29 research outputs found

    Testing real-time systems using TINA

    Get PDF
    The paper presents a technique for model-based black-box conformance testing of real-time systems using the Time Petri Net Analyzer TINA. Such test suites are derived from a prioritized time Petri net composed of two concurrent sub-nets specifying respectively the expected behaviour of the system under test and its environment.We describe how the toolbox TINA has been extended to support automatic generation of time-optimal test suites. The result is optimal in the sense that the set of test cases in the test suite have the shortest possible accumulated time to be executed. Input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases selection is based either on using manually formulated test purposes or automatically from various coverage criteria specifying structural criteria of the model to be fulfilled by the test suite. We discuss how test purposes and coverage criterion are specified in the linear temporal logic SE-LTL, derive test sequences, and assign verdicts

    Model Checking Markov Chains with Actions and State Labels

    Get PDF
    In the past, logics of several kinds have been proposed for reasoning about discrete- or continuous-time Markov chains. Most of these logics rely on either state labels (atomic propositions) or on transition labels (actions). However, in several applications it is useful to reason about both state-properties and action-sequences. For this purpose, we introduce the logic asCSL which provides powerful means to characterize execution paths of Markov chains with actions and state labels. asCSL can be regarded as an extension of the purely state-based logic asCSL (continuous stochastic logic). \ud In asCSL, path properties are characterized by regular expressions over actions and state-formulas. Thus, the truth value of path-formulas does not only depend on the available actions in a given time interval, but also on the validity of certain state formulas in intermediate states.\ud We compare the expressive power of CSL and asCSL and show that even the state-based fragment of asCSL is strictly more expressive than CSL if time intervals starting at zero are employed. Using an automaton-based technique, an asCSL formula and a Markov chain with actions and state labels are combined into a product Markov chain. For time intervals starting at zero we establish a reduction of the model checking problem for asCSL to CSL model checking on this product Markov chain. The usefulness of our approach is illustrated by through an elaborate model of a scalable cellular communication system for which several properties are formalized by means of asCSL-formulas, and checked using the new procedure

    Space Effective Model Checking for Component-Interaction Automata

    Get PDF
    The techniques of component-based development are becoming a common practice in the area of software engineering. One of the crucial issues in the correctness of such systems is the correct interaction among the components. The formalism of component-interaction automata was devised to model various aspects of such interaction, as well as to allow automated verification in the form of model checking with properties expressed in the component-interaction LTL, a variant of the known linear temporal logic. As the state space of a component-based system can grow exponentially with the number of components, it is desirable to employ reduction techniques to make the verification task more feasible. In our work, we describe the implementation of the ample set partial order reduction method within the component-interaction automata verification framework. Due to the state and action-based nature of both the modelling and specification formalisms, the implementation differs from traditional state-based approaches. After describing the implementation, we present some of the results obtained by employing the enhanced verification framework on a case study

    Definition of an eXecutable SPEM 2.0

    Get PDF
    International audienceOne major advantage of executable models is that once constructed, they can be run, checked, validated and improved in short incremental and iterative cycles. In the field of Software Process Modeling, process models have not yet reached the level of precision that would allow their execution. Recently the OMG issued a new revision of its standard for Software Process Modeling, namely SPEM2.0. However, even if executability was defined as a mandatory requirement in the RFP (Request For Proposal), the adopted specification does not fulfill it. This paper presents a critical analysis on the newly defined standard and addresses its lacks in terms of executability. An approach is proposed in order to extend the standard with a set of concepts and behavioural semantics that would allow SPEM2.0 process models to be checked through a mapping to Petri nets and monitored through a transformation into BPEL

    SDL to Fiacre translation

    Get PDF
    International audienceThe translation of a system model to an intermediate format is an important step towards formal proofs of properties. This paper presents the formulation of rules to enable the translation of SDL standard models to Fiacre language. The translated model is then provided as input to a suitable toolset that performs model checking and other analysis. The formulated translation rules are discussed in view of the correctness of translation and ease of implementation. Implementations of some of the translation rules in an industrial tool (PragmaDev RTDS), and a proof of the concept on a simple SDL model are presented to ascertain the validity of the proposed translation

    A Mechanized Semantic Framework for Real-Time Systems

    Get PDF
    International audienceConcurrent systems consist of many components which may execute in parallel and are complex to design, to analyze, to verify, and to implement. The complexity increases if the systems have real-time constraints, which are very useful in avionic, spatial and other kind of embedded applications. In this paper we present a logical framework for defining and validating real-time formalisms as well as reasoning methods over them. For this purpose, we have implemented in the Coq proof assistant well known semantic domains for real-time systems based on labelled transitions systems and timed runs. We experiment our framework by considering the real-time CSP-based language fiacre, which has been defined as a pivot formalism for modeling languages (aadl, sdl, ...) used in the TOPCASED project. Thus, we define an extension to the formal semantic models mentioned above that facilitates the modeling of fine-grained time constraints of fiacre. Finally, we implement this extension in our framework and provide a proof method environment to deal with real-time system in order to achieve their formal certification

    A model checking approach for verifying COWS specifications

    Get PDF
    We introduce a logical verification framework for checking functional properties of service-oriented applications formally specified using the service specification language COWS. The properties are described by means of SocL, a logic specifically designed to capture peculiar aspects of services. Service behaviours are abstracted in terms of Doubly Labelled Transition Systems, which are used as the interpretation domain for SocL formulae. We also illustrate the SocL model checker at work on a bank service scenario specified in COWS

    A Logical Verification Methodology for Service-Oriented Computing

    Get PDF
    We introduce a logical verification methodology for checking behavioural properties of service-oriented computing systems. Service properties are described by means of SocL, a branching-time temporal logic that we have specifically designed to express in an effective way distinctive aspects of services, such as, e.g., acceptance of a request, provision of a response, and correlation among service requests and responses. Our approach allows service properties to be expressed in such a way that they can be independent of service domains and specifications. We show an instantiation of our general methodology that uses the formal language COWS to conveniently specify services and the expressly developed software tool CMC to assist the user in the task of verifying SocL formulae over service specifications. We demonstrate feasibility and effectiveness of our methodology by means of the specification and the analysis of a case study in the automotive domain

    A Rewriting-Based Model Checker for the Linear Temporal Logic of Rewriting

    Get PDF
    AbstractThis paper presents a model checker for LTLR, a subset of the temporal logic of rewriting TLR* extending linear temporal logic with spatial action patterns. Both LTLR and TLR* are very expressive logics generalizing well-known state-based and action-based logics. Furthermore, the semantics of TLR* is given in terms of rewrite theories, so that the concurrent systems on which the LTLR properties are model checked can be specified at a very high level with rewrite rules. This paper answers a nontrivial challenge, namely, to be able to build a model checker to model check LTLR formulas on rewrite theories with relatively little effort by reusing MaudeÊŒs LTL model checker for rewrite theories. For this, the reflective features of both rewriting logic and its Maude implementation have proved extremely useful
    corecore