314 research outputs found

    Video anatomy : spatial-temporal video profile

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)A massive amount of videos are uploaded on video websites, smooth video browsing, editing, retrieval, and summarization are demanded. Most of the videos employ several types of camera operations for expanding field of view, emphasizing events, and expressing cinematic effect. To digest heterogeneous videos in video websites and databases, video clips are profiled to 2D image scroll containing both spatial and temporal information for video preview. The video profile is visually continuous, compact, scalable, and indexing to each frame. This work analyzes the camera kinematics including zoom, translation, and rotation, and categorize camera actions as their combinations. An automatic video summarization framework is proposed and developed. After conventional video clip segmentation and video segmentation for smooth camera operations, the global flow field under all camera actions has been investigated for profiling various types of video. A new algorithm has been designed to extract the major flow direction and convergence factor using condensed images. Then this work proposes a uniform scheme to segment video clips and sections, sample video volume across the major flow, compute flow convergence factor, in order to obtain an intrinsic scene space less influenced by the camera ego-motion. The motion blur technique has also been used to render dynamic targets in the profile. The resulting profile of video can be displayed in a video track to guide the access to video frames, help video editing, and facilitate the applications such as surveillance, visual archiving of environment, video retrieval, and online video preview

    Taking an insect-inspired approach to bird navigation

    Get PDF
    Navigation is an essential skill for many animals, and understanding how animal use environmental information, particularly visual information, to navigate has a long history in both ethology and psychology. In birds, the dominant approach for investigating navigation at small-scales comes from comparative psychology, which emphasizes the cognitive representations underpinning spatial memory. The majority of this work is based in the laboratory and it is unclear whether this context itself affects the information that birds learn and use when they search for a location. Data from hummingbirds suggests that birds in the wild might use visual information in quite a different manner. To reconcile these differences, here we propose a new approach to avian navigation, inspired by the sensory-driven study of navigation in insects. Using methods devised for studying the navigation of insects, it is possible to quantify the visual information available to navigating birds, and then to determine how this information influences those birds’ navigation decisions. Focusing on four areas that we consider characteristic of the insect navigation perspective, we discuss how this approach has shone light on the information insects use to navigate, and assess the prospects of taking a similar approach with birds. Although birds and insects differ in many ways, there is nothing in the insectinspired approach of the kind we describe that means these methods need be restricted to insects. On the contrary, adopting such an approach could provide a fresh perspective on the well-studied question of how birds navigate through a variety of environments

    Bio-Inspired Information Extraction In 3-D Environments Using Wide-Field Integration Of Optic Flow

    Get PDF
    A control theoretic framework is introduced to analyze an information extraction approach from patterns of optic flow based on analogues to wide-field motion-sensitive interneurons in the insect visuomotor system. An algebraic model of optic flow is developed, based on a parameterization of simple 3-D environments. It is shown that estimates of proximity and speed, relative to these environments, can be extracted using weighted summations of the instantaneous patterns of optic flow. Small perturbation techniques are utilized to link weighting patterns to outputs, which are applied as feedback to facilitate stability augmentation and perform local obstacle avoidance and terrain following. Weighting patterns that provide direct linear mappings between the sensor array and actuator commands can be derived by casting the problem as a combined static state estimation and linear feedback control problem. Additive noise and environment uncertainties are incorporated into an offline procedure for determination of optimal weighting patterns. Several applications of the method are provided, with differing spatial measurement domains. Non-linear stability analysis and experimental demonstration is presented for a wheeled robot measuring optic flow in a planar ring. Local stability analysis and simulation is used to show robustness over a range of urban-like environments for a fixed-wing UAV measuring in orthogonal rings and a micro helicopter measuring over the full spherical viewing arena. Finally, the framework is used to analyze insect tangential cells with respect to the information they encode and to demonstrate how cell outputs can be appropriately amplified and combined to generate motor commands to achieve reflexive navigation behavior

    Between knowing and believing : the cinematic dispositive after cinema

    Full text link
    Diffusé avec l’accord des Éditions Amsterdam University Press, détentrices des droits d’auteur sur ce texte

    Landscape impact assessment in planning processes

    Get PDF
    The book is specifically dedicated to a broad spectrum of aspects of landscape impact assessment in the process of strategic planning and decision-making. It aims to show the required standard process, content and scope of assessment of impact on the landscape and to present the main principles to ensure their integrity and consistency

    Communicating Sustainable Design through Visual Dynamics

    Get PDF
    My thesis is the exploration of dynamic methods to eff ectively visualize and communicate sustainable designpractices. Every site consists of temporal conditions (climate, vegetation growth, hydrology, comfort, aesthetics)that require dynamic representation of it’s progressive state. By understanding both the quantitative and qualitivemeasures of a site’s content, designers can begin to create guidelines and adaptive responses to the changingconditions. Th is can be achieved by fi rst understanding the intergrated relationship of those conditions, as oneelement has a direct or indirect impact on another. Th e design, in turn, cannot be a static implimentation butrather an evolutionary application

    The cooperative effects of channel length-bias, width asymmetry, gradient steepness, and contact-guidance on fibroblasts’ directional decision making

    Get PDF
    Cell migration in complex micro-environments, that are similar to tissue pores, is important for predicting locations of tissue nucleation and optimizing scaffold architectures. Firstly, how fibroblast cells - relevant to tissue engineering, affect each other’s directional decisions when encountered with a bifurcation of different channel lengths was investigated. It was found that cell sequence and cell mitosis influence the directional choices that the cells made while chemotaxing. Specifically, the fibroblasts chose to alternate between two possible paths - one longer and the other shorter - at a bifurcation. This finding was counter-intuitive given that the shorter path had a steeper chemoattractant gradient, and would thus be expected to be the preferred path, according to classical chemotaxis theory. Hence, a multiscale image-based modeling was performed in order to explain this behavior. It showed that consumption of the chemotactic signals by the neighboring cells led to the sequence-dependent directional decisions. Furthermore, it was also found that cellular division led to daughter cells making opposite directional choices from each other; even it meant that one of the daughter cells had to move against the chemotactic gradient, and overcome oncoming traffic of other cells. Secondly, a comparison of the effects of the various directional cues on the migration of individual fibroblast cells: including the chemoattractant concentration gradient, the channel width, and the contact-guidance was provided. Simple bifurcated mazes with two branches of different widths were created and fibroblasts were allowed to travel across these geometries by introducing a gradient of PDGF-BB at the ‘exit’ of the device. By incorporating image-based modeling methodology into the experimental approach, an insight into (i) how individual cells make directional decisions in the presence of complex migration cues and (ii) how the cell-cell interaction influences it was provided. It was found that a larger width ratio between the two bifurcated branches outdoes a gradient difference in attracting the cells. Also, when cells encounter a symmetric bifurcation (i.e., no difference between the branch widths), the gradient is predominant in deciding which path the cell will take. Then, in a symmetrical gradient field (i.e., inside a bifurcation of similar branch widths, and in the absence of any leading cells), the contact guidance is important for guiding the cells in making directional choices. Finally, these directional cues were ranked according to the order from the most importance to the least: vast gradient difference between the two branches, channel width bias, mild gradient difference, and contact-guidance

    Landscape impact assessment in planning processes

    Get PDF
    The book is specifically dedicated to a broad spectrum of aspects of landscape impact assessment in the process of strategic planning and decision-making. It aims to show the required standard process, content and scope of assessment of impact on the landscape and to present the main principles to ensure their integrity and consistency

    Spatial Formats under the Global Condition

    Get PDF
    Contributions to this volume summarize and discuss the theoretical foundations of the Collaborative Research Centre at Leipzig University which address the relationship between processes of (re-)spatialization on the one hand and the establishment and characteristics of spatial formats on the other hand
    corecore