48,021 research outputs found

    Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay

    Get PDF
    This paper is concerned with the problems of stability analysis and stabilization for discrete-time Takagi-Sugeno fuzzy systems with time-varying state delay. By constructing a new fuzzy Lyapunov function and by making use of novel techniques, an improved delay-dependent stability condition is obtained, which is dependent on the lower and upper delay bounds. The merit of the proposed stability condition lies in its reduced conservatism, which is achieved by avoiding the utilization of some bounding inequalities for the cross products between two vectors. Then, delay-dependent stabilization approach based on a parallel distributed compensation scheme is developed for both state feedback and observer-based output feedback cases. The proposed stability and stabilization conditions are formulated in terms of linear matrix inequalities, which can be solved efficiently by using existing optimization techniques. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper. © 2008 IEEE.published_or_final_versio

    Robustness analysis of discrete predictor-based controllers for input-delay systems

    Full text link
    In this article, robustness to model uncertainties are analysed in the context of discrete predictor-based state-feedback controllers for discrete-time input-delay systems with time-varying delay, in an LMI framework. The goal is comparing robustness of predictor-based strategies with respect to other (sub)optimal state feedback ones. A numerical example illustrates that improvements in tolerance to modelling errors can be achieved by using the predictor framework.The authors are grateful for grant nos. DPI2008-06737-C02-01, DPI2008-06731-C02-01, DPI2011-27845-C02-01 and PROMETEO/2008/088 from the Spanish and Valencian governments.GonzĂĄlez Sorribes, A.; Sala, A.; GarcĂ­a Gil, PJ.; Albertos PĂ©rez, P. (2013). Robustness analysis of discrete predictor-based controllers for input-delay systems. International Journal of Systems Science. 44(2):232-239. https://doi.org/10.1080/00207721.2011.600469S232239442Boukas, E.-K. (2006). Discrete-time systems with time-varying time delay: Stability and stabilizability. Mathematical Problems in Engineering, 2006, 1-10. doi:10.1155/mpe/2006/42489Du, D., Jiang, B., & Zhou, S. (2008). Delay-dependent robust stabilisation of uncertain discrete-time switched systems with time-varying state delay. International Journal of Systems Science, 39(3), 305-313. doi:10.1080/00207720701805982El Ghaoui, L., Oustry, F., & AitRami, M. (1997). A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 42(8), 1171-1176. doi:10.1109/9.618250Gao, H., & Chen, T. (2007). New Results on Stability of Discrete-Time Systems With Time-Varying State Delay. IEEE Transactions on Automatic Control, 52(2), 328-334. doi:10.1109/tac.2006.890320Gao, H., Wang, C., Lam, J., & Wang, Y. (2004). Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay. IEE Proceedings - Control Theory and Applications, 151(6), 691-698. doi:10.1049/ip-cta:20040822Gao, H., Chen, T., & Lam, J. (2008). A new delay system approach to network-based control. Automatica, 44(1), 39-52. doi:10.1016/j.automatica.2007.04.020Garcia , P , Castillo , P , Lozano , R and Albertos , P . 2006 . Robustness with Respect to Delay Uncertainties of a Predictor Observer Based Discrete-time Controller . Proceeding of the 45th IEEE Conference on Decision and Control . 2006 . pp. 199 – 204 .Guo , Y and Li , S . 2009 . New Stability Criterion for Discrete-time Systems with Interval Time-varying State Delay . Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference . 2009 . pp. 1342 – 1347 .HĂ€gglund, T. (1996). An industrial dead-time compensating PI controller. Control Engineering Practice, 4(6), 749-756. doi:10.1016/0967-0661(96)00065-2V.J.S. Leite, and Miranda, M.F. (2008), ‘Robust Stabilization of Discrete-time Systems with Time-varying Delay: An LMI Approach’,Mathematical Problems in Engineering, 2008, 15 pages (doi:10.1155/2008/875609)Liu, X. G., Tang, M. L., Martin, R. R., & Wu, M. (2006). Delay-dependent robust stabilisation of discrete-time systems with time-varying delay. IEE Proceedings - Control Theory and Applications, 153(6), 689-702. doi:10.1049/ip-cta:20050223Lozano, R., Castillo, P., Garcia, P., & Dzul, A. (2004). Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, 40(4), 603-612. doi:10.1016/j.automatica.2003.10.007Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Michiels, W., & Niculescu, S.-I. (2003). On the delay sensitivity of Smith Predictors. International Journal of Systems Science, 34(8-9), 543-551. doi:10.1080/00207720310001609057Palmor, Z.J. (1996), ‘Time-delay Compensation – Smith Predictor and Its Modifications’, inThe Control Handbook, ed. W.S. Levine, Boca Raton: CRC Press, pp. 224–237Pan, Y.-J., Marquez, H. J., & Chen, T. (2006). Stabilization of remote control systems with unknown time varying delays by LMI techniques. International Journal of Control, 79(7), 752-763. doi:10.1080/00207170600654554Richard, J.-P. (2003). Time-delay systems: an overview of some recent advances and open problems. Automatica, 39(10), 1667-1694. doi:10.1016/s0005-1098(03)00167-5Wang, Q.-G., Lee, T. H., & Tan, K. K. (1999). Finite-Spectrum Assignment for Time-Delay Systems. Lecture Notes in Control and Information Sciences. doi:10.1007/978-1-84628-531-8He, Y., Wu, M., Han, Q.-L., & She, J.-H. (2008). Delay-dependentH∞control of linear discrete-time systems with an interval-like time-varying delay. International Journal of Systems Science, 39(4), 427-436. doi:10.1080/00207720701832531Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 41(2), 233-240. doi:10.1016/j.automatica.2004.09.006Zhang, B., Xu, S., & Zou, Y. (2008). Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica, 44(11), 2963-2967. doi:10.1016/j.automatica.2008.04.01

    Analysis and synthesis of Markov Jump Linear systems with time-varying delays and partially known transition probabilities

    Get PDF
    In this note, the stability analysis and stabilization problems for a class of discrete-time Markov jump linear systems with partially known transition probabilities and time-varying delays are investigated. The time-delay is considered to be time-varying and has a lower and upper bounds. The transition probabilities of the mode jumps are considered to be partially known, which relax the traditional assumption in Markov jump systems that all of them must be completely known a priori. Following the recent study on the class of systems, a monotonicity is further observed in concern of the conservatism of obtaining the maximal delay range due to the unknown elements in the transition probability matrix. Sufficient conditions for stochastic stability of the underlying systems are derived via the linear matrix inequality (LMI) formulation, and the design of the stabilizing controller is further given. A numerical example is used to illustrate the developed theory. © 2008 IEEE.published_or_final_versio

    Stability analysis and controller design for switched time-delay systems

    Get PDF
    In this thesis, the stability analysis and control synthesis for uncertain switched time-delay systems are investigated. It is known that a wide variety of real-world systems are subject to uncertainty and also time-delay in their dynamics. These characteristics, if not taken into consideration in analysis and synthesis, can lead to important problems such as performance degradation or instability in a control system. On the other hand, the switching phenomenon often appears in numerous applications, where abrupt change is inevitable in the system model. Switching behavior in this type of systems can be triggered either by time, or by the state of the system. A theoretical framework to study various features of switched systems in the presence of uncertainty and time-delay (both neutral and retarded) would be of particular interest in important applications such as network control systems, power systems and communication networks. To address the problem of robust stability for the class of uncertain switched systems with unknown time-varying delay discussed above, sufficient conditions in the form of linear matrix inequalities (LMI) are derived. An adaptive switching control algorithm is then proposed for the stabilization of uncertain discrete time-delay systems subject to disturbance. It is assumed that the discrete time-delay system is highly uncertain, such that a single fixed controller cannot stabilize it effectively. Sufficient conditions are provided subsequently for the stability of switched time-delay systems with polytopic-type uncertainties. Moreover, an adaptive control scheme is provided to stabilize the uncertain neutral time-delay systems when the upper bounds on the system uncertainties are not available a priori . Simulations are provided throughout the thesis to support the theoretical result

    Stability analysis and control of discrete-time systems with delay

    Get PDF
    The research presented in this thesis considers the stability analysis and control of discrete-time systems with delay. The interest in this class of systems has been motivated traditionally by sampled-data systems in which a process is sampled periodically and then controlled via a computer. This setting leads to relatively cheap control solutions, but requires the discretization of signals which typically introduces time delays. Therefore, controller design for sampled-data systems is often based on a model consisting of a discrete-time system with delay. More recently the interest in discrete-time systems with delay has been motivated by networked control systems in which the connection between the process and the controller is made through a shared communication network. This communication network increases the flexibility of the control architecture but also introduces effects such as packet dropouts, uncertain time-varying delays and timing jitter. To take those effects into account, typically a discrete-time system with delay is formulated that represents the process together with the communication network, this model is then used for controller design While most researchers that work on sampled-data and networked control systems make use of discrete-time systems with delay as a modeling class, they merely use these models as a tool to analyse the properties of their original control problem. Unfortunately, a relatively small amount of research on discrete-time systems with delay addresses fundamental questions such as: What trade-off between computational complexity and conceptual generality or potential control performance is provided by the different stability analysis methods that underlie existing results? Are there other stability analysis methods possible that provide a better trade-off between these properties? In this thesis we try to address these and other related questions. Motivated by the fact that almost every system in practice is subject to constraints and Lyapunov theory is one of the few methods that can be easily adapted to deal with constraints, all results in this thesis are based on Lyapunov theory. In Chapter 2 we introduce delay difference inclusions (DDIs) as a modeling class for systems with delay and discuss their generality and advantages. Furthermore, the two standard stability analysis results for DDIs that make use of Lyapunov theory, i.e., the Krasovskii and Razumikhin approaches, are considered. The Krasovskii approach provides necessary and sufficient conditions for stability while the Razumikhin approach provides conditions that are relatively simple to verify but conservative. An important conclusion is that the Razumikhin approach makes use of conditions that involve the system state only while those corresponding to the Krasovskii approach involve trajectory segments. Therefore, only the Razumikhin approach yields information about DDI trajectories directly, such that the corresponding computations can be executed in the low-dimensional state space of the DDI dynamics. Hence, we focus on the Razumikhin approach in the remainder of the thesis. In Chapter 3 it is shown that by considering each delayed state as a subsystem, the behavior of a DDI can be described by an interconnected system. Thus, the Razumikhin approach is found to be an exact application of the small-gain theorem, which provides an explanation for the conservatism that is typically associated with this approach. Then, inspired by the relation of DDIs to interconnected systems, we propose a new Razumikhin-type stability analysis method that makes use of a stability analysis result for interconnected systems with dissipative subsystems. The proposed method is shown to provide a trade-off between the conceptual generality of the Krasovskii approach and the computationally convenience of the Razumikhin approach. Unfortunately, these novel Razumikhin-type stability analysis conditions still remain conservative. Therefore, in Chapter 4 we propose a relaxation of the Razumikhin approach that provides necessary and sufficient conditions for stability. Thus, we obtain a Razumikhin-type result that makes use of conditions that involve the system state only and are non-conservative. Interestingly, we prove that for positive linear systems these conditions equivalent to the standard Razumikhin approach and hence both are necessary and sufficient for stability. This establishes the dominance of the standard Razumikhin approach over the Krasovskii approach for positive linear discrete-time systems with delay. Next, in Chapter 5 the stability analysis of constrained DDIs is considered. To this end, we study the construction of invariant sets. In this context the Krasovskii approach leads to algorithms that are not computationally tractable while the Razumikhin approach is, due to its conservatism, not always able to provide a suitable invariant set. Based on the non-conservative Razumikhin-type conditions that were proposed in Chapter 4, a novel invariance notion is proposed. This notion, called the invariant family of sets, preserves the conceptual generality of the Krasovskii approach while, at the same time, it has a computational complexity comparable to the Razumikhin approach. The properties of invariant families of sets are analyzed and synthesis methods are presented. Then, in Chapter 6 the stabilization of constrained linear DDIs is considered. In particular, we propose two advanced control schemes that make use of online optimization. The first scheme is designed specifically to handle constraints in a non-conservative way and is based on the Razumikhin approach. The second control scheme reduces the computational complexity that is typically associated with the stabilization of constrained DDIs and is based on a set of necessary and sufficient Razumikhin-type conditions for stability. In Chapter 7 interconnected systems with delay are considered. In particular, the standard stability analysis results based on the Krasovskii as well as the Razumikhin approach are extended to interconnected systems with delay using small-gain arguments. This leads, among others, to the insight that delays on the channels that connect the various subsystems can not cause the instability of the overall interconnected system with delay if a small-gain condition holds. This result stands in sharp contrast with the typical destabilizing effect that time delays have. The aforementioned results are used to analyse the stability of a classical power systems example where the power plants are controlled only locally via a communication network, which gives rise to local delays in the power plants. A reflection on the work that has been presented in this thesis and a set of conclusions and recommendations for future work are presented in Chapter 8

    Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator

    Full text link
    [EN] This paper deals with the problem of stabilizing a class of input-delayed systems with (possibly) nonlinear uncertainties by using explicit delay compensation. It is well known that plain predictive schemes lack robustness with respect to uncertain model parameters. In this work, an uncertainty estimator is derived for input-delay systems and combined with a modified state predictor, which uses current available information of the estimated uncertainties. Furthermore, based on Lyapunov-Krasovskii functionals, a computable criterion to check robust stability of the closed-loop is developed and cast into a minimization problem constrained to an LMI. Additionally, for a given input delay, an iterative-LMI algorithm is proposed to design stabilizing tuning parameters. The main results are illustrated and validated using a numerical example with a second-order dynamic system.This work was partially supported by projects PROMETEOII/2013/004, Conselleria d EducaciĂł, Generalitat Valenciana, and TIN2014-56158-C4-4-P-AR, Ministerio de EconomĂ­a y Competitividad, Spain.Sanz Diaz, R.; GarcĂ­a Gil, PJ.; Albertos PĂ©rez, P.; Zhong, Q. (2017). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control. 27(10):1826-1840. https://doi.org/10.1002/rnc.3639S182618402710Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135Normey-Rico, J. E., Bordons, C., & Camacho, E. F. (1997). Improving the robustness of dead-time compensating PI controllers. Control Engineering Practice, 5(6), 801-810. doi:10.1016/s0967-0661(97)00064-6Michiels, W., & Niculescu, S.-I. (2003). On the delay sensitivity of Smith Predictors. International Journal of Systems Science, 34(8-9), 543-551. doi:10.1080/00207720310001609057Normey-Rico, J. E., & Camacho, E. F. (2008). Dead-time compensators: A survey. Control Engineering Practice, 16(4), 407-428. doi:10.1016/j.conengprac.2007.05.006GuzmĂĄn, J. L., GarcĂ­a, P., HĂ€gglund, T., Dormido, S., Albertos, P., & Berenguel, M. (2008). Interactive tool for analysis of time-delay systems with dead-time compensators. Control Engineering Practice, 16(7), 824-835. doi:10.1016/j.conengprac.2007.09.002Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Moon, Y. S., Park, P., & Kwon, W. H. (2001). Robust stabilization of uncertain input-delayed systems using reduction method. Automatica, 37(2), 307-312. doi:10.1016/s0005-1098(00)00145-xYue, D. (2004). Robust stabilization of uncertain systems with unknown input delay. Automatica, 40(2), 331-336. doi:10.1016/j.automatica.2003.10.005Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 41(2), 233-240. doi:10.1016/j.automatica.2004.09.006Lozano, R., Castillo, P., Garcia, P., & Dzul, A. (2004). Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, 40(4), 603-612. doi:10.1016/j.automatica.2003.10.007Gonzalez, A., Garcia, P., Albertos, P., Castillo, P., & Lozano, R. (2012). Robustness of a discrete-time predictor-based controller for time-varying measurement delay. Control Engineering Practice, 20(2), 102-110. doi:10.1016/j.conengprac.2011.09.001Karafyllis, I., & Krstic, M. (2013). Robust predictor feedback for discrete-time systems with input delays. International Journal of Control, 86(9), 1652-1663. doi:10.1080/00207179.2013.792005Krstic, M. (2010). Input Delay Compensation for Forward Complete and Strict-Feedforward Nonlinear Systems. IEEE Transactions on Automatic Control, 55(2), 287-303. doi:10.1109/tac.2009.2034923Bekiaris-Liberis, N., & Krstic, M. (2011). Compensation of Time-Varying Input and State Delays for Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control, 134(1). doi:10.1115/1.4005278Karafyllis, I., Malisoff, M., Mazenc, F., & Pepe, P. (Eds.). (2016). Recent Results on Nonlinear Delay Control Systems. Advances in Delays and Dynamics. doi:10.1007/978-3-319-18072-4Cacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462Fridman, E., & Shaked, U. (2002). A descriptor system approach to H/sub ∞/ control of linear time-delay systems. IEEE Transactions on Automatic Control, 47(2), 253-270. doi:10.1109/9.983353Chen, W.-H., & Zheng, W. X. (2006). On improved robust stabilization of uncertain systems with unknown input delay. Automatica, 42(6), 1067-1072. doi:10.1016/j.automatica.2006.02.015Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010LĂ©chappĂ©, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Roh, Y.-H., & Oh, J.-H. (1999). Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation. Automatica, 35(11), 1861-1865. doi:10.1016/s0005-1098(99)00106-5Bresch-Pietri, D., & Krstic, M. (2009). Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica, 45(9), 2074-2081. doi:10.1016/j.automatica.2009.04.027Kamalapurkar, R., Fischer, N., Obuz, S., & Dixon, W. E. (2016). Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems. IEEE Transactions on Automatic Control, 61(3), 834-839. doi:10.1109/tac.2015.2451472Chen, W.-H., Ohnishi, K., & Guo, L. (2015). Advances in Disturbance/Uncertainty Estimation and Attenuation [Guest editors’ introduction]. IEEE Transactions on Industrial Electronics, 62(9), 5758-5762. doi:10.1109/tie.2015.2453347Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397Sariyildiz E Ohnishi K Design constraints of disturbance observer in the presence of time delay 2013 IEEE International Conference on Mechatronics (ICM) Vicenza, Italy 2013 69 74Wang, Q.-G., Hang, C. C., & Yang, X.-P. (2001). Single-loop controller design via IMC principles. Automatica, 37(12), 2041-2048. doi:10.1016/s0005-1098(01)00170-4Zheng, Q., & Gao, Z. (2014). Predictive active disturbance rejection control for processes with time delay. ISA Transactions, 53(4), 873-881. doi:10.1016/j.isatra.2013.09.021Chen, M., & Chen, W.-H. (2010). Disturbance-observer-based robust control for time delay uncertain systems. International Journal of Control, Automation and Systems, 8(2), 445-453. doi:10.1007/s12555-010-0233-5Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Zhong, Q.-C., & Rees, D. (2004). Control of Uncertain LTI Systems Based on an Uncertainty and Disturbance Estimator. Journal of Dynamic Systems, Measurement, and Control, 126(4), 905-910. doi:10.1115/1.1850529Yong He, Min Wu, & Jin-Hua She. (2005). Improved bounded-real-lemma representation and H/sub /spl infin// control of systems with polytopic uncertainties. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(7), 380-383. doi:10.1109/tcsii.2005.850418CAO, Y.-Y., LAM, J., & SUN, Y.-X. (1998). Static Output Feedback Stabilization: An ILMI Approach. Automatica, 34(12), 1641-1645. doi:10.1016/s0005-1098(98)80021-6Marler, R. T., & Arora, J. S. (2009). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853-862. doi:10.1007/s00158-009-0460-7Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Solomon, O., & Fridman, E. (2013). New stability conditions for systems with distributed delays. Automatica, 49(11), 3467-3475. doi:10.1016/j.automatica.2013.08.025Huaizhong Li, & Minyue Fu. (1997). A linear matrix inequality approach to robust H/sub ∞/ filtering. IEEE Transactions on Signal Processing, 45(9), 2338-2350. doi:10.1109/78.622956Ć iljak, D. D., & Stipanovic, D. M. (2000). Robust stabilization of nonlinear systems: The LMI approach. Mathematical Problems in Engineering, 6(5), 461-493. doi:10.1155/s1024123x0000143

    Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer

    Full text link
    [EN] The problem of output stabilization and disturbance rejection for input-delayed systems is tackled in this work. First, a suitable transformation is introduced to translate mismatched disturbances into an equivalent input disturbance. Then, an extended state observer is combined with a predictive observer structure to obtain a future estimation of both the state and the disturbance. A disturbance model is assumed to be known but attenuation of unmodeled components is also considered. The stabilization is proved via Lyapunov-Krasovskii functionals, leading to sufficient conditions in terms of linear matrix inequalities for the closed-loop analysis and parameter tuning. The proposed strategy is illustrated through a numerical example.PROMETEOII/2013/004; Conselleria d'Educacio; Generalitat Valenciana, Grant/Award Number: TIN2014-56158-C4-4-P-AR; Ministerio de Economia y Competitividad, Grant/Award Number: FPI-UPV 2014; Universitat Politecnica de ValenciaSanz Diaz, R.; GarcĂ­a Gil, PJ.; Fridman, E.; Albertos PĂ©rez, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control. 28(6):2457-2467. https://doi.org/10.1002/rnc.4027S24572467286Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Watanabe, K., & Ito, M. (1981). A process-model control for linear systems with delay. IEEE Transactions on Automatic Control, 26(6), 1261-1269. doi:10.1109/tac.1981.1102802Astrom, K. J., Hang, C. C., & Lim, B. C. (1994). A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 39(2), 343-345. doi:10.1109/9.272329Matausek, M. R., & Micic, A. D. (1996). A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 41(8), 1199-1203. doi:10.1109/9.533684GarcĂ­a, P., & Albertos, P. (2008). A new dead-time compensator to control stable and integrating processes with long dead-time. Automatica, 44(4), 1062-1071. doi:10.1016/j.automatica.2007.08.022Normey-Rico, J. E., & Camacho, E. F. (2009). Unified approach for robust dead-time compensator design. Journal of Process Control, 19(1), 38-47. doi:10.1016/j.jprocont.2008.02.003Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010LĂ©chappĂ©, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006Sanz, R., Garcia, P., Albertos, P., & Zhong, Q.-C. (2016). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control, 27(10), 1826-1840. doi:10.1002/rnc.3639Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.837531Zhou, B., Lin, Z., & Duan, G.-R. (2012). Truncated predictor feedback for linear systems with long time-varying input delays. Automatica, 48(10), 2387-2399. doi:10.1016/j.automatica.2012.06.032Zhou, B., Li, Z.-Y., & Lin, Z. (2013). On higher-order truncated predictor feedback for linear systems with input delay. International Journal of Robust and Nonlinear Control, 24(17), 2609-2627. doi:10.1002/rnc.3012Besançon G Georges D Benayache Z Asymptotic state prediction for continuous-time systems with delayed input and application to control IEEE 2007 Kos, GreeceNajafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627LĂ©chappĂ© V Moulay E Plestan F Dynamic observation-prediction for LTI systems with a time-varying delay in the input IEEE 2016 Las Vegas, NVCacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517Mazenc, F., & Malisoff, M. (2017). Stabilization of Nonlinear Time-Varying Systems Through a New Prediction Based Approach. IEEE Transactions on Automatic Control, 62(6), 2908-2915. doi:10.1109/tac.2016.2600500Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Fridman, E. (2003). Output regulation of nonlinear systems with delay. Systems & Control Letters, 50(2), 81-93. doi:10.1016/s0167-6911(03)00131-2Isidori, A., & Byrnes, C. I. (1990). Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131-140. doi:10.1109/9.45168Ding, Z. (2003). Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, 39(3), 471-479. doi:10.1016/s0005-1098(02)00251-0Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462Fridman, E., & Orlov, Y. (2009). Exponential stability of linear distributed parameter systems with time-varying delays. Automatica, 45(1), 194-201. doi:10.1016/j.automatica.2008.06.00

    Qualitative Studies of Nonlinear Hybrid Systems

    Get PDF
    A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior. Hybrid systems arise in a wide variety of important applications in diverse areas, ranging from biology to computer science to air traffic dynamics. The interaction of continuous- and discrete-time dynamics in a hybrid system often leads to very rich dynamical behavior and phenomena that are not encountered in purely continuous- or discrete-time systems. Investigating the dynamical behavior of hybrid systems is of great theoretical and practical importance. The objectives of this thesis are to develop the qualitative theory of nonlinear hybrid systems with impulses, time-delay, switching modes, and stochastic disturbances, to develop algorithms and perform analysis for hybrid systems with an emphasis on stability and control, and to apply the theory and methods to real-world application problems. Switched nonlinear systems are formulated as a family of nonlinear differential equations, called subsystems, together with a switching signal that selects the continuous dynamics among the subsystems. Uniform stability is studied emphasizing the situation where both stable and unstable subsystems are present. Uniformity of stability refers to both the initial time and a family of switching signals. Stabilization of nonlinear systems via state-dependent switching signal is investigated. Based on assumptions on a convex linear combination of the nonlinear vector fields, a generalized minimal rule is proposed to generate stabilizing switching signals that are well-defined and do not exhibit chattering or Zeno behavior. Impulsive switched systems are hybrid systems exhibiting both impulse and switching effects, and are mathematically formulated as a switched nonlinear system coupled with a sequence of nonlinear difference equations that act on the switched system at discrete times. Impulsive switching signals integrate both impulsive and switching laws that specify when and how impulses and switching occur. Invariance principles can be used to investigate asymptotic stability in the absence of a strict Lyapunov function. An invariance principle is established for impulsive switched systems under weak dwell-time signals. Applications of this invariance principle provide several asymptotic stability criteria. Input-to-state stability notions are formulated in terms of two different measures, which not only unify various stability notions under the stability theory in two measures, but also bridge this theory with the existent input/output theories for nonlinear systems. Input-to-state stability results are obtained for impulsive switched systems under generalized dwell-time signals. Hybrid time-delay systems are hybrid systems with dependence on the past states of the systems. Switched delay systems and impulsive switched systems are special classes of hybrid time-delay systems. Both invariance property and input-to-state stability are extended to cover hybrid time-delay systems. Stochastic hybrid systems are hybrid systems subject to random disturbances, and are formulated using stochastic differential equations. Focused on stochastic hybrid systems with time-delay, a fundamental theory regarding existence and uniqueness of solutions is established. Stabilization schemes for stochastic delay systems using state-dependent switching and stabilizing impulses are proposed, both emphasizing the situation where all the subsystems are unstable. Concerning general stochastic hybrid systems with time-delay, the Razumikhin technique and multiple Lyapunov functions are combined to obtain several Razumikhin-type theorems on both moment and almost sure stability of stochastic hybrid systems with time-delay. Consensus problems in networked multi-agent systems and global convergence of artificial neural networks are related to qualitative studies of hybrid systems in the sense that dynamic switching, impulsive effects, communication time-delays, and random disturbances are ubiquitous in networked systems. Consensus protocols are proposed for reaching consensus among networked agents despite switching network topologies, communication time-delays, and measurement noises. Focused on neural networks with discontinuous neuron activation functions and mixed time-delays, sufficient conditions for existence and uniqueness of equilibrium and global convergence and stability are derived using both linear matrix inequalities and M-matrix type conditions. Numerical examples and simulations are presented throughout this thesis to illustrate the theoretical results

    Stabilization of the transmission Schrodinger equation with boundary time-varying delay

    Get PDF
    We consider a system of transmission of the Schrodinger equation with Neumann feedback control that contains a time-varying delay term and that acts on the exterior boundary. Using a suitable energy function and a suitable Lyapunov functionnal, we prove under appropriate assumptions that the solutions decay exponentially. Keywords: Schrodinger equation, transmission problem, time-varying delay, exponential stability, boundary stabilization. š MSC: 35Q93, 93D15 REFERENCES [1] Allag, I., & Rebiai, S. (2014). Well-posedness, regularity and exact controllability for the problem of transmission of the Schrödinger equation. Quarterly of Applied Mathematics, 72(1), 93-108.‏. Search in Google Scholar   Digital Object Identifier MathSciNet [2] Bayili, G., Aissa, A. B., & Nicaise, S. (2020). Same decay rate of second order evolution equations with or without delay. Systems & Control Letters, 141, 104700.‏. Search in Google Scholar   Digital Object Identifier [3] Cavalcanti, M. M., CorrĂȘa, W. J., Lasiecka, I., & Lefler, C. (2016). Well-posedness and uniform stability for nonlinear Schrödinger equations with dynamic/Wentzell boundary conditions. Indiana University Mathematics Journal, 1445-1502.‏. Search in Google Scholar   Article view [4] Chen, H., Xie, Y., & Genqi, X. (2019). Rapid stabilisation of multi-dimensional Schrödinger equation with the internal delay control. International Journal of Control, 92(11), 2521-2531. Search in Google Scholar   Digital Object Identifier [5] Cardoso, F., & Vodev, G. (2010). Boundary stabilization of transmission problems. Journal of mathematical physics, 51(2).‏ Search in Google Scholar   Digital Object Identifier [6] Cui, H. Y., Han, Z. J., & Xu, G. Q. (2016). Stabilization for Schrödinger equation with a time delay in the boundary input. Applicable Analysis, 95(5), 963-977.‏. Search in Google Scholar   Digital Object Identifier [7] Cui, H., Xu, G., & Chen, Y. (2019). Stabilization for Schrödinger equation with a distributed time delay in the boundary input. IMA Journal of Mathematical Control and Information, 36(4), 1305-1324.‏. Search in Google Scholar   Digital Object Identifier [8] Datko, R. (1988). Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM Journal on Control and Optimization, 26(3), 697-713.‏. Search in Google Scholar   Digital Object Identifier [9] Datko, R., Lagnese, J., & Polis, M. (1986). An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM Journal on Control and Optimization, 24(1), 152-156.‏. Search in Google Scholar   Digital Object Identifier [10] Guo, B. Z., & Mei, Z. D. (2019). Output feedback stabilization for a class of first-order equation setting of collocated well-posed linear systems with time delay in observation. IEEE Transactions on Automatic Control, 65(6), 2612-2618.‏. Search in Google Scholar   Digital Object Identifier [11] Guo, B. Z., & Yang, K. Y. (2010). Output feedback stabilization of a one-dimensional Schrödinger equation by boundary observation with time delay. IEEE Transactions on Automatic Control, 55(5), 1226-1232.‏. Search in Google Scholar   Digital Object Identifier [12] Kato, T. (1985). Abstract differential equations and nonlinear mixed problems (p. 89). Pisa: Scuola normale superiore.‏ Search in Google Scholar [13] Kato, T. (2011). Linear and quasi-linear equations of evolution of hyperbolic type. In Hyperbolicity: Lectures given at the Centro Internazionale Matematico Estivo (CIME), held in Cortona (Arezzo), Italy, June 24–July 2, 1976 (pp. 125-191). Berlin, Heidelberg: Springer Berlin Heidelberg.. Search in Google Scholar   Digital Object Identifier [14] B. Kellogg (1972) Properties of solutions of elliptic boundary value problems, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations edited by A. K. Aziz, Academic Press, New York, 47-81. [15] Lasiecka, I., Triggiani, R., & Zhang, X. (2000). Nonconservative wave equations with unobserved Neumann BC: global uniqueness and observability in one shot. Contemporary Mathematics, 268, 227-326.‏. Search in Google Scholar   Article View [16] Machtyngier, E., & Zuazua, E. (1994). Stabilization of the Schrodinger equation. Portugaliae Mathematica, 51(2), 243-256.‏. Search in Google Scholar   Article view [17] Nicaise, S., & Rebiai, S. E. (2011). Stabilization of the Schrödinger equation with a delay term in boundary feedback or internal feedback. Portugaliae Mathematica, 68(1), 19-39.‏. Search in Google Scholar   Digital Object Identifier [18] Nicaise, S., & Pignotti, C. (2006). Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM Journal on Control and Optimization, 45(5), 1561-1585.‏.  Search in Google Scholar   Digital Object Identifier [19] Nicaise, S., Pignotti, C., & Valein, J. (2011). Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems-Series S, 4(3), 693-722. Search in Google Scholar   Article view [20] Rebiai, S. E., & Ali, F. S. (2016). Uniform exponential stability of the transmission wave equation with a delay term in the boundary feedback. IMA Journal of Mathematical Control and Information, 33(1), 1-20.‏. Search in Google Scholar   Digital Object Identifier [21] A.E. Taylor and D.C. Lay. (1980). Introduction to Functional Analysis. John Wiley and Sons, New York-Chichester-Brisbane Book View [22] Xu, G. Q., Yung, S. P., & Li, L. K. (2006). Stabilization of wave systems with input delay in the boundary control. ESAIM: Control, optimisation and calculus of variations, 12(4), 770-785. Search in Google Scholar   Digital Object Identifier [23] K.Y. Yang and C.Z. Yao (2013) Stabilization of one-dimensional Schrodinger equation with variable coefficient under delayed boundary output feedback. Asian J. Control, 15, 1531-1537.  Search in Google Scholar  Digital Object Identifier Communicated Editor: Pr. Baowei Feng Manuscript received Dec 26, 2023; revised Feb 23, 2024; accepted Mar 10, 2024; published May 19, 2024
    • 

    corecore