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Abstract

A large number of complex systems can be modeled as networks of interacting

units. From a mathematical point of view the topology of such systems can

be represented as graphs of which the nodes represent individual elements of

the system and the edges interactions or relations between them. In recent

years networks have become a principal tool for analyzing complex systems

in many different fields.

This thesis introduces an information theoretic approach for finding char-

acteristic connectivity patterns of networks, also called network motifs. Net-

work motifs are sometimes also referred to as basic building blocks of complex

networks. Many real world networks contain a statistically surprising number

of certain subgraph patterns called network motifs. In biological and tech-

nological networks motifs are thought to contribute to the overall function

of the network by performing modular tasks such as information process-

ing. Therefore, methods for identifying network motifs are of great scientific

interest.

In the prevalent approach to motif analysis network motifs are defined

to be subgraphs that occur significantly more often in a network when com-

pared to a null model that preserves certain features of the network. How-
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ever, defining appropriate null models and sampling these has proven to be

challenging. This thesis introduces an alternative approach to motif analysis

which looks at motifs as regularities of a network that can be exploited to

obtain a more efficient representation of the network. The approach is based

on finding a subgraph cover that represents the network using minimal total

information. Here, a subgraph cover is a set of subgraphs such that every

edge of the graph is contained in at least one subgraph in the cover while the

total information of a subgraph cover is the information required to specify

the connectivity patterns occurring in the cover together with their position

in the graph.

The thesis also studies the connection between motif analysis and random

graph models for networks. Developing random graph models that incorpo-

rate high densities of triangles and other motifs has long been a goal of

network research. In recent years, two such model have been proposed [1, 2].

However, their applications have remained limited because of the lack of a

method for fitting such models to networks. In this thesis, we address this

problem by showing that these models can be formulated as ensembles of

subgraph covers and that the total information optimal subgraph covers can

be used to match networks with such models. Moreover, these models can

be solved analytically for many of their properties allowing for more accurate

modeling of networks in general.

Finally, the thesis also analyzes the problem of finding a total information

optimal subgraph cover with respect to its computational complexity. The

problem turns out to be NP-hard hence, we propose a greedy heuristic for

it. Empirical results for several real world networks from different fields are

8



presented. In order to test the presented algorithm we also consider some

synthetic networks with predetermined motif structure.
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Chapter 1

Introduction

1.1 Complex networks

A wide range of systems can be represented as networks of interacting ele-

ments. Consequently, networks are studied across many disciplines. Exam-

ples include cellular networks and food webs in biology, technological net-

works like the internet and power grids and networks representing social

relations.

In the last two decades researchers have developed a variety of tools and

models to study the structure of such complex networks. As opposed to clas-

sical graph theory, that is mostly concerned with the study of small and/or

highly regular graphs, network research has mostly focused on large scale sta-

tistical properties of comparatively large and complex graphs. Consequently,

research has been focused of finding statistical measures that summarize key

topological features of networks such as average path lengths, clustering, de-

gree distributions, assortativity, network motifs and community structure [3].
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The two main drivers of network research have been the availability of large

scale network data and the observation that the topology of many real world

networks significantly deviates from random graphs.

Motivated by empirical studies of networks many researchers have devel-

oped models aimed at explaining how networks come to have some commonly

observed properties and their overall effect on the topology of network. On

the other hand, in contrast to empirical data, most widely used random

graph models that can be solved analytically produce networks that do not

contain significant densities of highly connected subgraphs. Recently, several

random graph models that can incorporate high densities of highly connected

subgraphs have been proposed [2, 1]. However, due to the lack of a method

for fitting these models, their applications have remained rather limited.

1.1.1 Network motifs

Some small connectivity pattern, called network motifs, occur in complex

networks much more often than one would expect on the basis of pure chance.

In social networks the presence of many triangles can be traced back to the

tendency of people to associate in groups. In biological systems motifs are

thought to contribute to the overal function of the network by performing

modular tasks [4] and thus to be evolutionarily favored.

In the prevalent approach due to Milo et al. [5] network motifs are defined

to be subgraph patterns that occur significantly more often in the network

than in null model that corresponfs to a randomized version of the network

which reflects certain properties of the network. The null model is in gen-
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eral taken to be the ensemble of all networks that have the same degree

distribution as the original network.

In this thesis instead of comparing subgraph counts in the network with

a null model we look at motifs as building blocks of networks. In order to

identify network motifs we use subgraph covers, which are essentially decom-

positions of the network into its subgraphs. Network motifs are then defined

to be connectivity patterns that appear in maximally efficient decomposi-

tions of networks. In order to make the concept of efficiency mathematically

precise we follow the total information approach by Gell-Mann and Lloyd

[6].

1.2 Motivation and Objectives

The main objective of this thesis is to develop a method for determining

characteristic connectivity patterns of networks, commonly referred to as

network motifs. For this it follows an information theoretic approach that

is based on using subgraph covers as representations of graphs. It provides

a novel definition of network motifs in terms of total information optimal

subgraph covers. The approach looks at networks motifs as regularities of

the network that can be exploited to obtain a more efficient representation

of the network. In order to prove the practical value of the approach several

algorithms for finding network motifs are also presented.

Our motivation for developing the a new method for motif analysis is the

need for a method that can be used to detect network motifs consistently

even for motifs of larger size. Another aim is to establish a clear connection

13



between motif analysis and random graph models for networks.

1.3 Summary of the Main Results

The main result of this thesis is an information theoretic approach to motif

analysis in networks that is based on finding a subgraph cover of the network

that has minimal total information. By considering motifs of all sizes simul-

taneously and using a single universal measure, the method is able to detect

even large motifs consistently.

We also show that some recently introduced random graph models that

can incorporate high densities of highly connected subgraphs, can be for-

mulated as ensembles of subgraph covers. Consequently, total information

optimal subgraph covers provide a way of associating networks with specific

instances of these models. This allows motif structures to be incorporated

into random graph models and allows for more accurate modeling of networks

in general.

In order to prove the practical value of our approach we also study the

problem of finding an optimal subgraph cover from a perspective of com-

putational complexity. The problem turns our to be a non-linear covering

problem. Since, covering problems are known to be NP-hard even in the

linear case we solve it heuristically using a greedy heuristic.

Finally, we present empirical results for several real world networks from

different fields. These show that the methods finds very similar motifs in

real world networks representing systems of the same type. We also analyzed

some synthetic networks, with predetermined motif structure, in order to test

14



the greedy heuristic.

1.4 Thesis Structure

The remainder of the thesis is organized as follows:

Chapter 2 contains basic graph theoretical concepts and an overview of

complex networks that includes definitions of commonly used network mea-

sures and random graph models.

Chapter 3 contains a brief overview of the information theoretic concepts

that form the basis of our analysis.

In chapter 4 we introduce subgraph covers as representations of graphs

and define the total information of subgraph covers using uniform subgraph

cover ensembles. We also show that some recently introduced random graph

models can be formulated as ensembles of subgraph covers and discuss the

use of total information optimal subgraph covers as basis for model selection.

In chapter 5 we analyze the problem of finding a total information optimal

subgraph covers with respect to its computational complexity and present

several heuristics for the problem.

Chapter 6 contains empirical results for various real world and synthetic

networks.

In chapter 7 we give a short summary of the thesis and discuss possible

applications and generalizations of the method. We also discuss possible

directions for future research.
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Chapter 2

Background I: Graphs and

Networks

2.1 Graph theory

In this section we give definitions of basic graph theoretical concepts that are

relevant to the general development of the thesis.

Definition 2.1.1. A graph G = (V,E) is an ordered pair of sets such that

the elements of E are two element subsets of V . The elements of V are called

vertices (or nodes) and the elements of E are called the edges of G. For an

edge {x, y} we sometimes write xy.

Definition 2.1.2. A directed graph (ordigraph) G = (V,E) is an ordered

pair of sets such that the elements of E are ordered pairs of V . An edge

(x, y) (or xy) is said to be directed from x to y.

A graph is called simple if it does not contain parallel edges or self self-
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edges.Throughout this thesis we won’t make an explicit distinction between

directed and undirected graphs since most definitions and arguments apply

to both cases. On the other hand, we will primarily use undirected graphs

in examples.

Definition 2.1.3. A graph H is called a subgraph of G whenever V (H) ⊆

V (G) and E(H) ⊆ E(G). A subgraph is said to be induced iff it contains all

edges xy ∈ E(G) such that x, y ∈ V (H).

Definition 2.1.4. Two graphs G and H are said to be isomorphic (G '

H) whenever there exist a bijection φ : V (G) → V (H) such that (x, y) ∈

E(G)⇔ (φ(x), φ(y)) ∈ E(H) for all x, y ∈ V (G). Such a map φ is called an

isomorphism. Whenever G = H it is called an automorphism.

Definition 2.1.5. Being isomorphic (') is an equivalence relation and the

corresponding equivalence classes are called isomorphism classes.

Throughout the text we generally will use the words motif or subgraph/connectivity

pattern instead of isomorphism classes. An isomorphism class can be referred

to by unlabeled graph or any one of its labeled members. We will in gen-

eral use upper case letters for graphs and lower case letters for isomorphism

classes.

Definition 2.1.6. An m-subgraph or subgraph instance of m is a subgraph

that belongs to the isomorphism class m.

Definition 2.1.7. The automorphisms of a graph G form a group. This

group is called the automorphism group of G and is denoted by Aut(G) .

17



The type or orbit of a vertex x is defined as the set of vertices that are

images of x under the action of the automorphism group.

Definition 2.1.8. The number of edges connected to a vertex i is called its

degree denoted by di. For directed graphs one can also define the in- and

out- degrees of a vertex which are the number of inward and outward directed

edges. Alternatively, one can also include the number of bidirectional edges

attached to a vertex. The degree sequence (di(G)) of G is the sequence of

the degrees of its vertices.

Definition 2.1.9. A sequence (di) is called graphical if there exists a simple

graph with degree sequence (di).

The graphicallity of a sequence can be checked using the Erdös-Gallai

theorem [7].

Definition 2.1.10. The degree distribution corresponding to a degree se-

quence (di) is the probability distribution that specifies the probability that

a random vertex has degree k : p(k) = nk(di)
N

where nk(di) is the number of

vertices with degree k.

Definition 2.1.11. A path of G is an ordered tuple of distinct (except maybe

the first and last) vertices (v0, v1, ..., vk) such that (vi, vi + 1) ∈ E(G). If

v0 = vk the path is called a cycle.

Definition 2.1.12. The (geodesic) distance d(i, j) between vertices i and j

is the length of the shortest path connecting i and j.

Definition 2.1.13. A graph G = (V,E) is said to be connected iff for every

pair of its vertices there exists a path connecting them. In the case of directed

18



graphs the graph is said to be strongly connected if there exists a directed

path between every pair of vertices in the graph and simply connected if the

underlying undirected graph is connected.

Definition 2.1.14. A graph is said to be biconnected if it can not be sepa-

rated into two or more disconnected components by the removal of any one

of its vertices. We will assume that the graph consisting of a single edge is

biconnected.

Definition 2.1.15. A tree is a graph that is connected and contains no

cycles.

It is straightforward to show that for a tree T = (V,E) : |E| = |V | − 1.

Definition 2.1.16. A graph of size n which contains all possible edges is

called a complete graph, Kn. Complete graphs are also sometimes referred to

as cliques.

Definition 2.1.17. A graph is called bipartite if the set of vertices can be

partitioned into two sets V1 and V2 such that: V1 ∩ V2 = ∅, V1 ∪ V2 and

E(G) ⊆ V1XV2. A maximally connected bipartite graph with (|V1|, |V2|) =

(n,m) is called complete bipartite, Kn,m.

2.2 Complex networks

In this section, we briefly review some classes of complex networks that have

been the subject of extensive research and some commonly studied network

properties. We will focus on static networks and their topological properties.
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For a more extensive review of the subject we refer the reader to the following

review articles and books [3, 8, 9, 10].

2.2.1 Technological networks

Technological networks in general are networks representing man-made sys-

tems which typically are designed to perform a certain function:

• Computer networks: the nodes are computers/routers and edges rep-

resent physical connections between these.

• Distribution networks: These include networks power grids, telephone

lines and road networks.

• The WWW: nodes represent web pages and directed edges, hyper-links

between these.

• Electronic circuits: in these networks nodes correspond to circuit com-

ponents such as logic gates and flip-flops.

2.2.2 Biological networks

Various biological systems can be represented as networks. Biological net-

works have become the subject of intensive research in recent years. Several

classes of biochemical networks have been studied extensively:

• Gene transcription networks: In these networks a directed edge from

A to B indicates that A encodes a transcription factor for B [11, 5, 12].
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• Metabolic networks: In these networks a directed edge from A to B

indicates the existence of a metabolic reaction of which A is an educt

and B a product [13].

• Protein interaction networks: These are undirected networks represent-

ing physical interactions between proteins [14].

• Neural networks: In such networks nodes represent individual neurons

and directed edges, synaptic connections between these [15]. Deter-

mining the topology of neuronal networks is quite difficult in practice

therefore sometimes neural networks are considered at the larger scale

where nodes represent functional modules and edges connections be-

tween these [16].

• Food webs: these networks represent trophic relationships between a

group of species that share the same habitat. A directed edge from A

to B indicates that A preys on B [17].

2.2.3 Social and economic networks

Social sciences is one of the scientific disciplines that has a long tradition

of quantitative network analysis [18, 19]. In its most general form a so-

cial network represents social interactions/relations between a set of indi-

viduals or groups of individuals. Some of the possible relations/interactions

are: Friendships, acquaintances, geographical proximity, legal relations such

as marriages, sexual contacts, business relations, co-ownership, communica-

tions, financial transactions and scientific collaborations.
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2.2.4 Other networks

Other widely studied networks are citation networks between scientific publi-

cations [20], word adjacency and co-occurrence networks [21] and genealogical

trees [22].

2.3 Network properties

There is a large number of network measures related to various structural

properties of networks. Here, we will briefly review some of the most widely

studied network properties and measures. Our primary focus will be on

topological properties.

2.3.1 Geodesic path lengths

In many real world networks vertices seem to be connected by short paths

[23, 3]. For connected graphs this can be measured by the mean geodesic

distance:

l =
1

1
2
N(N − 1)

∑
i>j

dij, (2.1)

where dij is the length of the shortest path connecting i and j. As defined

above the average path length is infinite for networks that are not connected,

in such cases one might only consider the largest connected component or

use one of the several other related measures such as the proposed in the

literature [3].

In general networks are said to have the small world effect if l scales

22



logarithmically or slower with the number of vertices. The small world effect

has been proven for various random graph models and has been observed in

a large number of real world networks [3, 8].

2.3.2 The degree distribution

Another aspect with respect to which real world networks differ from classical

random graphs is their degree distribution. In contrast to the Erdös-Renyi

type random graphs that have a Poisson type degree distribution that decays

exponentially for large degrees many real world networks have highly right

skewed degree distributions, in other words they contain a large number of

nodes with unexpectedly high connectivity. In directed networks one can

differentiate between two types of degrees: the in- and out- degree. In some

cases one can also define the degree corresponding to bidirectional edges.

These different types of degrees are in general highly correlated.

Networks with power law degree distributions have attracted a great deal

of interest [24, 3]. These networks are sometimes referred to as scale free

networks. Power law degree distributions with various exponents have been

observed in several real world networks including metabolic networks, the

Internet, the World Wide Web and communication networks.

2.3.3 Clustering

Many real world networks have high clustering, sometimes also called tran-

sitivity, meaning that there is an increase probability that vertices v1 and v2

are connected if both are connected to a third vertex v3. This phenomenon
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is in general quantified the clustering coefficient:

C =
6n4
nV

, (2.2)

where n4 and nV are the number of triangles and two paths in the network.

One can also define a clustering coefficient for individual vertices:

Ci =
number of triangles containing vertex i

number of two paths with central vertex i
(2.3)

In this approach the clustering coefficient of the whole network is defined the

average of the Ci’s. One can also define higher order clustering coefficients

corresponding to cycles of order higher than 3.

2.3.4 Modularity and community structure

Most social networks are believed to have community structure, that is they

contain groups of nodes that are more densely connected within themselves

and less so to nodes in other groups. For instance, in scientific collabora-

tion networks might represent different areas of research. In the case of the

WWW communities might correspond to common subjects of web pages.

In biological and technological networks communities can correspond sub-

networks that perform a certain function. A lot of research effort has been

focused on finding techniques that can successfully extract community struc-

ture from networks. A review of such techniques can be found in [25, 26].
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2.3.5 Mixing patterns and assortativity

A large class of graph measures are related to mixing patterns of vertices

of different types. If vertices of the same or similar type have an increased

probability of being connected the network is called assortative and disassor-

tative in the opposite case [27]. A special case of this is mixing with respect

to vertex degree for which there exist various measures [3].

2.3.6 Other properties and measures

Some authors have studied the spectral distribution of certain special ma-

trices that can be defined on the basis of graph connectivities. The most

notable of these are the adjacency matrix and the graph Laplacian. The

spectra of such operators contain important information about the structure

of networks and provide an almost complete set of invariants for a graph

[28, 29, 30, 31]. Spectral methods have also been used to study the dynami-

cal properties of networks as well as community structure [32, 33].

Networks also have studied extensively with respect to their dynamical

properties. For instance, measures related to the resilience of a network

against random and targeted node and edge removals have been studied

extensively [34, 35, 36]. Networks have also been studied with respect to

synchronization, navigation and spreading processes[33, 37].
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2.4 Random graph models

In this section we will briefly review some widely used random graph models.

We shall focus on models that are directly related to development of this

thesis.

2.4.1 The Erdös-Renyi model

The Erdös-Rényi (ER) model is probably the most extensively studied ran-

dom graph model [38]. In the Erdös-Rényi model edges occur indepen-

dently with a fixed probability p and for undirected graphs it can be for-

mulated as follows: Let V = {v1, v2, v3..vN} be a set of vertices and the set

E = {{vi, vj} : vi, vj ∈ V } the corresponding set of all potential edges. Then

the Erdös-Rényi model GN,p is the random graph where every edge occurs

independently with fixed probability p. Thus the probability of any graph G

is given by:

P (G) = p|E(G)|(1− p)CN
2 −|E(G)|. (2.4)

1

Now, we recall some well known properties of the ER model, for a more

comprehensive account we refer to[39]. The first quantity of interest is the

degree distribution which is given by:

P (k) = CN−1
k pk(1− p)N−1−k (2.5)

For large graphs with fixed mean degree κ = pN this approaches the Poisson

1CN
k = N !

(N−k)!k!
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distribution:

P (k) ' κke−κ

k!
(2.6)

The degree distribution of the ER random graph is narrowly concentrated

around its mean and therefore ER model is considered to be a rather poor

model for real world networks with heavy tailed degree distributions.

Since in the ER model edges occur independently, given any set s of n

vertices the probability the subgraph induced on s is H is given by:

P (H) = p|E(H)|(1− p)Cn
2 −|E(H)|. (2.7)

Thus the n-node subgraph distribution of GN,p is Gn,p. Consequently, the

probability that a motif m appears on any set of |m|-nodes is:

P (m) = Λ(m)p|E(m)|(1− p)C
|m|
2 −|E(m)|, (2.8)

where Λ(m) = |m|!
Aut(m)

is the number graphs that are in isomorphism class m.

In the case of sparse graphs, that is when p is of order N−1, P (m) scales

as N−|E(m)|. As a result only motifs with e(m) < |m| 2 have a high density.

Here, by high density we mean that 〈n(m)〉/N is nonzero as N →∞. Where

〈n(m)〉 is the expected subgraph count of m. This further implies that the

clustering coefficient of the ER model scales as N−1.

One can also consider the microcanonical version of the Erdös-Rényi

model GN,e which is the uniform ensemble of all graphs with N vertices

and e edges. Many results for GN,p can be translated to the case of GN,e in

2For connected graphs this is equivalent to being a tree.
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a straightforward fashion [39].

The Erdös-Rényi model can also be formulated for directed graphs. The

simplest possible model is to consider every possible directed edge with inde-

pendently with equal probability pe. However, in the sparse case the expected

number of mutual edges in this model is O(1).If the graph is to have a high

density of mutual edges the model can be generalized to include the addition

of mutual edges with probability pm. This model is in a certain sense the

simplest version of some random graph model we will consider later.

2.4.2 The configuration model

As mentioned before the ER model has a Poison type degree distribution that

is concentrated around its mean and decays exponentially for large degrees.

However, most real world networks have much broader degree distributions.

The configuration model was proposed in order to incorporate such broad

degree distributions into network models. For a given degree sequence di the

configuration model [40, 41] is defined as the uniform ensemble of all graphs

having degree sequence di.

In order to generalize the configuration model to arbitrarily large graphs

a degree sequence is generated by sampling the corresponding degree dis-

tribution: p(k) = nk(di)/N . If the degree sequence obtained in this way is

not graphical it is discarded and one samples the degree distribution until a

graphical degree sequence is obtained.

The configuration model can be sampled in the following way: Given

a degree sequence di each vertex is assigned a number of half edges called
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‘stubs’ corresponding to its degree. These stubs are then connected to each

other by choosing pairs of stubs at random. This process generates each

possible configuration with equal probability. However one should notice

that this process can generate self edges as well as parallel edges. The model

can be refined to exclude such possibilities however the resulting model is

much more difficult to treat analytically.

The configuration model can be generalized to directed graphs by con-

sidering both in- and out- degrees of vertices. In addition to these one can

further consider the degree corresponding to mutual edges. In both cases

the configuration model can be defined as the uniform ensemble of all graphs

having the same degree sequence. The process for generating graphs corre-

sponding to this model is also similar: one simply matches an incoming stub

with an outgoing stub.

The configuration model can be treated in a elegant way using generat-

ing functions [41]. Using this and other techniques analytic results can be

obtained for many of its properties including component sizes, path length

distribution and percolation properties.

Although the configuration model can account for broad degree distribu-

tions it fails to account for the large number of triangles and other densely

connected subgraphs observed in many real world networks. Estimates of

subgraph densities for various degree sequence types can be found in [42].

There also exist several other models that can produce graphs with prede-

fined degree distribution. In the model proposed by Chung and Lu [43] each

vertex is assigned an expected degree ki according to a degree distribution

p(k) and for each pair of vertices {i, j} one adds an edge with probabil-
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ity that is proportional to
didj
k̄

. Although this models realizes the degree

sequence only on average it is much easier to treat analytically.

Bollobas et al. [44] consider a further generalization of this type of model

where nodes are labeled according to a type distribution P (S) and for every

pair of vertices {i, j} an edge is added independently to the graph with prob-

ability p(i, j) = κ(si, sj) where κ(·, ·) is some positive real valued function.

2.4.3 Exponential random graphs

Exponential random graph models (ERGM) are a very general class of ran-

dom graph models. In its most general form the models are distribution over

the set off all graph on N vertices (GN ) where every graph G has probability:

p(G) =
1

Z
exp(−

∑
i

βiφi(G)), (2.9)

where {φi} is a set of graph functions and {βi} a set of real valued free

parameters. The function
∑
i

βiφi(G) is generally called the Hamiltonian. Al-

though there is no general restrictions on the graph functions in most cases

these are chosen to be subgraph counts of various motifs (edges, triangles,

cliques...). Z =
∑

G∈GN
e
−

∑
i
βiφi(G)

is the normalization factor, called the parti-

tion function.

Exponential random graphs are of special importance from an information

theoretical perspective since they correspond to maximum entropy distribu-

tions under the constraint that the graph functions have certain expectation

values 〈φi〉 [45].

Although ERGMs offer a simple and elegant way of constructing random
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graph models with certain desired properties, they are very difficult to treat

analytically. The main difficulty for ERGMs seems to lie in the evaluation

of the partition function. Except for some limited special cases there is no

known analytical method for calculating Z. As a result, the question of how

one is to perform calculations and inference with ERGMs remains mostly

open.

Due to the lack of analytical results, various techniques for approximating

the partition function have been proposed. However most of these procedures

have very long running times for larger graphs and therefore are limited to

relatively small graphs [46].

Another problem that one is faced from a modeling perspective when

using ERGMs is that they tend to show some pathological behavior. For

instance, when the Hamiltonian has a term favoring triangles the model tends

to form large clique like regions, not observed in most real world networks

[47]. Also for large portions of the parameter space ERGMs are essentially

equivalent to some ER model [46].

2.4.4 Other models

Besides the models described above there exist many other types of random

graph models. One such class of random graph models are generative models.

These are random graph model which are formulated in terms of a random

process that generates graphs. The aim of such models in general is to

identify a specific mechanism that explains some commonly observed features

of networks rather than being candidate models for networks. The most
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prominent of such models are the small world (SW) model by Watts and

Strogatz [23] and the preferential attachment (PA) model [24] by Barabási

and Albert.

The small world model was proposed as model for networks that have

high clustering and low average shortest path lengths. The model is based

on randomly rewiring a certain fraction of the edges of a regular lattice. The

lattice can in principle have any dimension, however in practice is mostly one

dimensional with periodic boundary conditions i.e. a ring lattice. Watts and

Strogatz showed that as a function of the rewiring probability such models

show a regime where the graph has both high clustering and low average

path lengths. Variants of the small world model where a certain number of

random links is added on to the lattice have also been considered.

Barabási and Albert proposed a network growth model based on pref-

erential attachment and showed that such models have power law degree

distributions [24]. In this model, starting with n0 vertices, one adds new

vertices to the network in a stepwise fashion. Each newly added vertex is

connected to m existing vertices with a probability that is proportional to

their degree. It can be shown that graphs constructed in this way have a de-

gree distribution that follows a power law with exponent -3 for large degrees.

2.5 Network Motifs

The concept of networks motifs was first introduced by Milo et al. in [5]

where network motifs are defined to be subgraph patterns that occur more

frequently in the network when compared to null model that conserves some
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characteristics properties of the network.

A variety of measures have been proposed to asses the significance of

motifs of which the most widely used one is the z-score:

zm =
nm − n̄m
std(nm)

, (2.10)

where nm is the number of times m occurs as an induced subgraph in the

network while n̄m and std(nm) are the empirical mean and standard deviation

of the same quantity. Motifs of which the z-score and frequency exceed

thresholds zmin and fmin are classified to be network motifs. However, for

most null models no analytical expressions for the mean and variance of

motif counts are known therefore these are mostly determined empirically by

sampling the null model.

In most applications all motifs of a certain size n are analyzed simulta-

neously. In this case the method involves two main steps: 1) the generation

of a sample of the null model and 2) the counting of all subgraphs of size n

in this sample and the original network.

The first step obviously depends on the choice of null model. In gen-

eral the null model is taken to be the configuration model corresponding to

the degree sequence of the network. There exist several methods for uni-

formly sampling the configuration model [48]. In order to avoid motifs being

classified as network motifs only because they contain some smaller overrep-

resented motif, Milo et al. propose using a null model that in addition to

the degree distribution also preserves lower order motif counts [5]. In order

to generate networks corresponding to this null model a simulated annealing
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(SA) algorithm is proposed. Although Milo et al. do not explicitly define a

null model for this case presumably, it is the uniform ensemble of all graphs

that have the same degree distribution and lower order motif counts as the

network. However, there is no guarantee that the SA algorithm samples such

null models uniformly. Moreover, conserving lower order motif counts is not

computationally feasible for large motifs and thus the configuration model

is used in most applications. Consequently, most subgraphs that contain a

smaller overrepresented motif are classified as network motifs. In some cases,

motifs that contain a vertex of degree 1 are excluded from the analysis in

order to keep the number of network motifs manageable for large n.

The next step is to count all subgraphs of size n in the original network

and randomized sample. Here one should mention that there exist several

different frequency concepts used in motif analysis [49]. In their original

article Milo et al. count all connected induced subgraphs effectively allowing

for arbitrary edge and vertex intersections. This is also the most commonly

used frequency concept and most counting algorithms are developed for this

case [5, 50, 51, 52, 53]. Existing motif analysis algorithms [49] mostly differ

with respect to the algorithm they use to count subgraphs.

A general problem one faces when using the method of Milo et al. is that

subgraph counts are in general dependent quantities. Such dependencies can

mostly be traced back to the fact that the presence of a motif implies the

presence of motifs containing it as a submotif and its own submotifs. This

further implies that counts of motifs that have a submotif in common are

correlated. Milo et al. propose a null model that also conserves lower order

motifs in order to account for the submotifs-motif dependencies. However,
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this does not account for all dependencies. For instance, a certain overrep-

resented motif might occur almost exclusively as a submotif of one or more

larger overrepresented motifs. A proper analysis of inter motif dependen-

cies requires analytically solvable random graph models that can incorporate

high densities of network motifs. In theory exponential random graph models

could be used to address such questions but as mentioned before these are

difficult to treat both analytically and numerically.

Other critics of the approach have argued that for certain networks the

null hypothesis is ill-posed and that the presence of motifs in certain networks

is rather well explained by them being embedded in physical space, their

hierarchical organization and/or community structure [54, 55]. The use of

the z-score as a measure of motif significance has also been criticized because

the distribution of motif counts in the null model might not be narrowly

concentrated around their mean.

Although methods for detecting network motifs have their shortcomings,

there is a large body of evidence that suggests that network motifs play an

important role in the structural and functional organization of networks. For

instance, dynamical systems defined of network motifs observed in biological

networks suggest that network motifs can perform modular tasks such as in-

formation processing [4]. For a more detailed review of dynamical properties

of motifs we refer the reader to [4, 56]. There is also evidence that networks

can be classified with respect to their motif structure [57].
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Chapter 3

Background II: Information

Theory and Inference

3.1 Information theory

In this chapter we introduce information theoretic concepts relevant to the

development of the thesis. A more detailed treatment of the subjects can be

found in [58], [6] and [59].

3.1.1 Entropy and Shannon information

The concept of entropy was first introduced in the context of thermodynamics

by Clausius. The connection between entropy and information was later

established by Shannon in his seminal paper [60]. In order to define the

entropy we must first define what an ensemble is.

Definition 3.1.1. An ensemble, E(R, pr), is a set of mutually exclusive
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alternative outcomes R = {r1, r2, r3..., rn} together with a corresponding set

of probabilities pr. The probabilities pr satisfy the conditions: 0 ≤ pr ≤ 1

and
∑

r∈R pr = 1.

An ensemble is said to be uniform if all its elements have equal probability.

The uncertainty about the outcome is highest when all outcomes are

equally likely similarly. Similarly, when one of the outcomes has probability

1 we have complete certainty. The entropy makes this notion mathematically

precise and for an ensemble E(R, pr) is given by:

S(E) = −K
∑
r∈R

prlogpr, (3.1)

where K is a positive constant that determines the unit of information. When

K=1 and the logarithm is base 2, the entropy is measured in bits. The entropy

measures ignorance or uncertainty as a function of probabilities.

Shannon, in his seminal paper [60] also proved that S(E) = −K
∑

r∈R pr log(pr)

is the unique function, up to the multiplicative constant K that satisfies the

following conditions:

1. S is a continuous function of the probabilities,

2. S should be monotonically increasing function of N when all p’s are

1/N,

3. S(A×B) = S(A) + S(B) whenever A and B are independent random

variables.
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3.1.2 Codes and Ensembles

Definition 3.1.2. Let E(R, pr) be an ensemble and B∗ the set of all binary

strings of finite length. A binary source code for a random variable corre-

sponding to E(R, pr) is a mapping C : R→ B∗. C(r) is the code word for r

and lC(r) its length. The expected length of C is L(C) =
∑
r

prlC(r).

C is called nonsingular if every r has different code and prefix free if no

codeword is a prefix for any other codeword.

Theorem 3.1.1. (Kraft-McMillan inequality) For any, binary prefix code

the codeword lengths l1, l2, ..., ln must satisfy:

∑
i

2−li ≤ 1. (3.2)

Conversely, given a set of code lengths that satisfy this inequality there alway

exists a code with corresponding code lengths.

A code is called optimal if it minimizes L(C). For optimal codes the

following holds:

S(E) ≤ L(C) < S(E) + 1. (3.3)

There are several procedures for constructing optimal codes from probabil-

ities, the most famous being Huffmann coding. Another, widely used cod-

ing procedure is Shannon-Fano coding which assigns code lengths L(r) =

d−logpre 1.

The above equation establishes a correspondence between code lengths

of optimal codes and probabilities. That is, given a code for a set R one

1dxe is the smallest integer larger than x.
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can construct a corresponding (possibly defective i.e.
∑

r∈R pr < 1) proba-

bility distribution over it by setting pr = 2−lr . The correspondence between

code length functions and probabilities relates many different approaches to

inductive inference [61, 62, 59, 63].

3.1.3 Information measures

Shanon information proved to be very useful quantities however in many

practical instances, it might not always be easy to define an appropriate en-

semble to determine Shannon information. This has lead to the formulation

of several non-statistical information measures. Information measures are

measures that share some key features with Shannon information, namely:

1. I(A) ≥ 0

2. I(A,B) = I(B,A)

3. I(A,B) ≥ I(A)

4. I(A) + I(B) ≥ I(A,B)

A function that satisfies the above conditions is called an information

measure. As a result of these properties, a number of nonnegative quantities

can be associated to every information measure. The conditional information,

I(A|B) = I(A,B) − I(B), measures the amount of information needed to

describe A given B. The mutual information, I(A : B) = I(A) + I(B) −

I(A,B), measures how much information A and B have in common whereas

the information distance, δ(A,B) = 2I(A,B) − I(A) − I(B), measures the

information that is not held in common by A and B.
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Some measures only satisfy the conditions of being an information mea-

sure approximately, that is within small additive constants. One such ap-

proximate information measure is the algorithmic information content, also

known as Kolmogorov complexity.

3.1.4 Algorithmic information content

One of the information measures that will be of particular interest to us is

the algorithmic information content. The algorithmic information content is

closely related to the theory of universal Turing machines [63].

Definition 3.1.3. The algorithmic information content (AIC) or Kolmogorov

complexity of a string s with respect to a universal Turing machine U is de-

fined as length of the shortest program that instructs U to print out s and

then halt.

We will assume that U accepts binary inputs only and therefore the AIC

is measured in bits. From now on we assume that U is a universal prefix

Turing machine i.e. a machine for which the programs that halt form a

prefix code [63]. For such machines, the AIC is an approximate information

measure meaning that it satisfies the conditions of being an information

measure within a small additive constant.

The crucial observation made by Kolmogorov was that the AIC is essen-

tially computer independent. If U ′ is a universal Turing machine and U any

other turing machine we have:

KU(s) ≤ KU ′(s) + cU ′ , (3.4)
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where cU ′ is a constant that is independent of s. cU ′ is essentially the length of

the program that instructs U to simulate U ′. Although the constant might be

relatively large, for sufficiently long strings one can neglect the contribution

from cU ′ .

Unlike Shanon information AIC is an intrinsic property of each individual

string and does require the entity to be embedded in to an ensemble.

On the other hand when the set of possible strings make up an ensemble

the average conditional AIC is closely approximated by the Shannon infor-

mation:

−
∑
r

prlogpr ≤
∑
r

prKU(r|E) ≤ −
∑
r

prlogpr + CU(E), (3.5)

where KU(r|E) is the length of the shortest program for r given a description

E and CU(E) is the length of the program that instructs U to form a optimal

code for the members of the ensemble. As was demonstrated by Schack

[64] for any ensemble E and any U there exists a modified universal Turing

machine U ′ for which:

−
∑
r

prlogpr ≤
∑
r

prKU ′(r|E) ≤ −
∑
r

prlogpr + 1. (3.6)

This shows that when a description of the ensemble is given the AICs of the

members of the ensemble are essentially equal to the lenghts of the corre-

sponding Huffmann code.

As consequence of the halting problem which in turn is closely related

to Gödel’s incompleteness theorem, the AIC of strings is uncomputable [58]
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. Therefore, in practice one is forced to work with upper bounds instead of

exact values.

Given a set of strings S = {s1, s2, s3, ..., sn}, every prefix code C for S

results in an upper bound for the AICs of its members that has the form:

KU(r) ≤ lC(r) + cU(C), (3.7)

where cU(C) is the length of a description of the code. However, such upper

bounds can be rather weak since the constant term can be relatively large

unless the code has some short description.

The following theorem is an immediate consequence of the fact that num-

ber of programs having length less than k is bounded from above by 2k [63]:

Theorem 3.1.2. Let S be a set of cardinality N, then for every fixed t

and positive integer k there are at most N2−k elements of S that for which

KU(s|t) < logN − k holds.

Alternatively, for the uniform ensemble defined on S we have:

P (KU(s|t) < log(N)− k) < 2−k.

3.1.5 Codes for integers

In principle, every integer can de encoded by the sequence that corresponds

to its binary expansion giving l(n) = dlog(n)e. However, this is not a prefix

code. One way to resolve this would be to include a header that specifies the

length of the integer to follow. Considering such headers recursively, results
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in the log∗ code [58]. For the log∗ code we have:

l(n) = log∗(n) = log(n) + log(log(n)) + log(log(log(n))) · · · , (3.8)

where the sum is taken over all positive terms.

The log∗ code is a universal code for the integers in the sense described

by Rissanen [65].

3.1.6 Codes for motifs

One way of encoding motifs is to use edge lists. In such a code, one simply

encodes the number of nodes and edges using a universal code for integers

and given these, the list of edges using constant length codes. The resulting

code length is given by:

le(m) = log∗(|V (m)|) + log∗(|E(m)|) + S(|V (m)|, |E(m)|), (3.9)

where S(|V (m)|, |E(m)|) is the entropy of the ensemble of all graphs with

the same vertex and edge counts as m.

Such a code, however, is not one to one since for every motif m there are

|m|!
|Aut(m)| labeled graphs/edge lists. Moreover, the probability that |Aut(m)| =

1 is known to converge to one as |m| tends to infinity [66]. The code can be

made one to one, for instance, by picking the edge list that has minimum

lexicographical order. However, this is less of a concern to us since we are

primarily interested in code lengths and not codes themselves.

On the other hand one can also construct universal codes for motifs using
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the log∗ code for integers. For this, one simply needs to define a bijection

between the set of integers and the set of motifs, in other words a counting

procedure. Given such a mapping, the code of a motif is simply taken to

be the code of its integer label. One way of counting/ordering motifs is to

first order motifs according to order and then with respect to the number of

edges. Motifs having the same edge and vertex counts are then ordered in the

following way: for every motif consider all labelled representatives, order the

edges of these (i, j) (i < j) according to lexicographical order which results in

a unique form e1e2...em (e1 < e2) for every labelled representative. For every

motif, pick the labelled representative that has smallest lexicograhical order

and then order all motifs lexicographically according to these representatives.

This proceedure defines a total order on all motifs and thus can be used to

map every motif to a unique integer. The same ordering procedure can also

be applied to more restricted motif classes such as connected motifs.

3.2 The total information framework

3.2.1 Effective Complexity

The effective complexity is a complexity measure that was proposed by Gell-

Mann [67, 6]. Gell-Mann’s approach is based on the idea that given a certain

entity e, identifying certain regularities of e is essentially equivalent to em-

bedding it into an ensemble E of which the members share these regularities

while they differ in other aspects. The effective complexity of e with respect
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to E is then defined to be algorithmic AIC of E:

εE(e) = KU(E). (3.10)

We further require that e should be a typical member of E, in other words

−log(pe) should not be much larger than the entropy of the ensemble. Oth-

erwise E can not be considered to accurately represent regularities of e since

e would be a relatively improbable member of E.

However, in general there might many ensembles into which e can be

embedded as a typical member. The question of how one is to select one of

such ensembles over the others, brings us to the concept of total information.

3.2.2 Total information

Total information is an approximate information measure that was intro-

duced by Gellmann and Hartle [6, 68] . Given an entity e and an ensemble E

into which it can be embeddded, the corresponding total information ΣE is

defined as the sum of the information required to describe both the regular-

ities/ruled based features and random/probabilistic aspects of e. While the

information required to describe the regularities is measured by the effective

complexity, the information required to describe the random aspects of the

entity is measured by the entropy of the ensemble:

ΣE(e) = εE(e) + S(E), (3.11)

where εE(e) and S(E) are given by equations 3.10 and 4.3 respectively.
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The total information further provides a basis for comparing different

models for e. The smallness of the total information is a measure of how well

an ensemble describes a given entity. On the other hand, the smallness of the

total information might not always be sufficient to differentiate ensembles. In

such cases, the smallness of the effective complexity is used as a criterion. In

other words, given ensembles with the same total information one maximizes

S at the expense of ε. Gell-Mann and Llyod furher suggest placing a cut-off

on the computational time required to generate a typical member e of the

ensemble E. That is, on the time required to produce a typical member of E

given a minimal description of E together with the corresponding Huffmann

code for e. Here, the cut-off is taken to be larger than the time required to

compute e from its minimal program but of the same order. This essentially

excludes ensembles of which the membership and probabilities are difficult to

compute and has the furher effect that information that is hard to compute

is included in the description of E. Together with this additional constrain

on computational complexity, the total information provides a framework for

comparing ensembles that in many regards is independent of the observer.

3.3 Alternative approaches

Although this thesis follows the total information approach there exist many

other approaches some of which are closely related to the total information.

Most of these approaches are related to the total information approach and

also to each other through the correspondence between probability distribu-

tions and codes. We believe that each approach provides a unique and usefull
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perspective on the problem. In the following we will briefly describe some of

these approaches that are closely related to the total information approach.

Many approaches to inductive inference were developed with a focus on

models with continious parameters and for situations where multiple/repeated

observations are made. However in this thesis, we deal with a situation that

is quite different, that is we have a single discrete observation (the network)

from which we try to infer a discrete representation. As we shall see later,

the inference of a subgraph cover is equivalent to the inference of the latent

state of certain random graph models.

3.3.1 Maximum likelihood

The simplest model selection approach is the maximum likelihood approach.

In the maximum likelihood approach, given alternative models of the data

one simply picks the model that maximizes the probability of the data. For

uniform ensembles, maximizing the likelihood is equivalent to minimizing the

entropy. However, the maximum likelihood approach is prone to overfitting.

3.3.2 Bayesian inference

Given a certain observation D, Bayesian inference assigns to every model

M a posterior probability P (M |D) based on a prior probability P (M) over

models and the likelihood P (D|M) of data D given the model M :

P (M |D) =
P (D|M)P (M)

P (D)
. (3.12)
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In the simplest form of Bayesian model selection, one picks the model that

has maximum posterior probability.

3.3.3 Minimum description length (MDL)

The MDL approach introduced by Risannen [62, 69] is a compression based

model selection approach. In a nutshell, it asserts that given alternative

models for a given set of observations, one should select the model that

results in the shortest description of the data. In its two part version the

description length L(D) of a data D is given by:

L(D) = L(D|M) + L(M),

where L(M) is the desciption lengths of M and L(D|M) is the description

length of D given by M . In other words the description length of the data

is the sum the code lengths of a description of the model together with an

optimal encoding of the data obtained using the model.

3.3.4 Minimum message length (MML)

The minimum message length (MML) approach which was first introduced

by Wallace [70] follows a messaging approach. Similar to MDL, it asserts that

given alternative models for of the observation one should pick the model that

minimizes the length of a message used transmit the observation to a reciever.

Where the message consists of two parts the first being a code for the model

M and the second part encodes the data using M: L(D) = L(M) +L(D|M).

Where the models are encoded using the prior of the reciever and when the

48



reciever is a Turing machine using minimal programs.

More detailed comparisons of various approaches can be found in [59, 61].
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Chapter 4

Subgraph Covers

4.1 Subgraph covers and graph representa-

tions

Throughout the rest of this thesis we will assume that the graphs under

consideration are sparse, i.e. |E(G)| = O(N). Most real world networks are

sparse [3]. First we give some basic definitions:

Definition 4.1.1. A subgraph cover C of a graph G = (E, V ) is a set of

subgraphs of G such that
⋃
H∈C E(H) = E(G).

Subgraph covers are representations of graphs meaning that given any

cover E(G) can be fully recovered.

Definition 4.1.2. The motif set (M(C)) of a subgraph cover C is the set of

isomorphism classes of the subgraphs in C.

Given a set of motifs M , an M -cover is a subgraph cover such that every

element in C belongs to a class in M .
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Trivial examples of a subgraph covers are cover consisting of only G itself

and cover of all edges of G. The edge cover is essentially equivalent to the

edge list representation of the graph.

Other examples of subgraph covers are the maximal star and clique covers

of G, these are the sets of all cliques/stars that are not a sub-clique/sub-

star. Clique covers are closely related to bipartite representations of graphs

[72, 3]. The maximal star cover contains all edges except those connected to

a vertex with degree 1 twice. For undirected graphs the maximal star cover

is essentially to the adjacency list representation of the graph. Moreover, the

frequencies of motifs in the maximal star cover contain the same information

as the degree distribution of the graph. For directed graphs one can define

the maximal inward and outward star covers. These covers cover each edge

once.

As mentioned before, subgraph covers are representations of graphs in

the sense that given a subgraph cover the corresponding graph can be fully

recovered. One can also look at subgraphs covers as decompositions of the

graph into its subgraphs. In general, every graph G has a very large number

of subgraph covers. However, most of these are not very efficient represen-

tations of G. For instance, some covers contain redundant subgraphs that

can be removed from the cover without affecting its ability to represent the

graph. Therefore we need a measure that tells us how efficiently a subgraph

cover represents the graph. Some intuitive candidates for such a measure

are the total number of subgraphs in the cover or the sum of the orders of

the subgraphs in the cover. Another intuitive measure is the number and

complexity of motifs that occur in the cover. For instance, if we have two
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covers each containing the same number of subgraphs, in general the one

would consider the one of which the motif set is less complex to be a better

representation. The total information provides a single measure of optimal-

ity that combines many of these intuitive measures. In this chapter in order

to define the total information of subgraph covers we use uniform subgraph

covers. We then proceed to define the motifs of a network to be subgraph

patterns that occur in a subgraph cover that minimizes the total information.

4.2 The total information of subgraph covers

In this section we define the total information of subgraph covers by em-

bedding subgraph covers into uniform subgraph covers. Given a motif set

M and count vector nm corresponding to the motif counts in the cover, the

uniform subgraph cover on N vertices EN(M,nm) is the uniform ensemble

of all M -covers that have motif counts nm. In order to calculate the entropy

of EN(M,nm) we need to compute the total number of such covers. For

this we first have to consider HN(m), the total number of distinct, i.e. non-

automorphic, m-subgraphs on N vertices. It follows from the definition of

the automorphism group that for every set of |m| vertices there are |m|!
|Aut(m)|

distinct m-subgraphs. From this it follows that:

HN(m) =
N !

(N − |m|)!|Aut(m)|
. (4.1)

Since the entropy of a uniform ensemble is given by the logarithm of its

size, the entropy of a set of nm subgraph instances of m on N vertices is
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given by:

SN(m,nm) =log

(
HN(m)

nm

)

=log

 N !
(N−|m|)!|Aut(m)|

nm

 , (4.2)

which given m, is the information required to specify nm instances of m

on N vertices. Generalizing the above expression, the entropy of a cover

C with motif set M(C) and motif counts nm is the entropy of the uniform

ensemble of all covers with motif counts nm:

S(C) =log

 ∏
m∈M(C)

(
HN(m)

nm(C)

)
=

∑
m∈M(C)

SN(m,nm(C)). (4.3)

When required the entropy terms can be approximated using Stirling’s

formula. For instance, when nm and N are large enough and |m| > 2:

SN(m,nm(C)) =nm(C) (|m|log(N)− log(|Aut(m)|)− log(nm(C)) + log(e))

+O(log(N)). (4.4)

This expression indicates that covers which contain dense, symmetric and

frequent motifs also have small entropy.
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As in the case of the entropy, we define the effective complexity of a cover

using uniform covers with the same motif counts as C:

ε(C) = KU(EN(M(C), nm(C))). (4.5)

Consequently, the total information of a cover is:

Σ(C) = ε(C) + S(C), (4.6)

where ε(C) and S(C) are defined as in equations 4.5 and 4.3 respectively.

According to the total information approach the cover that gives an opti-

mal description of the graph is the one that minimizes the total information.

Now, we can proceed to define the motif set of graph G: the motif set of G is

the set of motifs that appear in its Σ-optimal subgraph cover, in other words

M(CΣ(G)).

In general, there might be multiple subgraph covers that minimize the

total information. In such cases the smallness of the effective complexity can

be used to as a further criterion. However, in some cases there might be

multiple optimal covers that also have the same effective complexity. If this

is the case one has to use additional criteria in order to pick one of these

covers over the others. Although, in principle such covers can differ with

respect their motifs sets we consider this to be a rather unlikely situation.

Another more likely situation is that the optimal covers have same motif set

and have almost identical motif counts. In this case one can consider them

to be basically equivalent. We discuss the multiplicity of such covers in more

detail in the upcoming sections in the context of random graph models.

54



The effective complexity of the optimal cover ε(CΣ(G)) can be interpreted

as a measure of the complexity of G’s subgraph structure. The effective

complexity of the optimal cover is related to many other measures that are

frequently used as indicators of a network’s complexity such as the broad-

ness of the degree distribution and clustering. A broad degree distribution

indicates that the graph contains a large variety of star shaped subgraphs

whereas high clustering can be seen as an indicator that the graph contains

subgraph patterns other than trees.

Another quantity of interest is the amount of compression the optimal

cover provides with respect to the edge cover: ∆Σ(G) = Σ(Ce(G))−Σ(CΣ(G)).

Since, the optimal cover is also a code for G with length Σ(CΣ(G)), ∆Σ(G)

can be seen as measure of how much G deviates from a typical Erdös-Rényi

random graph (Theorem 3.1.2).

One can also associate a quantitative significance to motifs based on the

compression they provide with respect to CΣ(G) that is similar to the z-score

used by Milo et al. [5]. One such measure is the c-score cm, which measures

the effective compression provided by m with respect to CΣ(G):

cm(G) =
Σ(CΣ(G)−m)

Σ(CΣ(G))
− 1, (4.7)

where (CΣ(G) − m) is the cover obtained by replacing the m-subgraphs in

CΣ(G) with the single edge subgraphs corresponding to the edges they cover

in G. According to this definition cm is always non-negative and zero for

the single edge motif and motifs that are not contained in CΣ(G). One can

further construct motif significance profiles based on the c-score that are
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similar to those used by Milo et al. in [57]. As in [57] these can be used to

classify/categorize networks with respect to their motif structure.

4.3 The relation to the method of Milo et al.

The amount by which G can be compressed is a measure how non-random

G is. Therefore, the motifs contained in the Σ-optimal cover correspond

to the motifs with respect to which the graph maximally deviates from a

Erdös-Rènyi type random graph. Although the Erdös-Rènyi random graph

is rarely used as a null model for the method of Milo et al., both methods

essentially try to find motifs with respect to which the network differs from

a random graph. In this sense, the subgraph cover approach and the method

of Milo et al. can be seen as sharing a similar goal. In principle one can also

use subgraph cover ensembles that also preserve the degree distribution of

the network to define the total information. This would effectively allow for

a more direct comparison of the two approaches but as we shall see in the

following sections there are additional difficulties associated to this.

As previously discussed one of the main issues when using the method

of Milo et al.is the difficulty of resolving interdependencies between motifs.

The Σ-optimal cover naturally resolves such interdependence by considering

motifs of all sizes simultaneously and effectively penalizing the sharing of

edges between subgraphs in the cover. Despite their differences, for most

networks one can expect at least some of the network motifs found by both

methods to coincide especially when lower order motifs are conserved by the

null model.
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4.4 Random graphs with motifs

The development of random graph models that incorporate high densities

of triangles and other highly connected motifs has been a long standing

problem in network research. In the following, we will briefly introduce

two such models: the model introduced by Bollobas et al. [2] that is a

generalization of non-homogeneous random graphs [44] and the second by

Karrer and Newmann [1] that is a generalization of the configuration model.

4.4.1 Sparse random graphs with clustering

In [2] the authors introduced a very general class of random graph models.

These models are defined on the basis of a type space (S, µ), a set M consist-

ing of labeled representatives of the motifs of the model and a set K of kernels

associated to the elements of M . The type space (S, µ) is a discrete or contin-

uous probability space and kernels Km are non-negative real valued functions

with domain S|m|. Then a random graph with vertex set V = {1, 2, ..., N}

corresponding to such a set ((S, µ),M,K) is defined in the following way.

First, every vertex i ∈ V is assigned a type xi according (S, µ). Then, for

every m ∈M and every |m|-tuple (v1, v2, ..., v|m|) of vertices one adds a copy

of m such that ith vertex of m is mapped on to vi with probability:

pm =
Km(xv1 , xv2 , ..., xv|m|)

N |m|−1
. (4.8)

When p > 1, the subgraph is added with probability 1. The normalization

factor N |m|−1 ensures that the average number of copies of m added to the
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graph is O(N) i.e. that the model produces sparse graphs.

When formulated as above the model can produce parallel edges, however

these are quite rare i.e. O(1) we will assume that these are replaced by single

edges in the graph. In their article [2] the authors showed that these models

can be solved analytically for many of their properties including degree dis-

tributions, component sizes, percolation properties and subgraph densities.

When formulated as above there is a non-zero probability that certain

subgraphs are added to the graph more than once. The model can be modi-

fied slightly so that every subgraph is considered for addition only once. This

can be done by considering unordered |m|-tuples (i.e. |m| subsets) of vertices

and for each such subset every potential m-subgraph only once. In order to

obtain a well defined expression for the probabilities the kernel Km has to

be invariant under Aut(m):

Km(xv1 , xv2 , ..., xv|m|) = Km(σ(xv1 , xv2 , ..., xv|m|)), ∀σ ∈ Aut(m)

1 For any kernel Km one can construct version K̃m that satisfies the condition

above by taking its symmetric average:

K̃m(x1, x2, ..., x|m|) =
1

|Aut(m)|
∑

σ∈Aut(m)

Km(σ(x1, x2, ..., x|m|)).

Given a kernel that satisfies the above conditions the corresponding graph

1Bollobas et al. use this as a working hypothesis in their paper.
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is obtained by adding onto each |m|-subset {v1, v2, ..., v|m|} every distinct m-

subgraph mi (i = 1, 2, ... |m|!
|Aut(m)|) with probability:

pmi
=
Km(xφi(1), xφi(2), ..., xφi(|m|))

N |m|−1
, (4.9)

where φi() is a 1-1 map from the set of vertices of m to V = {v1, v2, ...v|m|}

such that φi(x)φi(y) ∈ E(mi) whenever xy ∈ E(m). Since Km is invariant

under Aut(m), pmi
does not depend on the choice of φi.

The models described above are actually distributions over the set of all

M -covers, CM . The state space of these models can be written as
∏

m∈M{0, 1}HN (m)

where:

HN(m) =
N !

(N − |m|)!|Aut(m)|
,

is the number of distinct m-subgraphs on N vertices. The corresponding

probability distribution over the space of all graphs on N vertices is obtained

by projecting subgraph covers onto graphs:

P (G) =
∑

C∈CM (G)

PS,M,K,N(C), (4.10)

where CM(G) is the set of allM -covers ofG and PS,M,K,N(C) is the probability

of such a cover. Therefore from now on we will refer to these models subgraph

cover models (SCM).

Homogeneous models

The class of models described above is very general and many type space-

kernel combinations will be equivalent. In the simplest case where kernels
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are constant, the type space can be left out of the formulation. In this case

every possiblem-subgraph is added independently to the graph with the same

probability pm that is of order N1−|m|. We will call such models homogeneous

subgraph cover models (HSCM). Uniform subgraph covers are essentially

microcanonical versions of homogeneous models. For homogeneous models

the probability of any M -cover C is:

PM,pm,N(C) =
∏
m∈M

(1− pm)HN (m)−nm(C)pnm(C)
m . (4.11)

Now, we will consider some properties of homogeneous models in order

to get a better picture of uniform subgraph covers in general. For a more

detailed treatment of the model we refer the reader to [2]. Similarly, for

uniform subgraph covers :

PM,nm(G) =
n(M,nm)(G)

n(M,nm)

=
n(M,nm)(G)

2S(M,nm)
, (4.12)

where n(M,nm)(G) is the number of (M,nm)-covers of G and n(M,nm) is the

total number of (M,nm) covers on N vertices.

The number of two node intersections between subgraphs: Let

{v1, v2} be any pair of vertices, the probability that more than one subgraph

in the cover contains both these vertices is equal to the measure of the set of

all subgraph covers that satisfying this condition.

P (Iv1,v2 ≥ 2) = 1−
∏
m∈M

(1− pm)H2(N,m)−
∑
m∈M

pmH2(N,m)(1− pm)H2(N,m)−1,

(4.13)
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where H2(N,m) =
(

(N−2)
(|m|−2)

) |m|!
Aut(m)

is the number of m-subgraphs that contain

v1 and v2. P (Iv1,v2 ≥ 2) is O(N−2) and since there are O(N2) pairs, the

expected number of two node intersections between the subgraphs in a HSCM

is O(1). In general the expected number of n node intersections between

subgraphs in the cover O(N2−n).

Subgraph distribution: Given a set of vertices s = {v1, v2, ..., vn} we

will call the subgraph H induced on s the state of s. The only M -subgraphs

of which the state contributes to state of s are those that have at least two

vertices in s. In order to consider the contribution of a specific motif m to the

state of s for each k-subset (k ≥ 2) of s we have to consider the contribution

of all m-subgraphs that contain this subset of vertices. For every k-subset of

s (k ≤ |m|) there are: (
(N − n)

(|m| − k)

)
|m|!

Aut(m)
, (4.14)

such m-subgraphs. If any of these m-subgraphs is in the cover it contributes

its subgraph induced on the set vertices it shares with s to the state of s.

Thus, the contributions of such m-subgraphs are determined by the distri-

bution of induced k-submotifs of m. Since the contributions of individual

m-subgraphs are independent, for any k-subset sk of s the probability that t

m-subgraphs which contain sk have a specific m′-subgraph induced on sk is:

p(t,m,m′) = ptm(1− pm)
c(m,m′)( (N−n)

(|m|−k))
m!

Aut(m)
−t
, (4.15)

where c(m,m′) is the number of m-subgraphs that contain the |m′|-subgraph

under consideration as an induced subgraph. c(m,m′) can be expressed in
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terms of the density d(m,m′) of m′ in m as a induced subgraph:

c(m,m′) = d(m,m′)
|Aut(m′)||m|!
|Aut(m)||m′|!

.

Moreover, this shows that the contributions corresponding to t ≥ 2 are es-

sentially negligible.

Thus the n-node subgraph distribution of HSCMs are essentially equiv-

alent to a HSCM on n-nodes of which the motif set M ′
n consists of all the

induced submotifs of M up to size n. The subgraph distribution differs from

a HSCM slightly that is, some motifs appear more than once in M ′
n and that

some of m′-subgraphs can be added more than once on to a specific subset.

On the other hand, one can always construct a proper HSCM which induces

that produces the same distribution over graphs. The distribution above

shows that the probability that at a submotif m′ ∈ M ′
n is contributed to a

specific |m′|-subset of vertices is O(N1−|m′|). This implies that the only con-

nected n-node motifs that have non-zero density as induced subgraphs are

those which are in M ′
n and those which are singly connected combinations of

motifs in M ′
n.

4.4.2 Generalized configuration models

In the generalized configuration models introduced by Karrer and Newman

[1] can be seen as a generalization of the configuration model that incorpo-

rates non trivial subgraphs. In order to formulate the model we first need

the following definition:

Definition 4.4.1. Let C be a subgraph cover with motif set
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M = {m1,m2, ...,mn} and for each motifm let Tm = {t(m)1, t(m)2, ..., t(m)k(m)}

be the set of orbits of Aut(m). The role r(i)m,t(C) of vertex i according to

C is the number of m-subgraphs in C for which i is in orbit t. The sequence

R(C)=(r(i)m,t(C)) is called the role sequence of C.

The generalized configuration model generalizes the edge configuration

model by using role sequences. In their paper Karrer and Newman describe

this model as a generating process similar to the stub matching method for

the edge configuration model. Given a role sequence r corresponding to a

motif set M one attaches to every vertex a motif stubs reflecting its role

vector. Then a network is generated by matching stubs corresponding to the

same motif m in appropriate combinations at random and connecting them

to form an m-subgraph until all stubs are exhausted. This process samples all

possible configurations uniformly. Although parallel edges might be formed

by the process, for large N the expected number of such edges is O(1). On

the other hand the process can also match stubs of the same vertex to each

other resulting in a subgraph that is a vertex contraction of the original mo-

tif. If one excludes such cases from the model, every matching of the stubs

corresponds to an M -cover. This allows us to formulate the generalized con-

figuration models in terms of subgraph covers: The generalized configuration

model with role sequence r is the uniform ensemble of all subgraph covers

that have role sequence r and the probability of a graph G in this model is

simply:

Pr(G) =
|{C : R(C) = r ∧Graph(C) = G}|

|{C : R(C) = r}|
. (4.16)
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As for the configuration model the generalized version can also be de-

fined using a role distribution according to which vertices are assigned roles.

Similar to the edge only case not every role sequence generated in this way

is graphical. For instance, a sequence that is obtained by sampling the role

distribution does not always contain the roles in appropriate combinations.

If this is the case, the role sequence is discarded and a new role sequence is

drawn from role distribution. Once a graphical role sequence is obtained the

network itself is generated as described above.

The degree sequence (counting multiple edges) of graphs generated by

the configuration model is fully determined by the role sequence and given

by:

di =
∑
m∈M

∑
t∈Tm

r(i)m,tdt, (4.17)

where dt is the degree of a vertex with role t in m.

Subgraph densities: As with the SRCM model the number of sub-

graphs that intersect on two or more nodes in the generalized configuration

model is O(1). Thus, the only biconnected subgraphs with high density are

the motifs of the model and their submotifs. On the other hand, densities

of singly connected subgraphs are more difficult to calculated and as far as

we know no general analytic formula is known. However, subgraphs that

consist of one node intersections of biconnected submotifs are an exception

since their density is almost conserved by the virtue of the role sequence in a

similar way in which star counts are determined by the degree distribution.

This suggests that one does not loose much structure if singly connected mo-

tifs are excluded from the model. In order to clarify this point we consider
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several examples.

Star models vs edge models

Let us consider two models: the first one being a generalized configuration

model with a motif set of made of star subgraphs and a role distribution

of which the entries are independent and the second one being the edge

only configuration model corresponding to the degree distribution of the first

model. These two models are very similar in many regards: they are both

locally tree like, have the same degree distribution and basically have no

degree correlations. Therefore, in this case the edge only model seems to be

superior to the star model since it is less complex.

However, this is not enough to completely exclude singly connected mo-

tifs from generalized configuration models. In order to clarify this point let

us consider a second example: Let G be a graph, now compare the config-

uration model corresponding to the degree distribution of G and the star

model corresponding to the cover obtained in the following way. Starting

from the vertex with the highest degree (if there are more than one pick at

random) add the corresponding star subgraph to the cover and remove the

corresponding edges from the graph and repeat until no more edges are left.

This can be seen as a simple heuristic for obtaining an efficient star cover. If

G has degree correlations, for instance if high degree vertices have tendency

to connect to other high degree vertices, we expect this to be reflected in

the role sequence of this cover. Therefore, in this case it might be argued

that the star model reflects the structure of G better than the edge model.

On the other hand, degree correlations can also be introduced to the edge
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configuration model by a simple generalization [27] resulting in models that

are in general less complex than star models.

4.4.3 Subgraph Covers and Model Selection

The question we would like to address is: Given a graph/network how does

one associate it with such models? In [1] the Newman and Karrer state this

as an important open problem for the generalized configuration model.

In previous sections we showed that homogeneous models and general-

ized configuration models are essentially distributions over subgraph covers

that are projected on to graphs. Therefore subgraph covers correspond to la-

tent/unobserved states of these models and thus in the context of HSCMs our

approach can be seen as inferring such latent states. Since, every cover can

be associated to a unique model it also offers a method for model selection.

In the case of subgraph cover models one can further consider models with

finite type spaces which can be regarded as generalizations of mixture models

that include motifs. The latent state of these models consists of a vertex

type configuration in addition to the subgraph cover. For these models, one

would have a multitude of ensembles for each subgraph cover corresponding

to the different labeling of nodes and the model selection procedure would

include the extra step of finding the type assignment that minimizes the total

information for each possible cover. Determining such optimal labellings is

a generalization of the problem of finding communities in networks which by

itself is a highly non-trivial problem. A simpler but less principled approach

would be to separate the two problems. First, one could use the edge covers
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to determine the vertex types and then find the motifs. Alternatively, one can

use uniform models to select a subgraph cover and then using this subgraph

cover find a corresponding optimal labeling. This can be further generalized

to other types of correlations between the subgraphs in the Σ-optimal cover

which can than be modeled using appropriate type/kernel combinations.

For the generalized configuration model the model selection problem is

equivalent to determining a role sequence which in turn is essentially equiv-

alent to selecting a subgraph cover of the graph since every subgraph cover

defines a unique role sequence. The Σ-optimal cover can be seen as a viable

candidate for assigning a role sequence to the network. Following previous

discussions one can further consider restricting the motif set to biconnected

motifs since the counts of subgraphs consisting of one node intersections of

biconnected submotifs can be accounted for using the role sequence. This in

general reduces subgraphs that have to be considered in the analysis signifi-

cantly since the majority of connected subgraphs of sparse networks are only

singly connected.

In principle the generalized configuration models can also be used to

define the total information of subgraph covers. In such an approach the

total information of a subgraph cover C would be defined by the entropy and

effective complexity of the ensemble of all subgraph covers with the same

role sequence as C. However, this requires the enumeration of all such covers

and as far as we know even in the case of the edge configuration model

only approximate expression are known [73, 41]. Although, one could use

such approximations, these expressions tend to be rather complicated which

might pose additional difficulties when devising algorithms for the problem.
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These ensembles further have high effective complexity since their description

includes the full role sequence which in general requires O(N) bits to describe.

Here, we should note that this is a somewhat indirect way of doing model

selection. The classical model selection problem would be to infer a model,

that is a set (M,nm), using the probability distribution over graphs. In other

words one would select the model (M,nm) that minimizes:

ΣG(M,nm)(G) =− log(PM,nm(G)) + ε(M,nm)

=S(M,nm)− log(nM,nm(G)) + ε(M,nm), (4.18)

where nM,nm(G) is the number of (M,nm) covers of G. The second line

follows from equation 4.12. Thus the total information of the model selection

problem and the subgraph cover selection problem differ with respect to

the term −log(nM,nm(G)). Since, nM,nm(G) is a function of G exhaustive

enumeration of the covers of G seems to be the only way of determining

its value which in general will require exponential time. Thus using the

probability distribution over graphs as a basis of model selection seems to be

rather unpractical.

On the other hand the −log(nM,nm(G)) in many cases is expected to be

much smaller than S(M,nm) and thus the models corresponding to the opti-

mal subgraph cover can be considered to be rather good approximation to the

model selected using the distribution over graphs. In order to illustrate this

point let us consider the following example: Let G be a large graph that has

a triangle edge cover with edge count e and triangle count t (O(e),O(t)=N),

68



such that the cover contains all triangles in G and that no two triangles in

G have an edge in common. In this case this is also the unique Σ-optimal

edge-triangle cover. Moreover, in this case the number of (e+3k, t−k) covers

of G is Ct
k. As a result we have:

ΣG(e+ 3k, t− k) = S(e+ 3k, t− k)− log(Ct
k) + ε. (4.19)

This in turn implies ΣG(e, t)−ΣG(e+3k, t−k) = 3k log(e/N)+k log(4/3)−

log(k!) + O(1/N). Since the factorial grows faster than the exponential this

show that for such G the edge triangle model corresponding to the optimal

cover differs only slightly from the model that is optimal with respect to

distribution over graphs. One can obtain similar bounds for the case where

the triangles in graph intersect on only O(1) edges, which corresponds to

the generic configuration of a random cover. In other words if the network

is generated by a uniform edge-triangle cover both methods will find very

similar covers (O(∆(nm)) = 1) with high probability. Similar arguments also

apply to more general HSCMs of which the motifs are biconnected since for

these one expects most subgraphs instances to come from the underlying

cover. If the motifs are dense enough one can even show that the model

found by both methods coincide exactly for large enough N, for instance for

the edge-K4 model.

However, in the case of singly connected motifs the situation is rather

different since subgraph instances of these are easily created by one node

intersections of other motifs. For instance, consider a cover that contains

two 3-stars that share the same central vertex forming a 6 star. This 6-star
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can then be covered in C6
3 = 20 different/equivalent ways using two 3-stars

each resulting in a different cover with the same motif counts. Thus, if M

contains stars and other singly connected motifs the term log(nM,nm(G))

might not be negligible.

The above discussion also applies to the multiplicity of Σ-optimal covers.

That is, if the optimal cover(s) contain large numbers of singly connected

subgraphs the number of optimal covers can also be rather large and there-

fore these might also differ significantly with respect to the subgraphs they

contain. On the other hand, if the optimal covers contains only biconnected

subgraphs the multiplicity is expected to be comparatively low which also

implies that in this case optimal covers can be expected to contain almost

the same subgraphs.
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Chapter 5

The Optimal Subgraph Cover

Problem

In this chapter we present some algorithms for finding optimal covers in order

to prove the practical value of our approach. We first examine computational

complexity of the problem. For this, we briefly review some related classical

problems. The problem of finding optimal covers turns out to be NP-hard

therefore we propose a greedy algorithm.

5.1 Related Problems and Algorithms

In this section we briefly review some classical problems that are directly

related to Σ-optimal subgraph cover problem. A general introduction to the

subject of NP-completeness can be found in [74] and [75]. We also examine

some widely used algorithms for these problems some of which we use as

subroutines later.
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5.1.1 The set cover problem

In its most general form, set covering problems can be formulated as follows.

Let U = {s1, s2, ..., sn} be a set, S = {S1, S2, ...SM} a collection of subsets

of U such that
⋃
s∈S

S = U and F : 2S → R+ a cost function. Then the

corresponding set covering problem is to find some C ∈ 2S that minimizes

F (C) under the constraint
⋃
S∈C

S = U .

In the linear version of the problem F (C) =
∑
S∈C

c(S), where c(S) is the

cost of S. When all the subsets have cost 1, the problem reduces to finding a

cover of minimum cardinality. This problem is one of Karp’s 21 NP-complete

problems. In another widely studied version of the problem is c(S) = |S|,

which is equivalent to finding a cover with a minimal number of intersections.

A commonly used heuristic for the linear set cover problem is the greedy

algorithm [76]. In the greedy algorithm a cover is constructed stepwise by

picking subsets based on their cost per uncovered element. The greedy algo-

rithm has a worst case approximation ratio of H(n) =
n∑
i=1

1
i
≤ lnn+ 1, where

n = |U |.

The set cover problem has also been extensively studied with respect

to its approximability. Feige proved that unless NP has quasi-polynomial

algorithms set cover can not be approximated within a factor of (1-o(1))ln(n)

[77] and Alon et al. proved that similar results under the assumption P 6=

NP [78]. These show that for the linear problem the greedy algorithm is

almost optimal in polynomial time.

The Σ-optimal subgraph cover problem is non linear set cover problem

with, U = E(G), S = {E(S): S is a subgraph of G} and cost function Σ(C).
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5.1.2 The graph isomorphism and automorphism prob-

lems

The graph isomorphism problem is the problem of determining whether two

graphs are isomorphic. The graph isomorphism problem together with in-

teger factorization is one of only two problems for which the computational

complexity remains unknown. In other words, the problem is neither known

to be NP-complete nor is there a known polynomial time algorithm for it.

Another problem that is closely related to the graph isomorphism problem

is the problem of computing the automorphism group of a given graph. The

graph automorphism problem is at least as difficult as the graph isomorphism

problem since the later can be reduced to the former.

Although no polynomial time algorithm is known for the graph automor-

phism problem, fortunately there exist several algorithms [79, 80, 81, 82] that

can efficiently compute automorphisms of graphs some of which are available

as software packages. In our implementation we use NAUTY developed by

B.D. McKay [79].

5.1.3 Generating all motifs of size n

The number of motifs of size n is bounded from below by 2
n(n−1)

2

n!
in the

undirected and by 2n(n−1)

n!
in the directed case. In other words, the number

of motifs of size n grows faster than exponential with n. For instance in

the undirected case there are 11716571 connected motifs on only 10 vertices.

Thus, even if one had an efficient way of finding isomorphism classes together

with their automorphism groups, computing and storing all possible motifs
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together with their respective automorphism groups becomes prohibitive for

large n.

The directg and geng routines included in the NAUTY [79] can be used

to generate motifs with various properties.

5.1.4 The subgraph isomorphism problem

The problem of finding whether a graph G has a subgraph that is isomor-

phic to some other graph H is called the subgraph isomorphism problem.

The subgraph isomorphism problem can be reduced to the maximum clique

problem which is NP-complete [83].

There exist several exact algorithms that can compute subgraph isomor-

phisms rather efficiently. Some widely used algorithms are [82] and [84].

5.1.5 The maximum independent set problem

Given a graph G = (E, V ), an independent vertex set is a subset of vertices

of which no two elements are adjacent. An independent set is called maximal

if it is not a subset of any other independent set and is called maximum if it

has maximum cardinality among such sets. Finding a maximum independent

set is NP-hard [83].

The maximum independent set problem is one of the classical NP-complete

problems and there exist several approximation algorithms. One of the sim-

plest and most widely used heuristics is the minimum degree greedy heuristic

which is based on the stepwise construction of an independent set where at

each step one adds the vertex with smallest degree to the set and then removes
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all vertices connected to it from the graph together with the corresponding

edges until no vertices are left. There are several known approximation ra-

tios for the greedy algorithm: (dmax + 2)/3 in terms of the maximum degree

and (2d̄ + 3)/5 in terms of the average degree d̄ [85]. Another widely used

approximation algorithm based on excluding cliques from the graph is due

to Boppana and Halldorsson [86].

Although the maximum independent vertex set problem might not seem

to be directly connected to the Σ-optimal cover problem it appears as a

subroutine of our approximation algorithm.

5.2 The set of candidate motifs

In general, it might be desirable to use the most general set of potential

motifs when finding optimal subgraph covers. However, as discussed above

the number of motifs grows faster than exponential with size and finding

subgraph instances of motifs is also computationally expensive. Therefore,

in practical applications, one is forced to restrict the set of motifs of which

the instances are to be included in the analysis. We will call these candidate

motifs. In general, several factors have to be taken into consideration when

determining the set of candidate motifs:

• Computation time: this is determined by the size of the network, the

computational resources (including time) available and the algorithms

used to perform the analysis.

• Goal of the analysis: although our primary goal is discovering network
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motifs, the method can also be used to obtain efficient decompositions

of the network into special classes of motifs.

• Prior knowledge of the structure of the network: if one has any prior

knowledge about the local structure of the network, one might be able

to make an educated guess about the general form of subgraph that

occur frequently in the network. Similarly, one might know that certain

types of motifs simply do not occur in the network and thus exclude

these from the candidate set.

Some potential candidate motif sets include:

• Connected motifs up to size n: Such a set of candidate motifs is most

suitable when the primary goal of the analysis is discovering motifs.

• Biconnected motifs up to size n: The goal of the analysis is to determine

a role sequence to be used in the generalized configuration model.

• Special classes (complete graphs, complete bipartite graphs, cycles and

other highly symmetric motifs) of motifs of potentially unrestricted

size: here the goal might be to obtain an efficient decomposition of the

network into such special classes of motifs or data compression.

• Motifs with known dynamical properties: if a certain class of motifs is

known to have certain dynamical properties that are thought to con-

tribute to the function of the network, one can consider such motifs

and generalizations of them in the set of candidate motifs. Decompos-

ing the network into such motifs might further facilitate the analysis of

dynamical processed defined on the network [87].
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• Network specific motifs: Certain networks have a natural underlying

subgraph cover because of the way they are constructed. For instance,

collaboration networks are constructed by connecting all nodes (sci-

entists, board members, actors) taking part in a certain collaboration

(scientific publications, executive boards, movies) and therefore have

a natural underlying clique cover. Chemical reaction networks also

have an underlying subgraph cover of which the members correspond

to chemical reactions and thus including the motifs corresponding to

various reaction types into the candidate set might be good strategy.

Similarly for electronic circuits, motifs corresponding to various known

subcomponents might be good candidates. If one wants to find higher

order motifs, the candidate set can further expanded to include various

intersection patterns of such network specific motifs.

• Symmetric motifs: one can also restrict motifs with respect to the size

of their automorphism group. This significantly reduces the number of

motifs for large n since most large motifs have trivial automorphism

groups [66].

In general classes of special motifs can also be expanded by including

motifs that differ only slightly from these motifs i.e. motifs that differ from

these motifs only by a few edges. One can also consider motif sets that are

combinations of the sets described above. For instance, including stars into

the set of candidate motifs will in general result in covers that better reflect

the degree distribution of network. Disconnected motifs can be excluded

from the analysis since it can be shown that the cover that independently
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contains the connected components of such subgraphs always has lower total

information.

5.3 Finding subgraphs

Finding a Σ-optimal cover by definition involves finding subgraph instances

of various motifs. For this, one can follow one of these two approaches: the

motif centric approach or the network centric approach.

The motif centric approach can be summarized as finding subgraph in-

stances for each motif separately [53]. For this one simply runs a subgraph

isomorphism algorithm [53, 84, 82] for each individual motif. This is the

approach we will follow in our implementation.

In the network centric approach one finds all connected n-node subgraphs

of G using a single algorithm. In general such algorithms first find all con-

nected n-node subsets of G and then sort the subgraphs occurring on these

sets using an isomorphism algorithm. Most motif analysis algorithms use

network centric approaches [5, 50, 51, 52] to enumerate subgraphs. However,

these algorithms in general focus on finding induced subgraphs. Since we

also consider subgraphs that are not induced, these need algorithms would

have to be modified accordingly.

In applications, both approaches have their advantages and dis-advantages.

For instance, the network centric approach might find a large number of sub-

graphs that in the end not included in the analysis if the set of candidate

motifs does not include all connected motifs. On the other hand, in the motif

centric approach, one might spend a lot of time on motifs that do not appear
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in the network at all.

5.4 Practical definitions of the effective com-

plexity

Another issue that has to be addressed in practice is that the algorithmic

information content is not computable and is computer dependent. As a

result in practical applications one has to work with approximations in the

form of upper bounds which can be obtained using efficient codes:

ε(M,nm) ' lC(M,n,m) + cU(C),

where cU(C) is the length of the program that describes the code C. Thus,

in our case the computer dependence can be reduced to the constant cU(C).

Although this constant determines the numerical value of the practical effec-

tive complexity, it is the same for all (M,nm) and therefore the optimization

problem is essentially the same for all choices of U. Consequently, we will

omit such constant terms from now on.

Another important simplification we make is to assume that motifs are

independent which results in an effective complexity term that is additive in

motifs. We will use the log∗ code for integers. Thus we have:

Σ(C) =
∑

m∈M(C)

(SN(m,nm) + ε(m) + log∗nm) + log∗N, (5.1)

where ε(m) is the practical effective complexity given by the length of the
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code used for motifs. Thus in the case of edge list code:

ε(m) = log∗ |m|+ log∗ e(m) + S(|m|, e(m)),

where S(|m|, e(m)) is the entropy of the ensemble of all graphs with the same

node and edge counts as m. Another alternative is the log∗ code for motifs

described in Sec. 3.1.6. These codes are in a certain sense universal codes for

motifs thus in the context of unrestricted motif sets they seem to be a natural

choice. However, for instance when the set of candidate motifs is restricted

to special classes of motifs (cliques, stars, cycles etc...) more suitable codes

can be found since these have obvious better/shorter encodings than their

edge list. A universally applicable strategy for obtaining such codes is to

label motifs with integers starting from 1 and then to set:

ε(m) ' log∗n(m),

where n(m) is the integer label of m.

Although, the codes we presented can be considered as reasonably effi-

cient, it might be argued that the choice of code used to approximate effective

complexity is subjective. However, all alternative approaches to inductive in-

ference involve similar subjective choices in practice [62, 61, 59]. The main

goal of this thesis is not to advocate a specific approach to inductive infer-

ence but rather to show that subgraph covers can be used as a basis for motif

analysis. The reason why we chose the total information approach is that it

accounts for the fact that the parameters of the ensembles are graphs/motifs

in an intuitive way.
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5.4.1 Alternative approaches and interpretations

From a Bayesian viewpoint, the effective complexity term can be associated

to a prior distribution using the correspondence between codes and proba-

bility distributions. From viewpoint of Bayesian statistics, the subjectivity

involved in choice of code is less of a problem. In case where the set can-

didate motifs is infinite, the log∗ code corresponds to a universal prior [65].

However, it might be argued that other priors are more suitable, for instance

when one has prior knowledge about the structure of the network. In gen-

eral, any prior knowledge of the properties of the network limits the set of

motifs that can occur in the network. For instance, the size of the network

and/or its maximal degree will in general limit the set of motifs that can

occur in the network. Similarly, if one for instance knows that the network

is a gene regulatory network and that certain motifs are likely to correspond

to functional subunits, assigning such motifs higher prior probability might

be justified. Thus, one can also look at the determination of the set of candi-

date motifs from a Bayesian point of view, since excluding some motifs from

the candidate set is essentially equivalent to giving them zero prior. From

this point of view we are faced with an interesting situation where the prior

distribution is not only determined by prior beliefs/knowledge but also by

our expectation for the time required to do the analysis, which in turn is

determined by computational resources at our disposal and the algorithms

we choose.

Another, more practical, way of looking at the effective complexity is as

a safeguard against overfitting. From this point of view, the effective com-

81



plexity of a motif corresponds to the minimal entropy gain it has to provide

in order to be included in the optimal cover. This, however, is an oversim-

plification, since in general the entropy gain of a motif also depends on other

motifs. This, in turn, can be seen as setting a frequency threshold for the

motif. Thus from a more practical point of view the problem can be formu-

lated as a problem of entropy minimization under frequency constraints. In

order to clarify the connection between the effective complexity of motifs and

frequency threshold, we consider a simple example. Let m be a motif and

G be a graph with |E| = O(N), now we would like to find lowest minimum

number nmin of disjoint copies of m such that:

Σ(E, 0)− Σ(E − nminem, nmin) > 0.

For small n we have:

Σ(E, 0)−Σ(E − nem, n) = n(em − |m|)logN + log(n!)

+ n(log|Aut(m)|+ log(e)(em − 1)− em(log(eG) + 1))

− ε(m)− log∗(n) +O(1/N),

where eG = E/N and em are the number of edges of G and m, respectively.

This shows that if em > |m|, nmin is O(1) and converges to 1 for large N. If

em = |m|, nmin is O(1) and larger than 1 even for large N , in general. The

case where m is a tree i.e. em = |m| − 1 is more involved. However, the

thresholds can be shown to be always of O(N). Note that, the thresholds are

in close correspondence with the expected number of copies of motifs Erdös-
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Rènyi random graph and thus can be seen as reflecting natural expectations

about frequencies of motifs. However, in this example we considered only

covers that consisted of the motif and the single edge. In a more general

setting one would also have to take into account the covers that contain the

submotifs of m.

From the point of view of overfitting, one is not constrained to use effective

complexity terms that correspond to code lengths. Thus if overfitting is less

of a concern, one can even set the effective complexity term to zero which

in our case is equivalent to the maximum likelihood approach. Another

alternative is to consider cost functions of the form:

S(C) + αε,

where 0 ≤ α ≤ 1 and compare motifs obtained for various values of α. In

situations where overfitting is less of a concerns and/or if one wants to find

a maximal number of potentially relevant motifs the using reduced effec-

tive complexity terms might be justified. Using reduced effective complexity

terms might be especially useful for small networks (N < 200). Since, by

definition, such networks can only contain a small/limited number of sparsely

intersecting copies of each motif, the entropy gain motifs can provide is also

limited. Consequently, for small networks the thresholds set by the effective

complexity might be too stringent and impede the discovery of motifs.

The algorithms we shall present in the next section apply to all choices

of effective complexity type terms provided that they are additive in the

motifs. The algorithms can also be modified in a straightforward manner to
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incorporate frequency thresholds.

5.5 The greedy heuristic

Unlike in the linear cover problem where each subset has an individual cost, in

the Σ-optimal cover problem each subgraph can not be assigned an individual

efficiency because Σ() is nonlinear. Therefore, making use of the fact that

Σ is additive in the motifs, we base our greedy algorithm on the efficiency

of motifs instead. Given a partial cover C, the efficiency of a set Sm of

m-subgraphs is defined as:

σ(Sm, C) =
Σ(Sm)

|E(Sm)− E(C)|
, (5.2)

where E(C) and E(Sm) are the set of edges covered by C and Sm respectively

and Σ(Sm) is the total information corresponding to Sm. More precisely:

Σ(Sm) = S(m, |Sm|) + ε(m) + log∗(|Sm|).

Following this definition, an optimal instance set of m is defined as a set

of m-subgraphs that minimizes σ. At each step, the algorithm determines

the efficiency of all motifs in the candidate motif set by finding an optimal

instance set for m in the set of candidate motifs. In the next step, the

algorithm checks for each motif whether including its optimal instance set

into the cover decreases the overall total information of the cover. Here, the

total information of partial covers is calculated by adding to them the single

edge subgraphs corresponding to uncovered edges. At this point we should
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mention that motifs can not be selected based only on their efficiency because

adding the optimal instance set of a motif to the cover in general decreases

the efficiency of other motifs which, sometimes might lead to an increase of

the overall total information. In the next step the algorithm picks the motif

which is most efficient among the motifs of which the optimal instance set

does not increase the total information. Once this motif is determined its

optimal instance set is added to the cover. Then the set of covered edges is

updated and the process is repeated until all edges of the graph are covered.

To ensure that the algorithm terminates, we require the single edge motif to

always be included in the set of candidate motifs.
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Algorithm 1 GreedyOptimalCover (G(E,V),MS)

CoveredEdges = ∅, Cover = ∅,Motifs = ∅

while |CoveredEdges| < |E| do

C,m = FINDMOTIF (G,MS,CoveredEdges)

CoveredEdges← CoveredEdges ∪i∈C e(i)

Cover ← Cover ∪ C

Motifs←Motifs ∪ {m}

end while

return Cover, Motifs

function FINDMOTIF(G,MS,CoveredEdges)

for m ∈MS do

C(m)=OptimalInstanceSet(m,CoveredEdges,G(E,V))

end for

M=argminm∈MS{σ(C(m), CoveredEdges)|Σ(Cover ∪ C(m)) ≤

Σ(Cover)}

return C(M),M

end function

Here, OptimalInstanceSet is a function that finds an optimal instance

set given a motif and a set of covered edges and MS is the set of candidate

motifs.

Given a motif m and a set of covered edges, finding an optimal instance

set is a nontrivial optimization problem on its own. For instance, if subgraphs

in the cover are not allowed to share edges, finding an optimal instance set

is equivalent to finding a set of m-subgraphs of maximum cardinality such
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that no two of the subgraphs in the set have an edge in common. This prob-

lem is equivalent to the maximum independent vertex set problem which

is NP-complete [74, 83]. Therefore in most practical situations, some type

of heuristic has to be used. In the following section, we present two such

heuristics. Depending on the heuristic, finding an optimal instance set might

require some or all motif subgraphs to be computed. In our implementa-

tion, we will follow a motif centric approach that uses subgraph isomorphism

algorithms [82, 84].

5.5.1 Maximum independent set heuristic

Let us first consider a very simple greedy heuristic for constructing an optimal

instance set. Starting from the empty set, at each step we pick the m-

subgraph that contains the maximal number of uncovered edges. Note that,

this is the m-subgraph that gives us the maximal reduction in σ(S). This

is then repeated until there are no more m-subgraphs that decrease σ(S).

The maximum independent set heuristic improves this by also maximizing

the number efficient motifs that are added to the set.

As the name suggests, the maximum independent set heuristic is based

on finding maximum independent vertex sets of various intersection graphs

of the subgraph instances of m. The intersection graph of m-subgraphs

containing n covered edges is defined as follows: the vertices of this graph

are all the m-subgraphs of G that contain n covered edges and there is an edge

between two subgraphs whenever they have at least one uncovered edge in

common. Finding a maximum independent set is known to be NP-complete

87



therefore in most instances a heuristic has to be used.

When constructing an optimal instance set, we start with n = 0, since

these are the m-subgraphs that are most efficient in covering edges. Then

a maximum independent vertex set of the corresponding intersection graph

is found and the subgraphs in this set are added to the optimal instance set

one at a time provided they decrease σ. When all the m-subgraphs with

intersection number n are exhausted, the set of covered edges is updated and

the procedure is repeated for n + 1. The algorithm terminates when there

are no m-subgraphs left that decrease σ.

Algorithm 2 Maximum-IS heuristic for OptimalInstance-
Set(G,m,CoveredEdges)

mSet = SubGraphInstances(G,m), OIS(m) = ∅
for n:=0 until e(m)-1 do

IG = IntersectionGraph(mSet, CoveredEdges ∪ Edges(OIS(m)), n)
MIS=MaximumIndependentSet(IG) . Maximum-IS heuristic
while MIS 6= ∅ do

s=random pick from MIS
if σ(m,OIS(m)) ≤ σ(m,OIS(m) ∪ {s}) then

OIS(m)← OIS(m) ∪ {s}
MIS ←MIS − {s}

else
end while, end for

end if
end while

end for
return OIS(m)
function IntersectionGraph(mSet,CoveredEdges,n)

V = {m ∈ mSet : |Edges(m) ∩ CoveredEdges| = n}
E = {{m,m′} : m,m′ ∈ mSet and Edges(m) ∩ Edges(m′) −

CoveredEdges 6= ∅}
return G(E,V)

end function

In the code above MaximumIndependentSet is a heuristic for finding the
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maximum independent sets [85, 86] and SubGraphInstances(G,m) [84, 82] is

a function that finds and returns all instances of m in G.

Maximal independent set heuristic

Constructing an intersection graphs at each step of the maximum indepen-

dent set heuristic in general demands a lot of computational resources since

some subgraphs might occur in quite large numbers. Moreover, such sub-

graphs also tend to intersect quite heavily and thus their intersection graphs

can occupy a lot of memory. To overcome this, we introduce a lighter/faster

version of the above algorithm which uses maximal independent sets instead

of maximum independent sets. Maximal independent vertex sets are inde-

pendent sets that are not subsets of any other independent set. Finding a

maximal independent set is much easier that finding a maximum indepen-

dent set. One can easily obtain a maximal independent set of m-subgraphs

by stepwise picking an instance of m, removing the edges of this subgraph

from the graph and then repeating the procedure until the graph contains no

more copies of m. The maximal independent set of subgraphs is then used as

a candidate for the optimal instance set. Another advantage of this heuristic

is that it allows for subgraphs to be detected on the fly and does not require

all m-subgraph of the network to be computed.

Using maximal independent sets instead of maximum independent sets

introduces more variability in terms of the cover obtained by the greedy

heuristic. The maximal independent set heuristic always produces covers of

which the subgraphs do not share edges. However, the heuristic can be easily

be modified to allow such intersections between subgraphs. This algorithm
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Algorithm 3 Maximal-IS heuristic for OptimalInstance-
Set(G,m,CoveredEdges)

OIS(m) = ∅
remove CoveredEdges from G
while Subgraph(G,m) 6= ∅ do

s = Subgraph(G,m) . Find an m-subgraph of G
OIS(m)← OIS(m) ∪ {s}
remove edges in s from G

end while
return OIS(m)

is equivalent to the simple greedy heuristic mentioned in the first paragraph

and corresponds to approximating the maximum independent sets by max-

imal ones in the first algorithm. However in experiments, including such

intersecting subgraphs did not result in covers with significantly lower total

information.

An important feature of the maximal independent set heuristic is that it

combines the determination of optimal instance sets and detection of sub-

graphs. Consequently, one does need to compute all subgraph instances of

m in advance which significantly reduces its running time and memory re-

quirements. This makes it much more suitable for larger networks and motifs

when computational resources are limited.

5.5.2 Discussion

Due to its probabilistic nature, the greedy heuristic might find different cov-

ers for the same networks on different runs. When using the greedy heuristic,

this variability essentially comes from the heuristic used to obtain optimal

instance sets. More specifically, in the case of the maximum independent set
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heuristic, the source of this variability is the heuristic used to approximate

maximum independent sets. In general one expects that heuristics which are

able to find better solutions (that is larger independent sets) to also have less

variability. The maximal independent set heuristic can be seen as the crud-

est way to approximate maximum independent sets and as a result one also

expects it to have the largest variability. In general the variability of the op-

timal instance sets obtained by the different heuristics also strongly depends

on the network. Depending on whether the greedy algorithm is able to pro-

duce a stable solution or not, one can opt for more sophisticated algorithms

to approximate maximum independent sets. However, as exemplified by the

maximum and maximal independent set heuristics, this in general might in-

volve significant trade-offs in terms of computational complexity. On the

other hand, one can also devise heuristics that do not rely on independent

sets for finding optimal instance sets.

For the networks we considered, we observed that the results of greedy

heuristics are quite stable over runs even when the maximal independent set

heuristic is used. Although for some networks the motif sets obtained on

different runs differ, these are mostly restricted to motifs that only occur a

few times in the cover or are one node intersections of smaller motifs. For

instance, one cover might contain triangles and the other subgraphs that are

made of two triangles connected at one node.

As is the case with any heuristic, the success of the greedy heuristic de-

pends on the structure of the network and in certain situations the greedy

heuristic might get stuck in a local minima. For instance, if a motif con-

tains a sub-motif that is more dense and symmetric compared to the entire
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motif, the greedy algorithm will choose the sub-motif over the motif even if

the inclusion of the larger motif might result in a cover with smaller total

information since the submotif covers edges more efficiently. In principle the

greedy heuristic could be modified to avoid at least some of its local minima

by picking motifs not only based on their efficiency but also the overall gain

in total information. On the other hand, one can also apply other widely

used approximation approaches such as simulated annealing or genetic algo-

rithms to the problem [88, 89, 90]. Although we don’t expect there to be one

algorithm that outperforms all the others for every network, given a network

one could solve the problem using every algorithm that has acceptable run-

ning time and pick the solution with minimal total information. Therefore

we consider the development of alternative algorithms to be an important

topic for further research.

92



Chapter 6

Empirical Results

In this chapter we present empirical results obtained for several real world

networks using the greedy heuristic [71]. We also consider some synthetic

networks that are realizations of uniform subgraph covers in order to test

whether the heuristic can recover the motif structure from the graph cor-

responding to these. Due to restricted computational resources, the size of

the subgraphs used in the analysis is limited to 5 in the directed and to 6

in the undirected case. We also consider biconnected subgraph covers for

some of the networks. All presented results were obtained using the maxi-

mal independent set heuristic for finding optimal instance sets and practical

effective complexities corresponding to the edge list encoding. In the tables

N and E stand for the number of vertices and edges respectively. Σe stands

for the total information of the corresponding edge cover and Σ for the total

information of the obtained subgraph cover, both quantities are rounded to

the closest integer and are given in bits.

For some of the networks we also present empirical results concerning
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maximum likelihood/minimum entropy covers. These can be regarded as

giving the maximal number of potentially relevant motifs for these networks.

Due to its probabilistic nature, the greedy heuristic might find different

covers for the same networks on different runs. For each network the cover

with smallest total information obtained over 10 runs is given. For the power

grid network we also include the range of the motif counts obtained over 10

runs in parenthesis.
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6.1 Real world networks

6.1.1 The power grid of the western United States

Network N E Σe Σ

Power Grid 4941 6594 81084 77109

4109 141 112 44 31 17 47

(4109-4129) (138-145) (111-122) (44-45) (30-31) (15-17) (45-47)

11 68 2 15 42 2

(10-11) (67-68) (2-2) (15-16) (41-43) (2-2)

Table 6.1: The motifs of the network representing the Western States Power

Grid of the United States found using connected subgraphs up to size 6. The

motif counts correspond to the cover with lowest total information obtained

over 10 runs. The range of the motif counts obtained are also shown in

parenthesis.

Table 6.1 shows the motifs contained in the optimal cover of the network

representing the Western State Power Grid of the United States [23]. All

motifs except the motif consisting of two triangles connected by a single

vertex are biconnected. Therefore when the candidate set is restricted to be

biconnected motifs the optimal cover contains these triangles individually.

The table further shows the covers obtained on different runs all contained
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the same motifs and also did not differ significantly with respect to their

motif counts.

6.1.2 Gene regulatory networks

Network N E Σe Σ

S.Cerevisiae 688 1079 11024 9811

547 23 4 60 8

E.Coli 423 519 5124 4810

323 9 14 13 5

Table 6.2: The motifs of the transcription networks of E.coli and S.cerevisiae

obtained using all biconnected motifs up to size 5.

96



Network N E Σe Σ

S.Cerevisiae 688 1079 11024 9309

59 26 16 23 94 5 61 8

E.Coli 423 519 5124 4637

130 12 51 13 4 5

Table 6.3: The motifs of the transcription networks of E.coli and S.cerevisiae

obtained using all connected motifs up to size 5.

Tables 6.2 and 6.3 show the motifs found for the transcription networks of

E.Coli [91] and S.Cerevisiae [5]. These show that including singly connected

motifs in the candidate motif set has almost no effect on the biconnected

motifs and mostly results in star shaped motifs and/or motifs that consist

of one vertex intersections of biconnected motifs. The two networks share 3

out of 4 motifs in the case of biconnected motifs.

For these networks the covers observed over the different runs did in some

instances differ with respect to their motifs. For instance, in the case of

biconnected motifs, some covers of the S.Cerevisiae network did not contains

the motif consisting of two inward 3-stars (4/10) and the motif consisting of

3 feed-forward loops sharing an edge (3/10). Similarly, 3 out of the 10 covers

of the E.Coli network contained 3 copies of the 4-node motif consisting of two

feed forward loops sharing an edge in the biconnected case. In the case of
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general motifs in addition to similar variations some covers of the S.Cerevisiae

network also contained inward 2-stars (2/10) and 3-stars (1/10).

6.1.3 Electronic circuits

Network N E Σe Σ

s208 122 189 1460 1454

165 8

s420 252 399 3491 3404

220 7 4 13 11

s838 512 819 7995 7652

456 15 8 25 23

Table 6.4: The motifs of electronic circuits (digital fractional multipliers)

obtained using all connected motifs up to size 5.

Table 6.4 shows the results for three networks representing electronic circuits

that are digital fractional multipliers [5]. In s208 we only find the 3-cycle

motif-as we shall see in Sec.6.3 this is mainly due to s208 being relatively

small. In the other two networks the algorithm not only finds the same

motifs but the motif counts also scale almost exactly with network size. For
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these networks the algorithm found covers with the same motifs and motif

frequencies on all runs.

6.1.4 Metabolic networks

Table 6.5 shows the motifs found in metabolic networks [13] of several species

from different domains of life: AA= Aquifex aeolicus(bacteria), AB= Acti-

nobacillus actinomycetemcomitans (bacteria), EC= Escherichia coli (bacte-

ria), CE= Caenorhabditis elegans (eukaryote), AG= Archaeoglobus fulgidus

(archea), AP= Aeropyrum pernix(archea). The table only shows motifs that

occur at least 4 times in any one of the covers. For each network at most 2

motifs are not shown in the table. Again, we not only find approximately the

same motifs in these networks but the counts of common motifs also scale

approximately with network size.
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Network N E Σe Σ

AA 1057 2527 25844 21255

423 16 6 16 130 147 97 0 0

AB 993 2368 24012 19882

408 22 4 23 128 131 82 0 0

EC 2275 5763 64842 52590

935 117 5 40 264 345 202 5 0

CE 1173 2864 29634 24380

478 13 3 31 137 178 100 0 0

AG 1268 3011 31616 25960

509 23 6 26 140 168 120 0 4

AP 490 1163 10610 8856

195 11 0 12 55 67 46 0 0

Table 6.5: The motifs found in metabolic networks of various species using

biconnected motifs up to size 5. The table only shows motifs that occur at

least 4 times in any one of the covers.
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6.1.5 Autonomous systems networks

Motifs (id)

(0) (1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

Network n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14

AS-1 710 31 0 55 7 495 227 34 7 41 0 0 17 5 9
AS-2 695 18 0 73 9 505 226 35 10 40 0 0 13 9 8
AS-3 791 18 0 85 14 507 243 39 10 44 10 0 15 7 9
AS-4 1016 28 0 124 5 650 356 55 17 48 13 21 24 7 11
AS-5 980 31 0 127 10 615 368 59 17 54 12 30 38 9 18
AS-6 1227 30 0 183 14 826 569 83 23 83 13 23 35 12 13
AS-7 3162 27 0 127 8 0 299 45 13 71 0 27 34 11 14
AS-8 913 38 144 189 18 981 682 87 30 98 14 30 47 18 14

Network N E Σe Σ

AS-1 3015 5156 57877 52769
AS-2 3042 5232 58755 53557
AS-3 3213 5624 63458 57784
AS-4 4235 7674 89266 80224
AS-5 3962 7931 90351 80411
AS-6 5599 10728 128250 113240
AS-7 3570 7033 79225 71227
AS-8 6474 12572 152686 134176

1
5

Table 6.6: Motifs found in networks representing the internet at the level of

autonomous systems using all connected motifs up to size 5.

Table 6.6 shows the network motifs found in networks representing the in-

ternet at the level of autonomous systems [92]. As in the case of metabolic

networks whenever a certain motif occurs in the optimal cover of more than

one of these networks its counts also scale approximately with network size.

The analysis of various networks shows that networks representing similar

systems also have the similar motif structure. This can be regarded as further

evidence that motifs play an important role in the structural organization of

complex networks. We also observe that motif counts scale approximately

with the vertex and edge counts of the networks in the same type. This
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also shows that the method can be used to categorize networks in a similar

fashion to [57]. The results also indicate that subgraph covers can be used

to obtain representations that are up to 20% shorter compared to their edge

list encoding.

In principle the method can be further evaluated by comparing the net-

works with the generalized configuration models corresponding to the Σ-

optimal subgraph covers. However, the models corresponding to the obtained

covers are in general quite complex and therefore, analyzing them would re-

quire developing computer algebra systems and/or sampling algorithms for

these models. As a result, such comparisons are beyond the scope of this

thesis.

6.1.6 Motif significance profiles

The method can also be used to construct motif significance profiles based

on the c-score. These are analogues of the significance profiles based on the

z-score used by Milo et al. in [57] and can be used to classify networks

according to their motif structure. We use motif significance profiles that are

given by the normalized c-score:

c̃m =
cm√∑

m′∈M(CΣ) c
2
m′

. (6.1)

The tables presented below show the motif significance profiles of various

networks corresponding to the covers presented in previous sections. The

tables contain only the regions of the significance profiles for which the c-

score is non-zero. Compared to the full significance profile these regions are
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comparatively small since in the directed case there are 9578 connected and

7585 biconnected motifs up to size 5. Similarly, in the undirected case there

are 30 connected motifs up to size 5. Since the triad significance and subgraph

ratio profiles used in [57] have only 6 and 4 degrees of freedom [93, 57],

respectively, the motif significance profiles based on the c-score provide a

much finer grained classification compared to [57].

1 2 3 4 5
Motif id

0.0

0.2

0.4

0.6

0.8

1.0

c̃

E.Coli
S.Cerevisiae

Motifs (id)

(1) (2) (3) (4) (5)

Table 6.7: The motif significance profiles corresponding to the covers given

in Table 6.2.
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1 2 3 4 5 6 7 8
Motif id

0.0

0.2

0.4

0.6

0.8

1.0
c̃

E.Coli
S.Cerevisiae

Motifs (id)

(1) (2) (3) (4) (5) (6) (7) (8)

Table 6.8: The motif significance profiles corresponding to the covers given

in Table 6.3.

Tables 6.7 and 6.8 show the significance profiles corresponding to the

optimal covers obtained using singly connected and biconnected subgraphs

up to size 5, respectively. In both cases the significance profiles of both

networks are in broad agreement.
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1 2 3 4
Motif id

0.0

0.2

0.4

0.6

0.8

1.0

c̃

s420
s838

Motifs (id)

(1) (2) (3) (4)

Table 6.9: The motif significance profiles corresponding to the covers ob-

tained for the electronics circuits s420 and s838 given in Table 6.4.

In Table 6.9 the significance profiles of electronic circuits s420 and s838

are shown. The significance profiles are so coincide almost exactly.
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1 2 3 4 5 6 7 8 9 10 11
Motif id

0.0

0.2

0.4

0.6

0.8

1.0

c̃

AA
AB
EC
CE
AG
AP

Motifs (id)

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11)

Table 6.10: The motif significance profiles corresponding to the covers given

in Table 6.5. The profiles include the motifs not shown in Table 6.5.

Table 6.10 shows the significance profiles of the metabolic networks cor-

responding to various species. Again, we find that the significance profiles of

these networks match extremely well.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
Motif id

0.0

0.2

0.4

0.6

0.8

1.0

c̃

AS-1
AS-2
AS-3
AS-4
AS-5
AS-6
AS-7
AS-8

Motifs (id)

(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

Table 6.11: The motif significance profiles corresponding to the covers given

in Table 6.6.

Table 6.11 shows the significance profiles of the metabolic networks corre-

sponding to various autonomous systems networks. Although there are slight

differences between the profiles for denser motifs, the overall agreement of

the profiles is quite well.

The significance profiles of various network types given in the tables above

show that networks of the same type also have very similar significance pro-

files. This demonstrates that motif significance profiles based on the c-score
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provide an effective, fine grained measure for classifying/ categorizing net-

works.

6.1.7 A comparison with the method of Milo. et al

In commonly analyzed networks we find 3 and 4 node motifs that are almost

identical to those found by Milo et al. in [5]. Here, we only compare 3 and 4

node motifs for relatively small networks since for larger motifs and networks

conserving lower order motifs is not computationally feasible.

In principle for larger motifs one can use the configuration model as a null

model instead but in this case the method of Milo et al. will identify most

subgraphs that contain a smaller overrepresented motif as network motifs.

In the transcription networks we find all the motifs found by Milo et

al. though in the S.Cerevisiae network the feed forward loop (FFL) only

appears as a submotif of the larger motif that consists of 3 FFLs sharing an

edge. Similarly, for the electronic circuit s420 and s838 networks we find the

same 3 and 4 node motifs though the 3-and 4-cycles appear only as submotifs.

Moreover, the optimal subgraph covers show that in these networks 3- and 4-

cycles occur almost exclusively as subgraphs of larger motifs (3-cycles: s420-

19/20, s822-39/40; 4-cycles: s420-11/11, s838-23/23). For s208 we only find

the 3-cycle motif in the cover that minimizes the total information. On

the other hand, the maximum likelihood cover (See Sec.6.3 Table 6.15) of

s208 contains the same motifs we found in the other two electronic circuit.

Moreover, the maximum likelihood cover shows that in s208 almost all copies

3 and 4 cycles occur as subgraphs of some larger motifs.
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6.2 Synthetic Networks

In this section we consider some synthetic networks corresponding to uni-

form subgraphs in order to test the performance of the greedy heuristic in

recovering the underlying covers and motifs.

Network N E Σe Σ

Network 1 1500 3115 34069 20566(20566)

150(150) 80(80) 125(125) 75(75) 125(125) 75(75)

Network 2 512 819 7795 7646(7652)

452(456) 16(15) 8(8) 25(25) 23(23)

Network 3 750 2065 17594 16296(16089)

273(150) 124(125) 119(125) 45(45) 47(45) 78(100)

Network 4 1500 2065 21746 18413(18277)

192(150) 123(125) 120(125) 44(45) 47(45) 95(100)

Table 6.12: The motifs obtained for several networks corresponding to uni-

form subgraph cover ensembles. The quantities corresponding to these en-

sembles are given in parenthesis.
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As seen in Table 6.12, the algorithm is able to recover the motif sets of

the underlying cover for all random networks. For Network 1 the algorithm

recovers the underlying cover exactly. For Network 2, which replicates the

motifs found in the electronic circuit s838 (Table 6.4), the cover found by

the algorithm differs from the underlying cover only with respect to one

subgraph. On the other hand, for Networks 3 and 4 the motif counts differ

significantly from the counts of the uniform subgraph covers used to generate

the networks, especially with respect to the 5-star counts. As discussed

previously this is caused by the fact that these networks contain a large

number of 5-stars of which not all are explicitly contained in the underlying

cover. As a result for 5-stars the determination of an optimal instance set

becomes more difficult. This effect is more pronounced in Network 3 because

Network 4 has a higher edge density which results in more 5-star subgraphs.

6.3 Maximum likelihood covers

In this section we present results regarding maximum likelihood covers i.e

covers that minimize the entropy. These also show how the motifs found

vary with respect to the effective complexity term. For each network we

give the best cover obtained over 5 runs. Since maximum likelihood covers

tend to contain motifs that occur only a few times in the cover, the covers

obtained on different runs sometimes also differ with respect to such motifs.

For the gene regulatory networks we observed 2 such motifs over 5 runs.

While the covers for the power grid network only differed with respect their

motif counts, for the electronic circuits the motifs and their frequencies were
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the same on all runs.

6.3.1 Power Grid

Network N E Se(G) S(C)

Power Grid 4941 6594 81067 76488

4050 207 94 38 21 9 5 66

4 1 2 2 1 2 11 4

3 41 16 3 1 1 1 1

5 1 2 3 1 1 1 2

Table 6.13: The motifs counts of the maximum likelihood cover of the West-

ern States Power Grid of the United States found using all biconnected sub-

graphs up to size 6.

The above table shows that compared to the Σ-optimal cover the maximum

likelihood cover contains extra motifs that mostly appear only a few times

in the cover.
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6.3.2 Gene regulatory networks

Network N E Se S(C)

S.Cerevisiae 688 1079 11010 9630

518 2 19 4 62 1

5 2 1 1 1 1

E.Coli 423 519 5110 4709

321 8 9 2 1 12

5 2 1

Table 6.14: The motifs contained in the maximum likelihood cover of tran-

scription networks of E.coli and S.cerevisiae obtained using all biconnected

motifs up to size 5.

As with the power grid network the effect of setting the effective complexity

term to zero results in additional motifs that occur at most twice in the cover.

The extra motifs appearing in the maximum likelihood covers are different

for the two networks except for the feed forward loop.
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6.3.3 Electronic circuits

Network N E Se S(C)

s208 122 189 1392 1448

104 1 3 2 6 5

s420 252 399 3478 3320

222 1 7 4 12 11

s838 512 819 7995 7652

456 15 8 25 23

Table 6.15: Motifs appearing in the maximum likelihood covers of electronic

circuits obtained using all connected motifs up to size 5.

Table 6.15 shows that the maximum likelihood covers for the s420 and s838

networks are almost identical to their Σ-optimal covers. On the other hand,

for s208 the maximum likelihood cover contains the same motifs as s420 and

s838. Moreover, the motif counts also scale almost exactly with respect to

network size. This further supports using maximum likelihood or reduced

effective complexity terms for small networks.
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Chapter 7

Conclusion

7.1 Summary of the main contributions

We proposed an information theoretical approach to motif analysis in net-

works that is based on using subgraph covers as formal representations of

graphs and total information of subgraphs covers as a measure of optimal-

ity. By considering motifs of different sizes simultaneously with respect to a

single measure the method can detect even large motifs consistently.

An important feature of the presented method is that it provides an

explicit and efficient decomposition of the network into motif subgraphs.

This allows motifs to be studied in the context of the whole network rather

than in isolation.

We also examined the relation between subgraph covers and several ran-

dom graph models that can incorporate motifs. We showed that total infor-

mation optimal subgraph covers can used to match networks with specific

instances of these models. This effectively allows for more realistic network
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models in general. These, models also can be used to study the relation

between motifs and structural and dynamical properties of networks.

In order to prove the practical value of our approach we also studied

the total information optimal subgraph cover problem from a perspective of

computational complexity and proposed a greedy heuristic for the problem.

The heuristic is able to recover the motif structure of synthetic networks and

also produces consistent results for real world networks.

Empirical results for several real world networks were also presented.

These show that networks with similar function not only have similar motif

structures but also that motif counts scale approximately with the number

of vertices. Consequently, the method provides a fine grained measure, in

the form of motifs significance profiles, for classifying networks.

7.2 Directions for future research

7.2.1 The structure of optimal subgraph covers

In this thesis we mostly concentrated on finding optimal covers and their

motif sets and did not study the structure of the optimal covers we obtained.

Further insights might be gained by examining the structure of optimal covers

in more detail. Properties that can be studied include preferred attachment

patterns between motifs and the overall distribution of the motifs in the

network. If for instance, a certain set of motifs appears on the same set

of nodes and/or in specific combinations this can be seen as indicating a

functional relation between these motifs. On the other hand, if the instances
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of a certain motif are concentrated on a specific set of vertices, this set might

correspond to a region of the network that is responsible of performing a

specific function.

7.2.2 Generalization to colored networks

Subgraph covers and the total information can be generalized to graphs with

colored/labeled vertices and edges in a straightforward manner. Such labels

might correspond to different types of vertices in the network or membership

in a network community or module. Including such additional information

into the analysis might further facilitate the detection of motifs. Moreover,

one would expect that the motifs a vertex participates in to be correlated

with its type. For instance, if the vertex types in a network are related to

functional roles or when the communities of the network differ with respect

to their internal structure. The greedy algorithm can also be modified in a

straightforward manner to the case of colored graphs.

On the other hand, if the types of vertices are not known a priori the Σ-

optimal cover also be used as a starting point for inferring functional roles of

vertices and/or network communities. For community detection, the inhomo-

geneous model of Bollobas et al. with discrete types could be used since these

effectively generalize the widely used mixture models to subgraph covers.

7.2.3 Random graph models

Another important direction for future research would be to study the ran-

dom graph models corresponding to the optimal covers. Such comparisons
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would allow for further assessment of the method. Moreover, these models

allow the relation between the motif structure of the network and more gen-

eral/global properties to be studied. This, can further provide insights into

the question why certain motifs appear in certain types of networks. More-

over, various dynamical systems that can be defined on the network can

be used to study the interplay between the motif structure and dynamical

properties of the network.

As is the case with many random graph models, the generalized config-

uration models and SCMs can only be solved analytically as the number of

vertices goes to infinity. Thus, especially in the context of small networks,

efficient algorithms for sampling such models are required. On the other

hand, the models can also become quite complex especially as the size of

motifs increases and therefore, implementing a computer algebra system for

such models might be required in order to do calculations.

7.2.4 Heuristics

We consider the development of further heuristics an important topic for fu-

ture research. While the greedy algorithm can be further modified/improved

to avoid some local minima, other widely used approaches such as genetic

algorithms and simulated annealing can also be applied to the problem. In

the view of the problem’s high computational complexity developing parallel

algorithms is also of interest.
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Barabási. The large-scale organization of metabolic networks. Nature,

407(6804):651–654, 2000.

[14] Soon-Hyung Yook, Zoltán N Oltvai, and Albert-László Barabási. Func-

tional and topological characterization of protein interaction networks.

Proteomics, 4(4):928–942, 2004.

[15] Martin Chalfie, JOHN E Sulston, JOHN G White, Eileen Southgate,

J Nicol Thomson, and Sydney Brenner. The neural circuit for touch

119



sensitivity in caenorhabditis elegans. The Journal of neuroscience,

5(4):956–964, 1985.

[16] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theo-

retical analysis of structural and functional systems. Nature Reviews

Neuroscience, 10(3):186–198, 2009.

[17] Stuart L Pimm. Food webs. Springer, 1982.

[18] Stanley Wasserman. Social network analysis: Methods and applications,

volume 8. Cambridge university press, 1994.

[19] David Knoke and Song Yang. Social network analysis, volume 154. Sage,

2008.

[20] S Lehmann, B Lautrup, and AD Jackson. Citation networks in high

energy physics. Physical Review E, 68(2):026113, 2003.

[21] Loet Leydesdorff and Liwen Vaughan. Co-occurrence matrices and their

applications in information science: Extending aca to the web environ-

ment. Journal of the American Society for Information Science and

Technology, 57(12):1616–1628, 2006.

[22] Bernard Derrida, Susanna C Manrubia, and Damián H Zanette. Statisti-

cal properties of genealogical trees. Physical Review Letters, 82(9):1987,

1999.

[23] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-

world’networks. nature, 393(6684):440–442, 1998.

120
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Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne un-
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