
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

IET Control Theory & Applications

                                           

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa34958

_____________________________________________________________

 
Paper:

Zhang, X., Ma, H. & Yang, C. (2017).  Decentralized Adaptive Control of a Class of Hidden Leader-follower

Nonlinearly Parameterized Coupled Multi-agent Systems. IET Control Theory & Applications

http://dx.doi.org/10.1049/iet-cta.2017.0644 

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/96641514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa34958
http://dx.doi.org/10.1049/iet-cta.2017.0644 
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Decentralized Adaptive Control of a Class of Hidden Leader-follower
Nonlinearly Parameterized Coupled Multi-agent Systems

Xinghong Zhang, Hongbin Ma, Chenguang Yang

Abstract— In this paper, decentralized adaptive control is
investigated for a class of discrete-time nonlinear hidden leader-
follower multi-agent systems. Different from the conventional
leader-follower multi-agent system, among all the agents, there
exists a hidden leader that knows the desired reference tra-
jectory, while the followers do not know the desired reference
signal or are not aware of which agent is a leader. The history
information of each agent has an influence on its neighbors.
The dynamics of each agent is described by the nonlinear
discrete-time auto-regressive model with unknown parameters.
In order to deal with the uncertainties and nonlinearity, a
normalized gradient algorithm is applied to estimate the un-
known parameters. Based on the certainty equivalence principle
in adaptive control theory, a decentralized adaptive controller
is designed using neighborhood history information with the
aid of Lyapunov techniques. Under the decentralized adaptive
controller, rigorous mathematical proofs are provided to show
that the output of the hidden leader tracks the desired reference
trajectory and the average value of absolute error between each
agent’s outputs and the corresponding desired signals converges
to zero as time goes on. The closed-loop system eventually
achieves strong synchronization in sense of mean in the presence
of strong couplings. In the end, the simulation results show the
validity of this scheme.

I. INTRODUCTION

In recent years, with the development of artificial intelli-
gence, distributed control and distributed computer networks,
analysis and control design of complex systems especially
multi-agent systems (MASs) have gained more interests from
the researchers in the control community[1], [2], [3], [4],
[5], [6], [7], [8]. In general, control strategies developed
for the multi-agent system (MAS) can be divided into two
architectures: centralized and decentralized. In the central-
ized control, a whole group of agents is controlled using
a powerful station; while in the decentralized control, the
controller should be designed in a decentralized or distributed
manner, and global information may not be available for
all agents. Moreover, each agent should implement its own
control law using only locally available information.

Since MAS is very susceptible to internal uncertainties and
external disturbance, to deal with these uncertainties, adap-
tive control is the key technique. The least squares algorithm
and the gradient algorithm are two important approaches for
estimating the unknown parameters in the adaptive control
system due to their easy-to-use recursive nature. Hence,
studies to these algorithms or related algorithms, e.g. the
least squares algorithm[9], [10], the extended least squares
algorithm[11], the nonlinear least squares algorithm[12],
the distributed gradient algorithm[13], are still active in
the research community. Reviewing the history of adaptive
control theory, adaptive control of linear systems has been
a main stream for several decades since the closed-loop
systems with adaptive controller are usually highly nonlinear
despite of the linearity of the original plant. For instance,

the closed-loop stability of Åström-Wittenmark self-tuning
regulator had been a long-term open problem until the work
of Chen and Guo [14], [15]. Besides, up to now, adaptive
control of nonlinear systems has also drawn much attention
in the research community of adaptive control in the past
decades. However, most results on adaptive control are still
concentrating on dealing with various uncertainties in one
single system, and hence, centralized control is still the main
considered strategy. In fact, because of nonlinear dynamics
of MAS and interactions among agents, exploring on decen-
tralized adaptive control of MAS is of great significance and
difficulties. So far, there are relatively few results found in
[16], [17], [18], etc.

Among MASs, a popular pattern is the leader-follower
MAS. It has been extensively used to represent sys-
tems in many practical applications such as large scale
robotic systems[19], large population stochastic multi-agent
systems[20], [21], formation control of wheeled mobile
robots and multi-agent network[22], [23], evacuation of large
crowd in emergency[24], etc. In the leader-follower MAS,
the leader is usually independent of its followers, but its
behavior affects its followers’ behaviors. Therefore, in order
to achieve the control objective of all the agents, we only
need to control the leader, which transfers the control of the
global system to that of each agent.

Motivated by the works mentioned above, in this paper,
we studied the decentralized adaptive control of the leader-
follower MAS, where agents have self-governed but limited
capability of sensing, decision-making and communicating,
leading to the decentralized control for the whole system. In
other words, control of each agent can only depend on its
own and its neighborhood history information. Due to the
interactions among agents and complexity of performance
indices, it brings intrinsic difficulties and challenges. Only
limited results can be found in [25], [26], etc.

It is worth mentioning that in a leader-follower multi-
agent system, the conventional leader agent is assumed to be
known to and can be sensed by all other agents. In [22], the
leader is known to all other agents and independent of other
agents, and the state of the leader is available to a portion of
followers; if the state of each agent is measurable, under the
authors’ proposed distributed state feedback controllers, the
state of each agent exponentially converges to the state of a
leader. In [27], the behavior of the leader is independent of
the followers and the state of the leader is a known constant;
each follower receives information from its neighbors and the
leader; the authors design a measurement-based distributed
protocol such that as time goes on, each follower’s state will
finally converge to the leader’s state.

In this contribution, the leader-follower problem consid-
ered is different from [22], [27] in terms that the leader agent



is hidden and coupled with other agents. Namely, among all
the agents, there exists a mysterious leader agent and all
the followers are not aware of which agent is a leader, and
the leader affects its neighbors’ behaviors. Only the hidden
leader agent knows the desired reference trajectory, while
the followers do not know the desired reference signal or
who is a leader agent. Consequently, it is more challenging
to achieve global synchronization via decentralized adaptive
control. Under an adjacency matrix of the direct graph, the
output of the hidden leader tracks the desired reference
trajectory successfully, and the whole system eventually
achieves strong synchronization in sense of mean in the
presence of the strong couplings. Only a few ideas and results
can be found in [26].

Different from [26], in this paper, each agent is assumed
to be a nonlinearly parameterized system, in other words,
each agent is assumed to be nonlinear not only with output
dynamics but also with unknown parameters. While, in
[26], each agent is assumed to be linear with unknown
parameters and nonlinear with output dynamics, which is
characterized by a nonlinear function. Obviously, to explore
the decentralized adaptive control of nonlinearly parame-
terized MAS is much more difficult than to study that of
linearly parameterized MAS. Due to such subtle and intrinsic
fundamental difference in the dynamics of the system, the
only given directly update law for the estimated parameters
in [26] may not work or even fail in this paper. To cope with
such challenges, a new normalized gradient algorithm is put
forward to estimate the unknown nonlinearized parameters
in detail.

Most systems mentioned above, e.g. It is worth noting
that most existing studies on adaptive control, distributed
or decentralized control, multi-agent systems focus more on
continuous-time or linear plants, which may bring conve-
nience in technical analysis with mathematical tools like
Lyapunov theory. However, considering the popularity of
nonlinear plants especially nonlinearly-parametrized plants
and the widely-used modern approach of digital control,
discrete-time nonlinearly parameterized MASs are worthy of
in-depth investigation, despite that there are few researches
found in the literature because of the intrinsic difficulties
and challenges involved in this area. To this end, this paper
tries to make a new attempt to pioneer the development of
decentralized adaptive control for nonlinearly parametrized
plants and focuses on the leader-follower architecture with
one hidden leader, with the following contributions high-
lighted below:

1) The decentralized adaptive control has been studied for
a class of hidden leader-follower nonlinearly parameter-
ized coupled MASs. In this MAS, each agent is a non-
linearly parameterized system with strongly couplings
with other agents through its neighbors’ information.
In fact, the hidden leader considered can propagate its
influence to all agents indirectly through its own limited
neighbors rather than directly command all other agents
to follow its desired reference signal.

2) A normalized gradient algorithm is adopted by each
agent to estimate the nonlinearized parameters so as to
provide online identification of each local plant, based
on only available local information from its neighbors,

by minimizing the weighted combination of output
tracking errors and parameter estimation errors, where
a Taylor approximation at the latest parameter estimate
is used to overcome the difficulty of the unknown true
parameters involved.

3) Based on the certainty equivalence principle, the con-
troller of the hidden leader agent is designed by using
its dynamic history information and the desired refer-
ence trajectory, and the adaptive control law of each
following agent is designed by using its dynamics and
its own neighbors’ history information. for decentralized
adaptive control of nonlinearly parameterized coupled
MAS with the aid of Lyapunov technique and the

4) Under the proposed decentralized adaptive control law,
it can be shown that the output of the hidden leader
tracks the bounded desired reference trajectory, and the
average value of absolute error between each agent’s
outputs and the corresponding desired signals converges
to zero as time goes on under some mild conditions on
the nonlinear functions involved and strong connectivity
of the directed graph of the MAS. At last, the whole
system is shown to achieve strong synchronization in
sense of mean in the presence of the strong couplings.

For simplicity, the following notations will be used
throughout this paper: ‖·‖ denotes Euclidean norm of a
matrix; ‖·‖p denotes p-norm of a matrix; λmax(·) (λmin(·))
denotes maximum (minimum) eigenvalue of a matrix; Rm×n
denotes the set of all m×n dimensional real matrices; tr(·)
denotes the trace of a square matrix.

The remainder of this paper is organized as follows.
Firstly, in Section II, some relevant basic definitions and
lemmas are presented with preliminary introduction to some
relevant concepts of algebraic graph theory and hidden
leader-follower problem as well as the model structure and
technical assumptions adopted. Then, Section III describes
the proposed normalized gradient algorithm and illustrate
why it can be used to identify the nonlinearly-parameterized
plant in detail. Consequently, in Section IV, based on the
certainty equivalence principle, the decentralized adaptive
controller is designed where each agent tries to make full
information of its available local information. In Section
V, the main theorems of this paper are presented with
rigorous technical proofs , which are rather involving with
certain techniques such as order estimation, inequalities, and
series analysis. Moreover, to illustrate the applicability of
the proposed decentralized adaptive controller, a concrete
MAS is given in Section VI, and the simulation results
demonstrated the consistence with our theoretical results.
Finally, Section VII concludes this paper by summarizing
the work done and future work to be done.

II. PROBLEM FORMULATION

A. Preliminaries

Definition 2.1: [27] A square matrix Am×m(aij ≥ 0) is
a sub-stochastic matrix if there exists at least one row i such
that

m∑
j=1

aij < 1 and other rows i such that
m∑
j=1

aij = 1.

Let a(k) and b(k) be two discrete-time scalar or vector
sequences defined for all k ∈ N+, where N+ is the set of
all positive integers. Definitions 2.2 — 2.4 refer [28].



Definition 2.2: b(k) is large order of a(k), denoted by
a(k) = O(b(k)), if there are m1 > 0,m2 > 0 and k0 > 0
satisfying ‖a(k)‖ ≤ m1max

k≤k′
‖b(k)‖ + m2,∀k′ > k0. It is

clear to see that a(k) = O(1) implies a(k) is a bounded
sequence.

Definition 2.3: b(k) is small order of a(k), denoted by
a(k) = o(b(k)), if there is a discrete-time function α(k′)
satisfying lim

k′→∞
α(k′) → 0 and k0 > 0 such that ‖a(k)‖ ≤

α(k′) max
k≤k′
‖b(k)‖ ,∀k′ > k0. It is easy to see that a(k) =

o(1) implies a(k) is a sequence converging to zero.
Definition 2.4: a(k) and b(k) are of equivalent order,

denoted by a(k) ∼ b(k), if a(k) = O(b(k)) and a(k) =
O(b(k)). It is obvious that this equivalence relation is re-
flexive, symmetric and transitive, thus, symbol ∼ represents
an equivalence relationship.

It is straightforward to verify the following properties.

O(a(k)) +O(b(k)) = O(a(k) + b(k)) (II.1)

O(a(k))O(b(k)) = O(a(k)b(k)) (II.2)

O(a(k)) + o(a(k)) = O(a(k)) (II.3)

o(a(k))o(b(k)) = o(a(k)b(k)) (II.4)

o(1)O(b(k)) = o(b(k)) (II.5)

O(1)o(b(k)) = o(b(k)) (II.6)

Lemma 2.1: [29] Consider the following iterative system

Y (k + 1) = A(k)Y (k) +B(k) (II.7)

where ‖B(k)‖ = O(1), and A(k)→ A as k →∞. Assume
ρ is the spectral radius of A, i.e., ρ = max |λ(A)| and ρ < 1,
then we can get the order estimation

Y (k + 1) = O(1) (II.8)
Lemma 2.2: If matrix A is nonnegative and irreducible,

then ρ(A) < ‖A‖∞, where ρ(A) stands for the spectral
radius of a matrix A.

B. Algebraic Graph Theory
Under an MAS study, each agent maybe coupled to other

agents through its neighbors’ available information. Let the
communicated topology be represented by a directed graph
from algebraic graph theory. A directed graph G = (V, ε,A)
with a set of N agents V = {1, 2, · · · , N}, and ε = V × V
is a set of M ordered edges of the form (i, j), representing
that agent j has access to the information of agent i. At
the time, we call agent i is agent j′s neighbor. Each agent
has only limited communication capability with access only
to its individual neighborhood information. The set of all
neighbors of agent i is denoted by Ni. Matrix A(aij =
0, 1) ∈ RN×N is an adjacency matrix, whose entries aii = 0,
aij = 1 if (i, j) ∈ ε, and aij = 0 if (i, j) /∈ ε. It
follows directly from the definition of element aij that A
may be a non-symmetric matrix, and that tr(A) = 0. If
agent i is agent j′s neighbor, we would call agent j is
an indegree of agent i. The weighted in-degree matrix is
defined as a diagonal matrix D = diag{d1, d2, · · · , dN} with

di =
N∑
j=1

aij , i = 1, · · · , N .

Definition 2.5: An adjacency matrix A(aij = 0, 1) is a
strongly connected matrix if there exists a path that follows
the direction of the edges of the directed graph such that
agent i and agent j are connected.

C. Hidden leader-follower problem
Let us consider an MAS consisting of N dynamic agents.

The control objective is to synthesize a controller of the
hidden leader agent using its history output and the desired
reference trajectory. And a local control input for each
follower using its own and its neighborhood history informa-
tion. At last, the average value of each agent’s tracking error
between this agent’s output and its corresponding desired
output converges to zero. It is worth mentioning that a
desired reference trajectory y∗(k) is only available to a
hidden leader agent and unknown to other agents and all
the followers are not aware of which agent is one leader
agent.

Define the tracking error between the output yi(k) of agent
i at time k and the corresponding reference trajectory y∗(k)
as

ei(k) = yi(k)− y∗(k) (II.9)

For agent i, its goal is to design a local controller ui(k)
at time k based on its own and its available neighborhood
history information or the desired reference signal, so that
the average tracking error converges to zero as k →∞.

Mathematically speaking,

lim
k→∞

1

k

k∑
k′=1

|ei(k′)| = 0 (II.10)

Define the difference between the output yi(k′) of agent i at
time k′ and the output yj(k′) of agent j at time k′ as

eij(k
′) = yi(k

′)− yj(k′), i 6= j (II.11)

Definition 2.6: [29] If the errors eij(k) satisfy

1

k

k∑
k′=1

|eij(k′)| → 0, k →∞, (II.12)

then we say that this system achieves strong synchronization
in sense of mean.

Definition 2.7: [29] If the errors eij(k) satisfy

1

k

k∑
k′=1

eij(k
′)→ 0, k →∞, (II.13)

then we say that this system achieves weak synchronization
in sense of mean.

D. Problem Statement
To study decentralized adaptive control problem for MAS

with the time-invariant parameters. Consider an MAS con-
sisting of N agents, and dynamic model of agent i is given
by

yi(k + 1) = fi(θi, yi(k), ϕi(k)) + ui(k) (II.14)

where yi(k) ∈ R is the output at time k of agent i. The
unknown time-invarying parameter θi ∈ Rpi×1 is to be
identified for agent i. Agent i needs to design a local control



input ui(k) ∈ R at time k with the available information. If
agent i is neighbor of m agents, then ϕi(k) is a vector of the
outputs from m neighbor agents at time k. Here, fi is internal
structure known nonlinear function, and fi(θi, yi(k), ϕi(k))
is first-order continuously differentiable with respect to cor-
responding θi. Denote Φi(k) , ∂fi(θ,yi(k),ϕi(k))

∂θT |θ=θ̂i(k)
.

Before analyzing decentralized adaptive control for this
MAS, we make some assumptions as follows.

A1: The directed graph of the MAS is strongly connected
so that the adjacent matrix A is irreducible.

A2: The desired reference y∗(k) for the MAS is a bounded
sequence and satisfies y∗(k + 1)− y∗(k) = o(1).

A3: Without loss of generality, it is assumed that the first
agent is a hidden leader who knows the desired reference
y∗(k), while other agents are not aware of the desired
reference or which agent is the leader.

A4: Each Φi(·) is Lipschitz function with Lipschitz coef-
ficient Li.

III. NORMALIZED GRADIENT ALGORITHM

Due to the fact that each agent is assumed to be nonlinear
with unknown parameters, to study the nonlinearly param-
eterized MAS is very difficulty. In this section, we adopt
a normalized gradient algorithm to estimate the unknown
parameters.

Consider a parametric estimator criterion as follow.

Ji(θi) =[yi(k + 1)− fi(θi, yi(k), ϕi(k))− ui(k)]2+

µi

∥∥∥θi − θ̂i(k)
∥∥∥2

(III.1)
where θ̂i(k) denotes the estimation of θi at time k, µi is
weighted factor.

Calculating the Taylor series expansion at θ̂i(k) of func-
tion fi(θi, yi(k), ϕi(k)).

fi(θi, yi(k), ϕi(k)) ∼= fi(θ̂i(k), yi(k), ϕi(k))+

Φi(k)[θi − θ̂i(k)]
(III.2)

where Φi(k) = ∂fi(θ,yi(k),ϕi(k))
∂θT |θ=θ̂i(k)

∈ R1×pi . Putting
Eq. (III.2) into Eq. (III.1), it is easy to obtain that

Ji(θi) ∼= [yi(k + 1)− fi(θ̂i(k), yi(k), ϕi(k))−

Φi(k)(θi − θ̂i(k))− ui(k)]2 + µi

∥∥∥θi − θ̂i(k)
∥∥∥2
(III.3)

Using the gradient algorithm

∇Ji(θi) = 0 (III.4)

that is

[yi(k + 1)− fi(θ̂i(k), yi(k), ϕi(k))− Φi(k)(θi − θ̂i(k))

− ui(k)]Φi(k)− µi(θi − θ̂i(k))T = 0
(III.5)

It is difficult to get the update law of the estimated parameters

θ̂i(k + 1) =

θ̂i(k) +
ΦTi (k)[yi(k + 1)− fi(θ̂i(k), yi(k), ϕi(k))− ui(k)]

µi + ‖Φi(k)‖2
(III.6)

Remark 3.1: Punishment factor µi plays an important role
in the algorithm. Because the linear expansion of function

fi(θi, yi(k), ϕi(k)) at the point θ̂i(k) is approximate to the
nonlinear model, we can choose the appropriate punishment
factor µi to limit the range of θi(k+1)−θ̂i(k). The numerator
of Eq. (III.6) is positive if we take µi > 0, so this algorithm
has no singular case.

IV. DECENTRALIZED ADAPTIVE CONTROLLER

According to Assumption A3, the first agent at time k
knows the reference signal y∗(k), by the certainty equiva-
lence principle to track a desired reference trajectory y∗(k),
we have the controller

u1(k) = −f1(θ̂1(k), y1(k), ϕ1(k)) + y∗(k + 1) (IV.1)

Since other agents are not aware of either the existence
of the leader or the reference trajectory, and their available
neighborhood information are the only external information
available for them. At present, our objective is to design
the controller such that the output of each agent i(i 6= 1)
tightly tracks the average value of the history outputs of
the corresponding agent’s neighbors. Based on the certainty
equivalence principle, we consider the following adaptive
controller.

ui(k) = −fi(θ̂i(k), yi(k), ϕi(k)) + zi(k), i = 2, · · · , N
(IV.2)

where zi(k) is the average value of the outputs of the ith
agent’s neighbors, defined as

zi(k) =
1

di

∑
l∈Ni

yl(k) (IV.3)

where Ni represents the set of agent i neighborhood and

di =
N∑
j=1

aij defined before is the number of agents in Ni,

that is to say, di is the number of agent i’s neighbors.
Remark 4.1: From Eq. (IV.1) and Eq. (IV.2), we can see

that the desired reference signal is only available for the
hidden leader and other agents are not ware of who is a leader
agent nor the desired reference signal. The hidden leader’s
controller is designed using its history information and the
desired signal. Each follower control law is designed using
its dynamics and its own neighbors’ history information.

Define the error signal between the output of agent 1 at
time (k + 1) and the corresponding reference trajectory as

ỹ1(k + 1) = y1(k + 1)− y∗(k + 1) (IV.4)

As for other agents, define the error signal between the output
of agent i at time (k+1) and the average value of the output
at time k of the ith agent’s neighbors as

ỹi(k + 1) = yi(k + 1)− zi(k), i 6= 1 (IV.5)

Substituting Eq. (II.14) and Eq. (IV.1) into Eq. (IV.4), it
yields

ỹ1(k + 1) = f1(θ1, y1(k), ϕ1(k))− f1(θ̂1(k), y1(k), ϕ1(k))
(IV.6)

Putting Eq. (III.2) into Eq. (IV.6), it is easy to get that

ỹ1(k + 1) ∼= −Φ1(k)θ̃1(k) (IV.7)

where θ̃1(k) = θ̂1(k)− θ1.



The similar method to Eq. (IV.7), one has

ỹi(k + 1) ∼= −Φi(k)θ̃i(k), i 6= 1 (IV.8)

where θ̃i(k) = θ̂i(k)− θi.
Define

Y (k) = [y1(k), y2(k), · · · , yN (k)]T (IV.9)

Ỹ (k) = [ỹ1(k), ỹ2(k), · · · , ỹN (k)]T (IV.10)

H = [1, 0, · · · , 0]T ∈ RN×1 (IV.11)

And denote

Λ ,


0 0 · · · 0
0 1
d2
· · · 0

...
...

. . .
...

0 0 · · · 1dN

 (IV.12)

then the product matrix

ΛA =


0 0 · · · 0
0 1
d2
· · · 0

...
...

. . .
...

0 0 · · · 1dN




0 a12 · · · a1N
a21 0 · · · a2N

...
...

. . .
...

aN1 aN2 · · · 0



=


0 0 · · · 0
1
d2
a21 0 · · · 1d2 a2N
...

...
. . .

...
1
dN
aN1

1
dN
aN2 · · · 0

 (IV.13)

where A is an adjacent matrix of MAS consisting of N
agents, the dynamic system of agent i is defined in Eq.
(II.14). And

ΛAY (k) =


0 0 · · · 0
1
d2
a21 0 · · · 1d2 a2N
...

...
. . .

...
1
dN
aN1

1
dN
aN2 · · · 0



y1(k)
y2(k)

...
yN (k)



=


0

1
d2

∑
l∈N2

yl(k)

...
1
dN

∑
l∈NN

yl(k)

 (IV.14)

From Eq. (IV.2) and Eq. (IV.14), it is obvious to obtain that
0

z2(k)
...

zN (k)

 = ΛAY (k) (IV.15)

which together with Eq. (IV.4) and Eq. (IV.5), the closed-
loop MAS can be written as
y1(k + 1)
y2(k + 1)

...
yN (k + 1)

 =


0

z2(k)
...

zN (k)

+


1
0
...
0

 y∗(k+1)+


ỹ1(k + 1)
ỹ2(k + 1)

...
ỹN (k + 1)


(IV.16)

that is

Y (k + 1) = ΛAY (k) +Hy∗(k + 1) + Ỹ (k + 1) (IV.17)

V. ANALYSIS OF CONTROL PERFORMANCE

Up to now, we have obtained the update law for the
estimated parameters and designed the decentralized adaptive
control. The control performances for the MAS are analyzed
in this section.

Theorem 5.1: Under Assumptions A1 − A4, the closed-
loop MAS consisting of N open loop systems in Eq. (II.14),
parameter estimates update law in Eq. (III.6), decentralized
adaptive control law defined in Eq. (IV.1) and Eq. (IV.2), the
control objective given by Eq. (IV.13) is achieved.

To make mathematical analysis, the proofs of this main
results are divided into two steps. In the first step, we show
that ỹi(k) → 0, which implies y1(k) − y∗(k) → 0, that is,
output of the hidden leader at time k tracks the reference
trajectory y∗(k).

In the second step, although yi(k) − y∗(k) → 0 cannot

be expected, the control objective lim
k→∞

1
k

k∑
k′=1

|ei(k′)| = 0 is

achieved.
Proof: Step 1: Consider a Lyapunov candidate

Vi(k) =
∥∥∥θ̃i(k)

∥∥∥2 (V.1)

The difference of Lyapunov function is

4Vi(k) = Vi(k)− Vi(k − 1)

=
∥∥∥θ̃i(k)

∥∥∥2 − ∥∥∥θ̃i(k − 1)
∥∥∥2

=
∥∥∥θ̃i(k)− θ̃i(k − 1)

∥∥∥2 + 2θ̃i(k − 1)[θ̃i(k)− θ̃i(k − 1)]

(V.2)
Because of θ̃i(k) = θ̂i(k)− θi, obviously,

θ̃i(k)− θ̃i(k − 1) = θ̂i(k)− θ̂i(k − 1) (V.3)

Putting Eq. (V.3) into Eq. (V.2), one has

4Vi(k) =∥∥∥θ̂i(k)− θ̂i(k − 1)
∥∥∥2 + 2θ̃i(k − 1)[θ̂i(k)− θ̂i(k − 1)]

(V.4)
By the update law Eq. (III.6), the difference of the Lyapunov
function can be written as

4Vi(k) =

=
‖Φi(k − 1)‖2 ỹ2i (k)

[µi + ‖Φi(k − 1)‖2]2
+ 2θ̃Ti (k − 1)

ΦTi (k − 1)ỹi(k)

µi + ‖Φi(k − 1)‖2

(V.5)
Substituting Eq. (IV.7) and Eq. (IV.8) into the right side of
the above equation, it is easy to get

4Vi(k) = − ỹ2i (k)

µi + ‖Φi(k − 1)‖2
≤ 0 (V.6)

From the above equation, it is easy to see the difference
of Lyapunov function is nonpositive, so Lyapunov function
is bounded, which implies

∥∥∥θ̃i(k)
∥∥∥ is bounded. Thus, θ̂i(k)

is bounded.



Taking summation on both sides of Eq. (V.6), after some
simple manipulations, it is easy to see that

∞∑
k=1

ỹ2i (k)

µi + ‖Φi(k − 1)‖2
≤ Vi(0) (V.7)

By one property of the positive term series, it is easy to
know that Eq. (V.7) implies

lim
k→∞

ỹ2i (k)

µi + ‖Φi(k − 1)‖2
= 0 (V.8)

or
ỹi(k) = αi(k)[µi + ‖Φi(k − 1)‖2] 12 (V.9)

where αi(k) ∈ L2[0,∞).
According to Assumption A4, the Lipschitz condition of

Φi(·), it is clear to obtain the order estimation

Φi(k) = O(yi(k) + ϕi(k)) (V.10)

thus, it is simple to see

(µi + ‖Φi(k − 1)‖2) 12 = µi +O(yi(k) + ϕi(k − 1))
(V.11)

By Eq. (II.5) and Eq. (V.9), we can obtain that

ỹi(k) = o(1) + o(yi(k) + ϕi(k − 1)) (V.12)

Because of o(ϕi(k−1)) ∼
∑
l∈Ni

o(yl(k−1)), Eq. (V.12) can

be written as
ỹ1(k)
ỹ2(k)
...
ỹN (k)

 ∼

o(1) o(a12) · · · o(a1N )
o(a21) o(1) · · · o(a2N )
...

...
. . .

...
o(aN1) o(aN2) · · · o(1)



y1(k − 1)
y2(k − 1)
...
yN (k − 1)

+

(V.13)
o(1)
o(1)
...
o(1)

 (V.14)

=


o(1) 0 · · · 0
0 o(1) · · · 0
...

...
. . .

...
0 0 · · · o(1)




1 a12 · · · a1N
a21 1 · · · a2N
...

...
. . .

...
aN1 aN2 · · · 1



y1(k − 1)
y2(k − 1)
...
yN (k − 1)

+

(V.15)
o(1)
o(1)
...
o(1)

 (V.16)

that is

Ỹ (k) ∼diag[o(1), o(1), · · · , o(1)](A+ I)Y (k − 1)+

[o(1), o(1), · · · , o(1)]T

(V.17)
Putting Eq. (V.17) into Eq. (IV.17), it is easy to have

Y (k + 1) ={ΛA+ diag[o(1), o(1), · · · , o(1)](A+ I)}Y (k)

+ [y∗(k + 1) + o(1), o(1), · · · , o(1)]T

(V.18)

It is easy to know that

{ΛA+ diag[o(1), o(1), · · · , o(1)](A+ I)}Y (k)→ ΛAY (k)
(V.19)

as k →∞, and according to Assumption A2,

(y∗(k + 1) + o(1), o(1), · · · , o(1))T = O(1) (V.20)

thus
Y (k + 1) = ΛAY (k) +O(1) (V.21)

From Eq. (IV.13) and Definition 2.1, it is easy to get the
product matrix ΛA is a sub-stochastic matrix; according to
Assumption A1, it is obvious to see the product matrix ΛA
is irreducible. Thus, by Lemma 2.2, ρ(ΛA) < ‖ΛA‖∞ = 1,
which together with Lemma 2.1, it is clear to get that

Y (k + 1) = O(1) (V.22)

Combining Eq. (V.17) and Eq. (V.22), it yields that

Ỹ (k) = (o(1), o(1), · · · , o(1))T (V.23)

that is 
ỹ1(k)
ỹ2(k)

...
ỹN (k)

 =


o(1)
o(1)

...
o(1)

 (V.24)

or 
y1(k)− y∗(k)

y2(k)− z2(k − 1)
...

yn(k)− zN (k − 1)

 =


o(1)
o(1)

...
o(1)

 (V.25)

From Eq. (V.25), it is easy to see that

ỹ1(k) = y1(k)− y∗(k)→ 0 (V.26)

and

ỹi(k) = yi(k)− zi(k − 1)→ 0, i 6= 1 (V.27)

Remark 5.1: From Eq. (V.26) we can see the output of
the hidden leader tracks the desired reference signal. From
Eq. (V.27) we can find that each follower follows the average
value of its own neighborhood history outputs.
Step 2: Define the error between each agent’s output yi(k)
and the hidden leader’s output y1(k) as follows.

e11(k)
e21(k)

...
eN1(k)

 ,

y1(k)− y1(k)
y2(k)− y1(k)

...
yN (k)− y1(k)

 (V.28)

that is

E(k) = Y (k)− [1, 1, · · · , 1]T y1(k)

= [e11(k), e21(k), · · · , eN1(k)]T
(V.29)

or
e11(k) = y1(k)− y1(k) = 0 (V.30)

ei1(k) = yi(k)− y1(k), i 6= 1 (V.31)

By Eq. (IV.16), we have

yi(k + 1) = zi(k) + ỹi(k + 1), i 6= 1 (V.32)



Combining Eq. (V.32) and Eq. (V.31), thus

ei1(k + 1) = zi(k)− y1(k + 1) + ỹi(k + 1), i 6= 1 (V.33)

which together with Eq. (IV.15) yields

E(k + 1) =ΛAY (k)− [0, 1, · · · , 1]T y1(k + 1)+

diag(0, 1, · · · , 1)Ỹ (k + 1)
(V.34)

After some simple calculations, one has

E(k + 1) =ΛAY (k)− [0, 1, · · · , 1]T y1(k)+

[0, 1, · · · , 1]T y1(k)− [0, 1, · · · , 1]T y1(k + 1)+

diag(0, 1, · · · , 1)Ỹ (k + 1)

=ΛAY (k)− [0, 1, · · · , 1]T y1(k)+

[0, 1, · · · , 1]T (y1(k)− y1(k + 1))+

diag(0, 1, · · · , 1)Ỹ (k + 1)
(V.35)

Noting that 
0
1
...
1

 = ΛA


1
1
...
1

 (V.36)

thus Eq. (V.35) can be written as

E(k + 1) =ΛAY (k)− ΛA[1, 1, · · · , 1]T y1(k)+

[0, 1, · · · , 1]T (y1(k)− y1(k + 1))+

diag(0, 1, · · · , 1)Ỹ (k + 1)

(V.37)

According to Assumption A2, one has

y1(k)− y1(k + 1)

= y1(k)− y∗(k)− y1(k + 1) + y∗(k + 1) + y∗(k)−
y∗(k + 1) = o(1)

(V.38)
which together with Eq. (V.23) and Eq. (V.37), it is clear to
get that

E(k + 1) =ΛA{Y (k)− [1, 1, · · · , 1]T y1(k)}+
[o(1), o(1), · · · , o(1)]T

(V.39)

By Eq. (V.29), Eq. (V.39) can be written in the following
form

E(k + 1) = ΛAE(k) + [o(1), o(1), · · · , o(1)]T (V.40)

The spectral radius ρ of the product matrix ΛA is less than
1. And we know that there exists a matrix norm ‖·‖p such
that

‖E(k + 1)‖p ≤ ρ ‖E(k)‖p + o(1) (V.41)

After some manipulations, it is easy to obtain that

k+1∑
k′=1

‖E(k′)‖p ≤ ρ
k∑

k′=1

‖E(k′)‖p + o(k) + ‖E(0)‖p
(V.42)

Define

S(k) =

k∑
k′=1

‖E(k′)‖p (V.43)

Putting Eq. (V.43) into Eq. (V.42), Eq. (V.42) can be written
as

S(k + 1) ≤ ρS(k) + o(k) + C (V.44)

where C = ‖E(0)‖p. From Eq. (V.44), it is easy to see that

S(2) ≤ ρS(1) + α(1) + C (V.45)

S(3) ≤ ρS(2) + α(2) + C

≤ ρ(ρS(1) + α(1) + C) + α(2) + C

≤ ρ2S(1) + (ρα(1) + α(2)) + (ρ+ 1)C

(V.46)

Using the same method to Eq. (V.46), it is difficult to get
that

S(k) ≤ρk−1S(1) + (ρk−2α(1) + ρk−3α(2) + · · ·+
α(k − 1)) + (ρk−2 + ρk−1 + · · ·+ 1)C

=ρk−1S(1) +

k−2∑
k=0

ρkα(k − k′ − 1) +
(1− ρk−1)C

1− ρ
(V.47)

where α(k) ∈ L2[0,∞), α(k) = o(k) is guaranteed as k →
∞. Using the Schwartz’s inequality, the second term on the
right-hand side of the above equation can be estimated by
k−2∑
k′=0

ρkα(k − k′ − 1) ≤ (

k−2∑
k=0

ρ2k
′
)
1
2 (

k−2∑
k′=0

α2(k − k′ − 1))
1
2

(V.48)
Putting Eq. (V.48) into Eq. (V.47), one has

S(k) ≤ρk−1S(1) + (

k−2∑
k=0

ρ2k
′
)
1
2 (

k−2∑
k′=0

α2(k − k′ − 1))
1
2+

(1− ρk−1)C
1− ρ

(V.49)
Taking the limit on both sides of the above equation, it is
easy to get that

lim
k→∞

S(k) ≤o(1) +
1

(1− ρ2) 12
lim
k→∞

(

k−2∑
k′=0

α2(k − k′ − 1))
1
2

+
C

1− ρ
(V.50)

Noting that α(k) ∈ L2[0,∞), α(k) = o(k) for k →∞, thus

S(k) = o(1) + o(k) +
C

1− ρ (V.51)

in other words,
S(k)

k
= o(1) (V.52)

which together with Eq. (V.43) and Definition 2.3, it is easy
to obtain that for k′ →∞,

1

k

k∑
k′=1

‖E(k′)‖p → 0 (V.53)

According to the equivalence among norms, we have

1

k

k∑
k′=1

‖E(k′)‖2 → 0 (V.54)



By Eq. (V.29), it is obvious to see that for k →∞,

1

k

k∑
k′=1

|ei1(k′)| → 0 (V.55)

Combining Eq. (V.30) and Eq. (V.31), it yields
ei1(k) = yi(k)− y1(k)

= yi(k)− y∗(k) + y∗(k)− y1(k)

= yi(k)− y∗(k)− ỹ1(k)

= ei(k)− ỹ1(k)

(V.56)

which leads to

ei(k) = ei1(k) + ỹ1(k) (V.57)

1

k

k∑
k′=1

|ei(k′)| =
1

k

k∑
k′=1

|ei1(k′) + ỹ1(k
′)|

≤ 1

k

k∑
k′=1

|ei1(k′)|+
1

k

k∑
k′=1

|ỹ1(k′)|

(V.58)

Noting that Eq. (V.26) and Eq. (V.55), then for k′ →∞,

1

k

k∑
k′=1

|ei(k′)| → 0 (V.59)

Theorem 5.2: Under the conditions of Theorem 5.1, then
the closed-loop system achieves strong synchronization in
sense of mean, i.e.,

1

k

k∑
k′=1

|eij(k′)| → 0 (V.60)

Proof: From Eq. (II.11), we know that the error between
the output of agent i and the output of agent j, that is

eij(k
′) = yi(k

′)− yj(k′)
= yi(k

′)− y∗(k)− (yj(k
′)− y∗(k))

= ei(k
′)− ej(k′)

(V.61)

Obviously,

|eij(k′)| ≤ |ei(k′)|+ |ej(k′)| (V.62)

After some simple manipulations and by Eq. (V.59), one has

lim
k→∞

1

k

k∑
k′=1

|eij(k′)| ≤ lim
k→∞

1

k

k∑
k′=1

(|ei(k′)|+ |ej(k′)|)

= lim
k→∞

1

k

k∑
k′=1

|ei(k′)|+ lim
k→∞

1

k

k∑
k′=1

|ej(k′)|

= 0
(V.63)

The Eq. (V.60) is completed. Thus, by Definition 2.6, this
closed-loop system achieves strong synchronization in sense
of mean.

Remark 5.2: Up to now, only the hidden leader knows
the desired reference trajectory, while other agents are not
aware of the desired reference trajectory and who is the
leader agent. Eventually the whole system achieves strong
synchronization in sense of mean.

Remark 5.3: From Definition 2.6 and 2.7, it is easy to
know this system achieves weak synchronization in sense of
mean, too.

VI. SIMULATION RESULTS

To illustrate the output of the hidden leader tracks the de-
sired reference trajectory, the whole system achieves strong
synchronization in sense of mean. An MAS with nonlinearly
parameterized couplings is considered. It is assumed that
there are five agents, among which, each agent’s output
affects the outputs of the corresponding neighbors. The
structure of each agent is given as follows.

yi(k + 1) = fi(θi, ϕi(k)) + ui(k) (VI.1)

where
θ1 = 1

θ2 = 2

θ3 = 3

θ4 = 4

θ5 = 5

f1(k) = θ1y1(k) + sin(θ1y4(k))

f2(k) = y2(k) + θ2e
−|y3(k)| + cos(θ2y5(k))

f3(k) = θ3y3(k) + cos(θ3y1(k)) + e−y4(k)

f4(k) = θ4y4(k) + e−y4(k) + cos(y2(k))

f5(k) = θ5y5(k) + sin(y3(k)) + cos(y2(k))

(VI.2)

Obviously, from the above-mentioned dynamic model, we
know the adjacency matrix

A =


0 0 0 1 0
0 0 1 0 1
1 0 0 1 0
0 1 0 0 0
0 1 1 0 0

 (VI.3)

Firstly, by Definition 2.5, this multi-agent system is strongly
connected, that is to say, this plant satisfies Assumption A1.
Secondly, here, we take the desired reference trajectory as
y∗(1) = 21, y∗(k + 1) = 20 + (−1)k+1

k , and thus this signal
satisfies Assumption A2. Thirdly, the first agent, which is
the hidden agent, knows that y∗(1) = 21, y∗(k + 1) =

20 + (−1)k+1
k , while other agents are not aware of y∗(1) =

21, y∗(k + 1) = 20 + (−1)k+1
k or who is a leader agent, and

thus, Assumption A3 holds. Lastly, it is easy to check that
Assumption A4 holds.

The initial outputs are set as [1, 1, 1, 1, 1]T . The initial
parameter estimates are set as [0, 0, 0, 0, 0]T . We estimate
the parameters using the update law defined by Eq. (III.6)
with µ1 = 0.7, µ2 = 0.6, µ3 = 0.5, µ4 = 0.4, µ5 = 0.3.

The parameter tracking errors of all five agents are shown
in Fig. 1 - Fig. 5. As we can see, for each agent, the
parameter estimation tends to converge toward the true
parameter value as steps increase.

From Fig.6, we can find that the laws defined by Eq.
(IV.1) and Eq. (IV.2) are bounded. As we can see, for each
input control eventually is stable, that is because y∗(k + 1)
converges a fixed value 20 and the error between parame-
ter estimate and the corresponding true parameter value is
almost surely zero.

Fig.7 shows that the first agent’s output, which is the hid-
den leader’s output, tracks the desired trajectory faster than
the followers’ outputs because the hidden leader tracks the



reference directly. The third and fourth agents are connected
with the first agent, but they do not know the first agent
is the leader agent. The other followers are not connected
with the first agent directly, they are connected by their
own neighbors. But whether or no, the closed-loop system
achieves strong synchronization in sense of mean in the
presence of strong couplings.

To sum up, although the desired trajectory is only available
for the hidden leader, and the followers do not know any
information about the leadership of the leader agent or the
desired signal, the local adaptive control law of each agent
can achieve the objective through the nonlinear couplings
among neighboring agents.

Fig. 1. Parameter θ1’s true value and its estimation

Fig. 2. Parameter θ2’s true value and its estimation

Fig. 3. Parameter θ3’s true value and its estimation

VII. CONCLUSIONS

In this paper, we have investigated the decentralized adap-
tive control for a class of hidden leader-follower nonlinearly

Fig. 4. Parameter θ4’s true value and its estimation

Fig. 5. Parameter θ5’s true value and its estimation

Fig. 6. Adaptive decentralized control inputs

Fig. 7. Each agent’s outputs and desired signals

parameterized coupled MASs. The dynamics of each agent
is a nonlinearly parameterized system with strongly coupled
terms through its neighbors’ information. Among all the
agents, there is a hidden leader, which knows the desired
signal. The followers are not aware of which agent is a leader



or the desired reference signal. For each agent, a parameter
update law is proposed to estimate unknown parameter using
the normalized gradient algorithm. Based on the certainty
equivalence principle, for the leader agent, the controller is
designed by its history information and the desired reference
signal. Adaptive control law of each follower is designed us-
ing its dynamics and its own neighbors’ history information.
Under the decentralized control, the whole system achieves
strong synchronization in sense of mean in the presence of
strong couplings.

Since few researchers studied the decentralized adaptive
control for leader-follower nonlinearly parameterized cou-
pled MASs with hidden leader and strong uncertain cou-
plings, as a preliminary work towards understanding such
challenging problems, we only investigated an MAS of this
type without external disturbance. Many unsolved problems
need to be explored in the future, and predictably, these
problems are very difficult in both theoretical analysis and
strict mathematical proof, hence there is a long way to go in
this area, which needs in-depth applications of mathematical
skills from stochastic analysis.

REFERENCES

[1] X. K. Wang, Z. W. Zeng, and Y. R. Cong. Multi-agent distributed co-
ordination control: Developments and directions via graph viewpoint.
Neurocomputing, 199(26):204 – 218, 2016.

[2] C. Y. Wang and Z. T. Ding. H∞ consensus control of multi-agent
systems with input delay and directed topology. Control Theory and
Applications, 10(26):617 – 624, 2016.

[3] Q. Song, J. Cao, and W. W Yu. Second-order leader-following con-
sensus of nonlinear multi-agent systems via pinning control. Systems
& Control Letters, 59:553 – 562, 2010.

[4] W. Ni, X. L. Wang, and C. Xiong. Consensus controllability,
observability and robust design for leader-following linear multi-agent
systems. Automatica, 49:2199–2205, 2013.

[5] H. B. Ma, Y. N. Lv, C. G. Yang, and M. Y. Fu. Decentralized
adaptive filtering for multi-agent systems with uncertain couplings.
Acta Automatica Sinica, 1(1):94 – 105, 2014.

[6] C. L. Liu and F. Liu. Delayed-compensation algorithm for second-
order leader-following consensus seeking under communication delay.
Entropy, 17(6):3752 – 3765, 2015.

[7] Q. Y. Liu, Z. D. Wang, X. He, and D. H. Zhou. Event-based
H∞ consensus control of multi-agent systems with relative output
feedback: The finite-horizon case. IEEE Transactions on Automatic
Control, 60(9):2253 – 2258, 2015.

[8] C. G. Yang, H. B. Ma, and M. Y. Fu. Adaptive predictive control of
periodic NARMA systems using nearest-neighbor compensation. IET
Control Theory and Applications, 7:1 – 16, 2013.

[9] R. Nadakuditi and J. C. Preisig. A channel subspace post-filtering
approach to adaptive least-squares estimation. IEEE Transactions on
Signal Processing, 52(7), July 2004.

[10] C. Y. Li and J. Lam. Stabilization of discrete-time nonlinear uncertain
systems by feedback based on LS algorithm. SIAM J. Control and
Optimization, 51:1128–1151, 2013.

[11] Y. Toshio. Design of an adaptive fuzzy sliding mode control for un-
certain discrete-time nonlinear systems based on noisy measurements.
International Journal of Syetems Science, 47:617–630, 2016.

[12] C. Y. Li and M. Z. Q. Chen. Simulaneous identification and
stabilization of nonlinearly parameterized discrete-time systems by
nonlinear least squares algorithm. IEEE Transaction on Automatica
Control, PP(99):1 – 13, 2015.

[13] P. Yi, Y. G. Hong, and F. Liu. Distributed gradient algorithm for
constrained optimization with application to load sharing in power
systems? Systems & Control Letters, 83:45 – 52, 2015.

[14] L. Guo and H. F. Chen. The Astrorm-Wittenmark self-tuning regulator
revisited and ELS-based adaptive trackers. IEEE Transaction on
Automatic Control, 36(7):802 – 812, 1991.

[15] L. Guo. Convergence and logarithm laws of self-tuning regulators.
Automatica, 31:435 – 450, 1995.

[16] S. J. Liu, J. F. Zhang, and Z. P. Jiang. Decentralized adaptive output-
feedback stabilization for large-scale stochastic nonlinear systems.
Automatica, 43(2):238–251, 2007.

[17] C. Wen and J. Zhou. Decentralized adaptive stabilization in the
presence of unknown backlash-like hysteresis. Automatica, 43(3):426–
440, 2007.

[18] Q. Zhang and J. F. Zhang. Adaptive tracking-type games for coupled
large population ARMAX systems. In 2010 8th IEEE International
Conference on Control and Automation, June 2010.

[19] C. Belta and V. Kumar. Trajectory design for formations of robots by
kinetic energy shaping. In IEEE International Conference on Robotics
and Automation, volume 3, pages 2593–2598, May 2002.

[20] T. Li and J. F. Zhang. Asymptotically optimal decentralized control
for large population stochastic multiagent systems. IEEE Transactions
on Automatic Control, 53(7):1643–1659, 2008.

[21] M. Nourian, P. E. Caines, R. P. Malhamé, and M. Y. Huang. Mean
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