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Stability Analysis and Stabilization for Discrete-Time
Fuzzy Systems With Time-Varying Delay

Huijun Gao, Member, IEEE, Xiuming Liu, and James Lam, Senior Member, IEEE

Abstract—This paper is concerned with the problems of stability
analysis and stabilization for discrete-time Takagi–Sugeno fuzzy
systems with time-varying state delay. By constructing a new fuzzy
Lyapunov function and by making use of novel techniques, an
improved delay-dependent stability condition is obtained, which
is dependent on the lower and upper delay bounds. The merit of
the proposed stability condition lies in its reduced conservatism,
which is achieved by avoiding the utilization of some bounding
inequalities for the cross products between two vectors. Then, a
delay-dependent stabilization approach based on a parallel dis-
tributed compensation scheme is developed for both state feedback
and observer-based output feedback cases. The proposed stability
and stabilization conditions are formulated in terms of linear ma-
trix inequalities, which can be solved efficiently by using existing
optimization techniques. Two illustrative examples are provided
to demonstrate the effectiveness of the results proposed in this
paper.

Index Terms—Delay dependence, fuzzy systems, linear matrix
inequality (LMI), stabilization, time-delay systems.

I. INTRODUCTION

S INCE fuzzy sets were proposed by Zadeh [35], fuzzy logic
control has developed into a conspicuous and successful

branch of automation and control theory. In many model-based
fuzzy control approaches, the well-known Takagi–Sugeno
(T–S) fuzzy model [26] has attracted much attention. The
common practice based on T–S fuzzy model is as follows.
The T–S fuzzy model is employed to represent or approximate
a nonlinear system, which is described by a family of fuzzy
IF–THEN rules that represent local linear input–output rela-
tions of the system. The overall fuzzy model of the system
is achieved by smoothly blending these local linear models
together through membership functions. It has a convenient
dynamic structure so that some well-established linear system
theories can be easily applied for the theoretical analysis and
design of nonlinear systems. Therefore, the last decade has
witnessed a rapidly growing interest in T–S fuzzy systems, and
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many important results have been reported. To mention a few,
the problem of stability analysis is investigated in [5], [16], [22],
and [30], and stabilizing and H∞ control designs are reported
in [13], [15], [22], [23], [25], [28], [29], [32], and [36].

On the other hand, time delay exists commonly in many
practical systems such as chemical processes and networked
systems, which has been generally regarded as the main source
of instability and poor performance. Therefore, considerable
attention [3], [6], [7], [10], [24], [31] has been devoted to
the problems of analysis and synthesis for time-delay systems.
The existing results for stability analysis can be classified
into two types: delay-independent results [3], [11], [21] and
delay-dependent results [6], [7], [9], [20], [34]. The former is
irrespective of the delay size, whereas the latter usually con-
tains the delay information. Since time delay is not taken into
consideration, delay-independent results are generally regarded
as being more conservative than delay-dependent ones, partic-
ularly when the delay size is small. It is worth noting that most
of the aforementioned results are for linear systems. However,
there exist many complex nonlinear systems with time delay
in practical situations, and thus, it is natural to investigate
nonlinear systems with time delay via the corresponding T–S
fuzzy model [1].

In fact, based on recent progress in linear time-delay
systems, a number of important analysis and synthesis results
have been derived for T–S fuzzy systems with time delay [2],
[12], [14], [17], [33], [37]. To mention a few, Lien [12] and Liu
[17] studied continuous-time systems with time delay based on
a (nonfuzzy) Lyapunov function, and discrete-time T–S fuzzy
systems with time delay were investigated in [2], [33], and
[37]. It is worth pointing out that to derive delay-dependent
stability conditions, some model transformations were usually
performed to the original system, and thus, an inequality was
inevitably employed to bound the inner product between two
vectors, which gave rise to possible conservatism. Another
point worth mentioning is that most of the previous results [2],
[33], [37] for discrete-time fuzzy delay systems assume that
the time delay was constant. This assumption facilitates the
treatment of the considered problems but has inevitably limited
the applicability of the obtained results. The main reason is
apparent since, in most practical situations, the delay is time
varying. Furthermore, if the delay is constant, we can transform
the delayed system into a delay-free one by using state
augmentation techniques. In this way, stability of such systems
can be readily tested by employing classical results on stability
analysis. However, the state augmentation technique is usually
not applicable to the time-varying delay case. The reason is
that for time-varying delay systems, the transformed systems

1083-4419/$25.00 © 2008 IEEE
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usually have time-varying matrix coefficients, which are ap-
parently difficult to analyze using available tools. According
to the best of the authors’ knowledge, little progress has been
reported for the stability analysis of discrete-time fuzzy systems
with time-varying state delay, which motivates this paper.

In this paper, the problems of delay-dependent stability
analysis and stabilization for discrete-time T–S fuzzy sys-
tems with time-varying state delay are studied. First, a new
fuzzy Lyapunov function is constructed to derive a delay-
dependent stability condition for the open-loop fuzzy systems.
No model transformation is involved in the derivation of the
delay-dependent stability condition. The merit of the proposed
condition lies in its reduced conservatism, which is achieved
by circumventing the utilization of some bounding inequalities
for the cross product between two vectors. Then, based on
the parallel distributed compensation (PDC) scheme [8], the
delay-dependent stabilization conditions are worked out for the
closed-loop fuzzy systems. Both state feedback and observer-
based output feedback control cases are considered. The pro-
posed stability and stabilization conditions are represented in
terms of linear matrix inequalities (LMIs), which can be solved
efficiently by using existing optimization techniques.

This paper is organized as follows. Section II provides pre-
liminaries and the formulation of discrete-time T–S fuzzy
systems with time-varying state delay. Delay-dependent stab-
ility analysis is presented in Section III. In Section IV, delay-
dependent stabilization conditions are provided for both state
feedback and observed-based output feedback control cases.
Simulation results are given in Section V to illustrate the
effectiveness of the proposed method. Finally, conclusion is
drawn in Section VI.

Notation: The notation used throughout this paper is fairly
standard. The superscript “T” stands for matrix transposition;
R

n denotes the n-dimensional Euclidean space; the notation
P > 0(≥ 0) means that P is real symmetric and positive def-
inite (semidefinite); and R

m×n is the set of all real matrices
of dimension m × n. In symmetric block matrices or complex
matrix expressions, we use an asterisk (∗) to represent a term
that is induced by symmetry, and for a matrix A, sym(A)
denotes A + AT, and diag{. . .} stands for a block-diagonal
matrix. Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations.

II. PROBLEM FORMULATION

Many nonlinear systems can be expressed as a set of linear
systems in local operating regions. Consider a discrete non-
linear system with time-varying delay in the state, which is
represented by the following T–S fuzzy model.

Plant Rule i:
IF θ1(k) is Mi1 and, . . ., and θs(k) is Mis

THEN

x(k + 1) = Aix(k) + Adix (k − d(k)) + Biu(k)

y(k) = Cix(k) + Cdix (k − d(k))

x(k) = ϕ(k), k = −dM ,−dM + 1, . . . , 0. (1)

Here, i ∈ � = {1, 2, . . . , r}, where r is the number of
IF–THEN rules; Mij is the fuzzy set; x(k) ∈ R

n is the
state vector; u(k) ∈ R

m is the input vector; y(k) ∈ R
q is the

measurement output vector; x(k) = ϕ(k), k = −dM ,−dM +
1, . . . , 0, is a given initial condition sequence; θ(k) =
[θ1(k), θ2(k), . . . , θs(k)] are the premise variables; Ai, Adi,
Bi, Ci, and Cdi are the constant matrices with appropriate
dimensions; and d(k) is a time-varying delay in the state. A
natural assumption on d(k) can be made as follows.

Assumption 1: The time delay d(k) is assumed to be time
varying and satisfy 0 < dm ≤ d(k) ≤ dM , where dm and dM

are the constant positive scalars representing the lower and
upper delay bounds, respectively.

Remark 1: The assumption on the time delay d(k) in
Assumption 1 characterizes the real situation in many practical
applications. A typical example containing time delays can be
found in networked control systems, where the delays induced
by the network transmission are actually time varying, and can
be assumed to have lower and upper delay bounds without loss
of generality. It is worth noting that by assuming dm =dM =d,
the time-varying delay d(k) reduces to a constant delay d,
which has been widely studied in the literature [2], [33], [37].
However, to the best of the authors’ knowledge, few papers
consider the time-varying delay case for discrete-time fuzzy
systems.

It is assumed that the premise variables do not depend on
the input variable u(k), which is needed to avoid a compli-
cated defuzzification process of fuzzy controllers [27]. Given
a pair of (x(k), u(k))), the outputs of the fuzzy system are
inferred as

x(k+1)=
r∑

i=1

hi(θ(k)){Aix(k)+Adix(k−d(k)) + Biu(k)}

y(k) =
r∑

i=1

hi (θ(k)) {Cix(k) + Cdix (k − d(k))}

where the fuzzy basis functions are given by

hi (θ(k)) =
μi (θ(k))∑r
i=1 μi (θ(k))

(2)

with μi(θ(k)) =
∏s

j=1 Mij(θj(k)), where Mij(θj(k)) is the
grade of membership of θj(k) in Mij . In this paper, it is
assumed that

μi (θ(k)) ≥ 0, i ∈ �, and
r∑

i=1

μi (θ(k)) > 0

for all k’s. Therefore, hi(θ(k)) ≥ 0, i ∈ �, and∑r
i=1 hi(θ(k)) = 1. Then, the discrete-time T–S fuzzy model

with time-varying delay in the state is given by

x(k + 1) = A(k)x(k) + Ad(k)x (k − d(k)) + B(k)u(k)

y(k) = C(k)x(k) + Cd(k)x (k − d(k)) (3)
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where

A(k) =
r∑

i=1

hi (θ(k)) Ai Ad(k) =
r∑

i=1

hi (θ(k)) Adi

B(k) =
r∑

i=1

hi (θ(k)) Bi C(k) =
r∑

i=1

hi (θ(k)) Ci

Cd(k) =
r∑

i=1

hi (θ(k)) Cdi.

III. DELAY-DEPENDENT STABILITY ANALYSIS

In this section, we will analyze the delay-dependent stabil-
ity for fuzzy time-delay system. Without loss of generality,
let u(k) = 0 in the fuzzy time-delay system (3), which is
given by

x(k + 1) = A(k)x(k) + Ad(k)x (k − d(k)) . (4)

Since the delay d(k) is time varying, it is not possible to
transform system (4) into a delay-free system by augmenting
the state variables. The reason is that for time-varying delay
systems, the transformed systems usually have time-varying
matrix coefficients, which are apparently difficult to analyze
using available tools. Furthermore, in the existing literature
[2], [33], to bring the information of the delay size into
the final result (to achieve delay dependence), some model
transformations were performed to the original system in (4),
and thus, inequalities were inevitably employed to bound the
inner product between two vectors, which gave rise to pos-
sible conservatism. Here, our purpose is to first obtain an
improved delay-dependent stability condition for system (4)
with time-varying delay. For the convenience of notations, we
use the fuzzy basis function in (2) to denote the following
functions:

P (k) =
r∑

i=1

hi (θ(k)) Pi

Q(k) =
r∑

i=1

hi (θ(k)) Qi

Z(k) =
r∑

i=1

hi (θ(k)) Zi (5)

then we have the following theorem.
Theorem 1: The fuzzy time-delay system in (4) is asymptot-

ically stable for time-varying delay d(k) satisfying 0 < dm ≤
d(k) ≤ dM , if there exist matrices Pi > 0, Qi > 0, Zi > 0, and
S1i, S2i, such that the following LMIs hold:

Πstlii < 0, i, j, s, t, l ∈ � (6)

Πstlij + Πstlji < 0, 1 ≤ i < j ≤ r (7)

where

Πstlij =

⎡
⎣ Ψis + sym(Ξ2i)

√
dMSi Φ1,ijt

∗ −Zl 0
∗ ∗ Φ2,jt

⎤
⎦ (8)

Ψis =
[
−Pi + τQi 0

0 −Qs

]

Ξ2i = [Si − Si]

Si =
[
S1i

S2i

]

Φ1,ijt =
[

AT
i Pt

√
dM

(
AT

i − I
)
Zj

AT
diPt

√
dMAT

diZj

]

Φ2,jt =
[
−Pt 0
0 −Zj

]

τ = dM − dm + 1. (9)

Proof: Denote η(k) = x(k + 1) − x(k). Then, for the
fuzzy time-varying delay system in (4), we have

η(k) =
[
A(k) − I

]
x(k) + Ad(k)x (k − d(k)) (10)

x(k) − x (k − d(k)) =
k−1∑

l=k−d(k)

η(l). (11)

To prove the theorem, we choose the following fuzzy
Lyapunov function:

V (k) = V1(k) + V2(k) + V3(k) + V4(k) (12)

where

V1(k) = xT(k)P (k)x(k)

V2(k) =
k−1∑

l=k−d(k)

xT(l)Q(l)x(l)

V3(k) =
−dm+1∑

j=−dM+2

k−1∑
l=k+j−1

xT(l)Q(l)x(l)

V4(k) =
−1∑

i=−dM

k−1∑
l=k+i

ηT(l)Z(l)η(l)

and P (k), Q(l), and Z(l) are defined in (5) with Pi, Ql, and
Zl being the positive definite matrices to be determined. Define



GAO et al.: STABILITY ANALYSIS AND STABILIZATION FOR DISCRETE-TIME FUZZY SYSTEMS 309

ΔV (k) = V (k + 1) − V (k). Along the solution of system (4),
we have

ΔV1(k) = xT(k + 1)P (k + 1)x(k + 1) − xT(k)P (k)x(k)

ΔV2(k) =
k∑

l=k−d(k+1)+1

xT(l)Q(l)x(l) −
k−1∑

l=k−d(k)

xT(l)Q(l)x(l)

=xT(k)Q(k)x(k) − xT (k − d(k))

× Q (k − d(k)) x (k − d(k))

+
k−1∑

l=k−d(k+1)+1

xT(l)Q(l)x(l)

−
k−1∑

l=k−d(k)+1

xT(l)Q(l)x(l) ≤ xT(k)Q(k)x(k)

− xT (k − d(k)) × Q (k − d(k)) x (k − d(k))

+
k−dm∑

l=k−dM+1

xT(l)Q(l)x(l)

ΔV3(k) =
−dm+1∑

j=−dM+2

{
xT(k)Q(k)x(k) − xT(k + j − 1)

× Q(k + j − 1)x(k + j − 1)
}

= (dM − dm)xT(k)Q(k)x(k)

−
k−dm∑

l=k−dM+1

xT(l)Q(l)x(l)

ΔV4(k) =
−1∑

i=−dM

{
ηT(k)Z(k)η(k)−ηT(k+i)Z(k+i)η(k+i)

}

= dMηT(k)Z(k)η(k) −
k−1∑

l=k−dM

ηT(l)Z(l)η(l)

≤ dMηT(k)Z(k)η(k) −
k−1∑

l=k−d(k)

ηT(l)Z(l)η(l).

(13)

Based on (11), for any matrices

S(k) =
[
S1(k)
S2(k)

]

where

S1(k) =
r∑

i=1

hi (θ(k)) S1i S2(k) =
r∑

i=1

hi (θ(k)) S2i

(14)

we have

Π(k) = 2
1

d(k)

k−1∑
l=k−d(k)

[xT(k) xT (k − d(k))]

×S(k) [x(k) − d(k)η(l) − x (k − d(k))] = 0. (15)

Define ξ(k, l) = [xT(k) xT(k − d(k)) ηT(l)]T, and then,
from (12)–(15), we have

ΔV (k) ≤
[
A(k)x(k) + Ad(k)x (k − d(k))

]T
P (k + 1)

×
[
A(k)x(k) + Ad(k)x (k − d(k))

]
+ (dM − dm + 1) xT(k)Q(k)x(k)

− xT (k − d(k)) Q (k − d(k)) x (k − d(k))

+ dM

{[
A(k) − I

]
x(k) + Ad(k)x (k − d(k))

}T

× Z(k)
{[

A(k) − I
]
x(k) + Ad(k)x (k − d(k))

}
− xT(k)P (k)x(k)−

k−1∑
l=k−d(k)

ηT(l)Z(l)η(l)+Π(k)

=
1

d(k)

k−1∑
l=k−d(k)

ξT(k, l)

×
{

r∑
s=1

r∑
t=1

r∑
l=1

hs (θ (k − d(k)))

× ht (θ(k + 1))hl (θ(k))

×
[

r∑
i=1

hi (θ(k)) Φstlii +
r−1∑
i=1

r∑
j=i+1

hi (θ(k))

× hj (θ(k)) (Φstlij + Φstlji)

]}
ξ (k, l)

(16)

where the expressions Φstlij and Ξ1,ijt are shown at the bottom
of the page, and Ξ2i, Ψis, and Si are defined in (9). On the other
hand, noticing 0 < dm ≤ d(k) ≤ dM , by Schur complement,
from (6) and (7), it is not difficult to get

Φstlii < 0, i, j, s, t, l ∈ �
Φstlij + Φstlji < 0, 1 ≤ i < j ≤ r.

Φstlij =
[

Ξ1,ijt + sym(Ξ2i) + Ψis −
√

d(k)Si

∗ −Zl

]

Ξ1,ijt =
[

AT
i PtAi + dM

(
AT

i − I
)
Zj (Ai − I) AT

i PtAdi + dM

(
AT

i − I
)
ZjAdi

∗ AT
diPtAdi + dMAT

diZjAdi

]
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Then, for any i, j ∈ �, there exists a positive scalar δ
such that

r∑
i=1

hi (θ(k)) Φstlii +
r−1∑
i=1

r∑
j=i+1

hi (θ(k))

×hj (θ(k)) (Φstlij + Φstlji) + diag{δI, 0} < 0.

Therefore, we have ΔV (k) ≤ −δ‖x(k)‖2 for all nonzero
x(k)’s, and the asymptotic stability is established. �

Remark 2: In the derivation of Theorem 1, the slack vari-
ables S1i and S2i are introduced, the purpose of which is to
reduce conservatism in the existing delay-dependent stability
condition. From the proof of Theorem 1, we can see that
no model transformation has been performed to the original
system, and thus, no bounding technique has been employed
to seek upper bounds of the inner product between vectors.
Moreover, the inequalities in (6) and (7) are a set of LMIs,
which can be readily solved using standard numerical software.

In Theorem 1, we have developed a delay-dependent stability
condition for fuzzy systems with time-varying state delay. It
is worth noting that most of the previous results for discrete
time-delay systems assume the time delay to be constant. For
the constant delay case, the lower and upper delay bounds
in Assumption 1 become identical, i.e., dm = dM = d. Corre-
spondingly, the time-varying delay system in (4) reduces to

x(k + 1) = A(k)x(k) + Ad(k)x(k − d). (17)

With dm = dM = d in (6) and (7), we obtain a delay-
dependent stability condition for the aforementioned constant
fuzzy delay system in the following corollary.

Corollary 1: Consider the fuzzy time-delay system in (17).
If there exist matrices Pi > 0, Qi > 0, Zi > 0, and S1i, S2i,
i ∈ �, such that (6) and (7) hold, where Πstlij is shown at
the bottom of the page, with Π1i = −Pi + Qi + sym(S1i),
then the fuzzy time-delay system in (17) is asymptotically
stable.

Note that the number of LMIs in Theorem 1 will increase
with the number of fuzzy rules, which may increase the compu-
tational complexity. However, by a certain choice of matrices,
we can get a tradeoff between conservativeness and computa-
tional complexity. If we take Pi = P , Qi = Q, and Zi = Z, in
(6) and (7), the fuzzy Lyapunov function becomes a nonfuzzy
one, and the following corollary can be obtained.

Corollary 2: The fuzzy time-delay system in (4) is asymptot-
ically stable for time-varying delay d(k) satisfying 0 < dm ≤

d(k) ≤ dM , if there exist matrices P > 0, Q > 0, and Z > 0,
and matrices S1 and S2 satisfying the following LMI:⎡
⎢⎢⎢⎢⎣

Π1 −S1+ST
2

√
dMS1 AT

i P
√

dM

(
AT

i − I
)
Z

∗ −Q − sym(S2)
√

dMS2 AT
diP

√
dMAT

diZ
∗ ∗ −Z 0 0
∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ −Z

⎤
⎥⎥⎥⎥⎦<0

where Π1 = −P + Q + sym(S1), τ = dM − dm + 1.

IV. CONTROLLER SYNTHESIS

In this section, Theorem 1 will be extended to design sta-
bilizing state feedback and observer-based output feedback
controllers for the fuzzy system in (3) with time-varying delay.

A. State Feedback

The purpose of this section is to design a controller, based
on the PDC technique, such that the resultant closed-loop
fuzzy time-varying delay system in (3) is asymptotically stable.
Assume that the state is available for feedback control. The state
feedback fuzzy controller is represented by the following rules.

Controller Rule i:
IF θ1(k) is Mi1 and, . . ., and θs(k) is Mis

THEN

u(k) = Kix(k), i ∈ � (18)

where Ki ∈ R
m×n, i ∈ �, is the local control gain. Thus,

the controller in (18) can be represented by the following
input–output form:

u(k) =
r∑

i=1

hi (θ(k)) Kix(k) = K(k)x(k). (19)

By connecting (19) to system (3), we have the closed-loop
fuzzy system

x(k + 1) =
[
A(k) + B(k)K(k)

]
x(k) + Ad(k)x (k − d(k)) .

(20)

The design of the state feedback fuzzy control is to determine
the feedback gains Ki such that the closed-loop fuzzy system
in (20) is asymptotically stable. The following theorem presents
an LMI-based delay-dependent condition for the existence of a
stabilizing state feedback controller.

Theorem 2: Consider the fuzzy time-delay system in (3)
with time-varying delay d(k) satisfying 0 < dm ≤ d(k) ≤ dM .

Πstlij =

⎡
⎢⎢⎢⎢⎣

Π1i −S1i + ST
2i

√
dS1i AT

i Pt

√
d

(
AT

i − I
)
Zj

∗ −Qs − sym(S2i)
√

dS2i AT
diPt

√
dAT

diZj

∗ ∗ −Zl 0 0
∗ ∗ ∗ −Pt 0
∗ ∗ ∗ ∗ −Zj

⎤
⎥⎥⎥⎥⎦
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A stabilizing controller in the form of (19) exists, such that
the closed-loop fuzzy system in (20) is asymptotically stable,
if there exist matrices P̃i > 0, Q̃i > 0, Z̃i > 0, and S̃1i, S̃2i, G,
Ki, satisfying the following LMIs for some scalar ε > 0:

Γstlii < 0, i, j, s, t, l ∈ � (21)

Γstlij + Γstlji < 0, 1 ≤ i < j ≤ r (22)

where

Γstlij =

⎡
⎣ Ψ̃is + sym(Ξ̃2i) ε

√
dM S̃i Φ̃1,ij

∗ −Z̃l 0
∗ ∗ Φ̃2,jt

⎤
⎦

Ψ̃is =
[
−P̃i + τε−2Q̃i 0

0 −Q̃s

]
τ = dM − dm + 1

Φ̃1,ij =
[
GTAT

i +K
T
j BT

i

√
dMGT

(
AT

i −I
)
+
√

dMK
T
j BT

i

εGTAT
di ε

√
dMGTAT

di

]

Ξ̃2i = [S̃i − εS̃i] S̃i =
[
S̃1i

S̃2i

]

Φ̃2,jt =
[

P̃t − sym(G) 0
0 Z̃j − sym(εG)

]
. (23)

Furthermore, if the aforementioned conditions are satisfied,
the matrix gains Kj of the controller are given by

Kj = KjG
−1. (24)

Proof: Suppose that there exist matrices P̃i > 0, Q̃i > 0,
and Z̃i > 0, and matrices S̃1i, S̃2i, and G satisfying (21) and
(22). Since P̃t > 0, Z̃j > 0, we have

[P̃t − G]P̃−1
t [P̃t − G]T ≥ 0

[Z̃j − εG]Z̃−1
j [Z̃j − εG]T ≥ 0

which imply that

−GP̃−1
t GT ≤ P̃t − G − GT (25)

−ε2GZ̃−1
j GT ≤ Z̃j − εG − εGT. (26)

Define

F = εG (27)

where ε > 0 is a scalar; thus, (26) is equivalent to

−FZ̃−1
j FT ≤ Z̃j − F − FT. (28)

It is clear from (21) that P̃t − G − GT < 0. Since P̃t > 0,
we have G + GT > 0, which ensures that G−1 exists. Define
matrix Γ11 = diag{G−1, F−1} and Γ1 = diag{Γ11, F

−1, I}.
By pre- and postmultiplying (21) and (22) by ΓT

1 and Γ1,
respectively, and by considering (25) and (28), we obtain

ΓT
1 ΓstliiΓ1 < 0 (29)

ΓT
1 ΓstlijΓ1 + ΓT

1 ΓstljiΓ1 < 0, 1≤ i<j≤r. (30)

Since

ΓT
1 ΓstlijΓ1 =

⎡
⎣Ψis + sym(Ξ2i) ε

√
dMSi Φ1,ij

∗ −F−T Z̃lF
−1 0

∗ ∗ Φ2,jt

⎤
⎦

where

Ψis =
[
−G−T P̃iG

−1 + τF−T Q̃iF
−1 0

0 −F−T Q̃sF
−1

]

Ξ2i = [Si − Si] Si =
[

G−T S̃1iG
−1

G−T S̃2iF
−1

]

Φ1,ij =
[

AT
i + KT

j BT
i

√
dM

(
AT

i − I
)

+
√

dMKT
j BT

i

AT
di

√
dMAT

di

]

Φ2,jt =
[
−GP̃−1

t GT 0
0 −FZ̃−1

j FT

]
. (31)

By defining

Pi =G−T P̃iG
−1 Qi = F−T Q̃iF

−1 Zj = F−T Z̃jF
−1

S1i =G−T S̃1iG
−1 S2i = G−T S̃2iF

−1

we have

ΓT
1 ΓstlijΓ1 =

⎡
⎣ sym(Ξ2i) + Ψis

√
dMSi Φ1,ijt

∗ −Zl 0
∗ ∗ Φ̂2,jt

⎤
⎦ (32)

where

Φ̂2,jt =
[
−P−1

t 0
0 −Z−1

j

]

and Ξ2i, Ψis, and Si are defined in (9). Define matrix Θtj =
diag{I, Pt, Zj}; by pre- and postmultiplying (32) by ΘT

tj and
Θtj , we obtain

ΘT
tjΓ

T
1 ΓstlijΓ1Θtj =

⎡
⎣ sym(Ξ2i) + Ψis

√
dMSi Φ1,ijt

∗ −Zl 0
∗ ∗ Φ2,jt

⎤
⎦

where Φ2,jt is defined in (9). Therefore, by Schur complement,
we can obtain that (29) and (30) yield (6) and (7) with Ai

replaced by Ai + BiKj , which means that there exist matrices
Pi > 0, Qi > 0, Zi > 0, and S1i, S2i, i ∈ �, satisfying (6)
and (7), and thus, the controller gains defined in (24) render
the closed-loop fuzzy delay system in (20) asymptotically
stable. �

Remark 3: With the introduction of the new additional ma-
trices G and F , we obtain a sufficient condition in which the
Lyapunov matrices are not involved in any product with the
system matrices. It is noted that the introduced matrices G
and F are not even constrained to be symmetric. This feature
enables us to derive a less conservative condition due to the
extra degrees of freedom. This technique has been used in [4]
to handle the corresponding problem. We let F = εG with
ε being a positive scalar, which may be adjusted to reduce
the conservatism in the controller design. More specifically,
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in numerical implementation of Theorem 2, due to the non-
monotonic behavior of ε in the feasibility of the conditions in
Theorem 2, its value has to be tuned over an interval so that a
less conservative design can be obtained.

B. Observer-Based Control

A design approach of the state feedback controller is devel-
oped in the previous section. Its main drawback comes from
the requirement of accessing all the state variables. In some
practical applications, not all the state variables are available.
Therefore, it is necessary to design an output feedback con-
troller. In this section, we consider an observer-based output
feedback controller for the system in (3). As in the case of state
feedback controller design, the PDC concept is employed to
arrive at the following output feedback fuzzy observer.

Observer Rule i:
IF θ1(k) is Mi1 and, . . ., and θs(k) is Mis

THEN

x̂(k + 1) =Aix̂(k) + Adix̂ (k − d(k))

+ Biu(k) + Li (y(k) − ŷ(k))

ŷ(k) =Cix̂(k) + Cdix̂ (k − d(k)) , i ∈ � (33)

where Li ∈ R
n×q denotes the observer gains to be determined.

x̂(k) = φ(k), k = −dM ,−dM + 1, . . . , 0, is the initial con-
dition sequence of the observer. As in the case of the state
feedback controller design, the following PDC fuzzy controller
is proposed to stabilize system (3), i.e.,

u(k) =
r∑

i=1

hi (θ(k)) Kix̂(k) = K(k)x̂(k) (34)

where Ki ∈ R
m×n denotes the controller gains to be deter-

mined. Let us denote the estimation error as e(k) = x(k) −
x̂(k). From (3), (33), and (34), the augmented closed-loop
fuzzy system can be written as the following form:

ξ(k + 1) =
r∑

i=1

hi (θ(k))
r∑

j=1

hj (θ(k))

× [Aaijξ(k) + Adaijξ (k − d(k))]

ξ(k) =ϕa(k), k=−dM ,−dM + 1, . . . , 0 (35)

where

ξ(k) =
[
x(k)
e(k)

]
ϕa(k) =

[
ϕ(k)

φ(k) − ϕ(k)

]

Aaij =
[

Ai + BiKj −BiKj

0 Ai − LiCj

]

Adaij =
[

Adi 0
0 Adi − LiCdj

]

with its compact form given by

ξ(k + 1) = Aa(k)ξ(k) + Ada(k)ξ (k − d(k))

where

Aa(k) =
[

A(k) + B(k)K(k) −B(k)K(k)
0 A(k) − L(k)C(k)

]

Ada(k) =
[

Ad(k) 0
0 Ad(k) − L(k)Cd(k)

]

L(k) =
r∑

i=1

hi (θ(k)) Li.

By applying Theorem 2 to system (35), we can obtain the
following result, which presents an LMI-based delay-dependent
condition for the existence of a stabilizing fuzzy observer-based
output feedback controller.

Theorem 3: Consider the fuzzy system in (3) with the time-
varying delay d(k) satisfying 0 < dm ≤ d(k) ≤ dM . If, for
some scalar ε > 0, there exist n × n matrices P̃1i > 0, P̌2i,
P̌3i > 0, Z̃1i > 0, Ž2i, Ž3i > 0, Q̃1i > 0, Q̌2i, Q̌3i > 0 and
S̃11i, Š12i, Š13i, Š14i, S̃21i, Š22i, Š23i, Š24i, G1, G2, Ki, Li,
i ∈ �, satisfying the LMIs of (21) and (22), where Γstlij is
replaced by (36) and (37) shown at the bottom of the next page,
then there exists a fuzzy controller of the form in (33) and (34)
such that the closed-loop fuzzy system in (35) is asymptotically
stable. Furthermore, the observer gain matrices are given by

Kj = KjG
−1
1 Li = G−T

2 Li, i, j ∈ �.

Proof: By Theorem 2, the system in (35) is asymptotically
stable, if there exist 2n × 2n matrices P̃i > 0, Q̃i > 0, Z̃i > 0,
and G, S̃1i, S̃2i satisfying (21) and (22) with Ai + BiKj and
Adi replaced by Aaij and Adaij , respectively. Let P̃i, Z̃i, Q̃i,
S̃1i, and S̃2i be respectively partitioned as

P̃i =
[

P̃1i P̃2i

∗ P̃3i

]
S̃1i =

[
S̃11i S̃12i

S̃13i S̃14i

]

Q̃i =
[

Q̃1i Q̃2i

∗ Q̃3i

]
S̃2i =

[
S̃21i S̃22i

S̃23i S̃24i

]

Z̃i =
[

Z̃1i Z̃2i

∗ Z̃3i

]

where P̃1i, P̃3i, Q̃1i, Q̃3i, Z̃1i, and Z̃3i are n × n real symmet-
ric and positive definite, and P̃2i, Q̃2i, Z̃2i, S̃11i, S̃12i, S̃13i,
S̃14i, S̃21i, S̃22i, S̃23i, S̃24i ∈ R

n×n.
By considering the inequalities in (21) and (22), it is clear

from Φ̌2,jt defined in (37) that

P̃1t − G1 − GT
1 < 0 P̌3t − G2 − GT

2 < 0.

Since P̃1t > 0 and P̌3t > 0, we have G1 + GT
1 > 0 and G2 +

GT
2 > 0, which imply that G−1

1 and G−1
2 exist. In order
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to obtain an LMI-based stabilization condition, let G be
constructed as

G =
[

G1 G−1
2

0 G−1
2

]
.

Following the earlier notation, we let

[
P̃n(k) Q̃n(k) Z̃n(k)
S̃1m(k) S̃2m(k) 0

]

=
r∑

i=1

hi (θ(k))
[

P̃ni Q̃ni Z̃ni

S̃1mi S̃2mi 0

]
,

n = 1, 2, 3, m = 1, 2, 3, 4.

Define AGK = AiG1 + BiKjG1, AL = Ai − LiCj , and
AdL = Adi − LiCdj . Then, from Γstlij in (23) with
Ai + BiKj and Adi replaced by Aaij and Adaij , respectively,
we have

⎡
⎣ Ψ̂is + sym(Ξ̂2i) ε

√
dM Ŝi Φ̂1,ij

∗ −Z̃l 0
∗ ∗ Φ̂2,it

⎤
⎦ < 0 (38)

where the expressions Ψ̂is, Ξ̂2i, Φ̂1,ij , and Φ̂2,jt are shown at
the bottom of the next page.

Define matrix Γ2 = diag{I,G2, I, G2, I, G2, I, G2, I, G2}.
By pre- and postmultiplying (38) by ΓT

2 and Γ2, respectively,

by letting

P̌2i = P̃2iG2 P̌3i = GT
2 P̃3iG2 Q̌2i = Q̃2iG2

Ž2j = Z̃2jG2 Ž3j = GT
2 Z̃3jG2 Q̌3i = GT

2 Q̃3iG2

Šl2i = S̃l2iG2 Šl3i = GT
2 S̃l3i Šl4i = GT

2 S̃l4iG2, l = 1, 2

and by defining

Kj = KjG1 Li = GT
2 Li, i, j ∈ �

we obtain (36). The proof is completed. �

V. ILLUSTRATIVE EXAMPLES

In this section, two examples are provided to illustrate the
effectiveness and the advantages of the methods developed
previously. We first use a numerical example to show the
advantages of the proposed stability condition in this paper.
The second example is utilized to illustrate the effectiveness of
the proposed stabilization methods.

Example 1: Consider a discrete-time fuzzy delay system in
(3) with the following matrices:

A1 =
[
−0.291 1

0 0.95

]
A2 =

[
−0.1 0

1 −0.2

]

Ad1 =
[

0.012 0.014
0 0.015

]
Ad2 =

[
0.01 0
0.01 0.015

]
.

Γstlij =

⎡
⎣ Ψ̌is + sym

(
Ξ̌2i

)
ε
√

dM Ši Φ̌1,ij

∗ −Žl 0
∗ ∗ Φ̌2,it

⎤
⎦ (36)

Ψ̌is =

⎡
⎢⎣
−P̃1i + τε−2Q̃1i −P̌2i + τε−2Q̌2i 0 0

∗ −P̌3i + τε−2Q̌3i 0 0
∗ ∗ −Q̃1s −Q̌2s

∗ ∗ ∗ −Q̌3s

⎤
⎥⎦

τ = dM − dm + 1 Ξ̌2i = [ Ši −εŠi ]

Ši =

⎡
⎢⎣

S̃11i Š12i

Š13i Š14i

S̃21i Š22i

Š23i Š24i

⎤
⎥⎦ Žl =

[
Z̃1l Ž2l

∗ Ž3l

]

Φ̌1,ij =

⎡
⎢⎢⎢⎢⎣

GT
1 AT

i + K
T
j BT

i 0
√

dM

(
GT

1 AT
i + K

T
j BT

i − GT
1

)
0

AT
i AT

i G2 − CT
j L

T
i

√
dM

(
AT

i − I
) √

dM

(
AT

i G2 − CT
j L

T
i − G2

)
εGT

1 AT
di 0 ε

√
dMGT

1 AT
di 0

εAT
di εAT

diG2 − εCT
djL

T
i ε

√
dMAT

di ε
√

dMAT
diG2 − CT

djL
T
i

⎤
⎥⎥⎥⎥⎦

Φ̌2,jt =

⎡
⎢⎣

P̃1t − sym(G1) P̌2t − I 0 0
∗ P̌3t − sym(G2) 0 0
∗ ∗ Z̃1j − sym(εG1) Ž2j − εI
∗ ∗ ∗ Ž3j − sym(εG2)

⎤
⎥⎦ (37)
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TABLE I
dM FOR DIFFERENT VALUES OF dm

In this example, d(k) presents a time-varying state delay, and
Table I shows the upper delay bounds in terms of the feasibility
of (6) and (7) for the different values of lower delay bounds.

More specifically, let dm = 3; by implementing Theorem 1
numerically, it is found that the upper delay bound dM = 14
such that the aforementioned system is asymptotically stable
for all 0 < dm ≤ d(K) ≤ dM

P1 =
[

0.0059 −0.0046
−0.0046 0.0145

]

P2 =
[

0.0252 −0.0126
−0.0126 0.0123

]

Q1 = 10−4 ·
[

0.5115 −0.1732
−0.1732 0.3954

]

Q2 = 10−4 ·
[

0.7925 −0.4955
−0.4955 0.7665

]

Z1 = 10−3 ·
[

0.0099 0.0184
0.0184 0.9745

]

Z2 = 10−4 ·
[

0.0112 0.0403
0.0403 0.4738

]
.

Example 2: Consider the following Hénon system:

x1(k + 1) = − {cx1(k) + (1 − c)x1 (k − d(k))}2

+ 0.3x2(k) + 1.4 + u(k)

x2(k + 1) = cx1(k) + (1 − c)x1 (k − d(k))

y(k) = cx1(k) + (1 − c)x1 (k − d(k)) (39)

where the constant c ∈ [0, 1] is the retarded coefficient.

Let θ(k) = cx1(k) + (1 − c)x1(k − d(k)). Assume that
θ (k) ∈ [−m, m], m > 0. By using the same procedure
as in [29], the nonlinear term θ2(k) can be exactly repre-
sented as

θ2(k) = h1 (θ(k)) (−m)θ(k) + h2 (θ(k)) mθ(k)

where h1(θ(k)), h2(θ(k) ∈ [0, 1], and h1(θ(k))+h2(θ(k))=1.
By solving the equations, the membership functions h1(θ(k))
and h2(θ(k)) are obtained as

h1 (θ(k)) =
1
2

(
1 − θ(k)

m

)
h2 (θ(k)) =

1
2

(
1 +

θ(k)
m

)
.

It can be seen from the aforementioned expressions that
h1(θ(k)) = 1 and h2(θ(k)) = 0 when θ(k) is −m and that
h1(θ(k)) = 0 and h2(θ(k)) = 1 when θ(k) is m. Then, the
nonlinear system in (39) can be approximately represented by
the following T–S fuzzy model:

Plant Rule 1:
IF θ(k) is −m, THEN

x(k + 1) = A1x(k) + Ad1x (k − d(k)) + B1u
∗(k)

y(k) = C1x(k) + Cd1x (k − d(k)) .

Plant Rule 2:
IF θ(k) is m, THEN

x(k + 1) = A2x(k) + Ad2x (k − d(k)) + B2u
∗(k)

y(k) = C2x(k) + Cd2x (k − d(k))

Ψ̂is =

⎡
⎢⎣
−P̃1i + τε−2Q̃1i −P̃2i + τε−2Q̃2i 0 0

∗ −P̃3i + τε−2Q̃3i 0 0
0 0 −Q̃1s −Q̃2s

0 0 ∗ −Q̃3s

⎤
⎥⎦

Ξ̂2i = [S̃i − εS̃i] S̃i =

⎡
⎢⎣

S̃11i S̃12i

S̃13i S̃14i

S̃21i S̃22i

S̃23i S̃24i

⎤
⎥⎦ Z̃l =

[
Z̃1l Z̃2l

∗ Z̃3l

]

Φ̂1,ij =

⎡
⎢⎢⎣

AT
GK 0

√
dM

(
AT

GK − GT
1

)
0

G−T
2 AT

i G−T
2 AT

L

√
dMG−T

2

(
AT

i − I
) √

dMG−T
2

(
AT

L − I
)

εGT
1 AT

di 0 ε
√

dMGT
1 AT

di 0
εG−T

2 AT
di εG−T

2 AT
dL ε

√
dMG−T

2 AT
di ε

√
dMG−T

2 AT
dL

⎤
⎥⎥⎦

Φ̂2,jt =

⎡
⎢⎢⎣

P̃1t − sym(G1) P̃2t − G−1
2 0 0

∗ P̃3t − sym
(
G−1

2

)
0 0

∗ ∗ Z̃1j − sym(εG1) Z̃2j − εG−1
2

∗ ∗ ∗ Z̃3j − sym
(
εG−1

2

)
⎤
⎥⎥⎦
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Fig. 1. Time-varying delays: State-feedback case.

where u∗(k) = 1.4 + u(k) and

A1 =
[

cm 0.3
c 0

]
A2 =

[
−cm 0.3

c 0

]

Ad1 =
[

(1 − c)m 0
1 − c 0

]
Ad2 =

[
−(1 − c)m 0

1 − c 0

]

B1 = B2 =
[

1
0

]

C1 = C2 = [c 0] Cd1 = Cd2 = [1 − c 0].

In the example, xT(k) = [xT
1 (k) xT

2 (k)]T, c = 0.8, m = 2,
and d(k) represents a time-varying state delay. For simula-
tion purposes, the initial condition is assumed to be ϕ(k) =
[ek/dM 0] for all k = −dM ,−dM + 1, . . . , 0. Here, our pur-
pose is to design state feedback controller and observer-based
output feedback controller in the form of (18), (33), and (34)
such that the resulting closed-loop system is asymptotically
stable.

A. State Feedback Case

Assume that the state is available. With the choice of ε = 10,
it is found that the aforementioned system is asymptotically
stable for all dM ≤ 4. When dM = 4, Theorem 2 yields the
fuzzy controller gains

K1 = [−1.4649 − 0.2902] K2 = [1.7958 − 0.3010].

In addition, let the delay d(k) change randomly between dm =
1 and dM = 4 (see Fig. 1). To illustrate the behavior of the
control action, Fig. 2 shows the behavior of the open-loop state
response with time delays dm = 1 and dM = 4, from which
we observe that the open-loop system is not guaranteed to be
asymptotically stable. In addition, the state response of the
closed-loop system is shown in Fig. 3, where the control input

Fig. 2. State response of open-loop system.

Fig. 3. State response: State-feedback case.

is added at k ≥ 30. It is shown in Fig. 3 that the closed-loop
system is asymptotically stable under the aforementioned state
feedback controller.

B. Observer-Based Output Feedback Case

Assume that only x1(k) is measurable. By choosing ε = 50,
it can be found that the LMIs of Theorem 3 have a solution for
all dM ≤ 5. When dM = 5, Theorem 3 yields the observer and
controller gains

L1 =
[
1.9930
0.9999

]
L2 =

[
−2.0071
0.9999

]

K1 = [−1.5622 − 0.2966] K2 = [1.6822 − 0.3015].

The simulation results are based on the same initial condi-
tion as aforementioned. In addition, let the delay d(k) change
randomly between dm = 1 and dM = 5, which is shown in
Fig. 4. By applying the fuzzy controller (33) and (34) with
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Fig. 4. Time-varying delays: Observer-based output-feedback case.

Fig. 5. State responses of x1 and x̂1.

Fig. 6. State responses of x2 and x̂2.

the aforementioned matrices to the system in (39), the control
results are shown in Figs. 5 and 6, where the control input is
added at k ≥ 30. In the two figures, the solid lines present the
state response, and the dotted lines denote the corresponding
state of fuzzy observer. The simulation results indicate that
the designed observer-based output feedback controller can
stabilize the Hénon system with time-varying state delay.

VI. CONCLUSION

The stability analysis and stabilization for discrete-time T–S
fuzzy systems with time-varying state delay have been inves-
tigated in this paper. First, by defining a new fuzzy Lyapunov
functions and by making use of novel techniques, an improved
delay-dependent stability condition has been established in
terms of LMIs, which is dependent on the lower and upper
delay bounds. The merit of the proposed condition lies in its
reduced conservatism, which is achieved by circumventing the
utilization of some bounding inequalities for cross products
between two vectors. Then, a delay-dependent stabilization
approach based on a PDC scheme has been provided for closed-
loop fuzzy systems. Both the state feedback and observer-
based output feedback control cases have been considered.
Finally, two illustrative examples are provided to demonstrate
the effectiveness of the approaches proposed in this paper. The
main results in this paper may be further extended to fuzzy
systems with Lipschitz-like nonlinearities [18], [19].
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