904 research outputs found

    New Perspectives in Teaching Pronunciation

    Get PDF
    pp.165-18

    Essential Speech and Language Technology for Dutch: Results by the STEVIN-programme

    Get PDF
    Computational Linguistics; Germanic Languages; Artificial Intelligence (incl. Robotics); Computing Methodologie

    Speech recognition systems and russian pronunciation variation in the context of VoiceInteraction

    Get PDF
    The present thesis aims to describe the work performed during the internship for the master’s degree in Linguistics at VoiceInteraction, an international Artificial Intelligence (AI) company, specializing in developing speech processing technologies. The goal of the internship was to study phonetic characteristics of the Russian language, attending to four main tasks: description of the phonetic-phonological inventory; validation of transcriptions of broadcast news; validation of a previously created lexicon composed by ten thousand (10 000) most frequently observed words in a text corpus crawled from Russian reference newspapers websites; and integration of filled pauses into the Automatic Speech Recognizer (ASR). Initially, a collection of audio and text broadcast news media from Russian-speaking regions, European Russian, Belarus, and the Caucasus Region, featuring different varieties of Russian was conducted. The extracted data and the company's existing data were used to train the acoustic, pronunciation, and language models. The audio data was automatically processed in a proprietary platform and then revised by human annotators. Transcriptions produced automatically and reviewed by annotators were analyzed, and the most common errors were extracted to provide feedback to the community of annotators. The validation of transcriptions, along with the annotation of all of the disfluencies (that previously were left out), resulted in the decrease of Word Error Rate (WER) in most cases. In some cases (in European Russian transcriptions), WER increased, the models were not sufficiently effective to identify the correct words, potentially problematic. Also, audio with overlapped speech, disfluencies, and acoustic events can impact the WER. Since we used the model that was only trained with European Russian to recognize other varieties of Russian language, it resulted in high WER for Belarus and the Caucasus region. The characterization of the Russian phonetic-phonological inventory and the construction of pronunciation rules for internal and external sandhi phenomena were performed for the validation of the lexicon – ten thousand of the most frequently observed words in a text corpus crawled from Russian reference newspapers websites, were revised and modified for the extraction of linguistic patterns to be used in a statistical Grapheme-to-phone (G2P) model. Two evaluations were conducted: before the modifications to the lexicon and after. Preliminary results without training the model show no significant results - 19.85% WER before the modifications, and 19.97% WER after, with a difference of 0.12%. However, we observed a slight improvement of the most frequent words. In the future, we aim to extend the analysis of the lexicon to the 400 000 entries (total lexicon size), analyze the type of errors that are produced, decrease the word error rate (WER), and analyze acoustic models, as well. In this work, we also studied filled pauses, since we believe that research on filled pauses for the Russian language can improve the recognition system of VoiceInteraction, by reducing the processing time and increasing the quality. These are marked in the transcriptions with “%”. In Russian, according to the literature (Ten, 2015; Harlamova, 2008; Bogradonova-Belgarian & Baeva, 2018), these are %a [a], %am [am], %@ [ə], %@m [əm], %e [e], %ɨ [ɨ], %m [m], and %n [n]. In the speech data, two more filled pauses were found, namely, %na [na] and %mna [mna], as far as we know, not yet referenced in the literature. Finally, the work performed during an internship contributed to a European project - Artificial Intelligence and Advanced Data Analysis for Authority Agencies (AIDA). The main goal of the present project is to build a solution capable of automating the processing of large amounts of data that Law Enforcement Agencies (LEAs) have to analyze in the investigations of Terrorism and Cybercrime, using pioneering machine learning and artificial intelligence methods. VoiceInteraction's main contribution to the project was to apply ASR and validate the transcriptions of the Russian (religious-related content). In order to do so, all the tasks performed during the thesis were very relevant and applied in the scope of the AIDA project. Transcription analysis results from the AIDA project showed a high Out-of-Vocabulary (OOV) rate and high substitution (SUBS) rate. Since the language model used in this project was adapted for broadcast content, the religious-related words were left out. Also, function words were incorrectly recognized, in most cases, due to coarticulation with the previous or the following word.A presente tese descreve o trabalho que foi realizado no âmbito de um estágio em linguística computacional na VoiceInteraction, uma empresa de tecnologias de processamento de fala. Desde o início da sua atividade, a empresa tem-se dedicado ao desenvolvimento de tecnologia própria em várias áreas do processamento computacional da fala, entre elas, síntese de fala, processamento de língua natural e reconhecimento automático de fala, representando esta última a principal área de negócio da empresa. A tecnologia de reconhecimento de automático de fala da VoiceInteraction explora a utilização de modelos híbridos em combinação com as redes neuronais (DNN - Deep Neural Networks), que, segundo Lüscher et al. (2019), apresenta um melhor desempenho, quando comparado com modelos de end-to-end apenas. O objetivo principal do estágio focou-se no estudo da fonética da língua russa, atendendo a quatro tarefas: criação do inventário fonético-fonológico; validação das transcrições de noticiários; validação do léxico previamente criado e integração de pausas preenchidas no sistema. Inicialmente, foi realizada uma recolha dos principais meios de comunicação (áudio e texto), apresentando diferentes variedades do russo, nomeadamente, da Rússia Europeia, Bielorrússia e Cáucaso Central. Na Rússia europeia o russo é a língua oficial, na Bielorrússia o russo faz parte das línguas oficiais do país, e na região do Cáucaso Central, o russo é usado como língua franca, visto que este era falado na União Soviética e continua até hoje a ser falado nas regiões pós-Soviéticas. Tratou-se de abranger a maior cobertura possível da língua russa e neste momento apenas foi possível recolher os dados das variedades mencionadas. Os dados extraídos de momento, juntamente com os dados já existentes na empresa, foram utilizados no treino dos modelos acústicos, modelos de pronúncia e modelos de língua. Para o tratamento dos dados de áudio, estes foram inseridos numa plataforma proprietária da empresa, Calligraphus, que, para além de fornecer uma interface de transcrição para os anotadores humanos poderem transcrever os conteúdos, efetua também uma sugestão de transcrição automática desses mesmos conteúdos, a fim de diminuir o esforço despendido pelos anotadores na tarefa. De seguida, as transcrições foram analisadas, de forma a garantir que o sistema de anotação criado pela VoiceInteraction foi seguido, indicando todas as disfluências de fala (fenómenos característicos da edição da fala), tais como prolongamentos, pausas preenchidas, repetições, entre outros e transcrevendo a fala o mais próximo da realidade. Posteriormente, os erros sistemáticos foram analisados e exportados, de forma a fornecer orientações e sugestões de melhoria aos anotadores humanos e, por outro lado, melhorar o desempenho do sistema de reconhecimento. Após a validação das transcrições, juntamente com a anotação de todas as disfluências (que anteriormente eram deixadas de fora), observamos uma diminuição de WER, na maioria dos casos, tal como esperado. Porém, em alguns casos, observamos um aumento do WER. Apesar das correções efetuadas aos ficheiros analisados, os modelos não foram suficientemente eficazes no reconhecimento das palavras corretas, potencialmente problemáticas. A elevada taxa de WER nos áudios com debates políticos, está relacionada com uma maior frequência de fala sobreposta e disfluências (e.g., pausas preenchidas, prolongamentos). O modelo utilizado para reconhecer todas as variedades foi treinado apenas com a variedade de russo europeu e, por isso, o WER alto também foi observado para as variedades da Bielorrússia e para a região do Cáucaso. Numa perspetiva baseada em dados coletados pela empresa, foi realizada, de igual modo, uma caracterização e descrição do inventário fonético-fonológico do russo e a construção de regras de pronúncia, para fenómenos de sandhi interno e externo (Shcherba, 1957; Litnevskaya, 2006; Lekant, 2007; Popov, 2014). A empresa já empregava, através de um G2P estatístico específico para russo, um inventário fonético para o russo, correspondente à literatura referida anteriormente, mas o mesmo ainda não havia sido validado. Foi possível realizar uma verificação e correção, com base na caracterização dos fones do léxico do russo e nos dados ecológicos obtidos de falantes russos em situações comunicativas diversas. A validação do inventário fonético-fonológico permitiu ainda a consequente validação do léxico de russo. O léxico foi construído com base num conjunto de características (e.g., grafema em posição átona tem como pronúncia correspondente o fone [I] e em posição tónica - [i]; o grafema em posição final de palavra é pronunciado como [- vozeado] - [f]; entre outras características) e foi organizado com base no critério da frequência de uso. No total, foram verificadas dez mil (10 000) palavras mais frequentes do russo, tendo por base as estatísticas resultantes da análise dos conteúdos existentes num repositório de artigos de notícias recolhidos previamente de jornais de referência em língua russa. Foi realizada uma avaliação do sistema de reconhecimento antes e depois da modificação das dez mil palavras mais frequentemente ocorridas no léxico - 19,85% WER antes das modificações, e 19,97% WER depois, com uma diferença de 0,12%. Os resultados preliminares, sem o treino do modelo, não demonstram resultados significativos, porém, observamos uma ligeira melhoria no reconhecimento das palavras mais frequentes, tais como palavras funcionais, acrónimos, verbos, nomes, entre outros. Através destes resultados e com base nas regras criadas a partir da correção das dez mil palavras, pretendemos, no futuro, alargar as mesmas a todo o léxico, constituído por quatrocentas mil (400 000) entradas. Após a validação das transcrições e do léxico, com base na literatura, foi também possível realizar uma análise das pausas preenchidas do russo para a integração no sistema de reconhecimento. O interesse de se incluir também as pausas no reconhecedor automático deveu-se sobretudo a estes mecanismos serem difíceis de identificar automaticamente e poderem ser substituídos ou por afetarem as sequências adjacentes. De acordo com o sistema de anotação da empresa, as pausas preenchidas são marcadas na transcrição com o símbolo de percentagem - %. As pausas preenchidas do russo encontradas na literatura foram %a [a], %am [am] (Rose, 1998; Ten, 2015), %@ [ə], %@m [əm] (Bogdanova-Beglarian & Baeva, 2018) %e [e], %ɨ [ɨ], %m [m] e %n [n] (Harlamova, 2008). Nos dados de áudio disponíveis na referida plataforma, para além das pausas preenchidas mencionadas, foram encontradas mais duas, nomeadamente, %na [na] e %mna [mna], até quanto nos é dado saber, ainda não descritas na literatura. De momento, todas as pausas preenchidas referidas já fazem parte dos modelos de reconhecimento automático de fala para a língua russa. O trabalho desenvolvido durante o estágio, ou seja, a validação dos dados existentes na empresa, foi aplicado ao projeto europeu AIDA - The Artificial Intelligence and Advanced Data Analysis for Authority Agencies. O objetivo principal do presente projeto é de criar uma solução capaz de detetar possíveis crimes informáticos e de terrorismo, utilizando métodos de aprendizagem automática. A principal contribuição da VoiceInteraction para o projeto foi a aplicação do ASR e validação das transcrições do russo (conteúdo relacionado com a religião). Para tal, todas as tarefas realizadas durante a tese foram muito relevantes e aplicadas no âmbito do projeto AIDA. Os resultados da validação das transcrições do projeto, mostraram uma elevada taxa de palavras Fora de Vocabulário (OOV) e uma elevada taxa de Substituição (SUBS). Uma vez que o modelo de língua utilizado neste projeto foi adaptado ao conteúdo noticioso, as palavras relacionadas com a religião não se encontravam neste. Além disso, as palavras funcionais foram incorretamente reconhecidas, na maioria dos casos, devido à coarticulação com a palavra anterior ou a seguinte

    Automating the anonymisation of textual corpora

    Get PDF
    [EU] Gaur egun, testu berriak etengabe sortzen doaz sare sozialetako mezu, osasun-txosten, dokumentu o zial eta halakoen ondorioz. Hala ere, testuok informazio pertsonala baldin badute, ezin dira ikerkuntzarako edota beste helburutarako baliatu, baldin eta aldez aurretik ez badira anonimizatzen. Anonimizatze hori automatikoki egitea erronka handia da eta askotan hutsetik anotatutako domeinukako datuak behar dira, ez baita arrunta helburutzat ditugun testuinguruetarako anotatutako corpusak izatea. Hala, tesi honek bi helburu ditu: (i) Gaztelaniazko elkarrizketa espontaneoz osatutako corpus anonimizatu berri bat konpilatu eta eskura jartzea, eta (ii) sortutako baliabide hau ustiatzea informazio sentiberaren identi kazio-teknikak aztertzeko, helburu gisa dugun domeinuan testu etiketaturik izan gabe. Hala, lehenengo helburuari lotuta, ES-Port izeneko corpusa sortu dugu. Telekomunikazio-ekoizle batek ahoz laguntza teknikoa ematen duenean sortu diren 1170 elkarrizketa espontaneoek osatzen dute corpusa. Ordezkatze-tekniken bidez anonimizatu da, eta ondorioz emaitza testu irakurgarri eta naturala izan da. Hamaika anonimizazio-kategoria landu dira, eta baita hizkuntzakoak eta hizkuntzatik kanpokoak diren beste zenbait anonimizazio-fenomeno ere, hala nola, kode-aldaketa, barrea, errepikapena, ahoskatze okerrak, eta abar. Bigarren helburuari lotuta, berriz, anonimizatu beharreko informazio sentibera identi katzeko, gordailuan oinarritutako Ikasketa Aktiboa erabili da, honek helburutzat baitu ahalik eta testu anotatu gutxienarekin sailkatzaile ahalik eta onena lortzea. Horretaz gain, emaitzak hobetzeko, eta abiapuntuko hautaketarako eta galderen hautaketarako estrategiak aztertzeko, Ezagutza Transferentzian oinarritutako teknikak ustiatu dira, aldez aurretik anotatuta zegoen corpus txiki bat oinarri hartuta. Emaitzek adierazi dute, lan honetan aukeratutako metodoak egokienak izan direla abiapuntuko hautaketa egiteko eta kontsulta-estrategia gisa iturri eta helburu sailkapenen zalantzak konbinatzeak Ikasketa Aktiboa hobetzen duela, ikaskuntza-kurba bizkorragoak eta sailkapen-errendimendu handiagoak lortuz iterazio gutxiagotan.[EN] A huge amount of new textual data are created day by day through social media posts, health records, official documents, and so on. However, if such resources contain personal data, they cannot be shared for research or other purposes without undergoing proper anonymisation. Automating such task is challenging and often requires labelling in-domain data from scratch since anonymised annotated corpora for the target scenarios are rarely available. This thesis has two main objectives: (i) to compile and provide a new corpus in Spanish with annotated anonymised spontaneous dialogue data, and (ii) to exploit the newly provided resource to investigate techniques for automating the sensitive data identification task, in a setting where initially no annotated data from the target domain are available. Following such aims, first, the ES-Port corpus is presented. It is a compilation of 1170 spontaneous spoken human-human dialogues from calls to the technical support service of a telecommunications provider. The corpus has been anonymised using the substitution technique, which implies the result is a readable natural text, and it contains annotations of eleven different anonymisation categories, as well as some linguistic and extra-linguistic phenomena annotations like code-switching, laughter, repetitions, mispronunciations, and so on. Next, the compiled corpus is used to investigate automatic sensitive data identification within a pool-based Active Learning framework, whose aim is to obtain the best possible classifier having to annotate as little data as possible. In order to improve such setting, Knowledge Transfer techniques from another small available anonymisation annotated corpus are explored for seed selection and query selection strategies. Results show that using the proposed seed selection methods obtain the best seeds on which to initialise the base learner's training and that combining source and target classifiers' uncertainties as query strategy improves the Active Learning process, deriving in steeper learning curves and reaching top classifier performance in fewer iterations

    Statistical parametric speech synthesis using conversational data and phenomena

    Get PDF
    Statistical parametric text-to-speech synthesis currently relies on predefined and highly controlled prompts read in a “neutral” voice. This thesis presents work on utilising recordings of free conversation for the purpose of filled pause synthesis and as an inspiration for improved general modelling of speech for text-to-speech synthesis purposes. A corpus of both standard prompts and free conversation is presented and the potential usefulness of conversational speech as the basis for text-to-speech voices is validated. Additionally, through psycholinguistic experimentation it is shown that filled pauses can have potential subconscious benefits to the listener but that current text-to-speech voices cannot replicate these effects. A method for pronunciation variant forced alignment is presented in order to obtain a more accurate automatic speech segmentation something which is particularly bad for spontaneously produced speech. This pronunciation variant alignment is utilised not only to create a more accurate underlying acoustic model, but also as the driving force behind creating more natural pronunciation prediction at synthesis time. While this improves both the standard and spontaneous voices the naturalness of spontaneous speech based voices still lags behind the quality of voices based on standard read prompts. Thus, the synthesis of filled pauses is investigated in relation to specific phonetic modelling of filled pauses and through techniques for the mixing of standard prompts with spontaneous utterances in order to retain the higher quality of standard speech based voices while still utilising the spontaneous speech for filled pause modelling. A method for predicting where to insert filled pauses in the speech stream is also developed and presented, relying on an analysis of human filled pause usage and a mix of language modelling methods. The method achieves an insertion accuracy in close agreement with human usage. The various approaches are evaluated and their improvements documented throughout the thesis, however, at the end the resulting filled pause quality is assessed through a repetition of the psycholinguistic experiments and an evaluation of the compilation of all developed methods

    Listening with great expectations: A study of predictive natural speech processing

    Get PDF
    corecore