2,297 research outputs found

    Stochastic Weighted Graphs: Flexible Model Specification and Simulation

    Get PDF
    In most domains of network analysis researchers consider networks that arise in nature with weighted edges. Such networks are routinely dichotomized in the interest of using available methods for statistical inference with networks. The generalized exponential random graph model (GERGM) is a recently proposed method used to simulate and model the edges of a weighted graph. The GERGM specifies a joint distribution for an exponential family of graphs with continuous-valued edge weights. However, current estimation algorithms for the GERGM only allow inference on a restricted family of model specifications. To address this issue, we develop a Metropolis--Hastings method that can be used to estimate any GERGM specification, thereby significantly extending the family of weighted graphs that can be modeled with the GERGM. We show that new flexible model specifications are capable of avoiding likelihood degeneracy and efficiently capturing network structure in applications where such models were not previously available. We demonstrate the utility of this new class of GERGMs through application to two real network data sets, and we further assess the effectiveness of our proposed methodology by simulating non-degenerate model specifications from the well-studied two-stars model. A working R version of the GERGM code is available in the supplement and will be incorporated in the gergm CRAN package.Comment: 33 pages, 6 figures. To appear in Social Network

    Estimation of subgraph density in noisy networks

    Full text link
    While it is common practice in applied network analysis to report various standard network summary statistics, these numbers are rarely accompanied by uncertainty quantification. Yet any error inherent in the measurements underlying the construction of the network, or in the network construction procedure itself, necessarily must propagate to any summary statistics reported. Here we study the problem of estimating the density of an arbitrary subgraph, given a noisy version of some underlying network as data. Under a simple model of network error, we show that consistent estimation of such densities is impossible when the rates of error are unknown and only a single network is observed. Accordingly, we develop method-of-moment estimators of network subgraph densities and error rates for the case where a minimal number of network replicates are available. These estimators are shown to be asymptotically normal as the number of vertices increases to infinity. We also provide confidence intervals for quantifying the uncertainty in these estimates based on the asymptotic normality. To construct the confidence intervals, a new and non-standard bootstrap method is proposed to compute asymptotic variances, which is infeasible otherwise. We illustrate the proposed methods in the context of gene coexpression networks

    Bayesian Inference of Online Social Network Statistics via Lightweight Random Walk Crawls

    Get PDF
    Online social networks (OSN) contain extensive amount of information about the underlying society that is yet to be explored. One of the most feasible technique to fetch information from OSN, crawling through Application Programming Interface (API) requests, poses serious concerns over the the guarantees of the estimates. In this work, we focus on making reliable statistical inference with limited API crawls. Based on regenerative properties of the random walks, we propose an unbiased estimator for the aggregated sum of functions over edges and proved the connection between variance of the estimator and spectral gap. In order to facilitate Bayesian inference on the true value of the estimator, we derive the approximate posterior distribution of the estimate. Later the proposed ideas are validated with numerical experiments on inference problems in real-world networks

    Node similarity within subgraphs of protein interaction networks

    Full text link
    We propose a biologically motivated quantity, twinness, to evaluate local similarity between nodes in a network. The twinness of a pair of nodes is the number of connected, labeled subgraphs of size n in which the two nodes possess identical neighbours. The graph animal algorithm is used to estimate twinness for each pair of nodes (for subgraph sizes n=4 to n=12) in four different protein interaction networks (PINs). These include an Escherichia coli PIN and three Saccharomyces cerevisiae PINs -- each obtained using state-of-the-art high throughput methods. In almost all cases, the average twinness of node pairs is vastly higher than expected from a null model obtained by switching links. For all n, we observe a difference in the ratio of type A twins (which are unlinked pairs) to type B twins (which are linked pairs) distinguishing the prokaryote E. coli from the eukaryote S. cerevisiae. Interaction similarity is expected due to gene duplication, and whole genome duplication paralogues in S. cerevisiae have been reported to co-cluster into the same complexes. Indeed, we find that these paralogous proteins are over-represented as twins compared to pairs chosen at random. These results indicate that twinness can detect ancestral relationships from currently available PIN data.Comment: 10 pages, 5 figures. Edited for typos, clarity, figures improved for readabilit

    Subgraph covers -- An information theoretic approach to motif analysis in networks

    Get PDF
    Many real world networks contain a statistically surprising number of certain subgraphs, called network motifs. In the prevalent approach to motif analysis, network motifs are detected by comparing subgraph frequencies in the original network with a statistical null model. In this paper we propose an alternative approach to motif analysis where network motifs are defined to be connectivity patterns that occur in a subgraph cover that represents the network using minimal total information. A subgraph cover is defined to be a set of subgraphs such that every edge of the graph is contained in at least one of the subgraphs in the cover. Some recently introduced random graph models that can incorporate significant densities of motifs have natural formulations in terms of subgraph covers and the presented approach can be used to match networks with such models. To prove the practical value of our approach we also present a heuristic for the resulting NP-hard optimization problem and give results for several real world networks.Comment: 10 pages, 7 tables, 1 Figur
    • …
    corecore