1,373 research outputs found

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Edge AI for Internet of Energy: Challenges and Perspectives

    Full text link
    The digital landscape of the Internet of Energy (IoE) is on the brink of a revolutionary transformation with the integration of edge Artificial Intelligence (AI). This comprehensive review elucidates the promise and potential that edge AI holds for reshaping the IoE ecosystem. Commencing with a meticulously curated research methodology, the article delves into the myriad of edge AI techniques specifically tailored for IoE. The myriad benefits, spanning from reduced latency and real-time analytics to the pivotal aspects of information security, scalability, and cost-efficiency, underscore the indispensability of edge AI in modern IoE frameworks. As the narrative progresses, readers are acquainted with pragmatic applications and techniques, highlighting on-device computation, secure private inference methods, and the avant-garde paradigms of AI training on the edge. A critical analysis follows, offering a deep dive into the present challenges including security concerns, computational hurdles, and standardization issues. However, as the horizon of technology ever expands, the review culminates in a forward-looking perspective, envisaging the future symbiosis of 5G networks, federated edge AI, deep reinforcement learning, and more, painting a vibrant panorama of what the future beholds. For anyone vested in the domains of IoE and AI, this review offers both a foundation and a visionary lens, bridging the present realities with future possibilities

    Available Technologies and Commercial Devices to Harvest Energy by Human Trampling in Smart Flooring Systems: a Review

    Get PDF
    Technological innovation has increased the global demand for electrical power and energy. Accordingly, energy harvesting has become a research area of primary interest for the scientific community and companies because it constitutes a sustainable way to collect energy from various sources. In particular, kinetic energy generated from human walking or vehicle movements on smart energy floors represents a promising research topic. This paper aims to analyze the state-of-art of smart energy harvesting floors to determine the best solution to feed a lighting system and charging columns. In particular, the fundamentals of the main harvesting mechanisms applicable in this field (i.e., piezoelectric, electromagnetic, triboelectric, and relative hybrids) are discussed. Moreover, an overview of scientific works related to energy harvesting floors is presented, focusing on the architectures of the developed tiles, the transduction mechanism, and the output performances. Finally, a survey of the commercial energy harvesting floors proposed by companies and startups is reported. From the carried-out analysis, we concluded that the piezoelectric transduction mechanism represents the optimal solution for designing smart energy floors, given their compactness, high efficiency, and absence of moving parts

    Carbon Nano Tubes (CNTS) for the development of high-performance and smart composites.

    Get PDF
    Los nanotubos de carbono han atraĂ­do una enorme atenciĂłn en los Ăşltimos aĂąos debido a sus propiedades multifuncionales sobresalientes. Un nĂşmero cada vez mayor de trabajos de investigaciĂłn de primera lĂ­nea centran su interĂŠs en la bĂşsqueda de aplicaciones prĂĄcticas que den uso de las notables propiedades de los nanotubos de carbono, incluyendo una elevada resistencia mecĂĄnica, propiedades piezorestivas, alta conductividad elĂŠctrica, ligereza, excelente estabilidad quĂ­mica y tĂŠrmica. En concreto, los estudios mĂĄs recientes plantean dos grandes ramas de aplicaciĂłn: fabricaciĂłn de estructuras aligeradas de alta resistencia, y desarrollo de estructuras inteligentes. Con respecto a la primera lĂ­nea de aplicaciĂłn, el desarrollo de materiales compuestos ligeros de alta resistencia conecta con la creciente tendencia de la ingenierĂ­a estructural a incorporar materiales compuestos innovadores. Ejemplos recientes como el aviĂłn comercial Boeing 787, en el que la mitad del peso fue diseĂąado con materiales compuestos, predicen un futuro auspicioso para los nanotubos de carbono en la ingenierĂ­a aeronĂĄutica. Sin embargo, aĂşn resulta mĂĄs interesante el comportamiento piezorresistivo de los compuestos reforzados con nanotubos de carbono, ya que posibilita la creaciĂłn de estructuras que no sĂłlo presentan altas capacidades portantes y reducido peso especĂ­fico, sino que tambiĂŠn ofrecen capacidades de auto-detecciĂłn de deformaciones. Cuando el material se ve sometido a una deformaciĂłn externa, en virtud de dicha propiedad piezoresistiva, la conductividad elĂŠctrica varĂ­a de modo que es posible correlacionar su respuesta elĂŠctrica con el campo deformacional aplicado. Estas propiedades multifuncionales entroncan con el nuevo paradigma de la Vigilancia de la Salud Estructural el cual aboga por el uso de materiales/estructuras inteligentes para resolver el problema de escalabilidad. En este contexto, la estructura o parte de ella presenta capacidades de auto-detecciĂłn de tal manera que el mantenimiento basado en la condiciĂłn puede llevarse a cabo sin necesidad de incluir sensores externos. En ambas lĂ­neas, la mayorĂ­a de las investigaciones han centrado el estudio en la experimentaciĂłn, siendo mucho menor el nĂşmero de trabajos que plantean modelos teĂłricos capaces de simular las propiedades mecĂĄnicas, elĂŠctricas y electromecĂĄnicas de estos compuestos. Desde un punto de vista mecĂĄnico, existen estudios experimentales que informan acerca de los efectos perjudiciales sobre la respuesta macroscĂłpica de aspectos micromecĂĄnicos tales como la tendencia a formar aglomerados, asĂ­ como la curvatura de los nanotubos de carbono. Es por ello esencial desarrollar modelos teĂłricos que incorporen estos efectos y asistan al diseĂąo de elementos estructurales reforzados con nanotubos de carbono. Respecto al estudio de las propiedades de conductividad y piezoresistividad, es esencial desarrollar formulaciones teĂłricas capaces de abordar la optimizaciĂłn de las propiedades de autodetecciĂłn de deformaciones. Asimismo, es crucial comprender los diferentes mecanismos fĂ­sicos que rigen la conductividad elĂŠctrica de estos compuestos, de modo que sea posible incorporar su efecto diferencial dentro de un marco teĂłrico. Por Ăşltimo, tambiĂŠn es fundamental avanzar hacia el dominio del tiempo con el fin de desarrollar aplicaciones de vigilancia de la salud estructural basada en vibraciones. Con todo ello, los esfuerzos de esta tesis se han centrado en el modelado de las propiedades mecĂĄnicas, conductivas y electromecĂĄnicas de los compuestos reforzados con nanotubos de carbono para el desarrollo de estructuras inteligentes y de alta resistencia. Estas dos aplicaciones, a saber, compuestos de alta resistencia e inteligentes, han sido enmarcadas en el ĂĄmbito de los materiales polimĂŠricos y de cemento, respectivamente. La razĂłn de esta distinciĂłn se debe a la presunciĂłn de que los compuestos polimĂŠricos pueden encontrar aplicaciones directas como paneles de fuselaje para estructuras de aeronaves, asĂ­ como refuerzos mecĂĄnicos sobre estructuras pre-existentes. En cuanto al uso de nanotubos de carbono como inclusiones multifuncionales para compuestos inteligentes, tanto los materiales polimĂŠricos como los de base cemento ofrecen una amplia gama de aplicaciones potenciales. Sin embargo, la similitud entre los compuestos de base cemento y el hormigĂłn estructural convencional sugiere la idea de desarrollar sensores embebidos que ofrezcan una monitorizaciĂłn continua integrada sin comprometer a priori la durabilidad de la estructura huĂŠsped. Tanto las propiedades mecĂĄnicas como las conductivas han sido estudiadas mediante mĂŠtodos de homogeneizaciĂłn de campo medio. Aspectos micromecĂĄnicos tales como la relaciĂłn de aspecto, el contenido, la distribuciĂłn de la orientaciĂłn, la ondulaciĂłn o la aglomeraciĂłn de los nanotubos se han estudiado en detalle e incorporado al anĂĄlisis de diferentes elementos estructurales. De manera similar, se han estudiado las propiedades de conductividad elĂŠctrica y auto-detecciĂłn de deformaciones bajo cargas cuasi-estĂĄticas mediante modelos mixtos de homogenizaciĂłn micromecĂĄnica de Mori-Tanaka. Los principales mecanismos que gobiernan las propiedades de transporte elĂŠctrico de estos compuestos, a saber, los efectos de tĂşnel cuĂĄntico y la formaciĂłn de canales conductores, se han incorporado por separado en las simulaciones a travĂŠs de la teorĂ­a de percolaciĂłn de fibras conductoras. Los resultados teĂłricos han sido validados con ĂŠxito mediante experimentos en condiciones de laboratorio. Finalmente, se ha desarrollado un nuevo circuito equivalente piezorresistivo/piezoelĂŠctrico para el modelado electromecĂĄnico de materiales de base cemento reforzado con nanotubos de carbono en el dominio del tiempo. Con los experimentos como base de validaciĂłn, se ha demostrado que el enfoque propuesto proporciona resultados precisos y ofrece un marco teĂłrico apto para aplicaciones de procesamiento de seĂąales y monitorizaciĂłn de la salud estructural. Se espera que el trabajo desarrollado en esta tesis pueda proporcionar herramientas valiosas que permitan profundizar en la comprensiĂłn de los principales aspectos fĂ­sicos que controlan las propiedades mecĂĄnicas, elĂŠctricas y electromecĂĄnicas de los compuestos reforzados con nanotubos de carbono. AdemĂĄs, se espera que los resultados presentados en esta tesis impulsen el desarrollo de materiales compuestos auto-sensibles embebidos para aplicaciones de vigilancia de la salud estructural.Carbon nanotubes have drawn enormous attention in recent years due to their outstanding multifunctional properties. A constantly growing number of works at the front line of research pursue potential applications of their remarkable physical properties, including elevated load-bearing capacity, piezoresistive properties, high electrical conductivity, lightness, and excellent chemical and thermal stability. In particular, most recent works contemplate two different application branches: manufacture of light-weight high-strength structures, and development of smart structures. With regard to the first line of application, the development of high-strength lightweight composites connects with the growing tendency of structural engineering to incorporate advanced composite materials. Recent noticeable examples such as the commercial aircraft Boeing 787, in which half of the total weight was designed with composite materials, predict an auspicious future for carbon nanotubes in aircraft structures. Nonetheless, what is even more interesting is the piezoresistive behavior of carbon nanotube-reinforced composites, which allows us to create structures that are not only high-strength and lightweight but also strain-sensitive. When the composites are subjected to external strain fields, in virtue of such piezoresistive properties, the overall electrical conductivity varies in such a way that it is possible to correlate the electrical response with the deformational state of the material. These multifunctional properties are in line with the new paradigm of Structural Health Monitoring which advocates the use of smart materials/structures to solve the scalability issue. In this context, the structure or part of it presents self-sensing capabilities in such a way that the condition-based maintenance can be conducted without necessitating external off-the-shelf sensors. In both lines, most investigations have focused on experimentation. Conversely, the number of theoretical models capable of simulating the mechanical, electrical, and electromechanical properties of these composites is still scarce. From a mechanical point of view, experiments have reported about the detrimental effects of micromechanical aspects such as agglomeration of fillers and curviness on the macroscopic properties. Hence, it is essential to develop theoretical models that allow us to include these effects and assist the design of composite structural elements. With regard to the study of the conductivity and piezoresistivity of carbon nanotube-reinforced composites, it is essential to develop theoretical formulations capable of tackling the optimization of their strain sensitivity. In addition, it is crucial to understand the different physical mechanisms that govern the electrical conductivity of these composites and include them separately in the theoretical framework. Finally, it is also fundamental to move towards the time domain in order to develop applications for vibration-based structural health monitoring. Overall, all the efforts of this thesis have been put into the modeling of the mechanical, conductive and electromechanical properties of carbon nanotube-reinforced composites for the development of high-strength and smart structures. These two applications, namely high-strength and smart composites, have been framed in the realm of polymeric and cement-based materials, respectively. The reason for this distinction is the idea that polymer composites with high load-bearing capacity can find direct applications as fuselage panels for aircraft structures, as well as mechanical reinforcements attached to pre-existing structures. With regard to the use of carbon nanotubes as fillers for smart composites, both polymer and cement-based materials offer an enormous range of potential applications. Nonetheless, the similarity between cement-based composites and regular structural concrete suggests the idea of developing continuous embedded monitoring systems without compromising the durability of the hosting structure a priori. Both mechanical and conductive properties have been studied by means of mean-field homogenization methods. Micromechanical aspects such as filler aspect ratio, content, orientation distribution, waviness or agglomeration have been studied in detail and incorporated to the analysis of different structural elements. Similarly, the electrical conductivity and strain-sensing properties of these composites under quasi-static loadings have been studied by means of mixed Mori-Tanaka micromechanics models. The main mechanisms that underlie the electrical conduction of these composites, namely quantum tunneling effects and conductive networks, have been distinguished by a percolative-type behavior. The theoretical results have been successfully validated by means of experiments under laboratory conditions. Finally, a novel piezoresistive/piezoelectric equivalent lumped circuit has been developed for the electromechanical modeling of carbon nanotube-reinforced cement-based materials in the time domain. With experiments as validating basis, the proposed approach has been shown to provide accurate results and offers a theoretical framework readily applicable to signal processing applications and structural health monitoring. The work developed in this thesis is envisaged to provide valuable tools to further the understanding of the main physical aspects that control the mechanical, electrical and electromechanical properties of composites doped with carbon nanotubes. Furthermore, it is expected to boost the development of embedded self-sensing carbon nanotube-reinforced composites for structural health monitoring applications.Premio Extraordinario de Doctorado U

    Machine Learning for Microcontroller-Class Hardware -- A Review

    Get PDF
    The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.Comment: Accepted for publication at IEEE Sensors Journa

    Photoelastic Stress Analysis

    Get PDF
    • …
    corecore