7,747 research outputs found

    Role Based Hedonic Games

    Get PDF
    In the hedonic coalition formation game model Roles Based Hedonic Games (RBHG), agents view teams as compositions of available roles. An agent\u27s utility for a partition is based upon which role she fulfills within the coalition and which additional roles are being fulfilled within the coalition. I consider optimization and stability problems for settings with variable power on the part of the central authority and on the part of the agents. I prove several of these problems to be NP-complete or coNP-complete. I introduce heuristic methods for approximating solutions for a variety of these hard problems. I validate heuristics on real-world data scraped from League of Legends games

    Computational Complexity in Additive Hedonic Games

    Get PDF
    We investigate the computational complexity of several decision problems in hedonic coalition formation games and demonstrate that attaining stability in such games remains NP-hard even when they are additive. Precisely, we prove that when either core stability or strict core stability is under consideration, the existence problem of a stable coalition structure is NP-hard in the strong sense. Furthermore, the corresponding decision problems with respect to the existence of a Nash stable coalition structure and of an individually stable coalition structure turn out to be NP-complete in the strong sense

    Boolean Hedonic Games

    Full text link
    We study hedonic games with dichotomous preferences. Hedonic games are cooperative games in which players desire to form coalitions, but only care about the makeup of the coalitions of which they are members; they are indifferent about the makeup of other coalitions. The assumption of dichotomous preferences means that, additionally, each player's preference relation partitions the set of coalitions of which that player is a member into just two equivalence classes: satisfactory and unsatisfactory. A player is indifferent between satisfactory coalitions, and is indifferent between unsatisfactory coalitions, but strictly prefers any satisfactory coalition over any unsatisfactory coalition. We develop a succinct representation for such games, in which each player's preference relation is represented by a propositional formula. We show how solution concepts for hedonic games with dichotomous preferences are characterised by propositional formulas.Comment: This paper was orally presented at the Eleventh Conference on Logic and the Foundations of Game and Decision Theory (LOFT 2014) in Bergen, Norway, July 27-30, 201

    Optimal Partitions in Additively Separable Hedonic Games

    Get PDF
    We conduct a computational analysis of fair and optimal partitions in additively separable hedonic games. We show that, for strict preferences, a Pareto optimal partition can be found in polynomial time while verifying whether a given partition is Pareto optimal is coNP-complete, even when preferences are symmetric and strict. Moreover, computing a partition with maximum egalitarian or utilitarian social welfare or one which is both Pareto optimal and individually rational is NP-hard. We also prove that checking whether there exists a partition which is both Pareto optimal and envy-free is ÎŁ2p\Sigma_{2}^{p}-complete. Even though an envy-free partition and a Nash stable partition are both guaranteed to exist for symmetric preferences, checking whether there exists a partition which is both envy-free and Nash stable is NP-complete.Comment: 11 pages; A preliminary version of this work was invited for presentation in the session `Cooperative Games and Combinatorial Optimization' at the 24th European Conference on Operational Research (EURO 2010) in Lisbo

    Forming Probably Stable Communities with Limited Interactions

    Full text link
    A community needs to be partitioned into disjoint groups; each community member has an underlying preference over the groups that they would want to be a member of. We are interested in finding a stable community structure: one where no subset of members SS wants to deviate from the current structure. We model this setting as a hedonic game, where players are connected by an underlying interaction network, and can only consider joining groups that are connected subgraphs of the underlying graph. We analyze the relation between network structure, and one's capability to infer statistically stable (also known as PAC stable) player partitions from data. We show that when the interaction network is a forest, one can efficiently infer PAC stable coalition structures. Furthermore, when the underlying interaction graph is not a forest, efficient PAC stabilizability is no longer achievable. Thus, our results completely characterize when one can leverage the underlying graph structure in order to compute PAC stable outcomes for hedonic games. Finally, given an unknown underlying interaction network, we show that it is NP-hard to decide whether there exists a forest consistent with data samples from the network.Comment: 11 pages, full version of accepted AAAI-19 pape

    A Taxonomy of Myopic Stability Concepts for Hedonic Games

    Get PDF
    We present a taxonomy of myopic stability concepts for hedonic games in terms of deviations, and discuss the status of the existence problems of stable coalition tructures. In particular, we show that contractual strictly core stable coalition tructures always exist, and provide su¢ cient conditions for the existence of con- ractually Nash stable and weak individually stable coalition structures on the class of separable games.Coalition formation, Hedonic games, Separability, Taxonomy

    Simple Priorities and Core Stability in Hedonic Games

    Get PDF
    In this paper we study hedonic games where each player views every other player either as a friend or as an enemy. Two simple priority criteria for comparison of coalitions are suggested, and the corresponding preference restrictions based on appreciation of friends and aversion to enemies are considered. It turns out that the first domain restriction guarantees non-emptiness of the strong core and the second domain restriction ensures non-emptiness of the weak core of the corresponding hedonic games. Moreover, an element of the strong core under friends appreciation can be found in polynomial time, while finding an element of the weak core under enemies aversion is NP-hard. We examine also the relationship between our domain restrictions and some sufficient conditions for non-emptiness of the core already known in the literature.Additive separability, Coalition formation, Core stability, Hedonic games, NP-completeness, Priority

    Maximizing Profit in Green Cellular Networks through Collaborative Games

    Full text link
    In this paper, we deal with the problem of maximizing the profit of Network Operators (NOs) of green cellular networks in situations where Quality-of-Service (QoS) guarantees must be ensured to users, and Base Stations (BSs) can be shared among different operators. We show that if NOs cooperate among them, by mutually sharing their users and BSs, then each one of them can improve its net profit. By using a game-theoretic framework, we study the problem of forming stable coalitions among NOs. Furthermore, we propose a mathematical optimization model to allocate users to a set of BSs, in order to reduce costs and, at the same time, to meet user QoS for NOs inside the same coalition. Based on this, we propose an algorithm, based on cooperative game theory, that enables each operator to decide with whom to cooperate in order to maximize its profit. This algorithms adopts a distributed approach in which each NO autonomously makes its own decisions, and where the best solution arises without the need to synchronize them or to resort to a trusted third party. The effectiveness of the proposed algorithm is demonstrated through a thorough experimental evaluation considering real-world traffic traces, and a set of realistic scenarios. The results we obtain indicate that our algorithm allows a population of NOs to significantly improve their profits thanks to the combination of energy reduction and satisfaction of QoS requirements.Comment: Added publisher info and citation notic
    • …
    corecore