
Decentralized Sliding Mode Control for Output Tracking of Large-Scale
Interconnected Systems*

Yueheng Ding1, Xing-Gang Yan1, Zehui Mao2, Bin Jiang2, Sarah K. Spurgeon3

Abstract— In this paper, a class of nonlinear interconnected
systems with matched and unmatched uncertainties is consid-
ered. The isolated subsystem dynamics are described by linear
systems and a nonlinear component. The matched uncertainties
and unmatched unknown interconnection terms are assumed
to be bounded by known functions. Based on sliding mode
techniques, a state feedback decentralized control scheme is
proposed such that the outputs of the controlled interconnected
system track given desired signals uniformly ultimately. The
desired reference signals are allowed to be time-varying. Using
multiple transformations, the considered system is transferred
to a new interconnected system with an appropriate structure
to facilitate the sliding surface design and the design of a
decentralized controller. A set of conditions is proposed to
guarantee that the designed controller drives the tracking
errors onto the sliding surface. The sliding motion exhibited
by the error dynamics is uniformly ultimately bounded. The
developed results are applied to a river quality control problem.
Simulation results show that the proposed decentralized control
strategy is effective and feasible.

I. INTRODUCTION

Large-scale systems are often mathematically modelled
by interconnections between a set of lower-dimensional
subsystems. One of the characteristics of such systems is
that each subsystem is usually affected by the others due to
the presence of the interconnections. It should be noted that
large-scale systems are usually widely distributed in space.
Thus the designed systems should have a high tolerance
of data-loss during data transfer due to broken/unknown
interconnections as well as poor communications to guar-
antee that the controlled large-scale systems exhibit the
required degree of robustness. The control problem for large-
scale interconnected systems is challenging. Compared with
centralised control, decentralized control needs local infor-
mation only, and thus information or data transfer between
subsystems is not required. Specifically, when the network
linking different subsystems is broken, or the data transfer
between subsystems is poor or unstable, a centralised control
scheme cannot be implemented. In such cases decentralized
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control provides advantages over centralized control and is
a popular choice in the control of large-scale interconnected
systems [17].

Recently, the study of large-scale systems with intercon-
nected terms has made great progress, and many interesting
results have been obtained. In [6], a large-scale fuzzy sys-
tem with unknown interconnections was considered, where
matched uncertainties or disturbances are not included. There
are also some results for interconnected systems (see, e.g. [7],
[5], [11]) which require that the interconnections are matched
while unmatched interconnections and/or uncertainties are
not involved. Moreover, some large-scale systems are consid-
ered as a simple or ideal dynamic model (see, e.g. [14], [13],
[4]). The structure of these systems lacks generality because
the input only exists within a first-order dynamic equation.
Decentralized sliding mode control has been developed in
[16] where the considered system is fully nonlinear with a
more general structure, but only a stabilization problem is
considered; tracking requirements are not addressed.

Trajectory tracking and output tracking are an important
topic in both control theory and control applications. Some
tracking control results have been obtained in (see. [1],
[7]). However most consider systems of a special structure
(see [13], [4]). Decentralized tracking control for large-scale
systems is considered in [9] where model reference control
is investigated. Tracking control for interconnected systems
is considered based on adaptive fuzzy techniques in [10]. It
should be noted that in both [9] and [10], it is required that
the isolated subsystems are linear.

Sliding mode control is very popular in dealing with
complex systems with uncertainties due to its unique control
characteristics ([18], [19]). On the one hand, the sliding
mode dynamics are often composed of a reduced-order
system when compared with the original system ([17], [2]),
which may simplify the corresponding system analysis and
design. On the other hand, sliding mode control is totally
robust to matched uncertainty and disturbances. This has
resulted in the sliding mode control method being widely
applied to deal with tracking problems, and many results
have been achieved. Trajectory tracking control schemes
based on sliding mode techniques are proposed for specific
vehicles in (see. [20], [15]). An output tracking sliding
mode control is designed in [12] where the considered
system is linear. Although tracking control for nonlinear
systems with uncertainties is considered in [3] where event-
triggered tracking is considered, only matched disturbances
are considered. In [21], a tracking problem for a class of
large-scale systems with interconnections is considered using



sliding mode control. However, it is required that the refer-
ence signals are constant. It should be emphasised that the
results concerning output tracking for large-scale nonlinear
interconnected systems with unknown interconnections are
very few, specifically when the ideal reference signals are
time-varying.

In this paper, a class of nonlinear interconnected systems
is considered where both unknown matched uncertainty
and unmatched nonlinear interconnections are considered.
Suitable coordinate transformations are introduced to transfer
the nominal subsystems within the interconnected system to
systems with special structure. This separates each subsystem
of the transformed system into two parts to facilitate the
system analysis and control design for output tracking.
Then the tracking error dynamic systems are developed, and
the sliding surface based on the tracking error system is
designed. A set of conditions is proposed to guarantee the
uniform ultimate boundedness of the corresponding sliding
motion. A decentralized sliding mode control scheme is
proposed to drive the nonlinear interconnected systems to
the designed sliding surface. Finally, the obtained results
are applied to a river quality control problem to show the
practicability and feasibility of the proposed approach.

II. SYSTEM DESCRIPTION AND BASIC ASSUMPTIONS

Consider a nonlinear large-scale system formed by N
interconnected subsystems as follows:

ẋi = Aixi + fi(xi)+Bi(ui +∆gi(xi))+hi(x)

yi =Cixi i = 1,2, ...,N
(1)

where x = col(x1,x2, ...,xN), xi ∈ Rni , ui ∈ Rmi and yi ∈ Rmi

represent the states, inputs and outputs of the ith subsystem
respectively and mi < ni. The triple (Ai,Bi,Ci) represents
constant matrices of appropriate dimensions with Bi and Ci
of full rank. The functions fi(xi) represent known nonlinear
terms in the ith subsystem, and the matched uncertainty
of the ith isolated subsystem is denoted by ∆gi(xi). The
terms hi(x) represent the system interconnections including
all unmatched uncertainties. All the nonlinear functions are
assumed to be continuous in their arguments to guarantee
the existence of solutions of the controlled system (1).

The object of this paper is, for a given desired signal yid(t),
to design a decentralized sliding mode control

ui = ui(t,xi(t),yid(t))

such that the system output yi(t) of controlled system (1) can
track the desired signal yid(t), i.e. the tracking errors yi(t)−
yid(t) are uniformly ultimately bounded for i = 1,2, ...,N,
while all the state variables of system (1) are bounded.
Remark 1. It should be noted that in this paper, it is
required that system (1) is square, that is, the dimension
of each subsystem output is equal to the dimension of
the corresponding subsystem input. However, the developed
results can be easily extended to the case when the dimension
of the subsystem output is greater than the dimension of the
subsystem input by slight modification.

In order to deal with the tracking problem stated above,
some assumptions are imposed on the considered intercon-
nected system (1).
Assumption 1. The pair (Ai,Bi) is controllable and
rank(CiBi) = mi for i = 1,2, ...,N.
This follows from the work in [17], [2]. Under Assumption
1, there exists a coordinate transformation zi = Tixi such that
the triple (Ai,Bi,Ci) with respect to the new coordinates zi
has the following structure[

Ai11 Ai12
Ai21 Ai22

]
,

[
0

Bi2

]
,

[
0 Ci2

]
where Ai11 ∈ R(ni−mi)×(ni−mi), the square matrices Bi2 ∈
Rmi×mi and Ci2 ∈ Rmi×mi are nonsingular for i = 1,2, ...,N.
Assumption 2. Suppose that fi(xi) has the decomposition
fi(xi) = Γi(xi)xi, where Γi ∈ Rni×ni is a continuous function
matrix for i = 1,2, ...,N.
Remark 2. If fi(0) = 0 and fi is sufficiently smooth, then
the decomposition fi(xi) = Γi(xi)xi is guaranteed. Therefore,
the limitation to fi(xi) in Assumption 2 is not strict.
Assumption 3.There exist known continuous functions ρi(·)
such that
∥ ∆gi(xi) ∥≤ ρi(xi) for i = 1,2, ...,N.

Assumption 4. The desired output signal yid(t) is differen-
tiable and satisfies

(i). ∥ yid(t) ∥≤ Li1
(ii). ∥ ẏid(t) ∥≤ Li2

for t ∈ [0,∞), where Li1 and Li2 are known constants for
i = 1,2, ...,N.
Remark 3. Assumption 4 is a limitation on the desired output
signals yid(t). It is required that the desired output signal
yid(t) and its derivative ẏid(t) are bounded. This assumption
is quite standard and can be satisfied in most practical cases.

III. SYSTEM STRUCTURE ANALYSIS

Consider the nonlinear interconnected system in (1). Un-
der Assumption 1, there exists a nonsingular coordinate
transformation zi = Tixi such that in the new coordinates
z = col(z1,z2, ...,zN), system (1) has the following form

żi =

[
Ai11 Ai12
Ai21 Ai22

]
zi +

[
Fi1(zi)
Fi2(zi)

]
+

[
0

Bi2

]
(ui +∆Gi(zi))

+

[
Hi1(z)
Hi2(z)

]
yi =

[
0 Ii2

]
zi, i = 1,2, ...,N

(2)

where Ai11 is stable, the square sub-matrices Bi2 ∈Rmi×mi are
nonsingular. Ii2 ∈ Rmi×mi is an identity matrix, col(Fi1,Fi2) =
Ti fi(xi)|xi=T−1

i zi
and Fi1(zi) ∈ Rni−mi , Fi2(zi) ∈ Rmi . ∆Gi(zi) =

Ti∆gi(xi)|xi=T−1
i zi

, col(Hi1(z),Hi2(z)) = Tihi(x)|x=T−1z and
Hi1(z) ∈ Rni−mi , Hi2(z) ∈ Rmi . The coordinate transformation
T := col(T1,T2, ...,TN).

Since Ai11 is stable for i = 1,2, ...,N, for any Qi > 0, the
following Lyapunov equation has a unique solution Pi > 0
such that

AT
i11Pi +PiAi11 =−Qi, i = 1,2, ...,N. (3)



Now, in order to fully exploit the structural characteristics,
partition zi = col(zi1,zi2) with zi1 ∈ Rni−mi and zi2 ∈ Rmi . It
follows that in the new coordinate z, system (2) has the
following form

żi1 = Ai11zi1 +Ai12yi +Fi1(zi1,yi)

+Hi1(z11,y1, ...,zN1,yN) (4)
ẏi = Ai21zi1 +Ai22yi +Fi2(zi1,yi)+Bi2(ui +∆Gi(zi))

+Hi2(z11,y1, ...,zN1,yN) i = 1,2, ...,N (5)

From system (2) and Assumption 2,

col(Fi1,Fi2) = Ti fi(xi)|xi=T−1
i zi

= TiΓi(xi)|xi=T−1
i zi

T−1
i col(z1i,yi) (6)

It follows from (6) that the functions Fi1(zi1,yi) in system
(4)-(5) can be described by

Γi11(zi1,yi)zi1 +Γi12(zi1,yi)yi = Fi1(zi1,yi) (7)

where Γi11(·) and Γi12(·) are defined by[
Γi11(·) Γi12(·)

⋆ ⋆

]
= TiΓi(xi)|xi=T−1

i zi
T−1

i

and the ⋆s are function matrices which it is not necessary to
specify. Therefore, (4) can be described by

żi1 =Ai11zi1 +Ai12yi +Γi11(zi1,yi)zi1 +Γi12(zi1,yi)yi

+Hi1(z11,y1, ...,zN1,yN)
(8)

where Γi11(·) and Γi12(·) satisfy (7).

IV. SLIDING MODE TRACKING CONTROL DESIGN

A. Sliding Surface Design

Consider the desired output signal yid(t) satisfying As-
sumption 4. Then for system (1), the output tracking errors
ei are defined by:

ei(t) = yi(t)− yid(t) i = 1,2, ...,N (9)

and their first-time derivative is:

ėi(t) = ẏi(t)− ẏid(t) i = 1,2, ...,N (10)

Combining (4)-(5), a new system comprising zi1 and ei can
be developed:

żi1 = Ai11zi1 +Ai12yi +Γi11(zi1,yi)zi1 +Γi12(zi1,yi)yi

+Hi1(z11,y1, ...,zN1,yN) (11)
ėi = Ai21zi1 +Ai22(ei + yid)+Fi2(zi1,yi)+Bi2(ui +

∆Gi(zi1,yi))+Hi2(z11,y1, ...,zN1,yN)− ẏid(t) (12)

for i = 1,2, ...,N.

Assumption 5. It is straightforward to find a function γi(·)
such that the following inequalities

∥Hi1(z11,y1, ...,zN1,yN) ∥

≤ γi1(T−1(z11,y1, ...,zN1,yN))(
N

∑
j=1

∥ z j1 ∥+
N

∑
j=1

∥ y j ∥)

(13)
∥Hi2(z11,y1, ...,zN1,yN) ∥

≤ γi2(T−1(z11,y1, ...,zN1,yN))(
N

∑
j=1

∥ z j1 ∥+
N

∑
j=1

∥ y j ∥)

(14)

hold for i = 1,2, ...,N.
For the system (11)-(12), define the following sliding

surface

col(e1,e2, ...,eN) = 0 (15)

Then, the sliding mode dynamics have the following form
according to the structure of (11)-(12):

żi1 = Ai11zi1 +Ai12yid +Γi11(zi1,yid)zi1

+Γi12(zi1,yid)yid +Hi1(z11,y1d , ...,zN1,yNd)
(16)

for i = 1,2, ...,N.
Remark 4. From (13) in Assumption 5, when the states reach
the sliding surface, it follows that

∥Hi1(z11,y1d , ...,zN1,yNd) ∥

≤ γi1(T−1(z11,y1d , ...,zN1,yNd))(
N

∑
j=1

∥ z j1 ∥+
N

∑
j=1

∥ y jd ∥)

(17)

hold for i = 1,2, ...,N.
Obviously, the sliding surface (16) is a reduced-order

interconnected system composed of N subsystems whose
dimension is ni −mi.

Theorem 1: Consider the sliding mode dynamics given in
(16). Under Assumptions 1-5, the sliding mode is uniformly
ultimately bounded if there exists a domain

Ω = {(z11,z21, ...,zN1)| ∥ zi1 ∥≤ ci, i = 1,2, ...,N}

for some constants ci > 0 such that MT+M > 0 in Ω\{0}
where M := (mi j)N×N and

mi j =

{
λmin(Qi)− ∥ Ri(·) ∥ −2 ∥ Pi ∥ γi1(·), i = j
−2 ∥ Pi ∥ γi1(·), i ̸= j

(18)

with Pi and Qi satisfying (3), and

Ri(·) := Γi11(zi1,yid)
TPi +PiΓi11(zi1,yid)

where Γi11(zi1,yi) is given by (2) and γi1(·) is determined by
(17).

Proof: It is necessary to prove the system (16) is
uniformly ultimately bounded. For system (16), consider the
following Lyapunov function candidate

V (z11,z21, ...,zN1) =
N

∑
i=1

(zi1)
TPizi1 (19)



where Pi satisfies (3).
Then, the time derivative of V (z11,z21, ...,zN1) along the

trajectories of system (16) is given by

V̇ (z11,z21, ...,zN1)

=
N

∑
i=1

[(żi1)
TPizi1 + zTi1Piżi1]

=
N

∑
i=1

[zTi1AT
i11Pizi1 + yTidAT

i12Pizi1 + zTi1Γi11(zi1,yid)
TPizi1

+ yTidΓi12(zi1,yid)
TPizi1 +Hi1(z11,y1d , ...,zN1,yNd)

TPizi1

+ zTi1PiAi11zi1 + zTi1PiAi12yid + zTi1PiΓi11(zi1,yid)zi1

+ zTi1PiΓi12(zi1,yid)yid + zTi1PiHi1(z11,y1d , ...,zN1,yNd)]

=
N

∑
i=1

{−zTi1Qizi1 + zTi1[Γi11(zi1,yid)
TPi +PiΓi11(zi1,yid)]zi1

+2zTi1PiAi12yid +2zTi1PiΓi12(zi1,yid)yid

+2zTi1PiHi1(z11,y1d , ...,zN1,yNd)}
(20)

where (3) is used to establish the above. By (17) and (i) in
Assumption 4, it follows that

V̇ (z11,z21, ...,zN1)

≤
N

∑
i=1

{−λmin(Qi) ∥ zi1 ∥2 + ∥ Γi11(zi1,yid)
TPi

+PiΓi11(zi1,yid) ∥∥ zi1 ∥2 +2 ∥ zi1 ∥∥ Pi ∥∥ Ai12yid ∥
+2 ∥ zi1 ∥∥ Pi ∥∥ Γi12(zi1,yid)yid ∥
+2 ∥ zi1 ∥∥ Pi ∥∥ Hi1(z11,y1d , ...,zN1,yNd) ∥}

=−
N

∑
i=1

{
λmin(Qi)− ∥ Ri(·) ∥ −2 ∥ Pi ∥ γi1(·)

}
∥ zi1 ∥2

+2
N

∑
i=1

N

∑
j=1
j ̸=i

∥ Pi ∥∥ zi1 ∥ γi1(·)(∥ z j1 ∥+Li1)

+2
N

∑
i=1

(∥ Ai12yid ∥+ ∥ Γi12(zi1,yid)yid ∥)· ∥ Pi ∥∥ zi1 ∥

≤− 1
2

λmin(MT+M)
N

∑
i=1

∥ zi1 ∥2 +2
N

∑
i=1

(∥ Ai12yid ∥

+ ∥ Γi12(zi1,yid)yid ∥+γi1(·)Li1)· ∥ Pi ∥∥ zi1 ∥

=− 1
2

N

∑
i=1

{λmin(MT+M) ∥ zi1 ∥ −4(∥ Ai12yid ∥

+ ∥ Γi12(zi1,yid)yid ∥+γi1(·)Li1) ∥ Pi ∥} ∥ zi1 ∥
(21)

where the matrix M is defined in (18). Under Assumption 4,
∥ yid(t) ∥≤ Li1. It is clear to check V̇ ≤ 0, if

∥ zi1 ∥≥
4(∥ Ai12Li1 ∥+ ∥ Γi12(zi1,yi)Li1 ∥+γi1(·)Li1) ∥ Pi ∥

λmin(MT+M)

for i = 1,2, ..,N. Hence, the conclusion follows.

V. DECENTRALIZED SLIDING MODE CONTROL

For the interconnected system (1), the reachability condi-
tion [17], [16] is described by

N

∑
i=1

eTi (t)ėi(t)
∥ ei(t) ∥

< 0 (22)

The following control law is then proposed

ui = −B−1
i2

ei

∥ ei ∥
{∥ Ai21zi1 ∥+ ∥ Ai22yi ∥+ ∥ Fi2(zi1,yi) ∥

+ ∥ Bi2 ∥ ρi(zi1,yi)+ ki(zi1,yi)+Li2} (23)

for i = 1,2, ...,N, where ei and Li2 are defined by (9) and
Assumption 4, respectively. ki(zi1,yi) is a control gain to be
designed later.

Theorem 2: Consider the nonlinear interconnected system
(11)–(12). Under Assumptions 2-5, the controller (23) drives
the system (11)–(12) to the composite sliding surface (16)
and maintains a sliding motion on it if the controller gains
ki(zi1,yi) satisfy

N

∑
i=1

ki(zi1,yi)>
N

∑
i=1

γi2(·)
N

∑
j=1

(∥ z j1 ∥+ ∥ yi ∥) (24)

where γi2 are defined by Assumption 5.
Proof: It is necessary to prove that the reachability

condition (22) is satisfied. From (12) and Assumption 2,

ėi = Ai21zi1 +Ai22yi +Fi2(zi1,yi)+Bi2(ui

+∆Gi(zi1,yi))+Hi2(z11,y1, ...,zN1,yN)− ẏid
(25)

for i = 1,2, ...,N. From (23)-(25), it follows

eTi ėi

∥ ei ∥
=

eTi
∥ ei ∥

{Ai21zi1 +Ai22yi +Fi2(zi1,yi)

+Bi2∆Gi((zi1,yi))+Hi2(z11,y1, ...,zN1,yN)− ẏid}
− ∥ Ai21zi1 ∥ − ∥ Ai22yi ∥ − ∥ Fi2(zi1,yi) ∥
− ∥ Bi2 ∥ ρi(zi1,yi)− ki(zi1,yi)−Li2

(26)

It is clear to see
∥ Ai21zi1 +Ai22yi +Fi2(zi1,yi) ∥

≤∥ Ai21zi1 ∥+ ∥ Ai22yi ∥+ ∥ Fi2(zi1,yi) ∥
(27)

From Assumptions 3-5,

∥ Bi2∆Gi(zi1,yi) ∥ ≤∥ Bi2 ∥ ρi(zi1,yi) (28)

∥ Hi2(z11,y1, ...,zN1,yN) ∥ ≤ γi2(·)
N

∑
j=1

(∥ z j1 ∥+ ∥ yi ∥) (29)

∥ ẏid ∥ ≤ Li2 (30)

Substituting the above four inequalities (27)-(30) into (26),
it follows

N

∑
i=1

eTi (t)ėi(t)
∥ ei(t) ∥

<−
N

∑
i=1

ki(zi1,yi)+
N

∑
i=1

γi2(·)
N

∑
j=1

∥ z j1 ∥

If ki(zi1,yi) is chosen to satisfy (24), then the reachability
condition (22) is satisfied.

Hence, the result follows.
Remark 5. Theorem 1 shows that the sliding mode (16)
which is an interconnected system, is uniformly ultimately



bounded. Theorem 2 shows that the designed control (23) can
drive the considered system (11)–(12) to the sliding surface
(15). According to the sliding mode theory, Theorems 1 and
2 show that the controlled systems (11)–(12) are uniformly
ultimately bounded.

From Remark 5, it follows that the closed-loop systems
formed by applying the control (24) to the systems (11)–(12)
are uniformly ultimately bounded, which implies that the
variables ∥zi1(t)∥ and ∥ei(t)∥ are bounded for i = 1,2, . . . ,N.
Further, from ei(t) = yi(t)− yid(t) and Assumption 4 which
guaratees that yid(t) is bounded, it is straightforward to
see that the yi(t) are bounded due to yi(t) = ei(t)+ yid(t),
for i = 1,2, . . . ,N. Therefore, all the state variables of the
system (4)–(5) are bounded. This shows that the designed
decentralized control (24) can not only make the system
outputs track the desired reference signals but also keep all
the state variables of the system (4)–(5) bounded.

VI. APPLICATION TO WATER QUALITY CONTROL

In this section, the decentralized control scheme developed
in this paper will be applied to a river pollution problem
[8]. The water quality of a river is mainly dependent upon
the concentrations of oxygen and pollutants. In a simplified
manner, this problem can be stated as the task of controlling
the pollutants discharged at different places along the river
in such a way that the river pollution remains within a given
tolerance.

Assume that the river has two regions and each region
has a sewage station. Then, the river pollution system can
be described by a nonlinear interconnected system as follows
(see, [17])

ẋ1 =

[
−1.32 0
−0.32 −1.2

]
︸ ︷︷ ︸

A1

x1 +

[
1
0

]
︸︷︷︸

B1

(u1 +∆g1(·))

+

[
sin(x21)

0

]
︸ ︷︷ ︸

h1

y1 =
[
1 0

]︸ ︷︷ ︸
C1

x1 (31)

ẋ2 =

[
−1.32 0
−0.32 −1.2

]
︸ ︷︷ ︸

A2

x2 +

[
1
0

]
︸︷︷︸

B2

(u2 +∆g2(·))

+

[
−0.9x11

0

]
︸ ︷︷ ︸

h2

y2 =
[
1 0

]︸ ︷︷ ︸
C2

x2 (32)

where x1 := col(x11,x12) and x2 := col(x21,x22). The vari-
ables xi1 and xi2 for i = 1,2. represent the concentration of
biochemical oxygen demand (BOD) and the concentration
of dissolved oxygen respectively, the controllers ui are the
BOD of the effluent discharge into the river, ∆gi represent
any matched uncertainties and hi represent interconnections
respectively for i = 1,2. It is assumed that the concentrations
of BOD for the two regions are measurable.

In this example, according to (1) the nonlinear term
fi(x1) = 0, so Assumption 2 can be ignored. The matched

uncertainties ∆g1(·) and ∆g2(·) are assumed to satisfy

∆g1(·) =−13.2x11 ∆g2(·) = cos2(x21) (33)

According to (31)-(32), the interconnections satisfy

∥ h1 ∥≤ 1 · |x21| ∥ h2 ∥≤ |0.9 · x11| (34)

Combining (33)-(34), it is clear that Assumption 3 is satis-
fied.

Moreover, it can be verified that rank(CiBi) = 1 = mi for
i = 1,2. So the Assumption 1 is satisfied.

Some suitable coordinate transformation matrices Ti are
introduced as below: (zi = Tixi)

T1 = T2 =

[
0 1
1 0

]
.

Then, the system (31)-(32) in z coordinates can be given by

ż1 =

[
−1.2 −0.32

0 −1.32

]
︸ ︷︷ ︸

Â1

z1 +

[
0
1

]
︸︷︷︸

B̂1

(u1 −13.2z12)

+

[
0

sin(z22)

]
︸ ︷︷ ︸

H1

y1 =
[
0 1

]︸ ︷︷ ︸
Ĉ1

z1 (35)

ż2 =

[
−1.2 −0.32

0 −1.32

]
︸ ︷︷ ︸

Â2

z2 +

[
0
1

]
︸︷︷︸

B̂2

(u2 + cos2(z22))

+

[
0

−0.9z12

]
︸ ︷︷ ︸

H2

y2 =
[
0 1

]︸ ︷︷ ︸
Ĉ2

z2 (36)

and the sliding surfaces Si are: żi1 = −1.2zi1 − 0.32zi2, i =
1,2.

For simulation purposes, the initial states are chosen as
z1(0)= col(0,1) and z2(0)= col(0,0), and the desired output
signals yid are chosen as: y1d = 2 · e−t , y2d = sin(0.5t)+1.

It is clear that Assumption 4 is satisfied. Let L12 = 2,
L22 = 0.5.

From (23), the proposed sliding mode controllers are as
follows:

u1 = − y1 − y1d

|y1 − y1d |
(|1.32z12|+ |13.2z12|+3) (37)

u2 = − y2 − y2d

|y2 − y2d |
(|1.32z22|+ |cos2(z22)|+2.3) (38)

According to (3), choose Q1 = Q2 = 1. Combining (31)-
(32), Ai11 = −1.2 for i = 1,2. Then P1 = P2 = 0.416. By
direct calculation, it follows from (18) that

M⊤+M =

[
−1.664γ11 +2 −0.832(γ11 + γ21)

−0.832(γ11 + γ21) −1.664γ21 +2

]
According to (17), (35) and (36), γ11 = 6 · sin(z11), γ21 =
3 ·cos(z21)−2. By direct verification, it is straightforward to
check that M⊤+M > 0, if |z11| ≤ d1 = 5.2, |z21| ≤ d2 = 3.9.

According to (21) for this example: V̇ (z11,z21) ≤ 0, if
|z11| ≥ 0.3 and |z21| ≥ 0.25. Therefore, the system (31)-(32)
is uniformly ultimately bounded.



The tracking results are shown in Fig. 1. The concentration
of biochemical oxygen demand (BOD) of each subsystem yi
can track the ideal reference yid using the controller from
(37)-(38) even in the presence of uncertainties. The time
responses of the states of the system (31)-(32) are shown
in Fig. 2. This shows that the system states are bounded.
Simulation results demonstrate that the method developed in
this paper is effective.

Fig. 1. Time responses of system outputs and desired outputs.

Fig. 2. Time responses of system state variables.

VII. CONCLUSIONS

This paper has presented a sliding mode control strategy
to deal with the output tracking problem of a class of large-
scale systems with unmatched unknown nonlinear intercon-
nections. The desired reference signals are allowed to be
time-varying. A decentralized sliding mode control scheme
has been proposed to satisfy the reachability condition. This
drives the interconnected system onto the pre-designed slid-
ing surface. A set of conditions is developed to guarantee that
the output tracking errors are uniformly ultimately bounded
while all the state variables of the interconnected system are
bounded. The application of the developed result to a river
pollution control system has demonstrated that the proposed
approach is effective and practicable.
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