6,341 research outputs found

    Magnetic relaxation in metallic films: Single and multilayer structures

    Get PDF
    The intrinsic magnetic relaxations in metallic films will be discussed. It will be shown that the intrinsic damping mechanism in metals is caused by incoherent scattering of itinerant electron-hole pair excitations by phonons and magnons. Berger [L. Berger, Phys. Rev. B 54, 9353 (1996)] showed that the interaction between spin waves and itinerant electrons in multilayers can lead to interface Gilbert damping. Ferromagnetic resonance (FMR) studies were carried out using magnetic single and double layer films. The FMR linewidth of the Fe films in the double layer structures was found to always be larger than the FMR linewidth measured for the single Fe films having the same thickness. The increase in the FMR linewidth scaled inversely with the film thickness, and was found to be linearly dependent on the microwave frequency. These results are in agreement with Berger's predictions. (C) 2002 American Institute of Physics

    Growth-Induced In-Plane Uniaxial Anisotropy in V2_{2}O3_{3}/Ni Films

    Full text link
    We report on a strain-induced and temperature dependent uniaxial anisotropy in V2_{2}O3_{3}/Ni hybrid thin films, manifested through the interfacial strain and sample microstructure, and its consequences on the angular dependent magnetization reversal. X-ray diffraction and reciprocal space maps identify the in-plane crystalline axes of the V2_{2}O3_{3}; atomic force and scanning electron microscopy reveal oriented rips in the film microstructure. Quasi-static magnetometry and dynamic ferromagnetic resonance measurements identify a uniaxial magnetic easy axis along the rips. Comparison with films grown on sapphire without rips shows a combined contribution from strain and microstructure in the V2_{2}O3_{3}/Ni films. Magnetization reversal characteristics captured by angular-dependent first order reversal curve measurements indicate a strong domain wall pinning along the direction orthogonal to the rips, inducing an angular-dependent change in the reversal mechanism. The resultant anisotropy is tunable with temperature and is most pronounced at room temperature, which is beneficial for potential device applications

    All-optical control of ferromagnetic thin films and nanostructures

    Full text link
    The interplay of light and magnetism has been a topic of interest since the original observations of Faraday and Kerr where magnetic materials affect the light polarization. While these effects have historically been exploited to use light as a probe of magnetic materials there is increasing research on using polarized light to alter or manipulate magnetism. For instance deterministic magnetic switching without any applied magnetic fields using laser pulses of the circular polarized light has been observed for specific ferrimagnetic materials. Here we demonstrate, for the first time, optical control of ferromagnetic materials ranging from magnetic thin films to multilayers and even granular films being explored for ultra-high-density magnetic recording. Our finding shows that optical control of magnetic materials is a much more general phenomenon than previously assumed. These results challenge the current theoretical understanding and will have a major impact on data memory and storage industries via the integration of optical control of ferromagnetic bits.Comment: 21 pages, 11 figure

    Nucleation of magnetisation reversal, from nanoparticles to bulk materials

    Get PDF
    We review models for the nucleation of magnetisation reversal, i.e. the formation of a region of reversed magnetisation in an initially magnetically saturated system. For small particles models for collective reversal, either uniform (Stoner-Wohlfarth model) or non-uniform like curling, provide good agreement between theory and experiment. For microscopic objects and thin films, we consider two models, uniform (Stoner-Wohlfarth) reversal inside a nucleation volume and a droplet model, where the free energy of an inverse bubble is calculated taking into account volume energy (Zeeman energy) and surface tension (domain wall energy). In macroscopic systems, inhomogeneities in magnetic properties cause a distribution of energy barriers for nucleation, which strongly influences effects of temperature and applied field on magnetisation reversal. For these systems, macroscopic material parameters like exchange interaction, spontaneous magnetisation and magnetic anisotropy can give an indication of the magnetic coercivity, but exact values for nucleation fields are, in general, hard to predict.Comment: 12 pages; Published in a Special Issue of the C. R. Physique devoted to nucleation. C.R. Physique 7, 977 (2006). Corrected version, as publishe

    Nonlinear acousto-magneto-plasmonics

    Full text link
    We review the recent progress in experimental and theoretical research of interactions between the acoustic, magnetic and plasmonic transients in hybrid metal-ferromagnet multilayer structures excited by ultrashort laser pulses. The main focus is on understanding the nonlinear aspects of the acoustic dynamics in materials as well as the peculiarities in the nonlinear optical and magneto-optical response. For example, the nonlinear optical detection is illustrated in details by probing the static magneto-optical second harmonic generation in gold-cobalt-silver trilayer structures in Kretschmann geometry. Furthermore, we show experimentally how the nonlinear reshaping of giant ultrashort acoustic pulses propagating in gold can be quantified by time-resolved plasmonic interferometry and how these ultrashort optical pulses dynamically modulate the optical nonlinearities. The effective medium approximation for the optical properties of hybrid multilayers facilitates the understanding of novel optical detection techniques. In the discussion we highlight recent works on the nonlinear magneto-elastic interactions, and strain-induced effects in semiconductor quantum dots.Comment: 30 pages, 12 figures, to be published as a Topical Review in the Journal of Optic

    Nonlocal magnetization dynamics in ferromagnetic heterostructures

    Full text link
    Two complementary effects modify the GHz magnetization dynamics of nanoscale heterostructures of ferromagnetic and normal materials relative to those of the isolated magnetic constituents: On the one hand, a time-dependent ferromagnetic magnetization pumps a spin angular-momentum flow into adjacent materials and, on the other hand, spin angular momentum is transferred between ferromagnets by an applied bias, causing mutual torques on the magnetizations. These phenomena are manifestly nonlocal: they are governed by the entire spin-coherent region that is limited in size by spin-flip relaxation processes. We review recent progress in understanding the magnetization dynamics in ferromagnetic heterostructures from first principles, focusing on the role of spin pumping in layered structures. The main body of the theory is semiclassical and based on a mean-field Stoner or spin-density--functional picture, but quantum-size effects and the role of electron-electron correlations are also discussed. A growing number of experiments support the theoretical predictions. The formalism should be useful to understand the physics and to engineer the characteristics of small devices such as magnetic random-access memory elements.Comment: 48 pages, 21 figures (3 in color

    Domain wall behaviour in ferromagnetic nanowires with interfacial and geometrical structuring

    Get PDF
    The magnetic behaviour in nanoscale structures is of great interest for the fundamental understanding of magnetisation processes and also has importance for wide ranging technological applications. This thesis examines mechanisms for the enhanced control of domain walls in these structures via focussed ion beam modifications to magnetic nanowires and through the inclusion of periodic geometrical modifications to the nanowires geometry. A detailed investigation into the effect of focussed ion beam irradiation on the structure of NiFe/Au bilayers was performed through x-ray reflectivity and fluorescence techniques. This analysis revealed the development of interfacial intermixing with low dose irradiation. This is associated with complex changes of the magnetic behaviour including a rapid decrease, followed by a recovery of the saturation magnetisation with low dose irradiation. This behaviour is attributed to changes in the local environment of the atoms at the interface; resulting in modifications to the magnetic moment on Ni and Fe. The development of an induced moment on Au and a change in the spin-orbit interaction is also suggested. Localised control of the magnetic properties in nanowires demonstrates the ability to manipulate domain walls in these structures. Here, irradiated regions provide pinning sites where the width and dose of the irradiated region give control over the pinning potential. The inclusion edge modulation to nanowires geometry provides additional control over their magnetic behaviour. The direct magnetisation reversal field of these structures is explained by an analytical model based on the torque on the spins following the modulated wire geometry. This model is scalable for different modulation parameters and combines with the effect of localised regions of orthogonal anisotropy along the wire; explaining the reversal behaviour over the entire parameter space. Domain wall mediated reversal in modulated wires was also investigated in these structures. The inclusion of modulation shows an improvement in dynamic properties by the suppression of Walker breakdown. This is due to the relationship between geometrical modulations and the periodicity of micromagnetic domain wall structural changes during the Walker breakdown process. The combination of this work shows a route to the optimisation of the dynamic properties whilst minimising the detrimental increase in the de-pinning field from the modulation

    A Comprehensive Study of Magnetic and Magnetotransport Properties of Complex Ferromagnetic/Antiferromagnetic- IrMn-Based Heterostructures

    Get PDF
    Manipulation of ferromagnetic (FM) spins (and spin textures) using an antiferromagnet (AFM) as an active element in exchange coupled AFM/FM heterostructures is a promising branch of spintronics. Recent ground-breaking experimental demonstrations, such as electrical manipulation of the interfacial exchange coupling and FM spins, as well as ultrafast control of the interfacial exchange-coupling torque in AFM/FM heterostructures, have paved the way towards ultrafast spintronic devices for data storage and neuromorphic computing device applications.[5,6] To achieve electrical manipulation of FM spins, AFMs offer an efficient alternative to passive heavy metal electrodes (e.g., Pt, Pd, W, and Ta) for converting charge current to pure spin current. However, AFM thin films are often integrated into complex heterostructured thin film architectures resulting in chemical, structural, and magnetic disorder. The structural and magnetic disorder in AFM/FM-based spintronic devices can lead to highly undesirable properties, namely thermal dependence of the AFM anisotropy energy barrier, fluctuations in the magnetoresistance, non-linear operation, interfacial spin memory loss, extrinsic contributions to the effective magnetic damping in the adjacent FM, decrease in the effective spin Hall angle, atypical magnetotransport phenomena and distorted interfacial spin structure. Therefore, controlling the magnetic order down to the nanoscale in exchange coupled AFM/FM-based heterostructures is of fundamental importance. However, the impact of fractional variation in the magnetic order at the nanoscale on the magnetization reversal, magnetization dynamics, interfacial spin transport, and the interfacial domain structure of AFM/FM-based heterostructures remains a critical barrier. To address the aforementioned challenges, we conduct a comprehensive experimental investigation of chemical, structural, magnetization reversal (integral and element-specific), magnetization dynamics, and magnetotransport properties, combined with high-resolution magnetic imaging of the exchange coupled Ni3Fe/IrMn3-based heterostructures. Initially, we study the chemical, structural, electrical, and magnetic properties of epitaxially textured MgO(001)/IrMn3(0-35 nm)/Ni3Fe(15 nm)/Al2O3(2.0 nm) heterostructures. We reveal the impact of magnetic field annealing on the interdiffusion at the IrMn3/Ni3Fe interface, electrical resistivity, and magnetic properties of the heterostructures. We further present an AFM IrMn3 film thickness dependence of the exchange bias field, coercive field, magnetization reversal, and magnetization dynamics of the exchange coupled heterostructures. These experiments reveal a strong correlation between the chemical, structural and magnetic properties of the IrMn3-based heterostructures. We find a significant decrease in the spin-mixing conductance of the chemically-disordered IrMn3/Ni3Fe interface compared to the chemically-ordered counterpart. Independent of the AFM film thickness, we unveil that thermally disordered AFM grains exist in all the samples (measured up to 35-nm-thick IrMn3 films). We develop an iterative magnetic field cooling procedure to systematically manipulate the orientation of the thermally disordered and reversible AFM moments and thus, achieve tunable magnetic, and magnetotransport properties of exchange coupled AFM-based heterostructures. Subsequently, we investigate the impact of fractional variation in the AFM order on the magnetization reversal and magnetotransport properties of the epitaxially textured ɣ-phase IrMn3/Ni3Fe, Ni3Fe/IrMn3/Ni3Fe, and Ni3Fe/IrMn3/Ni3Fe/CoO heterostructures. We probe the element-specific (FM: Ni and Co, and AFM: Mn) magnetization reversal properties of the exchange coupled Ni3Fe/IrMn3/Ni3Fe/Co/CoO heterostructures in various magnetic field cooled states. We present a detailed procedure for separating the spin and orbital moment contributions for magnetic elements using the XMCD sum rule. We address whether Mauri-type domain walls can develop at the (polycrystalline) exchange coupled Ni3Fe/IrMn3/Ni3Fe interfaces. We further study the impact of magnetic field cooling on the AFM Mn (near L2,3-edges) X-ray absorption spectra. Finally, we employ a combination of in-field high-resolution magnetic force microscopy, magnetooptical Kerr effect magnetometry with micro-focused beam, and micromagnetic simulations to study the magnetic vortex structures in exchange coupled FM/AFM and AFM/FM/AFM disk structures. We examine the magnetic vortex annihilation mechanism mediated by the emergence and subsequent annihilation of the vortex-antivortex (V-AV) pairs in simple FM and exchange coupled FM/AFM as well as AFM/FM/AFM disk structures. We image the distorted magnetic vortex structures in exchange coupled FM/AFM disks proposed by Gilbert and coworkers. We further emphasize crucial magnetic vortex properties, such as handedness, effective vortex core radius, core displacement at remanence, nucleation field, annihilation field, and exchange bias field. Our experimental inquiry offers profound insight into the interfacial exchange interaction, magnetization reversal, magnetization dynamics, and interfacial spin transport of the AFM/FM-based heterostructures. Moreover, our results pave the way towards nanoscale control of the magnetic properties in AFM-based heterostructures and point towards future opportunities in the field of AFM spintronic devices.:1. Introduction 2. Magnetic Interactions and Exchange Bias Effect 3. Materials 4. Experimental Methods 5. Structural, Electrical, and Magnetization Reversal Properties of Epitaxially Textured ɣ-IrMn3/ Ni3Fe Heterostructures 6. Magnetization Dynamics of MgO(001)/IrMn3/Ni3Fe Heterostructures in the Frequency Domain 7. Tunable Magnetic and Magnetotransport Properties of MgO(001)/Ni3Fe/IrMn3/Ni3Fe/ CoO/Pt Heterostructures 8. Element-Specific XMCD Study of the Exchange Couple Ni3Fe/IrMn3/Ni3Fe/Co/CoO Heterostructures 9. Distorted Vortex Structure and Magnetic Vortex Reversal Processes in Exchange Coupled Ni3Fe/IrMn3 Disk Structures 10. Conclusions and Outlook Addendum Acronyms Symbols Publication List Author Information Acknowledgments Statement of Authorshi
    corecore