
A Mechanized Semantic Framework for Real-Time

Systems

Manuel Garnacho, Jean-Paul Bodeveix, Mamoun Filali

To cite this version:

Manuel Garnacho, Jean-Paul Bodeveix, Mamoun Filali. A Mechanized Semantic Framework
for Real-Time Systems. 11th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS 2013), Aug 2013, Buenos Aires, Argentina. pp. 106-120, 2013.
<hal-01231769>

HAL Id: hal-01231769

https://hal.archives-ouvertes.fr/hal-01231769

Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50531692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01231769

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12577

The contribution was presented at FORMATS 2013 :
http://projects.lsv.ens-cachan.fr/formats2013/

Official URL: http://dx.doi.org/10.1007/978-3-642-40229-6_8

To cite this version : Garnacho, Manuel and Bodeveix, Jean-Paul and Filali, Mamoun
A Mechanized Semantic Framework for Real-Time Systems. (2013) In: 11th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2013), 29 August 2013 - 31 August 2013 (Buenos Aires, Argentina).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Mechanized Semantic Framework for

Real-Time Systems ⋆

Manuel Garnacho, Jean-Paul Bodeveix, Mamoun Filali

irit - cnrs - Université de Toulouse, France

Abstract. Concurrent systems consist of many components which may
execute in parallel and are complex to design, to analyze, to verify, and
to implement. The complexity increases if the systems have real-time
constraints, which are very useful in avionic, spatial and other kind of
embedded applications. In this paper we present a logical framework for
defining and validating real-time formalisms as well as reasoning meth-
ods over them. For this purpose, we have implemented in the Coq proof
assistant well known semantic domains for real-time systems based on
labelled transitions systems and timed runs. We experiment our frame-
work by considering the real-time CSP-based language fiacre, which has
been defined as a pivot formalism for modeling languages (aadl, sdl,
...) used in the TOPCASED project. Thus, we define an extension to the
formal semantic models mentioned above that facilitates the modeling
of fine-grained time constraints of fiacre. Finally, we implement this
extension in our framework and provide a proof method environment to
deal with real-time system in order to achieve their formal certification.

1 Introduction

Real-time concurrent systems consist of many components which may execute
in parallel and communicate data or synchronize at a specified time. Therefore,
these systems are complicated to design, to analyze, to verify, and finally to
implement. The complexity arises from the nondeterminism of behaviors, time
constraints and the combinations of ways in which the components can interact.
In order to be able to prove or verify properties on such systems one needs to
formalize their semantics.

Formal semantics of specification and programming languages are mathematical
descriptions of the meaning of programs (and their behaviors) written in these
languages. They play a very important role in many areas of computer science
such as verification of critical systems because they enable us to formally prove
that these systems meet their specifications. Formal semantics of component-
based languages, which are useful to design distributed or concurrent systems,
are commonly defined in terms of transition systems. If the language has also real-
time features, then its semantics can be expressed as timed transition systems
[4] (tts for short, see Definition 3). For this paper, we address the challenge of

⋆. This work has been partly funded by the FNRAE project Quarteft.

providing a framework that allows to build mechanized reasonings over timed
systems within a proof assistant. Doing so requires to mechanize the semantics
of timed systems in adapted mathematical terms, which are here theories of
transition systems and execution runs (or traces) which include time aspects.

The present work proposes also an extension to the semantic model of transition
systems with time constraints proposed by T.Henzinger et al [16] that we call
time constrained transition systems (tcts for short, see Definition 7) since the
term tts is overloaded and already used here. The purpose of this extension
is to model more directly and easily some real-time constructs of specification
languages and then be able to prove timed temporal properties over critical em-
bedded systems. We define semantic interpretations of systems modeled as tcts
in terms of tts and timed runs (see Section 2.2) that enable to reason over these
models and their time properties. Those semantic interpretations correspond to
arrows 2 and 3 of Figure 1 which describes the global architecture of our frame-
work. Arrow 1, which addresses the semantics interpretation of the syntactical
constructs of our component-based language (namely fiacre), goes beyond our
current purpose and is not presented here (this is our long term goal).

Time Constrained Transition Systems (tcts)

Timed Transition Systems (tts)

2 (Section 4.1)

4 (Section 2.3)

1

Execution Runs

Real-Time Component-Based Languages (abstract syntax)

(Section 4.2) 3

Fig. 1. Schematic description of the architecture of our semantic framework

There are several reasons for wanting to mechanize such theories based on transi-
tion systems and timed runs in an interactive theorem-prover rather than build-
ing a dedicated automatic tool [13]. The most important reason is certainly that
proof assistants like Coq [7], hol [18] or pvs [22], provide a generic and very
expressive proof environment for dealing with problems which cannot be auto-
matically decided. We claim also that the results which are encoded and checked
with such tools reach probably the currently highest level of confidence in for-
mal software verification. In other words, proofs built and then checked with, for

example Coq, avoid to a very high extent fallacious and incomplete arguments
that are so easy and so common to find in standard mathematical proofs. Then,
all the proofs that we provide in this paper have been encoded in the calculus of
inductive constructions (cic for short) using the Coq proof assistant, and then
automatically checked to guarantee the mathematical soundness of the proofs 1.
However, although all of this formalization work (shaded part of Figure 1) has
been carried out in Coq, we refrained from displaying Coq syntax here. We
adopt standard mathematical notations as much as possible for the sake of clar-
ity and because a large part of this work is about semantics of real-time systems
that is widely independent of Coq.

Overview. The remainder of this paper is structured as follows: Section 1.1 in-
troduces the general principles of component-based languages. We describe their
timed semantics through a toy example. Section 2 recalls the basis of transition
systems and execution runs. Section 3 defines an extension of transition systems
with time constraints. Section 4 is dedicated to the semantic interpretations of
transition systems in two distinct models that address the dynamic time aspects
of real-time systems. Then, in Section 5 we explain why our work has been im-
plemented in the interactive theorem prover Coq and how it can be used for
formal verification. We draw a conclusion and present some directions for future
works in Section 6.

1.1 Timed Semantics of Component-Based Languages

Existing specification languages inspired by [17] are useful to represent both
behavioral and timing aspects of concurrent (or distributed) real-time systems.
For example, fiacre [6] is defined over two main notions : (1) processes that
describe the behavior of sequential components. A process is defined by a set
of control states (or positions), each associated with a piece of program built
from deterministic constructs available in classical programming languages, non-
deterministic constructs (nondeterministic choice of the transition to take, for
example), communication events on ports, and jumps to next position; (2) com-
ponents that describe the composition of processes. A component is defined as
a parallel composition of components and/or processes communicating through
ports and shared variables.

In this paper we focus only on nondeterministic transitions and timing con-
straints of synchronizations (composition and priorities are adressed in [12]).
fiacre allows to model real-time behaviors by using timed ports, i.e. ports with
their own timer (or clock). A timed transition connects two control states using
such a port. Moreover, fiacre allows to code such transitions in two ways : the
first one preserves the clocks of other enabled transitions whereas the second one
resets the clock of other enabled transitions.

1. we invite the interested reader to browse the sources of our development at the
web address : http://www.irit.fr/~Manuel.Garnacho/Coq/FORMATS13.

The example presented in Figure 2 describes a process which declares three
local ports, p, q and r, and two variables of type nat, namely x and y. In this
specification language, local ports are only used to temporize transitions and
processes which use those ports do not get “synchronized” with others through
those ports. The port p is time constrained by the interval [1, 3[, q by]3,∞[and
r by [1, 1]. Considering p, it means that when a transition which synchronizes
on it is enabled, it must fire after waiting at least one (included) and at most
three (not included) time units. In the same way, q delays the process P for at
least three (not included) time units 2 and r exactly one unit of time.

Then, we see that in the process P, there are two control states, namely s0 and
s1. Only s0 is an initial one, which means that the process has to start its
execution from it. But let us first take a look at s1 : from this control state,
a nondeterministic choice is defined with the construction select. This choice
includes two concurrent transitions : the first one that synchronizes on p then
adds to y the value of x; the second one that synchronizes on q then assigns to
x the value of y plus 2. Afterward, each of those transitions jumps to a next
control state with the construction to, i.e. it jumps back to s1 in the case of
an action on p and goes to s0 in the other case. The timed-semantics of the
construction to, consists in resetting the timer of all transitions included in the
same nondeterministic choice (we provide in comments the set of ports that
have to be reset for each transition). This notion will be formalized in Section 3,
thanks to an extension of the semantic model introduced in [16]. Consequently,
from the control state s1 the process P is never synchronized on q, so the variable
x will never be assigned and it never goes back to s0. Indeed, after every single
unit of time the process will be synchronized on p before strictly two more time
units, after which it resets the timer of q before having waited enough time to
synchronize on it. Thus, the second transition of the nondeterministic choice
from s1 of P is dead code due to the time constraints of P.

Now, through the same example we present another construction that loops to
the current control state but with a different timed-semantics. This construction
is still related to the nondeterministic choice of transitions and is defined with
the keyword loop. It consists in going back to the current control state while
preserving the time already waited by other transitions (which were not taken)
included in the same nondeterministic choice as the one that has been taken.
The clock of the taken transition is reset however. For example, in the nonde-
terministic choice from the control state s0 of P, the first transition loops after
synchronizing on r and then increments x. This transition occurs after exactly
every single time unit and then only resets its own timer. On the other hand,
the nondeterministic choice allows the process to synchronize on q at any time
after being continuously enabled for at least three units of time. Note that the
transition through q from s0 may never occur because of its unconstrained max-
imal delay. Proving such semantics properties on the value of x and y or that
the transition through q from s1 is dead code, can be as much crucial as difficult.

2. Time bounds are either integral or infinite. Elapsing of time is continuous.

process P i s

ports p in [1 , 3 [, q in] 3 ,∞[, r in [1 , 1]
var x , y : nat := 0
states s0 s1
in i t to s0

from s0 select

/∗1∗/ r ; x := x+1; loop /∗ r e s e t = {r} ∗/
/∗2∗/ [] q ; to s1 /∗ r e s e t = {r , q} ∗/

end

from s1 select

/∗3∗/ p ; y := x+y ; to s1 /∗ r e s e t = {p , q} ∗/
/∗4∗/ [] q ; x := y+2; to s0 /∗ r e s e t = {p , q} ∗/

end

Fig. 2. An example real-time process specified in fiacre

Related Work. Starting with the work of T. Henzinger et al. [16,15], we extend
their mathematical semantic model for specifying real-time processes such as the
one presented in Figure 2. All definitions and theorems presented in the following
are directly derived from a mechanization developed in Coq. This part of our
contributions connects to the previous work of R. Cardell-Oliver et al. [14] about
the embedding in hol of [16] and C. Paulin-Mohring about the formalization
of timed automata in Coq [20]. With respect to the Petri Net community, our
work is in the spirit of B. Berard et al. [4]. However, we are concerned by a
component-based language with states and ports and we go further since we
adress its mechanization. Morever, our work is not in the same scope as [13]
because our goal is not to develop an automatic verification tool certified in
Coq. Our purpose is to provide a real-time semantic framework which can be
used to formalize real-time patterns and more generally real-time specification
languages. As a matter of fact, we present in the following the formalization of the
fiacre language where we are especially interested in the semantic differences
between the contructs loop and to (see Section 1.1). Also, the proof environment
of our framework allows to certify transformations between real-time formalisms.
For instance in [8], we are concerned by the transformation from aadl to fiacre,
which requires formal certification for avionic or spatial applications.

2 Semantics Kernel

This section is dedicated to the basis of classical semantic notions we use in
our work. These notions are of two kinds: timed transition systems and timed
execution runs [4]. Moreover, both include time and since time is dense in most
real-time specification languages (including fiacre), we formalize time in this
paper with non-negative real numbers : R+. However, in our Coq mechanization
we have developed an axiomatic theory of time 3 which can be instantiated by
constructive reals [13] as well as by nat to encode discrete time (if necessary).

3. http://www.irit.fr/~Manuel.Garnacho/Coq/FORMATS13/time.html.

These semantic models enable us to describe formally the dynamics of real-time
systems, mixing the evolution of their states and the progress of time, to reason
over those with rigorous logical methods.

2.1 Transition Systems

First of all, we remind the basic model of labelled transition systems [2] that is
usually used to give a mathematical representation of computer programs.

Definition 1 (Labelled Transition Systems). A labelled transition system

(lts for short) is a 4-tuple lts
def
= 〈L, S, init,next〉, where : L is the set of labels

of lts; S is a set of states (or stores); init is a non-empty subset of S that
defines the initial states of lts; and next defines the set of transitions of lts that

are triplets of the form (sto, ℓ, sto′) ∈ S × L × S, also denoted as sto
ℓ

−→ sto
′,

where sto ∈ S is the source state, ℓ ∈ L is the label and sto
′ ∈ S the target state

of the transition.

Definition 2. Assuming a lts, lts
def
= 〈L, S, init,next〉, a label ℓ ∈ L is en-

abled from a state sto ∈ S, if there exists a state sto
′ ∈ S such that the triplet

(sto, ℓ, sto′) belongs to next. Formally, we define the predicate enb over S × L

as enbsto(ℓ)
def
= ∃sto′ ∈ S,next(sto, ℓ, sto′)

Definition 3 (Timed Transition Systems). A timed transition system (tts
for short) over a set of labels L, is a lts over L∪R

+, 〈L∪R
+, S, init, t next〉,

that satisfies the following properties :

– zero delay : ∀sto ∈ S, sto
0

−→ sto

– time-determinism : ∀sto, sto′, sto′′ ∈ S, ∀δ ∈ R
+,

sto
δ

−→ sto
′ ⇒ sto

δ
−→ sto

′′ ⇒ sto
′ = sto

′′

– additivity : ∀sto, sto′, sto′′ ∈ S, ∀δ, δ′ ∈ R
+,

sto
δ

−→ sto
′ ⇒ sto

′ δ′

−→ sto
′′ ⇒ sto

δ+δ′

−→ sto
′′

– continuity : ∀sto, sto′′ ∈ S, ∀δ′, δ′′ ∈ R
+,

sto
δ′+δ′′

−→ sto
′′ ⇒ ∃sto′, sto

δ′

−→ sto
′ ∧ sto

′ δ′′

−→ sto
′′

2.2 Executions

We remind now the classical representation of runs in a timed context, that is
useful to represent the behaviors of systems and then reason with temporal linear
logic [21] about those.

Definition 4 (Timed execution states). With respect to a set of states S
and a set of events L, a timed execution state (tes for short), s, is a triplet of
the form 〈sto, evt, now〉 where :

– stos ∈ S, is the state (or store) reached in s
– evts ∈ L ∪ {start} ∪ {div}, is the event that has reached s.
– nows ∈ R

+ gives the current global time (or date) in s.

Remarks. The two special events start and div are seen, respectively, at the
beginning of a run and whenever time is diverging (in case of deadlock, for
instance) in a run.

Definition 5 (Runs). A run (or execution sequence) is a function σ, from N

to tes, that represents a (possibly finite) sequence of events all of which reach a
state at a given date. For a tes s reached at a position i of σ, we have σi = s.

Remarks. For the sake of conciseness, we allow ourselves to substitute s (σi)
by i in the following whenever it might simplify the notations (as below). Also,
according to our representation of runs, finite ones are encoded using a repetition
of the special event div after the last state.

Definition 6 (Well formed runs). According to the previous definition, a
run σ is well formed if it satisfies the following properties : start : evt0 =
start ∧ now0 = δ0σ; and monotonicity : ∀i ∈ N, nowi ≤ nowi+1, where δ0σ is
the initial delay associated to the beginning (the event start) of the run σ.

Remark. This definition of timed runs does not satisfy the progress property
(∀r ∈ R

+, ∃i ∈ N, r ≤ nowi) [16] because of Zeno behaviors (that include
an infinite number of discrete steps in a finite amount of time) that may be
generated from the component-based source language, as for instance in fiacre,
that we want to capture.

2.3 Semantics of Timed Transition Systems in terms of Runs

We define now the semantics of tts in terms of runs (arrow 4 of Figure 1).

Predicates. In order to describe the semantics of ttss in terms of runs, we have
to define two predicates that express when a given label may be taken and when
a label is taken. Assume a given run σ at some position i, σ-enbi(ℓ) means that
the label ℓ may be taken at i and takeni(ℓ) means that ℓ is taken at i. Formally :

– σ-enbi(ℓ)
def
= ∃sto, sto′ ∈ S, ∃δ ∈ R

+,next(stoi, ℓ, sto) ∧ next(sto, δ, sto′)

– takeni(ℓ)
def
= evti+1 = ℓ (stoi+1 corresponds to one of the sto

′ above)

Remark. The intermediate state, sto, used in the definition of σ-enb is needed
because the runs that we consider do not include explicit duration. There are
other formalisms of execution runs where time passing is explicit (mixing du-
rations and events) but here, to avoid Zeno phenomena (coming from the ttss
and not from the systems theirselves) in runs, we only consider events.

Semantic Interpretation in terms of Runs. The run-semantics of a tts,

tts
def
= 〈L∪R

+, S, init, t next〉, is a set of well formed runs Σ(tts), that expresses
all possible behaviors of tts at execution, such as each of those has to fulfill that
init(sto0) and the following step condition :

∀i, either

∃ℓ such that ∃sto ∈ S, ∃δ ∈ R
+, t next(stoi, ℓ, sto) ∧ t next(sto, δ, stoi+1)

and nowi+1 = nowi + δ and takeni(ℓ) (a label is taken)

or ¬∃ℓ such that σ-enbi(ℓ) and ∀j > i, stoj = stoi ∧ evtj = div (time is
diverging).

Graphically, when a label ℓ is taken at some position i, it can be represented as

σi
ℓ

−→ s
δ

−→ σi+1, where s is an implicit intermediate tes which is not visible
in the run, defined as 〈stoi+1, evti+1, nowi〉.

3 A Time Constrained Model for Real-Time Systems

We give in this section an extended definition of the semantics model proposed
by T. Henzinger et al. in [16] that deals with advanced (i.e. fine-grained) timed
constructs such as the ones presented in Section 1.1. As in [16], we incorporate
real-time constraints to lts in order to ensure that a labelled transition is fired
neither too early nor too late. An extension to their initial model is the so-called
reset relation that specifies which clocks (or timers) are reset after the firing of a
given transition. We call this model Time Constrained Transition Systems (tcts
for short) since time features are only expressed as syntactic timed constraints
on transitions. We have introduced this semantics model in order to verify real-
time processes such as the one presented in Figure 2 more easily. Moreover,
the exhibited semantic model is interesting by itself since it can be reused to
define the semantics of real-time component-based langages such as fiacre [11]
or bip[3] or even high-level specification models such as Timed Petri Nets with
read-arcs [4]. We also present two timed-semantic interpretations, corresponding
to arrows 2 and 3 of Figure 1.

3.1 Time Constrained Transition Systems

In order to reason about timing of transitions, we identify each transition by
its name. For instance, according to the process P of Figure 2, its corresponding
tcts include four names, one for each of the four possible transitions from its
two nondeterministic choices, even if the number 2 and 4 synchronize both on
q. Moreover, we suppose that there is an implicit clock (while time is explicit
in tts) associated to every transition. Then, this model allows to specify static
time constraints over the transitions of a given system.

Definition 7. A Time Constrained Transition System, namely tcts, is a 8-tuple
〈L, T, S, lbl, init,next,R, I〉, where 〈L, S, init,next〉 is a lts, and :

– T is the set of (the names of) transitions of tcts.
– lbl is a function from T to L, that associates to every transition a label.
– R is the reset transition relation. (tr, tr′) ∈ R states that at execution, the

firing of tr resets the implicit clock of tr′. Otherwise, the implicit clock asso-
ciated to tr′ keeps running. For all tr ∈ T , (tr, tr) ∈ R (R is refelexive).

– I is a function that assigns to every label ℓ ∈ L a non-empty interval of R+.
Iℓ (or I(ℓ)) specifies both minimal (lower) and maximal delay (upper bound)
to elapse once ℓ has been enabled (see Definition 2).

We introduce the downward and the upward closure of an interval Iℓ defined

respectively by
←

Iℓ
def
= {t | ∃r ∈ Iℓ, t ≤ r} and

→

Iℓ
def
= {t | ∃r ∈ Iℓ, r ≤ t}. For example,

if Iℓ is defined by the interval [min,max] then
←

Iℓ is [0,max] and
→

Iℓ is [min,∞[.

Example 1. Consider the process given in Figure 2, we define its corresponding
tcts as 〈L, T, S, lbl, init,next,R, I〉, where :

– L
def
= {ℓp, ℓq, ℓr}

– S
def
= {(x, y, loc) | x, y ∈ N ∧ loc ∈ {l0, l1}}

– ∀sto ∈ S, init(sto)
def
= sto(x) = 0 ∧ sto(y) = 0 ∧ sto(loc) = l0

– next(sto, ℓ, sto′)
def
=

∧

sto(loc) = l0 ⇒
∨

(

ℓ = ℓr ∧ sto
′ = sto[sto(x) + 1/x]

ℓ = ℓq ∧ sto
′ = sto[l1/loc]

)

sto(loc) = l1 ⇒
∨

(

ℓ = ℓp ∧ sto
′ = sto[sto(x) + sto(y)/y]

ℓ = ℓq ∧ sto
′ = sto[sto(y) + 2/x][l0/loc]

)

– T
def
= {tr1, tr2, tr3, tr4}

– lbl(tr1)
def
= ℓr | lbl(tr2)

def
= ℓq | lbl(tr3)

def
= ℓp | lbl(tr4)

def
= ℓq

– R
def
= {(tri, tri) | 1 ≤ i ≤ 4} ∪ {(tr2, tr1), (tr3, tr4), (tr4, tr3)}

– Iℓp
def
= [1, 3[, Iℓq

def
=]3,∞[and Iℓr

def
= [1, 1].

Remarks. Because of the functional relation from T to L, we consider (by abuse
of notation) in the remaining that, for any tcts, next is also defined over S ×

T × S. Furthermore, assuming a tcts, tcts
def
= 〈L, T, S, lbl, init,next,R, I〉, a

transition tr ∈ T is enabled from a state sto ∈ S, if there is a state sto′ ∈ S such
that the triplet (sto, tr, sto′) belongs to next. Formally, we extend the predicate

enb over S × T as enbsto(tr)
def
= ∃sto′ ∈ S,next(sto, tr, sto′). Also, considering a

transition tr ∈ T , we write Itr instead of Ilbl(tr) in order to simplify notations.

As we have seen, tcts is a mathematical model that allows to specify time
aspects of real-time systems. We have also defined the composition of tcts to
model concurrent or distributed aspects of systems in the same formalism (see
[12]). The semantics of this composition is based on the composition of lts.
However, due to lack of space, we choose to focus on the real-time aspects here.

4 Semantic Interpretations

We consider in this section two models to interpret tcts w.r.t. time semantic
aspects. The first one is tts with explicit time steps together with time assump-
tions (see Definition 3). This model allows to reason over behaviors of a given
tcts using a branching time logic as [10] or (bi-)simulation relations [4].

Secondly, tcts timing aspects are also interpreted as sets of runs, that describe
the executions of a tcts as sequences of timed events. This model allows to
define and to prove the satisfaction of temporal properties expressed in a linear
temporal logic [21] by a given tcts.

4.1 Semantics of TCTSs in terms of TTSs

Now, we want to give the semantics of tcts in terms of tts, interpreting time
constraints by timed transitions. The purpose, among others, is to be able to
reason on tctss at the tts level.

So, given a tcts, tcts
def
= 〈L, T, S, lbl, init,next,R, I〉, we define a corresponding

tts through the semantics function [[]] : tcts → tts, such that [[tcts]] = 〈L ∪
R

+,S, init, t next〉 ∈ tts, where :

– a state of s ∈ S is a pair over S × (T → R
+), such that s

def
= 〈sto, clk〉 with :

⋄ stos ∈ S is a store of the underlying tcts.
⋄ clks : T → R

+ associates to every transition tr ∈ T an explicit clock that is
needed to count elapsed time since tr is enabled.

⋄ and for every tr ∈ T, if enbstos(tr) then clks(tr) ∈
←

Itr
– t next is a predicate over S × (L ∪ R

+)× S defined as :

∀s ∈ S, ∀s′ ∈ S, ∀ℓ ∈ L ∪ R
+,

∧

(

ℓ ∈ L ⇒ discrete(s, ℓ, s′)
ℓ ∈ R

+ ⇒ delay(s, ℓ, s′)

)

, with :

⋄ ∀s ∈ S, ∀s′ ∈ S, ∀ℓ ∈ L, discrete(s, ℓ, s′)
def
= ∃tr ∈ T, lbl(tr) = ℓ and

next(stos, tr, stos′) and clks(tr) ∈
→

Itr

and ∀tr′, clks′(tr
′) =

{

0 if ¬enbstos(tr
′) ∨ (tr, tr′) ∈ R

clks(tr
′) else

In other words, considering two timed states s and s′ of [[tcts]], the label
of a discrete transition tr links them if (1) tr is a transition between stos

and stos′ in the source tcts; (2) since enabled, tr is delayed enough time
units (according to the specification Itr); and (3) for every other enabled
transition tr′, its clock is preserved if and only if tr does not reset it (clocks
are set to 0 for all other transitions, tr included since (tr, tr) ∈ R).

⋄ ∀s ∈ S, ∀s′ ∈ S, ∀δ ∈ R
+, delay(s, δ, s′)

def
= ∀tr ∈ T,

clks′(tr) = clks(tr) + δ

and if enbstos(tr) then we must have clks(tr) + δ ∈
←

Itr
and stos′ = stos

In other words, considering two timed states s and s′ of [[tcts]], time passes
(δ units) between them if for all transitions tr of tcts, (1) its clock goes
δ time units from s to s′ (2) after being enabled δ more units time, the
maximal delay to take tr is not reached; and (3) stores are the same.

Theorem 1. ∀tcts : tcts, [[tcts]] : tts.

The proof consists in proving for any tcts ∈ tcts, that its semantic interpreta-
tion, [[tcts]], satisfies the four properties of ttss (see Definition 3).

4.2 Semantics of TCTSs in terms of Timed Runs

The behavior of a tcts can be expressed by a set of runs (see Definition 5) in
order to reason about real-time systems using temporal logics. Here, according
to the definition of tcts with the set R, we need to extend tess of runs in order
to deal with resetting of clocks. Runs of a tcts are now sequences of tess as in
Definition 8, but with an additional predicate on the names of transitions.

Definition 8. Assuming a tcts, tcts
def
= 〈L, T, S, lbl, init,next,R, I〉, a timed

execution state of tcts, s, is now a 4-tuple 〈sto, evt,now,σ-reset〉 where :

– stos ∈ S, is the state (or store) reached in s
– evts ∈ L ∪ {start} ∪ {div}, is the event by which s is attained.
– nows ∈ R

+ gives the global time in s.
– σ-resets is a function from T to B (or a predicate over T) that indicates which

transitions have had their implicit clock reset when s has been reached.

Predicates. Assume a given run σ at some position i, σ-enbi(tr) means that the
transition tr ∈ T may be taken at i and takeni(tr) means that tr is taken at i.
Formally :

– σ-enbi(tr)
def
= ∃sto ∈ S,next(stoi, tr, sto)

– takeni(tr)
def
=

∧

evti+1 = lbl(tr)
next(stoi, tr, stoi+1)
∀tr′, σ-reseti+1(tr

′) ⇔ (tr, tr′) ∈ R

Remark. Here, the predicate taken() is more sophisticated than in Section 2.3
because it deals with T and no more with L. Indeed, the first condition of the
conjunction above is not enough because two transitions of T might satisfy it.

Run-Semantics of a TCTS. Now, we are able to express the semantic in-
terpretation of a tcts in terms of runs, as we did in Section 2.3 with tts.

Consider a tcts, tcts
def
= 〈L, T, S, lbl, init,next,R, I〉, we define below the set of

well formed runs that we call Σ(tcts). Every run σ of Σ(tcts), which expresses
a behavior of tcts, has to fulfill the four following conditions :

Initial timed execution state condition : init(sto0) ∧ now0 ∈
→

Ievt1
In other words, any run must start from an initial state of its underlying tcts

and the taken transition at position 0 has been delayed enough.

Next timed execution state condition :

∀i ∈ N, either ∃tr ∈ T such that takeni(tr) (a discrete transition is taken)

or ¬∃tr ∈ T such that σ-enbi(tr) and stoi = stoi+1 = stoi+2 = ... ∧

σi
div
−→ σi+1

div
−→ ... (time diverging)

In other words, a next timed execution state can be reached from a state at
position i of σ if either a discrete transition can be taken or a deadlock is met
and time goes to infinity (the tag event div was introduced especially for this
purpose in order to distinguish deadlock from the identity transition).

Lower bound condition : ∀tr ∈ T , and ∀j ∈ N, if takenj(tr) then

nowj ∈
→

Itr and

∀i ∈ N such that i < j,

if nowj − nowi 6∈
→

Itr then σ-enbi(tr) ∧ ¬σ-reseti+1(tr)

In other words, a transition tr can be taken only after being continuously enabled
for enough (means that it is delayed for at least the lower bound of Itr) time
units without being reset by the execution of another transition. The condition

nowj ∈
→

Itr is required in the case where tr is enabled since the start of the

execution. Indeed, in this case the premise nowj − nowi 6∈
→

Itr is useless and we
need to know that tr has been continuously enabled even before the position σ0.
It seems that this case has been omitted in [16].

Upper bound condition : ∀tr ∈ T and ∀i ∈ N,

∃j ∈ N such that i ≤ j and nowj − nowi ∈
←

Itr

and if σ-enbj(tr) then takenj(tr) ∨ σ-resetj(tr)

In other words, once enabled, a transition tr is not delayed for too long or it
has been reset meanwhile. A transition cannot be continuously enabled for more
than the upper bound of Itr without being taken or reset.

4.3 Soundness of the Semantic Interpretations

Now we want to establish the soundness of our semantic interpretations by prov-
ing that the runs built straight from a given tcts are the same that those built
from its semantic interpretation in terms of a tts. To do so, we must first define
a semantic interpretation from timed execution state associated to tctss to the
ones associated to their corresponding ttss. So, we introduce the function γ

from Σ(tcts) to Σ([[tcts]]), where states are in S
def
= S × (T → R

+) (see Section
4.1), i.e. every state associates a clock to every transition.

Definition 9. ∀tcts : tcts, ∀σ ∈ Σ(tcts), ∀i ∈ N, γ(σi)
def
=

〈〈sto0, (λtr ∈ T. δ0σ)〉, start, now0〉 if i = 0,

〈

〈

stoi,

λtr ∈ T.

(

δ if ¬σ-enbi−1(tr) or σ-reseti(tr)
clkγ(σi−1)(tr) + δ otherwise

)

〉

, evti, nowi〉 else

where δ
def
= (nowi − nowi−1) and δ0σ is the initial delay of σ, which is now0.

Then, we define the semantics interpretation of runs of tctss in terms of runs

of corresponding ttss as ∀tcts ∈ tcts, ∀σ ∈ Σ(tcts), γ(σ)
def
= ∀i ∈ N, γ(σi).

Theorem 2. ∀tcts : tcts, ∀σ : N → tes, σ ∈ Σ(tcts) ⇔ γ(σ) ∈ Σ([[tcts]]).

5 Mechanizing and Reasoning with a Proof Assistant

We explain in this section why we have implemented during the last two years
the formalization work presented in this paper in an interactive theorem prover
based on type-theory. First of all, the purpose is to validate with a very high
level of confidence all the theorems about semantic interpretations of tcts that
we have presented previously. Moreover, using formal fundational proofs can also
be useful to go beyond model-checking techniques and capabilities [13], when it
is needed for example to check parameterized systems. To make that practical,
we have deeply embedded in Coq a timed linear temporal logic 4 (called timed-
SELTL) which is an extension of the State/Event linear temporal logic (SE-LTL)
[9] since it embeds time intervals within temporal operators, together with a proof
methodology dedicated to the formal certification of real-time systems.

Definition 10. A timed-SELTL formula f is defined inductively as follows (where
ϕS is a predicate over S, e is label of L and I is a time interval) :

f ::= ϕS | e |
.
¬ f | f

.
∧ f | f UIf

Remarks. As usual, we define the three temporal operators ♦ (eventually),

� (always) and W (weak until) as ♦If
def
= ⊤ UIf , �If

def
= ¬(⊤ UI¬f) and

f1 WIf2
def
= (f1 UIf2)

.
∨ (�←

I
f1), where UI is the until operator constrained with

a time interval. We introduce as well the connectors
·
⇒ and

.
∨. The semantics

of this logic is defined over our formalization of runs and its implementation is
available in our Coq framework.

Then, in order to reason and prove the correctness of real-time specifications
modelled as tctss, we have embedded in our Coq framework a proof methodol-
ogy very close to the one proposed in [15], based on the same class of real-time
properties they consider (bounded response, bounded unless and bounded invari-
ance properties) expressed as timed-SELTL formulæ. To do so, we have estab-
lished several Coq theorems such as the two given below, where p, q, r and Φ are
predicates over S. These theorems provide efficient proof rules since they enable
us to certify in Coq real-time specifications expressed as timed-SELTL formulæ
over runs (their conclusion), but reasoning locally (thanks to their premises) on
tctss with Hoare triple and logical formulae. We have also proved transitivity
and disjunction lemmas which are essential to make the method usable.

4. Carlos D.Luna has defined in Coq the TCTL tree logic : http://coq.inria.fr/
pylons/contribs/view/CTLTCTL/v8.4

(1) ∀s, p(s) ⇒ ¬enbs(tr)
(2) ∀s, p(s) ⇒ Φ(s)
(3) ∀tr′ 6= tr, {Φ} tr′ {Φ}
(4) ∀s, Φ(s) ⇒ q(s)
(5) ∀s, Φ(s) ∧ enbs(tr) ⇒ r(s)

∀σ, ∀i, σ |=i p
·
⇒ q W→

Itr
r

(1) ∀s, p(s) ⇒ Φ(s) ∨ q(s)
(2) ∀s, Φ(s) ⇒ enbs(tr)
(3) ∀s, ∀tr′ 6= tr, Φ(s) ∧ enbs(tr

′)
⇒ min(Itr′) > 0 ∧ (tr′, tr) 6∈ R

(4) ∀tr′ 6= tr, {Φ} tr′ {Φ ∨ q}
(5) {Φ} tr {q} ∧max(Itr) < ∞

∀σ, ∀i, σ |=i p
·
⇒ ♦←

Itr
q

6 Conclusions

We have presented a mathematical model for specifying and reasoning over real-
time systems. This model enables us to specify some very subtle timed-semantic
differences of fine-grained constructs (see Section 1.1) allowed by modern real-
time component-based languages such as fiacre. Also, we provide logical and
functional definitions to give semantic interpretations of real-time systems spec-
ified as tctss in terms of well known formalisms that allow to reason over their
timing and temporal aspects. All definitions and theorems presented in this pa-
per have been fully formalized and established in the Coq proof assistant 5.

We stress also in this conclusion that we do not address the whole fiacre lan-
guage [6] semantics in this paper. However, we consider the introduced model
of tcts (together with [12]) as the semantic kernel of fiacre and the corner-
stone of future research and developments. Transition systems with real-time
constraints and priorities are very complicated and reasoning about them is te-
dious. But on the other hand such systems are widely used in real-life embedded
systems, especially in spatial and avionics domains, which is a good motivator
for developing a fully mechanized framework. This makes the presented work a
very useful starting point for further theoretical or applied developments.

Future work will consist in certifying through the use of Coq some existing pat-
terns used in the design of avionic embedded applications, such as the periodic
controller presented in [8]. Also, an application of this work is to certify within
Coq the translation of timed temporal formulæ into fiacre observers [1]. An-
other envisioned application of our semantic framework concerns the verification
of transformations between timed formalisms such as the one presented in [5], or
model simplification, as for example, the flattening operator of component-based
languages. At last, we are convinced that this work together with [12] could be
a good basis for the certified compilation [19] of the fiacre language.

References

1. N. Abid, S. D. Zilio, and D. L. Botlan. A Verified Approach for Checking Real-Time
Specification Patterns. In Proceedings of VeCos, 2012.

5. available at http://www.irit.fr/~Manuel.Garnacho/Coq/FORMATS13.

2. A. Arnold. Finite Transition Systems - Semantics of Communicating Systems.
Prentice Hall international series in computer science. Prentice Hall, 1994.

3. A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time Components
in BIP. In SEFM, pages 3–12, 2006.

4. B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. Comparison of Different
Semantics for Time Petri Nets. In ATVA, pages 293–307, 2005.

5. B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. Comparison of the
Expressiveness of Timed Automata and Time Petri Nets. In FORMATS, pages
211–225, 2005.

6. B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet,
F. Lang, and F. Vernadat. Fiacre: an Intermediate Language for Model Verifi-
cation in the Topcased Environment. In ERTS 2008, 2008.

7. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment (Coq’Art: The Calculus of Inductive Constructions). Texts in Theoretical
Computer Science. Springer, 2004.

8. J.-P. Bodeveix, M. Filali, M. Garnacho, R. Spadotti, and Z. Yang. On the Mech-
anization of an AADL Subset. Science of Computer Programming : special issue
on Architecture Design Language, 2013. Submitted.

9. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/Event-
Based Software Model Checking. In IFM, pages 128–147, 2004.

10. E. A. Emerson and J. Y. Halpern. Decision Procedures and Expressiveness in the
Temporal Logic of Branching Time. In STOC, pages 169–180, 1982.

11. The FIACRE Specification Language for Real-Time Concurrent Systems.
http://projects.laas.fr/fiacre/.

12. M. Garnacho, J.-P. Bodeveix, and M. Filali. Mechanized Semantics of Concurrent
Systems with Priorities. IRIT Research Report–2013-16–FR, 2013. http://www.

irit.fr/~Manuel.Garnacho/Publications/MechPrio.pdf.

13. H. Geuvers, A. Koprowski, D. Synek, and E. van der Weegen. Automated Machine-
Checked Hybrid System Safety Proofs. In ITP, pages 259–274, 2010.

14. R. Hale, R. Cardell-Oliver, and J. Herbert. An Embedding of Timed Transition
Systems in HOL. FMSD, 3(1/2):151–174, 1993.

15. T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal Proof Methodologies for
Real-time Systems. In POPL, pages 353–366, 1991.

16. T. A. Henzinger, Z. Manna, and A. Pnueli. Timed Transition Systems. In REX
Workshop, pages 226–251, 1991.

17. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

18. The ISABELLE System. http://isabelle.in.tum.de/.

19. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In 33rd symposium Principles of Programming Languages,
pages 42–54. ACM Press, 2006.

20. C. Paulin-Mohring. Modelisation of Timed Automata in Coq. In TACS, pages
298–315, 2001.

21. A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57, 1977.

22. J. Rushby. Mechanized Formal Methods: Progress and Prospects. In Proc. of
FSTTCS, volume 1180 of LNCS, pages 43–51, Hyderabad, India, 1996.

