Γ∗, ∃𝑥(∃𝑥𝐴∗ ` ∃𝑥𝐵∗)

qed.

We observe that Lemma 7.3.4 can be proved also if the premise ⇒ Γ, ∃𝑥𝐴𝑛

for every 𝑛 ≥ 1.

Lemma 7.3.5. If ⇒ 𝐴∗∞1 , . . . , 𝐴∗∞𝑛 is derivable in ALV, then CPL derives ⇒
𝐴1, . . . , 𝐴𝑛.

Proof. The proof is by induction on the height of the derivation in ALV. If
⇒ 𝐴∗∞1 , . . . , 𝐴∗∞𝑛 is an initial sequent, then ⇒ 𝐴1, . . . , 𝐴𝑛 is an initial sequent in
CPL. If ⇒ 𝐴∗∞1 , . . . , 𝐴∗∞𝑛 is the conclusion of a logical rule we distinguish cases
according to the last rule applied. If the last rule applied is ⊗ we have:

⇒ ∃𝑥𝐵∗, (∃𝑥𝐵∗ ⊗ ∃𝑥𝐶∗)∞, . . . , 𝐴∗∞𝑛 ⇒ ∃𝑥𝐶∗, (∃𝑥𝐵∗ ⊗ ∃𝑥𝐶∗)∞, . . . , 𝐴∗∞𝑛 (⊗)⇒ ∃𝑥𝐵∗ ⊗ ∃𝑥𝐶∗, (∃𝑥𝐵∗ ⊗ ∃𝑥𝐶∗)∞, . . . , 𝐴∗∞𝑛

We proceed as follows:

⇒ ∃𝑥𝐵∗, (∃𝑥𝐵∗ ⊗ ∃𝑥𝐶∗)∞, . . . , 𝐴∗∞𝑛 (inv)⇒ 𝐵∗∞, (∃𝑥𝐵∗ ⊗ ∃𝑥𝐶∗)∞, . . . , 𝐴∗∞𝑛 (IH)⇒ 𝐵, 𝐵 ∧ 𝐶, . . . , 𝐴𝑛

⇒ ∃𝑥𝐶∗, (∃𝑥𝐵∗ ⊗ ∃𝑥𝐶∗)∞, . . . , 𝐴∗∞𝑛 (inv)⇒ 𝐶∗∞, (∃𝑥𝐵∗ ⊗ ∃𝑥𝐶∗)∞, . . . , 𝐴∗∞𝑛 (IH)⇒ 𝐶, 𝐵 ∧ 𝐶, . . . , 𝐴𝑛 (∧)⇒ 𝐵 ∧ 𝐶, 𝐵 ∧ 𝐶, . . . , 𝐴𝑛 (C)⇒ 𝐵 ∧ 𝐶, . . . , 𝐴𝑛

where (𝐶) denotes an application of height-preserving admissibility of the rule
of contraction in the calculus for classical logic. If the last rule applied is `, we
have:

⇒ ∃𝑥𝐵∗, ∃𝑥𝐶∗, ∃𝑥𝐵∗∞ ` ∃𝑥𝐶∗∞, . . . , 𝐴∗∞𝑛 (`)⇒ ∃𝑥𝐵∗∞ ` ∃𝑥𝐶∗∞, . . . , 𝐴∗∞𝑛
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⇒ Γ, ∃𝑥𝐴, 𝐴(𝑡/𝑥) (∃)⇒ Γ, ∃𝑥𝐴
⇒ Γ, 𝐴(𝑦/𝑥) (∀, y!)⇒ Γ,∀𝑥𝐴

Figure 7.3: Classical rules for quantifiers

We construct the following derivation:

⇒ ∃𝑥𝐵∗, ∃𝑥𝐶∗, ∃𝑥𝐵∗∞ ` ∃𝑥𝐶∗∞, . . . , 𝐴∗∞𝑛 (inv)⇒ 𝐵∗∞, 𝐶∗∞, ∃𝑥𝐵∗∞ ` ∃𝑥𝐶∗∞, . . . , 𝐴∗∞𝑛 (IH)⇒ 𝐵,𝐶, 𝐵 ∨ 𝐶, . . . , 𝐴𝑛 (∨)⇒ 𝐵 ∨ 𝐶, 𝐵 ∨ 𝐶, . . . , 𝐴𝑛 (C)⇒ 𝐵 ∨ 𝐶, . . . , 𝐴𝑛

qed.

We can now prove the faithfulness of the embedding.

Theorem 7.3.6. ⇒ Γ is derivable in CPL if and only if ⇒ ∃𝑥Γ∗ is derivable in
ALV.

Proof. From left to right we exploit the soundness of the translation. From right
to left we apply invertibility of the rule for the existential quantifier and we get
a derivation of ⇒ Γ∗∞. We then apply the faithfulness lemma which yields the
desired conclusion. qed.

7.3.2 Extension to first-order and infinitary logic

We now extend to first-order logic the soundness of the embedding. To do so,
we need to introduce clauses which translate the universal and the existential
quantifiers. We propose the following:

• (∃𝑥𝐴)∗ = ∃𝑥∃𝑦𝐴∗, 𝑦 does not occur in 𝐴.

• (∀𝑥𝐴)∗ = ∀𝑥∃𝑦𝐴∗, 𝑦 does not occur in 𝐴.

We recall the rules for the universal and existential quantifiers in classical logic
in Figure 7.3.2. The rule (∃) is formulated in a Kleene-style version in order to
eliminate the need for an explicit contraction rule (107).

Proposition 7.3.7. The embedding extends to first-order classical logic.
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Proof. We only need to check the case of the existential quantifier and the uni-
versal one. If the last rule applied is ∃, we have:

⇒ Γ, ∃𝑥𝐴, 𝐴(𝑡/𝑥) (∃)⇒ Γ, ∃𝑥𝐴

By induction on the height of the derivation we get:

⇒ ∃𝑦Γ∗, ∃𝑦∃𝑥∃𝑦𝐴∗, ∃𝑦𝐴∗(𝑡/𝑥) (Weak)⇒ ∃𝑦Γ∗, ∃𝑦∃𝑥∃𝑦𝐴∗, (∃𝑦𝐴∗(𝑡/𝑥))∞ (v∃)⇒ ∃𝑦Γ∗, ∃𝑦∃𝑥∃𝑦𝐴∗, ∃𝑥∃𝑦𝐴∗(𝑡/𝑥) (Weak)⇒ ∃𝑦Γ∗, ∃𝑦∃𝑥∃𝑦𝐴∗, (∃𝑥∃𝑦𝐴∗(𝑡/𝑥))∞ (v∃)⇒ ∃𝑦Γ∗, ∃𝑦∃𝑥∃𝑦𝐴∗

In the case of the rule ∀, we proceed as follows:

. . . ⇒ ∃𝑦Γ∗, ∃𝑦𝐴∗(𝑡𝑖/𝑥) . . . (v∀)⇒ (∃𝑦Γ∗)∞,∀𝑥∃𝑦𝐴∗ (Lemma 7.3.4)⇒ ∃𝑦Γ∗,∀𝑥∃𝑦𝐴∗ (Weak)⇒ ∃𝑦Γ∗, (∀𝑥∃𝑦𝐴∗)∞ (v∃)⇒ ∃𝑦Γ∗, ∃𝑦∀𝑥∃𝑦𝐴∗

qed.

The embedding can be further extended to encompass infinitary classical
logic, that is the extension of classical logic with the rule:

⇒ Γ, 𝐴(𝑡1/𝑣) . . . ⇒ Γ, 𝐴(𝑡𝑛/𝑣) . . . (∀∞-cl)⇒ Γ,∀𝑣𝐴

with Γ a finite multiset. The claim follows immediately from

Lemma 7.3.8. The rule (∀∞-cl) is admissible in ALV via the translation ∗ of its
formulas.

Proof. We proceed as follows:

⇒ ∃𝑥Γ∗, ∃𝑥𝐴∗(𝑡1/𝑣) . . . ⇒ ∃𝑥Γ∗, ∃𝑥𝐴∗(𝑡𝑛/𝑣)... (v∀)⇒ (∃𝑥Γ∗)∞,∀𝑦∃𝑥𝐴∗ (Lemma 7.3.4)⇒ ∃𝑥Γ∗,∀𝑦∃𝑥𝐴∗ (Weak)⇒ ∃𝑥Γ∗, (∀𝑦∃𝑥𝐴∗)∞ (v∃)⇒ ∃𝑥Γ∗, ∃𝑧∀𝑦∃𝑥𝐴∗

qed.

In the case of infinitary classical logic, we can show that the embedding is
indeed faithful, in the sense that if the translation of a sequent is provable in ALV,
then the sequent is provable in infinitary classical logic.

195



Theorem 7.3.9. For any sequent ⇒ Γ, if ⇒ Γ∗∞ is provable in ALV, then ⇒ Γ

is provable in infinitary classical logic.

Proof. The proof is by induction on the height of the derivation in ALV distin-
guishing cases according to the last rule applied.

Suppose the last rule applied is ∀ with principal formula ∀𝑥∃𝑦𝐴∗, we have:

⇒ Γ∗∞, (∀𝑥∃𝑦𝐴∗)∞, ∃𝑦𝐴∗(𝑡1/𝑥) . . . ⇒ Γ∗∞, (∀𝑥∃𝑦𝐴∗)∞, ∃𝑦𝐴∗(𝑡𝑛/𝑥)... (∀∞-cl)⇒ Γ∗∞, (∀𝑥∃𝑦𝐴∗)∞,∀𝑥∃𝑦𝐴∗

we safely assume that the premises contain infinitely many copies of each of the

formulas. We construct the following derivation:

⇒ Γ∗∞, (∀𝑥∃𝑦𝐴∗)∞, ∃𝑦𝐴∗(𝑡1/𝑥) (inv)⇒ Γ∗∞, (∀𝑥∃𝑦𝐴∗)∞, (𝐴∗(𝑡1/𝑥))∞ (IH)⇒ Γ,∀𝑥𝐴, 𝐴(𝑡1/𝑥) . . .

⇒ Γ∗∞, (∀𝑥∃𝑦𝐴∗)∞, ∃𝑦𝐴∗(𝑡𝑛/𝑥)... (inv)⇒ Γ∗∞, (∀𝑥∃𝑦𝐴∗)∞, (𝐴∗(𝑡𝑛/𝑥))∞... (IH)⇒ Γ,∀𝑥𝐴, 𝐴(𝑡𝑛/𝑥)... (∀∞-cl)⇒ Γ,∀𝑥𝐴,∀𝑥𝐴 (C)⇒ Γ,∀𝑥𝐴

qed.

7.3.3 Vacuous Quantification and Exponentials

In this section we show that affine logic with exponentials can be embedded via
a faithful translation in ALV.7

First we recall the rules which govern the exponentials in affine logic

⇒ Γ, ?𝐴, ?𝐴 (?c)⇒ Γ, ?𝐴
⇒ Γ, 𝐴 (?)⇒ Γ, ?𝐴

⇒?Γ, 𝐴 (!)⇒ Δ, ?Γ, !𝐴

We call ALE the resulting system – Affine Logic with Exponentials.
Consider the translation:

• (𝑃)◦ = 𝑃

• (𝑃)◦ = 𝑃

• (𝐴 ` 𝐵)◦ = 𝐴◦ ` 𝐵◦

• (𝐴 ⊗ 𝐵)◦ = 𝐴◦ ⊗ 𝐵◦

7It is fairly obvious that ALV can be faithfully translated in the extension of AL with infinitary
rules for quantifiers.
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• (?𝐴)◦ = ∃𝑥𝐴◦

• (!𝐴)◦ = ∀𝑥𝐴◦

where the quantifiers are vacuous.

Proposition 7.3.10. ⇒ Γ is provable in ALE if and only if ⇒ Γ◦ is provable in
ALV.

The proof of Proposition 7.3.10 follows immediately from the the next lem-
mata.

Lemma 7.3.11. The following rule is admissible in ALV for every finite multiset
Γ:

⇒ ∃𝑦Γ, 𝐴
⇒ ∃𝑦Γ,∀𝑥𝐴

Proof. The admissibility is proved with the following steps.

. . . ⇒ ∃𝑦Γ, 𝐴 . . . (v∀)⇒ (∃𝑦Γ)∞,∀𝑥𝐴 (Lm. 7.3.4)⇒ ∃𝑦Γ,∀𝑥𝐴

qed.

Lemma 7.3.12. If ALE proves ⇒ Γ, then ALV proves ⇒ Γ◦.

Proof. We argue by induction on the height of the derivation of ⇒ Γ in ALE.
The only cases to check are the ones involving exponentials. If the last rule
applied is ?C or ! we exploit Lemma 7.3.4 and Lemma 7.3.11. If the last rule
applied is ? we use height-preserving admissibility of weakening and the rule ∃.

qed.

Lemma 7.3.13. Let Γ be a finite multiset of formulas of ALE and 𝐴1, ..., 𝐴𝑛 be
formulas of ALE:

If ALV derives ⇒ Γ◦, 𝐴◦∞1 , ..., 𝐴◦∞𝑛 , then ⇒ Γ, ?𝐴1, ..., ?𝐴𝑛 is derivable in ALE.

Proof. We argue by induction on the height of the derivation of⇒ Γ◦, 𝐴◦∞1 , ..., 𝐴◦∞𝑛
in ALV distinguishing cases according to the last rule applied.

Since we are working in a setting with admissible weakening, we can safely
assume that in applications of the rule ⊗ and ∀ for every 𝑖 ∈ {1, . . . , 𝑛} infinitely
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many occurrences of 𝐴◦∞
𝑖

are present in each premise. If the last rule applied is
∀ and the principal formula is in Γ◦, we have:

. . . ⇒ Γ◦′
𝑖
, 𝐵◦, 𝐴◦∞1 , ..., 𝐴◦∞𝑛 . . .

(v∀)
⇒ Γ◦′ ,∀𝑥𝐵◦, 𝐴◦∞1 , ..., 𝐴◦∞𝑛

Since by assumption Γ◦′ is finite, there must be an 𝑖 < 𝜔 such that Γ𝑖 = ∅.
We consider that premise ⇒ 𝐵◦, 𝐴◦∞1 , ..., 𝐴◦∞𝑛 and we construct the following
derivation:

⇒ 𝐵◦, 𝐴◦∞1 , ..., 𝐴◦∞𝑛 (IH)⇒ 𝐵, ?𝐴1, ..., ?𝐴𝑛 (!)⇒!𝐵, ?𝐴1, ..., ?𝐴𝑛 (Weak)⇒ Γ′, !𝐵, ?𝐴1, ..., ?𝐴𝑛

If∀𝑥𝐵 is a formula among 𝐴◦∞1 , ..., 𝐴◦∞𝑛 we proceed analogously with an extra
application of the rule ?.

If the last rule applied is ∃ and the principal formula is among the formulas
in 𝐴◦∞1 , ..., 𝐴◦∞𝑛 , we have:

⇒ Γ◦′ , 𝐵◦∞, 𝐴◦∞1 , ..., 𝐴◦∞𝑛 (v∃)
⇒ Γ◦′ , ∃𝑥𝐵◦, 𝐴◦∞1 , ..., 𝐴◦∞𝑛

We construct the following derivation:

⇒ Γ◦′ , 𝐵◦∞, 𝐴◦∞1 , ..., 𝐴◦∞𝑛 (IH)⇒ Γ′, ?𝐵, ?𝐴1, ..., ?𝐴𝑛

The application of the inductive hypothesis suffices.
The remaining cases are easily provable by applications of the inductive

hypothesis followed by applications of the rules of the calculus ALE. qed.

Lemma 7.3.13 gives a formal representation of the intuitive claim about the
infinitary nature of exponentials. Indeed, the context-restriction imposed on the
rule for the operator ! is simulated by the fact that the infinitary multiplicative
rule for ∀ yields a premise in which the context not under the scope of ? is absent.

Remark. We observe that due to the transitivity of faithful translations we obtain
an alternative proof of the embedding of classical logic into ALV as follows:

CL proves ⇒ Γ ⇔ ALE proves ⇒ Γ• ⇔ ALV proves ⇒ (Γ•)◦

where • is the translation of affine logic into classical logic.
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7.3.4 Exponential Liar

From the previous results linking vacuous quantification and the exponentials,
and the inconsistency Zardini’s system established by (37), we can restore the
propositional structure of the derivation of the Liar paradox in full linear and
affine logics extended with rules for full disquotation. By our assumptions on
_-terms, we can assume that there is a term 𝑙 := ⌜?Tr(𝑙)⌝. We abbreviate with 𝐿
the sentence ?Tr(𝑙). We are also assuming that 𝐿 abbreviates !Tr(𝑙). Therefore,
the rules

⇒ Γ, ?Tr(𝑙) (𝐿)⇒ Γ, 𝐿

⇒ Γ, !Tr(𝑙)
(𝐿)

⇒ Γ, 𝐿

are obviously admissible – in fact, the conclusions are just notational variants of
the premisses.

Proposition 7.3.14. Full, propositional linear and affine logics are inconsistent
with the rules

⇒ Γ, 𝐴 (Tr)⇒ Γ,Tr⌜𝐴⌝
⇒ Γ, 𝐴

(Tr)
⇒ Γ,Tr⌜𝐴⌝

for 𝐴 a sentence possibly containing exponentials.

Proof.

(in)
⇒ Tr(𝑙),Tr(𝑙) (?)
⇒?Tr(𝑙),Tr(𝑙) (!)
⇒?Tr(𝑙), !Tr(𝑙)

(𝐿)
⇒?Tr(𝑙), 𝐿

(Tr)
⇒?Tr(𝑙),Tr(𝑙) (?)
⇒?Tr(𝑙), ?Tr(𝑙) (?c)

⇒?Tr(𝑙) (𝐿)⇒ 𝐿

(in)
⇒ Tr(𝑙),Tr(𝑙) (?)
⇒?Tr(𝑙),Tr(𝑙) (!)
⇒?Tr(𝑙), !Tr(𝑙)

(𝐿)
⇒?Tr(𝑙), 𝐿

(Tr)
⇒?Tr(𝑙),Tr(𝑙) (?)
⇒?Tr(𝑙), ?Tr(𝑙) (?c)

⇒?Tr(𝑙) (𝐿)⇒ 𝐿 (Tr)⇒ Tr(𝑙) (!)⇒!Tr(𝑙)
(𝐿)

⇒ 𝐿 (cut)⇒

qed.

Remark. The content of Proposition 7.3.14 shows that - in general - full linear
logic with exponentials is enough to simulate the liar paradox when paired with
rules for naïve truth. We would like to point out that in our setting the faithful
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embedding of the exponentials in ALV requires the presence of the structural rule
of weakening.

7.4 Cut-elimination for multiplicative quantifiers

7.4.1 Zardini’s cut-elimination: another visit

The results in the previous sections tell us that Zardini’s cut-elimination argument
for the theory of naïve truth based on his multiplicative quantifiers cannot work.
This leaves open the question whether Zardini’s procedure could work in the
absence of the rules for the truth predicate. The answer is still negative: (36)
found a gap in Zardini’s reduction for the quantifiers. Fjellstad isolates an example
of a sequent which is obviously cut-free derivable, but such that the cut involved
in its proof cannot be eliminated following Zardini’s instructions. Although
pointing to a serious gap in Zardini’s reduction, Fiellstad’s example involves
a case that can nonetheless be dealt with by supplementing Zardini’s original
reduction strategy with extra conditions.8 By contrast, we directly show that
Zardini’s cut-elimination algorithm is based on a proof-manipulation that does
not preserve provability.

The problem involves the elimination of cuts in which the cut formula is
principal in both the premises of the cut and is a universal or existential formula.
Consider the cut which needs to be eliminated.

. . . ⇒ Γ𝑖, 𝐴(𝑡𝑖/𝑥) . . .
∀⇒ ⊎

𝑖<𝜔 Γ𝑖,∀𝑥𝐴
⇒ 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), ...,Δ ∃

⇒ ∃𝑥𝐴,Δ
Cut⇒ ⊎

𝑖<𝜔 Γ𝑖,Δ

The solution proposed by Zardini is to reduce the size of the multiset of cut
formulas 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), ... introduced by the application of ∃. In particular,
one should trace up the multiset in the derivation until it becomes finite in
a branch. By the design of the system a countably infinite (sub)multiset of
𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), ... can only be introduced by the rule ∀ or by a weakened initial
sequent, we detail the first case.

8To be sure, we believe that Fjellstad’s example points to a fundamental flaw in Zardini’s
strategy, but the specific example does not amount to a knock-down case.
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. . . ⇒ Γ𝑖, , 𝐴(𝑡𝑖/𝑥) . . .
∀⇒ ⊎

𝑖<𝜔 Γ𝑖,∀𝑥𝐴

. . . ⇒ 𝐴(𝑡𝑖/𝑥),Δ′
𝑖

. . .
∀

⇒ 𝐴(𝑡𝑖/𝑥), 𝐴(𝑡𝑖+1/𝑥),Δ′

... D
⇒ 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), ...,Δ ∃

⇒ ∃𝑥𝐴,Δ
Cut⇒ ⊎

𝑖<𝜔 Γ𝑖,Δ

Notice that the principal formula in ∀ is not displayed. According to Zardini, we
should pick the premise ⇒ 𝐴(𝑡𝑖/𝑥),Δ′

𝑖
and construct the following derivation.

⇒ 𝐴(𝑡𝑖/𝑥),Δ′
𝑖

... D
⇒ 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), ..., 𝐴(𝑡𝑖/𝑥),Δ′

The cut is then replaced by 𝑖 many cuts and the desired conclusion fol-
lows from the application of the weakening rule. Now, the gap in Zardini
argument is exactly in the passage displayed above. In fact, while the se-
quent ⇒ 𝐴(𝑡𝑖/𝑥),Δ′

𝑖
is indeed provable, the same cannot be said of the sequent

⇒ 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), ..., 𝐴(𝑡𝑖/𝑥),Δ′. In other words, Zardini’s reduction is based
on the idea that the derivation D could be performed even if one focused on a
single premiss only, instead of infinitely many. For instance, according to the
reduction, one could start with the derivation

. . . ⇒ 𝑃(𝑡𝑖/𝑥), 𝑃(𝑡𝑖/𝑥) . . .
∀

⇒ 𝑃(𝑡𝑖/𝑥), 𝑃(𝑡𝑖+1/𝑥), ...,∀𝑥𝑃
... D

⇒ 𝑃(𝑡1/𝑥), 𝑃(𝑡2/𝑥), ...,Δ′

According to the reduction, one could then transform the derivation into:

⇒ 𝑃(𝑡𝑖/𝑥), 𝑃(𝑡𝑖/𝑥) ∀
⇒ 𝑃(𝑡𝑖/𝑥),∀𝑥𝑃

... D
⇒ 𝑃(𝑡1/𝑥), 𝑃(𝑡2/𝑥), ...,Δ′

The sequent ⇒ 𝑃(𝑡𝑖/𝑥),∀𝑥𝑃, however, is clearly not (cut-free) provable.

7.4.2 Eliminating cuts

Zardini’s reduction is flawed even if one considers the system without the truth
predicate. However, as we shall now demonstrate, cut is eliminable in Zardini’s
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infinitary logic (without truth), i.e. the system IK𝜔.

(in)
⇒ Γ, 𝑃, 𝑃

⇒ Γ, 𝐴, 𝐵 (`)⇒ Γ, 𝐴 ` 𝐵

⇒ Γ, 𝐴 ⇒ Δ, 𝐵 (⊗)⇒ Γ,Δ, 𝐴 ⊗ 𝐵

. . . ⇒ Γ𝑖, 𝐴(𝑡𝑖/𝑥) . . . (∀)⇒ ⊎
𝑖<𝜔 Γ𝑖,∀𝑥𝐴

⇒ Γ, 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), . . . (∃)⇒ Γ, ∃𝑥𝐴

Our strategy is based on a double induction, on the length of the derivation
and on a modified notion of the degree of formulas which is extended so as to
measure the complexity of (possibly infinite) multisets of formulas: for this
reason, the proof cannot be lifted to the system with a fully disquotational truth
predicate since, as it is well-known, truth collapses the depth of sentences.

We shall eliminate cuts of the form:

⇒ Γ,Φ {⇒ Δ𝜑, 𝜑 |Φ(𝜑) > 0}
(Cut)⇒ Γ,Δ

Intuitively, the (CUT) rule allows one to cut infinitely many formulas simultane-
ously. Hence we have one premise ⇒ Γ,Φ, where Φ is the multiset of formulas
to cut and (possibly) infinitely many premises ⇒ Δ𝜑, 𝜑, one for every formula 𝜑
with Φ(𝜑) > 0. Finally, the multiset Δ in the conclusion denotes the infinitary
multiset union of all the multisets Δ𝜑. To eliminate the cut we need to distinguish
between complexity of formulas and complexity of multisets of formulas.

The depth of a formula 𝑑𝑝(𝜑) is the number of logical symbols (including
quantifiers) occurring in it. We shall reason by double induction, with main
induction hypothesis on the degree of the multiset of cut formulas, i.e. 𝑑𝑔(Φ) =
𝑠𝑢𝑝Φ(𝜑)>0(𝑑𝑝(𝜑)) + 1 (the degree of a multiset will be - in general - an ordinal),
and secondary induction hypothesis on the Hessenberg ordinal sum of the height
of the derivations (which is commutative, associative, left and right cancellative
and strictly monotone in both arguments). The key point of the reduction is
the fact that infinite multisets of the form [𝐴(𝑡𝑖/𝑥) | 𝑖 ∈ 𝐼] have a finite degree,
because all the formulas occurring inside them have the same depth.

We first prove an auxiliary lemma which enables us to remove cuts on atomic
formulas.

Lemma 7.4.1. For any multiset Γ,Δ and any literal 𝑃, the rule:
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⇒ Γ, 𝑃 ⇒ Δ, 𝑃 (Cutat)⇒ Γ,Δ

is admissible.

Proof. The proof is by induction on the height of ⇒ Γ, 𝑃. If Γ, 𝑃 is an initial
sequent, the proof follows by admissibility of weakening. If ⇒ Γ, 𝑃 is not an
initial sequent, then it is the conclusion of a rule and 𝑃 cannot be the principal
formula. In this case, we permute the cut upward and we eliminate it by induction
on the height of the derivation. qed.

Theorem 7.4.2. The cut rule is admissible in IK𝜔.

Proof. By double (transfinite) induction with main induction hypothesis on the
degree of the multiset of cut formulas and secondary induction hypothesis on the
height of the left premise of the cut, i.e. Γ,Φ.

If ⇒ Γ,Φ is an initial sequent, we distinguish cases. If no formula is active
in Φ, then ⇒ Γ,Δ is an initial sequent too. If one formula is active in Φ, then the
proof follows by weakening. If both the atomic formulas are active in Φ, i.e. if
Φ ≡ Φ′, 𝑃, 𝑃, then we have two premises ⇒ Δ𝑃, 𝑃 and ⇒ Δ

𝑃
, 𝑃 and the desired

conclusion follows by an application of the admissible rule Cutat.
If no formula inΦ is principal, the cut is permuted upwards (possibly replaced

by infinitely many cuts) and removed by secondary induction hypothesis.
If a formula is principal in Φ, we distinguish cases according to its shape. We

focus on the cases of the quantifiers, as they are the relevant ones. If a formula
of the shape ∀𝑥𝐴 is principal, we have:

⇒ Γ1,Φ1, 𝐴(𝑡1/𝑥) . . . ⇒ Γ𝑛,Φ𝑛, 𝐴(𝑡𝑛/𝑥) . . . (∀)⇒ ⊎
𝑖<𝜔 Γ𝑖,

⊎
𝑖<𝜔Φ𝑖,∀𝑥𝐴

The other premises of the cut will be Δ, ∃𝑥𝐴 and Θ𝜑, 𝜑 for every 𝜑 in Φ. First,
for every 𝑖 < 𝜔, we perform the following reduction:

⇒ Γ𝑖,Φ𝑖, 𝐴(𝑡𝑖/𝑥) {⇒ Θ𝜑, 𝜑 |Φ𝑖 (𝜑) > 0}
(Cut)⇒ Γ𝑖,Θ𝑖, 𝐴(𝑡𝑖/𝑥)

where Θ𝑖 is the multiset union of all the multisets Θ𝜑 with Φ𝑖 (𝜑) > 0. The cut is
removed by secondary induction hypothesis on the height of the left premise of
the cut. We then apply height-preserving invertibility of the rule ∃ to ⇒ Δ, ∃𝑥𝐴
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to get ⇒ Δ, 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), . . .. Finally we proceed with the following cut:

⇒ Δ, 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), . . . {⇒ Γ𝑖,Θ𝑖, 𝐴(𝑡𝑖/𝑥) | 𝑖 < 𝜔} (Cut)⇒ ⊎
𝑖<𝜔 Γ𝑖,Θ,Δ

This cut is removed by primary induction hypothesis on the degree of the multiset
of cut formulas which is strictly decreased.

If the principal formula is an existential one, we have

⇒ Γ,Φ, 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), . . . (∃)⇒ Γ,Φ, ∃𝑥𝐴

In this case we look at the premise of the cut of the shape ⇒ Δ,∀𝑥𝐴 and we
distinguish two subcases. Either ∀𝑥𝐴 is principal in an inference rule in the
derivation or not. In the latter case, then Δ is already derivable and we obtain
the desired conclusion via weakening. In the former case we go upwards to the
point in which ∀𝑥𝐴 is principal (by the design of the rules ∀𝑥𝐴 will be only in
one branch). We have:

⇒ Δ′
1, 𝐴(𝑡1/𝑥) . . . ⇒ Δ′

𝑛, 𝐴(𝑡𝑛/𝑥) (∀)
⇒ ⊎

𝑖<𝜔 Δ
′
𝑖
,∀𝑥𝐴

...D
⇒ Δ,∀𝑥𝐴

We perform the following reduction:

⇒ Γ,Φ, 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), . . . {⇒ Θ𝜑, 𝜑 |Φ(𝜑) > 0}
(Cut)⇒ Θ, Γ, 𝐴(𝑡1/𝑥), 𝐴(𝑡2/𝑥), . . . {⇒ Δ′

𝑖
, 𝐴(𝑡𝑖/𝑥) | 𝑖 ∈ 𝐼} (Cut)⇒ Θ, Γ,

⊎
𝑖<𝜔 Δ

′
𝑖

...D
⇒ Θ, Γ,Δ

The topmost cut is removed by secondary induction hypothesis on the height of
the left premise of the cut, whereas the lowermost is removed by induction on the
degree of the multiset of cut formulas which has - again - strictly decreased. qed.

We have introduced an approach to cut-elimination for multiplicative quanti-
fiers. It seems hard to generalize it so as to encompass a theory of truth. Indeed,
we use a double induction on two measures, one of which is a kind of measure
of complexity of formulas. It is well known that rules for naïve truth collapse the
depth of sentences: any attempt to reduce a cut on Tr⌜𝐴⌝ to a cut on 𝐴 need to
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deal with the fact that the depth of 𝐴 is arbitrary larger than the minimal depth
of Tr⌜𝐴⌝. However, this is coherent with what we know about the interaction of
truth and Zardini’s rules, given that the original system by Zardini is inconsistent.
We believe that – as pointed out also in (82) – the explicit presence of a double
inductive parameter in the cut-elimination procedure brings to the fore the hidden
presence of contraction.

7.5 Concluding remarks and future work

We conducted an investigation into contraction-free systems and their potential
use in solving paradoxes in the context of truth theories Furthermore, we pro-
posed a novel way of understanding exponentials, which offers an alternative
interpretation of an inherently modal concept. Our study ultimately led us to
develop a new cut-elimination procedure for infinitary sequents, allowing for a
proof-theoretical analysis of multiplicative quantifiers.

Moving forward, several open problems warrant further investigation. For
example, finding a suitable truth predicate to incorporate into the base theory
while maintaining consistency is an intriguing challenge, given that systems
based on multiplicative quantifiers are not entirely contraction-free. Moreover,
Grišin set theory is inconsistent modulo the addition of extensionality. A natural
question arises as to whether there exists a natural corresponding property in
the case of truth theories based on contraction-free systems with additive (or
classical, one may say) quantifiers.

Furthermore, it is important to determine whether the cut-elimination theorem
can be generalized to the case of infinitary logic with infinite sequents, with
particular attention to the strength of the resulting system.

Finally, in order to avoid the implicit contraction found in the notion of
infinite multiset in Zardini’s naive non-contractive system, it would be beneficial
to investigate multiplicative, infinitary rules developed using a notion of multiset
that can account for copies of different infinite multiplicities.
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Chapter 8

Proof theory for infinite sequents

We deal with with a purely syntactic analysis of infinitary logic with infinite
sequents. In particular, we discuss sequent calculi calculi for classical and
intuitionistic infinitary logic with good structural properties based on sequents
possibly containing infinitely many formulas. A cut-elimination proof is proposed
which employs a new strategy and is based on the new inductive parameter
introduced in Chapter 7. We conclude the chapter by discussing related issues
and possible themes for future research.

8.1 Introduction

Infinitary logics are described by languages including expressions of infinite
length. In particular, we shall be concerned with languages augmented with
countable conjunctions and disjunctions (99). From a proof-theoretic point of
view, infinitary logics have been investigated with various different approaches.
We recall some of the most common methods employed in Gentzen style proof
theory:

• Derivations are well-founded trees possibly infinitely branching.

• Derivations are well-founded trees possibly infinitely branching in which
every node is occupied by a possibly infinite sequent.

• Derivations are non well-founded trees.

The first approach is the one which has proved to be the most flexible in the
context of predicative proof theory and ordinal analysis (see (95; 89)). The struc-
tural analysis of such systems allowed to establish cut-elimination and therefore
analyticity (for another, more recent approach to the issue, see (76) and (93)).
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Derivations as non well-founded trees are the central ingredient of cyclic
proof theory in which derivations are allowed to contain branches of infinite
length. This method has proved to be particularly promising to accommodate the
proof theory of modal fixpoint logics (2).

Finally, derivations with infinite sequents have been considered in the litera-
ture in the work of Takeuti (100) and Lopez-Escobar (60). However, the structural
properties of the systems were established by means of semantic approaches, such
as by showing that every sequent admits either a proof or a countermodel. This
approach cannot be regarded as completely satisfactory for two distinct reasons.

First, cut-elimination is a syntactic property of a system and a semantic proof
thereof is not conceptually pure as it uses tools which are external to the system
itself. Second, the use of semantics to establish cut-free completeness is a move
available only in the presence of a suitable structure to interpret the logic, whereas
syntactic cut-elimination does not require it.

There is an evident difficulty concerning the cut-elimination theorem in the
context of infinitary logic with infinite sequents. To witness this, consider the
reduction in which the cut formula formula is an infinitary conjunction principal
in both the premises of the cut.

{Γ ⇒ Δ, 𝐴𝑘 | 𝑘 > 0}
R
∧

Γ ⇒ Δ,
∧
𝑘>0 𝐴𝑘

{𝐴𝑘 }𝑘>0,Π ⇒ Σ
L
∧∧

𝑘>0 𝐴𝑘 ,Π ⇒ Σ
Cut

Γ,Π ⇒ Δ, Σ

A naive attempt at eliminating the cut could consist in replacing it with infinitely
many cuts on the formulas 𝐴𝑘 . However, this strategy is not available insofar as
derivations have to respect the well-foundedness conditions and this would lead
to non-terminating cut reductions.

A syntactic proof of the elimination of these cuts requires to eliminate a
infinitary generalization of the cut and to devise a new reduction strategy, together
with a new inductive parameter.

We shall focus on intuitionistic and classical infinitary logic. We start dis-
cussing classical infinitary logic in a G3-style sequent setting with infinite se-
quents. In classical infinitary logic every rule is height-preserving invertible.
Next, we consider intuitionistic infinitary logic.

Infinitary intuitionistic logic has been investigated by Kalicki (52) and Nadel
(71) who provided an interpretation in terms of complete Heyting algebras and
showed that Kripke semantics turned out to be inadequate. The closure under infi-
nite intersections of opens in the underlying topology forces the intuitionistically
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unacceptable distributivity principle:∧
𝑘>0

(𝑝𝑘 ∨ 𝑞) →
∧
𝑘>0

𝑝𝑘 ∨ 𝑞

In the work (103) a new semantics for intuitionistic infinitary logic was provided.
In particular, starting from the topological interpretation of intuitionistic logic
- see (66) for a topological semantics of intuitionistic propositional logic - and
building on the work of Moniri and Maleki (69) a topological and a neighborhood
semantics (see (79) for an introduction) were introduced and studied.

The results contained in the chapter show that systems with infinite sequents
are conservative with respect to those with finite ones (at least considering rules
in which there is a single principal formula). Furthermore, soundness and com-
pleteness are preserved.

This chapter can be conceived as an extension of the strategy employed
for multiplicative quantifiers to intuitionistic and classical logic with infinite
sequents.

The plan of the chapter is as follows. In Section 2 we provide a gentle
introduction to the notion of infinite sequents and we introduce the classical
calculus. The usual structural properties are established and cut is eliminated for
the propositional fragment. Section 3 is devoted to the analysis of the intuitionistic
calculus: a full cut elimination theorem is proved. Next, Section 4 comes full
circle by inducing a syntactic cut-elimination in the full system for classical logic
modulo an extension of the negative translation of classical logic into intuitionistic
logic in the infinitary setting. Finally, Section 5 discusses some themes which
may be object of future research.

8.2 Infinite sequents

The language of infinitary logic is built from predicate letters, connectives and
quantifiers as usual and two infinitary connectives

∧
and

∨
which denote the

countable infinitary conjunction and disjunction, respectively.
As in the previous chapter, a multiset of formulas is here defined as a function

𝑓 : 𝐴 → 𝜔 + 1. It is immediate from this stipulation that we accept multi-
sets containing countably many formulas. As a consequence, sequents are now
conceivable as syntactic objects of the shape:

Γ ⇒ Δ
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where Γ and Δ are multisets of formulas.

G3C∞
𝜔

Initial Sequents

𝐴𝑥
𝑝, Γ ⇒ Δ, 𝑝

𝐿⊥⊥, Γ ⇒ Δ

Logical Rules

𝐴, 𝐵, Γ ⇒ Δ
𝐿∧

𝐴 ∧ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴 Γ ⇒ Δ, 𝐵
𝑅∧

Γ ⇒ Δ, 𝐴 ∧ 𝐵

𝐴, Γ ⇒ Δ 𝐵, Γ ⇒ Δ
𝐿∨

𝐴 ∨ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴, 𝐵
𝑅∨

Γ ⇒ Δ, 𝐴 ∨ 𝐵

Γ ⇒ Δ, 𝐴 𝐵, Γ ⇒ Δ
𝐿 →

𝐴→ 𝐵, Γ ⇒ Δ

𝐴, Γ ⇒ Δ, 𝐵
𝑅 →

Γ ⇒ Δ, 𝐴→ 𝐵

{𝐴𝑘 }𝑘>0, Γ ⇒ Δ
𝐿
∧∧

𝑘>0
𝐴𝑘 , Γ ⇒ Δ

{Γ ⇒ Δ, 𝐴𝑘 | 𝑘 > 0}
𝑅
∧

Γ ⇒ Δ,
∧
𝑘>0
𝐴𝑘

{𝐴𝑘 , Γ ⇒ Δ | 𝑘 > 0}
𝐿
∨∨

𝑘>0
𝐴𝑘 , Γ ⇒ Δ

Γ ⇒ Δ, {𝐴𝑘 }𝑘>0
𝑅
∨

Γ ⇒ Δ,
∨
𝑘>0
𝐴𝑘

∀𝑥𝐴, 𝐴[𝑥/𝑡], Γ ⇒ Δ
𝐿∀∀𝑥𝐴, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴[𝑥/𝑦]
𝑅∀, 𝑦!

Γ ⇒ Δ,∀𝑥𝐴

𝐴[𝑥/𝑦], Γ ⇒ Δ
𝐿∃, 𝑦!∃𝑥𝐴, Γ ⇒ Δ

Γ ⇒ Δ, ∃𝑥𝐴, 𝐴[𝑥/𝑡]
𝑅∃

Γ ⇒ Δ, ∃𝑥𝐴

The most striking difference between the above defined system and the usual

209



presentations of infinitary logic lies in the fact that we opt for a multiplicative
formulation of the unary rules for the infinitary connectives. In infinitary logic
the multiplicative formulation of such rules imposes a change in the structures
which are manipulated.

Namely, sequents are now built from infinite multisets of formulas. This
requires a new approach to the structural analysis of the calculus. The principal
tool in our investigations will be transfinite induction which we shall use to study
the properties of derivations.

Definition 8.2.1. A derivation is a (possibly infinitely branching) rooted tree,
where the leaves are initial sequents and the other nodes are constructed according
to the rules.

Notice that this definition rules out the possibility of proofs with branches of
infinite length. To measure the length of the derivations we assign once again
countable ordinals as in the previous sections.

We shall also use measures to assess the complexity of formulas. Once again,
these will be countable ordinals.

Definition 8.2.2. The weight of a formula 𝐴 is inductively defined:

• 𝑤(𝑃) = 0 if 𝑃 atomic.

• 𝑤(𝐴#𝐵) = 𝑠𝑢𝑝(𝑤(𝐴), 𝑤(𝐵)) + 1, where # ∈ {∧,∨,→}.

• 𝑤(∧𝑘>0 𝐴𝑘 ) = 𝑤(
∨
𝑘>0 𝐴𝑘 ) = (𝑠𝑢𝑝𝑘>0𝑤(𝐴𝑘 )) + 1.

• 𝑤(𝑄𝑥𝐴) = 𝑤(𝐴) + 1.

Lemma 8.2.1. The sequent Γ, 𝐴 ⇒ Δ, 𝐴 is derivable for every formula 𝐴 and
multiset Γ and Δ.

Proof. The proof is by transfinite induction on the weight of the formula 𝐴. We
detail the case in which 𝐴 is an infinite disjunction.

{Γ, 𝐴𝑘 ⇒ Δ, {𝐴𝑘 }𝑘>0 | 𝑘 > 0}
L
∨

Γ,
∨
𝑘>0 𝐴𝑘 ⇒ Δ, {𝐴𝑘 }𝑘>0 R

∨
Γ,

∨
𝑘>0 𝐴𝑘 ⇒ Δ,

∨
𝑘>0 𝐴𝑘

The topmost sequent is provable by induction hypothesis. qed.

The substitution of a variable 𝑥 with a term 𝑡 is defined as usual.

Lemma 8.2.2. For every variable 𝑥 and term 𝑡 for the language, the rule:
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Γ ⇒ Δ Sub[𝑥/𝑡 ]
Γ[𝑥/𝑡] ⇒ Δ[𝑥/𝑡]

is height-preserving admissible in G3C∞
𝜔 .

Proof. The proof runs by transfinite induction on the height of the derivation of
the sequent Γ ⇒ Δ. qed.

Next, we need to establish the admissibility of the rule of weakening. In this
case, we need to be able to add infinite multisets of formulas.

Lemma 8.2.3. The rule:

Γ ⇒ Δ Weak
Γ′, Γ ⇒ Δ,Δ′

is height-preserving admissible in G3C∞
𝜔 .

Proof. We argue by transfinite induction, possibly using the admissibility of the
rule of substitution in order to avoid clashes of variables whenever the last rule
applied is L∃ or R∀. qed.

We now need to establish the invertibility of the rules of the calculus with
preservation of the height. This is a relevant point, as usual formulations of the
unary rules for infinitary connectives are invertible due to the repetition of the
principal formula in the premise of the rule (76).

Lemma 8.2.4. Every rule is height-preserving invertible in G3C∞
𝜔 .

Proof. The proof is by transfinite induction on the height of the derivation. We
detail the case of the rule R

∨
. If Γ ⇒ Δ,

∨
𝑘>0 𝐴𝑘 is an initial sequent, then

so is Γ ⇒ Δ, {𝐴𝑘 }𝑘>0. If it is the conclusion of a rule, we apply the induction
hypothesis and then the rule again. For example, if the last rule applied is R

∧
,

we have:

{Γ ⇒ Δ,
∨
𝑘>0 𝐴𝑘 , 𝐵𝑖 | 𝑖 > 0}

R
∧

Γ ⇒ Δ,
∨
𝑘>0 𝐴𝑘 ,

∧
𝑖>0 𝐵𝑖

We proceed as follows:

{Γ ⇒ Δ,
∨
𝑘>0 𝐴𝑘 , 𝐵𝑖 | 𝑖 > 0}

IH{Γ ⇒ Δ, {𝐴𝑘 }𝑘>0, 𝐵𝑖 | 𝑖 > 0}
R
∧

Γ ⇒ Δ, {𝐴𝑘 }𝑘>0,
∧
𝑖>0 𝐵𝑖

The other cases are dealt with analogously. qed.

Next key step is the admissibility of the rule of contraction. In this case we
need to contract infinitely many formulas.
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Lemma 8.2.5. The rule:

Γ,Π,Π ⇒ Δ, Σ, Σ
Ctr

Γ,Π ⇒ Δ, Σ

is height-preserving admissible in G3C∞
𝜔 .

Proof. We argue by induction on the height of the derivation of the sequent
Γ,Π,Π ⇒ Δ, Σ, Σ. If it is an initial sequent, then so is Γ,Π ⇒ Δ, Σ. If it is the
conclusion of a rule, we need to distinguish two subcases. If the principal formula
is in Γ or Δ, then we apply the induction hypothesis to each of the premises of the
rule and then the rule again. The general structure of the argument is as follows:

. . . Γ′,Π,Π ⇒ Δ′, Σ, Σ . . .
𝜌

Γ,Π,Π ⇒ Δ, Σ, Σ

We proceed as follows:

. . .

Γ′,Π,Π ⇒ Δ′, Σ, Σ
IH

Γ′,Π ⇒ Δ′, Σ . . .
𝜌

Γ,Π ⇒ Δ, Σ

If one of the formulas in Π or Σ is principal, then we need to distinguish cases
according to the shape of the formulas. The strategy consists in applying the
invertibility of the corresponding rule and then the induction hypothesis. Let us
consider the case in which the principal formula is in Σ and is

∨
𝑘>0 𝐴𝑘 .

Γ,Π,Π ⇒ Δ, Σ′, Σ′,
∨
𝑘>0 𝐴𝑘 , {𝐴𝑘 }𝑘>0 R

∨
Γ,Π,Π ⇒ Δ, Σ′, Σ′,

∨
𝑘>0 𝐴𝑘 ,

∨
𝑘>0 𝐴𝑘

We construct the following derivation:

Γ,Π,Π ⇒ Δ, Σ′, Σ′,
∨
𝑘>0 𝐴𝑘 , {𝐴𝑘 }𝑘>0 InvR

∨
Γ,Π,Π ⇒ Δ, Σ′, Σ′, {𝐴𝑘 }𝑘>0, {𝐴𝑘 }𝑘>0

IH
Γ,Π ⇒ Δ, Σ′, {𝐴𝑘 }𝑘>0 R

∨
Γ,Π ⇒ Δ, Σ′,

∨
𝑘>0 𝐴𝑘

This is the critical case which requires to prove a stronger version of the admissibil-
ity of contraction, namely the contraction of infinite multisets of formulas. qed.

Finally, the last part of the section is devoted to the structural analysis of the
classical calculus for infinitary classical logic. We shall eliminate a generalized
form of the cut rule. In essence, the crucial move is the shift from a cut between
formulas to a more complex cut between multisets of formulas. This rule can be
found in the literature, see (60), (100) and (68).1 Recently, a variant of such rule

1However, a syntactic proof of its admissibility is - to the best of our knowledge - not present
in the literature.
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was shown to be admissible in a system for multiplicative quantifiers through a
purely proof-theoretic argument (77).

The rule is:

{Π𝜑 ⇒ Σ𝜑, 𝜑 | 𝜑 ∈ Φ} Φ, Γ ⇒ Δ,Ψ {𝜓,Θ𝜓 ⇒ Λ𝜓 | 𝜓 ∈ Ψ}
Cut

Γ,Π,Θ ⇒ Δ, Σ,Λ

where Π =
⋃
𝜑∈Φ Π𝜑, Σ =

⋃
𝜑∈Φ Σ𝜑, Θ =

⋃
𝜑∈ΦΘ𝜑 and Λ =

⋃
𝜑∈ΦΛ𝜑. We need

to introduce an ordinal measure for multisets of formulas. Essentially we define
the degree of a multiset of formulas to be the supremum of the weight of the
formulas in it plus one. Formally,

𝑑𝑒𝑔(Ξ) = 𝑠𝑢𝑝b∈Ξ𝑤(b) + 1

for any multiset Ξ. The proof will run by double transfinite induction, with main
induction on 𝑑𝑒𝑔(Φ,Ψ) and a secondary induction hypothesis on the height of
the derivation of the sequent Φ, Γ ⇒ Δ,Ψ.

We first have to prove a preliminary theorem which involves the elimination
of atomic cuts.

Theorem 8.2.6. The rule:

Γ ⇒ Δ, 𝑃 𝑃,Π ⇒ Σ
Cutat

Γ,Π ⇒ Δ, Σ

is admissible in G3C∞
𝜔 .

Proof. The proof is by induction on the height of 𝑃,Π ⇒ Σ. If it is an initial
sequent and 𝑃 is not active, we remove it. Otherwise, we take the premise Γ ⇒
Δ, 𝑃 and we obtain the desired conclusion via height-preserving admissibility of
weakening. If 𝑃,Π ⇒ Σ is the conclusion of a rule, then we notice that 𝑃 is
never principal by the design of the rules, so the cut can be permuted upwards and
removed by the induction hypothesis (if necessary making use of the substitution
lemma in order to avoid clashes of variables). qed.

We are now ready to prove the cut-elimination theorem. We shall establish the
result for the propositional fragment of G3C∞

𝜔 , i.e. the calculus G3C∞
𝜔 , obtained

from the previous one by dropping the rules for the quantifiers.2

Theorem 8.2.7. The cut rule is admissible in G3C∞
𝜔 .

2The full cut-elimination theorem will be proved in Section 4 exploiting the result obtained
for the intuitionistic calculus.
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Proof. The proof is by double transfinite induction as explained above. IfΦ, Γ ⇒
Δ,Ψ is an initial sequent, four subcases have to be distinguished.

• The active formula 𝑃 is neither in Φ, nor in Ψ. In this case the conclusion
of the cut is an initial sequent too.

• The active formulas are in Φ and in Δ. In this case, we consider the
premise Π𝑃 ⇒ Σ𝑃, 𝑃 and we apply weakening in order to obtain the
desired conclusion.

• The active formulas are in Γ and in Ψ. Symmetric to the previous case.

• The active formulas are in Φ and in Ψ. We consider the premises Π𝑃 ⇒
Σ𝑃, 𝑃 and 𝑃,Θ𝑃 ⇒ Λ𝑃 and we perform the following transformation:

Π𝑃 ⇒ Σ𝑃, 𝑃 𝑃,Θ𝑃 ⇒ Λ𝑃 Cutat
Π𝑃,Θ𝑃 ⇒ Λ𝑃, Σ𝑃 Weak
Γ,Π,Θ ⇒ Δ,Λ, Σ

If Φ, Γ ⇒ Δ,Ψ is the conclusion of a rule and the principal formula is neither
in Φ or in Ψ, then the cut is permuted upwards and replaced by possibly infinite
cuts of lesser height. The general structure of the reduction is:

{Π𝜑 ⇒ Σ𝜑, 𝜑 | 𝜑 ∈ Φ}
{Φ, Γ𝑖 ⇒ Δ𝑖,Ψ | 𝑖 ∈ 𝐼}

𝜌

Φ, Γ ⇒ Δ,Ψ {𝜓,Θ𝜓 ⇒ Λ𝜓 | 𝜓 ∈ Ψ}
Cut

Γ,Π,Θ ⇒ Δ, Σ,Λ

where |𝐼 | is the cardinality of the set of premises of the rule 𝜌. We construct the
following derivation:

. . .

{Π𝜑 ⇒ Σ𝜑, 𝜑 | 𝜑 ∈ Φ} Φ, Γ𝑖 ⇒ Δ𝑖,Ψ {𝜓,Θ𝜓 ⇒ Λ𝜓 | 𝜓 ∈ Ψ}
Cut

Γ𝑖,Π,Θ ⇒ Δ𝑖, Σ,Λ . . .
𝜌

Γ,Π,Θ ⇒ Δ, Σ,Λ

The cuts are removed invoking the secondary induction hypothesis on the height
of the premise Φ, Γ𝑖 ⇒ Δ𝑖,Ψ which has strictly decreased.

The final and crucial case is the one in which one of the formulas in Φ or Ψ is
principal in the last rule applied. The general strategy consists in removing all the
non principal formulas via cuts which are permuted upwards and then finishing
with cuts on multisets of lesser degree. Of course, we need to distinguish cases
according to the shape of the principal formula and to its position in the sequent.

We consider the case in which the principal formula is
∧
𝑘>0 𝐴𝑘 in Φ.
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{Π𝜑 ⇒ Σ𝜑, 𝜑 | 𝜑 ∈ Φ}
Φ′, {𝐴𝑘 }𝑘>0, Γ ⇒ Δ,Ψ

L
∧

Φ′,
∧
𝑘>0 𝐴𝑘 , Γ ⇒ Δ,Ψ {𝜓,Θ𝜓 ⇒ Λ𝜓 | 𝜓 ∈ Ψ}

Cut
Γ,Π,Θ ⇒ Δ, Σ,Λ

In this case we first permute the cut upwards as follows:

{Π𝜑 ⇒ Σ𝜑, 𝜑 | 𝜑 ∈ Φ′} Φ′, {𝐴𝑘 }𝑘>0, Γ ⇒ Δ,Ψ {𝜓,Θ𝜓 ⇒ Λ𝜓 | 𝜓 ∈ Ψ}
Cut{𝐴𝑘 }𝑘>0, Γ,Π

′,Θ ⇒ Δ, Σ′,Λ

where Π′ =
⋃
𝜑∈Φ′ Π𝜑 and Σ′ =

⋃
𝜑∈Φ′ Σ𝜑. This cut is removed by the secondary

induction hypothesis on the height of the derivation. We then consider the premise
Π∧

𝑘>0 𝐴𝑘
⇒ Σ∧

𝑘>0 𝐴𝑘
,
∧
𝑘>0 𝐴𝑘 and we apply height-preserving invertibility of

the rule R
∧

to get a derivation of Π∧
𝑘>0 𝐴𝑘

⇒ Σ∧
𝑘>0 𝐴𝑘

, 𝐴𝑘 for every 𝑘 > 0.
Hence we conclude the reduction as follows:

{Π∧
𝑘>0 𝐴𝑘

⇒ Σ∧
𝑘>0 𝐴𝑘

, 𝐴𝑘 | 𝑘 > 0} {𝐴𝑘 }𝑘>0, Γ,Π,Θ ⇒ Δ, Σ,Λ
Cut and Ctr

Γ,Π,Θ ⇒ Δ, Σ,Λ

Since, by definition of degree,

𝑑𝑒𝑔( [𝐴𝑘 ]𝑘>0) = 𝑠𝑢𝑝𝑘𝑤(𝐴𝑘 )+1 < 𝑠𝑢𝑝𝑘𝑤(𝐴𝑘 )+2 = 𝑠𝑢𝑝𝑤(
∧
𝑘>0

𝐴𝑘 )+1 = 𝑑𝑒𝑔( [
∧
𝑘>0

𝐴𝑘 ]) ≤ 𝑑𝑒𝑔(Φ,Ψ)

the application of cut can be removed invoking the primary induction hypothesis
on the degree of the multiset of cut formulas.

We discuss the case in which
∧
𝑘>0 𝐴𝑘 is principal in Ψ. In this case, the

procedure is similar.

{Π𝜑 ⇒ Σ𝜑, 𝜑 | 𝜑 ∈ Φ}
{Φ, Γ ⇒ Δ,Ψ′, 𝐴𝑘 | 𝑘 > 0}

R
∧

Φ, Γ ⇒ Δ,Ψ′,
∧
𝑘>0 𝐴𝑘 {𝜓,Θ𝜓 ⇒ Λ𝜓 | 𝜓 ∈ Ψ}

Cut and Ctr
Γ,Π,Θ ⇒ Δ, Σ,Λ

We start by permuting the cut upwards as before. First, for every 𝑘 > 0 we
construct the following derivation:

{Π𝜑 ⇒ Σ𝜑, 𝜑 | 𝜑 ∈ Φ} Φ, Γ ⇒ Δ,Ψ′, 𝐴𝑘 {𝜓,Θ𝜓 ⇒ Λ𝜓 | 𝜓 ∈ Ψ′}
Cut

Γ,Π,Θ′ ⇒ Δ, Σ,Λ′, 𝐴𝑘
whereΘ′ =

⋃
𝜓∈Ψ′ Θ𝜓 andΛ′ =

⋃
𝜓∈Ψ′ Λ𝜓 . For every 𝑘 > 0 the cut is removed by

secondary induction hypothesis on the height of the premise Φ, Γ ⇒ Δ,Ψ′, 𝐴𝑘 .
We thus get a set of derivations of sequents

{Γ,Π,Θ′ ⇒ Δ, Σ,Λ′, 𝐴𝑘 | 𝑘 > 0}

Next, we complete the reduction as follows:
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{Γ,Π,Θ′ ⇒ Δ, Σ,Λ′, 𝐴𝑘 | 𝑘 > 0}

∧
𝑘>0 𝐴𝑘 ,Θ

∧
𝑘>0 𝐴𝑘

⇒ Λ∧
𝑘>0 𝐴𝑘

Inv{𝐴𝑘 }𝑘>0,Θ
∧

𝑘>0 𝐴𝑘
⇒ Λ∧

𝑘>0 𝐴𝑘
Cut and Ctr

Γ,Π,Θ ⇒ Δ, Σ,Λ

The cut can be removed by primary induction hypothesis. qed.

8.3 Infinitary intuitionistic logic

We introduce a single succedent sequent calculus for intuitionistic logic with
infinite sequents. In intuitionistic logic we achieve a syntactic cut-elimination
theorem for the full calculus with infinite sequents. Indeed, the previous strategy
is fully extendable due to the lack of a built-in contraction rule in the right rule
for the existential quantifier.
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G3I∞𝜔

Initial Sequents

𝐴𝑥
𝑝, Γ ⇒ 𝑝

𝐿⊥⊥, Γ ⇒ 𝐶

Logical Rules

𝐴, 𝐵, Γ ⇒ 𝐶
𝐿∧

𝐴 ∧ 𝐵, Γ ⇒ 𝐶

Γ ⇒ 𝐴 Γ ⇒ 𝐵
𝑅∧

Γ ⇒ 𝐴 ∧ 𝐵

𝐴, Γ ⇒ 𝐶 𝐵, Γ ⇒ 𝐶
𝐿∨

𝐴 ∨ 𝐵, Γ ⇒ 𝐶

Γ ⇒ 𝐴𝑖
𝑅∨𝑖

Γ ⇒ 𝐴1 ∨ 𝐴2

𝐴→ 𝐵, Γ ⇒ 𝐴 𝐵, Γ ⇒ 𝐶
𝐿 →

𝐴→ 𝐵, Γ ⇒ 𝐶

𝐴, Γ ⇒ 𝐵
𝑅 →

Γ ⇒ 𝐴→ 𝐵

{𝐴𝑘 }𝑘>0, Γ ⇒ 𝐶
𝐿
∧∧

𝑘>0
𝐴𝑘 , Γ ⇒ 𝐶

{Γ ⇒ 𝐴𝑘 | 𝑘 > 0}
𝑅
∧

Γ ⇒ ∧
𝑘>0
𝐴𝑘

{𝐴𝑘 , Γ ⇒ 𝐶 | 𝑘 > 0}
𝐿
∨∨

𝑘>0
𝐴𝑘 , Γ ⇒ 𝐶

Γ ⇒ 𝐴𝑘
𝑅
∨

𝑘

Γ ⇒ ∨
𝑘>0
𝐴𝑘

∀𝑥𝐴, 𝐴[𝑥/𝑡], Γ ⇒ 𝐶
𝐿∀∀𝑥𝐴, Γ ⇒ 𝐶

Γ ⇒ 𝐴[𝑥/𝑦]
𝑅∀, 𝑦!

Γ ⇒ ∀𝑥𝐴

𝐴[𝑥/𝑦], Γ ⇒ 𝐶
𝐿∃, 𝑦!∃𝑥𝐴, Γ ⇒ 𝐶

Γ ⇒ 𝐴[𝑥/𝑡]
𝑅∃

Γ ⇒ ∃𝑥𝐴

Preliminary results still need to be established for the system G3I∞𝜔 . The
notions of height, admissibility and weight are left unchanged.

Lemma 8.3.1. The sequent Γ, 𝐴⇒ 𝐴 is provable for every formula 𝐴 in G3I∞𝜔 .

Proof. By transfinite induction on the weight of 𝐴. We discuss the case of the
infinitary conjunction:
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{{𝐴𝑘 }𝑘 > 0, Γ ⇒ 𝐴𝑘 | 𝑘 > 0}
R
∧

{𝐴𝑘 }𝑘 > 0, Γ ⇒ ∧
𝑘>0 𝐴𝑘 L

∧∧
𝑘>0 𝐴𝑘 , Γ ⇒ ∧

𝑘>0 𝐴𝑘

qed.

The rule of substitution is height-preserving admissible too.

Lemma 8.3.2. The rule:

Γ ⇒ 𝐶 Sub[𝑥/𝑡 ]
Γ[𝑥/𝑡] ⇒ 𝐶 [𝑥/𝑡]

is height-preserving admissible in G3I∞𝜔 .

Proof. The proof is by transfinite induction on the height of the derivation of the
premise Γ ⇒ 𝐶. qed.

The weakening rule is admissible too.

Lemma 8.3.3. The rules of weakening:

Γ ⇒ 𝐶 LW
Π, Γ ⇒ 𝐶

Γ ⇒ RW
Γ ⇒ 𝐶

are height-preserving admissible in G3I∞𝜔 .

Proof. The proof is by transfinite induction on the height of the derivation of the
premise of the rule. qed.

We now have to discuss the invertibility of the rules of the calculus. As it well
known, in intuitionistic logic we lose invertibility of some rules. This actually
ensures the constructive reading of the connectives.

Lemma 8.3.4. The rule L→ is height-preserving invertible with respect to its
right premise. Every other rule except for R∨𝑖, R

∨
𝑘 and R∃ is height-preserving

invertible in G3I∞𝜔 .

Proof. The rule L∀ is invertible by height-preserving admissibility of weakening.
In the remaining cases the proof is by induction on the height of the derivation.

qed.

Contraction is here restricted to the antecedent. Indeed, the rule is of the
shape:

Π,Π, Γ ⇒ 𝐶
Ctr

Π, Γ ⇒ 𝐶

Theorem 8.3.5. The rule 𝐶𝑡𝑟 is height-preserving admissible in G3I∞𝜔 .
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Proof. The proof runs by induction on the height of the derivation of Γ,Π,Π ⇒
𝐶. If it is an initial sequent, then so is Π, Γ ⇒ 𝐶. If it is the conclusion of a
rule, we distinguish cases. If no formula in Π is principal, then we apply the
induction hypothesis to each of the premises of the rule and then the rule again.
If a formula in Π is principal, one needs to distinguish cases according to the
shape of the principal formula.

We consider the case in which the formula is
∧
𝑘>0 𝐴𝑘 . We have:

{𝐴𝑘 }𝑘>0,
∧
𝑘>0 𝐴𝑘 ,Π

′,Π′, Γ ⇒ 𝐶
L
∧∧

𝑘>0 𝐴𝑘 ,
∧
𝑘>0 𝐴𝑘 ,Π

′,Π′, Γ ⇒ 𝐶

We construct the following derivation:

{𝐴𝑘 }𝑘>0,
∧
𝑘>0 𝐴𝑘 ,Π

′,Π′, Γ ⇒ 𝐶
InvL

∧
{𝐴𝑘 }𝑘>0, {𝐴𝑘 }𝑘>0,Π

′,Π′, Γ ⇒ 𝐶
Ctr{𝐴𝑘 }𝑘>0,Π

′, Γ ⇒ 𝐶
L
∧∧

𝑘>0 𝐴𝑘 ,Π
′, Γ ⇒ 𝐶

The application of the rule 𝐶𝑡𝑟 is removed by induction on the height of the
premise. qed.

We then have to prove the crucial result, cut-elimination. In this case, the cut to
be eliminated is of the following shape:

{Π𝜑 ⇒ 𝜑 | 𝜑 ∈ Φ} Φ, Γ ⇒ 𝐶
Cut

Π, Γ ⇒ 𝐶

As we shall see, the proof is easier then the one detailed for classical logic.

Theorem 8.3.6. The cut rule is admissible in G3I∞𝜔 .

Proof. The proof is by double induction, with main induction on the degree of
the multiset of cut formulas Φ and secondary induction hypothesis on the height
of the derivation of Φ, Γ ⇒ 𝐶. If Φ, Γ ⇒ 𝐶 is an initial sequent, then the proof
is immediate. If Φ, Γ ⇒ 𝐶 is the conclusion of a rule, but no formula in Φ is
principal, then the conclusion follows by permuting the cut upwards. Hence the
cut is replaced by (possibly infinitely many) cuts which are removed by secondary
induction hypothesis. The last case to consider is the one in which a formula in
Φ is principal. In this case we need to distinguish cases according to the shape
of the formula.

• The principal formula is 𝐴→ 𝐵, then we have:

Φ′, 𝐴→ 𝐵, Γ ⇒ 𝐴 Φ′, 𝐵, Γ ⇒ 𝐶

Φ′, 𝐴→ 𝐵, Γ ⇒ 𝐶

In this case, we first construct the following derivation D′:
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{Π𝜑 ⇒ 𝜑 | 𝜑 ∈ Φ} Φ′, 𝐴→ 𝐵, Γ ⇒ 𝐴
Cut

Γ,Π ⇒ 𝐴

The cut is removed by induction on the height of the premise of the cut.
Analogously, we construct a derivation D′′ of Π′, 𝐵, Γ ⇒ 𝐶 where Π′ =⋃
𝜑∈Φ′ Π𝜑. Next, we perform the following reduction:

D′

Γ,Π ⇒ 𝐴

Π𝐴→𝐵 ⇒ 𝐴→ 𝐵
Inv

Π𝐴→𝐵, 𝐴⇒ 𝐵
Cut

Γ,Π𝐴→𝐵,Π ⇒ 𝐵

D′′

Π′, 𝐵, Γ ⇒ 𝐶
Cut

Γ,Π,Π ⇒ 𝐶
Ctr

Γ,Π ⇒ 𝐶

The cuts are removed by induction on the degree of the multiset of cut
formulas. Indeed, we have:

𝑑𝑒𝑔( [𝐴]), deg( [𝐵]) < 𝑑𝑒𝑔( [𝐴→ 𝐵]) ≤ 𝑑𝑒𝑔( [Φ′, 𝐴→ 𝐵])

The cases in which the principal formula is 𝐴∧𝐵 is dealt with analogously.

• The cases in which the cut formula is
∨
𝑘>0 𝐴𝑘 is as follows:

{Φ′, 𝐴𝑘 , Γ ⇒ 𝐶 | 𝑘 > 0}
Φ′,

∨
𝑘>0 𝐴𝑘 , Γ ⇒ 𝐶

For every 𝑘 > 0 we construct the derivation D𝑘 :

{Π𝜑 ⇒ 𝜑 | 𝜑 ∈ Φ′} Φ′, 𝐴𝑘 , Γ ⇒ 𝐶
Cut

𝐴𝑘 ,Π
′, Γ ⇒ 𝐶

We then consider the premise Π∨
𝐴𝑘

⇒ ∨
𝑘>0 𝐴𝑘 . We distinguish two

cases. Either the formula
∨
𝑘>0 𝐴𝑘 is never principal in the subderivation

above Π∨
𝐴𝑘

⇒ ∨
𝑘>0 𝐴𝑘 or it is principal (in possibly infinitely many

inferences). In the first case, then Π∨
𝐴𝑘>0 ⇒ is derivable and the desired

conclusion follows by weakening. For any of the countable branches in
which

∨
𝑘>0 𝐴𝑘 is principal, we trace this application and we have:

Π′′∨
𝑘>0 𝐴𝑘

⇒ 𝐴𝑘
R
∨

Π′′∨
𝑘>0 𝐴𝑘

⇒ ∨
𝑘>0 𝐴𝑘

...𝜌

Π∨
𝑘>0 𝐴𝑘

⇒ ∨
𝑘>0 𝐴𝑘
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Notice that by the design of the rules we can assume that in the branch in
𝜌 from Π∨

𝑘>0 𝐴𝑘
⇒ ∨

𝑘>0 𝐴𝑘 to Π′′∨
𝑘>0 𝐴𝑘

⇒ 𝐴𝑘 the formula
∨
𝑘>0 𝐴𝑘 was

never principal. We construct the following derivation:

Π′′∨
𝑘>0 𝐴𝑘

⇒ 𝐴𝑘 𝐴𝑘 ,Π
′, Γ ⇒ 𝐶

Cut
Π′′∨

𝑘>0 𝐴𝑘
,Π′, Γ ⇒ 𝐶

...𝜌′

Π ⇒ 𝐶

where 𝜌′ is obtained from 𝜌 by adding whenever needed the weakened
context Π′. The cuts can be removed by invoking the primary induction
hypothesis on the degree of the multiset of cut formulas. The cases of R∨
and R∃ are dealt with analogously (in the latter case one only needs to
apply height-preserving substitution in order to perform the reduction, we
leave the details to the reader)3.

• If the principal formula is
∧
𝑘>0 𝐴𝑘 , we have:

{𝐴𝑘 }𝑘>0,Φ
′, Γ ⇒ 𝐶

L
∧∧

𝑘>0 𝐴𝑘 ,Φ
′, Γ ⇒ 𝐶

We perform the following reduction:

Π∧
𝑘>0 𝐴𝑘

⇒ ∧
𝑘>0 𝐴𝑘

Inv{Π∧
𝑘>0 𝐴𝑘

⇒ 𝐴𝑘 | 𝑘 > 0}
{Π𝜑 ⇒ 𝜑 | 𝜑 ∈ Φ′} {𝐴𝑘 }𝑘>0,Φ

′, Γ ⇒ 𝐶
Cut{𝐴𝑘 }𝑘>0,Π

′, Γ ⇒ 𝐶
Cut and Ctr

Π, Γ ⇒ 𝐶

The topmost cut is removed by secondary induction hypothesis, whereas
the lowermost one is removed by primary induction hypothesis since:

𝑑𝑒𝑔( [𝐴𝑘 ]𝑘>0) < 𝑑𝑒𝑔( [
∧
𝑘>0

𝐴𝑘 ]) ≤ 𝑑𝑒𝑔( [Φ′,
∧
𝑘>0

𝐴𝑘 ])

• The only remaining case is the one in which the principal formula is ∀𝑥𝐴.

𝐴[𝑥/𝑡],∀𝑥𝐴,Φ′, Γ ⇒ 𝐶
L∀∀𝑥𝐴,Φ′, Γ ⇒ 𝐶

We construct the following derivation:

3Notice that this is the only troublesome case in infinitary classical logic
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Π∀𝑥𝐴 ⇒ ∀𝑥𝐴
Inv

Π∀𝑥𝐴 ⇒ 𝐴[𝑥/𝑡]
{Π𝜑 ⇒ 𝜑 | 𝜑 ∈ Φ} 𝐴[𝑥/𝑡],∀𝑥𝐴,Φ′, Γ ⇒ 𝐶

Cut
𝐴[𝑥/𝑡],Π, Γ ⇒ 𝐶

Cut
Π∀𝑥𝐴,Π, Γ ⇒ 𝐶

The topmost cut is removed by secondary induction hypothesis, whereas
the lowermost one is removed by primary induction hypothesis since:

𝑑𝑒𝑔( [𝐴[𝑥/𝑡]]) < 𝑑𝑒𝑔( [∀𝑥𝐴]) ≤ 𝑑𝑒𝑔( [Φ′,∀𝑥𝐴])

qed.

As a corollary to cut-elimination we get the subformula property and the
disjunction property.

Corollary. If G3I∞𝜔 ⊢⇒ ∨
𝑘>0 𝐴𝑘 , then G3I∞𝜔 ⊢⇒ 𝐴𝑘 for some 𝑘 > 0.

Proof. Immediate by inspection of the rules. qed.

As shown in (71), a distinctive feature of infinitary intuitionistic logic lies in
the refutation of an infinitary distributivity principle, namely:∧

𝑘>0
(𝑃𝑘 ∨𝑄) →

∧
𝑘>0

𝑃𝑘 ∨𝑄

one may wonder whether the present version of intuitionistic infinitary logic is
still sound. Indeed, the calculus G3I∞𝜔 is sound with respect to the semantics of
complete Heyting algebras and this can be easily shown via a routine induction on
the height of the derivation (we will prove soundness and completeness in the final
section of the chapter, by showing the equivalence with the systems with finite
sequents). Furthermore, exploiting the analyticity of the system resulting from the
cut admissibility theorem, we can also show that the sequent⇒ ∧

𝑘>0(𝑃𝑘∨𝑄) →∧
𝑘>0 𝑃𝑘 ∨𝑄 is not derivable.

Lemma 8.3.7. The sequent ⇒ ∧
𝑘>0(𝑃𝑘 ∨ 𝑄) →

∧
𝑘>0 𝑃𝑘 ∨ 𝑄 is not derivable

in G3I∞𝜔 .

Proof. By invertibility of R→ and L
∧

, it is equivalent to consider the derivability
of the sequent {𝑃𝑘 ∨𝑄}𝑘>0 ⇒ ∧

𝑘>0 𝑃𝑘 ∨𝑄.
By the design of the sequent rules, the only way to reach an initial sequent is

to apply the rule R∨𝑖. In this case, we shall encounter two kind of sequents:

• {𝑃𝑘 ∨𝑄}𝑘>0,Π ⇒ ∧
𝑘>0 𝑃𝑘
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• {𝑃𝑘 ∨𝑄}𝑘>0,Π ⇒ 𝑄

where Π contains 𝑃1, . . . , 𝑃𝑛 and 𝑄 for some 𝑛. It is now a trivial task to check
that both the sequents are not derivable. qed.

8.4 Syntactic cut-elimination modulo negative trans-
lation

We have obtained a direct cut-elimination for intuitionistic logic, but not for
classical infinitary logic. Therefore, we shall prove our result by embedding
classical infinitary logic into intuitionistic infinitary logic via a natural extension
of Gödel-Gentzen’s negative translation.

Definition 8.4.1. The infinitary Gödel-Gentzen translation 𝑔 : 𝐹𝑂𝑅 → 𝐹𝑂𝑅 is
inductively defined:

• 𝑔(⊥) = ⊥

• 𝑔(𝑝) = ¬¬𝑝

• 𝑔(𝐴#𝐵) = 𝑔(𝐴)#𝑔(𝐵), where # ∈ {∧,→}

• 𝑔(𝐴 ∨ 𝐵) = ¬(¬𝑔(𝐴) ∧ ¬𝑔(𝐵))

• 𝑔(∀𝑥𝐴) = ∀𝑥𝑔(𝐴)

• 𝑔(∃𝑥𝐴) = ¬∀𝑥¬𝑔(𝐴)

• 𝑔( ∧
𝑘>0
𝐴𝑘 ) =

∧
𝑘>0
𝑔(𝐴𝑘 )

• 𝑔( ∨
𝑘>0
𝐴𝑘 ) = ¬∧

𝑘>0
¬𝑔(𝐴𝑘 )

We prove the following lemma.

Lemma 8.4.1. For every formula 𝐴, we have: ¬¬𝐴𝑔 ⇒ 𝐴𝑔 in G3I∞𝜔 .

Proof. The proof is by transfinite induction on the degree of the formula 𝐴. qed.

Next, we establish the embedding.

Theorem 8.4.2. If G3C∞
𝜔 ⊢ Γ ⇒ Δ, then G3I∞𝜔 ⊢ Γ𝑔,¬Δ𝑔 ⇒.
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Proof. The proof is by transfinite induction on the height of the derivation of the
sequent Γ ⇒ Δ in the calculus G3C∞

𝜔 . If the sequent is an initial sequent the
proof is immediate. We focus on the cases involving the infinitary connectives.

If the last rule is 𝑅
∨

we have:

¬¬∧
𝑘>0

¬𝑔(𝐴𝑘 ) ⇒
∧
𝑘>0

¬𝑔(𝐴𝑘 )

... IH
𝑔(Γ),¬𝑔(Δ), {¬𝑔(𝐴𝑘 )}𝑘>0 ⇒

L
∧

𝑔(Γ),¬𝑔(Δ), ∧
𝑘>0

¬𝑔(𝐴𝑘 ) ⇒
Cut

𝑔(Γ),¬𝑔(Δ),¬¬∧
𝑘>0

¬𝑔(𝐴𝑘 ) ⇒

where the leftmost sequent is provable by root-first applications of the rules.
If the last rule applied is 𝐿

∨
we proceed as follows:

... IH
{𝑔(𝐴𝑘 ), 𝑔(Γ),¬𝑔(Δ) ⇒ | 𝑘 > 0}

𝑅 →{𝑔(Γ),¬𝑔(Δ) ⇒ ¬𝑔(𝐴𝑘 ) | 𝑘 > 0}
𝑅
∧

𝑔(Γ),¬𝑔(Δ) ⇒ ∧
𝑘>0

¬𝑔(𝐴𝑘 )
𝐿𝑊

𝑔(Γ),¬𝑔(Δ),¬∧
𝑘>0

¬𝑔(𝐴𝑘 ) ⇒
∧
𝑘>0

¬𝑔(𝐴𝑘 )
𝐿 →

𝑔(Γ),¬𝑔(Δ),¬∧
𝑘>0

¬𝑔(𝐴𝑘 ) ⇒

qed.

In order to obtain full cut-elimination for classical infinitary logic with infinite
sequent a last move has to be made.

Lemma 8.4.3. For every sequent Π, Γ ⇒ Δ,Λ, if Π, Γ𝑔 ⇒ Δ𝑔,Λ is derivable in
G3C∞

𝜔 , then so is Π, Γ ⇒ Δ,Λ, where Π and Λ only contain atomic formulas.

Proof. This result is indeed trivial in the presence of the cut rule, but we need
to establish it without resorting to it. We argue by induction on the height of the
derivation. If Π, Γ𝑔 ⇒ Δ𝑔,Λ is an initial sequent, so is Π, Γ ⇒ Δ,Λ.

If the last rule applied is any rule different from L¬ or R¬, then the proof
follows by applying the induction hypothesis and then the rule again. For example,
if the last rule applied is R→, we have:

Π, 𝑔(𝐴), Γ𝑔 ⇒ (Δ𝑔)′, 𝑔(𝐵),Λ
R→

Π, Γ𝑔 ⇒ (Δ𝑔)′, 𝑔(𝐴) → 𝑔(𝐵),Λ
We apply the induction hypothesis to get a derivation of Π, 𝐴, Γ ⇒ Δ, 𝐵,Λ and
the desired conclusion follows from an application of the rule R→.

If the last rule applied is L¬ or R¬, then we need to distinguish cases according
to the shape of the principal formula. We discuss the case of L¬, the case of R¬
is symmetric. If the principal formula is ¬¬𝑃, we have:
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Π, Γ𝑔 ⇒ Δ𝑔,Λ,¬𝑃
L¬

Π,¬¬𝑃, Γ𝑔 ⇒ Δ𝑔,Λ

We proceed as follows:

Π, , Γ𝑔 ⇒ Δ𝑔,Λ,¬𝑃
Inv

Π, 𝑃, Γ𝑔 ⇒ Δ𝑔,Λ
IH

Π, 𝑃, Γ ⇒ Δ,Λ

The application of the induction hypothesis is justified, because the invertibility
of the rule preserves the height of the derivation. If the principal formula is
¬∧

𝑘>0 ¬𝑔(𝐴𝑘 ), we have:

Π, , Γ𝑔 ⇒ Δ𝑔,Λ,
∧
𝑘>0 ¬𝑔(𝐴𝑘 ) L¬

Π,¬∧
𝑘>0 ¬𝑔(𝐴𝑘 ), Γ𝑔 ⇒ Δ𝑔,Λ

We construct the following derivation:

Π, , Γ𝑔 ⇒ Δ𝑔,Λ,
∧
𝑘>0 ¬𝑔(𝐴𝑘 ) InvR

∧
{Π, Γ𝑔 ⇒ Δ𝑔,Λ,¬𝑔(𝐴𝑘 ) | 𝑘 > 0}

InvR¬{Π, 𝑔(𝐴𝑘 ), Γ𝑔 ⇒ Δ𝑔,Λ | 𝑘 > 0}
IH{Π, 𝐴𝑘 , Γ ⇒ Δ,Λ | 𝑘 > 0}

L
∨

Π,
∨
𝑘>0 𝐴𝑘 , Γ ⇒ Δ,Λ

The cases of in which the principal formulas is of the shape ¬(¬𝑔(𝐴) ∧ ¬𝑔(𝐵))
and ¬∀𝑥¬𝑔(𝐴) are analogously dealt with and we omit the details. qed.

We can now obtain a purely syntactic proof of the cut-elimination theorem
by exploiting the negative translation of classical into intuitionistic logic.

Theorem 8.4.4. The cut rule can be eliminated in G3C∞
𝜔 .

Proof. Suppose we have derivations of Γ ⇒ Δ, 𝐴 and 𝐴,Π ⇒ Σ. By the
embedding we get derivations of Γ𝑔,¬Δ,¬𝐴𝑔 ⇒ and 𝐴𝑔,Π𝑔,¬Σ𝑔 ⇒ in G3I∞𝜔 .
Exploiting cut we get a derivation of:

Γ𝑔,Π𝑔,¬Δ𝑔,¬Σ𝑔 ⇒

in G3I∞𝜔 . Clearly, G3C∞
𝜔 ⊢ Γ𝑔,Π𝑔,¬Δ𝑔,¬Σ𝑔 ⇒, so we argue as follows:

Γ𝑔,Π𝑔,¬Δ𝑔,¬Σ𝑔 ⇒
L
∧

Γ𝑔,Π𝑔,
∧¬Δ𝑔,∧¬Σ𝑔 ⇒

R¬
Γ𝑔,Π𝑔 ⇒ ¬∧¬Δ𝑔,¬∧¬Σ𝑔

rewriting
Γ𝑔,Π𝑔 ⇒ (∨Δ)𝑔, (∨Σ)𝑔

Lemma 8.4.3
Γ,Π ⇒ ∨

Δ,
∨

Σ
InvR

∨
Γ,Π ⇒ Δ, Σ

qed.
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8.4.1 Equivalence with the finite sequents calculi

In this section we show the equivalence of the calculi for infinitary logic with finite
and infinite sequents. We focus on the case of the calculus for intuitionistic logic
(the classical case is similar and thus we omit the details). We recall the single
succedent calculus G3i𝑠𝜔 for intuitionistic infinitary logic (which is a variant of
G3i𝜔, see Chapter 6).

G3i𝑠𝜔

Initial Sequents

𝐴𝑥
𝑝, Γ ⇒ 𝑝

𝐿⊥⊥, Γ ⇒ 𝐶

Logical Rules

𝐴, 𝐵, Γ ⇒ 𝐶
𝐿∧

𝐴 ∧ 𝐵, Γ ⇒ 𝐶

Γ ⇒ 𝐴 Γ ⇒ 𝐵
𝑅∧

Γ ⇒ 𝐴 ∧ 𝐵

𝐴, Γ ⇒ 𝐶 𝐵, Γ ⇒ 𝐶
𝐿∨

𝐴 ∨ 𝐵, Γ ⇒ 𝐶

Γ ⇒ 𝐴𝑖
𝑅∨𝑖

Γ ⇒ 𝐴1 ∨ 𝐴2

𝐴→ 𝐵, Γ ⇒ 𝐴 𝐵, Γ ⇒ 𝐶
𝐿 →

𝐴→ 𝐵, Γ ⇒ 𝐶

𝐴, Γ ⇒ 𝐵
𝑅 →

Γ ⇒ 𝐴→ 𝐵

𝐴𝑘 ,
∧
𝑘>0
𝐴𝑘 , Γ ⇒ 𝐶

𝐿
∧

𝑘∧
𝑘>0
𝐴𝑘 , Γ ⇒ 𝐶

{Γ ⇒ 𝐴𝑘 | 𝑘 > 0}
𝑅
∧

Γ ⇒ ∧
𝑘>0
𝐴𝑘

{𝐴𝑘 , Γ ⇒ 𝐶 | 𝑘 > 0}
𝐿
∨∨

𝑘>0
𝐴𝑘 , Γ ⇒ 𝐶

Γ ⇒ 𝐴𝑘
𝑅
∨

𝑘

Γ ⇒ ∨
𝑘>0
𝐴𝑘

∀𝑥𝐴, 𝐴[𝑥/𝑡], Γ ⇒ 𝐶
𝐿∀∀𝑥𝐴, Γ ⇒ 𝐶

Γ ⇒ 𝐴[𝑥/𝑦]
𝑅∀, 𝑦!

Γ ⇒ ∀𝑥𝐴

𝐴[𝑥/𝑦], Γ ⇒ 𝐶
𝐿∃, 𝑦!∃𝑥𝐴, Γ ⇒ 𝐶

Γ ⇒ 𝐴[𝑥/𝑡]
𝑅∃

Γ ⇒ ∃𝑥𝐴
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Essentially, G3i𝑠𝜔 is obtained from the calculus G3I∞𝜔 by replacing the rule L
∧

with the infinitely many rules L
∧
𝑘 .

Theorem 8.4.5. The calculus G3i𝑠𝜔 satisfies the admissibility of the structural
rules of weakening, contraction and cut.

One direction of the embedding is easier. Indeed, if a sequent is derivable in
the calculus with finite sequents, it is derivable also in the one based on infinite
ones.

Lemma 8.4.6. If Γ ⇒ 𝐶 is derivable in G3i𝑠𝜔, then so is in G3I∞𝜔 .

Proof. The proof is by induction on the height of the derivations. The only new
cases to detail are the ones in which the last rule applied is L

∧
. We have:

∧
𝑘>0 𝐴𝑘 , 𝐴𝑘 , Γ ⇒ 𝐶

InvL
∧

{𝐴𝑘 }𝑘>0, 𝐴𝑘 , Γ ⇒ 𝐶
Ctr{𝐴𝑘 }𝑘>0, Γ ⇒ 𝐶

L
∧∧

𝑘>0 𝐴𝑘 , Γ ⇒ 𝐶

qed.

The other direction is slightly more complex. We have:

Lemma 8.4.7. If G3I∞𝜔 proves Γ ⇒ 𝐶, then G3i𝑠𝜔 proves
∧

Γ ⇒ 𝐶.

Proof. The proof is by induction on the height of the derivation. If it is an initial
sequent, the proof is trivial. Otherwise, we distinguish cases according to the last
rule applied. If the last rule is R→, we have:

Γ, 𝐴⇒ 𝐵
R→

Γ ⇒ 𝐴→ 𝐵

The induction hypothesis yields a derivation of:∧
Γ ∧ 𝐴⇒ 𝐵

in G3i𝑠𝜔. We apply a cut with the derivable sequent
∧

Γ, 𝐴 ⇒ ∧
Γ ∧ 𝐴 and we

conclude the transformation via an application of the rule R→. The other cases
involving right rules are immediate (apply the induction hypothesis and then the
rule again). If the last rule applied is L

∧
, the proof follows immediately by an

application of the induction hypothesis. The case in which the last rule applied
is L

∨
, we have:

{𝐴𝑘 , Γ ⇒ 𝐶 | 𝑘 > 0}
L
∨∨

𝑘>0 𝐴𝑘 , Γ ⇒ 𝐶
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For every 𝑘 > 0, we get: 𝐴𝑘 ∧
∧

Γ ⇒ 𝐶. So we proceed as follows:

∨
𝑘>0 𝐴𝑘 ∧

∧
Γ ⇒ ∨

𝑘>0(𝐴𝑘 ∧
∧

Γ)
{𝐴𝑘 ∧

∧
Γ ⇒ 𝐶 | 𝑘 > 0}

L
∨∨

𝑘>0(𝐴𝑘 ∧
∧

Γ) ⇒ 𝐶
Cut∨

𝑘>0 𝐴𝑘 ∧
∧

Γ ⇒ 𝐶

where the leftmost sequent is derivable in G3i𝑠𝜔 via straightforward root-first
applications of the rules. qed.

The above theorem immediately yields a completeness result in the following
form, where ⊩ is the validity relation in the semantics based on complete Heyting
algebras.

Theorem 8.4.8. G3I∞𝜔 ⊢ Γ ⇒ 𝐴 if and only if ⊨
∧

Γ → 𝐴.

Proof. From left to right we argue by induction on the height of the derivation in
the calculus G3I𝜔. From right to left, if ⊨

∧
Γ → 𝐴 we get G3i𝜔 ⊢⇒ ∧

Γ → 𝐴

and via the embedding G3I𝜔 ⊢⇒ ∧
Γ → 𝐴. The desired conclusion follows

from invertibility of the rules R→ and L
∧

. qed.

Notice that the formulation of the completeness theorem is crucial. Indeed,
the sequent {𝑃𝑘 }𝑘>0 ⇒ ∧

𝑘>0 𝑃𝑘 would not be valid if interpreted as expressing
logical consequence. In fact, there are various counterexamples to {𝑃𝑘 }𝑘>0 ⊨∧
𝑘>0 𝑃𝑘 which rest on the fact that infinite intersections of open sets need not be

open.

8.5 Concluding remarks and future works

We have discussed and analyzed the proof theory of infinitary logic with infinite
sequents. We have provided a structural analysis of the calculi for classical and
intuitionistic logic. The calculi enjoy admissibility of the structural rules of
weakening and contraction. Furthermore, cut is eliminated employing a new
strategy which runs by a double transfinite induction with a new parameter, the
degree of a multiset of cut formulas.

The cut-elimination for full classical infinitary logic (including quantifiers)
is obtained via the negative translation into full infinitary intuitionistic logic
which enjoys a full and direct cut-elimination theorem. The results presented
in the chapter show that the extension of an infinitary calculus for classical and
intuitionistic logic with infinite sequents is, in a sense, inessential as it can be
interpreted with finite sequents.

However, this is not always the case. As shown by Minari in (68), working
with infinite sequents in the context of infinitary modal logic marks a difference
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as it enables the derivability of the (infinitary variant of the) Barcan formula (see
(104) for a cut-free sequent calculus for infinitary modal logic and (105) for an
application to the modal interpretation of intuitionistic logic). Furthermore, in
substructural logics the presence of infinitary conjunctions and disjunctions can
be used to simulate contraction and exponential modalities, see (40).

Therefore we deem that the techniques developed in the present chapter can
be interesting as they might be employed to investigate other areas of infinitary
logic. An interesting point to be addressed is the possibility of a full fledged
syntactic approach to the proof theory of infinitary logic with infinite sequents
and with rules which can act on infinite multisets of formulas. A similar approach
was pursued in (100), but only with semantic methods.
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Conclusion and future work

In this thesis we have presented various results in the field of structural proof
theory. These are unified from a unitary conceptual perspective which is aimed to
bring together different logical systems (84). We conclude the work by sketching
some themes of possible future research:

(i) It could be interesting to explore the possibility of a direct cut-elimination
result for the system G3I< in Chapter 4.

(ii) It would be natural to consider extensions of the investigations to systems
with rules acting on infinitely many formulas simultaneously.

(iii) Methods here employed could be explored in the context of non-monotonic
logics too.

(iv) Use nested calculi to obtain well-behaved and uniform proof-theory for
other families of non-classical logics.
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