3,593 research outputs found

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Decentralized Sliding Mode Control for Output Tracking of Large-Scale Interconnected Systems

    Get PDF
    In this paper, a class of nonlinear interconnected systems with matched and unmatched uncertainties is considered. The isolated subsystem dynamics are described by linear systems and a nonlinear component. The matched uncertainties and unmatched unknown interconnection terms are assumed to be bounded by known functions. Based on sliding mode techniques, a state feedback decentralized control scheme is proposed such that the outputs of the controlled interconnected system track given desired signals uniformly ultimately. The desired reference signals are allowed to be time-varying. Using multiple transformations, the considered system is transferred to a new interconnected system with an appropriate structure to facilitate the sliding surface design and the design of a decentralized controller. A set of conditions is proposed to guarantee that the designed controller drives the tracking errors onto the sliding surface. The sliding motion exhibited by the error dynamics is uniformly ultimately bounded. The developed results are applied to a river quality control problem. Simulation results show that the proposed decentralized control strategy is effective and feasible

    Memory-based adaptive sliding mode load frequency control in interconnected power systems with energy storage

    Get PDF
    This paper presents a memory-based adaptive sliding mode load frequency control (LFC) strategy aimed at minimizing the impacts of exogenous power disturbances and parameter uncertainties on frequency deviations in interconnected power systems with energy storage. First, the dynamic model of the system is constructed by considering the participation of the energy storage system (ESS) in the conventional decentralized LFC model of a multiarea power system. A disturbance observer (DOB) is proposed to generate an online approximation of the lumped disturbance. In order to enhance the transient performance of the system and effectively mitigate the adverse effects of power fluctuations on grid frequency, a novel memory-based sliding surface is developed. This sliding surface incorporates the estimation of the lumped disturbance, as well as the past and present information of the state variables. The conservative assumption about the lumped disturbance is eased by considering the unknown upper bound of the disturbance and its first derivative. Based on the output of the proposed DOB, an adaptive continuous sliding mode controller with prescribed H performance index is introduced. This controller ensures that the sliding surface is reachable and guarantees asymptotic stability of the closed-loop system. The controller design utilizes strict linear matrix inequalities (LMIs) to achieve these objectives. Finally, the applicability and efficacy of the proposed scheme are verified through comparative simulation cases. Autho

    Load Frequency Control (LFC) Strategies in Renewable Energy‐Based Hybrid Power Systems:A Review

    Get PDF
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a comprehensive review of several LFC structures in a diverse configuration of a power system. First of all, an overview of a renewable energy-based power system is provided with a need for the development of LFC. The basic operation was studied in single-area, multi-area and multi-stage power system configurations. Types of controllers developed on different techniques studied with an overview of different control techniques were utilized. The comparative analysis of various controllers and strategies was performed graphically. The future scope of work provided lists the potential areas for conducting further research. Finally, the paper concludes by emphasizing the need for better LFC design in complex power system environments

    Nonlinear Sliding Mode Control for Interconnected Systems with Application to Automated Highway Systems

    Get PDF
    In this paper, a decentralised control strategy based on sliding mode techniques is proposed for a class of nonlinear interconnected systems. Both matched uncertainties in the isolated subsystems and mismatched uncertainties associated with the interconnections are considered. Under mild conditions, sliding mode controllers for each subsystem are designed in a decentralised manner by only employing local information. Conditions are determined which enable information on the interconnections to be employed within the decentralised controller design to reduce conservatism. The developed results are applied to an automated highway system. Simulation results pertaining to a high-speed following system are presented to demonstrate the effectiveness of the approach

    Single phase second order sliding mode controller for complex interconnected systems with extended disturbances and unknown time-varying delays

    Get PDF
    Novel results on complex interconnected time-delay systems with single phase second order sliding mode control is investigated. First, a reaching phase in traditional sliding mode control (TSMC) is removed by using a novel single phase switching manifold function. Next, a novel reduced order sliding mode observer (ROSMO) with lower dimension is suggested to estimate the unmeasurable variables of the plant. Then, a new single phase second order sliding mode controller (SPSOSMC) is established based on ROSMO tool to drive the state variables into the specified switching manifold from beginning of the motion and reduce the chattering in control input. Then, a stability condition is suggested based on the well-known linear matrix inequality (LMI) method to ensure the asymptotical stability of the whole plant. Finally, an illustrated example is simulated to validate the feasible application of the suggested technique

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Robust decentralised load frequency control for interconnected time delay power systems using sliding mode techniques

    Get PDF
    Based on a sliding mode control, a multi-area decentralised load frequency control power system with time-varying delays and non-linear perturbations is designed in this study. Due to the destabilising effect of delay on the global system, it is necessary to design a control system to accommodate vast time delays so as to manage the deviation in frequency and interchange power. By taking advantage of the system structure and disturbance bounds, robustness is improved. A sliding surface is designed, and the stability of the corresponding sliding motion is analysed based on Lyapunov–Razumikhin function. A delay dependent decentralised sliding mode control is synthesised to drive the system to the sliding surface and maintain a sliding motion afterwards. The obtained results are applied to a two-area interconnected power system to demonstrate the effectiveness of the proposed method
    corecore