414 research outputs found

    State and Parameter Estimation for a Class of Nonlinearly Parameterized Systems Using Sliding Mode Techniques

    Get PDF
    In this study, a class of nonlinear parameterized systems is considered where the unknown parameters are parameterized nonlinearly. A stability criteria for time-varying systems is developed based on Perron-Frobenius theorem, and used for designing observers. A particular sliding mode observer with an update law, which can ensure that the sliding motion converges to zero asymptotically, is designed to estimate states and unknown parameters. The developed result is applied to a three-phase inverter system used by China high-speed trains to verify the effectiveness

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    Get PDF

    Nonlinear Model-Based Control for Neuromuscular Electrical Stimulation

    Get PDF
    Neuromuscular electrical stimulation (NMES) is a technology where skeletal muscles are externally stimulated by electrodes to help restore functionality to human limbs with motor neuron disorder. This dissertation is concerned with the model-based feedback control of the NMES quadriceps muscle group-knee joint dynamics. A class of nonlinear controllers is presented based on various levels of model structures and uncertainties. The two main control techniques used throughout this work are backstepping control and Lyapunov stability theory. In the first control strategy, we design a model-based nonlinear control law for the system with the exactly known passive mechanical that ensures asymptotical tracking. This first design is used as a stepping stone for the other control strategies in which we consider that uncertainties exist. In the next four control strategies, techniques for adaptive control of nonlinearly parameterized systems are applied to handle the unknown physical constant parameters that appear nonlinearly in the model. By exploiting the Lipschitzian nature or the concavity/convexity of the nonlinearly parameterized functions in the model, we design two adaptive controllers and two robust adaptive controllers that ensure practical tracking. The next set of controllers are based on a NMES model that includes the uncertain muscle contractile mechanics. In this case, neural network-based controllers are designed to deal with this uncertainty. We consider here voltage inputs without and with saturation. For the latter, the Nussbaum gain is applied to handle the input saturation. The last two control strategies are based on a more refined NMES model that accounts for the muscle activation dynamics. The main challenge here is that the activation state is unmeasurable. In the first design, we design a model-based observer that directly estimates the unmeasured state for a certain activation model. The second design introduces a nonlinear filter with an adaptive control law to handle parametric uncertainty in the activation dynamics. Both the observer- and filter-based, partial-state feedback controllers ensure asymptotical tracking. Throughout this dissertation, the performance of the proposed control schemes are illustrated via computer simulations

    Decentralised adaptive control of a class of hidden leader–follower non-linearly parameterised coupled MASs

    Get PDF
    In this study, decentralised adaptive control is investigated for a class of discrete-time non-linear hidden leader–follower multi-agent systems (MASs). Different from the conventional leader–follower MAS, among all the agents, there exists a hidden leader that knows the desired reference trajectory, while the follower agents know neither the desired reference signal nor which is a leader agent. Each agent is affected from the history information of its own neighbours. The dynamics of each agent is described by the non-linear discrete-time auto-regressive model with unknown parameters. In order to deal with the uncertainties and non-linearity, a projection algorithm is applied to estimate the unknown parameters. Based on the certainty equivalence principle in adaptive control theory, the control for the hidden leader agent is designed by the desired reference signal, and the local control for each follower agent is designed using neighbourhood history information. Under the decentralised adaptive control, rigorous mathematical proofs are provided to show that the hidden leader agent tracks the desired reference signal, all the follower agents follow the hidden leader agent, and the closed-loop system eventually achieves strong synchronisation in the presence of strong couplings. In the end, the simulation results show the validity of this scheme

    A control-theoretical fault prognostics and accommodation framework for a class of nonlinear discrete-time systems

    Get PDF
    Fault diagnostics and prognostics schemes (FDP) are necessary for complex industrial systems to prevent unscheduled downtime resulting from component failures. Existing schemes in continuous-time are useful for diagnosing complex industrial systems and no work has been done for prognostics. Therefore, in this dissertation, a systematic design methodology for model-based fault prognostics and accommodation is undertaken for a class of nonlinear discrete-time systems. This design methodology, which does not require any failure data, is introduced in six papers. In Paper I, a fault detection and prediction (FDP) scheme is developed for a class of nonlinear system with state faults by assuming that all the states are measurable. A novel estimator is utilized for detecting a fault. Upon detection, an online approximator in discrete-time (OLAD) and a robust adaptive term are activated online in the estimator wherein the OLAD learns the unknown fault dynamics while the robust adaptive term ensures asymptotic performance guarantee. A novel update law is proposed for tuning the OLAD parameters. Additionally, by using the parameter update law, time to reach an a priori selected failure threshold is derived for prognostics. Subsequently, the FDP scheme is used to estimate the states and detect faults in nonlinear input-output systems in Paper II and to nonlinear discrete-time systems with both state and sensor faults in Paper III. Upon detection, a novel fault isolation estimator is used to identify the faults in Paper IV. It was shown that certain faults can be accommodated via controller reconfiguration in Paper V. Finally, the performance of the FDP framework is demonstrated via Lyapunov stability analysis and experimentally on the Caterpillar hydraulics test-bed in Paper VI by using an artificial immune system as an OLAD --Abstract, page iv

    Hidden dynamics in models of discontinuity and switching

    Get PDF
    AbstractSharp switches in behaviour, like impacts, stick–slip motion, or electrical relays, can be modelled by differential equations with discontinuities. A discontinuity approximates fine details of a switching process that lie beyond a bulk empirical model. The theory of piecewise-smooth dynamics describes what happens assuming we can solve the system of equations across its discontinuity. What this typically neglects is that effects which are vanishingly small outside the discontinuity can have an arbitrarily large effect at the discontinuity itself. Here we show that such behaviour can be incorporated within the standard theory through nonlinear terms, and these introduce multiple sliding modes. We show that the nonlinear terms persist in more precise models, for example when the discontinuity is smoothed out. The nonlinear sliding can be eliminated, however, if the model contains an irremovable level of unknown error, which provides a criterion for systems to obey the standard Filippov laws for sliding dynamics at a discontinuity
    • …
    corecore