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ABSTRACT

Cai, Hongyuan Ph.D., Purdue University, May 2013. Video Anatomy: Spatial-
Temporal Video Profile. Major Professor: Jiang Yu Zheng.

A massive amount of videos is uploaded on video websites, smooth video brows-

ing, editing, retrieval, and summarization are demanded. Most of the videos employ

several types of camera operations for expanding field of view, emphasizing events,

and expressing cinematic effect. To digest heterogeneous videos in video websites

and databases, video clips are profiled to 2D image scroll containing both spatial

and temporal information for video preview. The video profile is visually continuous,

compact, scalable, and indexed to each frame. This work analyzes camera kinemat-

ics including zoom, translation, and rotation, and categorize camera actions as their

combinations. An automatic video summarization framework is proposed and devel-

oped. After conventional video clip segmentation and video segmentation for smooth

camera operations, the global flow field under all camera actions has been investigated

for profiling various types of video. A new algorithm has been designed to extract

the major flow direction and convergence factor using condensed images. Then this

work proposes a uniform scheme to segment video clips and sections, sample video

volume across the major flow, and compute the flow convergence factor, in order to

obtain an intrinsic scene space less influenced by the camera ego-motion. The motion

blur technique has also been used to render dynamic targets in the profile. The re-

sulting profile of video can be displayed in a video track to guide the access to video

frames, help video editing, and facilitate the applications such as surveillance, visual

archiving of environment, video retrieval, and online video preview.
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1 INTRODUCTION

1.1 Objectives

Digitized visual memory and its sharing can assist in such human activities as cog-

nition, decision-making, location finding, process execution, and social activity. With

the explosive increase of video data and sharing to the web, smooth video browsing,

editing, retrieval, and summarization are highly in demand. Increasing numbers of

digital cameras and cell phones along with large storage devices have created huge

video archives available for cataloging personal experiences. Moreover, tremendously

large video datasets are recorded for experiments and surveillance at research insti-

tutes, business sites, public areas, and critical infrastructures. Small wearable cameras

are available to law enforcement, health care, and retail establishments for constant

recording of daily events and people. The resulting footage is defined as egocentric

videos. The real challenging problem now is how to conveniently view and navigate

video data and how to effectively use the video information for various applications.

Vast amounts of time has been used in searching and screening video. Tools that

can automatically find the most relevant content according to our interests, specified

manually or learned from the viewing history, are desired. Two common approaches

in accessing the large dataset of video so far are interactive browsing and automatic

retrieval.

How can the viewer have a glance at an entire video clip and then index to each

individual frame from a video digest? Because dynamic video frames have overlaps on

scenes, the reduction of redundant pixels from a video clip to a 2D image belt becomes

possible in video summarization. We can thus analyze the camera motion information

in the video to sample static scenes only once. Such a sampling dramatically reduces
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Figure 1.1.: Video volume and a possible cutting of diagonal slice across the major

flow in the video clip. (a) Video data volume with an indicator indicating the current

frame. The blue rectangle shows a frame plane. The video data volume has two

spatial dimensions x and y, and one temporal dimension t indicating the order of

frames. (b) a condensed image showing flow traces of scenes, (c) a generated profile

of a video clip from a camera translating sideways. The red plane in (a) and the red

line in (b) show the sampling plane formed by moving a sampling line and the path

of the sampling line.

the data size and the influence from the camera motion. This work creates a 2D profile

from raw video data, which is an image belt that contains one axis as the timeline,

and the other indicating a spatial dimension in the video frame. It is a novel view of

video from side of the video volume (instead of the conventional method that looks

from the front) that can (1) index to each frame for video editing, (2) provide a view

of entire scene space that a video captures for browsing. The sampling (slice cutting)

strategy avoids image matching, flow segmentation, and other complex procedures to

achieve the robustness. The image belt can be embedded as a video track in video

production software, displayed in web-page for browsing, and used as an intrinsic
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video space for retrieval. Moreover, the created video summary keeps the temporal

order of video and is scalable in time starting with a resolution higher than spatial

or temporal indexing. Figure 1.1 displays a possible setting of such a profile cutting

in the spatial-temporal video volume.

1.2 Contributions

The first major contribution of this dissertation is to solve the fundamental prob-

lems on

1. Whether the profile is possible to be extracted for all types of camera motions.

2. How to obtain the profile of video shot/clip from a general camera motion.

3. What kinds of information are presented in the profile.

4. How to acquire the profiles of video clips automatically and efficiently.

To achieve above goals, we design a path of sampling line in the video volume to

yield a planar or curved cutting slice in order to reveal the video content in the video

volume. It is implemented by sweeping a sampling line across the video volume. Our

criteria to cut a profile from video are to

1. Include all the stable background space that a video clip captures.

2. Show meaningful shapes and identities.

3. Reduce the distortion of target scenes in the generated profiles, because the

profile obeys a different scene projection from the normal perspective projection.

We analyze the typical camera works (motion styles), their underlying kinematics,

and the generated optical flow in the video to design the cutting and slicing strategy.

For automatic profile acquisition, this work further develops an efficient algorithm

to detect the global flow in the video using an intensity condensing approach. Our

slicing of the video volume is designed to cut through every frame in the video volume
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Figure 1.2.: Profile of consecutive clips of a concert video from YouTube. (Top) Verti-

cally condensed image (will be explained later) from the video where clip boundaries

are visible. (Lower) Profile cut from the trajectory in the condensed image above.

The horizontal axis indicates the frame position in the clip. This profile shows both

temporal and space/shape information in the clip as well.

so that the continuous profile indexes to frames, which is impossible for the key frame

approach. Following our designed cutting strategy, the spatial information such as

static environment and dynamic targets in the video is also visualized in the profile,

although some deformation and changes in spatial ordering are brought in. Moreover,

the created video summary keeps the temporal order of video and is scalable in time

starting with a resolution higher than spatial or temporal indexing. Figure 1.2 gives

an example of such profiles.

The second major contribution of this work is to realize an automatic video pro-

filing for the video database. It solves the problems on

1. The segmentation of sections in clips corresponding to smooth camera opera-

tions.

2. Understanding major motion by detecting global flow.
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The arrows indicate camera directions distributed along time axis horizontally. The motion has translation and rotation (pan + around  object motion).

Key frame                                                                                   
Sign of the major flow direction from the flow graph below 

 

0 t
Don’t know the content.           The person I met last year.           A poster to recheck.                                Some question to ask, waiting for presenter.   I know their work.   Lunch provided at exit.      Questions  to ask after their talk.

Figure 1.3.: Profile of a highly dynamic video clip taken from a wearable camera.

The viewer pans left and right while walking through a conference poster session.

Upper part is a flow graph with a sampling trajectory determined from blue bars

that indicates flow directions. The profile reveals entire scenes in the temporal domain

subject to some changes in aspect ratio and minor shaking. The profile can index to

frame number along the time axis. Notes are tagged in temporal order. No scene in

the video is missed in this presentation of video.

3. Real time profiling of video clips, and normalization of the shape in the video

profile for the interface.

Figure 1.3 shows such an example of video profile from a camera that is performing

multiple actions in walking along a poster aisle in a conference. More general types of

camera operations as well as their combinations are tackled in this work. It enables a

fast scanning of the video database for profiling variety of clips with different camera

motions.

The generated profile recovers the more efficient and intrinsic scene space by re-

moving the global camera motion (Fig.1.4). Most of the methods so far use discrete

video frames over a partial scene space. The overwhelmed optical flow extracted in

every frame may not reflect the true scene dynamics but only caused by the camera

motion. The global view of scene space and temporal order preserved in the profile

will provide the critical information for classifying videos of the same scene even from

different camera actions. The 3D video volume is thus reduced to a 2D profile. All
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(a)   (b) 

(d)   (c) 

Video space  

Scene space

Camera Motion

Motion

+

Figure 1.4.: Cutting slice to maintain scene space. (a) Dynamic camera moving in

scene space records a video volume, (b) located slice in video volume reflects non-

redundant scenes in space, (c) a restored slice without influences from camera motion,

(d) ideal camera projection of scenes.

the scenes stably appearing in the video clip are included in the profile once for pre-

view. We do not create multiple copies of objects as onion-skin or strobe image [1–3],

because it may generate confusion with a group activity. Inversely, by enforce the

temporal order on the slice cutting, a scene point visible at a time must appear in the

corresponding frame as well as its adjacent frames in the clip. This facilitates further

access to the frames.

The advantage of the profile of video lies in its aspects of: (I) compact size, (II)

reflecting temporal information, such that dynamic events even appearing in the same

space can be listed in temporal order without overlapping, which is impossible for a

spatial mosaicing method that only aims at enlarging the field of view. Annotation

of dynamic events can be easily done along the time axis. (III) preserving shapes
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to some extent, (IV) embracing static background and dynamic foreground, and (V)

robustness in processing all types of videos. The acquisition of video profile will

produce stable results based on our robust major flow extraction and a designed

cutting strategy. This will allow us to compare profiles efficiently before examining

videos, even in near duplicated video detection.

In contrast to previous works, the proposed video profile is easy to be embedded

into video software to enhance video editing, retrieval, analysis, and visualization in

general. It is a spatial-temporal slice that can overcome the problems of the pre-

vious indexing methods in resolution, camera motion types, and robustness. The

proposed framework avoids image matching, scene segmentation in each frame, and

other time-consuming procedures in mosaicing to achieve the robustness, and is a

global approach depending on explicit camera motion styles, in contrast to the inter-

frame optimization that achieves the spatial integrity locally [4] but may get problem

on comprehensive camera action such as around-object-rotation with the camera fo-

cusing on a target.

Video input

Horizontal and vertical 

video condensing

Video clip segmentation 

by histogram

Smooth section 

separation

Major flow and 

convergence computation

Video profiling 

through cutting

Figure 1.5.: The overall flow chart of the system.
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1.3 Organization

The next chapter comprehensively surveys the spatial and temporal indexing tech-

niques. As the flow chart of Fig.1.5 indicates, Chapter 3 analyzes the camera motions,

presents major and minor flow, and introduces a new technique to estimate the cam-

era motion effectively and efficiently. Chapter 4 will address the segmentation of

video clips to sections with smooth or monotonic camera motion. Chapter 5 gives an

efficient method to automatically understand and identify the camera motion includ-

ing major flow and convergence factors. Chapter 6 proposes a uniformed framework

for video volume cutting approaches on a general camera alignment and motion that

might be the combination of simple motions. We then apply the method to video

clips with composite camera motions or concatenated video clips. Chapter 7 addresses

two major shape improvements for generated video profile as effective post-processes.

Chapter 8 describes the experiment, provides results on various videos, builds GUI for

PC and mobile devices, which is followed by a discussion in Chapter 9 and conclusion

in Chapter 10.
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2 RELATED WORK

In light of the video deluge on the video sharing website and surveillance databases,

the need to represent the video content raises a fundamental problem: is there a way to

give the viewer effective preview and, since video itself is a sequential data, the way of

fast indexing/accessing. The video itself can be viewed as a 3D spatial-temporal data

volume which contains one temporal dimension and two spatial dimensions. Among

the studies conducted so far, the indexing can be categorized into Spatial Indexing

methods and Spatial-temporal Indexing methods (Fig.2.1), which will be surveyed in

the following sections. This work tries to take advantage of spatial-temporal profile

by designing the path of scanline based on the flow characters in the video volume,

along which the generated profile can compress and reveal most of the repeating video

contents in discrete frames.

 
I(x, y) 

T(t, y) 

P(t, y) 

Figure 2.1.: Spatial-temporal volume of a video shot/clip, and spatial frame I(x, y)

in blue, temporal slice T (t, y) in green and a spatial-temporal slice P (t, y) in red for

video profile.
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2.1 Spatial Indexing of Video

Most of the video indexing uses key frames for video clips/shots and their collection

as story boards or scenes, and it is fine for most of the static TV programs that

switches between static scenes. The spatial indexing presents key frames and its

extension on video frame mosaicing extend the field of view to multi-perspective view

in a larger spatial domain. Various algorithms have been developed to extract stable

and representative frames for key frames in a storyboard or tapestry. 2D panoramas

are generated by stitching camera rotating video frames on either static or dynamic

scenes. A montage image overlaps dynamic actions from a static camera in the

spatial domain. These methods selectively mosaic regions from different frames into

one summary image.

2.1.1 Static Methods

The static methods are among the earliest attempts developed to index the video.

They are mainly focusing on the presentation of the entire static background and

emphasizing the story of the video. There are four major techniques in this category.

1. Key Frame: A key frame in animation and film-making is a drawing that defines

the starting and ending points of any smooth transition [5]. The key frame

technique is among the earliest attempts for content-based video analysis. The

techniques that can be applied to still image can be used directly on video

represented as a selected sequence of images (key frames). The video is first

temporal-partitioned in sub-sequences which contains a homogeneous action in

time and space for indexing purposes. The partitioned segments are usually

called shots. In each homogeneous partition, a key frame is selected based on

the color distribution, usually the temporal centroid of the camera shot. These

key frames are then laid out in temporal order with hard borders to represent

the content of the video [6]. This technique is considered as the early transition
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from the still image analysis to the video analysis. Most of the video sharing

website [7] and video players are still using it as preview of the video content.

2. Key Frame Mosaic: The mosaicing methods can be viewed as an spatial ex-

tension to the key frame methods. The key frames of videos taken by panning

(rotating) or translating cameras usually share some common scenes in a single

camera shot. The mosaicing techniques find ways to stitch key frames together

based on the partial similar information to form a single result. The mosaicing

usually expands the field of view of the key frame [8, 9]. A good example is

that a panorama image stitched from images taken in various directions gives

the viewer a surrounding view of the scenes captured. The key frame mosaicing

methods allow fast clustering of scenes into physical settings, as well as further

comparison of physical settings across videos.

3. Storyboard/montage: In this type of technique, the key frames connected do

not necessarily have overlaps of physical scenes. A camera transition from one

scene to another is allowed. Outlines, arrows, and text describing are used to

annotate the motion in the scene and transition between camera shots if there

are any. In storyboards, a significant time interval of the video content can be

expressed all at once [1]. A similar method is called the video tapestry. In the

tapestry, there are no hard borders between discrete moments in time, and a

user can zoom smoothly into the image to reveal additional temporal details.

It’s roughly chronological, presenting events in a spatial order that corresponds

to their temporal order in the film [10].

4. Scene Manifold: This technique scans a sampling line within the space-time

volume of the video to guarantee the least image distortions possible. The

scanline traces the scene outline. Every local neighborhood within the manifold

formed by the scanline resembles some image patch. The shortest path of the

movement of scanline is solved to produce the globally optimal solution based

on spatial scene appearance. Constraining appearance rather than geometry
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gives rise to numerous new capabilities, such as dealing with camera parallax.

Any small part of it can be seen in some image even though the manifold

spans across the whole video. Thus it can deal seamlessly with both static and

dynamic scenes, with or without 3D parallax [4].

2.1.2 Dynamic Method

The dynamic methods mainly augment the static methods with certain presenta-

tion of the foreground. A method called Motion Panorama projects the foreground

objects on the mosaic and on the video frame are briefly discussed below.

First introduced in [11], the motion panorama generalize the static panorama

method. This technique can only be used with camera zoom and pan/tilt. It uses

frame-to-frame alignment as a combination of feature-based, rough motion segmen-

tation, and color-based direct method. Based on this, the dynamic building of a

background representation as well as an efficient segmentation of each image such

that moving regions of arbitrary shape and size are overlaid in temporal order on the

static background. The technique is also introduced in [12] for qualified web videos

which meets three criteria as the author proposed. However, the former paper claims

that the static portions of the scene are not necessarily dominant because of smaller

number of feature points used, while the later requires that the background is dom-

inant in a video. Similarly, [13] creates a dynamic narrative, which could be played

and skimmed in real-time. Graph cut technique is also used to composite the nar-

ratives from different camera shots which is similar to video tapestry. [14] describes

an approach for simulating apparent camera motion through a 3D environment. A

single multi-perspective panorama is used to incorporate multiple views of a 3D en-

vironment as seen from along a given camera path. When viewed through a small

moving window, the panorama produces the illusion of 3D motion. In addition, [15]

uses inter-frame motion estimation to build an image mosaic that completely stabi-

lizes the camera movement to create a panoramic image, and then animates a virtual
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camera that views this mosaic. In this fashion, the casually captured videos can be

post-processed to improve apparent camera movement caused by hand shaking and

bumpy camera movement.

2.1.3 Drawbacks of the Spatial Indexing Techniques

There are several drawbacks of the spatial indexing methods:

1. Key frame is a coarse representation of the content of the video.

2. Lack of temporal order in such an integrated video space. It can index to a clip

rather than to a frame directly, which is not further useful for video editing.

3. Some summary aims at visualizing motion by duplicating targets. It becomes

cluttered if the video clip lasts long or targets have a high complexity [3].

4. Camera motions are only limited to static and pan. If the motion parallax varies

as in a translating video, it can only succeed on the scenes with homogeneous

depth or color [16]. This limits such approach to be applied to general video

database.

5. The background matching and foreground segmentation are not robust for com-

plex and dynamic scenes. Instantaneous events and non-rigid shapes such as

fire, smoke, water, and so on may cause more problems. Most of these mosaicing

only work on single shots of video so far. A typical one on real video database

is in [17], which packed two types of video icons: panoramic (pan/tilt) and key

frame icons together in a space-efficient manner.



14

2.2 Spatial-temporal Indexing of Video

In contrast, the spatial-temporal indexing strictly reflects temporal information by

collecting a pixel line (small image patches) from each frame, which achieved results

for camera rotation and translation with a fixed slit and dynamic slits.

2.2.1 Fixed Slit Methods

In the fixed slit methods, the slit set are static in spatial domain (remains in the

same position and orientation in each frame) or in spatial-temporal volume (the slit

forms fixed shape spatial-temporal manifolds). Two fixed slit methods are briefly

discussed below.

1. Route Panorama: [18] creates a route panorama by scanning scenes continu-

ously with a fixed virtual slit in the camera frame to form image memories. For

each camera image in the video sequence, a vertical slit view (or image mem-

ory) is copied at a fixed position and pasted together consecutively to form a

long, seamless 2D image belt. The 2D image belt can be transmitted via the

Internet, enabling end users to easily scroll back and forth along a route. The

process of capturing a route panorama is as simple as recording a video on a

moving vehicle and can be done in real time. The generated image belt with

its consecutive slit views pieced together has much less data than a continuous

video sequence. A special type of Charge-Coupled Device sensor called line

sensor reads temporal data from the device array continuously and forms a 2D

image profile. Compared to most of the sensors in the current sensor networks

that output temporal signals, it delivers more information such as color, shape,

and event of a flowing scene. On the other hand, it abstracts passing objects

in the profile without heavy computation and transmits much less data than a

video. [19] revisits the capabilities of the sensors in data processing, compres-

sion, and streaming in the framework of wireless sensor network. Sensor setting,

shape analysis, robust object extraction, and real time background adapting



15

have been studied to ensure long-term sensing and visual data collection via

networks. All the developed algorithms are executed in constant complexity for

reducing the sensor and network burden. A sustainable visual sensor network

can thus be established in a large area to monitor passing objects and people

for surveillance, traffic assessment, invasion alarming, etc.

2. Adaptive Manifold: In this technique, thin strips (scanline) are projected multi-

perspectively from the images onto manifolds which are determined dynamically

based on the motion of the camera. Manifold mosaicing can be performed by

computing the manifold explicitly from the ego motion of the camera obtained

from auxiliary sensors, and projecting the frames onto that manifold. Alter-

natively, this projection can be done implicitly by the process of cutting and

warping strips, and without explicit computation of the manifold. Manifold mo-

saics represent the entire environment of a video shot in a single, static, image.

This single image can be used as a summary of the video clip for video brows-

ing, or as a compressed representation of the shot which can be approximately

re-generated from the mosaic given the stored motion parameters. While the

limitations of mosaicing techniques are a result of using predetermined mani-

folds, the use of more general manifolds overcomes these limitations [20].

2.2.2 Dynamic Slit Method

In the dynamic slit methods, the movement of the sampling slit can be adaptive

to the scene change. The position of the sampling strip varies as a function of the ex-

plicit input camera location. The new images that are generated this way correspond

to a new projection model defined by two slits, termed the Crossed-Slits (X-Slits)

projection. In this projection model, every 3D point is projected by a ray defined as

the line that passes through that point and intersects the two slits. The intersection

of the projection rays with the imaging surface defines the image. The author claims

that X-Slits mosaicing provides two benefits. First, the generated mosaics are closer
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to perspective images than traditional pushbroom mosaics. Second, by simple manip-

ulations of the strip sampling function, the user can change the location of one of the

virtual slits, providing a virtual walkthrough of a X-slits camera. This can be done

without recovering any 3D geometry, so that no camera calibration is needed [21].

2.2.3 Drawbacks of the Spatial-temporal Indexing Techniques

The shortcomings are as follows:

1. The created image from a short clip with fast motions has a low temporal

resolution.

2. It generated views with a different projection from normal perspective projec-

tion.

3. It requires deshaking on the original video [15] or on the generated image [22,23]

for a non-smooth camera motion.

4. Motion type has to be given in advance, even though it can handle more types of

motion than spatial mosaicing. There is no work so far that can sort out video

database to identify a type of camera motion each clip was taken. Besides

2D video summaries, a volume visualization method has been proposed for

summarizing video sequences [24]. However, the scene type is limited to static

camera case and interaction is required for exploring the details.

2.3 Other Methods

There are two other existing methods that, instead of generating summarization

images, show either a movie with special post-processing effects, or a shortened version

of movie to reduce human effort on surveillance video analysis.

1. Dynamosaic: This technique explores the manipulation of time in video edit-

ing, which allows the users to control the chronological time of events. These
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time manipulations include slowing down (or postponing) some dynamic events

while speeding up (or advancing) others. Time manipulations are obtained by

first constructing an aligned space-time volume from the input video, and then

sweeping a continuous 2D slice (time front) through that volume, generating a

new sequence of images for dynamic scenes. To avoid artifacts, the problem of

finding optimal time front geometry was formulated as one of finding a minimal

cut in a 4D graph, and solve it using max-flow methods [25].

2. Video Synopsis: Video synopsis is an effective tool for browsing and indexing of

surveillance videos. It provides a short video representation, while preserving

the essential activities of the original video. The activity is condensed into

a very short period video by simultaneously showing multiple activities, even

when they originally occurred at different times. The synopsis video is also an

index into the original video by pointing to the original time of each activity.

Video synopsis can be applied to create a synopsis of an endless video streams,

as generated by webcams and by surveillance cameras. However, viewing such

a synopsis may seem awkward to the non-experienced viewer [2].
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3 CAMERA MOTIONS AND CORRESPONDING FLOWS

3.1 Camera Ego-motions

How could a 3D video volume be transferred to a 2D image profile while making

it inclusive and representative? The consecutive frames of a video have large overlaps

of scenes. Therefore, reducing redundant pixels in a clip becomes possible in video

summarization. A videoed space contains some static background and dynamic fore-

ground. With various camera operations including static camera, the scene space is

projected to the video space. If the camera motion can be extracted, the intrinsic

scene space can be recovered in the image profile without the pixel redundancy.

In video databases, most of videos have intentional camera operations rather than

random waving. For such a smooth camera operation, we can use a global motion ap-

pearing in the video for efficient video profiling. Assuming static background patterns

Bi, i = 1, 2, . . . and dynamic foreground patterns Fj(t), j = 1, 2, . . . are in the space.

They are interchangeable depending on which one dominating the field of view. A

camera can be static or undergo ego-motions such as zoom f, rotation R, translation

T, and their combinations (Fig.3.1). Through the camera ego-motion KR,T,f , a scene

has relative 3D motion V = R×(Bi, Fj)+T with respect to the camera where (Bi, Fj)

is its location in the camera coordinate system. A composite camera motion with R,

T , and f can be categorized as its high level operations such as pan/tilt, rail/vehicle

motion, orbiting (focusing and moving around object with simultaneous translation

and rotation), crane motion (orbit motion plus free camera direction and zooming),

forward moving or zooming, and so on. On the other hand, dynamic scenes in a static

field of view may further reveal a variety of motions themselves that can be classi-

fied as directional motion (e.g., marathon crowds) or diversified motion (e.g., random
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walking people in a shopping mall). In general, we can describe the camera kinemat-

ics in Fig.3.2, which yields typical camera works (dotted boxes). The camera works

generate distinct optical flows that can be classified as diversified flow or directional

flow in the field of view. This categorization helps us design a general cutting strategy

to obtain the profile of video clips. Video clips with typical camera motions and the

composite camera motions were examined in previous published papers [26,27].
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Figure 3.1.: Typical camera operations translation, pan, around-object, and zoom,

from left to right in each column. The arrows in (a) indicate the movement of camera

axis for translation, pan/tilt, around object rotation and zoom in/out. The optical

flow directions are also indicated in the field of view in (b). The distributions of

motion vectors projected to a video frame are also illustrated briefly in (c). (c) also

shows the distribution of composite pan + zoom camera operation which shows the

additive property of the optical flow from different motions.
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3.2 Major Flow and Minor Flow

Now, let us examine some common properties of the categorized motion. The

video is obtained as I(x, y, t) = KR,T,f (Bi, Fj) and the optical flow in the video

volume is denoted as u(x, y, t) = (ux, uy, ut), indicating the motion component of a

feature in the frame during time ut (one or more frames observed). The image flow is

normally affected by 1) the intentional camera direction, 2) unintentional shakings,

and 3) unpredictable movement of target. For a video clip with flow generated from a

smooth camera ego-motion or a directional movement of target crowds (usually lasting

for 0.5 or more seconds in a video database), we can specify an global flow vector

V ∈ R3 in the spatial-temporal video volume, as the overall evaluation of distinct

optical flow (Fig.3.3). Denoting a video clip or shot by C, and the optical flow vector
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Figure 3.2.: Categorizing camera motions, typical camera works (operation) and

optical flow styles in three levels.
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Figure 3.3.: Global flow vector V (v̄x, v̄y, v̄t) and its projections in condensed images

in x and y directions. Vx and Vy are projections of V to x− t and y − t plane.

at each point by u(x, y, t) in the video clip, the global flow in the corresponding C is

defined as

V = (v̄x, v̄y, v̄t) = 1
N

∑
x,y,t∈C

u(x, y, t) (3.1)

where ||u(x, y, t)|| = 1, and N is the number of high contrast points in the clip.

Its projections along x, y, and t directions are Vx = (v̄x, v̄t), Vy = (v̄y, v̄t), and

M = (v̄x, v̄y), respectively, as depicted in Fig.3.4. V shows the direction as well

as the speed of scene shift in consecutive frames, if the scenes have some common

motion or the camera motion is smooth. In the implementation, it’s not necessary

to compute the detailed optical flow vectors, because of the computational costs and

errors in noisy video or videos lack of features and textures.

Depending on the impact of the flow on the video, between global flow projections

Vx and Vy, the one with the major impact is treated as a major flow, the other one

is considered as minor flow. The minor flow is sometimes from the camera motion

caused by hand shaking, unstable walking, and vehicle waving during video capturing,

or from intentional camera motion that has less impact. Its effect is visible in our

profile as tilt changes during pan, translation, and zoom. Shaking in minor flow can

be kept in the profile to reflect the dynamics of the camera, or can be removed by
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video deshaking before or after profiling [25]. The minor motion will not be used for

determining slice cutting.

For example, in Fig.3.4, the viewer could understand that the major flow in camera

pan is horizontal and the minor flow is vertical. In a zooming shot, the major flow

is relatively small but the variance of motion vectors is large. For a static camera

shooting deformable action of persons or a random crowd in a place, the variance of

motion vectors is small. For other camera actions, a major flow can be estimated

from directional motion vectors in the frames.

3.3 Motion Estimation in Condensed Images

We use condensed images to perform the task of automatic profiling, instead of

computing optical flow u(x, y, t) explicitly and then summarizing the motion vectors

for global flow direction (so far uses Principle Component Analysis [28] on the optical

flow [29,30]). The reason is because the cost of flow computing for large video database

is high and the results are unstable for scenes with deformation, water, fire, etc. and
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Figure 3.4.: An example of global flow projections in right camera pan as if we are

looking at the spatial-temporal video volume from front. (a) This example shows a

real right panning video with a directional major flow Vx facing right and disturbance

minor flow Vy. (b) The generated video profile with a vertical sampling pixel line from

left to right. The effect of disturbing minor flow Vy = (v̄y, v̄t) on the video profile over

time is marked as a dashed yellow trace.
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Figure 3.5.: Two condensed images from a horizontally translating camera. (a) Con-

densing a video volume to images in x (green arrow) and y (red arrow) directions. (b)

Shape-oriented condensed image with stationary blurred shapes, (c) Motion-oriented

flow graph with many motion traces in it. The time axes are both horizontal. The

traces and their global directions are shown as green and red arrows.

scenes without many features. Alternatively, this work uses video condensing to

images to perform the task. A flow graph has been proposed as one of the condensed

images to show reliable motions as major flow in traces across frames, and it also

achieves efficiency in obtaining the global motion. Another one, called shape-oriented

condensed image, embeds the shape distortions introduced by camera shaking which

will be used in Section 7.3 for deshaking of generated video profile.

Two condensed images as in vehicle video sequences [31] are employed here. For

simplicity, the condensed images along the x and y directions in the frame have been

collected (Fig.3.5), as

Cy(t, x) = 1
h

∑
y∈C

I(x, y, t) Cx(t, y) = 1
w

∑
x∈C

I(x, y, t) (3.2)



24

where w and h are the frame width and height. Long or high-contrast features aligning

with the condensing direction shows their distinct traces in the resulting image, while

those features in other directions are blurred out. If a clip is from a static camera,

i.e., |v̄x| ≈ |v̄y| ≈ 0, both condensed images only contain traces aligning with the time

axis. However, if v̄x or v̄y has a relatively large length, either condensed image will

show motion traces non-parallel to the time axis. Figure 3.5b,c are two condensed

images from a video captured by a translating camera. Condensed in y direction in

the frame, the traces in Fig.3.5c show the flow direction as traces, while condensed in

x direction, Fig.3.5b poses the stationary blur [32] on features other than x direction

but keeps features in x direction sharp. The waves on the condensed features in x

direction show the shaking in minor flow (in this example, Vy) in the clip. It can be

found that, if V is parallel to neither x nor y axis (V slanted), both condensed images

contain motion and shape information such as traces, features with stationary blur,

and waved linear features. Depending on the dominant information that Cy(t, x) and

Cx(t, y) contain, this work refers to one as motion-oriented image (flow graph) and

the other as shape-oriented image. The motion-oriented one displays more motion

traces of features in the video, while the shape-orientated one shows more blurred

shape than traces. Determining which condensed image is motion-oriented will allow

us to select the horizontal or vertical cutting line in the clip.

3.4 Stationary Blur in Shape Oriented Condensed Image

Here we briefly describe a phenomenon of the parallel projection [18, 33] for the

video profile in the shape oriented condensed image. In the parallel projection image,

there exists a special blur effect along the time axis, named stationary blur [34, 35]

in contrast to the motion blur in the spatial image. Ideal Plane of Sight [18] are

infinitely thin and infinitesimally dense for a video profile along the camera movement.

Nevertheless, this can only be approximated by a high resolution line sensor with a fast

sampling rate. A video camera, however, has pixel lines with a certain physical width.
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Figure 3.6.: Sampling scenes on a camera path (top view) under an ideal parallel

projection and narrow perspective projections respectively in obtaining a video profile.

The ray through a pixel is in a shape of cone realizing narrow perspective projection

at each position on the path (Fig.3.6) or similarly at each direction of camera pan.

The distant scenes are averaged as they are projected towards the profile through the

cone. As the camera shifts horizontally, consecutive cones overlap partially beyond a

certain far range. This causes the temporal burring over consecutive pixel columns

in the profile. Imagine we have a three dimensional camera coordinate system whose

origin is at the center of projection and whose Z axis is along the optical axis as

shown in Fig.3.7. Let us model the stationary blur optically for our extension of it

in the next section. Denote the color distribution of a scene (Bi, Fj), i, j = 1, 2, . . . .

If w is the slit width (w = 1 pixel for the video profile), the sampling cone through

the slit has a width of W = Zw/f at a surface point P (X, Y, Z). The sampling cone

averages the colors at the surface with rectangular function

Cone(X,W ) =


1/W

0

|X| < W/2

|X| > W/2
(3.3)

Hence, the video profile P (t, y) is obtained formally from

P (t, y) = (Bi, Fj)⊕ Cone(X,W ) (3.4)
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Figure 3.7.: Camera coordinate system

In shape oriented condensed image, the intensities are averaged horizontally in each

frame to generate 1D intensity profiles. This enhances such a blur effect by enlarging

w to multiple pixels for accumulating color spatially in each frame. We found that

both distant and horizontal features in the 3D space appear as long traces in the

shape oriented condensed image. This can be used as reliable evidence for the shaking

detection and removal, which will be introduced in Section 7.3.
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4 SEGMENTATION FOR SIMPLE CAMERA OPERATIONS

Video clips are segmented using traditional histogram differentiation [36]. For

the better analysis of the flow characteristic and the generating of temporal video

profile, a clip was further separated to sections, each with a monotonic camera op-

eration/motion. In the condensed images, the flow characteristics was explored by

examining extractable traces.

By detecting temporal discontinuity in Cy(t, x) and Cx(t, y) using their temporal

histograms ∑xCy(t, x) and ∑y Cx(t, y), video clips with continuous camera motions

are successfully segmented. Further, the discontinuity was found in the flow direction

so that sections with homogenous camera motions are obtained. This is particularly

important for the profiling (even necessary for mosaicing if a clip is long). Its partial

derivatives could be computed in a condensed image as

∆t(Cy(t, x)) = ∂Cy(t, x)/∂t ∆x(Cy(t, x)) = ∂Cy(t, x)/∂x (4.1)

with a differential operator. The traces are selected at the peak points of the gradient

grad(Cy(t, x)), and their directions, denoted as unit vectors g = (gt, gx), are extracted

from ∆tCy and ∆xCy as

g(t, x) = (gt(t, x), gx(t, x)) = (−∆x(Cy(t, x)),∆t(Cy(t, x)))
grad(Cy(t, x)) (4.2)

Further, it’s forced that g(t, x) = −g(t, x), if gt(t, x) < 0, because a motion vector

either from a positive or negative edge should always be along the t axis in Cy, i.e.,

gt > 0.

The average trace direction v(t) (vx(t) or vy(t) in Fig.5.1) was estimated at each

time t where v(t) = (∑x gx(t, x))/q, q is the number of trace points at time t. Obvi-

ous changes were found in its sign to segment a clip to sections with smooth camera

motions. The same processing could also be applied to Cx(t, y) as well to find the pos-

sible separation of clips according to the change of camera motion in the y direction.
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Figure 4.1.: Computing major flow and variance in a condensed image of two clips for

segmenting sections as pans, static, and zooms. High gradient positions on traces are

marked in cyan for motion estimation. The value of v(t) (vx(t) or vy(t)), σv(t) and

κ(t) (convergence factor explained later) are displayed in red, blue, and green curves

respectively. The time axis is vertical and downward.
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Further, the variance σv(t) of g(t, x) is computed over time. As shown in Fig.4.1,

a larger σv(t) suggests a static camera or zooming. A distinct g(t, x) indicating a

directional motion always has a small variation σv(t), which allows segmentation of

sections. This work used this information to separate the diversified motion section

from directional motion section. Same operation is for the other condensed image.

With the sequence of v(t) and σv(t), a video clip can be segmented to sections with

the rules listed in Table 4.1.

A median filter is further used to merge the short sections into large ones in order to

remove noises in motion and obtain distinct camera movements with clear intentions.

The variations in such a section are then the camera shaking to be removed later. A

result of segmentation of smooth motion sections is shown in Fig.1.3 in blue bars. A

convergence factor κ(t), which will be defined later, is similar to σv(t) but indicates

convergence or divergence of the flow. The result of κ(t) is also shown in green curve

in Fig.4.1.

Table 4.1: Determine the camera operation based on trace direction and direction

variance.

small σv(t) large σv(t)

small v(t) Static camera and scene Zooming

large v(t) Camera pan Pan+zoom, translation
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5 GLOBAL FLOW COMPUTATION

5.1 Extracting Major Flow for Profiling

The relationship of global flow V and its projections are illustrated in Fig.5.1. To

compute the major flow in a section with smooth camera operation, this work proposes

a straightforward yet reliable method in the condensed images. In the condensed

image, motion vectors at strong traces vote for a global flow vector G = (ηt, ηx) as

the estimate of Vx, i.e.,

G =
∑

g(t, x)/n or (ηt, ηx) = (
∑

gt(t, x)/n,
∑

gx(t, x)/n) (5.1)

where n is the number of accumulated high contrast trace points in the section.
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According to (3.1), Vx and Vy can be obtained by accumulating flow components

u(x, y, t) = (ux, uy, ut) as

Vx = 1
n

∑
y∈C(ut(x, y, t), ux(x, y, t)) motion/shape oriented

Vy = 1
n

∑
x∈C(ut(x, y, t), uy(x, y, t)) shape/motion oriented

(5.2)

Although G = (ηt, ηx) is collected from a subset of points in the clip, they have the

consistent motion as those points for Vx that are blurred and ignored after condensing,

as the camera operation caused motion patterns in the video are not irrelevant random

motion [26,27]. Thus, vectors G and Vx have the similar direction but different scales.

In addition, our process does not use the traces orthogonal to the time axis so that

the non-physical movements such as instantaneous events such as lighting changes,

explosion, and some special effects are excluded in the major flow computation.

In the same way, the above computation is applied to the other condensed image

Cx(t, y) so that a global vector H = (ρt, ρy) can be obtained for Vy as G. Vectors G

and H precisely reflect the directions of Vx and Vy. Since Vx and Vy are projections

from a same V , we need to normalize Vx and Vy so that |v̄t| = 1, the lengths of G and

H are thus normalized using ηt and ρt to estimate Vx and Vy

Vx = v̄tG/ηt = (v̄t, v̄tηx/ηt), Vy = v̄tH/ρt = (v̄t, v̄tρy/ρt) (5.3)

The relation of |v̄x| and |v̄y| determines the acute angle or obtuse angle of V to a

frame edge so as to select sampling line Lx or Ly. A larger |v̄x|(> |v̄y|) means a faster

flow in horizontal direction, for which Cy(t, x) is the motion-orientated image for slice

cutting. In opposite, Cx(t, y) is treated as the motion-oriented image. According to

the projection of V in the motion-oriented image Vx (or Vy), the diagonal direction

of cutting trajectory x(t) (or y(t)) is determined to intersect Vx or Vy so as to include

all the scenes into the profile. Figure 5.2 gives the results of this method to find the

direction of major/minor flow for various videos.
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Figure 5.2.: The major flow directions of video clips detected in condensed images

Cy(t, x) and Cx(t, y). The estimated normalized projectionsVx and Vy are plotted in

red arrows with blue tips. Note that their projections on t axis are scaled to the

same length. (a) Static camera, (b) camera translation, (c) panning, (d) zoom, (e)

around-object motion, (f) pan plus zoom.
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5.2 Estimating Convergence Factor

In addition to the major flow direction, a convergence/divergence factor [37] which

is similar as σv(t), denoted by κ(t), characterizes the zoom effect as in Fig.5.2d, e in

each section. this work computes this factor only in flow graphs that is more efficient

than computing optical flow and comparing their eigenvalues (unable to figure out

Zoom OutZoom In

∆x ⋅∆α > 0 ∆x ⋅∆α < 0

∆x > 0

∆α > 0

∆x < 0

∆α < 0 ∆α < 0

∆x > 0

∆x < 0

∆α > 0

Zoom Out + Pan

∆x ⋅∆α < 0

∆α < 0

∆x > 0

∆x < 0

∆α > 0e(t,x)P(t
m
,x

m
)

v
x

v
x

(a)

(b)

Figure 5.3.: (a) The computation of convergence factor from strong traces, where

4x = e(t, x) − v̄x and 4α = x − xv(t). (b) Experiment of convergence factor com-

putation from strong edge points in the flow graphs in Fig.5.2d, e. and planned

quadratic curve candidates for a profile (blue: without scene recurrence, red: with

scene recurrence). White needles show the tangent vectors on traces and the blue

dots show their tips. The vertical axis is the time. Estimated Vx (Vy) are indicated

in left column with red arrows.
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zooming direction even zoom itself is detectable). At a strong edge point (t, xi) in

a section of flow graph, e.g., Cy(t, x), the angle of a motion vector of trace point,

ei(t, x), i = 1, 2, . . ., is computed from its gradient g(t, x) = (gt, gx). A median

point p(tm, xm) is computed in Cy(t, x) from the positions of all the qualified edge

points with a median filter (see Fig.5.3a). Through p(tm, xm), a reference line xv(t)

along major flow Vx (Fig.3.3) divides all the edge points. Then, the zooming effect

at each point is calculated as (e(t, x)− v̄x)sign(x− xv(t)). It takes positive value for

divergence flow (zoom-in) and negative value for convergence flow (zoom-out). For

the convergence factor at time t, the convergence factor is

κ(t) = 1
n

∑
i

(ei(t, xi)− v̄x) · sign[xi − (xm + v̄x(t− tm))] =


< 0 converge

> 0 diverge
(5.4)

gives the degree of convergence/divergence in value, where n is the number of points

involved in computation. |κ(t)| reflects the degree of flow convergence/divergence or

how fast the scene is zoomed out/in. Figure 4.1 shows κ(t) over time in green curve.

The convergence factor κ in the entire section is the average of κ(t).
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6 CUTTING VIDEO VOLUME FOR PROFILE

6.1 A General Cutting Strategy for Temporal Mode

The profile not only has the advantage to include more scenes for browsing as

mosaicing, but also has a dimension of time for indexing to a particular frame form a

clicked/selected position. To facilitate multimedia indexing and transmission, some

image properties of perspective projection may be sacrificed as in panoramas. With

the successfully segmented sections of video volume I(x, y, t), this work performs

global sampling to obtain their 2D profiles denoted as either P (t, x) or P (t, y), to

guarantee a single occurrence of a scene in the profile except occlusion. As illustrated

in Fig.6.1, the profile reveals all the scenes in the video for retrieval and display subject

to certain shape deformation. Through the profile, say P (t, y), a video section can

be temporally indexed to a frame via t, rather than mosaicing frames into a space.

Instead of composing mosaic by segmenting Bi and Fj in I(x, y, t), a moving pixel

line Ly or Lx is used to sample the video volume either vertically or horizontally for

the image belt P (t, y) or P (t, x), respectively. In order to record shape of Bi and Fj
in the profile, the sampled slice in the volume should cut against v(t), rather than

   
 
 
 

 

t (a) 

t

(b) 

Figure 6.1.: Profiling by cutting across flow in the video volume. (a) Video volume

with flow and cutting slice, (b) video profile.
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Cy(x,t)  

 I(x,y) T1(t,y)  

 T2(t,y)  P(t,y)

Figure 6.2.: A flow graph Cy(x, t) condensed vertically from a panning video clip, and

possible cuts of video. The most inclusive and sharp one is profile P (t, y) cut against

the flow. The diagonal cutting T2(t, y) along the motion traces makes a narrow view

in a blurred image, which is not meaningful as a video summary. Key frame I(x, y)

and simple indexing T1(t, y) at image center are not inclusive for a scene space.

aligning with v(t) that yields traces in the profile, as shown in Fig.6.2. The global

cutting method is as following.

• The sampling line is parallel to an axis of image frame, mostly parallel to

structure lines in the scenes (dotted blue lines in I(x, y) of Fig.6.2), to keep

the shape integrity, as P (t, x) or P (t, y) are displayed in regular window [26].

The line more orthogonal to the major motion is selected, i.e., select Ly to

sample the video vertically if |v̄x| > |v̄y|, or select Lx otherwise. This extends

line stitching [4] to both x and y directions.
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• After aligning the sampling line, say Ly, it is moved along a diagonal trajectory

x(t) in the volume intersecting the global flow V , i.e.,

p(t, y) = sampling(I(x, y, t)|x(t)) (6.1)

The diagonal P (t, y) obtains sharp scenes than cutting along Vx and, at the

same time, map all the scenes stably visible in the video into P (t, y). It does

not cut back and forth in the volume with size-varied patches [4], because P (t, y)

should reflect a consistent temporal scale in temporal mode.

• If the major flow is accompanied with convergence or divergence effect due to a

zooming operation, the sampling curve will be bent towards the enlarged frame

in the clip so as to prevent scene blurring and recurrence in the profile. The

value of convergence factor determines a curved or straight trajectory, as well

as the direction of bending.

The bending is for the purposes of (i) emphasizing zoomed scenes in the profile,

(ii) improving the scene distribution in the profile, (iii) avoiding recurrence of Bi

in the profile, (iv) adding motion blur to Fj in the profile, and (v) possible profile

animation of the profile. The bending degree depends on κ(t) computed above.

For an easier control in the context of automatic implementation and the simplicity

in form, a quadratic Bezier curve is used for x(t) from one corner to the diagonal one

to cut the major flow. x(t) is bended towards the end frame if κ > 0, and towards

the start frame if κ < 0, and linear if κ ≈ 0. The bending degree increases if |κ| is

large. Figure 5.3b shows the computation of κ as well as a sequence of Bezier curves,

from which a curve is selected to avoid scene recurrence and reduce the motion-blur

in the generated video profile.

6.2 Cutting Clips from Simple Camera Motions

Now, let us apply the above profiling method on various video clips generated from

simple and composite camera motions as in Fig.3.2 in order to validate the design of
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S: static camera, T: translation, Z: zoom, R: 

rotation. (T+R)I: around object motion with 

camera facing inward. (T+R)O: the same 

motion with camera facing outward. ST, SD: 

directional and diversified moving of targets 

taken by a static camera, respectively 

T 

SD 

ST T+Z (T+R)O (T+R)I 

R Z S Z+R 

Figure 6.3.: Possible cutting trajectory (dashed red lines) for major motion traces

(grey belts) in the condensed images. The time axes are downward vertically. The

camera motion is rightward if it is not static and zooming.
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(a)  Flow graph  and cutting trajectory. The time axis is downward.  

 
(b) End frame of the clip I(x,y)                            (c) Profile P(t,y)  

Figure 6.4.: Video took beside a street. In the profile, the background stays the same

as that in each frame.

our algorithm. After computing the major flow direction and aligning the sampling

line, we examine the motion traces in the motion-oriented condensed image for slice

cutting. Fig.6.3 illustrates the flow characteristics from all types of camera motions,

assuming the major flow is horizontal, i.e., the camera motions are horizontal, for the

simplicity in explanation. Simple camera motions such as zoom, rotation, and trans-

lation are abbreviated as Z, R, and T in bold font, and their possible combinations

are put in between Z, R, and T. The motion traces are depicted and the diagonal slice

cuttings are indicated by x(t) in dashed red lines. For a static camera, a diversified

flow SD is similar to case Z, while a directional flow ST is inherently similar to case

T, if the foreground flow is dominant.

6.2.1 Profiles from Static Camera

For a static camera shooting mild motion such as a talk show, the direction of

major flow vector mainly from the static background is almost parallel to the time

axis, i.e., |v̄x| ≈ |v̄y| ≈ 0. We cut a vertical slice (consistent to gravity) across the
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(a) Flow graph and cutting trajectory. The time axis is downward. 

  
(b) End frame of the clip I(x,y)                           (c) Profile P(t,y)  

Figure 6.5.: Video took in a shopping mall. Shoppers and camera shaking can be

observed in the profile.

Figure 6.6.: Profile obtained from a surveillance camera capturing video with an

infinite length.
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video volume diagonally (Figs.6.4, 6.5). A diagonal slice in the volume is longer than

the frame width; the profile image, P (t, y), has a better resolution than key frame

when it is scaled up along the timeline. If the camera shoots directional flow, e.g., a

surveillance camera monitors people and vehicles through a path (Fig.6.6), a sampling

line parallel to the dominant structure lines in the scenes is set to cut the flow for the

profile as in [19]. The profile shows the shapes and time of arrival of passing targets.

If a camera is shooting diversified flow, we can set multiple sampling lines at

pathways where major flows occur. With this profile, a surveillance video lasting for

many hours can be briefly browsed for locating a time for a person in the video or to

count the total number of passages.

6.2.2 Zoom In/Out

Extending from a static camera, camera zoom yields a flow expanding from a

Focus of Expansion. Considering the gravity direction projected in the frame, we can

(a) Flow graph and cutting trajectory. The time axis is downward. 

  
(b) End frame of the clip I(x,y) (c) Profile P(t,y)  

Figure 6.7.: Video took in a hallway. In the profile, the zooming effect can be found,

the whole scene get trapezoidal from left to right.



42

specify the major flow direction as horizontal and set a vertical line to sweep the video

volume from either left or right. The captured scenes thus will have distortion in the

profile as in Fig.6.7. The cutting curve x(t) is bended in such a way to preserve the

resolution of the enlarged portion in the zooming. The scaled shape along time axis

in the profile indicates the zooming up action in the video clip. If the scene is zoomed

out, we can obtain a time-flipped curve in the condensed image for cutting.

Along a planned Bezier curve, the tangent calculated from the formula is compared

with the tangent of motion trace at each crossing point to ensure that it’s larger angle

than the trace angle (Fig.5.3b).

Figure 6.8.: Screen shot of the software processing a video from a panning camera

from left to right and the generated profile. (top left) End frame, (bottom) a flow

graph, (top right) profile.
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6.2.3 Pan/tilt Clip

Panning appears most frequently in video to increase the field of view and track

a target. The major flow traces are homogeneous (parallel) as in Fig.6.3R. The

generated profile even works on deformable scenes as in Fig.6.8 where matching based

spatial mosaicing is incompetent. Although the generated profile is bumpy, it reflects

the minor flow caused by tilting and can be rectified through deshaking. Similarly,

tilting clips can be processed in a symmetric way for a profile P (t, x).

6.2.4 Translating Camera

The camera translation is always visible in movie shots captured by vehicle/rail

sets [18,33]. Such shots can also be captured from planes, ships, cars, etc. The camera

translation in a sideway direction creates a parallel flow field in the field of view with

non-homogeneous motion parallax due to varied depths in the scene (Fig.3.5c and

Fig.6.3T). A vertical line can scan the major flow diagonally in the clip to form a

profile as in Fig.1.1. If the camera is translating not purely sideways, it creates a

flow field expending from focus of expansion, which has both effects of translation

and zoom as analyzed in [33]. A vertical line cuts the video frame and generates a

forward aspect view in the profile. The profile obeys a parallel-perspective projection

that is different from a perspective projection (Fig.6.9).

Figure 6.9.: Profile of a vehicle-borne video while the camera is translating on a path

as a smooth curve.
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6.3 Profiling Videos with Composite Camera Motions

6.3.1 Cutting Clips of Composite Camera Motion for Profile

A camera can zoom during translation (T+Z) (Fig.6.3). A translating camera with

its optical axis along the path is a case of T+Z. On a circular path usually obtained

with a crane arm or on the rail, the camera can face inward as (T+R)I to focus on a

target, where the background generates the major flow. If the camera faces outward,

i.e., (T+R)O, it generates flow more similar to translation with motion parallax. It is

well known that the flow from a composite camera motion is the combination of the

flows from simple motions, according to the additive property of the optical flow from

different motions. As shown in Fig.6.3, most of the composite flows have a consistent

direction in the condensed image. Even if the image velocities (trace orientations)

vary, the flows are mostly inverted to the camera moving direction. According to

our algorithm, the designed slice cutting for a composite camera motion is a plane

or curved surface across the flows, as indicated in red lines in the figures. A slice

(a) Flow graph and cutting trajectory. The time axis is downward. 

(b) End frame of the clip I(x,y)                           (c) Profile P(t,y) showing zoom out  

Figure 6.10.: Pan plus zoom out and its profile.



45

o

Camera axis

Line of sight

Camera path

Fixation 
point

 

Background

-flow

+flow

Figure 6.11.: Camera path in around object motion and rays focusing on a target.

Scenes at different ranges show different flow directions (as +flow and –flow).

passes all the traces once to include scenes that stably appearing in the video clip.

As an example, Fig.6.10 is a profile from a clip captured from camera panning while

zooming.

Orbiting (around object) camera is also a camera work frequently adopted in

shooting static objects such as a sculpture in museum, a performer on stage, etc.

showing their various aspects. The camera usually focuses on a target during its

motion along a circular path. The motion has simultaneous translation and rotation

(Figs.6.12, 6.13).

In an orbiting video, the path center has zero optical flow. For the space beyond

the path center, its projected flow in video is in the same direction as the camera

moving direction. However, the space closer than the center is projected as flow

opposite to the camera moving direction (Fig.6.11). The condensed image shows

twisted flow traces of the foreground target. Because background is usually larger

than the foreground target in the field of view and it determines the major flow, our

algorithm cuts slice across background to show the entire space as depicted in Fig.6.3.
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(a) Flow graph and cutting trajectory. The time axis is downward. 

(b) End frame of the clip I(x,y) (c) Profile P(t,y)  

Figure 6.12.: A car videoed from its surrounding during a fast movement. The profile

includes two sides of background.

(a) Flow graph and cutting trajectory. The time axis is downward. 

(b) End frame of the clip I(x,y) (c) Profile P(t,y)  

Figure 6.13.: Rotating object in front of the camera and its profile.

The foreground target is also cut and the width is extended (target is emphasized),

and the order is reversed in the profile. This selection of slicing direction is more

reasonable than the opposite way which extends a partial background and squeezes

the foreground in the profile. Figure 6.12 shows an example in which the focused car

taken by a camera on another moving car.
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We deal with general around-object motion along a smooth path and camera

rotation. Equivalently, a camera moving on a straight rail rotating towards a focused

target can be considered similarly. Further, a rotating target in front of a static

camera can be treated as this type of motion [27], as shown in Fig.6.13.

6.4 Visualize Dynamic Foreground

In this section, we are aiming at present both shape and motion information in

a video profile. To avoid the shape being destroyed completely, we employ motion

blurring-enhancing approach [38,39] in the profiling. If we extend the exposure time

of an image, dynamic objects are motion-blurred, because the intensity at each point

is accumulated temporally. Static objects have consistent intensities over time and

their average are still sharp. People can perceive the motion information when the

profile is displayed with motion blur.

(a)

0 t (b)  t (c)

Intensity accumulation 
around the cutting slice

along the time axis

t

0

Figure 6.14.: Motion blur created in video profile for representing dynamic foreground.

(a) Accumulating intensities along time axis during slice cutting. (b) The result from

a simple slice cutting without motion blurring. (c) The video profile with motion blur

and sharp background. The video frame is on the top-left.
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If the cutting speed is slow due to a long video clip as in Fig.6.14a, even a mild

motion of foreground might be single-slice profiled with a distortion. We increase a

degree of motion blur by temporal averaging around the cutting slice. As shown in

Fig.6.14a, we increase the width of the slice with thickness of γ in the video volume for

averaging. Given global flow direction V , which is a stable result, temporal averaging

in the flow direction is

P (t, y) = 1
γ

γ/2∑
τ=−γ/2

I(x(t) + v̄xτ, y(t) + v̄yτ, t+ v̄tτ) (6.2)

Thus, Fig.6.14b can be improved by motion blur as the result in Fig.6.14c by setting

γ = 35 frames.

This accumulation has two effects. It motion-blurs the dynamic foreground ob-

ject with a different flow direction from the background (major flow), and enhances

the background in the profile that may be motion blurred in each individual frame.

Another result in camera panning case is given in Fig.6.15.

 (a) (b)

 t  (c)  

Pan

Direction for 
temporal intensity 
accumulation 

Dynamic vehicle
movement

Figure 6.15.: Motion blurring for dynamic foreground and rotating background. (a)

A video frame during camera panning left. (b) A flow graph and averaging intensities

along the background flow direction. (c) Scaled video profile in time with sharp

background and blurred cars from the diagonal cut in (b).
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Furthermore, if the camera involves translation, the motion parallax is then not

homogeneous in each frame. It depends on the object depth from the camera. We

can only compute the dominant motion parallax at each time instance for intensity

accumulation along that direction. This means that only the object in the dominant

parallax (depth) will be clear and objects off the depth will have a certain degree of

motion blur.
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7 SHAPE IMPROVEMENT OF THE GENERATED VIDEO PROFILE

This chapter uses information in both the motion-oriented and shape-oriented

condensed images for the rectification of video profiles as a post-process. In the

motion-oriented image, the motion traces of major vertical features are kept. The

major flow shows the speed and direction of major camera operation. The inconsis-

tency of the traces in the motion-oriented image are brought in by the speed variation

of the camera operation. This issue will be taken care of by the introducing of shape

mode for the video profile, which can be seen as linearizing a curved trace to cor-

rect the video profile with less distortion from the speed variation. This can improve

the aspect ratio of major scenes in the video profile to be close to the perspective

projection. In the shape-oriented condensed image, a feature reveals two motion

components. The degree of blur in the horizontal direction is related to the image

velocity of the feature [34], and the deviation in the vertical direction provides the

camera shaking evidence. The first one is difficult to measure because the feature

may mixture with the neighboring ones, while the second one exhibits the shaking

parameters of the camera apparently for us to rectify the video profile. We will intro-

duce a method that makes the positive use of blur as an effective filter to rule out the

unreliable features for wave straighten. Note that these two methods only work on

the camera operations that generate directional flows. The diversified flow are hard

to model, since it’s caused either by inconsistent camera zoom that varies camera by

camera, or by unpredictable foreground crowd.
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Figure 7.1.: The profile (top) and spatial mosaic (bottom) of videos with continuous

camera operation (pan right with tilt up) with camera pan as major operation. The

continuous up-tilt operation can be seen from the profile (top) as the decline of the

structure line toward right. The spatial mosaic (bottom) cannot fit in the time line of

video editing software due to the irregular shape caused by various camera operations.

7.1 Information Captured in the Video Profile

Since our method is to use a scan line to sweep against the major flow, all the

background scenes appear once in the profile. The shape distortion information in

the temporal direction is analyzed as follows.

1. If the major flow is much larger than minor flow (Fig.3.3). This is the most

case.

(a) In the case that the minor flow exists in addition to the major flow, the

structure line will be deformed by the minor flow projection, i.e., for the

horizontal structure line in a pan+tilt video, the profile shows deformed

structure line. This phenomenon is shown in Fig.7.1.
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(b) Camera shaking in the minor flow is recorded in the profile as the minor

flow. The profile shaking can be rectified if necessary, based on shape

orientated condensed image (Section 7.3).

2. Depending on the camera motion (if it is horizontal leftward), the generated

profile may be spatially inverted (Fig.8.1), although it is perfectly correct in the

temporal domain. The shape mode display can horizontally flip the profile if

it is requested. This is because our profile is forced to align with the time axis

rightward.

3. Background aspect ratio deformation

(a) If the cut is fast (because the clip is short), most of the background scenes

will be recorded in a good shape in the profile. The shape in the video

profile is similar to the video frame.

(b) If cutting is slow

i. If the flow is slow, the profile can be scaled narrowly in the temporal di-

rection. Static background is deformed locally with a temporal scaling

as compared to its original shape in frame. However, this is tolerable

because the displayed video track is originally scalable along the time

axis for editing and browsing in most video software. A shape mode

of profile (Section 7.2) is prepared to rectify this for a better display

(Fig.7.3).

ii. If the flow is fast. Another effort is to design cascade cutting to avoid

slow cutting. This is introduced in Section 7.4.

4. Foreground motion may be inconsistent with background motion.

(a) Most of the time, it’s fine if foreground has small motion against back-

ground (almost as background).
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(b) If the slice cutting is fast, i.e., cutting speed is large, the foreground is

merged into the background and the shape distortion is insignificant even

when the relative motion is large as demonstrated in Figs.8.2, 8.3, 8.4.

(c) If the slice cut is slow

i. If foreground moves quickly, e.g., face expression, articulate move-

ments and rotation, and minor flow in shooting the clip, the target

shape may be damaged in the profile as motion traces.

ii. If a foreground target moves also slowly (e.g., camera focuses on it),

the target is extended in the profile. Inversely, a target is squeezed in

the profile if it passes the field of view quickly. These effects match

the videographer’s intention to emphasize or ignore targets. This can

be improved if the shape mode display is triggered on, if the traces of

foreground are sufficiently distinct. The way to solve this problem is

through the averaging of slices in the direction of Vx or Vy over a small

range so that a motion-blurred foreground is obtained in the profile

(Figs.6.14, 6.15) as suggested in [27]. This is particularly effective on

moving people taken by a static camera (Fig.8.3). Other method is

also under exploration.

The motion information is partially contained in the profile.

1. The temporal information is accessible along the horizontal axis for video editing

(specifying frames). The temporal order of the profile is consistent with the

camera moving direction, rather than the original spatial order. A scene may

have reversed order from what is observed in the video. We notify this effect

with color underlines as in Fig.8.1.

2. A camera zoom action is recognizable from scene structure scaling along the

time axis (Fig.6.7c).
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7.2 Display Profile in Shape Mode

The cutting is determined by the length of the section, which yields the profile

different from the perspective projection. The resulting video profile thus has shape

distortions. For a more pleasant experience for viewers, this work further introduces

a shape mode for the profile in addition to the temporal mode that strictly follows

time code.
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Figure 7.2.: Temporal scaling of profile for better shape

To preserve more spatial information, the resulting video profile needs to be resized

according to the angle between the cutting path and the major flow direction. As

shown in Fig.7.2, if the cutting length denoted as line segment l(t) can be locally

scaled to the same length as in the image shown as line segment L(t), the shape can

be preserved better in the profile. In triangle in Fig.7.2 formed by cutting segment

l(t) (several pixels), its corresponding scene length L(t) in the shape mode profile,

and the major flow Vx/Vy, the corresponding scene length is

L(t) = l(t) sinα(t)
sin(α(t) + β) (7.1)

where α(t) is the angle between l(t) and Vx/Vy, and β is the angle between l(t) and

the frame plane. Both are known angles computed already. The shape mode is only

applied to the profile of the camera motion with directional flows, i.e., translation or

panning. Figure 7.3 shows such a result to normalize the profile for a better shape of

scenes.
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Figure 7.3.: Local scaling of temporal mode to shape mode of Fig.1.3.
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7.3 Shaking Removal in Video Profile

Another effort to improve the shape of profile is to rectify the profile without

shakings, although the footprint of shaking might be useful in video editing and

evaluation. We examine the shape-orientated condensed image and use the local

traces of stationary blurring to rectify the up-and-down motions in the profile. A

straightening technique [23] is applied to curved lines in such condensed image. Figure

7.4 shows such results of minor flow reduction in the profiles for a better visualization.

Here we use the positive aspect of the stationary blur [34, 35] to remove unsta-

ble motions in the video profile. The generating of shape-oriented condensed image

(Fig.3.5b) automatically enhances the long-lasting features named lighthouse features

for revealing the camera shakings and suppresses irrelevant features. By tracking the

trajectory of such lighthouse features continuously in the condensed images, a video

profile can be rectified and normalized at the sub-pixel level in a continuous way.

In addition, the small data size processed achieves the efficiency and robustness in

generating good-quality video profile.

7.3.1 Shaking Embedded in Shape-oriented Condensed Images

It’s found that both distant and horizontal features in the 3D space appear as

long traces in the shape-oriented condensed image. In Fig.7.5, the horizontal window

structure (top) also forms long connected traces (bottom). The waving of the traces

gives good evidences of the camera tilt changes. On the contrary, the vertical features

such as lines and points in the frames are largely stationary-blurred.

If a portion of a horizontal line on a building is occluded by a small object, the

horizontal line will be nicely connected in the condensed image. This will allow for

longer horizontal lines to be tracked and straightened. As compared to the line track-

ing based video profile deshaking, this solves the problems of feature tracking in video

profile [40] and the matching of confusion patterns in Shape from Motion [41] and

image stitching method. Repetitive patterns such as windows and building decora-
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Figure 7.4.: Reducing shakings affected by irregular camera movement for better dis-

play (top) shape-oriented condensed image, (middle) profiles with minor flow shaking,

(lower) Profiles with shaking removed.
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Figure 7.5.: The video profile at top with shape-oriented condensed image at the

bottom

tions that are interrupted in line tracking in the video profile. They are connected

as longer lines in the condensed image, because the vertical features are blurred out.

Also, slanted long lines on roofs will not be selected mistakenly as references for

rectifying video profile, because they are also blurred out.

This work first filters the shape-oriented condensed image vertically to detect the

edge and then track continuous edge points horizontally with two-level thresholds.

Dense traces thus are detected at the sub-pixel level (1/3 pixels) as in Fig.7.6. Instead

of using many unreliable features and their average for estimating shaking parameters

between frames, this work focuses on a few curves from features visible for a long

period, which is more favorable in tracking the camera tilt.

Generally, a distant feature (with large Z) stays in the video for long time as

reliable references of camera motion. This is because it gives reliable orientation

information. The distant and widely visible lighthouse feature is more distinct than

a conventional landmark feature that is only unique in contrast to its surroundings.

Denoting the length of a 3D horizontal segment by L, starting from X, its appearing

scope along the path in the condensed image is
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Figure 7.6.: Tracking of dense traces (non-crossing) in the shape-oriented condensed

image.

(X − Zw/f,X + L+ Zw/f) (7.2)

according to the convolution property in (3.3)(3.4). The segment length in the P (t, y)

for tracking is computed as

4t =
m
(
L+ 2Zw

f

)
V

(7.3)

which is much longer than its length mL/V in the video profile. This proves that a

long or distant feature (either large L or Z or both) under a strong stationary blur

will provide a reliable evidence (long period of 4t) for motion/shaking detection. On

the other hand, closer features have relatively higher image velocities, which appear

short and less stationary-blurred in Cx(t, y).

The condensed image has revealed the motion characteristics of video in an intu-

itive way. The stationary blur effect caused by accumulating the pixels which makes

a distant scene last longer in the condensed image than in the video profile. The

deshaking of the video profile can thus be done by tracking horizontal traces in the
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condensed images for finding shaking parameters, and then applying the correction

parameters back to the video profile for aligning vertical columns.

7.3.2 Local Deshaking Based on Trace Tracking

In the shape-oriented condensed image, a feature reveals two motion components

horizontally and vertically. The degree of blur in the horizontal direction is related

to the image velocity of the feature [34], while the deviation in the vertical direction

provides the camera shaking evidence. The first one, i.e., the blurred degree, is

difficult to measure because the feature may mix with the neighboring ones, while

the second one, i.e., the deviation, exhibits the shaking parameters of the camera

apparently for rectifying the video profile.

Let us estimate the deviation related to the camera shaking. Assume that the

local frame has horizontal features Fk, k = 0, 1, 2, . . . at height y, and the lengths of

Fk are xk, respectively. The tangent of a trace in y direction in the condensed image

Cx(t, y), if detectable, is

∂Cx(t, y)/∂t
∂Cx(t, y)/∂y =

∑w/2
x=−w/2

∂I
∂t∑w/2

x=−w/2
∂I
∂y

= x1I
(1)
t + x2I

(2)
t + . . .+ xkI

(k)
t + . . .

x1I
(1)
y + x2I

(2)
y + . . .+ xkI

(k)
y + . . .

=
x1I

(1)
y

I
(1)
t

I
(1)
y

+ x2I
(2)
y

I
(2)
t

I
(2)
y

+ . . .+ xkI
(k)
y

I
(k)
t

I
(k)
y

+ . . .

x1I
(1)
y + x2I

(2)
y + . . .+ xkI

(k)
y + . . .

=
∑
k xkI

(k)
y v(k)∑

k xkI
(k)
y

(7.4)

where I(k)
t and I(k)

y are temporal and spatial partial derivative of feature k.

For post-processing deshaking, dense traces are tracked from edges for local jitters

in Cx(t, y) and then P (t, y). To find a shaking location from traces, two median filters

are applied vertically first and horizontally then on edge traces. The first filter obtains

a common vertical shift from multiple traces at any time instance, i.e.,

4ŷ(t) = median(4y1(t),4y2(t), . . . ,4yn(t)) (7.5)
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Figure 7.7.: A condensed image with visible motion traces. (left) Original P (t, y) and

rectified P (t, y) with curve removed. (right) Enlarged condensed image Cx(t, y) in a

span of P (t, y) shows curved building traces.

assuming the number of lines, n, is more than a threshold. This process works when

multiple traces provide common evidence of shaking in a short period. The second

median filter has a large horizontal span N along the time axis (a large number of

frame) for removing the sharp sparks as noises in the vertical shift distribution, to

obtain the vertical shift, y’(t), for deshaking at each position, i.e.,

y′(t) = median(4ŷ(t+ τ)), τ ∈ [−N,N ] (7.6)

The move of the vertical column of video profile for correction is at pixel level such that

the P (N, y) and Cx(N, y) will not be affected in resolution at this stage. Figure 7.7 is

such an example where a rectified section is displayed in local video profile. Although

N is large, we have used a revised median filter algorithm [19] for consecutive input

data of a large sequence to achieve the median filtering in linear complexity (i.e.,

O(n), instead of O(n log n) for median filtering by a general sorting algorithm). That

ensures the deshaking process moving forward at a constant speed regardless the

window size N .



62

7.3.3 Global Wave Reduction Based on Lighthouse Features

In addition to local jitters, we further straighten large structures in the video

profile according to waved traces of lighthouse features from horizontal lines or distant

points in the scene. The waves are caused by driving on inclined road surfaces. As

demonstrated in Fig.7.8, long curves in Cx(t, y) are tracked with a low threshold. A

set of continuous traces ri(si, ei), i = 1, 2, 3 . . . are obtained with length ei− si as the

process moves forward sequentially. Then, we straighten such curves successively in

Cx(t, y), resulting in the difference between original traces and straightened one for

the video profile deshaking.

In the implementation, the following steps are performed. (1) During the tracking

of a trace, its length is counted and, at the end, the length information is labeled

backward onto the entire trace. To guarantee a robust deshaking by referring to

global and static features, the traces shorter than a threshold are ignored. We found

that a single reliable trace from a lighthouse feature yields a much better result in

the video profile deshaking than using multiple noisy traces. (2) For every position

t, the longest trace that covers the position is marked in Cx(t, y). For all the traces

rk, k = 1, 2, 3, . . . covering t, i.e., t ∈ [sk, ek], there exists a trace j that satisfies

length(ri(t)) ≥ length(rk(t)) (7.7)

(3) A sequence of non-overlapped longest traces rj(t) are followed for rectifying waved

video profile, i.e., several consecutive longest traces rj(t), j = 1, 2, 3, . . . cover the

entire video profile.

The wave rectification of the video profile has two modes. (I) One is to generate

straightened scenes while keep the video profile within the image frame, which is

suitable for image visualization. (II) The other is to recover the true scene height

by accumulating the motion from the beginning of path. The generated video profile

can easily drift out of the window frame due to the error accumulation or the path on

a hill road. Our video profile deshaking obeys mode I to generate piecewise straight

video profile. The curved traces of longest segments are precisely located in Cx(t, y)

and are straightened based on end points. The pixel transformation is then applied
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Figure 7.8.: The process to rectify video profile with distance feature long lasting in

the shape-oriented condensed image Cx(t, y). Video profile, Cx with tracked traces

(red), the longest traces (red) in Cx, and video profile after straightening according to

the longest traces are displayed from left to right. The method works for wide area.
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Figure 7.9.: Evaluation of the video profile in terms of the aspect ratio. W and H are

the width and height of the video frame. li are the paths of the sampling line. Angle

β indicates the direction of the major flow direction. Angle γ indicates the direction

of the sampling line. The green plane indicates a frame of the video.

to the video profile accordingly. As a result, we solve the waving problem of video

profile by straightening traces of lighthouse features over long periods. This is difficult

by matching consecutive 2D frames that may cover only partial structures in the

scenes [42]. Figure 7.8 demonstrates such an example of correcting the waved video

profile based on the long lasting lighthouse features in the shape-oriented condensed

image. It works on wide and large depth area.

7.4 Cascade Cutting for Acceptable Aspect Ratio of Profile

In the triangle formed by the sampling plane (Fig.7.9), the major flow, and the

frame plane, the projected length is w = W sinβ/sin(γ + β). The aspect ratio of the

video profile is thus determined by the angle γ formed by the sampling plane and the

frame plane. If we choose an acceptable aspect ratio as λ, we have H/w = λ.
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W sin β
H sin(β + γ) = 1

λ
(7.8)

Expand the equation and divide both sides by sinβ (β ∈ (0, π/2]), we can get

λW = H cos γ +H cot β sin γ (7.9)

Since angle β shows the direction of the major flow, we have cot β = |v̄x|/|v̄t| with

v̄2
t + v̄2

x = 1. We can obtain the expression of γ as

sin γ =
λW cot β ±

√
H2 +H2 cot2 β − λ2W 2

H cot2 β +H

=
λW sin β cos β ± sin β

√
H2 − λ2W 2 sin2 β

H

cos γ =
λW ∓ cot β

√
H2 +H2 cot2 β − λ2W 2

H cot2 β +H

=
λW sin2 β ∓ cos β

√
H2 − λ2W 2 sin2 β

H
(7.10)

after solving (7.9) as a quadratic equation with respect to γ ∈ [0, π/2), considering

sin2 γ + cos2 γ = 1. In (7.10), we need to have λ ≤ H/(W sin β).

If the angle γ is too large, the preset aspect ratio λ may be invalidated. In this

condition, we may further split the video volume to smaller segments and set more

sampling planes based on the strategy introduced before, from one end of the segment

to the other. There are two options for the starting position of the new sampling

plane. One is to start the new plane at the end frame of the current plane. This

might introduce duplicated scenes near the connections of two consecutive profiles.

The other is to start the new plane at the frame projected from the end frame of the

current plane along the major flow direction. This approach might give better result

than the first method in the sense that it won’t duplicate the scene. But the result

might suffer from inaccurate estimation of major flow due to local waves.
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8 EXPERIMENTS

8.1 Generating Profiles

As a video is read in, it is scanned for color condensing. With the two condensed

images, we segment video to clips according to the discontinuity of color distribution

as traditional approaches [36] and then to sections with smooth camera motions as

shown in Fig.4.1. The blue curves show the variance of the horizontal component of

the trace vector. A relatively larger variance suggests a zoom operation or component.

The averaged flow direction from accumulated trace angles is shown with red curves

along the time axis. A median filter of size 3σv is applied to remove the noises

caused by foreground moving objects. In each segment, two components of the major

flow vector are computed and compared from the gradient values on traces. This

information is then used in selecting slice alignment and the cutting direction in the

motion-oriented condensed image. From the convergence/divergence factor computed

in the condensed image, the bending curve is determined to generate the profile

accordingly.

We have examined our method on hours of videos in profiling them. A video

clip may contain a back-and-forth panning that is a concatenation of our simple and

smooth camera movements, as can be found in Fig.8.1a. Some non-trivial results are

shown in Figs.8.1b, 8.2, 8.3, 8.4.

The computation time is T (3D) +T (2× 2D) +T (2Dslice) for the intensity voting

to condensed images, filtering for the aggregate motion vectors, and slice cutting in

the video clip, respectively. It is much less than filtering the video volume itself for

optical flow. Software has been developed to perform this task on PC. The testing

video clips are mostly from YouTube and other web video service providers. If a
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Figure 8.1.: (a) Back-and-forth panning on a basketball game and a dancing girl.

(b) Profile of a video capturing a world heritage in Roman. There are pan operations

and a forward moving (similar as zoom) operation on an airplane in the video.
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 a key frame 

Figure 8.2.: Large camera motion following the crowded actions. The profile from

three consecutive pans shows the game progress in the temporal domain. A key frame

is also attached. It contains true shapes but is hard to know context in the video.

clip has severe shaking, the deshaking technique can smooth the video prior to the

profiling. We have developed software to perform the video profiling on a laptop PC

(Dell XPSL511Z) in real time (processing 35 frames per second).

8.2 GUI for Video with Profile

The profile of video makes the video track in the video software and web visible.

This allows the user to search the scenes of interest effectively before watching the

video itself. We have explored various interfaces of using video profile to enhance the

video browsing, searching, and comparison.

Along with the video window and operation buttons, an associated video profile

is displayed in the video track. It is constructed to be scalable and scrollable in time

for scene search in the video. The frame indicator on the profile is synchronized with

the frame in the video. Users can interact with the profile by using mouse on PC

and finger on mobile devices. By specifying a scene, the corresponding frame in the

video is pulled out in the video display window. By indicating a range of frames in

the profile, users can replay, copy and paste the video segment.
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Figure 8.3.: A wall of temporal profiles contains a sports ceremony. The profile cut-

ting method works successfully in general. Although deformation happens in profiles

for the discussed reasons, there is no difficulty to identify the scenes. The camera

operations are mostly camera pan and crane motion.
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Figure 8.4.: A wall of temporal profiles contains the TV program of an MTV. It’s

easy to identify the singers and dancers. Each video segment with smooth camera

operation lasts a short time so the resulting video profile is more similar to a set of

key frames.

In addition to the frame-profile pair display for browsing and editing, we also

display profiles of a large video set consecutively in a large window called video

wall as shown in Fig.8.5. The wall is scalable and scrollable as well. It provides a

function to locate scenes and allows users to quickly compare video clips briefly to find

duplications. If a position is clicked in the video wall by mouse, the corresponding

frame further pops up near the location specified. The most powerful function is

to display the frame in a separate window side-by-side with the wall window, where

sweeping the mouse position over the profiles realizes a fast video forward in the frame

window.
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Figure 8.5.: Video Wall Display with profiles of a long video with the indication of

the functions on the top.
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Figure 8.6.: Video profiles on various mobile devices such as Android phone and iPad.

The profiles of videos displayed underneath the video frames are synchronized with

the video.
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We have developed software for PCs, iPad, and Android phones to examine the

effectiveness of the video profile in helping video access as shown in Fig.8.6. We

used Java binding with OpenCV in the video wall. For Apple iPad, we coded with

Objective-C on Apple and used the software xCode to test and debug the code. A

simple drag and drop interface was created to bring code into the iPad.
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9 DISCUSSION

Many TV programs are the concatenation of clips from static cameras. If the clip

is short, the resulting profile is not very different from the key frame itself. But the

profile has a higher temporal resolution than key frame because the longer diagonal

line than the frame width. Because the |v̄x| and |v̄y| are small for static camera and

pure zoom, both horizontal and vertical cutting can be considered. We perform a

vertical slice for a profile.

Figure 9.1.: Long video profile before and after rectifying waved image. The horizontal

axis is time. There are repeating patterns on the brick building.

Compared to the spatial mosaicing, the motion and temporal information is ac-

cessible along the time axis in the profile. If the camera motion is slow or the section

after smooth camera operation is short, our video profile is almost identical to key

frames (Figs.6.4, 8.4), since the slice forms a small angle with the video frame and the

segmentation process takes into consideration the camera shot transition and camera

operation change.

The generated profile is almost identical to the stitching-based method for camera

pan (Fig.9.2). Plus, our method has a better and smooth connection between consec-

utive pixel lines. Image stitching has artifacts at boundaries or seams, whatever an

effort to find invisible seams is or re-projection from 3D is made. Our method pro-
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(b)

(a)

(c)

Figure 9.2.: The comparison between the spatial method and video profile method

in a video of camera pan. (a) Key frame method (b) Mosaic method (c) Our slice

cutting method.

duces a long image directly before we rectify it. On the other hand, image stitching

obtains a long view after many steps of segmentation, matching/optical flow identifi-

cation, patch optimization, etc. Image stitching has fundamental problems in dealing

with the different motion parallax or disparities at the same place. This is not a

problem for our method as can be seen in Fig.9.1 from a traveling camera along a

long route.
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At the current stage, our profile may not be used purely for registering actions

of a person. Users are directed to see video itself. Although the graphics rendering

approach has achieved artistic video annotation, the methods only work on static

and rotating camera so far [12, 17]. The scene segmentation may not succeed if the

scene complexity increases. On the contrary, this work aims at automatic video

profiling for general camera motion for indexing video database. A profile needs to

present true scenes for video retrieval. Multiple copies of targets may cause confusion.

Although [4] using linear patches scanning approach creates a less distorted shape, the

optimization is extremely time-consuming because of the ignorance of the global flow

direction. Based on our test, on a 2000 frame video shown in Fig.3.5 costs more than

one hour by using [4] in generating the mosaic. Moreover, the temporal resolution

and scale is not consistent due to the fact that a large shape determines the stitching

size of the patches (a car may still be squeezed temporally due to a large background).

Since our profile includes more complete scenes in the video than key frames, it

can be used for video comparison for duplicated clips at a coarse level more efficiently

than comparing video volumes. In this sense, the profile can be used as a reliable

intermediate video representation for retrieval. For a profile from surveillance video

with traffic and people through a location (ST in Fig.6.3), one can have a glance at

a target before checking the video. In the profile, we can even count passing people

in a group activity such as marathon and parade, which is easier than counting in

overlapped frames because the data in profile is non-redundant.
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10 CONCLUSION

This work addresses a general framework of automatic profiling of video volumes

for video digests. Based on the analysis of camera motion and global flow, a uni-

formed algorithm has been implemented on simple and combined camera motions,

which theoretically guarantees the profiles from various video clips. The global mo-

tion of camera has been estimated efficiently with two condensed images for determine

the slice cutting, and the automatically generated 2D profiles containing both tempo-

ral and spatial information. Besides the background scenes, the moving foreground

objects are registered as motion-blurred shapes to express the motions and relative

positions. The profiling method is global, more robust and faster than mosaic-based

methods. Post-processing is also employed to improve the display of the video profile.

It can automatically map video database to profiles to facilitate video browsing and

editing. GUI on both PC and hand held devices are designed and developed to prove

the usefulness of proposed video profile.
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