6,308 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Fractional Order Fault Tolerant Control - A Survey

    Get PDF
    In this paper, a comprehensive review of recent advances and trends regarding Fractional Order Fault Tolerant Control (FOFTC) design is presented. This novel robust control approach has been emerging in the last decade and is still gathering great research efforts mainly because of its promising results and outcomes. The purpose of this study is to provide a useful overview for researchers interested in developing this interesting solution for plants that are subject to faults and disturbances with an obligation for a maintained performance level. Throughout the paper, the various works related to FOFTC in literature are categorized first by considering their research objective between fault detection with diagnosis and fault tolerance with accommodation, and second by considering the nature of the studied plants depending on whether they are modelized by integer order or fractional order models. One of the main drawbacks of these approaches lies in the increase in complexity associated with introducing the fractional operators, their approximation and especially during the stability analysis. A discussion on the main disadvantages and challenges that face this novel fractional order robust control research field is given in conjunction with motivations for its future development. This study provides a simulation example for the application of a FOFTC against actuator faults in a Boeing 747 civil transport aircraft is provided to illustrate the efficiency of such robust control strategies

    Recent Advances in Model-Based Fault Diagnosis for Lithium-Ion Batteries: A Comprehensive Review

    Full text link
    Lithium-ion batteries (LIBs) have found wide applications in a variety of fields such as electrified transportation, stationary storage and portable electronics devices. A battery management system (BMS) is critical to ensure the reliability, efficiency and longevity of LIBs. Recent research has witnessed the emergence of model-based fault diagnosis methods in advanced BMSs. This paper provides a comprehensive review on the model-based fault diagnosis methods for LIBs. First, the widely explored battery models in the existing literature are classified into physics-based electrochemical models and electrical equivalent circuit models. Second, a general state-space representation that describes electrical dynamics of a faulty battery is presented. The formulation of the state vectors and the identification of the parameter matrices are then elaborated. Third, the fault mechanisms of both battery faults (incl. overcharege/overdischarge faults, connection faults, short circuit faults) and sensor faults (incl. voltage sensor faults and current sensor faults) are discussed. Furthermore, different types of modeling uncertainties, such as modeling errors and measurement noises, aging effects, measurement outliers, are elaborated. An emphasis is then placed on the observer design (incl. online state observers and offline state observers). The algorithm implementation of typical state observers for battery fault diagnosis is also put forward. Finally, discussion and outlook are offered to envision some possible future research directions.Comment: Submitted to Renewable and Sustainable Energy Reviews on 09-Jan-202

    An LMI approach to Mixed H_∞/H_- fault detection observer design for linear fractional-order systems

    Get PDF
    This study deals with the problem of robust fault detection for linear time-invariant fractional-order systems (FOSs) assumed to be affected by sensor, actuator and process faults as well as disturbances. The observer-based method was employed to solve the problem, where the detector is an observer. The problem was transformed into the mixed  robust optimization problem to make the system disturbance-resistant on one hand and fault-sensitive on the other hand. Then, sufficient conditions were obtained to solve the problem in the linear matrix inequality (LMI) mode. Finally, the effectiveness and superiority of the method were demonstrated by simulating the solutions on a single-input multi-output thermal testing bench
    • …
    corecore