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Abstract— In this paper, a RISE type of tracking controllers
for a class of nonlinear mechanical systems is proposed. The
proposed chattering-free controller provides global asymptotic
tracking in the presence of external disturbances. The proof of
global asymptotic stability is based on a novel approach to the
construction of a Lyapunov function which is parameterized
by a time-varying function of reference and disturbance vector.
The explicit conditions on the controller gains to ensure global
asymptotic tracking are obtained. The simulation results on
a system of three inverted pendulums interconnected by two
springs illustrate the performances of the proposed controller.

I. INTRODUCTION

The proportional-integral-derivative (PID) controllers are
widely used because of their relatively simple implementa-
tion and effectiveness in the vast majority of applications.
A simple model-free decoupled PID feedback controller
with appropriate control gains achieves the constant desired
position without any steady-state error. This is the main
reason why PID controllers are still used in the regulation of
nonlinear mechanical systems [1], [2], [3]. However, PID
controllers cannot render asymptotic stability for tracking
tasks of mechanical systems. Also, PID controllers perform
poor capabilities of dealing with system uncertainties like
external disturbances.

In the case of periodic reference signals and periodic ex-
ternal disturbances of known frequency, a model-free control
approach for mechanical systems is still possible by using
a repetitive learning controllers [4], [5]. Despite the high
precision tracking performances, the main disadvantages of
repetitive controllers is relatively high sensitivity to the
frequency of a periodic signal and aperiodic distortions of
signals.

As a robust control approach, sliding mode control has
been applied to the trajectory tracking control of robot
manipulators [6], [7]. The advantages of using sliding mode
control include robustness with regard to parameter varia-
tions and arbitrary bounded time-varying disturbances. The
main drawback of static sliding mode controllers is chat-
tering phenomenon, caused by the high-frequency control
switching, which may excite unmodeled high frequency
dynamics and even cause system instability. A standard way
for chattering reduction is boundary layer method which
provides smooth control action, but with price of losing
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asymptotic tracking property [8]. In applications of static
sliding mode controllers, there is an inherent trade-off be-
tween zero tracking error and smooth control law and they
cannot be achieved simultaneously.

One approach for chattering reduction without losing
asymptotic stability is higher-order sliding-mode control [9].
The main disadvantage of this approach is that the imple-
mentation becomes complex, since estimation of additional
state information is required using differentiation techniques,
state observers or additional sensors [10].

Another approach, which is motivated by simplicity and
satisfactory performances of PID type of controllers, is
the dynamic sliding PID control [11], [12], or ”the robust
integral of the sign of the error” (RISE) type of control [13],
[14]. These controllers have a common feature in control
configuration: a proportional plus a nonlinear integral term.
The part of the controller which includes integration of the
signum function provides chattering-free robust cancelation
of bounded uncertainties and asymptotic convergence of the
tracking error.

In [11] a dynamic sliding PID controller is used to achieve
semi-global asymptotic tracking of robot manipulators with-
out external disturbances. However, the proposed controller
is time-varying and dependent on the state initial conditions.
Also, conditions on controller gains are lower bounded by a
state and time dependent function.

A RISE type of controller is used in [15] for asymptotic
tracking of mechanical systems with nonlinearly parameter-
ized friction model. In [14] a RISE type of controller in
combination with feedforward adaptive controller is used
for asymptotic tracking of mechanical systems with struc-
tured and unstructured uncertainties. In [16] a combination
of RISE feedback controller and neural network is used
for asymptotic tracking of mechanical systems. Recently,
a saturated version of RISE feedback controllers for a
class of second-order nonlinear systems is proposed in [17].
However, all the proposed RISE type of controllers provide
only semi-global asymptotic tracking results. Also, some
controller gains are not lower bounded and asymptotic sta-
bility is guaranteed for sufficiently large values of controller
gains.

In this paper, a RISE type of controller is proposed for
global asymptotic tracking of a class of nonlinear mechanical
systems in the presence of external disturbances. The proof
of global asymptotic stability with explicit conditions on
controller gains is based on a novel approach to construction
of a Lyapunov function which is parameterized by a time-
varying function of reference and disturbance vector.
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Throughout the paper we use the following notation:
‖x‖ =

√
xTx for the Euclidean norm of the vector x ∈ Rn,

‖x‖1 =
∑n
i=1 |xi| for the 1-norm of the vector, ‖x(t)‖M =

max
t
‖x(t)‖, ‖x(t)‖1M = max

t
‖x(t)‖1, λM{A} and λm{A}

for the maximal and minimal eigenvalues, respectively, of the
symmetric positive definite matrix A.

This paper is organized as follows. The dynamics of
the considered class of mechanical systems and its main
properties are presented in Section II. The main results are
presented in Section III, where a class of the RISE controllers
is introduced and conditions for global asymptotic stability
are established. The simulation results are presented in
Section IV. Finally, the concluding remarks are emphasized
in Section V.

II. A CLASS OF NONLINEAR MECHANICAL SYSTEMS

The model of a class of mechanical systems with n degrees
of freedom is represented by

Mq̈ +Dq̇ + g(q) = u(t) + d(t), (1)

where q(t) ∈ Rn is the vector of generalized configuration
coordinates, u(t) ∈ Rn is the vector of applied generalized
forces (e.g., forces in translational and torques in rotational
joints), M ∈ Rn×n is inertia matrix, D ∈ Rn×n is the
viscous friction coefficient matrix (note that this matrix is
always symmetric) and g(q) ∈ Rn is the vector of gravita-
tional and linear elastic forces, obtained as the gradient of
the potential energy U(q) of the mechanical system

g(q) =
∂U(q)
∂q

, (2)

and d(t) ∈ Rn is the vector of external disturbances.
The following properties of the dynamic model (1) are

important for stability analysis (see e.g. [18], [19], [20]).
Property 1. The inertia matrix M is a positive definite

symmetric matrix which satisfies

λm{M}‖z‖2 ≤ zTMz ≤ λM{M}‖z‖2, (3)

for all z ∈ Rn.
Property 2. There exist positive constants kg1 and kg2 such

that the Jacobian of the vector of gravitational and linear
elastic forces

G(q) =
∂g(q)
∂q

, (4)

satisfies
‖G(q)‖ ≤ kg1, ∀ q ∈ Rn, (5)

‖G(q)q̇ −G(qd)q̇d‖ ≤ kg1‖ ˙̃q‖+ kg2‖q̃‖ ‖q̇d‖, (6)

for all q, qd ∈ Rn, where q̃ = q − qd, and the values of the
parameters kg1 and kg2 can be obtained as follows

kg1 = n

(
max
i,j,q

∣∣∣∣∂gi(q)∂qj

∣∣∣∣) , (7)

kg2 = n2

(
max
i,j,k,q

∣∣∣∣∂2gi(q)
∂qj∂qk

∣∣∣∣) . (8)

The property (6) follows straightforward from Corollary
A.1 in [18].

Property 3. If qd(t) ∈ Rn is bounded twice differentiable
vector function, then the first and second time derivative of
the gravitational vector g(qd) can be estimated as follows

‖ġ(qd)‖1 ≤
√
nkg1‖q̇d‖1M , (9)

‖g̈(qd)‖1 ≤
√
nkg1‖q̈d‖1M + kg2‖q̇d‖21M . (10)

The proof of properties (9) and (10) is provided in Appendix.

III. RISE TYPE OF TRACKING CONTROL

A. Main Result

Proposition 1: Consider the dynamic system (1) in closed
loop with decentralized RISE type of controller

u = −K1s−K2q̃ − z, (11)
ż = KIs+K3q̃ +Kρsign(s), (12)

where q̃ = q − qd(t) is the position error, qd(t) is the
time-varying desired position, s = ˙̃q + αq̃ is the slid-
ing variable, α is the constant positive parameter, and
K1,K2,K3,KI ,Kρ ∈ Rn×n are constant positive definite
diagonal gain matrices. The components of vector function
sign(s) = [sign(s1) sign(s2) . . . sign(sn)]T are defined as
follows

sign(si) =

 1, si > 0
0, si = 0

− 1, si < 0
(13)

for si ∈ R, i = 1, 2, ..., n. Assume that external disturbances
d(t) are bounded twice continuously differentiable functions,
and desired positions qd(t) are fourth times continuously
differentiable function. Then, there exist controller gains such
that position error q̃ globally asymptotically converges to
zero. The explicit conditions on controller gains are given
by (41), (42) and (44). �

Note that since all controller gains are diagonal matrices,
the obtained controller is implemented in a fully decentral-
ized fashion. The vector signum function sign(s) satisfies the
following property

λm{Kρ}‖s‖1 ≤ sTKρsign(s) ≤ λM{Kρ}‖s‖1. (14)

Note that in the case when Kρ = 0, the controller (11)-(12)
becomes the conventional linear PID controller.

B. Proof of Main Result

The stability analysis is based on Lyapunov’s direct
method, and can be divided into three parts. First, error
equations for the closed-loop system (1), (11), and (12)
are determined. Second, the Lyapunov function candidate
is proposed. Then, conditions on the controller gains which
ensure the global asymptotic stability are established.

1) Error Equations: By inserting q = q̃+qd(t) in dynamic
equations (1) the following equation is obtained

M ¨̃q +D ˙̃q + h(q, qd) = u+ f(t), (15)

where

f(t) = d(t)−Mq̈d −Dq̇d − g(qd), (16)
h(q, qd) = g(q)− g(qd). (17)
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From definition of the sliding variable s = ˙̃q + αq̃, it
follows

˙̃q = s− αq̃, ¨̃q = ṡ− αs+ α2q̃ (18)

By inserting previous equations in (15), we get

Mṡ+ D̄s− αD̄q̃ + h(q, qd) = u+ f(t), (19)

where D̄ = D−αM . By including the control variable (11)
into the previous equation, the following error equations are
obtained

Mṡ+ K̄1s+ K̄2q̃ + z + h(q, qd) = f(t), (20)
ż = KIs+K3q̃ +Kρsign(s), (21)

where the following notation is introduced

K̄1 = K1 + D̄ = K1 +D − αM, (22)
K̄2 = K2 − αD̄ = K2 − αD + α2M. (23)

Taking the time derivative of the first equation and inserting
second one, we get

Ms̈+K̄1ṡ+KIs+K̄2
˙̃q+K3q̃+Kρsign(s)+ḣ(q, qd)−ḟ(t) = 0

(24)
2) Lyapunov Function Candidate: The following step

is the construction of a Lyapunov function for the error
dynamics (24). First, an output variable y = ṡ + αs =
¨̃q + 2α ˙̃q + α2q̃ with some α > 0 is introduced, and the
inner product between (24) and y is made, resulting in the
following nonlinear differential form

ṡTMs̈+ ṡT K̄1ṡ+ ṡTKIs+ αsTMs̈+ αsT K̄1ṡ

+αsTKIs+ ˙̃qT K̄2
¨̃q + 2α ˙̃qT K̄2

˙̃q + α2 ˙̃qT K̄2q̃ + q̃TK3
¨̃q

+2αq̃TK3
˙̃q + α2q̃TK3q̃ + ṡTKρsign(s) + αsTKρsign(s)

−ṡT ḟ(t)− αsT ḟ(t) + ṡT ḣ(q, qd) + αsT ḣ(q, qd) = 0.(25)

Some terms in the differential form (25) can be decom-
posed in the following way

sTMs̈=
d

dt

(
sTMṡ

)
− ṡTMṡ, (26)

ṡTMs̈=
d

dt

(
1
2
ṡTMṡ

)
, (27)

ṡTKs=
d

dt

(
1
2
sTKs

)
, (28)

ṡT ḟ(t) =
d

dt

(
sT ḟ(t)

)
− sT f̈(t), (29)

ṡiKρ,iisign(si) =
d

dt
(siKρ,iisign(si)) ,

for i = 1, ..., n, and si 6= 0, (30)

and similar decompositions can be obtained for quadratic
terms depending on vectors q̃ and ˙̃q. Note that the term in
(30) which is differentiated in time (right-hand side of (30))
is indeed differentiable for all si 6= 0. We do not require
differentiability at si = 0, and the equality (30) indeed
excludes these points.

By separating terms in the form of the time derivatives on
the left side of the equality (25) and the rest of the terms on

the right side, we obtain Lyapunov function candidate in the
following form

V =
1
2
ṡTMṡ+ αsTMṡ+

1
2
sT (αK̄1 +KI)s

+
1
2

˙̃qT K̄2
˙̃q + q̃TK3

˙̃q +
1
2
q̃Tα(αK̄2 + 2K3)q̃

+
∑

{i|si 6=0}

[Kρ,iisign(si)− ḟ(t)]si, (31)

Note that with (26)-(30), for all
[
q̃ ˙̃q ¨̃q

]T 6= 0, we have

d

dt
V
(
q̃, ˙̃q, ¨̃q, t

)
= −W

(
q̃, ˙̃q, ¨̃q, t

)
, (32)

where

−W = −ṡT (K̄1 − αM)ṡ− αsTKIs

− ˙̃qT (2αK̄2 −K3) ˙̃q − α2q̃TK3q̃

− αsTKρsign(s) + αsT ḟ(t)− sT f̈(t)
− ṡT ḣ(q, qd)− αsT ḣ(q, qd). (33)

Careful inspection shows that the candidate Lyapunov
function, as defined by (32), is a continuously differentiable
function. More precisely, the complicating non-differentiable
terms which include sign functions are carefully omitted in
the definition of V , what has preserved continuity, implies
differentiability, and therefore (32) is well-defined.

We define x =
[
q̃ ˙̃q ¨̃q

]T
. Note that V (x, t) = 0 if and

only if x = x∗ = 0 (see (34)). To prove global asymptotic
stability to x∗, it is now sufficient to show that V (x, t) > 0
and W (x, t) > 0 for all x 6= x∗.

3) Stability criterion determination: The following step
is determination of sufficient conditions for positive definite-
ness of the function V and W .

We consider function V , which can be rearranged in the
following form

V =
1
2

(ṡ+ αs)T M (ṡ+ αs) +
1
2
sT (αK̄1 +KI − α2M)s

+
1
2

[
q̃
˙̃q

]T [
α(αK̄2 + 2K3) K3

K3 K̄2

] [
q̃
˙̃q

]
+

∑
{i|si 6=0}

[Kρ,iisign(si)− ḟ(t)]si, (34)

and by using properties (3) and (14) we get

V ≥ 1
2
(
αλm{K̄1}+ λm{KI} − α2λM{M}

)
‖s‖2

+
1
2

[
‖q̃‖
‖ ˙̃q‖

]T
R

[
‖q̃‖
‖ ˙̃q‖

]
+ (λm{Kρ} −max

t
‖ḟ(t)‖1)‖s‖1 ≥ 0, (35)

where

R =
[
α(αλm{K̄2}+ 2λm{K3}) λM{K3}

λM{K3} λm{K̄2}

]
> 0 (36)

that will be satisfied when

αλm{K̄1}+ λm{KI} > α2λM{M}, (37)
α(αλm{K̄2}+ 2λm{K3})λm{K̄2} > λM{K3}2,(38)
λm{Kρ} > ‖ḟ(t)‖1M . (39)
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The following step is the condition which ensures that the
time derivative of the Lyapunov function is negative definite
function, i.e. W ≥ 0. Applying properties (3) and (14) we
get

W ≥ (λm{K̄1} − αλM{M}) ‖ṡ‖2 + αλm{KI}‖s‖2

+ (2αλm{K̄2} − λM{K3})
∥∥ ˙̃q
∥∥2

+ α2λm{K3}‖q̃‖2

+
(
αλm{Kρ} −max

t
(α‖ḟ(t)‖1 + ‖f̈(t)‖1)

)
‖s‖1

− ‖ṡ+ αs‖
∥∥∥ḣ(q, qd)

∥∥∥ ≥ 0 (40)

The last term in previous expression can be estimated
using property (6) and triangle inequality

∥∥ ˙̃q
∥∥ ≤ ‖s‖+α ‖q̃‖,∥∥ṡT + αsT

∥∥ ∥∥∥ḣ(q, qd)
∥∥∥ ≤ ‖ṡ+ αs‖ ‖G(q)q̇ −G(qd)q̇d‖

≤ (‖ṡ‖+ α‖s‖)
(
kg1‖ ˙̃q‖+ kg2‖q̇d‖ ‖q̃‖

)
≤ (‖ṡ‖+ α‖s‖)

(
kg1‖s‖+ k̄g2‖q̃‖

)
≤ αkg1‖s‖2 + kg1‖s‖ ‖ṡ‖+ k̄g2‖q̃‖ ‖ṡ‖+ αk̄g2‖q̃‖ ‖s‖

where k̄g2 = αkg1 + kg2‖q̇d‖M is introduced.
If the following conditions are satisfied

2αλm{K̄2} > λM{K3}, (41)
αλm{Kρ} > α‖ḟ(t)‖1M + ‖f̈(t)‖1M , (42)

then (40) is equivalent to

W ≥ 1
2

 ‖s‖‖ṡ‖
‖q̃‖

T Q
 ‖s‖‖ṡ‖
‖q̃‖

 ≥ 0 (43)

when

Q =

 Q11 kg1 αk̄g2
kg1 Q22 k̄g2
αk̄g2 k̄g2 Q33

 > 0 (44)

where

Q11 = 2α(λm{KI} − kg1) > 0, (45)
Q22 = 2(λm{K̄1} − αλM{M}) > 0, (46)
Q33 = 2α2λm{K3} > 0. (47)

The vector norms on the right-hand side of inequality (42)
can be estimated using (16), (9) and (10),

‖ḟ(t)‖1M ≤ λM{M}‖
...
q d‖1M + λM{D}‖q̈d‖1M

+
√
nkg1‖q̇d‖1M + ‖ḋ(t)‖1M , (48)

‖f̈(t)‖1M ≤ λM{M}‖q(4)d ‖1M + λM{D}‖
...
q d‖1M

+
√
nkg1‖q̈d‖1M + kg2‖q̇d‖21M + ‖d̈(t)‖1M .(49)

It can be seen that the conditions (37)-(39) are trivially im-
plied by the conditions (41)-(42) and (46). So, the conditions
(41)-(42), including (44), are the final stability conditions
which guarantee global asymptotic stability.

The gains K̄1 and K̄2 in conditions (46) and (41) can be
replaced by original gains K1 and K2 from definition (22),
so that

2αλm{K2} > 2α2(λM{D}−αλm{M})+λM{K3}, (50)

g

m1

m2
m3

θ1

l1

m10, l10
kL, lL0

lL1

xL

u1

d1(t)

θ2

l2

m20, l20

kR, lR0

lL2

lR2

xR

u2

d2(t)

θ3

l3

m30, l30

lR3

u3

d3(t)

Fig. 1. Three pendulums interconnected by two springs. The origin of
coordinate system is in the joint of base 1.

Q22 = 2(λm{K1}+ λm{D} − 2αλM{M}) > 0. (51)

The gain tuning procedure can be summarized as follows:
(a) Chose some α > 0; (b) Find Kρ which satisfies (42); (c)
Find K1, K3 and KI which satisfy (44); (d) Find K2 which
satisfies (50).

IV. SIMULATION EXAMPLE

We consider a system of three pendulums interconnected
by two springs, as shown in Fig. 1, with dynamic equations

Jiθ̈i +Diθ̇i + gi(q) = ui(t) + di(t), (52)

where gi(q) =
∂U(q)
∂qi

, q = [θ1 θ2 θ3]T , and θi(t) is the

deflection angle of the i-th pendulum measured from its y-
axis, Ji is the inertia moment of the i-th pendulum, Di is
the coefficient of viscous friction of the i-th joint, ui(t) is
the input torque of the i-th motor, di(t) is the i-th torque of
external disturbance, for i = 1, 2, 3.

The potential energy U(q) = U(θ1, θ2, θ3) of the system
is

U(q) = h1 cos(θ1) + h2 cos(θ2) + h3 cos(θ3)

+
kL
2

(√
L11 + L12 − lL0

)2

+
kR
2

(√
L21 + L22 − lR0

)2

,

where
L11 = (xL − lL1 sin(θ1) + lL2 sin(θ2))2,
L12 = (lL1 cos(θ1)− lL2 cos(θ2))2,
L21 = (xR − lR2 sin(θ2) + lR3 sin(θ3))2,
L22 = (lR3 cos(θ3)− lR2 cos(θ2))2,

hi = mig
li
2

+mi0gli0,

Ji =
mil

2
i

3
+mi0l

2
i0.

Parameter mi is the mass of the i-th pendulum, mi0 is
the point mass on the i-th pendulum, li0 is the distance from
the i-th pendulum base to the point mass, li is the length of
the i-th pendulum, for i = 1, 2, 3. Parameters lLi, i = 1, 2
(left spring), is the distance from the spring’s i-th end to
the i-th pendulum base, lRi, i = 2, 3 (right spring) is the
distance from the spring’s i-th end to the i-th pendulum base,
lL0, lR0 are left and right length of the unstretched spring,
respectively, xL is the distance between the pendulums’
bases 1 and 2, xR is the distance between the pendulums’
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bases 2 and 3, kL, kR are left and right spring constants and
g is the gravity acceleration.

The parameter values used in simulations are shown in Ta-
ble I. The desired reference trajectories are qd1(t) = sin(t),
qd2(t) = 0.5 sin(2t), qd3(t) = 0.3 sin(3t). The external
disturbances are d1(t) = 6 sin(2t), d2(t) = 4 sin(3t + 0.1),
d3(t) = 8 sin(t+0.3). The initial conditions are: q1(0) = 0.6,
q2(0) = 0.4, q3(0) = −0.2.

The upper bounds on inertia matrix and derivatives of
gravity vector are estimated as follows: λm{M} = 0.168,
kg1 = 10.57 and kg2 = 10.57. The controller gains are
chosen in agreement with stability conditions: α = 10,
K1 = diag{10, 10, 10}, K2 = diag{10, 10, 10}, K3 =
diag{25, 25, 25}, KI = diag{30, 30, 30}.

In Fig. 2. we can see a comparison of the proposed RISE
controller (Kρ = 50) with the linear PID controller (Kρ =
0) for the case of stabilization (qd1 = 0, qd2 = 0, qd3 =
0) in the presence of external disturbances. It can be seen
that the RISE controller provides asymptotic convergence
toward constant reference state despite the influence of large
disturbances. The asymptotic convergence is possible only
if the control variables completely compensate the external
disturbances, what can be seen in the figure. More precisely,
the right-hand side of the dynamic equations (1), u(t)+d(t),
converge to zero, so that u(t)→ −d(t). On the other hand,
linear PID control cannot asymptotically stabilize the system
in the presence of external disturbances.

Fig. 3. shows the system response in the case of stabiliza-
tion by using the conventional sliding-mode controller

u = −K1s−Kρsign(s). (53)

The system response is very similar as in the case of RISE
controller, but fundamental difference appears in comparison
of control variables. Contrary to conventional sliding-mode
controller, the proposed RISE controller provides continuous
chattering-free control variables without losing asymptotic
convergence.

Fig. 4. shows the performances of the proposed RISE
controller for the case of the trajectory tracking (Kρ = 120)
in the presence of external disturbances. It can be seen that
the RISE controller provides asymptotic convergence toward
reference trajectory by continuous chattering-free control
variables. In this case, control vector asymptotically com-
pensates the function f(t), defined by (16), which includes
dependence on reference trajectory and external disturbances.

V. CONCLUSIONS

In this paper, a class of globally stable chattering-free
RISE type of controllers for a class of nonlinear mechanical
systems has been presented. The stability conditions provides
an explicit procedure for tuning of controller gains in terms
of a few parameters extracted from the system dynamics.
The future work will be oriented toward the extension of
the proposed approach to the more general class of Euler-
Lagrange systems. Also, a more advanced optimization-
based procedure for tuning of controller gains will be ap-
plied.
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Fig. 2. Stabilization in the presence of external disturbances. Comparison
of the RISE controller (Kρ = 50) and the linear PID controller (Kρ = 0).
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Fig. 3. Stabilization in the presence of external disturbances with the
conventional sliding-mode controller.

0 2 4 6
−1.5

−1

−0.5

0

0.5

1

θ 1 (
ra

d)

time (s)

 

 

θ
1

θ
1d

0 2 4 6
−1

−0.5

0

0.5

1

θ 2 (
ra

d)

time (s)

 

 

θ
2

θ
2d

0 2 4 6
−0.4

−0.2

0

0.2

0.4

θ 3 (
ra

d)

time (s)

 

 

θ
3

θ
3d

0 2 4 6
−10

−5

0

5

10

u 1 (
N

m
)

time (s)

 

 

u
1

(−d
1
)

0 2 4 6
−10

−5

0

5

10

u 2 (
N

m
)

time (s)

 

 

u
2

(−d
2
)

0 2 4 6
−10

−5

0

5

10

u 3 (
N

m
)

time (s)

 

 

u
3

(−d
3
)

Fig. 4. Trajectory tracking in the presence of external disturbances with
the RISE controller.
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TABLE I
PARMAMETERS

param. values units param. values units
m1 0.1 kg l1 0.75 m
m2 0.2 kg l2 0.75 m
m3 0.3 kg l3 0.75 m
m10 0.6 kg l10 0.375 m
m20 0.7 kg l20 0.375 m
m30 0.8 kg l30 0.375 m
lL0 1 m lR0 1 m
lL1 0.40 m lL2 0.40 m
lR2 0.40 m lR3 0.40 m
kL 20 N m−1 kR 20 N m−1

D1 10−3 N s m−1 D2 10−3 N s m−1

D3 10−3 N s m−1 g 9.81 m s−2

xL 1.0 m xR 1.0 m

APPENDIX

This Appendix presents a proof of Property 3. The fol-
lowing definitions will be used [21]: ‖x‖∞ = max

i
|xi| for

the ∞-norm of the vector x ∈ Rn, ‖A‖1 = max
j

n∑
i=1

|aij |

for the induced 1-norm of the matrix A ∈ Rn×n. Also, the
following relations between different vector norms will be
used:
‖x‖ ≤ ‖x‖1 ≤

√
n‖x‖ and ‖x‖1 ≤ n‖x‖∞ for x ∈ Rn.

The first derivative of the gravity vector can be estimated
as follows

‖ġ(qd)‖1 ≤
√
n ‖G(qd)q̇d‖ ≤

√
n ‖G(qd)‖ ‖q̇d‖

≤
√
nkg1 ‖q̇d‖ ≤

√
nkg1 ‖q̇d‖1M . (54)

The second derivative of the gravity vector can be esti-
mated as follows

‖g̈(qd)‖1 =
∥∥∥G(qd)q̈d + Ġ(qd)q̇d

∥∥∥
1

≤ ‖G(qd)‖1 ‖q̈d‖1 +
∥∥∥Ġ(qd)

∥∥∥
1
‖q̇d‖1

≤
√
nkg1 ‖q̈d‖1M +

∥∥∥Ġ(qd)
∥∥∥

1
‖q̇d‖1M . (55)

The induced L1 matrix norm in the previous expression can
be estimated as follows∥∥∥Ġ(qd)

∥∥∥
1

= max
j

n∑
i=1

∣∣∣∣q̇Td ∂Gij(qd)∂qd

∣∣∣∣
≤ ‖q̇d‖1 max

j

n∑
i=1

∥∥∥∥∂Gij(qd)∂qd

∥∥∥∥
1

. (56)

Further, by definition of L1 vector norms, it follows∥∥∥∥∂Gij(qd)∂qd

∥∥∥∥
1

=
n∑
k=1

∣∣∣∣∂Gij(qd)∂qk,d

∣∣∣∣
≤ nmax

k

∣∣∣∣∂Gij(qd)∂qk,d

∣∣∣∣ , (57)

and
n∑
i=1

∣∣∣∣∂Gij(qd)∂qk,d

∣∣∣∣ ≤ nmax
i

∣∣∣∣∂Gij(qd)∂qk,d

∣∣∣∣ . (58)

By inserting (57) in (56) and applying (58), it follows∥∥∥Ġ(qd)
∥∥∥

1
≤ n2

(
max
i,j,k,qd

∣∣∣∣∂Gij(qd)∂qk,d

∣∣∣∣) ‖q̇d‖1
≤ n2kg2‖q̇d‖1M (59)

where kg2 is defined by (8). Finally, by inserting (59) in (55),
the property (10) is obtained.
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