
International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 1

A REVIEW OF SLICING TECHNIQUES IN SOFTWARE ENGINEERING

1Asadullah Shah, 2Ali Raza, 3Basri Hassan, 4Abdul Salam Shah

,1,2,3International Islamic University Malaysia

4Department of Computer Science
Szabist, Islamabad

Pakistan
1asadullah@iium.edu.my, 2alirazarang@gmail.com, 3basrihassan@iium.edu.my

ABSTRACT

Program slice is the part of program that may take the program off the path of the
desired output at some point of its execution. Such point is known as the slicing criterion.
This point is generally identified at a location in a given program coupled with the subset
of variables of program. This process in which program slices are computed is called
program slicing. Weiser was the person who gave the original definition of program slice
in 1979. Since its first definition, many ideas related to the program slice have been
formulated along with the numerous numbers of techniques to compute program slice.
Meanwhile, distinction between the static slice and dynamic slice was also made.
Program slicing is now among the most useful techniques that can fetch the particular
elements of a program which are related to a particular computation. Quite a large
numbers of variants for the program slicing have been analyzed along with the
algorithms to compute the slice. Model based slicing split the large architectures of
software into smaller sub models during early stages of SDLC. Software testing is
regarded as an activity to evaluate the functionality and features of a system. It verifies
whether the system is meeting the requirement or not. A common practice now is to
extract the sub models out of the giant models based upon the slicing criteria. Process of
model based slicing is utilized to extract the desired lump out of slice diagram. This
specific survey focuses on slicing techniques in the fields of numerous programing
paradigms like web applications, object oriented, and components based. Owing to the
efforts of various researchers, this technique has been extended to numerous other
platforms that include debugging of program, program integration and analysis, testing
and maintenance of software, reengineering, and reverse engineering. This survey
portrays on the role of model based slicing and various techniques that are being taken
on to compute the slices.

Keyword: Program Slicing, Model Based Slicing, Testing.

INTRODUCTION

In order to increase computer efficiency,
a technique called slicing is introduced.
Information regarding all the elements
that part of slicing, along with the
dependency between these elements is
gathered from what is being sliced and
why. There are two major steps that are

a part of every slicing technique first,
the program that has to be sliced and
second, all the elements that are required
for slicing are iteratively appended. The
two major conditions that classify the
slicing technique involve the programs,
models that are being sliced and the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The International Islamic University Malaysia Repository

https://core.ac.uk/display/300430343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities
mailto:asadullah@iium.edu.my
mailto:basrihassan@iium.edu.my

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 2

purpose of slicing. In most cases
achieving optimization and efficiency is
the main reason behind slicing.The
technique that is used for simplifying the
programs by concentrating on the
selective aspects of semantics is called
program slicing (Tip 1995). It is used to
reduce complexity of computer
programs. The basic objective behind
program slicing is that it divides the
program into small parts based on
certain criterion or point of interest. It
deletes those parts of the program which
do not affect the semantics of interest. If
a certain chuck of a program has either a
direct or an indirect effect on the
variables or values that are computed at
a certain slicing criterion, that it
constitutes the program chuck with
respect to that particular criterion.
Slicing is applicable in fields like
testing, re-engineering and program
comprehension. It is also found in
various steps of the program
development life cycle, such as software
testing, software debugging and
software maintenance. For example,
debugging the complete source code of a
certain program becomes difficult and
convoluted. Therefore, one can use
slicing, method and remove those parts
of the program that cannot cause that
particular bug. Thus, saving time and
increasing debugging efficiency. Until
now, most of the researches are
conducted on code based slicing (Kim et
al. 2011). Due to the various advantages
of slicing, it is now applied in the field
of design, modeling because it helps in
reducing the cost of model maintenance
and model checking (Kim et al. 2011). A
new language called the Unified Model
language is used in order to create high
level design structure (Felgentreff et al.
2014). This structure allows the architect
to analyze and reason about all most all
the properties of that system at an
abstract level. UML is very easy to use
and is very effective, thus it has become
popular among the software designs to
construct and represent the architecture
of a software system. UML diagrams are
used to explain both the behavioral and
structural aspects of the different model

diagrams. The structural parts of the
architecture of software are defined by
class diagrams, component diagrams or
object diagrams. The relationship
between the entities or the objects is
explained by these diagrams. Whereas
the state diagram, activity diagram or the
sequence diagram explain the flow of
work. They concentrate on the states,
their sequence and their interaction. Use
cases, which are used for testing of a
program, are developed with the help of
these behavioral models. However, this
is not an exact definition of model
slicing (Lallchandani & Mall 2011).
2 LITERATURE REVIEW

2.1 Introduction
As slicing has the ability to reduce
program complexity, thus it is very
useful in various stages of the software
development life cycle such as testing,
debugging and software quality
assurance. It is basically a source of
code that uses a manipulating and
analyzing technique in order to identify
a subprogram according to user
specified point of interest. The
automatic generation of the slice is
generated by program slicing. A slice or
a chuck of a program that is generated
by program slicing includes all the
program statements PS that effect
variable V at a position in a certain
Program P. For example, PS (b, 20)
means that the slice all the program
statements that affect the variable b in
the line number 10. In short, all the
statements that affect the program, to a
certain point of interest become the part
of that particular slice. Therefore,
sometimes the data is dependent, thus
there can be number of statements S that
can affect the variable V. These are the
statements that tell whether statement S
is executable. The two point important
aspects of a slice first, the behavior of
the slice should be similar to the
behavior of the original program(Weiser
1981). That is the main essence of the
program should remain intact even after
the deletion of certain set of codes.
Second, the only way slice should be
obtained is through deleting certain
unwanted code lines from the original

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 3

program. You can’t add line of codes in
order to make the slice imitate the
original code. There are different types
or variants of program slicing such as
backward slicing, dynamic slicing, static
slicing, and forward slicing. Models play
a vital role in the production of software,
especially the design and specification.
And this particular need has forced
researchers to move from program
slicing to model slicing. Model slicing
has been inspired by the technique of
program slicing as the need to model
slicing has become very strong. Through
model slicing, we extract a subset of
model elements and this subset
represents a model slice. The model
slice transports many types of
information and has various forms,
depending on its purpose such as
Architectural slicing and design slicing.
The Architectural slicing focuses on the
Architect of a program. There are many
different languages that are a part of
software modeling and the major one is
UML. This is a very strong language
that allows you to define both the
structural model that defines the
relationship among various objects. As
well as the behavioral model that
explains the sequence of action of
software. Different tools such as EFSM
Slicing Tool, SSUAM, UTG, UML
Slicer and Archlice, UOST are also used
for this very purpose.
2.2 Related Work
Information-flow relations, dataflow
equations and dependence graph use a
slicing technique called static slicing. In
static slicing the program is statically
analyzed in order to create slices. It does
not require computer execution.
According to Weisre static slicing
approach all the required slices are
generated iteratively of the dataflow
equation. The stopping certain for this
approach is the last relevant statement.
All the slices are created by calculating
consecutive sets of relevant variables.
These variables have a specific node in
the control flow diagram (Weiser 1981).
You can create different slices according
to different point of interest of different
dependency graph (Tip 1995). The

program dependency graphs were
introduced by Ottenstein and Ottenstein
and graph reachability analysis is done
in order to produce slices of it
(Ottenstein & Ottenstein 1984). In
Bergeretti and Caree approach relational
calculus is used for computing the slices
(Bergeretti & Carré 1985). The problem
with Wesier approach for slicing was, it
did not take into account the fact that
there are chances that a slice crosses the
boundary of a function call. All the
slices are computed within one function
and because of this there is a huge
chance that slicing generates a wrong
point of interest. Thus, this will affect
the control flow of the whole program
and slicing loses its precision (Weiser
1981). Weiser also defined another type
of slicing, in which he highlights the
upstream side of the chosen slicing
criterion. A slice contains statements
that may affect the value of Variable V
at a program point p. That is, these
control predicates and statements also
affect the point of interest in a program
and he named it backward slicing
(Weiser 1981). On the other hand,
another slicing technique was introduced
by Horwitz, Rep and Binkely.
According to this technique, multiple
classes, procedures and packages are
used for computing slices and this
procedure is called inter-procedural
slicing. Dynamic dependency summary
graphs that are produced during the
execution of the programs are used by
inter-procedural slicing algorithm in
order to create slices. Inter-procedural
algorithm computes slices either by
doing two phases traversing of SDG or
by computing the summary edges of
SDG. Thus, this technique overcomes
the problem presented in Weiser slicing
method, i.e. it overcomes calling context
problem (Ottenstein & Ottenstein 1984).
In 1989 Reps and Bicker came up with a
technique in order to determine the
effect of modification in one part of a
program onto another part of the
program. They name the technique
forward slicing. Unlike, the backward
slicing which affects the point of
interest, forward slicing contains set of

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 4

programs that are affected by the slicing
criterion (Bergeretti & Carré 1985). The
formal definition is: At a certain
program point p, set of program
variables V consists of all the predicates
and statements in that program. These
statements can be affected by different
values of variables in V at the point p. A
particular variable affects the
downstream code. Another type of
slicing is dynamic slicing which works
very well on a particular execution of a
program. It is a technique that is used for
program debugging and program
understanding. In dynamic slicing,
statements that do not have any
relevance to the point of interest are not
included (Miller & Choi 1988). Korel
and Laski were the first who introduced
the idea of dynamic slicing in an
iterative way (Korel & Laski 1988).
Dynamic slicing can also be approached
in terms of dynamic dependence
relations and dynamic flow charts. A
dynamic dependence algorithm was first
introduced by Miller and Choi; later
Gopal introduced a similar algorithm
based on Bergeretti information: flow
relation (Agrawal & Horgan 1990).
Likewise, Korel and Laski’s developed
an algorithm using Gopal’s dependence
relations. Another algorithm that uses
the approach of dependence graph in
order to compute non-executable
dynamic slices was developed by
Agarwal and Horgan (Korel & Laski
1988) (Korel & Laski 1990). An
efficient and effective method for
program comprehension was introduced
by Venkatesh and is known as quasi
static method. This method incorporates
both the static concepts as well as
dynamic concept of slicing. With fixed
input parameters the slice is dynamic,
whereas with unconstrained variable
input parameters the slice is static
(Venkatesh 1991). Another effective
technique is Decomposition slicing. The
idea behind this method is to capture
those statements of a program that are
needed in order to calculate the values of
the provided variables. The unwanted
statements are deleted. The slicing
criterion for this kind of slicing is built

from the union of static backward slices
and a single variable V. This technique
is widely used for software maintenance
(Gallagher & Lyle 1991). An extension
of dynamic slicing is relevant slicing.
This method computes all the statements
that might affect the slicing criterion. It
also uses the method of dynamic
computing with the help of forward
algorithm. The relevant slice contains all
the statement that affects a particular
variable with respect to a variable.
Forward algorithm also makes relevant
slicing very space efficient (Agrawal et
al. 1993).Interface slicing is a technique
that allows the programmer to create a
new module that contains the required
components. It is applied to the module
in order to extract the subset of module’s
functionality. Normally only a part of
the module is imported and there are
many procedures and functions that are
part of a module. Interface slicing
produces a program that is generated
from the original program, but it
contains only the required statements.
The module produced by the interface
slicer contains the desired components
that belong to the slice. Thus, making
interface the superset of static slicing
based on certain point of interest. This
results in, inability of interface slicing to
deal with variable that are affected by
the point of interest, but are beyond the
scope of that particular program (Beck
& Eichmann 1993).
In order to find those statements that
carry the effect of a certain variable to
another variable, chopping is used. It
uses the concept of both backward
slicing as well as forward slicing.
Chopping finds all the statements that
carry the affect from source to sink. This
method was further reduced by the use
of different barriers (Krinke 2004).In
this method, all the infeasible paths are
discards thus generating a reduced
program. This reduced program is
created on the bases of certain set of
initial states of a program. This set of
initial states is created with the help of
some set of conditions (Ning et al.
1994).

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 5

Another variation of static slicing is
hybrid slicing. This technique uses the
idea of dynamic slicing and it was first
introduced by Gupta et.al. This method
is smaller in size when compared to
static slicing and it is very cost effective
when compared with dynamic slicing.
All the information required by this
method is gathered from the debugging
process of the program (Gupta & Sofia
1995). There is a generalized static
slicing which is called end slicing.
Unlike static slicing, generalized form of
static slicing uses a set of points rather
than a single point of interest. All the
slices are created by the union of the
static slices (Danicic & Harman 1997).
Another slicing technique that is used to
generate a sliced program which is
smaller in size when compared to the
orthodox program slicing is amorphous
slicing. This technique simplifies the
program. Because of its ability to
understand what is required by the users
and simplify the program on the bases of
these requirements, it is a very useful
slicing technique (Harman & Danicic
1997). In 1997, Sivagurunathan et al
proposed an algorithm that was able to
overcome the problem of incorrect slices
due to the presence of data operations
and I/O. In order to overcome this
problem Sivagurunathan et al introduced
an extra variable which is associated
with the I/O operations. This variable
makes the external state accessible to the
slicer. However, there is a major
problem associate with this solution, i.e.
in order to make the I/O operations,
accessible to the slicer; you have to the
concept of transformation schema. The
transformation schema maps the original
program language to a new language.
Later on, Tan and Ling proposed a
solution for database operation. Their
idea used the basic concept of
Sivagurunathan et al algorithm. In order
to constantly update the database
operations, they used an implicit
variable. Then Willmor et al came up
with the solution of Database-Oriented
Program Dependence Graph for
updating the values of database
operations. Two different types of data

dependencies which are program-
database dependencies are computed.
These dependencies relate to all the non-
database statements present in the
database. These dependencies are then
added into to the Program Dependence
Graph and the resultant is Database-
Oriented Program Dependence. The
effect of one database statement on
another is captured by these
dependencies (Sivagurunathan et al.
1997). In architectural slicing there are
three major dependency components and
two phase algorithm. Dependency
components are the connection
dependency, the connector component
dependency and last the additional
dependency. The architectural algorithm
works well on the software architectural
dependency graph (Zhao 1997).To apply
the slicing technique on software
architecture, Architectural Information
Flow Graph also has three types of
information flow, namely Connector-
component, Component-connector and
internal low arcs (Zhao 1998).
Nishimatsu et al. proposed a better and a
more feasible idea as compared to static
and dynamic slicing called the call-mark
slicing. The main objective of this idea
was developing a slicing technique
which reduces the cost of dynamic
slicing. The slices that are generated
through this slicing method are smaller
than the slices generated by the static
slicing technique. Also, the slices
generated by this method are less
expensive as compared to the slices
generated by the dynamic slicing
method. All the procedure call
statements that are executed in the PDG
are marked with the help of dynamic
information. Once the executed
statements are marked, they are removed
from the PDG, thus making a more
precise PDG. Call mark slicing criterion
is generated the same way as the static
slicing criterion, but it is amplified with
complete inputs. The precise PDG is
then traversed using the standard static
technique (Nishimatsu et al. 1999).
DSAS is another effective slicing
technique. In this method a small
number of connectors and components

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 6

are created for every slice and these
connectors and components are
generated according to the set slicing
criteria. This technique is mostly used in
situations where there is a large number
of ports present and the invocation of
these ports can affect the occurrence or a
certain event or a value of a variable.
The method removes all the events that
are irrelevant according to a certain
slicing criterion, only the most relevant
are forward (Kim et al. 1999)(Kim et al.
2000). The basic concept of this
approach is the mapping of software
architecture that is generated by
Architecture description language onto
program statements, thus creating
executable architecture. Information
regarding the connectors, their
parameters and their events is gathered
when the dynamic slicer reads the ADL
source code of the architecture and it
takes slicing criterion as input. There are
more than 24 different types of data
dependences and the classifications of
these dependencies are based on the
various levels of complexity that are
introduced by the pointers in a program.
Incremental slicing uses this idea and it
acknowledges the fact that all data
dependencies are not equal. This method
makes it easy for us to understand the
slices as it ignores the weak data
dependences in the start and focus on the
strong data dependencies (Orso et al.
2001). Later on, the approach
incrementally incorporates the weak
data dependencies as well. The
dependence cache slicing technique was
proposed by Takada et al. and it uses the
dynamic information in order to
generate a precise PDG. The method
permits us to prune the PDG in accord
with the dynamic information, thus
creating a PDG called PDGDS in two
steps. PDGDS has only those data
dependence relations that are possible
with the input data. Dependence-cache
slicing does not involve data dependence
edges during the construction of
PDGDS, and the edges that are added to
PDGDS are calculated by a data
dependence collection algorithm
(Takada et al. 2002). In order to give a

programmer more control of the
construction of the slice, Jens Krinke
introduced a new slicing technique. A
method that allows the programmer to
specify the part of the program that is to
be traversed for the construction of the
slice. In order to restrict the traversing of
PDG, the programmers use barriers.
Once a barrier is met it is important to
end the process of locating the transitive
closure of the program dependencies.
The barriers which are specified through
a set of nodes are included in the slicing
criterion and this technique is very
useful for program debugging (Krinke
2003). Two types of slicing technique
came into existence because of research
done on Extended Finite State
Machines. First as deterministic and
second was nondeterministic. Another
research was done that isolated those
parts of the model that might result in an
error and the technique mainly focuses
on data flow analysis. This approach
was able to produce slices that were
smaller in size as compared to the slices
produced by EFSM. In order to
automate the computation of slicing a
tool was introduced (Korel et al. 2003).
Path slicing is one of the slicing
techniques to identify the statements that
may change the path of a program
during its execution. Path slicing is
carried out along the paths in a control
graph. In a control flow graph in
computer programming, a path is a set
of all possible inputs and can run
numerous infeasible executions. Path
slicing turns out to be a better option
than program slicing. It is so because
path slicing runs along a complete path
of any execution program. This yields
much better results than program slicing
technique in computer programming
(Jhala & Majumdar 2005).
Model slicing is another technique to
identify the bugs in a given large UML
models. This concept was initiated by
Kagdi who took the initiative to divide
the large models into UML class model.
By analyzing these class models through
proper understating and querying, it
becomes easy to do maintenance of
software. The approach of Kagdi was to

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 7

extract the class diagrams from the
whole models. However, this class
model lacks the explicit behavioral
characteristics and demonstrated only
the structural characteristics. In this
technique, a model “M” is defined
which is then analyzed on the basis of
elements, relationship between these
elements, and functions that these
elements perform on the basis of
relationships between them (Kagdi et al.
2005). Stop-list slicing technique, which
almost functions like dicing technique,
is another slicing technique which use
variable that a programmer is never
interested in to decrease their slice size.
In a program, two kinds of variable exist
normally. One is that carryout
computation and the other is that assist
in performing computation. Stop-list
slicing aims at removing the variables
from programs that are of no interest to
programmer. In this way, this technique
decreases the dependence graph by
identifying and eliminating all variables
in the stop-list set (Gallagher et al.
2006). Slicing technique can also be
used on UML Sequence Diagram. Role
of sequence diagram is to identify the
series of time dependent interactions
between components and different
objects. After having a sequence
diagram, complete functionality of the
process can be visualized and test cases
can be designed. This test data can be
selected by extracting a conditional
predicate from a program. Then this
predicate is subjected to the slicer and
test against different inputs and
methodologies until a final solution is
achieved (Samuel et al. 2005). A
representation was introduced known as
“Ctest” that was capable of generating
test cases from a given UML
communication diagram. First of all, a
communication tree is required to be
built out of communication diagram
considering its data flow and control
flow. A tool named UTG (UML
Behavioral Test Case Generator)
transforms the predicate selected from
the tree according to Ctest representation
to identify the test data. Tool takes the
communication diagram in the form of

xml format. Document parser class is
responsible for parsing the XML file for
various inputs and constructs a
communication tree. Whereas Test Data
Finder locates the test data in the form
of string on the basis of parsed
information (Samuel et al. 2007).
Another algorithm was formulated to
generate the test cases on the basis of
sequence diagram. This algorithm takes
the first step of converting the UML
sequence diagram into graphical
representation named SDG (Sequence
Diagram Graph). Graph based
methodology was used to pass through
SDG and to make test cases according to
given message sequence path coverage
criteria. A template was used to fetch the
information related to a specific input
and output. This use case template,
along with class diagram and data
dictionary, was utilized to fetch the pre
and post scenarios for the test cases as
well (Sarma et al. 2007).
A UML metamodel was introduced to
deal with the complex UML
metamodels. This technique focused on
modularizing of large complex UML
metamodels into small metamodels. This
approach functions on the basis of
diagram-specific metamodels. It extracts
the diagram-specific metamodels from
the complex UML metamodel. These
diagram-specific metamodel contains
less number of elements in them and
carry less relationships. Against the set
of key elements of “KEdt”, this
technique generates the metamodel
“MMdt”. Constituents of the key are
analyzed to identify the model elements
for criteria of slicing which are related to
diagram (Bae et al. 2008) (Bae & Chae
2008).
Another technique was developed to
produce the dynamic slices of a given
UML model through integrated state
based information. Architectural model
slicing through MDG traversal concept
was utilized to achieve this technique.
This concept first draws a graph that is
capable of fetching all information
regarding dependency at different states
of variables. Dynamic slices are
generated on the basis of traversal of

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 8

model dependency graph that has all
information about dependency variables.
These dynamic slices come out to be
very helpful in determining various sorts
of characteristics of program like impact
if the design is changed, and reliability
prediction. Using this same tool,
researchers also developed a prototype
architecture slicing tool (Lallchandani &
Mall 2008).
Later on, another approach was
introduced regarding the pruning of
metamodels. A given pruner get the
input slicing criteria which may include
classes, operations etc of a metamodel
under observation. This slices the
architecture and fetches all the
information and dependencies. In this
way, a pruner gives rise to an output
which satisfies all the structural
constraints (Sen et al. 2013) to produce
slices for UML Architecture model
which is static in nature (Lallchandani &
Mall 2009). Afterwards, another concept
was introduced that utilize the flow
dependent graph FDG of a diagram of
activity to produce dynamic slices
through an edge marking method. It has
the ability of producing the test data
with high path coverage. This concept
can also be implemented on concurrency
and polymorphism (Samuel & Mall
2009).One more technique is to utilize
the uml state machine to slice with a
purpose of producing simple slices
without making any change in model
based on dataflow analysis and control
analysis. It has also got the ability of
defining pre and post conditions and
semantic. After such marvelous start,
this work can now be implemented on
state and activity diagrams (Lano 2009).
Slice method is precise and can generate
exact slice calculation which is based on
high precision dependency of data using
sequence diagram. It is also capable of
supporting various forms of programs
and tools for slice calculation on eclipse
platform (Noda et al. 2009). Another
technique is well known for supporting
model analysis, maintenance and
reactive system, and testing. This
technique is named Statechart. It
demonstrated the control data

dependency and backward slices from
graph. Statechart can also do program
slicing for reactive and slice embedded
system (Luangsodsai & Fox 2010).
Model Checking is one of the fully
automated techniques that are used to
decrease the size of model through the
process of slicing. This technique
utilizes the Behavior Tree Dependency
Graph that fetches all the functional
requirements and also the dependency
between the modules and components.
Slicing criterion is used in it that
contains state-realization nodes which
are responsible for updating the state of
attributes and components to decrease
model size and improvise the checking
(Yatapanage et al. 2010).Verification
Technique is another technique which is
being greatly used to find put the
accuracy and precision of a given model
by dividing it into sub-models utilizing
the slicing. This technique demonstrates
the strength of the sub-models in two
categories i.e. weak satisfiable and
strong satisfiable. It can be implemented
on other diagrams and models to find
out the precision and satisfaction linked
with that model (Shaikh et al. 2010).
Slicing technique comes out to be very
effective in terms of efficiency and time
to check a model. It breaks the whole
model into sub-models and then checks
the each sub-model one by one. If at any
stage, model breaks, then the model is
unsatisfiable. If succeeds successfully,
then the model is satisfiable. Moreover,
it helps in identifying other useful
properties in the model as well. Since
after its development, this approach has
been used greatly to check the results of
a program and its speed (Shaikh et al.
2011b).Model Transformation is one
slicing technique for the slicing of UML
model which can be particularly
implemented to those parts as well that
has the properties of subset in them.
This technique brings into usage the
class diagrams, communicating sets of
state machines, and individual state
machines in order to slice the UML
model. Client suppliers’ relation is used
to form a tree structure. Slicing is done
between the invariants of class as well as

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 9

pre and post conditions of operation
considering predicate P. Then different
criteria are defined that are then
compared to get conclusion. This
technique focuses on keeping the
structure same without making any
significant changes in the program
(Lano & Kolahdouz-rahimi 2010).There
have been developed many verification
tools for UML/OCl class. Among these
tools, four tools are for verification
purposes and two are for validation
purposes. Verification tools include
HOL-OCL, UML to CSP, UML to
Alloy, and Alloy, whereas validation
tools include USE and MOVE. Here,
crucial point of verification in tool
arises. This issue can be avoided by
UOST slicing technique. Researchers
use UOST slicing technique to increase
the efficiency of this tool. In this way, a
tool automatically categorizes the model
into sub-models and then concludes the
result whether the model is satisfiable or
unsatisfiable. Later on, this test is
subjected to other tools as well for proof
(Shaikh et al. 2011a). Another technique
that is being used now a day is novel
technique on the feature model. In this
technique, feature of slicing the model is
done through the constraint of crosstree.
In this technique, an algorithm denotes
the sets of rules and underlying
configurations (Acher et al. 2011).
Dynamic backward slicing technique is
being greatly into usage of researchers
for the model transformation. In order to
slice the model, model transformation
language was used as a key step of this
technique through Dynamic Backward
Slicing. This technique takes the three
inputs i.e. model transformation
program, the model required for the
operation of MT program, and the
slicing criterion. It produces the output
in the form of transformation slices and
model slices. This conversion of model
into the MT Language is done by three
processes that are Graph Pattern,
Control Language, and Graph
transformation Rules. The whole
algorithm keeps the track records so that
it could provide traceability information
between target models and source

models. It slices the MT Program using
these traces and also slices the model
program at the same time (Ujhelyi et al.
2011) (Ujhelyi et al. 2012).Another
technique is being used greatly in
generation of data dependence graph.
This approach highlights the hierarchy
of the system and orthogonal problems
linked with it. This whole process is
carried out during the tracking of data
dependency in slicing process of UML
state machine diagram. This exhibits the
hierarchy relationships in regions,
control and parallel flows, and behavior
states. Then in last, it fetches the data
dependence graph (Kim et al.
2011).Dynamic slicing helps in slicing
of model dependence graph on the basis
of Dynamic Slicing of UML
Architectural Model (DSUAM). This
approach can be applied to get the
alterations in designs, regression testing,
grasping large architectures, and
reliability prediction. It can be achieved
by code based slicing techniques and
remodeling the slicing model
(Lallchandani & Mall 2011). Approach
of model slicing technique was also
utilized in automation of safety
inspection system. A tool named “Safe
Slicer” was introduced in order to
achieve this. This tool uses the technique
of model slicing to extract the safety
concerned slices of design model. This
tool has got the ability to trace the links
that are essential to get the automated
slices. Methodology and approach that
has been used in this technique are the
principle basis for the Self Slicer tool.
This tool ensures that the information
that is required to be inspected in design
slices has been reduced and is precise
and accurate (Falessi et al. 2011).
Using the slicing technique for state
machine models of reactive systems and
also for UML class diagrams
incorporates new features of input or
output events of interests. This
emphasizes on reducing model
semantically rather than syntactically. It
also indicated the conditions during the
path predicate coverage. Focus of this
technique is on class rather than on
models of class. A state machine is

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 10

required for the slicing process in this
(Lano & Kolahdouz-Rahimi 2011).
Utilizing the communication diagram,
this produces the control flow graphs
(CFG). It further utilizes communication
dependence graph representation
(CoDG), dynamic slicing algorithm of
communication diagram, and edge
marking to get results (Mishra et al.
2012). Slicing approach is the one that is
used to improvise the verification
process’s efficiency. In this tool, parent
model is divided into the sub models.
All these sub models are then converted
into the constraint satisfaction problem.
Then these sub models are subjected to
scrutiny of this technique which
identifies the satisfiability or non-
satisfiability of the sub model (Shaikh &
Wiil 2012).Condition slicing was
utilized in an approach for production of
test casesfrom UML interaction
diagram. In this approach, message
guard position is identified first of all.
Then on the basis of this information,
condition slicing is used for
development of test cases. Message
dependency graph is built first of all in
this. Then, on a predicated node,
condition slicing is carried out on one of
the predicate nodes. Guard condition
from the message flow is implemented
to generate the test cases (Swain et al.
2012).
Feature demonstrating makes use of set
of specialist e.g. total union and slice
give rise to many helpful advantages. It
gives boosts to the productive packing
partition. This approach starts with the
changes into the predicate followed by
the changes in these predicates into a
slice feature model. Slicing procedure
used in this technique is semantic as
well as syntactic. This is why dissection
of cross slicing obligation is done to
identify the features that can be sliced
and also those that cannot be sliced
(Acher et al. 2012). In order to provide
more elasticity in the configuration
environment, a slice feature diagram
was used to design three different input
diagram changes. Input diagram keeps
record of a better structure than a sliced
diagram. It is absolutely syntactic as it

does not involve the intersection of cross
cutting constraints. Best thing about this
technique is that it gives rise to valid
configurations. However, if features are
from more than one view, then it can
become a problematic incident in this
technique (Hubaux et al. 2011). With the
help of program slicing technique,
Domain Specific Model Language
(DSML) is brought into usage to model
a specific domain of slicer. Metamodels
are introduced in this technique. This
helps in development of two-level
generic approach utilizing Kompren.
Complier in the Kompren automatically
produces the models for slicer function.
Then this fetches the model slices ion its
own from domain specific models
(Blouin et al. 2012). Another approach
was introduced for generation of test
cases on the basis of domain abstraction.
This technique is based on the syntactic
abstraction as well as variable
elimination utilizing the model slicing.
Source model is considered to be the
input along with the sets of abstract
variables. Then these are reduced by
syntactic abstraction that is then
followed by abstraction semantically
with a purpose of extracting abstract
models. From these models are extracted
the symbolic tests as per criteria. Three
methodologies were presented for the
identification of relevant variable and
production of abstract models. Data flow
dependency is the first in this number.
Second approach involves the both
flows, data flow dependency and control
flow dependency. In third approach, data
flow and partial flow dependencies are
used to find strong and relevant
variables. Principle behind this is to use
the syntactic and semantic abstraction
for the precise results in generation of
test cases (Julliand et al.
2011).Unsatisfiability was the main
advantage of this technique. After the
actions of slicing technique, developers
get the sub models from the original
models. If there is any unsatisfiable sub
model, this technique will diagnose the
invariant hence making the developer
able to get the bug or problematic
constraint. In this way, this approach

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 11

increases the efficiency of the slicing
technique in UML diagrams. Automatic
correction or suggestion is delivered to
the user automatically by this technique
(Shaikh & Wiil 2013).Another slicing
technique for the UML is to carry it out
with OCL invariants. It initiates with the
decomposition of the model into modes
that are known as the fragments with
split invariants and operations. It also
has the ability to perform the quick
analysis and reduces the time required
by the previous techniques in analysis.
This slicing approach was first applied
to the metamodels. It becomes easier to
indicate the interested sub models for
the process if the invariant sub models
are identified from this technique (Sun
et al. 2013). This technique is the
practical example of the ideology for the
extraction of sub model from the
architecture software. It has the ability to
visualize the software model after
slicing the sequence diagram (Singh &
Arora 2013). This technique also has the
depiction of semantic language
independent framework as well as the
technique for the confirmation of model
transformation. This also represents a
detailed analysis of different sorts of
transformations. Best advantage of
implementing this technique is the
usage, verification and determination.
This model has the ability of mapping
the questions and also the invocation of
implicit rules (Lano et al. 2014).
CONCLUSION

Literature review discussed in the
previous section shows the techniques,
tools, and approaches that are being used
for model slicing and program slicing. It
can be inferred from this literature
review that Model Transformation
Verification through Slicing, Data and
Control Flow, UML Model Verification,
Model Dependency Graph, B Model
Dependency Graph, Metamodel
Diagram, and featured based slicing are
being used for model based slicing. It is
difficult to slice the UML based
architecture as it is sometimes developed
on complex diagrams and information is
distributed randomly in them. Further,
implicit dependencies are also its part. In

this regard, developer first has to
develop the immediate construction in
which information is spread evenly in
the form of various architectural
elements. Later on, these segments are
utilized to put them on scrutiny of
various aspects like changes in the
design. Then we have to analyze this
intermediary model for more
enhancements towards the integration of
state and activity models. This technique
has emphasized on the chunk study for
better and precise results. Although the
areas like validation and verification of
slicing are still required to be studied
more in detail. Nevertheless, much work
has been done related to these
techniques. This paper has shed some
light on some of the slicing techniques
like backward slicing, static slicing etc.
No doubt, implementing the techniques
of slicing has brought many advantages
along with them. This approach has
opened a new dimension for the
developers of object oriented, web
applications, and content based. There
were many problems in the real life of
the researchers that seemed to be
unsolvable. But now, after the
development of such slicing techniques,
a developer can come up with better
ideas and architectures.
REFERENCES
Acher, M. et al., 2012. Separation of

Concerns in Feature Modeling :
Support and Applications. In AOSD
’12 Proceedings of the 11th annual
international conference on Aspect-
oriented Software Development. pp.
1–12.

Acher, M. et al., 2011. Slicing feature
models. In 2011 26th IEEE/ACM
International Conference on
Automated Software Engineering
(ASE 2011). Ieee, pp. 424–427.
Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=61000
89.

Agrawal, H. et al., 1993. Incremental
Regression Testing. In Proceedings
of the Conference on Software
Maintenance. IEEE Computer
Society. Ieee, pp. 348–357.

Agrawal, H. & Horgan, J.R., 1990. Dynamic
Program Slicing. In Proceedings of

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 12

the ACM SIGPLAN’90 Conference
on Programming Language Design
and Implementation. pp. 246–256.

Bae, J.H. & Chae, H.S., 2008. UMLSlicer:
A tool for modularizing the UML
metamodel using slicing. In 2008
8th IEEE International Conference
on Computer and Information
Technology. Ieee, pp. 772–777.
Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=45947
72.

Bae, J.H., Lee, K. & Chae, H.S., 2008.
Modularization of the UML
Metamodel Using Model Slicing.
In Fifth International Conference
on Information Technology: New
Generations (itng 2008). Ieee, pp.
1253–1254. Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=44926
81 [Accessed November 29, 2014].

Beck, J. & Eichmann, D., 1993. Program
and Interface Slicing for Reverse
Engineering. In 15th international
conference on Software
Engineering. IEEE Computer
Society Press. pp. 509–518.

Bergeretti, J.F. & Carré, B.A., 1985.
Information-Flow and Data-Flow
Analysis of while-Programs. ACM
Transactions on Programming
Languages and Systems, 7(1),
pp.37–61.

Blouin, A. et al., 2012. Kompren: modeling
and generating model slicers.
Software & Systems Modeling,
pp.1–17. Available at:
http://link.springer.com/10.1007/s1
0270-012-0300-x [Accessed
November 29, 2014].

Danicic, S. & Harman, M., 1997. Program
Slicing using Functional Networks.
In Proceedings of 2nd UK
Workshop on Program
Comprehension. pp. 54–65.

Falessi, D. et al., 2011. SafeSlice : A Model
Slicing and Design Safety
Inspection Tool for SysML. In
ESEC/FSE ’11 Proceedings of the
19th ACM SIGSOFT symposium
and the 13th European conference
on Foundations of software
engineering. pp. 460–463.

Felgentreff, T., Borning, A. & Hirschfeld,
R., 2014. Babelsberg: Specifying
and solving constraints on object
behavior, Universitatsverlag
Potsdam. Available at:

http://www.jot.fm/contents/issue_2
014_09/article1.html [Accessed
November 29, 2014].

Gallagher, K., Binkley, D. & Harman, M.,
2006. Stop-List Slicing. In
proceedings of the 2006 Sixth IEEE
International Workshop on Source
Code Analysis and Manipulation.
Ieee, pp. 11–20. Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=40268
51.

Gallagher, K.B. & Lyle, J.R., 1991. Using
Program Slicing in Software
Maintenance. IEEE Transactions
on Software Engineering, 17(8),
pp.751–761. Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=83912.

Gupta, R. & Sofia, M. Lou, 1995. Hybrid
Slicing : An Approach for Refining
Information Slices Using Dynamic.
ACM SIGSOFT Software
Engineering Notes, 20(4),
pp.29–40.

Harman, M. & Danicic, S., 1997.
Amorphous Program Slicing. In
Program Comprehension, 1997.
IWPC’97. Proceedings., Fifth
Iternational Workshop on. Ieee, pp.
70–79.

Hubaux, A. et al., 2011. Supporting multiple
perspectives in feature-based
configuration. Software & Systems
Modeling, 12(3), pp.641–663.
Available at:
http://link.springer.com/10.1007/s1
0270-011-0220-1.

Jhala, R. & Majumdar, R., 2005. Path
slicing. In Proceedings of the 2005
ACM SIGPLAN conference on
Programming language design and
implementation - PLDI ’05. New
York, New York, USA: ACM
Press, p. 38. Available at:
http://portal.acm.org/citation.cfm?d
oid=1065010.1065016.

Julliand, J. et al., 2011. B model slicing and
predicate abstraction to generate
tests. Software Quality Journal,
21(1), pp.127–158. Available at:
http://link.springer.com/10.1007/s1
1219-011-9161-8.

Kagdi, H. et al., 2005. Context-Free Slicing
of UML Class Models. In Software
Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE
International Conference on. IEEE,
pp. 635–638.

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 13

Kim, H.-J. et al., 2011. Deriving Data
Dependence from/for UML State
Machine Diagrams. In 2011 Fifth
International Conference on Secure
Software Integration and
Reliability Improvement. IEEE, pp.
118–126. Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=59920
10 [Accessed November 29, 2014].

Kim, T. et al., 1999. Dynamic Software
Architecture Slicing. In Computer
Software and Applications
Conference, 1999. COMPSAC ’99.
Proceedings. The Twenty-Third
Annual International. IEEE, pp.
61–66.

Kim, T. et al., 2000. Software Architecture
Analysis : A Dynamic Slicing
Approach. ACIS International
Journal of Computer & Information
Science, 1(2), pp.91 – 103.

Korel, B. et al., 2003. Slicing of state-based
models. In International
Conference on Software
Maintenance, 2003. ICSM 2003.
Proceedings. IEEE Comput. Soc,
pp. 34–43. Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=12354
04.

Korel, B. & Laski, J., 1988. Dynamic
program slicing. Information
processing letters, 29(3),
pp.155–163.

Korel, B. & Laski, J., 1990. Dynamic slicing
of computer programs. Journal of
Systems and Software, 13(3),
pp.187–195. Available at:
http://linkinghub.elsevier.com/retrie
ve/pii/0164121290900943.

Krinke, J., 2003. Barrier Slicing and
Chopping. In Source Code Analysis
and Manipulation, 2003.
Proceedings. Third IEEE
International Workshop on. IEEE,
pp. 81–87.

Krinke, J., 2004. Slicing, Chopping, and
Path Conditions with Barriers.
Software Quality Journal, 12(4),
pp.339–360.

Lallchandani, J.T. & Mall, R., 2011. A
Dynamic Slicing Technique for
UML Architectural Models.
Software Engineering, IEEE
Transactions, 37(6), pp.737–771.

Lallchandani, J.T. & Mall, R., 2008. Slicing
UML architectural models. ACM
SIGSOFT Software Engineering
Notes, 33(3), p.4. Available at:

http://portal.acm.org/citation.cfm?d
oid=1360602.1360611.

Lallchandani, J.T. & Mall, R., 2009. Static
Slicing of UML Architectural
Models. ACM SIGSOFT Software
Engineering Notes, 8(1),
pp.159–188.

Lano, K., 2009. Slicing of UML State
Machines. In Proceedings of the
9th WSEAS international
conference on Applied informatics
and communications. World
Scientific and Engineering
Academy and Society (WSEAS),
pp. 63–69.

Lano, K., Clark, T. & Kolahdouz-rahimi, S.,
2014. A framework for verification
of model transformations. Formal
Aspects of Computing.

Lano, K. & Kolahdouz-rahimi, S., 2010.
Slicing of UML Models Using
Model Transformations. In Model
Driven Engineering Languages and
Systems. Springer, pp. 228–242.

Lano, K. & Kolahdouz-Rahimi, S., 2011.
Slicing Techniques for UML
Models. The Journal of Object
Technology, 10(11), pp.1–49.
Available at:
http://www.jot.fm/contents/issue_2
011_01/article11.html.

Luangsodsai, A. & Fox, C., 2010.
Concurrent Statechart Slicing. In
Computer Science and Electronic
Engineering Conference
(CEEC),2010 2nd. IEEE, pp. 1 – 7.
Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=56064
93.

Miller, B.P. & Choi, J.-D., 1988. A
mechanism for efficient debugging
of parallel programs. Proceedings
of the 1988 ACM SIGPLAN and
SIGOPS workshop on Parallel and
distributed debugging - PADD ’88,
23(7), pp.135–144. Available at:
http://portal.acm.org/citation.cfm?d
oid=68210.69229.

Mishra, A., Mohapatra, D.P. & Panda, S.,
2012. Dynamic Slicing of UML
Communication Diagram. In
Advance Computing Conference
(IACC), 2013 IEEE 3rd
International. IEEE, pp.
1394–1399.

Ning, J.Q., Engberts, A. & Kozaczynski, W.,
1994. Automated support for
legacy code understanding.

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 14

Communications of the ACM,
37(5), pp.50–57.

Nishimatsu, A. et al., 1999. Call-mark
slicing: An efficient and
economical way of reducing slices.
In proceedings of the the 21st
International Conference on
Software Engineering. ACM, pp.
422–431.

Noda, K. et al., 2009. Sequence Diagram
Slicing. 2009 16th Asia-Pacific
Software Engineering Conference,
pp.291–298. Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=53586
92 [Accessed November 29, 2014].

Orso, A., Sinha, S. & Harrold, M.J., 2001.
Incremental slicing based on data-
dependences types. In Proceedings
IEEE International Conference on
Software Maintenance. ICSM 2001.
IEEE, pp. 158–167. Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=97272
6.

Ottenstein, K.J. & Ottenstein, L.M., 1984.
The program dependence graph in a
software development environment.
ACM Sigplan Notices, 19(5),
pp.177–184.

Samuel, P. & Mall, R., 2009. Slicing-Based
Test Case Generation from UML
Activity Diagrams. ACM SIGSOFT
Software Engineering, 34(6),
pp.1–14.

Samuel, P., Mall, R. & Kanth, P., 2007.
Automatic test case generation
from UML communication
diagrams. Information and
Software Technology, 49(2),
pp.158–171. Available at:
http://linkinghub.elsevier.com/retrie
ve/pii/S0950584906000474.

Samuel, P., Mall, R. & Sahoo, S., 2005.
UML Sequence Diagram Based
Testing Using Slicing. In
INDICON, 2005 Annual IEEE.
IEEE, pp. 176–178.

Sarma, M., Kundu, D. & Mall, R., 2007.
Automatic Test Case Generation
from UML Sequence Diagram. In
15th International Conference on
Advanced Computing and
Communications (ADCOM 2007).
IEEE, pp. 60–67. Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=44259
52.

Sen, S. et al., 2013. Meta-model Pruning. In
Model Driven Engineering

Languages and Systems. Denver,
CO, USA: Springer Berlin
Heidelberg, pp. 32–46.

Shaikh, A. et al., 2010. Verification-Driven
Slicing of UML / OCL Models. In
Proceedings of the IEEE/ACM
international conference on
Automated software engineering.
pp. 185–194.

Shaikh, A. & Wiil, U.K., 2013. A feedback
technique for unsatisfiable UML /
OCL class diagrams. Software:
Practice and Experience, 44(11),
pp.1379–1393.

Shaikh, A. & Wiil, U.K., 2012. UMLtoCSP
(UOST): A Tool for Effi cient
Verification of UML / OCL Class
Diagrams Through Model Slicing.
In Proceedings of the ACM
SIGSOFT 20th International
Symposium on the Foundations of
Software Engineering. ACM, p. 37.

Shaikh, A., Wiil, U.K. & Memon, N., 2011a.
Evaluation of Tools and Slicing
Techniques for Efficient
Verification of UML/OCL Class
Diagrams. Advances in Software
Engineering, 2011, p.5. Available
at:
http://www.hindawi.com/journals/a
se/2011/370198/.

Shaikh, A., Wiil, U.K. & Memon, N.,
2011b. UOST : UML / OCL
Aggressive Slicing Technique for
Efficient Verfication of Models. In
System Analysis and Modeling:
About Models. Springer Berlin
Heidelberg, pp. 173–192.

Singh, R. & Arora, V., 2013. A practical
approach for model based slicing.
IOSR Journal of Computer
Engineering, 12(4), pp.18–26.

Sivagurunathan, Y., Harman, M. & Danicic,
S., 1997. Slicing , I/O and the
Implicit State. measurement,
16(14), pp.59–68.

Sun, W., France, R.B. & Ray, I., 2013.
Contract-Aware Slicing of UML
Class Models. In 6th International
Conference, MODELS 2013,
Miami, FL, USA. pp. 724–739.

Swain, R.K., Panthi, V. & Behera, P.K.,
2012. Test Case Design Using
Slicing of UML Interaction
Diagram. Procedia Technology, 6,
pp.136–144. Available at:
http://linkinghub.elsevier.com/retrie
ve/pii/S2212017312005622.

Takada, T., Ohata, F. & Inoue, K., 2002.
Dependence-cache slicing: a

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

International Conference On Engineering and Technology

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities Page | 15

program slicing method using
lightweight dynamic information.
In Program Comprehension, 2002.
Proceedings. 10th International
Workshop on. IEEE, pp. 169–177.
Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=10213
38.

Tip, F., 1995. A Survey of Program Slicing
Techniques. Journal of
programming languages, 3(3),
pp.121–189.

Ujhelyi, Z., Horváth, Á. & Varró, D., 2012.
Dynamic Backward Slicing of
Model Transformations. In
Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth
International Conference on. IEEE,
pp. 1 – 10.

Ujhelyi, Z., Horváth, Á. & Varró, D., 2011.
Towards Dynamic Backward
Slicing of Model Transformations.
In Automated Software Engineering
(ASE), 2011 26th IEEE/ACM
International Conference. IEEE,
pp. 404–407.

Venkatesh, G. a., 1991. The semantic
approach to program slicing. ACM
SIGPLAN Notices, 26(6),
pp.107–119. Available at:
http://portal.acm.org/citation.cfm?d
oid=113446.113455.

Weiser, M., 1981. Program Slicing. In
Proceedings of the 5th
international conference on
Software engineering. IEEE, pp.
439–449.

Yatapanage, N., Winter, K. & Zafar, S.,
2010. Slicing Behavior Tree

Models for Verification, Springer
Berlin Heidelberg.

Zhao, J., 1998. Applying slicing technique to
software architectures. In
Engineering of Complex Computer
Systems, 1998. ICECCS’98.
Proceedings. Fourth IEEE
International Conference on. IEEE,
pp. 87–98. Available at:
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=70665
9.

Zhao, J., 1997. Software Architecture
Slicing. In In Proceedings of the
14th Annual Conference of Japan
Society for Software Science and
Technology. Citeseer, pp. 85–92.

http://conference.serendivus.com/index.php/main/loadSocialSciencesAndHumanities

