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is based upon which role she fulfills within the coalition and which additional roles
are being fulfilled within the coalition. I consider optimization and stability problems
for settings with variable power on the part of the central authority and on the part
of the agents. I prove several of these problems to be NP-complete or coNP-complete.
I introduce heuristic methods for approximating solutions for a variety of these hard
problems. I validate heuristics on real-world data scraped from League of Legends
games.
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Chapter 1 Introduction

In this chapter, I provide real-world motivation for a team formation model focused

upon hedonic utilities for roles and compositions of roles within teams. I introduce

this as the role based hedonic game (RBHG) model, which is formally defined in

Section 2.2.

I detail motivations in massively multiplayer online games (MMOs), urban and

planetary robot exploration, and modular robot teams in Section 1.1. Following in

Section 1.2, I describe the stabilization and optimization goals of matchmaking in the

RBHG setting and give a brief overview of the results provided in this dissertation.

I provide an outline of the remaining chapters in Section 1.3.

1.1 A Massively Multiplayer Motivation

In coalition formation games, agents from a population have various utilities for

different partitions. Hedonic coalition formation games are a sub-class in which agents

have utilities for their own teams and not others. In this dissertation, I consider the

variant Role Based Hedonic Games (RBHGs) [68]. In this model, an agent’s utility

for a partition is based upon the role it fulfills on its team and the roles fulfilled by

its teammates. The multiset of roles fulfilled by a team is termed its composition.

Team formation includes forming a partition of agents to teams and matching agents

to roles within their teams.

This work is motivated by team formation in massively multiplayer online games.

World of Warcraft [34], League of Legends [44], Defense of the Ancients 2 (DoTA 2)

[66], Counter–Strike: Global Offensive [65] and Diablo III [32] are currently the five

most popular online games in the world, taking up over 44% of the share of playing

time according to the February 2015 report by Raptr [58].
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While these games vary highly in play style, each incorporates some variation of

role based team formation. Players may fulfill different roles within teams depending

upon play styles, goals and personal preferences. Roles within a team may be defined

loosely, as is the case with Counter-Strike, or more strictly as with multiplayer online

battle arenas (MOBAs) such as League of Legends and DoTA 2. In a typical MOBA,

players join a queue and are partitioned into teams of a fixed size to compete team–

versus–team. Within a team, each player fulfills a single role such as attacker, defender

or support. Game play involves attacking the enemy team and the enemy “base” until

achieving some victory objective. League of Legends is currently the most popular

game in the MOBA genre and in general, taking up over 21% of the share of playing

time on its own [58]. Other popular entries in the MOBA genre include Heroes of

Newerth [71] and SMITE [45]. The most recent entry into the MOBA lineup is

Heroes of the Storm [33], released by Blizzard Entertainment in June, 2015. With

several major developers investing in this popular genre of video game, I consider the

importance of team formation problems encountered by players in this setting.

Players in these and competitors’ games are interested in forming teams where

individual desires for roles and team compositions are compatible. A Counter-Strike

player who prefers to act as her team’s only sniper might prefer a team with no

others with the same preference. A League of Legends player who prefers to play a

supporting role might want a team with at least one player who needs this support.

It would be valuable for player desires to be more consistently fulfilled, since this

determines enjoyment of the game and the success of the game studio. I am interested

in situations where players have utility over their own role and the composition of

roles in their assigned team.

As additional motivation I consider dynamic heterogeneous team formation for

robotic urban search and rescue and planetary exploration. Gunn and Anderson

observe that “as robots change roles and teams, the overriding goal is to form stable

2



teams” and that “adjusting the roles robots fill on the team can occur when a robot

loss or failure is recognized, or when a new robot is encountered and a team merge

and redistribution can occur [40].” Now consider a planetary exploration setting,

where robots designed by a variety of manufacturers, corporations, private citizens

and countries are tasked to work together to accomplish pre-set and not-necessarily-

homogeneous goals. Robots far from home must be able to work effectively in a

dynamic environment with unpredictable weather and other agents with possibly

different goals and motivations [35, 79].

Even when robots share the same utilities for compositions or share the same goal

such as mapping unfamiliar terrain [20], developing conditions may cause changes

in preferences for certain roles and compositions. A robot low on energy may be

qualified to fulfill the role of Driller while working on a short project or when working

with other Driller robots, but may reject compositions requiring more resources than

it can produce at the time. Similarly, a robot designed to fulfill the Driller role

(among others) may have reduced utility for fulfilling this role if its drilling arm is

damaged. Additionally, as objectives are completed on the planetary surface, certain

compositions may have lowered utility for different agents. Agents with high fuel

reserves may have low utility for a composition related to recharging solar fuel cells,

for example. Though these robots are designed to work together, they should be able

to make decisions which optimize productivity for the individual robots involved.

Modular re-configurable robots for planetary exploration have been considered,

with early work by Yim et al. [82], work in cooperative reassembly by Tuci et al. [75],

more recent advancements in modular re-configurable robotic systems by Eckenstein

and Yim [30] and Ahmadzadeh and Masehian [2], and recent hardware developments

such as ModRED, as presented by Baca et al. [11] and Hossain et al. [43]. These

advancements allow for individual robots to change and adopt new roles with re-

configurations made as needed. Underlying utility for a composition could be used

3



to determine the value of changing to a new role, possibly at the cost of another role.

1.2 What Makes a Good Solution

Though a central authority might wish to maximize total utility for a partition,

this goal relies upon the agents’ acceptance of the assignment. When agents have

autonomy and hedonic utilities, they can and will choose to make local changes

for improvement. A partition from the central authority should make such changes

unnecessary.

Finding an optimal partition is not a sufficient or worthwhile goal if agents don’t

stick to the plan. In an MMO, players are unlikely to know or care about the global

utility of a partition. They will be more interested in changing the assignment to

improve their own utilities. The players are not a captive audience. Should players

not find partitions to their liking, they may switch to other games or even read books

in the worst case [70]. The MMO industry is highly competitive and the players can

be quite fickle.

In order to improve acceptance of partitions by the population, finding stable

partitions needs to be the focus. While I expect agents to make changes which

gravitate towards a stable partition, it is worthwhile to partition them such that

these changes are easy or unnecessary. If a player is consistently matched to a team

which they find unacceptable, the player may quit the game altogether rather than

have to improve every assignment offered.

Each of these optimization and stability problems is concerned with a scenario

where a central authority would determine both the team assignments of players

within the RBHG population and their role assignments within teams. In online

games such as League of Legends and DoTA 2, the central authority only controls

which teams the players are assigned to. Role assignments are chosen by the players

after teams are formed. It has also been observed that, for some stability measures,

4



there may be multiple stable assignments with variable utility levels [69]. A stable

assignment is not guaranteed to have an optimal utility even among stable assign-

ments. For this reason, I ultimately focus attention on optimizing the “local world”

in which a partition will autonomously form its final matching of roles. I call these

optimization goals optimal expected stability and optimal expected utility. In this dis-

sertation, I consider optimization and stability problems for settings with variable

power on the part of the central authority and on the part of the agents.

1.3 Chapter Outline

In Chapter 2, I define the team formation models considered and the optimization

and stability goals I seek to achieve in the RBHG setting. I also show that, given a

partition of agents to teams, the optimal composition utility, expected stability, and

expected utility of matchings for this partition can all be computed in time polynomial

in the size of the input.

Chapter 3 outlines related work in optimization and stability for hedonic coalition

formation games, the use of roles in object-oriented programming, real-world consid-

erations for roles that players fulfill in online games, and team formation for urban

and planetary exploration robots with possibly changing roles.

Chapter 4 provides proofs of computational complexity for several important op-

timization and stability problems in RBHG. When a central authority has full control

over the partition and the matching, I prove that optimization problems concerning

finding perfect, max sum utilitarian, and max min egalitarian solutions are all NP-

hard in RBHG. For cases in which agents may choose to defect from a given partition

and/or matching from the central authority, I prove that finding Nash stable, envy-

free and Nash stable, individually stable, core stable, and strict core stable solutions

are all NP-complete problems, while deciding Pareto optimality or contractual strict

core stability of the grand coalition is coNP-complete.
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Chapter 5 provides two heuristic matchmaking approaches and the results of test-

ing on both synthetic and real world matchmaking data. I introduce greedy voting

and greedy location search heuristic methods for generating RBHG solutions. These

methods are compared with respect to optimal composition utility, expected stability,

and expected utility against optimized matchings on partitions selected uniformly at

random. The methods are validated on real-world data scraped from League of Leg-

ends games and on randomly generated RBHG instances with various methods for

generating role and composition utilities.

Chapter 6 outlines the results of this work and my plans for future work in rec-

ommendation systems for League of Legends and other role based hedonic games.

Copyright c© Matthew Spradling, 2015.
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Chapter 2 Preliminaries

In this chapter, I outline the Roles and Teams Hedonic Game model (RTHG) [69]

in Section 2.1 and the generalized Role Based Hedonic Game model (RBHG) [68] in

Section 2.2. An instance of RTHG is an instance of RBHG where team size is fixed

at an integer m and all possible compositions of that size are considered. The RBHG

model allows more flexibility for varying team sizes and allows some compositions to

be omitted from consideration. RBHG allows for the consideration of more general

settings where certain compositions are not feasible (a sniper team with no snipers)

or generally not well accepted by the population (a MOBA team consisting only of

support champions). Additionally, I outline the Additively Separable Hedonic Game

model (ASHG) [9,16] in Section 2.3. Several stability problems are known to be hard

in ASHG. I perform reductions in Section 4.2 to show that these problems remain

hard for RBHG.

I consider optimal solutions and stable solutions as goals for matchmaking in

these settings. A solution is optimal with respect to some function of agent utilities

if no other solution has a better value for that utility function. Examples include

maximizing average utility of all teams (MaxSum) or maximizing the utility of the

worst-off team in the solution (MaxMin). A solution is stable with respect to some

set of possible movements if no agent, or group of agents, can improve utility by

defecting from the solution within the confines of these allowable moves. I define

several such optimal and stable solution goals in Sections 2.4 and 2.5, and provide

reductions to show hardness for these problems in Section 4.1.

2.1 Roles and Teams Hedonic Games

A Roles and Teams Hedonic Game (RTHG) instance consists of:

7



Table 2.1: Example RTHG instance with |P | = 4,m = 2, |R| = 2

〈r, t〉 up0(r, t) up1(r, t) up2(r, t) up3(r, t)
〈A,AA〉 2 2 0 0
〈A,AB〉 0 3 2 2
〈B,AB〉 3 0 3 3
〈B,BB〉 1 1 1 1

• P : A population of players {p1, p2, ...pk} for some integer k.

• m: a team size (I assume that |P |/m is an integer);

• R: A set of roles

• C: A set of compositions, where a composition c ∈ C is a multiset (bag) of

roles from R and |c| = m, and where C contains all size m multisets from R.

For RTHG instances, it is not necessary to take C as a parameter as it may be

generated from m and R.

• U : P ×R×C → Z defines the utility function ui(r, c) for each player pi. Unless

otherwise specified, I assume that for all pi ∈ P and for all r ∈ R, ui(r, {r}) = 0,

representing an agent’s utility for being partitioned to a team by itself. Role

and compositions assignments with a positive utility are seen by the agent as

an improvement for that agent over being partitioned alone, while role and

composition assignments with a negative utility are seen as being worse than

being left alone.

See Table 2.1 for an example RTHG instance. A solution to an RTHG instance

is a partition π of agents into teams of size m and a matching M of agents to roles

in R. I denote π(pi) = ti as the team (set of agents) to which pi is partitioned and

M(pi) = ri as the role to which pi is assigned. The composition ci ∈ C of ti is the

multiset of roles to which agents in ti are matched.
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2.2 Role Based Hedonic Games

A Role Based Hedonic Game (RBHG) instance consists of:

• P : A population of players {p1, p2, ...pk} for some integer k.

• R: A set of roles

• C: A set of compositions, where a composition c ∈ C is a multiset (bag) of

roles from R. For some RBHG instances, C may be taken as a parameter. This

depends upon the form of the utility function.

• U : P ×R×C → Z defines the utility function ui(r, c) for each player pi. Unless

otherwise specified, I assume that for all pi ∈ P and for all r ∈ R, ui(r, {r}) = 0,

representing an agent’s utility for being partitioned to no team at all.

The Roles and Teams Hedonic Game (RTHG) model assumes a fixed team size

m which all teams share and that the set of compositions C includes all possible

multisets of R [69]. In RBHG, there is no fixed team size and the set C need not

include all compositions.

Observe that some compositions may be considered universally unacceptable ei-

ther by the population (a MOBA team of all healers which has little chance of win-

ning) or a central authority (a military commander forming a sniper team with no

snipers). Team size may not have reason to be fixed in real-world scenarios. Even

in MOBA games, where team size is usually fixed for each team, some players may

join a queue as a preformed “buddy group” needing only a few additional players.

A central authority could leverage the RBHG model to find smaller sub-teams to

complete these groups.

A solution to an RBHG instance is a partition π of agents into teams and a

matching M of agents to roles in R. I denote π(pi) = ti as the team (set of agents)
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to which pi is partitioned and M(pi) = ri as the role to which pi is assigned. The

composition ci ∈ C of ti is the multiset of roles to which agents in ti are matched.

Because RBHG is a hedonic game, utility of a player pi for a partition π and

matching M is ui(r
i, ci).

2.3 Additively Separable Hedonic Games

An Additively Separable Hedonic Game (ASHG) [9, 16] instance consists of:

• N : A population of players {n1, n2, ...nk} for some integer k.

• V : A vector V of utility functions over all pairs of agents in N , where vi(nj) ∈ V

is an integer representing the utility player ni has for having player nj on its

team. Unless otherwise specified, I assume that vi(ni) = 0 for all ni ∈ N ,

representing an agent’s utility for being partitioned to a team by itself.

A solution to an ASHG instance is a partition π of agents into teams. I denote

π(ni) = ti as the team (set of agents) to which ni is partitioned.

Because ASHG is a hedonic game, utility of a player for a partition π is equal to

that player’s utility for its team: π(ni) = ti. Let vi(t) =
∑

j∈t vi(nj) be the utility of

player ni for team t. A player ni’s utility for π is vi(t
i).

Because some researchers [12,16,36] have dealt with special cases of ASHGs, much

of the recent research refers to the definition just given as general ASHGs.

When agents in RTHB, RBHG and ASHG have binary preferences for partitions

which they either will or will not find acceptable, I call these accept–reject cases.

In an accept–reject instance of each game, an agent will accept a partition if it has

positive utility for the assignment and reject the partition otherwise.
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2.4 Optimal Solutions

In this section, I define perfect, MaxSum, and MaxMin solutions for RBHG. I prove

that perfect solutions may not always exist.

Perfect solutions for general hedonic games are defined such that each agent is in

one of her most preferred coalitions [6]. For RBHG, I define a perfect solution to be

one in which each agent gets a most-preferred role and composition pair. Note that,

in the general RBHG model, there may be multiple equivalently-valued compositions

and roles. Therefore these preferences are not necessarily strict.

Definition 2.4.1. Given an instance B of RBHG, a perfect solution (π,M) is a

partition of agents to teams and a matching of agents to roles so that, for each pi ∈ P ,

where M(pi) = ri and π(pi) = ti has composition ci, ui(r
i, ci) = max{ui(r′, c′) :

r′ ∈ R ∧ c′ ∈ C}.

A perfect solution is impossible for some RBHG instances. Consider an RBHG

instance where P = {Alice,Bob}. Both Alice and Bob strictly prefer the team

composition of 〈Mage, Assassin〉 with themselves playing the role Assassin to all

other 〈r, c〉 pairs. No perfect partition is possible.

I consider the following notions of utility optimization.

Definition 2.4.2. Given an instance B of RBHG, a MaxSum solution is one that

achieves the maximum value of Σi<|P |ui.

Definition 2.4.3. Given an instance B of RTHG, a MaxMin solution is one that

achieves the maximum value of minpi∈P ui.

2.5 Stable Solutions

The notion of stability of a partition is one in which no agent has incentive to move

from their assigned coalition. Different notions of stability depend on different con-
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straints on agent movements. In this section, I describe the broad notion of stability

in hedonic games. I formally define several RBHG stability problems of the form,

“Given an instance of RBHG, does a stable solution exists?” I compare these to the

related ASHG stability problems and observe known hardness results.

A partition for an RBHG instance is stable when agents have no incentive, or

perceived improvement of utility, for changing their assigned role and team. Changing

involves some sort of movement by the agents.

Any movement begins from a partition π and results in a new partition π′. This

change may be made by individual agents or jointly by a group of agents. A partition

π of a hedonic coalition formation game is stable if, given a set of possible movements,

no agents would improve utility by making such changes.

When I say that a player i moves from a team t to a team t′, I mean that the

partition π containing t and t′ is modified such that t := t − {i} and t′ := t′ ∪ {i}.

This creates a new partition π′ in which i is a member of t′ and not a member of t.

When I say that a team breaks off from a partition I mean that these agents move

from their current teams in the partition and form a new team t′ together. When the

group of agents breaks off, this creates a new partition π′ which includes the team t′.

Individually Rational A partition π is individually rational (IR) iff no player

can benefit by moving from its team ti to a team by itself.

In ASHG, π is individually rational iff all players ni ∈ N have utility vi(t
i) ≥ 0.

In RBHG, π is individually rational iff all players pi ∈ P have utility ui(r
i, ci) ≥ 0.

Generally, we assume that an agent has utility 0 for being on a team by itself.

Nash Stable A partition π is Nash stable (NS) iff no player pi ∈ P can benefit

by moving from its team ti to another (possibly empty) team t′.

In ASHG, π is Nash stable iff π is individually rational and it holds that for

all ni ∈ N , for all t′ ∈ π, vi(t
i) ≥ vi(t

′ ∪ {ni}). In RBHG, π is Nash stable iff π

is individually rational and it holds that for all pi ∈ P , for each t′ ∈ π having a
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composition c′, for all r′ ∈ R, ui(r
i, ci) ≥ ui(r

′, c′ ∪ {r′}).

Observation 2.5.1. [73] Checking whether an NS partition exists in an ASHG is

NP-hard.

Individually Stable A partition π is individually stable (IS) iff no player pi ∈ P

can benefit by moving from its team ti to another (possibly empty) team t′ while not

making members of t′ worse off.

In ASHG, π is individually stable iff π is individually rational and it holds that

for all ni ∈ N , for all t ∈ π, if vi(t
i) < vi(t ∪ {ni}) then vj(t) > vj(t ∪ {ni}) for some

j ∈ t. In RBHG, π is individually stable iff π is individually rational and it holds

that for all pi ∈ P , for all t ∈ π, for all r′ ∈ R, if ui(r
i, ci) < ui(r

′, c ∪ {r′}) then

uj(r
j, c) > uj(r

j, c ∪ {r′}) for some j ∈ t.

Observation 2.5.2. [73] Checking whether an IS partition exists in an ASHG is

NP-hard.

Core Stable A team t′ blocks a partition π if each player i ∈ t′ has greater utility

for t′ than its current team ti ∈ π. A partition π which admits no blocking coalition

is said to be in the core or core stable (CS). If the core is empty, this means that

there are no core stable partitions.

In ASHG, a team t′ blocks a partition π iff there is a set N ′ ⊆ N where t′ is a

team consisting of all agents in N ′ and vi(t
′) > vi(t

i) for all ni ∈ N ′. In RBHG, a

team t′ having a composition c′ blocks a partition π iff there is a set P ′ ⊆ P and an

assignment of agents in P ′ to the bag of roles c such that ui(r
i, c) > ui(r

i, ci) for all

pi ∈ P ′.

Observation 2.5.3. [9,73] Checking whether a non-empty CS partition exists in an

ASHG is NP-hard.
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Strict Core Stable A team t′ weakly blocks a partition π if each player i ∈ t′

has greater or equal utility for t′ compared to its current team ti ∈ π and at least

one player j ∈ t′ has greater utility for t′ than its current team tj ∈ π. A partition

π which admits no weakly blocking coalition is said to be in the strict core or strict

core stable (SCS). If the strict core is empty, this means that there are no strict core

stable partitions.

In ASHG, a team t′ weakly blocks a partition π iff there is a set N ′ ⊆ N where t′ is

a team consisting of all agents in N ′, vi(t
′) ≥ vi(t

i) for all ni ∈ N ′, and vj(t
′) > vj(t

j)

for at least one nj ∈ N ′. In RBHG, a team t′ having a composition c′ weakly blocks

a partition π iff there is a set P ′ ⊆ P and an assignment of agents in P ′ to the bag

of roles c such that ui(r
i, c) ≥ ui(r

i, ci) for all pi ∈ P ′ and uj(r
j, c) > uj(r

j, cj) for at

least one pj ∈ P ′

Observation 2.5.4. [9, 73] Checking whether a non-empty strictly core stable par-

tition exists in an ASHG is NP-hard.

Contractual Strict Core Stable A partition π is said to be in the contractual

strict core or contractual strict core stable (CSCS) iff any weakly blocking team t′

makes at least one player nj ∈ N\t′ worse off when breaking off.

In ASHG, a player nj ∈ N is worse off when a weakly blocking team t′ breaks off

if some agent ni ∈ t′ was formerly on tj ∈ π and vj(t
j − {ni}) < vj(t

j). In RBHG,

a player nj ∈ N is worse off when a weakly blocking team t′ breaks off if some agent

pi ∈ t′ was formerly on tj ∈ π in a role ri and uj(r
j, cj − {ri}) < uj(r

j, cj).

Observation 2.5.5. [9] Verifying whether the partition is contractual strict core

stable in ASHGs is coNP-complete.

Pareto Optimal A partition π is Pareto optimal (PO) iff there is no partition

π′ such that each agent has utility greater than or equal to their utility for π and at

least one agent has greater utility for π′ than for π [9].
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In ASHG, a partition π is Pareto optimal iff there is no partition π′ such that

vi(t
′i) ≥ vi(t

i) for all ni ∈ N and vj(t
′j) > vj(t

j) for at least one nj ∈ N . In

RBHG or RTHG, a partition π is Pareto optimal iff there is no partition π′ such that

ui(r
′i, c′i) ≥ ui(r

i, ci) for all pi ∈ P and uj(r
′j, c′j) > uj(r

j, cj) for at least one pj ∈ P .

Observation 2.5.6. [8, 9] Verifying whether a given partition π is Pareto optimal

in ASHGs is coNP-complete.

Envy Free A partition π is envy free (EF) iff no player has utility for her team

that is less than her utility for another agent’s team.

In ASHG, π is EF iff no player ni ∈ N has utility vi(t
i) < Σk∈tjvi(k), for some

player nj ∈ N on team tj ∈ π. In RBHG, π is EF iff no player pi ∈ P has utility

ui(r
i, ci) < ui(r

j, cj), for some player pj ∈ P on team tj ∈ π in role rj.

Observation 2.5.7. [8] Checking whether there exists a partition which is both envy

free and Nash stable in ASHGs is NP-complete even if preferences are symmetric.

2.6 Expected Utility and Stability

Given a partition of agents to a particular team t, the utilities of the agents within

t over the roles within some composition c can be stored in a |t| x |t| matrix. One

such matrix for each of C compositions represents the utilities of the agents of t for

all compositions.

In this section, I define several optimization objectives given a team t. An optimal

utility matching for a team t given a composition c is one for which total utility is

maximized for that team and composition. I define an optimal composition for a team

t as a composition for which optimal utility is maximized. For accept–reject instances

of RBHG, I define a stable composition as one for which there is a matching of agents

to roles which each agent on the team accepts (has a positive utility for).
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I define candidate compositions which may result from a team being matched to

roles given the utilities of its members for roles and compositions. I define reachable

compositions as compositions which can be formed by a team given their preferences

for roles. I define advocated compositions as those compositions for which at least

one agent on the team has a positive utility.

I define the expected utility of a team t as the average optimal utility across a

set of candidate compositions. I additionally define expected stability for accept–reject

instances of RBHG as percentage of candidate compositions which are also stable

compositions. Finally, I define optimal expected utility and optimal expected stability

as those partitions for which expected utility and expected stability are respectively

maximized.

Definition 2.6.1. Given a partition π of an instance B of RBHG, a team t ∈ π,

and a composition c ∈ C, the optimal utility of t given c is the maximum sum of the

utilities of all agents, maximized over all matchings of agents to roles in c.

For accept–reject instances of RBHG, a stable composition of t is a composition

ct
o ∈ C for which an optimal utility assignment of t has ui(r, c) > 0 for all pi ∈ t.

An optimal composition of t is a composition ct
o ∈ C for which the optimal utility

of t for all c ∈ C is maximized.

Observation 2.6.2. The optimal utility of a team t given a composition c can be

computed in time O(|t|3) by application of the Kuhn Munkres algorithm for optimiz-

ing square matrices [31]. Similarly, it can be determined whether or not a given

composition c is a stable composition for a team t.

The optimal composition ct
o ∈ C of t can be identified in time O(|C| · |t|3) by

application of the Kuhn Munkres algorithm once for each c ∈ C.

Without a central authority to assign agents to roles within a team t, agents in t

will either jointly accept a composition c or one or more agents will defect from the
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team t. Therefore, I consider evaluating the quality of a team t by either its expected

utility or expected stability across the set of candidate compositions.

Definition 2.6.3. A candidate composition c for a team t is a multiset of roles in

R to which agents in t may be matched.

A reachable composition is a candidate composition c for which there is an onto

mapping f from the the players in t to the multiset of roles c so that, for each player pi,

there is some c ∈ C such that ui(f(pi), c) > 0. Observe that any stable composition

is also a reachable composition but that the converse is not necessarily the case.

An advocated composition c for a team t is a candidate composition for which

ui(r, c) > 0 for at least one agent in pi ∈ t, for at least one role r ∈ c. Observe that

any stable composition is also an advocated composition but that the reverse is not

necessarily the case.

The number of reachable compositions is of interest in cases where agents may

be assigned to a matching which they do not necessarily accept. In the League of

Legends setting, this could occur if the match making timer runs out while players are

still making adjustments. In the case of robots on Mars, the time limit may be due

to depleting battery power requiring agents to act before an acceptable matching is

found. Notably, a composition may be reachable by a team of agents even if no agent

accepts the composition. Yet, because these forced moves can occur, it is important

to consider optimization over this set of possible results.

An advocated composition can be seen as one which at least one agent would

advocate for and therefore remain in when reached. This can occur in the case

of League of Legends when a player declares “I like this, let’s play!” or otherwise

stops changing roles. The number of advocated compositions is valuable to consider

when agents have fewer time limitations and are unlikely to accept a composition

prematurely. While it is possible for the League of Legends timer to run out, players

are capable of quitting a team and rejoining the queue before this occurs if the
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composition is particularly bad. Similarly, a group of Mars robots may choose to

defect from a team before batteries start to run out if early bargaining rounds are

failing. The set of reachable and advocated compositions consists of those which are

not only reachable by the team but would also be advocated by at least one member

of the team.

Definition 2.6.4. Let qst be the number of stable compositions for t and qat be the

number of candidate compositions for t. The expected stability of t is the ratio qst/qat

for qat > 0 or 0 if qat = 0.

Let uat be the sum of optimal utilities for all qat candidate compositions for t.

The expected utility of t is the ratio of uat/qat for qat > 0 or 0 if qat = 0.

I define the following optimization problems.

Definition 2.6.5. An optimal expected stability partition π of and instance B of

RBHG is one in which the average expected stability for all t ∈ π is maximized.

An optimal expected utility partition π of an instance B of RBHG is one in which

the average expected utility for all t ∈ π is maximized.

In this dissertation, I evaluate expected utility and expected stability both over the

set of reachable compositions and the set of reachable and advocated compositions.

Experimental procedures and results are detailed further in Chapter 5.

Copyright c© Matthew Spradling, 2015.
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Chapter 3 Related Work

A coalition formation game consists of a set of agents, a preference profile of the

agents, and the set of possible partitions, where a partition is a set of teams (subsets

of agents). In economics, Drèze and Greenberg introduced coalition formation games

to model situations where agents join teams to collaboratively produce goods for

themselves [29]. An agent’s goal in this setting is to optimize consumption of goods

within the partition.

In a hedonic setting, agents are interested in optimizing consumption for their

own teams and not others. The game is hedonic in that an agent’s preference for a

partition is determined only by the coalition to which the agent is assigned. Banerjee

et al. [13] and Bogomolnaia and Jackson [16] initiated much of the work in the hedo-

nic coalition formation game setting, which now spans a variety of models. A recent

survey by Peters and Elkind follows much of this literature [56], albeit not addressing

the recent addition to the literature of RBHGs. Hedonic coalition formation game

models have been suggested for a variety of multi-agent settings, including distributed

task allocation in wireless agents [59], communications networks [61], vehicular net-

works [62,81], adaptive smart grid management [49], and federation formation among

cloud providers [39], among others.

For general hedonic games, Ballester showed that determining whether there is

a non empty core is NP-complete [12]. Sung and Dimitrov considered farsighted

stability in hedonic games, where agents avoid defecting from a team if the defection

would induce a worse change by agents on their new or former team [27]. In other

words, agents in this setting will settle upon a less-desired partition so as to avoid

an even worse partition caused by “rocking the boat” with alterations. Sung and

Dimitrov showed that core stable and Nash stable solutions are farsighted stable while
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individually stable and contractually individually stable solutions are not necessarily

[27].

For hedonic games in which the set of teams is individually rational, Ballester

found that checking the existence of Nash stable and individually stable partitions

and checking the existence of a non empty core are all NP-complete [12]. Sung and

Dimitrov showed that these problems, in addition to the problem of determining

whether the strict core is not empty, remain NP-complete for hedonic games with ad-

ditively separable preferences [73]. Additively separable hedonic games (ASHG) [16]

allow for agents to place values on each other, making the agent population hetero-

geneous. The value an agent places on its coalition in such a game is the sum total

value it gives other agents in its coalition. Aziz et al. showed that finding envy-free

and Nash stable partitions, max sum partitions, and max min partitions are all NP-

hard [8], while finding checking if the strict core is non empty and checking whether

the grand coalition is Pareto optimal are both coNP-complete [9]. Aziz et al. provided

polynomial time algorithms for finding contractually individually stable solutions [9]

and for finding partitions satisfying envy-freeness and individual rationality [10].

The ASHG model considers agent-to-agent valuation, but these values are fixed

for any given agent-to-agent relation. ASHGs do not consider the context of the

composition an agent is in. In RBHG, values are placed on team compositions and

roles rather than individual agents. An agent may be highly desirable when paired

with other suitable agents, but undesirable without the proper composition. Each

agent has a variable role in RBHG and has preferences over which role to select for

itself given a team composition.

In the friends and enemies variants of additively separable hedonic games, each

agent considers each other agent as either a friend or an enemy [28, 72] rather than

having a more complex utility function. Dimitrov et al. showed that a strict core

stable solution can be found in polynomial time when agents value partitions based
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on an appreciation of friends with no regard to enemies, and that a core stable solution

can be found when utility is based on aversion to enemies. Lang et al. introduced the

notion of neutral relationships to this problem [50], showing that determining whether

a Nash stable partition exists is NP-complete even when agents only characterize

others as friends, enemies, or neutral parties.

Aziz, Brandt and Harrenstein introduced fractional hedonic games [7], where util-

ity is viewed as an agent’s average utility for all agents on its team. In this setting,

Aziz et al. showed that computing a core stable partition for an instance with sym-

metric preferences is NP-hard, while checking if a given partition is core stable is

coNP-complete. However, for certain special cases of fractional hedonic games, the

core is guaranteed to be non-empty. Recent work by Bilò et al. considers the price

of stability in fractional hedonic games [14]. In general, the price of stability for a

hedonic game instance is a lower bound on social welfare achieved by some global

utility function (such as max sum or max min utility) given the best case (in terms of

that utility function) of some stability measure (such as Nash stability or individual

stability). The similar price of anarchy is a lower bound on the utility function given

any solution satisfying the stability measure [53].

Brânzei and Larson introduced social distance games in which utility is measured

by an agent’s social distance to other agents on its team [18]. Social distance between

two agents is defined in economics as the distance between two agents by various

social measures (geographical, cultural, interpersonal similarity, etc.) [3, 52]. What

is important for the social distance games model is that there is some measure by

which to gauge how close two agents are to one another in terms of edge distance

in a unweighted graph containing no loops. An agents’ utility is hedonic in this

setting, defined in terms of its closeness to the other agents on its team. In this

regard the model is similar to fractional hedonic games in that the average utility for

other members of the team is taken to form the total utility [7]. While agents in role
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based hedonic games are assumed to be anonymous, social distance games assume

that connections between agents are defined.

When matching hedonic agents into pairs rather than larger teams, the prob-

lem of finding a stable assignment reduces to the stable roommates problem [47,48],

for which fast algorithms exist when a stable matching does exist. It has been ob-

served that the likelihood of there being a stable roommate assignment diminishes as

the population size increases [57]. More recently the problem of finding near stable

roommate assignments has been considered [1,15]. This relates closely to my goal of

optimizing expected stability of RBHG instances. Expected stability is a measurement

of the likelihood that a team of players will stabilize on a matching of roles. In a

multiplayer online battle arena such as League of Legends, players match themselves

into roles after they are partitioned into teams by the central authority. As a result,

there is a lack of control over precisely which roles the agents will adopt in the final

solution. The goal of optimizing expected stability is to increase the ratio of stable

compositions to the set of compositions a team may consider in this second phase.

Anonymous hedonic games have been considered where agents have preferences

over the size of the team but not over whom they are matched with [12,13]. The group

activity selection problem introduced by Darmann et al. is a variant of anonymous

hedonic games where agent preferences are dependent upon both the size of the team

and the activity being performed by the team [25].

In role based hedonic games (RBHG), agents are heterogeneous while the group

activity is fixed for a given instance. An RBHG agent holds preferences over its own

role and the roles of its teammates. Preferences are not necessarily based upon the

size of a team. In these ways, RBHG considers the problem of anonymous agents in

a different way than existing work that focuses on differences in team sizes and group

activities.

Work in hedonic coalition formation for large networks has considered a different
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approach to handling anonymity. Taking, for example, the case of researchers forming

research groups: Hoefer et al. have observed that agents may choose not to form

groups with agents they do not already know [41]. Hoefer et al.’s work considers an

agent to have visibility only for its existing base of known agents and the resulting

issues in locality. Here, agents can learn new contacts over the course of forming

teams, maintain a permanent contact list, and reference temporary contacts with

teams which include members who are not yet a part of their permanent contact

list. In this way, the partially anonymous game may slowly transform into a normal

hedonic coalition formation game without anonymity, where all agents have finally

added one another to their contact lists. This is a different problem where anonymity

is considered to be a problem to overcome.

In RBHG, anonymity is a fact of the game. Agents do not express their utilities

in the RBHG setting in the context of who is on the team, and thus do not build up a

local set of contacts. It is reasonable to combine the two problems, where agents have

a set of known agents and otherwise have utilities for roles and compositions in absence

of local contacts. This takes the two “pure” scenarios and creates a more expressive

system to handle both preferences for locally known agents and preferences for “types

of colleagues.” In the research team formation problem this would be especially helpful

for young researchers who have not yet built a full portfolio of contacts. Alternatively,

mock team formation using RBHG utilities could be used to make recommendations

for new local contacts, allowing for more direct evaluation of a smaller subset of the

population.

Sometimes a model of coalition formation can be seen as an overlapping of existing

models. Consider the anonymous stable invitation problem [51] introduced by Lee

and Shoham. This setting combines several variants of hedonic coalition formation

games into a single problem, where an organizer for an event wishes to invite the

maximum size subset of agents who will all attend the event together. The problem
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could be extended to maximizing the total value (perhaps in terms of donations) of

the individuals invited, though it can be assumed that all agents have equal value.

Again, this setting may have utility for both the number of individuals invited and

for the specific individuals who will be in attendance. Rather than attempting to

form a large number of teams, the goal is to determine the largest stable coalition

(stable in that all agents in the coalition will accept it). The authors observe that

this new problem bears similarities to both additively separable hedonic games and

anonymous hedonic games. Combining the two problems, this work allows for the

possibility of utilities over both individual agents and the size of the team. The goal

of the game is analogous to determining the maximum sized individually rational

team which no agent would reject in favor of sitting out of the event. If the problem

were extended to inviting agents to several different events, it could be viewed as an

overlay of additively separable hedonic games and the group activity selection problem.

Recent work investigates problems in hedonic games caused by the presence of

a moral hazard: an economic phenomenon where one agents takes on production

responsibilities for which another agent bears the risk [76]. When teams can only

make balanced transfers of production after initial assignment, stability is negatively

affected. When teams cannot make production transfers at all, stability is positively

affected but efficiency (utility) is negatively effected. This is an interesting setting to

consider for RBHG problems, and relates to the problem of ensuring honest reporting

of preferences and requirements (such as voter manipulation in elections [54, 84] or

dishonest budgets reporting [23]).

Recent work related to hedonic games considers the mechanism design prob-

lem [80] for additively separable hedonic games where all utilities are non-negative.

In this problem, the desirable properties considered for a matchmaking mechanism

are to ensure that the mechanism creates no incentive for an agent to misreport its

preferences and that the mechanism ensures optimal social welfare and fairness. I ob-
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serve that problems in this setting have a trivially Pareto optimal solution consisting

of the grand coalition, where all agents are assigned to the same team. This is due to

the assumption that all utilities are non-negative and additively separable. However,

the more interesting cases for my work are when team size has a maximum value less

than the number of players.

The role of an agent in the RBHG model can be seen either as the task the agent

is performing, the way the agent performs a task, or some other conceptual quality

such as the color of the agent’s shoes. What is important is that an agent may fulfill

different roles and may have utility for different roles depending upon the composition

of roles it is presented with in a team. The notion of roles has been applied previously

to object-oriented database programming. Albano et al. developed Fibonacci as an

object-oriented database programming language in which data objects are manipu-

lated through the changing roles that they fill [4]. Gottlob et al. extended this work

to model additional features, such as having qualified roles which are multiple distinct

instances of the same role (a Project Manager role for each of multiple projects, for

example) [38]. Gottlob’s use of the term role differs from the RBHG model in that I

consider an agent to, at any one time, fulfill a single role rather than multiple roles at

once. It is similar in that both works consider the possibility that a single entity may

change roles over time, fulfilling different positions while still retaining basic qualities

(in the RBHG case, utilities for different roles and compositions). When an agent

might fulfill multiple roles at once, or provide a set of skills to complete different tasks,

Tran-Tranh et al. introduced the coalition skill vector model for coalition formation

games where each agent possesses a set of skills, there is a set of tasks to perform,

and the value of a partition is based upon the number or total payoff of tasks the

teams can jointly complete [74]. In the RBHG model, I am concerned with the single

role that an agent is fulfilling at any given time and possible changes from one role

to another when determining the single composition of the team.

25



Related work in the social aspect of roles in online games considers the phe-

nomenon of gender swapping, where players choose avatars of a gender (here seen

as male or female) other than one that they are commonly associated with (either

personally or by society as a whole) [67]. This work investigates both the reasons

that players may engage in gender swapping and what can be predicted about their

in-game spending habits. Additional work considers the impact of prosocial behavior

in online games [78], both in general and as it relates to gender swapping. Prosocial

behavior includes behaviors such as sharing, volunteering time and money to others,

and generally taking actions in an effort to help others or society as a whole [5,19,55].

This work relates to determining predictable utility functions which agents may hold

for roles and compositions in RBHG settings. For example, an agent who exhibits

prosocial behavior may be more inclined to accept a variety of role assignments if it

will help a team achieve a preferred composition. Another agent may select avatars

based upon aesthetics rather than just the roles that they fulfill. Consider a case

where one subset of agents selects League of Legends champions based upon the set

of tactical roles they fulfill (Support, Attacker, Defender, etc.) and their related tacti-

cal compositions, another subset considers the colors of their uniforms (Teal, Mauve,

Salmon, etc.) and their related aesthetic compositions, and still another considers

both aspects when evaluating a team. Addressing these different types of utilities in

practice may require multi-objective utility functions which consider roles and com-

positions of various definitions as well as other aspects of avatars being selected. In

this dissertation, I consider the simpler problem of having utilities only for role and

composition pairs from a single set of roles that all agents agree upon.

Consider the following setting. In capstone computer science courses, students

are sometimes grouped into equal size project teams. For a team of five students,

one student may prefer a team of two skilled programmers, one designer, and two

writers. Her second choice might be one programmer, two designers, and two writers.
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In the first case, the student wants to be one of the two programmers and not the

only designer. In the second, she wants to one of the two designers, and definitely

not the only programmer.

This problem can be modeled as an RBHG. The ASHG model allows students to

express utility values for each other, but ASHG preferences are context-free agent-

to-agent assessments. Alice may wish to join Bob’s coalition when he needs a pro-

grammer, but not when he needs a writer. In RBHG, an agent need only express

preferences on which roles and compositions she prefers. This evaluation may be

easier to accurately poll.

In online games such as League of Legends and Defense of the Ancients 2 [58],

where players select avatars having different skills and abilities, success of a team

can depend on which roles are filled by the subset of avatars selected. While players

are largely anonymous, preferences in terms of roles performed by teammates to

achieve some objective can be described. This adds to what it means to be an

agent. Rather than having agents who are immutable objects, a single agent can be

perceived by other agents to be “worth” different amounts to another agent on her

team depending upon what role she is fulfilling. This task-dependent agent valuation

also has application with distributed task allocation in wireless agents [60].

For instances where |C| · m is smaller than |P |, where m is the maximum size

of a composition in |C|, the required input data for RBHG instances will be smaller

than the required input for ASHG. Input for an ASHG instance requires each agent

to hold a specific utility for each other agent within the population. This could be

represented as a |P |×|P | matrix of utility values, U , where U [i, j] is the utility that pi

holds for pj. In RBHG, the input can be represented as a (|C|·m)×|P | matrix. While

there are millions of players in League of Legends [46], there are only around 5 basic

roles to potentially fill (AD Carry, Support, Mage, etc.) and a maximum team size of

5. The input required for team formation in this setting will be orders of magnitude
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smaller in RBHG than if this game were treated as an ASHG. In the case where

utilities are additively separable, I show in Chapter 4 that an instance of ASHG can

be represented as an instance of RBHG. This use of an additively separable utility

function over the available roles can reduce the necessary size of an RBHG instance

even more, when applicable.

Stability is a property which, in certain settings, we expect to be generated nat-

urally by the agents. That is, should the agents be allowed to either accept or reject

a partition, they will only choose to accept a partition which is stable. This relates

to a game such as League of Legends and Defense of the Ancients 2 where players

have agency and may choose not to play if a team composition is undesirable (recall

that books are an option). In these games agents are only partitioned to teams by

the central authority and are not automatically matched to roles. Therefore, even if

agents are assigned to a partition which contains an optimal and stable matching of

roles within the teams, it is not guaranteed that the agents will stabilize on that par-

ticular matching. This observation directs the goals of optimizing expected stability

and expected utility of a partition.

Consider a team of Mars robots weighing the pros and cons of removing John-

nybot’s drill arm and replacing it with a high-definition camera. Perhaps the re-

configuration will help to achieve a single composition currently desired, but would

significantly reduce the ability of the team to complete other objectives also consid-

ered valuable. By optimizing the expected utility or stability of a team in terms of the

abilities of robots to fulfill certain roles and their independent valuations of certain

compositions (roles needed to perform certain important tasks), a team will be more

likely to remain stable against shifting needs and opportunities. When considering a

single team comparing two possible utility functions (one with Johnnybot’s drill arm,

and one with the camera), I can compute the optimal composition utility, the expected

utility and the expected stability for both configurations in time polynomial in the size
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of the input. This would allow for a fast comparison between working with the ex-

isting configurations and the expected value of making the proposed change. In this

dissertation, I consider not only the likelihood that a team of agents will stabilize on

a single productive composition but that over time the agents will work well together

in a variety of circumstances. While I do not consider the ethical implications of

removing Johnnybot’s arm, quickly determining which modifications to make could

improve productivity of robots on a distant world and reduce conflict over the limited

resources.

Copyright c© Matthew Spradling, 2015.
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Chapter 4 Complexity Results

In this chapter, we prove that determining whether or not there exists a perfect solu-

tion of an RBHG instance is NP-complete and that the decision problems related to

finding MaxSum and MaxMin solutions are both NP-complete. We prove that verifi-

cation of Pareto optimality and contractual strict core stability of the grand coalition

are both coNP-complete problems in RBHG, and that the remaining stability prob-

lems considered in this dissertation are all NP-complete for RBHG.

4.1 Complexity of Optimization

Definition 4.1.1. An instance of Special RBHG is an instance of RBHG such that

for each agent pi ∈ P , each cj ∈ C, and each rk ∈ c, ui(rk, cj) ∈ {0, 1} and ui(rk, cj) =

1 only if cj is uniform, namely it consists of |c| copies of a single role r.

In other words, each agent finds some non-empty set of single-role team composi-

tions acceptable (utility 1), and no other types of team compositions acceptable.

Definition 4.1.2. The language Perfect RBHG consists of those instances of

RBHG for which a perfect solution exists, and Perfect Special RBHG consists

of those instances of Special RBHG for which a perfect solution exists.

In Special RBHG instances, the question of a perfect solution reduces to the

problem of finding a MaxMin solution, or the decision problem of whether there’s a

partition with MaxMin value m.

Consider the Exact 3Cover problem:

GIVEN a set S ⊆ P({1, ..., q}) where all elements of S have size 3,

IS THERE a subset T ⊆ S such that T partitions {1, ..., q}?
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For example, given q = 6 and S1 = {{1, 2, 4}, {3, 5, 6}, {3, 4, 5}}, there is an exact

three cover S ′1 = {{1, 2, 4}, {3, 5, 6}}. Given q = 6 and S2 = {{1, 2, 4}, {4, 5, 6}, {3, 4, 5}},

no exact three cover exists. Note that though all elements in {1, ..., q} can be found

in elements of S2, an exact cover requires that each element be found exactly once.

Exact 3Cover is NP-complete [37].

Theorem 4.1.3. Perfect Special RBHG is NP-complete.

Proof. To show that Perfect Special RBHG is in NP, consider the following

NP algorithm. Given an instance of Perfect Special RBHG, guess a partition

and evaluate its MaxMin value. To compute the MaxMin value, compute the utility

of each of the at most |P | teams (time O(|P | · l) for each coalition, where l is the

complexity of table lookup for an individual’s utility for a particular team and role),

stopping and rejecting if any coalition has utility 0, else accepting.

This checking is in time polynomial in the size of the input.

To show NP-hardness, we show that Exact 3Cover ≤Pm Special Perfect

RBHG. In other words, given an instance E = 〈q, S〉 of Exact 3Cover, we con-

struct an instance RE of Special Perfect RBHG such that E ∈ Exact 3Cover

iff RE ∈ Special Perfect RBHG.

RE will have the property that, for each agent pi ∈ P , the only acceptable teams

are uniform, i.e., consist of |t| copies of a single role. Thus, the question is whether

they can be assigned to an acceptable team; the role for that team will be acceptable.

Consider E = 〈q, S〉. For each set si ∈ S, RE will have a role ri ∈ R and a

corresponding team composition ci = {ri, ri, ri}. P = {1, ..., q}. The desired team

size is m = 3. Each agent pj desires those team compositions s such that j ∈ s.

There is an exact three cover of {1, ..., q} iff there is an assignment of agents to

teams of size three such that each team corresponds to an element of S.

Consider an exact three cover X ⊂ S. Then for each j ≤ q there is an si ∈ X

such that j ∈ s. The exact three cover X corresponds to a partition π for RE that
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assigns an acceptable team to each agent. The matching M is implicit with each

agent assigned to a unique acceptable role within its team t ∈ π. There is only one

acceptable composition for that set of agents, namely ci = {ri, ri, ri}.

Now assume that there is a perfect solution (π,M) for RE. Then for each i ≤ |P |

there is a ti ∈ π having a composition ci and such that ui(ri, ci) = 1. The partition π

and matching M corresponds to a solution X ⊂ S that is an exact three cover of S.

Therefore, the Perfect Special RBHG problem is NP-hard. q

Definition 4.1.4. The language MaxSum RBHG consists of pairs 〈B, k〉, where B

is an instance of RBHG, k is an integer, and the MaxSum value of B is ≥ k. We

denote the MaxSum value of a solution (π,M) as MaxSum(π,M). MaxSum Special

RBHG consists of those instances of Special RBHG for which the MaxSum value is

|P |.

Definition 4.1.5. The language MaxMin RBHG consists of pairs 〈B, k〉, where B

is an instance of RBHG, k is an integer, and the MaxMin value is ≥ k. We denote the

MaxMin value of a solution (π,M) as MaxMin(π,M). MaxMin Special RBHG

consists of those instances of Special RBHG for which the MaxMin value is |t|.

Theorem 4.1.6. MaxMin Special RBHG and MaxSum Special RBHG are

both NP-hard.

Proof. A Special RBHG solution (π,M) for B is perfect iff
∑

pi∈P ui(r
i, ci) = |P | iff

MaxMin(π,M) = |tmin|, where tmin is the team having minimum utility, iff 〈B, |P |〉 ∈

MaxSum RBHG iff MaxSum(π,M) = |P | iff 〈B, |tmin|〉 ∈MaxMin RBHG. There-

fore MaxMin Special RBHG and MaxSum Special RBHG are both NP-hard.

q

Corollary 4.1.7. The general cases of Perfect RBHG, MaxSum RBHG, and

MaxMin RBHG are all NP-hard.
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Proof. Observe that the reductions given for Perfect Special RBHG, MaxSum

Special RBHG, and MaxMin Special RBHG are also reductions for Perfect

RBHG, MaxSum RBHG, and MaxMin RBHG.

Therefore the general cases of Perfect RBHG, MaxSum RBHG and MaxMin

RBHG are all NP-hard. q

4.2 Complexity of Stability

Definition 4.2.1. The language NS RBHG consists of instances of RBHG for which

there exists a Nash stable solution.

Theorem 4.2.2. NS RBHG is NP-complete.

Proof. To see that NS RBHG is in NP, observe that Nash stability for a single

RBHG agent can be verified in time O(|P | · |R| · l), where l is the complexity of

table lookup for an individual’s utility for a particular team and role. Verifying the

property for all agents can be done in time O(|P |2 · |R| · l). To verify Nash stability

for a single agent, check if the agent can improve utility by moving from its current

team to another team (with any of the possible roles) or by changing from its current

role to another role on the same team. In the worst case, where every agent is on a

team by itself, this requires consideration of each of the |P | possible teams and each

of the |R| possible roles on each team. Verifying the property for all agents requires

performing the above test for each of the |P | agents.

Next, we construct a reduction, f , from NS ASHG to NS RBHG. Let A be an

instance of NS ASHG with a population N and utility function vector V .

We define f(A) = (P,R,C, U) to be an instance of RBHG. We set P = N and

R = {r1, ..., r|N |}. The set C is not constructed explicitly in this case, nor is utility for

each {r, c} pair explicitly stored. Instead, utility of an agent for a team is defined by an

additively separable function over the roles in the composition to which it is assigned.
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An agent assigned to its own role in a team by itself has utility ui(ri, {ri}) = 0. Define

MaxAbsValue(A) as the maximum absolute value of utility for any agent p ∈ P . An

agent assigned to a role k 6= i has utility ui(rk, c) = −MaxAbsValue(A)·|P |−1, for any

composition c. For teams of size m ≥ 2 set ui(r
i, c) = Σj∈cvi(j) = Σj∈cui(r

i, {ri, rj}).

Observation 4.2.3. The only partitions with positive values consist of coalitions

where, for each pi ∈ P , pi is assigned to role ri.

Let f(A) be in NS RBHG and let (π,M) be a Nash stable solution of f(A).

From (π,M) we construct a partition π′ of A using f−1. Since (π,M) maps each

pi ∈ P to the role ri representing f−1(pi) = ni ∈ N , we have that f−1(π,M) = π′ is

a well-defined partition of A.

To show that π′ is a Nash stable partition of A, consider the following proof by

contradiction. Suppose there were an agent ni ∈ N and a team t′ ∈ π′ such that

vi(t
′ ∪ {ni}) > vi(t

i). Consider that the corresponding agent pi ∈ P in a team t ∈ π

with composition c will have ui(r
i, c∪{ri}) > ui(r

i, ci). This contradicts the premise

that (π,M) is a Nash stable solution of f(A). Therefore if f(A) is in NS RBHG

then A is in NS ASHG.

Now let π be a Nash stable partition ofA. Let (π′,M) = f(π) be the corresponding

solution in f(A). For each agent pi ∈ P , ui(r
i, ci) = vi(t

i) where ti ∈ π is composed

of the agents represented by the roles in ci.

By the same argument as in the previous case, we get that (π′,M) is also Nash

stable. Therefore if A is in NS ASHG then f(A) is in NS RBHG.

Therefore f(A) is in NS RBHG iff A is in NS ASHG. Thus, we have shown that

f is a reduction from NS ASHG to NS RBHG.

q

Definition 4.2.4. The language EF NS RBHG consists of those instances of RBHG

for which there exists an envy free Nash stable solution.
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Theorem 4.2.5. EF NS RBHG is NP-complete.

Proof. To see that EF NS RBHG is in NP, we observe that envy-freeness and Nash

stability for a single RBHG agent can be verified in time O(|P |2 · |R|). Verifying

the property for all agents requires time O(|P |3 · |R|). To verify Nash stability for a

single agent, check if the agent can improve utility by moving from its current team

to another team (with any of the possible roles) or by changing from its current role

to another role on the same team. In the worst case, where every agent is on a team

by itself, this requires consideration of each of the |P | possible teams and each of the

|R| possible roles on each team. To verify envy-freeness requires an additional |P |

comparisons, where the agent checks if it would improve utility for being in the same

role and composition as each of the other agents. That is, rather than joining each

other team and seeing if utility improves, we swap roles and team positions between

the agent and each of |P | − 1 other agents to see if utility improves with any such

swap. Verifying the two properties for all agents requires performing the above test

for each of the |P | agents.

Next, we construct a reduction, f , from EF NS ASHG to EF NS RBHG.

Let A be an instance of EF NS ASHG with a population N and utility function

vector V . We use the same function f as in Theorem 4.2.2 to generate an instance

f(A) = (P,R,C, U) of RBHG.

Let f(A) be in EF NS RBHG and let (π,M) be an envy free Nash stable solution

of f(A).

From (π,M) we construct a partition π′ of A using f−1. Since (π,M) maps each

pi ∈ P to the role ri representing f−1(pi) = ni ∈ N , we have that f−1(π,M) = π′ is

a well-defined partition of A.

To show that π is a Nash stable and envy-free partition of A, consider the following

proof by contradiction. Suppose that π is not envy Free; that there is a pair of agents

ni, nj ∈ N such that vi(t
i) < Σk∈tjvi(k). Consider that the corresponding agents
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pi, pj ∈ P will have the property that ui(r
i, ci) < ui(r

j, cj). This contradicts the

premise that (π,M) is an envy free solution of f(A). Now suppose that π is not Nash

stable; that there is an agent ni ∈ N and a team t′ ∈ π′ such that vi(t
′∪{ni}) > vi(t

i).

Consider that the corresponding agent pi ∈ P will have ui(r
i, c′ ∪ {ri}) > ui(r

i, ci).

This contradicts the premise that (π,M) is a Nash stable solution of f(A). Therefore

if f(A) is in EF NS RBHG then A is in EF NS ASHG.

Now let π be a Nash stable partition ofA. Let (π′,M) = f(π) be the corresponding

partition in f(A). For each agent pi ∈ P , ui(r
i, ci) = vi(t

i) where ti ∈ π is composed

of the agents represented by the roles in ci.

By the same argument as in the previous case, we get that (π′,M) is also envy

free and Nash stable. Therefore if A is in EF NS ASHG then f(A) is in EF NS

RBHG.

Therefore f(A) is in EF NS RBHG iff A is in EF NS ASHG. Thus, f is a

reduction from EF NS ASHG to EF NS RBHG.

q

Definition 4.2.6. The language IS RBHG consists of those instances of RBHG for

which there exists an individually stable solution.

Theorem 4.2.7. IS RBHG is NP-complete.

Proof. To see that IS RBHG is in NP, observe that individual stability for a single

RBHG agent can be verified in time O(|P | · |R|). Verifying the property for all agents

requires time O(|P |2 · |R|). To verify individual stability for a single agent, check if

the agent can improve utility by moving from its current team to another team (with

any of the possible roles) without decreasing utility for the agents already on the

new team. In the worst case, where every agent is on a team by itself, this requires

consideration of each of the |P | possible teams and each of the |R| possible roles on
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each team. Verifying the property for all agents requires performing the above test

for each of the |P | agents.

Next, we construct a reduction, f , from IS ASHG to IS RBHG. Let A be an

instance of IS ASHG with a population N and utility function vector V . We use

the same function f as in Theorem 4.2.2 to generate an instance f(A) = (P,R,C, U)

of RBHG.

Let f(A) be in IS RBHG and let (π,M) be an individually stable solution of

f(A). From (π,M) we construct a partition π′ of A using f−1. Since (π,M) maps

each pi ∈ P to the role ri representing f−1(pi) = ni ∈ N , we have that f−1(π,M) = π′

is a well-defined partition of A.

To show that π is an individually stable partition of A, consider the following

proof by contradiction. Suppose there were an agent ni ∈ N on a team ti ∈ π′ and

a team t′ 6= ti ∈ π′ such that vi(t
′ ∪ {ni}) > vi(t

i) and for all nj 6= ni ∈ ti we have

that vj(t
i) ≤ vj(t

i − {ni}). Consider that for the corresponding agent pi ∈ P in a

team ti ∈ π with composition ci there will be a team t′ 6= ti ∈ π with composition c′

such that ui(r
i, c′ ∪ {ri}) > ui(r

i, ci) and for all pj 6= pi ∈ ti we have that uj(r
j, ci) ≤

uj(r
j, cj − {ri}). This contradicts the premise that (π,M) is an individually stable

solution of f(A). Therefore if f(A) is in IS RBHG then A is in IS ASHG.

Now let π be an individually stable partition of A. Let (π′,M) = f(π) be the

corresponding partition in f(A). For each agent pi ∈ P , ui(r
i, ci) = vi(t

i) where

ti ∈ π is composed of the agents represented by the roles in ci.

By the same argument as in the previous case, we get that (π′,M) is also indi-

vidually stable. Therefore if A is in IS ASHG then f(A) is in IS RBHG.

Therefore f(A) is in IS RBHG iff A is in IS ASHG. Thus, f is a reduction from

IS ASHG to IS RBHG.

q

Definition 4.2.8. The language CS RBHG consists of those instances of RBHG
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for which there exists a non-empty core stable solution.

Theorem 4.2.9. CS RBHG is NP-complete.

Proof. The construction given in the proof of Theorem 4.2.2 also gives a reduction

from CS ASHG to CS RBHG.

Let f(A) be in CS RBHG and let (π,M) be a core stable solution of f(A). From

(π,M) we construct a partition π′ of A using f−1. Since (π,M) maps each pi ∈ P

to the role ri representing f−1(pi) = ni ∈ N , we have that f−1(π,M) = π′ is a

well-defined partition of A.

To show that π is a core stable partition of A, consider the following proof by

contradiction. Suppose there were a subset of agents N ′ ⊂ N such that, for each

ni ∈ N ′, vi(N ′) > vi(t
i). Consider that the corresponding subset of agents P ′ ⊂ P

such that, for each pi ∈ P ′, ui(ri, c′) > ui(r
i, ci) where c′ ⊂ R is composed of the roles

represented by the agents in P ′. This contradicts the premise that (π,M) is a core

stable solution of f(A). Therefore if f(A) is in CS RBHG then A is in CS ASHG.

Now let π be a core stable partition of A. Let (π′,M) = f(π) be the corresponding

solution of f(A). For each agent pi ∈ P , ui(r
i, ci) = vi(t

i) where ti ∈ π is composed

of the agents represented by the roles in ci. By the same argument as in the previous

case, we get that (π′,M) is also core stable. Therefore if A is in CS ASHG then

f(A) is in CS RBHG.

Therefore f(A) is in CS RBHG iff A is in CS ASHG. Thus, f is a reduction

from CS ASHG to CS RBHG.

q

Definition 4.2.10. The language SCS RBHG consists of those instances of RBHG

for which there exists a non-empty strict core stable solution.

Theorem 4.2.11. SCS RBHG is NP-complete.
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Proof. The construction given in the proof of Theorem 4.2.2 also gives a reduction

from SCS ASHG to SCS RBHG.

Let f(A) be in SCS RBHG and let (π,M) be a strict core stable solution of

f(A). From (π,M) we construct a partition π′ of A using f−1. Since (π,M) maps

each pi ∈ P to the role ri representing f−1(pi) = ni ∈ N , we have that f−1(π,M) = π′

is a well-defined partition of A.

To show that π is a strict core stable partition of A, consider the following proof

by contradiction. Suppose there were a subset of agents N ′ ⊂ N such that, for each

ni ∈ N ′, vi(N ′) ≥ vi(t
i) and vj(N

′) > vj(t
j) for at least one nj ∈ N ′. Consider that

the corresponding subset of agents P ′ ⊂ P such that, for each pi ∈ P ′, ui(ri, c′) ≥

ui(r
i, ci) and uj(r

j, c) > uj(r
j, cj) for at least one pj ∈ P ′, where c′ ⊂ R is composed

of the roles represented by the agents in P ′. This contradicts the premise that (π,M)

is a strict core stable solution of f(A). Therefore if f(A) is in SCS RBHG then A

is in SCS ASHG.

Now let π be a strict core stable partition of A. Let (π′,M) = f(π) be the

corresponding solution of f(A). For each agent pi ∈ P , ui(r
i, ci) = vi(t

i) where ti ∈ π

is composed of the agents represented by the roles in ci. By the same argument as in

the previous case, we get that (π′,M) is also strict core stable. Therefore if A is in

SCS ASHG then f(A) is in SCS RBHG.

Therefore f(A) is in SCS RBHG iff A is in SCS ASHG. Thus, f is a reduction

from SCS ASHG to SCS RBHG.

q

Definition 4.2.12. The grand coalition for RBHG is a partition π of all agents to

a single team t. In RBHG, there are several possible grand coalitions with different

distributions of roles.

Definition 4.2.13. The language GRAND PO RBHG consists of those instances

of RBHG for which there exists a partition consisting of the grand coalition and some
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assignment of agents to roles that is Pareto optimal.

Theorem 4.2.14. GRAND PO RBHG is coNP-complete.

Proof. First we show that GRAND PO RBHG is in coNP. Given two solutions

(π,M) and (π′,M ′) for an instance of RBHG, we can check in polynomial time if

(π′,M ′) is a solution such that ui(r
′i, c′i) ≥ ui(r

i, ci) for all pi ∈ P and uj(r
′j, c′j) >

uj(r
j, cj) for at least one pj ∈ P . Thus, given an instance f(A) of RBHG and a

solution (π,M) consisting of the grand coalition, it is NP to decide that π is not

Pareto optimal.

The construction given in the proof of Theorem 4.2.2 also gives a reduction from

GRAND PO ASHG to GRAND PO RBHG.

Let f(A) be in GRAND PO RBHG and let (π,M) be a Pareto optimal solution

of f(A) consisting of the grand coalition. Observe that each agent pi ∈ P must be

assigned to ri ∈ R, or else (π,M) could not be Pareto optimal.

Observation 4.2.15. By the construction, each agent pi ∈ P has ui(r, c) =

−MaxAbsValue(A) · |P | − 1 when r 6= ri. Since (π,M) is a Pareto optimal solution,

each agent pi ∈ π must be matched to ri ∈ R. Otherwise the partition could be

improved by assigning each agent pi to its role ri.

Therefore if a partition π consisting of the grand coalition is Pareto optimal, then

M(pi) = ri for each agent pi ∈ P .

From (π,M), a Pareto optimal solution of f(A) consisting of the grand coalition,

we construct a partition π of A using f−1. Since (π,M) maps each pi ∈ P to the

role ri representing f−1(pi) = ni ∈ N , we have that f−1(π,M) = π is a well-defined

partition of A consisting of the grand coalition.

To show that π is a Pareto optimal partition of A, consider the following proof

by contradiction. Suppose there were a partition π′δ of A such that, for each ni ∈ N

assigned to its team tiδ ∈ π′δ, vi(t
i
δ) ≥ vi(N) and for at least one nj ∈ N assigned
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to its team tjδ ∈ πdelta′, vj(t
j
δ) > vi(N). Consider that the corresponding a solution

f(π′δ,M
′
δ) of f(A) such that each agent pi is assigned to ri and, for each pi ∈ P ,

ui(r
i, ciδ) ≥ ui(r

i, ci) and, for at least one pj ∈ P , uj(r
j, cjδ) > ui(r

j, cj). This con-

tradicts the premise that (π,M) is a Pareto optimal solution for f(A). Therefore if

f(A) is in GRAND PO RBHG then A is in GRAND PO ASHG.

Now let π be a Pareto optimal partition of A consisting of the grand coalition.

Let (π′,M ′) = f(π) be the corresponding solution of f(A) consisting of the grand

coalition. For each agent pi ∈ P , ui(r
i, ci) = vi(t

i) where ti ∈ π is composed of agents

represented by roles in ci. By the same argument as in the previous case, we get that

(π′,M ′) is also Pareto optimal. Therefore if A is in GRAND PO ASHG then f(A)

is in GRAND PO RTHG.

Therefore f(A) is in GRAND PO RBHG iff A is in GRAND PO ASHG.

Thus, f is a reduction from GRAND PO ASHG to GRAND PO RBHG. q

Definition 4.2.16. The language GRAND CSCS RBHG consists of those in-

stances of RBHG for which there exists a partition consisting of the grand coalition

and some assignment of agents to roles which is contractual strict core stable.

Theorem 4.2.17. GRAND CSCS RBHG is coNP-complete.

Proof. First we show that GRAND CSCS RBHG is in coNP by the following non-

deterministic polynomial time algorithm. Given a solution (π,M) consisting of the

grand coalition for an instance of RBHG, guess a team t′ and a composition c′. If

(t′, c′) weakly blocks (π,M) for some matching of roles in c′ to agents in t′, then (π,M)

is not contractual strict core stable.

The construction given in the proof of Theorem 4.2.2 also gives a reduction from

GRAND CSCS ASHG to GRAND CSCS RBHG.

Let f(A) be in GRAND CSCS RBHG and let (π,M) be a contractual strict

core stable solution of f(A) consisting of the grand coalition. Observe that each agent
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in pi ∈ π must be assigned to ri ∈ R, or else π could not be Pareto optimal. This

follows from Observation 4.2.15.

From (π,M), a contractual strict core stable solution of f(A) consisting of the

grand coalition, we construct a partition π′ of A using f−1. Since (π,M) maps each

pi ∈ P to the role ri representing f−1(pi) = ni ∈ N , we have that f−1(π,M) = π′ is

a well-defined partition of A consisting of the grand coalition.

To show that π is a contractual strict core stable partition of A, consider the fol-

lowing proof by contradiction. Suppose π′ of A is not contractual strict core stable.

Then there there exists a weakly blocking team t′ of π′. Consider that the correspond-

ing team t′ and composition c′ which weakly blocks f(π,M), where the composition

c′ consists of roles for agents in t′ and each agent pi ∈ t′ is matched to its own role

ri ∈ c′. This contradicts the premise that (π,M) is Pareto optimal. Therefore if f(A)

is in GRAND CSCS RBHG then A is in GRAND CSCS ASHG.

Now let π be a contractual strict core stable partition of A consisting of the grand

coalition. Let (π′,M ′) = f(π) be the corresponding solution of f(A) consisting of the

grand coalition. For each agent pi ∈ P , ui(r
i, ci) = vi(t

i) where ti ∈ π is composed of

agents represented by roles in ci. By the same argument as in the previous case, we

get that (π′,M ′) is also contractual strict core stable. Therefore if A is in GRAND

CSCS ASHG then f(A) is in GRAND CSCS RTHG.

Therefore f(A) is in GRAND CSCS RBHG iff A is in GRAND CSCS ASHG.

Thus, f is a reduction from GRAND CSCS ASHG to GRAND CSCS RBHG.

q

Copyright c© Matthew Spradling, 2015.
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Chapter 5 Heuristic Matchmaking Results

In this Chapter I present several experimental procedures and the results of their

application to real world matchmaking scenarios. The main research question of this

chapter is whether or not the algorithms I propose can produce partitions with better

optimization results than partitioning without intent to optimize.

In Section 5.3 I outline a procedure I have used to scrape real world data from

League of Legends matches. I detail a few observations about the structure of the real

world data and propose two different utility functions for converting the matchmaking

data into RBHG instances. In Section 5.4 I detail four methods of generating ran-

domized RBHG instances to test extreme cases of observed properties in the League

of Legends data: the probability distribution over roles and compositions, the pres-

ence of a single role which is popular to all agents, the presence of a single role which

is unpopular to all agents (yet still required for several compositions they do prefer),

and the phenomenon of each agent having devotion to a single role it prefers.

In Sections 5.1 and 5.2, I provide implementations of two heuristic matchmaking

procedures which I call greedy voting heuristic and greedy local search heuristic. The

greedy voting heuristic iteratively forms new teams by selecting a single composition

to optimize on. The local search heuristic instead begins with a single agent and

iteratively adds agents to the team which provide the most improvement to the total

utility of the optimal matching for that team. Both algorithms run in polynomial

time in the size of the input.

I evaluate the two algorithms on RBHG instances generated from the League of

Legends matchmaking data and the four experimental utility functions for randomly

generated RBHG instances. I compare the results of the algorithms to randomly

generated partitions on multiple optimization goals in Section 5.5.
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Greedy local search shows general improvement over greedy voting and random

partitions. The instances generated from the League of Legends data and on two of

the four experimental utility functions tend to produce fewer reachable compositions

in any given partition. This is especially true for partitions formed by the greedy

voting heuristic.

5.1 Greedy Voting Heuristic

A voting rule is a function mapping a vector a of voters’ votes to one of the b candi-

dates in a candidate set c. With the scoring voting rule, each voter assigns a score to

each candidate within the set. The winner of the election is the candidate with the

most total points over all voters in the election.

Definition 5.1.1. [24] Let a = 〈a1, · · · , am〉 be a vector of integers such that a1 <

a2 < . . . < am. For each voter, a candidate receives a1 points if it is ranked first by

the voter, a2 points if it is ranked second, etc. The score sc of candidate c is the total

number of points the candidate receives. This is a scoring voting rule.

By modeling agents as voters in an election and their preferences over team com-

positions and roles as votes, the scoring voting rule can be applied to iteratively hold

elections over the set of compositions. Once a composition is selected, the set of

agents who optimize total utility for that composition can be assigned to a team

together. This greedy approach narrows the problem to optimizing utility for a single

composition rather than across all compositions.

For my procedure called greedy voting heuristic, the voters are the agents

and the candidates are pairs (c, r) where c is a composition and r ∈ c. An election

is run upon the candidate set to select the most-preferred composition ci. A set of

|ci| voters with the highest utility for that composition is selected to form a team

and removed from the population. These agents are matched to roles within the
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composition by application of the Kuhn Munkres algorithm for optimizing square

matrices [31]. This optimizes total utility of the matching for players on the new

team. Their votes are removed, and a new election is held on the reduced candidate

set. This procedure continues until all |P | agents have been matched to teams. The

following pseudocode describes this greedy algorithm [69]:

Algorithm 1 GreedyVoting(RTHG instance G, empty partition π, min(|c|) = m)

b =: |C|
for |C| compositions c0 → cb do

for |ci| positions r0 → r|ci| ∈ ci do
calculate the sum of agent votes on 〈ci, rj〉. %O(|P |)

end for
end for
for |P |/m coalitions t0 → t|P |/m−1 to assign to π do

find the set of compositions Cmax for which the sum of total votes is maximized.
%O(|C| ·m)
select one composition ci uniformly at random from within the set.
for |ci| positions r0 → r|ci|−1 ∈ ci do

find the set of agents Pmax(ci, rj) for whom the individual agent’s vote for
〈ci, rj〉 is maximized. %This takes time O(|P |/|ci|), given that the population
shrinks by |ci| agents as each team is formed and removed.
select one agent pj uniformly at random from within the set.
add agent pj to the coalition tk.
optimize the |ci| × |ci| matrix of agent utilities over the roles in composition ci
by the Kuhn Munkres algorithm.
for |C| compositions c0 → c|C|−1 do

for m positions r0 → rm−1 ∈ ci do
remove agent pj’s vote from the population, decrementing the sum total
vote on 〈ci, rj〉.

end for
end for

end for
append team tk to the partition π.

end for

Observation 5.1.2. The time complexity of greedy voting heuristic is O(|P |2 ·m2).
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5.2 Greedy Local Search Heuristic

In this section, I define a greedy local search heuristic which runs in polynomial time.

I prove that, for a special case of RBHG, this algorithm will always produce a perfect

assignment.

The greedy local search heuristic I introduce for RBHG iteratively selects an agent

p ∈ P as the pivotal agent and locally optimizes either expected utility or expected

stability for the team t including p and some new agent p′ ∈ P . The local search

continues to add agents to the team t until no local improvement is available or all

positions have been filled, at which point t is added to the final partition. A new

pivotal agent is then selected, forming a new team around the pivot. This procedure

is repeated for each of the up to |P |/max(|t|) teams. In this procedure, a pivotal agent

must be selected each iteration. I consider three different methods for selecting the

pivotal agent, which I will detail in Section 5.5. Each of three methods I use allows

for the selection of a pivotal agent to be made in constant time. The pseudocode for

the greedy algorithm follows:

Algorithm 2 GreedyLocalSearch(RBHG instance B, empty partition π)

for (|P |/min(|c|)) teams do
select a pivotal agent p
for max(|c|)− 1 positions do

set max index imax to null
set max score smax to min(up(r, c)) · |P |
for each p′ of the |P |/m remaining agents do

calculate expected utility s′p for t ∪ p′ %O(|C| ·max(|c|)3)
if s′p > smax, set imax = p′ and smax = s′p

end for
set t = t ∪ imax

end for
set π = π ∪ t

end for

Observation 5.2.1. The time complexity of greedy local search heursitic is O(|P |2 ·

|C| ·max(|c|)2).
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5.3 Scraping League of Legends Game Data

For my experiments, I consider a population of League of Legends players where

|P | = 1081. I scraped data from the most recent 20 matches for each player p ∈ P

from the League of Legends game statistics website LolKing [21], maintained by ZAM

Network LLC. I stored the roles, compositions, and win/loss records for each match. I

selected players uniformly at random by generating account numbers from 20,000,000

to 60,000,000. This gives a range of accounts having been created roughly between the

years 2012 and 2014. After generating a number, I checked if the account was active

by checking the dates of the most recent 10 matches. Players whose most recent 10

matches were played within the last 7 days and had a team size of 5 were accepted for

scraping, while others were rejected. Among those accepted, I checked again in 7 days

and scraped for additional match data. I accepted those whose matches continued to

meet my criteria and rejected the rest. This procedure left me with the population

of 1081 players to consider.

I considered a set R with |R| = 5 consisting of popular champion roles, Jungler,

AD Carry, Tank, Support, and Mage. These roles were identified as the most com-

mon roles of champions selected. To handle multiple identical roles within the same

composition, I accumulated a counter to create multiple instances of the same role.

I used frequent item set mining over the sets of roles used each match to determine

the most frequently played compositions within the population. Frequent item set

mining was performed using a recursive elimination implementation by Borgelt [17].

I used a support threshold of 3%; that is, I accepted those compositions which were

used (i.e. supported) in at least 3% of matches, and rejected others. This left a set

|C| = 8 of compositions which in total were used in more than 60% of all matches

played in the games I considered.

In Table 5.1 I show the percentage of winning teams which used each composition

within the support threshold. Table 5.2 presents the percentage of losing teams
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Table 5.1: Percent usage of compositions by winning teams, support threshold ≥ 3%

Composition Percent Usage (%)
J1 S1 T1 M1 A1 (20.3255)
M2 S1 T1 A1 M1 (9.312)
T2 S1 M1 A1 T1 (7.25911)
M2 J1 T1 A1 M1 (6.15868)
M2 J1 S1 A1 M1 (5.61309)
J2 S1 M1 A1 J1 (5.16923)
T2 M2 A1 T1 M1 (3.42149)
T2 J1 M1 A1 T1 (3.32902)

Table 5.2: Percent usage of compositions by losing teams, support threshold ≥ 3%

Composition Percent Usage (%)
J1 S1 T1 M1 A1 (19.2343)
M2 S1 T1 A1 M1 (7.58276)
M2 S1 J1 A1 M1 (6.64879)
M2 J1 T1 A1 M1 (6.50083)
T2 S1 M1 A1 T1 (5.35417)
T2 J1 M1 A1 T1 (4.62364)
J2 S1 M1 A1 J1 (4.2445)
T2 M2 A1 T1 M1 (3.02386)

which used each composition. Roles within compositions are numbered to distinguish

multiple instances of the same role. Table 5.3 presents the percent likelihood that a

given agent will accept one of the five popular roles. The numbering here shows the

likelihood that an agent will accept being the first, second, or even third instance of

the given role within a composition. Notably, it is more likely for a third Mage to

be adopted onto a team than even a second AD Carry, even though the AD Carry

is the most popular role of all. For players familiar with the game, this may not be

surprising as the AD Carry role tends to require more of the limited team resources

in order to do well. As such, having a second or much less third person fulfilling that

role within a team is not common practice. I observe from the data that most people

want to play this position but few people want there to be two of them.
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Table 5.3: Percent usage of roles across all teams, support threshold ≥ 3%

Role Percent Usage (%)
A1 (90.836)
M1 (89.1807)
T1 (76.6969)
S1 (68.2264)
J1 (64.8696)
M2 (41.1873)
T2 (25.7259)
J2 (14.9898)
M3 (9.44146)
S2 (6.82449)
A2 (5.91825)
T3 (4.30923)

5.4 Randomly Generated RBHG Instances

I generated 80 RBHG instances, each with population size |P | = 1081, to compare

with the heuristic result on two instances generated from League of Legends match-

making data. I used the set of eight compositions and five roles from the scraped

League of Legends data. I used four utility distributions, each over 20 of the RBHG

instances: League of Legends based utilities, one popular role, one unpopular role, and

devoted role utilities. Primarily, the question being asked with each experiment is

whether or not the proposed utility distribution produces similar results to the real

world data. Secondarily, I am examining the algorithms’ performances with respect

to expected stability, expected utility, and optimal composition utility with respect to

these distributions.

Utility for each role and composition was set to a default value of 0. For each agent,

10 simulated matches were generated assigning the agent to a role and composition.

Utility for the agent on these roles and compositions was set to 1. For each simulated

match, the random number generator from the Python random library was used to

decide which role and composition to select.
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League of Legends based utilities: A probability distribution over the compositions

and roles was created. When generating a match for an agent, the probabil-

ity of the agent accepting a particular role and composition was equal to the

probability of an agent accepting the same role and composition in the League

of Legends data. The resulting utility distribution is similar to what is ob-

served in the League of Legends matches but does not guarantee a modeling

of individual agent behaviors. The question being asked by this experiment is

whether the population-wide probability distribution over role and composition

pair acceptance is sufficient to predict similar matchmaking results to the real

world data.

One popular role: In each instance, a single role was selected to be most popular to

all agents. This is analogous to the observed preference of League of Legends

players to play the AD Carry (Table 5.3), but taken to an extreme. When

generating a preference for a role and composition pair, the probability of the

agent selecting the popular role was 80%, with each of the other four roles being

selected with 5% probability. The composition for each match was selected

uniformly at random from the set. The question being asked by this experiment

is whether or not having a single role popular to the entire population produces

similar matchmaking results to the real world data.

One unpopular role: In each instance, a single role was selected to be least popular

to all agents. This is analogous to the observed dislike of League of Legends

players to fulfill the role of Support (Table 5.3), again to the extreme. When

generating a preference for a role and composition pair, the probability of the

agent selecting the unpopular role was 5%, with each of the other four roles

being selected with 23.75% probability. The composition for each match was

selected uniformly at random from the set. The question being asked by this
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experiment is whether or not having a single role unpopular to the entire pop-

ulation produces similar matchmaking results to the real world data.

Devoted role: In each instance, for each agent, a single role was selected to be strictly

preferred by that agent. This is analogous to a League of Legends player who is

devoted to selecting a single preferred role whenever possible. When generating

a preference for a role and composition pair in these instances, an agent is always

assigned to its preferred role if it is available in that composition. If the preferred

role is not available in the composition, a role is selected uniformly at random.

The composition for each match was selected uniformly at random from the

set. The question being asked by this experiment is whether or not having each

agent devote themselves to a single role produces similar matchmaking results

to the real world data.

5.5 Testing and Results

As previously observed, optimal composition utility, expected utility and expected sta-

bility can be calculated in polynomial time given a partition π. The challenge is

selecting a partition of agents to teams for which these values are optimized. I evalu-

ate the partitions generated by each algorithm in terms of the maximum, minimum,

mean and median for each of optimal composition utility, expected utility and ex-

pected stability. I consider expected stablity and expected utility both over the number

of reachable compositions and over the number of reachable and advocated composi-

tions.

The choice of pivotal agent for greedy local search heuristic can impact the results

of the algorithm. I considered three methods of selecting a pivotal agent: selecting

an agent who is among the easiest to please, an agent who is among the hardest to

please, and an agent selected uniformly at random.
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Definition 5.5.1. Given an instance B of RBHG, an agent pi who is among the

easiest to please is one for whom qi =
∑

r,c ui(r, c) is maximized. An agent who is

among the hardest to please is one for whom qi is minimized.

I ran greedy local search heuristic upon the entire population |P | = 1081 generated

from the League of Legends game data and on the 20 randomly generated instances.

I tested three variants of Greedy Local Search, varying the method of selecting the

pivotal agent: selecting one of the easiest to please agents each iteration, one of the

hardest to please agents, and an agent selected i.i.d. from P .

I ran greedy voting heuristic upon the same population. In addition, I formed

100 partitions of agents to teams selected i.i.d. This comparison tests how the two

algorithms fare against matchmaking without attempting optimization.

For the League of Legends data I tested two utility functions, wins only and wins

and losses, each generated from the roles and compositions with which agents won or

lost in the game data considered. In both cases, I consider an agent to accept a pair

〈r, c〉 if up(r, c) = 1 and otherwise to reject it.

Definition 5.5.2. Wins only utility function: For each agent p ∈ P , for each c ∈ C

set up(r, c) = 1 if the agent won more matches with 〈r, c〉 than they lost, and up(r, c) =

0 otherwise.

Definition 5.5.3. Wins and losses utility function: For each agent p ∈ P , for each

c ∈ C set up(r, c) = 1 if the agent won more matches with 〈r, c〉 than they lost,

up(r, c) = −1 if the agent lost more matches with 〈r, c〉 than they won, and up(r, c) = 0

otherwise.

Computations were run on a machine using 8 GB of RAM and a 2.50 GHz Intel(R)

Core(TM) i5-3210M CPU. Each algorithm was implemented in Python 3.4.

52



5.5.1 Expected Stability Results

Experimental results in terms of expected stability are found in Figures 5.1–5.12. The

column labeled Max denotes the maximum expected stability across all teams in the

partition, while the column labeled Min denotes the minimum across all teams. The

columns labeled Mean and Median denote the mean and median across all teams.

For expected stability the maximum possible value is 1. Note that Figures 5.1, 5.3,

5.5, and 5.9 over reachable compositions use a smaller maximum value for the Y axis

compared to Figures 5.2, 5.4, 5.6, and 5.10. This is due to the smaller magnitudes of

their results.

The greedy voting heuristic shows minor improvement over random partitions with

regards to maximum and mean expected stability for all utility functions. However,

with only one exception (Figure 5.3), the greedy local search heuristic produces higher

expected stability than both random partitions and the greedy voting heuristic. This

result occurs regardless of the selection of pivotal agent each iteration of the local

search. Instances generated from the scrapped League of Legends data had better

results by selecting the hardest to please agent as the pivot, while selecting a random

pivot tends to be the best choice in other instances.

Expected stability was difficult to optimize–especially in terms of the minimum

across all teams. For all approaches, on all six utility functions tested, minimum

expected stability was zero. The same is true of the medians for both the one popular

role (Figures 5.3 and 5.4) and one unpopular role (Figures 5.5 and 5.6) generated

instances. It is possible that there were no possible partitions for these instances

with a higher minimum expected stability. Note that a partition with a minimum

expected stability greater than zero contains a perfect matching, given that each team

has at least one composition with a perfect matching. As previously observed, not

every RBHG instance contains a perfect solution and it is NP-complete to decided if

one exists for a given instance.
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Best results were observed in the devoted role instances (Figures 5.11 and 5.12).

Instances with League of Legends based utilities and those generated directly from

League of Legends matchmaking data showed similar improvement, but not to the

same magnitude (with the exception of a single team maintaining perfect expected

stability even over reachable compositions in Figure 5.7). The solutions for these

instances contained fewer reachable compositions on each team compared to the other

experimental utility functions.

Figure 5.1: Expected stability over
reachable compositions with generated
League of Legends match data using
utility function up(r, c)→ (1, 0)

Figure 5.2: Expected stability over
reachable and advocated composi-
tions with generated League of Leg-
ends match data using utility function
up(r, c)→ (1, 0)

Figure 5.3: Expected stability over
reachable compositions with generated
one popular role match data using util-
ity function up(r, c)→ (1, 0)

Figure 5.4: Expected stability over
reachable and advocated compositions
with generated one popular role match
data using utility function up(r, c) →
(1, 0)
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Figure 5.5: Expected stability over
reachable compositions with generated
one unpopular role match data using
utility function up(r, c)→ (1, 0)

Figure 5.6: Expected stability over
reachable and advocated composi-
tions with generated one unpopular
role match data using utility function
up(r, c)→ (1, 0)

Figure 5.7: Expected Stability over
reachable compositions with League of
Legends match data using utility func-
tion up(r, c)→ (1, 0,−1)

Figure 5.8: Expected Stability over
reachable and advocated composi-
tions with League of Legends match
data using utility function up(r, c) →
(1, 0,−1)
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Figure 5.9: Expected stability over
reachable compositions with League of
Legends match data using utility func-
tion up(r, c)→ (1, 0)

Figure 5.10: Expected stability over
reachable and advocated compositions
with League of Legends match data
using utility function up(r, c)→ (1, 0)

Figure 5.11: Expected stability over
reachable compositions with generated
devoted role match data using utility
function up(r, c)→ (1, 0)

Figure 5.12: Expected stability over
reachable and advocated compositions
with generated devoted role match
data using utility function up(r, c) →
(1, 0)
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5.5.2 Expected Utility Results

Experimental results in terms of expected utility are found in Figures 5.13–5.24. The

column labeled Max denotes the maximum expected utility across all teams in the

partition, while the column labeled Min denotes the minimum across all teams. The

columns labeled Mean and Median denote the mean and median across all teams.

For expected utility the maximum possible value is 5. Note that Figures 5.13, 5.15,

5.17, 5.19, and 5.21 over reachable compositions use a smaller maximum value for

the Y axis compared to Figures 5.12, 5.14, 5.16, 5.18, and 5.20. This is due to the

smaller magnitudes of their results.

The greedy voting heuristic does not demonstrate general improvement over ran-

dom partitions with regards to maximum, mean and median expected utility. For

min expected utility, random partitioning shows an improvement over greedy voting

heuristic.

In one case (Figure 5.23), random partitioning showed improvement over one (but

not all) of the the local search pivot selection methods. Otherwise, the greedy local

search heuristic showed improvement for expected utility over random partitioning

in all cases.

The greedy voting heuristic shows a large improvement over the greedy local search

algorithm in terms of the maximum expected utility over reachable compositions on

instances generated from League of Legends matchmaking data (Figures 5.19 and

5.21) and on instances generated with League of Legends based utility distributions

(Figure 5.13). This is due to fact that, in these instances, the composition consisting

of one of each role is highly popular. Because the greedy voting heuristic is designed

to select a team based upon the most popular composition each iteration, it often

selects a team which optimizes utility on this composition. This tends to lower the

number of reachable compositions, with each agent having a preference for a unique

role in at least this composition. As the improvement does not carry over to the mean
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and median, this does not necessarily suggest a general improvement by the greedy

voting heuristic. Furthermore, the improvements do not hold up when only reachable

and acceptable compositions are considered (Figures 5.14, 5.20, and 5.22).

For the mean and median, no strong improvements of expected utility over reach-

able compositions are observed for either the greedy voting heuristic or the greedy

local search heuristic compared to random partitions. While I observe that the mag-

nitude of results are once again higher overall for the devoted role utility function,

the greedy local search heuristic only tends to improve on expected utility over reach-

able and acceptable compositions. While expected stability over reachable compositions

was improved by the role/-devotion phenomenon, expected utility does not share this

relationship on these instances.

Figure 5.13: Expected utility over
reachable compositions with generated
League of Legends match data using
utility function up(r, c)→ (1, 0)

Figure 5.14: Expected utility over
reachable and advocated composi-
tions with generated League of Leg-
ends match data using utility function
up(r, c)→ (1, 0)
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Figure 5.15: Expected utility over
reachable compositions with generated
one popular role match data using util-
ity function up(r, c)→ (1, 0)

Figure 5.16: Expected utility over
reachable and advocated compositions
with generated one popular role match
data using utility function up(r, c) →
(1, 0)

Figure 5.17: Expected utility over
reachable compositions with generated
one unpopular role match data using
utility function up(r, c)→ (1, 0)

Figure 5.18: Expected utility over
reachable and advocated composi-
tions with generated one unpopular
role match data using utility function
up(r, c)→ (1, 0)
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Figure 5.19: Expected utility over
reachable compositions with League of
Legends match data using utility func-
tion up(r, c)→ (1, 0,−1)

Figure 5.20: Expected utility over
reachable and advocated composi-
tions with League of Legends match
data using utility function up(r, c) →
(1, 0,−1)

Figure 5.21: Expected utility over
reachable compositions with League of
Legends match data using utility func-
tion up(r, c)→ (1, 0)

Figure 5.22: Expected utility over
reachable and advocated compositions
with League of Legends match data
using utility function up(r, c)→ (1, 0)
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Figure 5.23: Expected utility over
reachable compositions with generated
devoted role match data using utility
function up(r, c)→ (1, 0)

Figure 5.24: Expected utility over
reachable and advocated compositions
with generated devoted role match
data using utility function up(r, c) →
(1, 0)
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5.5.3 Optimal Composition Utility Results

Experimental results in terms of optimal composition utility are found in Figures

5.25–5.30. The column labeled Max denotes the maximum optimal composition utility

across all teams in the partition, while the column labeled Min denotes the minimum

across all teams. The columns labeled Mean and Median denote the mean and median

across all teams. For optimal composition utility the maximum possible value is five.

It is worth noting that optimal composition utility is the only metric that the

greedy voting heuristic was designed to improve. Rather than attempting to optimize

over all compositions, the voting heuristic works by selecting a highly preferred com-

position and then matching agents to roles within that composition in an optimal

way. Therefore, I would expect the voting heuristic to perform better on this test

case than on the previous two.

None of the methods seem to have trouble optimizing the maximum optimal com-

position utility among teams. It seems that even with a random partition it is likely to

find at least one team with a perfect matching for each of the five utility distributions

considered.

For the minimum optimal composition utility, the greedy local search heuristic

performs as well as or better than both the greedy voting heuristic and random parti-

tioning on all cases except on the devoted role instances (Figure 5.30). Similarly, with

only one exception (Figure 5.26), the greedy local search heuristic shows improvement

for both the mean and the median on these instances.

Though it is generally beaten by local search, the greedy voting heuristic performs

as well as or better than random partitions in terms of the mean and median. This

is in contrast to the lack of significant improvement seen from the voting heuristic

for expected stability and expected utility. In the case of utility distributions with

one popular role (Figure 5.26) the voting heuristic actually out-performs the local

search heuristic in terms of the mean. While the local search heuristic generally shows
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improvement over the voting heuristic, the difference is less sweeping and pronounced

for the optimal composition utility.

Figure 5.25: Optimal composition utility with generated League of Legends match
data using utility function up(r, c)→ (1, 0)
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Figure 5.26: Optimal composition utility with generated one popular role match data
using utility function up(r, c)→ (1, 0)
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Figure 5.27: Optimal composition utility with generated one unpopular role match
data using utility function up(r, c)→ (1, 0)
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Figure 5.28: Optimal composition utility with League of Legends match data using
utility function up(r, c)→ (1, 0,−1)
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Figure 5.29: Optimal composition utility with League of Legends match data using
utility function up(r, c)→ (1, 0)
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Figure 5.30: Optimal composition utility with generated devoted role match data
using utility function up(r, c)→ (1, 0)
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Chapter 6 Conclusions

6.1 Complexity Results

Given a partition, an optimal matching in terms of optimal composition utility can

be found in polynomial time as shown in Section 2.6. Similarly, expected utility and

expected stability can be evaluated in time polynomial in the RBHG instance; if

the number of compositions is polynomial in the number of players and roles, then

these evaluations will also be polynomial in the number of players and roles. Each

composition can be optimized in cubic time over the team size by the Kuhn Munkres

algorithm for square matrices.

Finding a partition and subsequent matching which is perfect or optimizes max

sum or max min utility is computationally hard as shown in Section 4.1. I observe

that these goal solutions may not be as valuable in a setting where agents can choose

to reject a solution. Finding a partition and matching which is stable under several

measures of stability is also computationally hard as shown in Section 4.2.

6.2 Algorithms and Utility Distributions

When considering the set of reachable and advocated compositions, experiments in

Section 5.5 show that optimizing expected stability may be a difficult goal to achieve

on League of Legends data. It appears that the availability of partitions with a high

expected stability is limited given the two utility functions proposed in this paper.

The results for optimizing expected utility and optimal composition utility are more

promising. By contrast, I discovered stronger results for optimizing expected stability

over the set of reachable compositions. This is particularly pronounced on instances

where each agent exhibits a strong devotion to a particular role, and tends to hold
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up on instances generated from League of Legends matchmaking data and instances

generated with utility distributions based upon this data.

My earliest work on optimization showed good results for the greedy voting heuris-

tic [69]. These results hold up somewhat for optimization of optimal composition

utility, for which the algorithm was originally designed. However, the new algorithm

presented in Section 2.6 for optimizing a matching given a partition allows a random

partitioning algorithm to work almost as well as the greedy voting heuristic, as shown

in Section 5.5.

The greedy local search heuristic out-performs the greedy voting heuristic for all

optimization problems considered in this paper in almost all cases. The greedy local

search heuristic also out-performs random partitioning in almost every case. As such,

the greedy local search heuristic appears to be the best algorithm so far for selecting

a partition.

The greedy local search heuristic can be parallelized both over the set of com-

positions and the set of agents. The step of checking for which agent to next add

to a team can be parallelized by considering agents in parallel. Checking the utility

of the optimal matching for each composition can also be parallelized. The results

of the algorithm would not be changed, given that the agent utilities for roles and

compositions are all independent variables.

6.3 Thoughts on a Utility Functions and a Recommender System

Future work will involve two stages of user testing. First, I will validate the selection of

a utility function which represents true utilities of players for roles and compositions.

Second, I will design, implement and validate recommendation systems on real users

in such role based hedonic game settings as League of Legends.

With a recommendation system, a central authority may recommend a subset of

products, services or objects which agents are most likely to accept out of the larger
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total set of options. Recommendation systems are popular tools in e–commerce [63],

social networks [77], medicine [42], and other fields. Applications include movie and

video recommendations [26, 54], music recommendations [64, 83], and team recom-

mendation systems [22].

For the particular problem of team recommendation in League of Legends and

other role based online video games, I consider the task of recommending roles to

players on a team after a partition has been formed. After leveraging the greedy

local search heuristic to form a partition, the system could recommend optimal role

assignments to agents within their teams in polynomial time. Should the agents

accept these recommendations, the experiments suggest high max, mean, and median

optimal composition utilities can be achieved.

The challenges include making recommendations which adapt to changing pref-

erences and avoiding recommendations to users who either reject the system or are

too unpredictable. A successful recommendation system will improve the acceptance

rate for optimal composition matchings while not otherwise creating a negative ex-

perience. A successful system should also protect itself from possible “trolling” or

rejection of the system itself, where a user might consistently act against the recom-

mendations provided. Finally, the system should be able to distinguish between a

user actively working against the recommendation system and a user who experiences

a major shift in preferences.

I propose a two phase recommendation system. Phase one involves pure learn-

ing without recommendation, while phase two incorporates recommendations while

continuing to observe changes in user preferences.

Users start in phase one, where they are given no recommendations. The system

observes behavior and begins determining user preferences for roles and compositions.

Once a user’s preferences become sufficiently predictable, that user is moved to phase

two. In phase two, users are provided recommendations. The system continues to
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observe behavior both in terms of user preferences and in terms of acceptance of

recommendations. Recommendations will be offered privately to users so that other

users do not observe whether or not they accept or reject the recommendations. If a

user consistently rejects recommendations, I would expect it to be due to a change in

preferences or a rejection of the recommendation system. After a certain threshold

of rejections has been reached, a user will be moved back to phase one for additional

observation without recommendation. A user who must be moved back to phase

one frequently may be kept in phase one for longer periods of time. A user who

consistently accepts recommendations in phase two would, alternatively, be kept in

phase two.

Users whose preferences experience a significant paradigm shift may move to phase

one for a period of time until the recommendation system learns their new prefer-

ences, then back to phase two once they are well understood. This would allow the

recommendation system to distinguish between changing preferences and behavior

which is either highly unpredictable or designed to work against the recommendation

system. In this way, users would “opt in” to the recommendation system by gener-

ally accepting what it recommends, and “opt out” by ignoring it or actively working

against it. Users whose preferences are highly unpredictable are not a good fit for

recommendations from the system and would be naturally kept in phase one until

such time that their preferences become predictable.

Copyright c© Matthew Spradling, 2015.
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