15 research outputs found

    Stop-list slicing.

    Get PDF
    Traditional program slicing requires two parameters: a program location and a variable, or perhaps a set of variables, of interest. Stop-list slicing adds a third parameter to the slicing criterion: those variables that are not of interest. This third parameter is called the stoplist. When a variable in the stop-list is encountered, the data-flow dependence analysis of slicing is terminated for that variable. Stop-list slicing further focuses on the computation of interest, while ignoring computations known or determined to be uninteresting. This has the potential to reduce slice size when compared to traditional forms of slicing. In order to assess the size of the reduction obtained via stop-list slicing, the paper reports the results of three empirical evaluations: a large scale empirical study into the maximum slice size reduction that can be achieved when all program variables are on the stop-list; a study on a real program, to determine the reductions that could be obtained in a typical application; and qualitative case-based studies to illustrate stop-list slicing in the small. The large-scale study concerned a suite of 42 programs of approximately 800KLoc in total. Over 600K slices were computed. Using the maximal stoplist reduced the size of the computed slices by about one third on average. The typical program showed a slice size reduction of about one-quarter. The casebased studies indicate that the comprehension effects are worth further consideration

    A review of slicing techniques in software engineering

    Get PDF
    Program slice is the part of program that may take the program off the path of the desired output at some point of its execution. Such point is known as the slicing criterion. This point is generally identified at a location in a given program coupled with the subset of variables of program. This process in which program slices are computed is called program slicing. Weiser was the person who gave the original definition of program slice in 1979. Since its first definition, many ideas related to the program slice have been formulated along with the numerous numbers of techniques to compute program slice. Meanwhile, distinction between the static slice and dynamic slice was also made. Program slicing is now among the most useful techniques that can fetch the particular elements of a program which are related to a particular computation. Quite a large numbers of variants for the program slicing have been analyzed along with the algorithms to compute the slice. Model based slicing split the large architectures of software into smaller sub models during early stages of SDLC. Software testing is regarded as an activity to evaluate the functionality and features of a system. It verifies whether the system is meeting the requirement or not. A common practice now is to extract the sub models out of the giant models based upon the slicing criteria. Process of model based slicing is utilized to extract the desired lump out of slice diagram. This specific survey focuses on slicing techniques in the fields of numerous programing paradigms like web applications, object oriented, and components based. Owing to the efforts of various researchers, this technique has been extended to numerous other platforms that include debugging of program, program integration and analysis, testing and maintenance of software, reengineering, and reverse engineering. This survey portrays on the role of model based slicing and various techniques that are being taken on to compute the slices

    An Analysis of the Current Program Slicing and Algorithmic Debugging Based Techniques

    Full text link
    This thesis presents a classification of program slicing based techniques. The classification allows us to identify the differences between existing techniques, but it also allows us to predict new slicing techniques. The study identifies and compares the dimensions that influence current techniques.Silva Galiana, JF. (2008). An Analysis of the Current Program Slicing and Algorithmic Debugging Based Techniques. http://hdl.handle.net/10251/14300Archivo delegad

    Regression Test Selection by Exclusion

    Get PDF
    This thesis addresses the research in the area of regression testing. Software systems change and evolve over time. Each time a system is changed regression tests have to be run to validate these changes. An important issue in regression testing is how to minimise reuse the existing test cases of original program for modied program. One of the techniques to tackle this issue is called regression test selection technique. The aim of this research is to signicantly reduce the number of test cases that need to be run after changes have been made. Specically, this thesis focuses on developing a model for regression test selection using the decomposition slicing technique. Decomposition slicing provides a technique that is capable of identifying the unchanged parts of the system. The model of regression test selection based on decomposition slicing and exclusion of test cases was developed in this thesis. The model is called Regression Test Selection by Exclusion (ReTSE) and has four main phases. They are Program Analysis, Comparison, Exclusion and Optimisation phases. The validity of the ReTSE model is explored through the application of a number of case studies. The case studies tackle all types of modication such as change, delete and add statements. The case studies have covered a single and combination types of modication at a time. The application of the proposed model has shown that signicant reductions in the number of test cases can be achieved. The evaluation of the model based on an existing framework and comparison with another model also has shown promising results. The case studies have limited themselves to relatively small programs and the next step is to apply the model to larger systems with more complex changes to ascertain if it scales up. While some parts of the model have been automated tools will be required for the rest when carrying out the larger case studies

    Evaluating Lexical Approximation of Program Dependence

    Get PDF
    Complex dependence analysis typically provides an underpinning approximation of true program dependence. We investigate the effectiveness of using lexical information to approximate such dependence, introducing two new deletion operators to Observation-Based Slicing (ORBS). ORBS provides direct observation of program dependence, computing a slice using iterative, speculative deletion of program parts. Deletions become permanent if they do not affect the slicing criterion. The original ORBS uses a bounded deletion window operator that attempts to delete consecutive lines together. Our new deletion operators attempt to delete multiple, non-contiguous lines that are lexically similar to each other. We evaluate the lexical dependence approximation by exploring the trade-off between the precision and the speed of dependence analysis performed with new deletion operators. The deletion operators are evaluated independently, as well as collectively via a novel generalization of ORBS that exploits multiple deletion operators: Multi-operator Observation-Based Slicing (MOBS). An empirical evaluation using three Java projects, six C projects, and one multi-lingual project written in Python and C finds that the lexical information provides a useful approximation to the underlying dependence. On average, MOBS can delete 69% of lines deleted by the original ORBS, while taking only 36% of the wall clock time required by ORBS

    A comparison of tree- and line-oriented observational slicing

    Get PDF
    Observation-based slicing and its generalization observational slicing are recently-introduced, language-independent dynamic slicing techniques. They both construct slices based on the dependencies observed during program execution, rather than static or dynamic dependence analysis. The original implementation of the observation-based slicing algorithm used lines of source code as its program representation. A recent variation, developed to slice modelling languages (such as Simulink), used an XML representation of an executable model. We ported the XML slicer to source code by constructing a tree representation of traditional source code through the use of srcML. This work compares the tree- and line-based slicers using four experiments involving twenty different programs, ranging from classic benchmarks to million-line production systems. The resulting slices are essentially the same size for the majority of the programs and are often identical. However, structural constraints imposed by the tree representation sometimes force the slicer to retain enclosing control structures. It can also “bog down” trying to delete single-token subtrees. This occasionally makes the tree-based slices larger and the tree-based slicer slower than a parallelised version of the line-based slicer. In addition, a Java versus C comparison finds that the two languages lead to similar slices, but Java code takes noticeably longer to slice. The initial experiments suggest two improvements to the tree-based slicer: the addition of a size threshold, for ignoring small subtrees, and subtree replacement. The former enables the slicer to run 3.4 times faster while producing slices that are only about 9% larger. At the same time the subtree replacement reduces size by about 8–12% and allows the tree-based slicer to produce more natural slices

    ORBS and the limits of static slicing

    Get PDF
    Observation-based slicing is a recently-introduced, language-independent, slicing technique based on the dependencies observable from program behaviour. Due to the wellknown limits of dynamic analysis, we may only compute an under-approximation of the true observation-based slice. However, because the observation-based slice captures all possible dependence that can be observed, even such approximations can yield insight into the limitations of static slicing. For example, a static slice, S that is strictly smaller than the corresponding observation based slice is guaranteed to be unsafe. We present the results of three sets of experiments on 12 different programs, including benchmarks and larger programs, which investigate the relationship between static and observation-based slicing. We show that, in extreme cases, observation-based slices can find the true static minimal slice, where static techniques cannot. For more typical cases, our results illustrate the potential for observation-based slicing to highlight unsafe static slices. Finally, we report on the sensitivity of observation-based slicing to test quality

    Tree-oriented vs. line-oriented Observation-Based Slicing

    Get PDF
    Observation-based slicing is a recently-introduced, language-independent slicing technique based on the dependencies observable from program behavior. The original algorithm processed traditional source code at the line-of-text level. A recent variation was developed to slice the tree-based XML representation of executable models. We ported the model slicer to source code using srcML to construct a tree-based representation of traditional source code. We present the results of a comparison of the two slicers using four experiments involving seventeen different programs, including classic benchmarks and larger production systems. The resulting slices had essentially the same size and quite often the same content. Where they differ, the use of tree structure traded an ability to remove unnecessary parts of a statement for the requirement of maintaining aspect of the code structure. Comparing the slicers finds that each has its advantages. For example, when the tree representation facilitates the deletion of large chunks of code, the tree slicer was over eight times faster. In contrast, when slicing C++ code it was over nine times slower because of the multitude of small trees created to support C++ syntax. Given the pros and cons of the two, the results suggest the value of their hybrid combination

    Cross-language program analysis for dynamic web applications

    Get PDF
    Web applications have become one of the most important and prevalent types of software. In modern web applications, the display of any web page is usually an interplay of multiple languages and involves code execution at different locations (the server side, the database side, and the client side). These characteristics make it hard to write and maintain web applications. Much of the existing research and tool support often deals with one single language and therefore is still limited in addressing those challenges. To fill in this gap, this dissertation is aimed at developing an infrastructure for cross-language program analysis for dynamic web applications to support creating reliable and robust web applications with higher quality and lower costs. To reach that goal, we have developed the following research components. First, to understand the client-side code that is embedded in the server-side code, we develop an output-oriented symbolic execution engine that approximates all possible outputs of a server-side program. Second, we use variability-aware parsing, a technique recently developed for parsing conditional code in software product lines, to parse those outputs into a compact tree representation (called VarDOM) that represents all possible DOM variants of a web application. Third, we leverage the VarDOM to extract semantic information from the server-side code. Specifically, we develop novel concepts, techniques, and tools (1) to build call graphs for embedded client code in different languages, (2) to compute cross-language program slices, and (3) to compute a novel test coverage criterion called output coverage that aids testers in creating effective test suites for detecting output-related bugs. The results have been demonstrated in a wide range of applications for web programs such as IDE services, fault localization, bug detection, and testing

    Tool-supported identification of functional concerns in object-oriented code

    Get PDF
    Concern identification aims to find the implementation of a functional concern in existing source code. In this work, concerns are described, using the Hierarchic Concern Model, as gray-boxes containing subconcerns, inputs, and outputs. The inputs and outputs are used as concern seeds to identify data-oriented abstractions of concern implementations, called concern skeletons. The identification approach is based on context free language reachability and supported by a tool, called CoDEx
    corecore