130,883 research outputs found

    Robust Predictive Extended State Observer for a Class of Nonlinear Systems with Time-Varying Input Delay

    Full text link
    [EN] This paper deals with asymptotic stabilisation of a class of nonlinear input-delayed systems via dynamic output feedback in the presence of disturbances. The proposed strategy has the structure of an observer-based control law, in which the observer estimates and predicts both the plant state and the external disturbance. A nominal delay value is assumed to be known and stability conditions in terms of linear matrix inequalities are derived for fast-varying delay uncertainties. Asymptotic stability is achieved if the disturbance or the time delay is constant. The controller design problem is also addressed and a numerical example with an unstable system is provided to illustrate the usefulness of the proposed strategy.This work was partially supported by: Ministerio de Economía y Competitividad, Spain (TIN2017-86520-C3-1-R); Universitat Politècnica de València (FPI-UPV 2014 PhD Grant); and Israel Science Foundation (Grant No. 1128/14).Sanz Diaz, R.; García Gil, PJ.; Fridman, E.; Albertos Pérez, P. (2020). Robust Predictive Extended State Observer for a Class of Nonlinear Systems with Time-Varying Input Delay. International Journal of Control. 93(2):217-225. https://doi.org/10.1080/00207179.2018.1562204S217225932Ahmed-Ali, T., Cherrier, E., & Lamnabhi-Lagarrigue, F. (2012). Cascade High Gain Predictors for a Class of Nonlinear Systems. IEEE Transactions on Automatic Control, 57(1), 221-226. doi:10.1109/tac.2011.2161795Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013Bekiaris-Liberis, N., & Krstic, M. (2011). Compensation of Time-Varying Input and State Delays for Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control, 134(1). doi:10.1115/1.4005278Besançon, G., Georges, D. & Benayache, Z. (2007). Asymptotic state prediction for continuous-time systems with delayed input and application to control. 2007 European control conference (ECC) (pp. 1786–1791).Engelborghs, K., Dambrine, M., & Roose, D. (2001). Limitations of a class of stabilization methods for delay systems. IEEE Transactions on Automatic Control, 46(2), 336-339. doi:10.1109/9.905705Fridman, E. (2001). New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Systems & Control Letters, 43(4), 309-319. doi:10.1016/s0167-6911(01)00114-1Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Fridman, E. (2014). Tutorial on Lyapunov-based methods for time-delay systems. European Journal of Control, 20(6), 271-283. doi:10.1016/j.ejcon.2014.10.001Furtat, I., Fridman, E., & Fradkov, A. (2018). Disturbance Compensation With Finite Spectrum Assignment for Plants With Input Delay. IEEE Transactions on Automatic Control, 63(1), 298-305. doi:10.1109/tac.2017.2732279Germani, A., Manes, C., & Pepe, P. (2002). A new approach to state observation of nonlinear systems with delayed output. IEEE Transactions on Automatic Control, 47(1), 96-101. doi:10.1109/9.981726Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Karafyllis, I., & Krstic, M. (2017). Predictor Feedback for Delay Systems: Implementations and Approximations. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-42378-4Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Léchappé, V., Moulay, E. & Plestan, F. (2016). Dynamic observation-prediction for LTI systems with a time-varying delay in the input. 2016 IEEE 55th conference on decision and control (CDC) (pp. 2302–2307).Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Mazenc, F. & Malisoff, M. (2016). New prediction approach for stabilizing time-varying systems under time-varying input delay. 2016 IEEE 55th conference on decision and control (CDC) (pp. 3178–3182).Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147Najafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627Najafi, M., Sheikholeslam, F., Hosseinnia, S., & Wang, Q.-G. (2014). Robust H ∞ control of single input-delay systems based on sequential sub-predictors. IET Control Theory & Applications, 8(13), 1175-1184. doi:10.1049/iet-cta.2012.1004Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019Sanz, R., García, P., & Albertos, P. (2018). A generalized smith predictor for unstable time-delay SISO systems. ISA Transactions, 72, 197-204. doi:10.1016/j.isatra.2017.09.020Sanz, R., García, P., Fridman, E. & Albertos, P. (2017). A predictive extended state observer for a class of nonlinear systems with input delay subject to external disturbances. 2017 IEEE 56th annual conference on decision and control (CDC) (pp. 4345–4350).Sanz, R., Garcia, P., Fridman, E., & Albertos, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control, 28(6), 2457-2467. doi:10.1002/rnc.4027Shustin, E., & Fridman, E. (2007). On delay-derivative-dependent stability of systems with fast-varying delays. Automatica, 43(9), 1649-1655. doi:10.1016/j.automatica.2007.02.009Suplin, V., Fridman, E., & Shaked, U. (2007). Sampled-data H∞ control and filtering: Nonuniform uncertain sampling. Automatica, 43(6), 1072-1083. doi:10.1016/j.automatica.2006.11.024Yao, J., Jiao, Z., & Ma, D. (2014). RISE-Based Precision Motion Control of DC Motors With Continuous Friction Compensation. IEEE Transactions on Industrial Electronics, 61(12), 7067-7075. doi:10.1109/tie.2014.2321344Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.83753

    Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer

    Full text link
    [EN] The problem of output stabilization and disturbance rejection for input-delayed systems is tackled in this work. First, a suitable transformation is introduced to translate mismatched disturbances into an equivalent input disturbance. Then, an extended state observer is combined with a predictive observer structure to obtain a future estimation of both the state and the disturbance. A disturbance model is assumed to be known but attenuation of unmodeled components is also considered. The stabilization is proved via Lyapunov-Krasovskii functionals, leading to sufficient conditions in terms of linear matrix inequalities for the closed-loop analysis and parameter tuning. The proposed strategy is illustrated through a numerical example.PROMETEOII/2013/004; Conselleria d'Educacio; Generalitat Valenciana, Grant/Award Number: TIN2014-56158-C4-4-P-AR; Ministerio de Economia y Competitividad, Grant/Award Number: FPI-UPV 2014; Universitat Politecnica de ValenciaSanz Diaz, R.; García Gil, PJ.; Fridman, E.; Albertos Pérez, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control. 28(6):2457-2467. https://doi.org/10.1002/rnc.4027S24572467286Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Watanabe, K., & Ito, M. (1981). A process-model control for linear systems with delay. IEEE Transactions on Automatic Control, 26(6), 1261-1269. doi:10.1109/tac.1981.1102802Astrom, K. J., Hang, C. C., & Lim, B. C. (1994). A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 39(2), 343-345. doi:10.1109/9.272329Matausek, M. R., & Micic, A. D. (1996). A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 41(8), 1199-1203. doi:10.1109/9.533684García, P., & Albertos, P. (2008). A new dead-time compensator to control stable and integrating processes with long dead-time. Automatica, 44(4), 1062-1071. doi:10.1016/j.automatica.2007.08.022Normey-Rico, J. E., & Camacho, E. F. (2009). Unified approach for robust dead-time compensator design. Journal of Process Control, 19(1), 38-47. doi:10.1016/j.jprocont.2008.02.003Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006Sanz, R., Garcia, P., Albertos, P., & Zhong, Q.-C. (2016). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control, 27(10), 1826-1840. doi:10.1002/rnc.3639Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.837531Zhou, B., Lin, Z., & Duan, G.-R. (2012). Truncated predictor feedback for linear systems with long time-varying input delays. Automatica, 48(10), 2387-2399. doi:10.1016/j.automatica.2012.06.032Zhou, B., Li, Z.-Y., & Lin, Z. (2013). On higher-order truncated predictor feedback for linear systems with input delay. International Journal of Robust and Nonlinear Control, 24(17), 2609-2627. doi:10.1002/rnc.3012Besançon G Georges D Benayache Z Asymptotic state prediction for continuous-time systems with delayed input and application to control IEEE 2007 Kos, GreeceNajafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627Léchappé V Moulay E Plestan F Dynamic observation-prediction for LTI systems with a time-varying delay in the input IEEE 2016 Las Vegas, NVCacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517Mazenc, F., & Malisoff, M. (2017). Stabilization of Nonlinear Time-Varying Systems Through a New Prediction Based Approach. IEEE Transactions on Automatic Control, 62(6), 2908-2915. doi:10.1109/tac.2016.2600500Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Fridman, E. (2003). Output regulation of nonlinear systems with delay. Systems & Control Letters, 50(2), 81-93. doi:10.1016/s0167-6911(03)00131-2Isidori, A., & Byrnes, C. I. (1990). Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131-140. doi:10.1109/9.45168Ding, Z. (2003). Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, 39(3), 471-479. doi:10.1016/s0005-1098(02)00251-0Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462Fridman, E., & Orlov, Y. (2009). Exponential stability of linear distributed parameter systems with time-varying delays. Automatica, 45(1), 194-201. doi:10.1016/j.automatica.2008.06.00

    Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator

    Full text link
    [EN] This paper deals with the problem of stabilizing a class of input-delayed systems with (possibly) nonlinear uncertainties by using explicit delay compensation. It is well known that plain predictive schemes lack robustness with respect to uncertain model parameters. In this work, an uncertainty estimator is derived for input-delay systems and combined with a modified state predictor, which uses current available information of the estimated uncertainties. Furthermore, based on Lyapunov-Krasovskii functionals, a computable criterion to check robust stability of the closed-loop is developed and cast into a minimization problem constrained to an LMI. Additionally, for a given input delay, an iterative-LMI algorithm is proposed to design stabilizing tuning parameters. The main results are illustrated and validated using a numerical example with a second-order dynamic system.This work was partially supported by projects PROMETEOII/2013/004, Conselleria d Educació, Generalitat Valenciana, and TIN2014-56158-C4-4-P-AR, Ministerio de Economía y Competitividad, Spain.Sanz Diaz, R.; García Gil, PJ.; Albertos Pérez, P.; Zhong, Q. (2017). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control. 27(10):1826-1840. https://doi.org/10.1002/rnc.3639S182618402710Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135Normey-Rico, J. E., Bordons, C., & Camacho, E. F. (1997). Improving the robustness of dead-time compensating PI controllers. Control Engineering Practice, 5(6), 801-810. doi:10.1016/s0967-0661(97)00064-6Michiels, W., & Niculescu, S.-I. (2003). On the delay sensitivity of Smith Predictors. International Journal of Systems Science, 34(8-9), 543-551. doi:10.1080/00207720310001609057Normey-Rico, J. E., & Camacho, E. F. (2008). Dead-time compensators: A survey. Control Engineering Practice, 16(4), 407-428. doi:10.1016/j.conengprac.2007.05.006Guzmán, J. L., García, P., Hägglund, T., Dormido, S., Albertos, P., & Berenguel, M. (2008). Interactive tool for analysis of time-delay systems with dead-time compensators. Control Engineering Practice, 16(7), 824-835. doi:10.1016/j.conengprac.2007.09.002Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Moon, Y. S., Park, P., & Kwon, W. H. (2001). Robust stabilization of uncertain input-delayed systems using reduction method. Automatica, 37(2), 307-312. doi:10.1016/s0005-1098(00)00145-xYue, D. (2004). Robust stabilization of uncertain systems with unknown input delay. Automatica, 40(2), 331-336. doi:10.1016/j.automatica.2003.10.005Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 41(2), 233-240. doi:10.1016/j.automatica.2004.09.006Lozano, R., Castillo, P., Garcia, P., & Dzul, A. (2004). Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, 40(4), 603-612. doi:10.1016/j.automatica.2003.10.007Gonzalez, A., Garcia, P., Albertos, P., Castillo, P., & Lozano, R. (2012). Robustness of a discrete-time predictor-based controller for time-varying measurement delay. Control Engineering Practice, 20(2), 102-110. doi:10.1016/j.conengprac.2011.09.001Karafyllis, I., & Krstic, M. (2013). Robust predictor feedback for discrete-time systems with input delays. International Journal of Control, 86(9), 1652-1663. doi:10.1080/00207179.2013.792005Krstic, M. (2010). Input Delay Compensation for Forward Complete and Strict-Feedforward Nonlinear Systems. IEEE Transactions on Automatic Control, 55(2), 287-303. doi:10.1109/tac.2009.2034923Bekiaris-Liberis, N., & Krstic, M. (2011). Compensation of Time-Varying Input and State Delays for Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control, 134(1). doi:10.1115/1.4005278Karafyllis, I., Malisoff, M., Mazenc, F., & Pepe, P. (Eds.). (2016). Recent Results on Nonlinear Delay Control Systems. Advances in Delays and Dynamics. doi:10.1007/978-3-319-18072-4Cacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462Fridman, E., & Shaked, U. (2002). A descriptor system approach to H/sub ∞/ control of linear time-delay systems. IEEE Transactions on Automatic Control, 47(2), 253-270. doi:10.1109/9.983353Chen, W.-H., & Zheng, W. X. (2006). On improved robust stabilization of uncertain systems with unknown input delay. Automatica, 42(6), 1067-1072. doi:10.1016/j.automatica.2006.02.015Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Roh, Y.-H., & Oh, J.-H. (1999). Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation. Automatica, 35(11), 1861-1865. doi:10.1016/s0005-1098(99)00106-5Bresch-Pietri, D., & Krstic, M. (2009). Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica, 45(9), 2074-2081. doi:10.1016/j.automatica.2009.04.027Kamalapurkar, R., Fischer, N., Obuz, S., & Dixon, W. E. (2016). Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems. IEEE Transactions on Automatic Control, 61(3), 834-839. doi:10.1109/tac.2015.2451472Chen, W.-H., Ohnishi, K., & Guo, L. (2015). Advances in Disturbance/Uncertainty Estimation and Attenuation [Guest editors’ introduction]. IEEE Transactions on Industrial Electronics, 62(9), 5758-5762. doi:10.1109/tie.2015.2453347Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397Sariyildiz E Ohnishi K Design constraints of disturbance observer in the presence of time delay 2013 IEEE International Conference on Mechatronics (ICM) Vicenza, Italy 2013 69 74Wang, Q.-G., Hang, C. C., & Yang, X.-P. (2001). Single-loop controller design via IMC principles. Automatica, 37(12), 2041-2048. doi:10.1016/s0005-1098(01)00170-4Zheng, Q., & Gao, Z. (2014). Predictive active disturbance rejection control for processes with time delay. ISA Transactions, 53(4), 873-881. doi:10.1016/j.isatra.2013.09.021Chen, M., & Chen, W.-H. (2010). Disturbance-observer-based robust control for time delay uncertain systems. International Journal of Control, Automation and Systems, 8(2), 445-453. doi:10.1007/s12555-010-0233-5Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Zhong, Q.-C., & Rees, D. (2004). Control of Uncertain LTI Systems Based on an Uncertainty and Disturbance Estimator. Journal of Dynamic Systems, Measurement, and Control, 126(4), 905-910. doi:10.1115/1.1850529Yong He, Min Wu, & Jin-Hua She. (2005). Improved bounded-real-lemma representation and H/sub /spl infin// control of systems with polytopic uncertainties. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(7), 380-383. doi:10.1109/tcsii.2005.850418CAO, Y.-Y., LAM, J., & SUN, Y.-X. (1998). Static Output Feedback Stabilization: An ILMI Approach. Automatica, 34(12), 1641-1645. doi:10.1016/s0005-1098(98)80021-6Marler, R. T., & Arora, J. S. (2009). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853-862. doi:10.1007/s00158-009-0460-7Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Solomon, O., & Fridman, E. (2013). New stability conditions for systems with distributed delays. Automatica, 49(11), 3467-3475. doi:10.1016/j.automatica.2013.08.025Huaizhong Li, & Minyue Fu. (1997). A linear matrix inequality approach to robust H/sub ∞/ filtering. IEEE Transactions on Signal Processing, 45(9), 2338-2350. doi:10.1109/78.622956Šiljak, D. D., & Stipanovic, D. M. (2000). Robust stabilization of nonlinear systems: The LMI approach. Mathematical Problems in Engineering, 6(5), 461-493. doi:10.1155/s1024123x0000143

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Dissipative Stabilization of Linear Systems with Time-Varying General Distributed Delays (Complete Version)

    Full text link
    New methods are developed for the stabilization of a linear system with general time-varying distributed delays existing at the system's states, inputs and outputs. In contrast to most existing literature where the function of time-varying delay is continuous and bounded, we assume it to be bounded and measurable. Furthermore, the distributed delay kernels can be any square-integrable function over a bounded interval, where the kernels are handled directly by using a decomposition scenario without using approximations. By constructing a Krasovski\u{i} functional via the application of a novel integral inequality, sufficient conditions for the existence of a dissipative state feedback controller are derived in terms of matrix inequalities without utilizing the existing reciprocally convex combination lemmas. The proposed synthesis (stability) conditions, which take dissipativity into account, can be either solved directly by a standard numerical solver of semidefinite programming if they are convex, or reshaped into linear matrix inequalities, or solved via a proposed iterative algorithm. To the best of our knowledge, no existing methods can handle the synthesis problem investigated in this paper. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed methodologies.Comment: Accepted by Automatic

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)
    corecore