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Abstract. The techniques of component-based development are becom-
ing a common practice in the area of software engineering. One of the
crucial issues in the correctness of such systems is the correct interac-
tion among the components. The formalism of component-interaction
automata was devised to model various aspects of such interaction, as
well as to allow automated verification in the form of model checking
with properties expressed in the component-interaction LTL, a variant
of the known linear temporal logic. As the state space of a component-
based system can grow exponentially with the number of components, it
is desirable to employ reduction techniques to make the verification task
more feasible. In our work, we describe the implementation of the ample
set partial order reduction method within the component-interaction au-
tomata verification framework. Due to the state and action-based nature
of both the modelling and specification formalisms, the implementation
differs from traditional state-based approaches. After describing the im-
plementation, we present some of the results obtained by employing the
enhanced verification framework on a case study.

1 Introduction

The demand to shorten the time necessary to develop complex software and to
lower its costs encourages employment of new software development techniques.
One of such techniques is the component-based development, which builds soft-
ware systems out of prefabricated autonomous components that are often devel-
oped without any knowledge of their deployment context. Therefore a great deal
of attention must be paid to their interaction, since correct interaction of the
components plays an important role in the correctness of the system as a whole.

Component-interaction automata [1] represent a formalism designed for spec-
ification of component-based systems. Such models can be used to verify desir-
able properties of the system expressed as formulae of a suitable logic. CoIn
verification environment [2] is based on DiVinE verification framework [3] and
allows model checking of these specifications. The properties are formalized us-
ing a variant of state/event LTL [4] that is better suited for component-based
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systems than pure state-based logics, as we are interested in both the state of
the components and their communication.

The verification tool has to cope with exponential growth of the state space
that is commonly caused by interleaving of independent actions. Ample set
partial-order reduction [5] is one of the state space reduction techniques, which
tries to identify redundant states and omit their generation while preserving
verification properties of the model.

Traditionally, partial order reduction has been used in connection with state-
based models. In [6], we have shown how partial order reduction can be per-
formed on state/event-based models. The goal of this work is to implement this
reduction method into the CoIn verification environment, which is an example of
such formalism. In order to do that, we have to find effective heuristics to check
the conditions for ample sets different from those used in traditional state-based
approaches.

2 Foundations

Modelling and Specification Formalisms We start with describing the
component-interaction automata formalism [1]. Each component is modelled as
a finite labelled transition system equipped with an additional structure on labels
and a hierarchy of names representing the architectural structure.

A component-interaction automaton (CI automaton for short) is a 5-tuple
C = (Q,A, δ,Q0, H) where Q is a finite set of states, A is a finite set of actions,
Σ = ((SH ∪ {−}) × A × (SH ∪ {−})) \ ({−} × A × {−}) is a set of labels,
δ ⊆ Q × Σ × Q is a finite set of labelled transitions, Q0 ⊆ Q is a nonempty
set of initial states, and H is a hierarchy of component names where the set of
component names is denoted by SH .

The semantics of the labels is input, output, or internal, based on their struc-
ture. In the triple, the middle element represents an action name, the first el-
ement represents the name of the component that outputs the action, and the
third element represents the name of the component that inputs the action.

The CI automata can be composed together using a parametrized compo-
sition operator ⊗F . Given a set of feasible labels F and a set of CI automata,
the result of the operation is a product automaton with only labels from F al-
lowed. In the product, the components cooperate either by interleaving of their
original transitions, or by simultaneous execution of two complementary transi-
tions (with labels (n1, a,−), (−, a, n2)) which is represented by a new internal
transition (with label (n1, a, n2)).

As for the property specification logic, we use a variant of the state/event
LTL [4, 6], which is an extension of LTL for reasoning about both properties of
states and actions. Currently, the only state atomic propositions we consider are
the enabledness properties, Ap = {E(l) | l ∈ Σ}. We say that a state satisfies the
property E(l) if an outgoing transition with label l is enabled in that state. We
define a function L : Q→ 2Ap as L(q) = {E(l) | q satisfies E(l)}.
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Partial Order Reduction Technique Our approach follows the ample set
partial order reduction technique as presented in [7]. The basic idea is to view
the verified system as a state transition system in which some of the transition are
invisible, and to reduce the system such that all original behaviour is preserved
with respect to the ordering of visible transitions.

A state transition system is a triple (S, T, S0) where S is a set of states, S0 is
a nonempty set of initial states and T is a set of transitions such that for each
α ∈ T , α ⊆ S × S. Furthermore, for each α ∈ T and for each state s ∈ S there
is at most one s′ ∈ S such that (s, s′) ∈ α. We also write α(s) = s′.

In the traditional state-based approach, the invisible transitions are those
that do not change the state atomic propositions. In the state/event-based ap-
proach [6], each transition is further equipped with an action. The property to be
verified is then supplied with a set of interesting actions Act ′, and the invisible
transitions are those with non-interesting actions that do not change the state
atomic propositions.

Two transitions α and β are said to be independent if whenever α and β are
enabled in s, then also α is enabled in β(s), and α(β(s)) = β(α(s)) for all s.

While exploring the state space of the system, the ample set method works by
selecting only a subset of outgoing transitions from each state. The original set
of outgoing transitions from state s is denoted by enabled(s), the selected subset
is denoted by ample(s). To ensure that the reduction is correct, the following
four conditions must hold.

C0 - nonemptiness ample(s) = ∅ if and only if enabled(s) = ∅.
C1 - dependency Along every path in the full state graph that starts at s,

a transition that is dependent on a transition in ample(s) cannot be executed
without a transition from ample(s) occurring first.

C2 - invisibility If enabled(s) 6= ample(s) then every α ∈ ample(s) is invisible.
C3 - cycle A cycle is not allowed if it contains a state in which some transition

α is enabled, but is never included in ample(s) for any state s on the cycle.

POR and CI automata In our setting, the system consists of a finite set of
simple CI automata (numbered 1, . . . , n) whose state space is described explic-
itly, composed in a hierarchical way. The hierarchical composition is represented
by a number of composite CI automata. The hierarchy can be thus represented
with a tree, the leaves being the simple automata and the root being the CI
automaton representing the whole system.

The (implicit) translation into a state transition systems then works as fol-
lows. The states are n-tuples (s1, . . . , sn) of the states of the simple automata.
The transitions are then of two kinds: those that represent the progression of only
one of the simple automata (simple transitions), and those that represent a syn-
chronization of two simple automata (sync transitions). The simple transitions
can be identified with tuples of the form 〈i, si, s

′
i, l〉 and the sync transitions

with tuples of the form 〈i, j, si, s
′
i, sj , s

′
j , l〉, where i, j are automata numbers,

si, s
′
i, sj , s

′
j their respective states and l is the transition label.
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3 Heuristics and Implementation

Overapproximations of the ample set conditions Some of the original
ample set conditions are difficult to check, especially given that we want to check
them in each state as we build the composite transition system. Therefore we
use an overapproximation of these properties, using modified heuristics from [7].
We keep the condition for C3, but use modified versions for C1 and C2.

Firstly, we have to address the issue of selecting the candidates for ample
sets, as the result helps us to create more elegant overapproximations. Usually,
transitions of a single simple automaton are dependent on each other. Therefore
we use the obvious solution of considering ample sets, which for each automaton
consist of either all its transitions or none. This approach may not be feasible,
though, because the number of subsets of all automata is exponential.

Exploiting the hierarchical structure To further reduce the number of pos-
sible candidates, we take advantage of the tree structure of the composition and
for ample sets consider only the transitions of a single simple or composite au-
tomaton. The selected automaton is denoted by Aut and the set of all simple
automata of which it consists by I. The candidate selection starts with the leaves
(i.e. simple automata) and progresses towards the root of the hierarchy tree.

Dependency predicate The major problem with original heuristics for check-
ing ample sets [7] is that the overapproximation of the dependency condition
(C1) is too restrictive for a system with a lot of synchronization. In fact, only
a very small category of systems of CI automata could ever have ample sets that
are smaller than the full enabled sets, since it effectively says that an automaton
in I that has an enabled action can only ever synchronize with an automaton
in I, no matter whether the synchronization is enabled. We relax this condition
by allowing synchronizations, that could not be performed by automata in I
without them changing their state first.

Definition 1 (dependency condition C1′). Let current i(s) be the set of all
transitions that could be performed by simple automaton i from state si, where
s = (s1, . . . , sn). We define C1′ as ∀i ∈ I ∀α ∈ current i(s) (automata of α ⊆ I).

Lemma 1. Let ample(s) be the set of all enabled transitions that belong to sim-
ple automata in I. Then C1′ implies C1.

Proof. Suppose the opposite: C1′ holds, but C1 does not. Then there is a path
from s on which a transition β dependent on α ∈ ample(s) appears before all
transitions from ample(s). That β is dependent on α means that β and α share
at least one automaton. As C1′ holds, the automaton or automata of α are in I.
Therefore at least one automaton of β, say i, is in I. Clearly, β cannot be enabled
in s, as then it would have to be in ample(s).

Thus, if one automaton of β is not in I, the current state of i needs to change
before β becomes enabled; otherwise β would violate C1′. If all automata of β
are in I, at least one of them has to change its state. However, to change any
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state of an automaton in I, a transition in ample(s) has to be performed first,
since all automata in I can currently synchronize only among themselves, which
leads to a contradiction. ut

Visibility predicate In order to check C2, we need a visibility predicate. As
mentioned in the previous section, all transitions with an interesting action and
all transitions that change the state atomic propositions have to be considered
visible. As usual in the partial order reduction method, we are only interested
in the change of those state atomic propositions that appear in the formula that
is to be verified. However, as we deal with enabledness propositions, which are
properties of the whole state space, we need to use an overapproximation.

Definition 2 (closure). Let the set of all state labels in the formula be denoted
by Ap′. Then an E-closure c of Ap′ is defined as:

c(Ap′) = Ap′ ∪ {E(m, a,−), E(−, a, n) | E(m, a, n) ∈ Ap′}

The visible predicate is then defined as follows.

Definition 3 (visible). Let the set of all state labels in the formula be denoted
by Ap′ and the set of interesting action labels by Act ′. Then, if α = 〈i, si, s

′
i, l〉

is a simple transition:

visible(α) ⇐⇒ l ∈ Act ′ ∨ (L(si) ∩ c(Ap′) 6= L(s′i) ∩ c(Ap′))

and if α = 〈i, j, si, s
′
i, sj , s

′
j , l〉 is a sync transition:

visible(α) ⇐⇒ l ∈ Act ′ ∨ ∃k ∈ {i, j} : (L(sk) ∩ c(Ap′) 6= L(s′k) ∩ c(Ap′))

Lemma 2 (visible is correct). If a transition (s, (m, a, n), s′) in the state space
is visible, the predicate visible(α) holds, where α is the corresponding transition
of the state transition system.

Proof. If a transition (s, (m, a, n), s′) is visible, then either (m, a, n) ∈ Act ′ or
L(s) ∩ Ap′ 6= L(s′) ∩ Ap′. In the first case, visible(α) clearly holds. For the
second case, suppose that there is some E(k, b, l) ∈ L(s)∩Ap′ \L(s′)∩Ap′. That

means that there is a transition s
(k,b,l)−−−−→ t, but there is no (k, b, l) transition

enabled in s′. This transition can be either simple or sync. If it is simple, then

there is some i such that si
(k,b,l)−−−−→ ti and clearly, s′i 6= si, otherwise transition

(k, b, l) would also be enabled in state s′. Thus E(k, b, l) ∈ L(si) ∩ c(Ap′), but
E(k, b, l) 6∈ L(s′i) ∩ c(Ap′) and since s′i 6= si, the transition α must be local for
automaton i and visible(α) holds.

If the (k, b, l) transition is sync, then there have to be i, j such that si
(k,b,−)−−−−→

ti and sj
(−,b,l)−−−−→ tj . As the (k, b, l) transition is not enabled in s′, that means that

either α changes the state of i and s′i has no (k, b,−) transition, or α changes
the state of j and s′j has no (−, b, l) transition. Suppose w.l.o.g. that it is the
case with i. Clearly E(k, b,−) ∈ c(Ap′) by the definition of the closure. But then
E(k, b,−) ∈ L(si)∩ c(Ap′) and E(k, b,−) 6∈ L(s′i)∩ c(Ap′), thus visible(α) holds.
The other cases and directions are similar. ut



6

Checking of C0, C2 and C3 We also slightly change the original approach
to checking the conditions C0, C2 and C3. The first one is trivial to check, since
we only have to determine whether I has any enabled transitions. The other
two are always invalidated by a counterexample transition, which means that
it is sufficient to check them for all enabled transitions once and propagate the
invalidation to all composite automata to which it belongs. These conditions are
checked for all automata before proceeding with the checking of C1, which is
more expensive and therefore only attempted on automata that have passed the
first test.

begin
C0 ← ∅;
C23 ← Set of all automata;
foreach α ∈ enabled(s) do

C0 ← C0 ∪ automata of α;
if visible(α) ∨ inStack(s′) then C23 ← C23 \ automata of α;

end
foreach i ∈ Set of all composite automata do

A← automata which compose i;
if A ∩ C0 6= ∅ then C0 ← C0 ∪ {i};
if not A ⊆ C23 then C23 ← C23 \ {i};

end
Candidate set← C0 ∩ C23;

end
Algorithm 1: Checking of C0, C2 and C3

Checking of C1 We want to determine whether there exists any action in⋃
i∈I current i(s) which is a synchronization with an automaton not in I. To do

so, we take names of all input (resp. output) actions from each si, i ∈ I and
then compare them with names of output (resp. input) actions from all states of
all simple automata not in I. Any matching couple is a counterexample for the
ample set.

When we find a set that satisfies all four conditions, we accept it as an ample
set and use it for the verification instead of the set of all enabled actions.

begin
Cin, Cout, Oin, Oout ← ∅;
foreach i ∈ simple automata in I do

Cin ← Cin ∪ names of input actions of i from si;
Cout ← Cout ∪ names of output actions of i from si;

end
foreach i ∈ simple automata not in I do

Oin ← Oin ∪ names of all input actions of i;
Oout ← Oout ∪ names of all output actions of i;

end
return (Cin ∩Oout = ∅) ∧ (Cout ∩Oin = ∅);

end
Algorithm 2: Checking of C1
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4 Case Study

To provide some evidence for the effectiveness of the partial order method, we
have implemented the method within the CoIn verification environment and
applied it on a case study. Our previous experience with verification of this
model, which has uncovered the need of a partial order reduction method for
state/event systems, is reported upon in [8].

The modelled system, the Trading System, serves to handle sales in a chain
of supermarkets. Its functionality includes the interaction with the cashier at
the cash desk, as well as accounting the sale at the inventory. The system is
open, designed to interact with external components representing users of the
system (cashiers and managers) and a bank application. The model of the system
consists of 140 simple CI automata, composed hierarchically into 34 composite
automata up to 6 levels of depth. The behaviour of the model features a high
degree of independent interleaving of actions, it can be thus expected to achieve
a fair amount of state space reduction using the partial order reduction method.

The results obtained by using the method are summarized in Table 1. The
various models the verification was performed on were created by complementing
the Trading Systems with various components depicting the users of the system.

Table 1. Experimental results (the reduction ratio relates the number of states of the
model to the number of states obtained after applying partial order reduction)

Model
without POR with POR

reduction

# states
RAM time

# states
RAM time

ratio
(MB) (s) (MB) (s)

C 2 749 340 139 498 30 618 11 40 24 : 1

C 5 1 498 679 274 1 010 61 771 17 66 24 : 1

C 9 750 684 139 499 30 774 11 40 24 : 1

SC 2 29 341 9 19 2 959 5 4 10 : 1

SC 5 58 681 15 39 6 013 5 6 10 : 1

SC 9 29 629 9 20 2 995 5 4 10 : 1

SCM 2 22 745 391 4 045 21 656 2 016 210 494 2 619 11 : 1

SCM 5 — — — 4 084 764 987 4 367 —

SCM 9 22 915 023 4 076 21 864 2 037 002 499 2 640 11 : 1

SCR 2 2 994 016 570 2 119 28 633 11 39 105 : 1

SCR 5 5 988 032 1 128 4 631 58 078 17 67 103 : 1

SCR 9 3 034 336 578 2 150 29 006 10 40 105 : 1

SCSM 2 6 369 598 1 135 4 692 542 794 139 688 12 : 1

SCSM 5 12 739 195 2 263 10 434 1 098 699 273 1 144 12 : 1

SCSM 9 6 413 518 1 143 4 725 548 094 140 694 12 : 1

TSC 2 1 356 277 245 934 37 398 13 48 36 : 1

TSC 5 2 712 553 484 1 936 76 219 22 83 36 : 1

TSC 9 1 373 653 248 948 37 888 13 48 36 : 1
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Here, C, SC, SCM, SCR, SCSM and TSC stand for the different user compo-
nents composed with the system. For each of this variants, three properties were
verified, those correspond with properties 2, 5 and 9 as described in [8].

The table shows the number of states of each model combined with each
property and the memory and time that was needed to generate the state space,
both with and without employing the partial order reduction. A dash (—) in
the table means that the information is not available, as the process of state
space generation exceeded the maximum of 4 GB of memory. Our experience
with applying the partial order reduction on this case study is very positive. In
all cases, the state space has been reduced to at least one tenth of the original
size and there have been cases where the reduction ratio surpassed one hundred.

5 Conclusion

In our work we present an implementation of the partial-order reduction for
state/event LTL in the framework of CI automata. We explain the necessity of
modification of the original heuristics for computing ample sets as well as our
method of choosing candidate sets, which takes advantage of the hierarchical
structure of CI automata. The case study shows how much time and space can
be saved using POR in particular cases.
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