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You shall know a word by the company it keeps 

John R. Firth, 1957 
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Introduction 
Chapter 1 

 

 

 

Perception is not limited to the simple sensory analysis of transduced physical input, 

such as photons hitting the retina or air pressure fluctuations on the ear drum. The 

above picture (seen in Clark, 2015) nicely illustrates that context shapes perception: 

In a column of numbers the middle character jumps out as 13. In a row of capital 

letters, the middle character morphs into B. In general, a number is more likely to 

follow after another number and the same holds for letters1. The brain uses this 

contextual information to anticipate likely upcoming input and resolve ambiguity, 

such as, 13 in the context of numbers and B in the context of letters.  

Context sensitivity also influences language processing. The human language 

processing system is highly sensitive to statistical regularities found in language. 

An example of this statistical sensitivity is the word frequency effect, a ubiquitous 

finding across different experimental paradigms, whereby readers and listeners 

more easily process a frequent word, such as thief, compared to an infrequent word, 

such as rogue. I interpret this and other findings, which I discuss further below, as 

evidence for predictive language processing.  

 

1 Based on counts from the web-crawled corpus NLCOW2014 (Schäfer, 2015), it is ~ 65 times more 

likely that a number follows a number (compared to a letter following a number) and ~ 300,000 times 

more likely that a letter follows a letter compared to a number following a letter. 
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In the current thesis, I extend the research into predictive language processing by 

studying the influence of context on listeners’ anticipation of words and their 

auditory form while listening to natural speech.  

 

1.1 Predictive language processing 

There is ample experimental evidence that the human language processing system 

uses anticipatory mechanisms to process language input (for overviews see Ellis, 

2002; Elman, 2009; Luka & Van Petten, 2012; Huettig, 2015; Kuperberg & Jeager, 

2016; Norris, McQueen, Cutler, 2016). Importantly, the evidence for predictive 

language processing is based on many different experimental paradigms. I discuss 

a few examples. 

Eye-tracking studies use a camera to continuously register participants’ gaze 

location. With the visual world paradigm, the concurrent processing of auditory 

speech input and visual input of pictures is investigated. Altman & Kamide (1999) 

used this setup to investigate predictive processing. They presented, for example, a 

picture with a boy, a cake and a toy car while the participant listened to a sentence 

such as The boy eats… or The boy moves… The verb eats elicits more looks towards 

the cake compared to moves, indicating that listeners anticipate an edible object 

when the verb affords this. Many subsequent studies show that multiple sources of 

information are used to incrementally update the mental model of the linguistic and 

visual input (see Huettig, Rommers & Meyer, 2011, for an overview of visual world 

paradigm studies). 

Smith & Levy (2013) used eye-tracking during reading to investigate the relation 

between word predictability and reading time. They estimated the probability of 

words given the preceding context with the aid of statistical language models (on 

which I will go into more detail in Section 1.6). Their analysis showed that word 

probability is log-linearly related to reading times, such that likely words are read 

faster compared to unlikely words. They found that word surprisal, the negative 

logarithm of the probability of a word, predicts the reading time of a word. Surprisal 

is an information-theoretic measure which encodes the amount of Shannon 

information an item (i.e., word) in a message conveys. Informally, surprisal can be 

thought of as the ‘unexpectedness’ of a word, whereby a higher surprisal results in 

longer reading times. 
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Electroencephalography (EEG) measures electrical potential differences across the 

scalp, and it is used to investigate cognitive processes in relation to stimuli. DeLong 

et al. (2005) used the N400 effect to test whether listeners pre-activate upcoming 

words. The N400 is responsive to the semantic expectancy of a word, whereby an 

unexpected word elicits a more negative deflection of the event-related potential 

(ERP) around 400 milliseconds from word onset. Delong et al. (2005) visually 

presented words in a fixed-paced reading task, whereby words were presented one 

at a time on a computer screen. Stimuli consisted of sentences such as The day was 
breezy so the boy went outside to fly … in the park. The blank was either filled with 

a kite or an airplane. They found an N400 effect on the article, whereby an evoked 

a more negative amplitude, indicating that listeners expected the word kite and 

therefore did not expect an. Similar findings were also reported in related studies 

(e.g., Wicha et al., 2004; Van Berkum et al., 2005). However, a recent study 

(Nieuwland et al., 2018) failed to replicate the effect; see DeLong et al. (2017) for 

a response2. For an overview of predictive language processing as investigated with 

the N400, see Federmeier (2007) and, for an overview of the N400, see Kutas and 

Federmeier (2011). 

In N400 studies, word predictability is typically estimated with the aid of a cloze 

test. In a cloze test, participants fill in the empty slot ‘_’ in a sentence such as The 
day was breezy so the boy went outside to fly _ in the park. The responses are 

counted and if, for example, 80% of the participants filled in a certain word, that 

word has an 80% cloze tested probability. The highest scoring word also determines 

the 'constraint' of the sentence, whereby a score such as 80% is considered a highly 

constraining sentence. More recently, the aforementioned ‘word surprisal’ has been 

linked to the N400 by Frank et al., 2015. In a fixed-paced reading task, they found 

that words with high surprisal (i.e., unexpected words) result in a more negative 

N400 amplitude (see Kuperberg et al. 2017 for a comparison between word 

probability and surprisal).  

 

2 The response from DeLong et al. (2017) was not peer reviewed and commented on a pre-print version 

of Nieuwland et al. (2018). DeLong et al. (2017) argued that the failure to replicate could be caused 

by differences between Nieuwland et al. (2018) and DeLong et al. (2005) experimental setup.  A 

reanalysis of the data from the Nieuwland et al. replication by Kuperberg (2017) did reveal an effect 

similar to Delong et al. (2005). In combination with the findings from Wicha et al. (2004) and Van 

Berkum et al. (2005) we argue that the evidence still supports the proposition that word (forms) are 

anticipated based on preceding context. 
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Notwithstanding the evidence for predictive language processing, there are critical 

views of the role or relative importance of anticipatory language comprehension. 

Huettig (2015) reviews the evidence for the role of prediction in language 

comprehension and notes that evidence is typically based on contrasting highly 

probable with highly improbable sentence continuations (i.e., low versus high cloze 

probability words). Also, the presence of many highly constraining sentences in 

experimental materials may artificially boost the benefit and therefore the use of 

prediction. Huettig (2015) concludes that it is unclear to what extent predictive 

language processing occurs when listeners or readers process natural language. 

Another confounding factor is the manner of stimulus presentation. For example, 

many language-related EEG experiments use the fixed-paced reading paradigm, 

whereby participants read sentences one word at a time, presented sequentially at 

the center of a computer monitor. This setup has several benefits. Participants do 

not have to move their eyes, which helps to avoid artefacts related to eye 

movements. Furthermore, the presentation rate is controlled without input from the 

participants (e.g., button presses) that could introduce artefacts in the EEG data. 

This setup does have a drawback, however: The experimenter has to choose a 

specific inter-stimulus interval (ISI), which potentially influences the found effects 

(Luka & Van Petten, 2014). For example, prediction effects might be found with a 

longer inter stimulus interval (ISI) but not with a shorter one (Ito et al., 2016). This 

raises the question whether evidence for predictive processing generalizes to more 

natural comprehension situations or is a by-product of the artificial testing 

conditions.  

 

1.2 Ecological validity or the challenge of studying natural 
language 

A robust approach to experimental research is the precise manipulation of only one 

experimental variable while keeping everything else constant. Any difference found 

in the measurements is then only ascribable to the experimental manipulation. In 

many psycholinguistics and neurolinguistics studies, this is devilishly hard to attain 

or even approximate: Matching words on duration, frequency of occurrence, stress 

pattern, number of syllables, syllable structure, etcetera, may leave an experimenter 

with a very restricted and idiosyncratic stimulus list. Still, the challenge is even 

harder, because, as Section 1.1 argued, listeners and readers are very sensitive to the 

statistical structure of the context (see also Lau et al., 2013). In many experiments, 
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non-words, pseudowords, or semantic or grammatically erroneous sentences are 

presented to participants. Filler items are used to obfuscate the intention and 

idiosyncrasies of the experiment but these cannot be too different from target items 

or they may emphasize the experimental manipulation. All in all, typical 

experimental materials will be far removed from natural language use. Presenting 

these types of materials to participants could therefore well elicit atypical language 

processing strategies.  

New experimental and statistical methods allow experimenters more freedom in the 

experimental design, which affords the use of natural language materials (see 

Willems, 2015 for an overview). Linear mixed effects (LME) models (Bates et al. 

2015) can model both fixed and random effects, i.e., the model can incorporate 

nuisance variation from, for example, participants and items. For predictability 

effects, statistical language modelling can automatically estimate the word 

predictability of many more words compared to what is feasible with cloze tests. 

This allows for sampling a huge number of experimental stimuli from existing 

language materials (e.g., Frank et al., 2015; Willems et al., 2016), instead of 

constructing dichotomous sets of probable and improbable sentence continuations 

(e.g., DeLong, 2005).  

 

1.3 Register variation 

One understudied aspect of predictive language studies is the influence of the wider 

context, that is, beyond short narratives3. Registers are characterized by different 

patterns of language use resulting from differences in communicative context and 

purpose. The examples below illustrate a range of register variation: (1) 

conversational speech, (2) formal address, (3) news commentary, and (4) a machine 

learning text book. 

 

 

3 Van Berkum (2012) provides an overview of studies investigating predictive language processing 

with short narratives. These studies typically limit the context to one or a few sentences. 
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(1) A:    An’ uh an’ each ti- eh boy did I hesitate, 

        but I thought now she knows uh the 

        Goren rule, an’ when you say “two”  

        It’s a cut-off, an’ sh- an’ uh so uh - 

B:     Yeah.  

Schegloff et al., 1977 

 

(2) The world is very different now. For man holds in his mortal hands, 

the power to abolish all forms of human poverty and all forms of 

human life.  

John F. Kennedy’s inaugural speech, 1961 

 

(3) A U.N. monitoring mission, whose presence the United States hoped 

might help quell the strife, on Saturday suspended its operations.  

Tiedemann, 2012 

 

(4) The notation [a, b] is used to denote the closed interval from a to b, 

that is the interval including the values a and b themselves, while (a, 

b) denotes the corresponding open interval, that is the interval 

excluding a and b.  

Bishop, 2006 

 

Conversational speech (1) typically involves communicators in close proximity, 

which affords immediate feedback signaling successful communication. However, 

the immediacy of alternatively listening and speaking precludes extensive revision 

or finetuning of utterances, leading to disfluencies and more frequent use of 

formulaic speech. In contrast, prepared speech (2 & 3) or written texts (4) do not 

allow for communicative feedback, since a monologue only allows for minimal 

interaction and the writer and reader or listener typically share neither time nor 

space. The asynchrony between preparing a message and receiving it allows the 

(speech) writer to edit and refine prepared speech or written text, resulting in 

structurally more complex and lexically richer language (Biber & Conrad, 2001).  

To study register variation, one approach consists of comparing the distribution of 

lexico-grammatical features across registers by counting them in language materials 
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form different registers. These comparisons reveal lexical variation between 

registers (e.g., Kennedy, 1991; Biber et al., 1994). For example, there is systematic 

difference in the choice of adverbs in a conversation. Compare, for instance, It did 
look pretty bad with The mother came away somewhat bewildered from a news 

reportage (Biber et al. 1999). Similarly, the distribution of grammatical features 

differs across registers. For example, the complementizer that in a that-clause I think 
(that) he likes you can be retained or omitted, depending on the register. Biber et al. 

(1999) found that conversations preferentially omit that while news reportages are 

more likely to retain it (see Staples et al., 2015; Biber & Conrad, 2009 for 

overviews).  

Register variation could potentially be relevant for predictive language processing. 

If the choice of words and grammatical construction differ across registers, it is 

plausible that registers differ in their word predictability. For example, in a 

conversation, the adverb pretty will be more likely than in a news broadcast 

(similarly with certain grammatical constructions). If these patterns differ 

systematically among registers, listeners and readers might be sensitive to these 

differences.  

 

1.4 Research questions 

Below I present an overview of the research questions which I address in this thesis.  

1. How can we investigate predictive language processing with event-related 
potentials (ERP) evoked by words in long stretches of natural speech? 
 

In this thesis I investigate predictive language processing with natural 

language sampled from speech corpora. Participants listen to natural 

connected speech from different registers while their EEG signal is 

recorded. The use of natural speech materials and the inclusion of words 

from across the range of the predictability spectrum potentially improves 

the ecological validity of the evidence for predictive language processing. 

 

2. To what extent do listeners anticipate the auditory word form while 
listening to natural speech?  
 
As discussed above, evidence for auditory word form anticipation is based 

on experiments using highly constraining sentences and a binary grouping 
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of highly likely versus unlikely sentence continuations, which could 

potentially boost predictability effects. To improve upon this, I develop a 

continuous measure which captures the unexpectedness of the auditory 

word form given the preceding context. This mismatch measure will be 

used to model the ERP of participants’ EEG signal evoked by words in 

natural speech. If listeners anticipate auditory word forms, I expect to find 

a correlation between the mismatch measure and the ERP amplitude. 

 

3. To what extent do listeners adapt their expectations of upcoming words 
based on the speech register they are listening to?  
 
Language use varies among registers and listeners may adapt to these 

differences in their predictive processing. To investigate whether speech 

register variation affects the predictability of words, I conduct a corpus 

study. If there are systematic register-specific differences in word 

predictability, listeners might use this information to adapt their word 

expectations. To test this, I investigate whether listeners adapt their 

expectations of upcoming words based on the register they are listening to. 

I estimate word predictability with the aid of statistical language models, 

which reflect either register specific or non-specific word anticipatory 

processing strategies and I compare how well they predict the ERP evoked 

by content words in the natural speech materials.  

 

1.5 Theoretical framework 

1.5.1 Predictive coding 

I use predictive coding (Friston, 2005, 2012, 2018) for the theoretic framework of 

my research. This framework proposes that the mismatch between expected and 

actual input is important for perception, in a sense made explicit below.  

Our senses receive input, such as air pressure modulations or photons. These inputs 

are transduced to neuronal excitations. Importantly, human perception is not limited 

to the simple detection of air pressure differences or photons. Instead, we perceive 

a rich world of meaningful sounds and objects. Predictive coding proposes that to 

achieve the transformation from sensory input to rich percepts, the brain infers 
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putative causes from the sensory input: e.g., a pattern of air pressure differences as 

a spoken word hello or a pattern of photons striking the retina as a tree.  

Perception is challenging because it is rather difficult to infer causes from sensory 

input due to the variability in the sensory input. Words can be uttered in silence or 

a noisy café; a tree may be partially occluded by a house. Different causes interact 

and the sensory input we receive is a mixed jumble (i.e., words spoken by different 

speakers in the café, or the house in front of the tree) and because of this, it is not 

always possible to compute the underlying causes solely from the mixed sensory 

input (Friston, 2005). 

A solution to this perceptual conundrum is to generate expectations about the input. 

Predictive coding (Friston, 2005) proposes a hierarchical cognitive architecture, 

where a generative model at cognitive level i modulates activity at cognitive level 

i-1. The mismatch between expectation and bottom-up input is referred to as 

prediction error. The generative model is adjusted in such a way that it minimizes 

prediction error. In this manner, the most likely cause for sensory input can be 

inferred by a combination of expectation (prior experience) and the sensory input.  

 

1.5.2 Prediction 

What entails prediction in the context of language processing? In the debate about 

predictive language perception prediction is sometimes conceptualized as predicting 

one word or a small set of words (e.g., Van Petten & Luka, 2012). This interpretation 

leads to an important criticism, namely the potential cost of mispredictions 

(Jackendoff, 2002; Lau et al., 2013; Kutas et al., 2011). If a specific word is 

predicted, this prediction is either right or wrong and given the number of options, 

odds are stacked against correct prediction. 

However, prediction does not have to be an all or nothing process. Prediction can 

be probabilistic. It is possible to assign many words a probability, thereby estimating 

a probability distribution over a set of words (Kuperberg, 2016; Frank & Willems, 

2017; Aurnhammer & Frank, 2019). Importantly, probabilistic prediction does not 

have a dichotomous outcome (i.e., right or wrong). Instead, by distributing 

probability over many words, it is possible to hedge your bets. For example, imagine 

you hear the utterance This is an excellent …, words such as idea, house, time would 

be assigned a relative high probability, while words such as rhinoceros, mistake, 
disease a relative low probability, and ungrammatical continuations such as by, 
over, the an even lower probability, though not zero since people do not always 
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produce perfect prose. Imagine that the next word was mistake, which was assigned 

a low probability. In this case the prediction was mostly wrong and a little bit right 

(it was still assigned some probability). In this manner, the cost of being wrong is 

less dire compared to the all or nothing interpretation of predication. Furthermore, 

being mostly wrong provides valuable information. If you heard rhinoceros while 

expecting the word house this tells you that you are in a different conversation than 

you thought. The prediction error affords an update of the model generating the 

prediction (Friston, 2005). 

Another issue in the prediction debate concerns timing. Prediction is sometimes 

conceptualized as something that has to happen just before the actual input arrives 

(e.g., Lau et al., 2013; Brother et al. 2015; Aurnhammer & Frank, 2019), for 

example, by pre-activating a word before sensory evidence for that word can be 

perceived. I propose a less strict view of what constitutes prediction.  

To clarify my position let us make an analogy with Morse code. Morse code consists 

of sequences built from three symbols: a dot, a dash, and a break. Concatenating the 

symbols results in a code that refers to letters. Morse developed this code in such a 

way as to minimize work for the telegraphists by assigning the shortest code to the 

most frequent letters (Gleick, 2011). This organizational scheme can be viewed as 

a static predictive model of a language's orthography. Importantly, nothing happens 

just before a telegraphist sends a Morse code message, but still the code ensures that 

letters are encoded with (close to) minimal effort by predicting which letters will be 

most frequent. No agency is required, and no action or activation is involved for a 

system to be predictive. Similarly, the ubiquitous word frequency effect could be 

viewed as a static predictive model of a language at the word level.  

A static predictive system can be refined by making it dynamic, incorporating 

context into the prediction. Sentential context can be modelled in such a way that 

most probability is assigned to likely words. Such a system can generate a 

probability distribution over a set of words and it is this probability distribution that 

constitutes the prediction. In the current thesis, I use prediction to mean probabilistic 

prediction. 

 

1.6 Methodology 

In this thesis I use electroencephalography (EEG) and statistical language modelling 

(SLM) for multiple studies. Below, I will give a short introduction to these methods. 
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1.6.1 Statistical language modelling 

When listening to speech or reading a text, a listener or reader encounters a sequence 

of words. The next word Wi in such a sequence does not occur randomly, but has a 

relation to the preceding words. The probability distribution over a large vocabulary 

for word Wi is therefore not uniform (i.e., identical probabilities for each word). 

Instead, there will often be a small set of more likely words and a long tail of less 

likely words.  

Statistical language models (SLM) based on n-grams leverage this structure in 

natural language by counting sequences in corpora of language materials. These 

sequences, classically known as n-grams, may stand for any kind of sequence (e.g., 

characters, words, part of speech tags, etcetera). For example, a word trigram the 
blue sky consists of two word bigrams the blue and blue sky and three word unigrams 

the, blue and sky. By counting n-grams in large, sufficiently representative text 

corpora, it is possible to estimate the probability of sky given the bigram the blue 
or, more generally, any word following any context. The probability of a word given 

the preceding words is estimated by:  

 

!(#$|#$&', … ,#$&*) 

 

which denotes the conditional probability of word Wi given n preceding words. In 

this manner, context-sensitive word probabilities can be automatically derived from 

a large text corpus. 

 

1.6.2 Electroencephalography 

Electroencephalography (EEG) measures electrical potential differences on the 

scalp to investigate cognitive processes (see Luck, 2014 for an introduction). To 

measure these potential differences, a reference point is chosen, for example, the 

mastoids (a bony structure behind the ears), and electrodes are placed on the 

mastoids and predefined locations distributed across the scalp. The simultaneous 

firing of many neurons results in a measurable potential difference between the 

reference and scalp electrodes. The signal is very weak; it is measured in μ-volts (1 

millionths of a volt) and is easily distorted by noise. Furthermore, since it travels 

through both the skull and the scalp, the electrical signal is also topographically 
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distorted and therefore it is non-trivial to reconstruct the origin of potential 

differences measured at the scalp.  

To counteract the influence of noise, one approach is to compute event-related 

potentials (ERP). Participants in an EEG-experiment are exposed to many stimuli 

of a specific type, for example, words. The precise presentation time of the stimuli 

is time-locked to the EEG-signal, and an epoch related to the stimulus is extracted 

from the EEG-signal. The ERP is created by averaging over all the extracted epochs. 

In the ERP, components can be identified representing the exogenous brain activity, 

i.e., the activity evoked by the stimulus. In this manner many different ERP 

components have been found and described in the literature (e.g., Luck, 2014).  

In this thesis, the ERP paradigm will be used to investigate predictive language 

processing. I will focus on two ERP components: the phonological mismatch 

negativity (PMN, also referred to as N200) and the N400. The PMN is an early 

anterior (near the forehead) negativity peaking around 200 milliseconds after word 

onset, and is sensitive to expectations about auditory word forms (e.g., Connolly et 

al., 1994). The N400 is a negative component peaking around 400 milliseconds after 

word onset mostly at the central parietal electrodes (the middle back of the head). 

The N400 can be elicited by presenting words in context to participants (see Kutas 

& Federmeier, 2011, for an overview).  

 

1.7 Outline of the thesis 

The objective of this thesis is to study predictive language processing during the 

perception of natural speech sampled from different registers.  

In Chapter 2, I describe the dataset of EEG-recordings I collected from participants 

listening to long stretches (4 – 15 minutes) of natural speech from different registers, 

consisting of approximately 200 hours of EEG data. Participants came to the lab on 

three separate occasions to listen to approximately 90 minutes of speech from three 

distinct speech registers (~ 270 minutes in total). The registers – dialogues, news 

broadcasts and read-aloud stories – were chosen based on the results from Chapter 

5 (the corresponding study was conducted before the EEG recordings). To 

preprocess the 200 hours of EEG data, I developed a novel approach by training and 

applying a convolutional neural network to detect artefacts in the EEG signal. The 

EEG dataset will be used in the subsequent studies and published as an open access 

corpus, named the Dutch EEG speech register corpus (DESRC). 
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In Chapter 3, I develop a novel continuous mismatch measure that captures the 

mismatch between high-level expectations (word probabilities estimated with an 

SLM) and low-level perceptual input (the actual speech segment). This mismatch 

measure can help to improve the study of listeners’ word form anticipations. I 

introduce the concept of a word probability distribution (WPD), which is a lexicon 

of words with assigned probabilities. One WPD is purely based on preceding 

context, whereby the word probabilities are estimated with an SLM. The second 

WPD is an updated version of the first WPD. The update is based on the initial 

auditory segment of a word. The mismatch measure is formulated in terms of the 

cross-entropy between these two WPDs, i.e., the WPD before and after the auditory 

update. The measure is validated with several tests, for example, whether the update 

with auditory input increases the probability of the correct word. 

In Chapter 4, I use the mismatch measure developed in Chapter 3 on the EEG-data 

(described in Chapter 2) to investigate whether listeners are sensitive to the 

mismatch between expected and actual word form inputs. The cleaned EEG dataset 

contains over a million word epochs for the analysis. I expect to find a PMN effect, 

whereby a higher value for the mismatch measure results in a more negative PMN 

amplitude.  

In Chapter 5, I investigate word predictability differences between speech registers. 

The output of register-specific SLMs is used to train a register classifier. With this 

classifier, I test whether it is possible to distinguish between speech registers based 

on word predictability (as estimated with SLMs). Furthermore, I study the influence 

of potential confounds such as sentence length and topic.  

In Chapter 6, I test whether listeners adapt their expectations based on the speech 

register they are listening to. SLMs are trained on different register-specific 

language materials to estimate word surprisal that reflects different contexts: a 

generic context and a register-specific context. With these SLMs, I estimate 

different variants of word surprisal (based on generic or register-specific contexts) 

for each content word in the corpus and compare how well they predict the N400 

amplitude. 

In Chapter 7, I discuss the findings presented in the preceding chapters and relate 

them to the existing literature. Furthermore, I discuss possibilities for future 

research related to predictive language processing. 
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The Dutch EEG Speech 
Register Corpus 

Chapter 2 

 

Abstract 

The Dutch EEG Speech Style Corpus contains 207 hours of EEG recordings from 

48 participants listening to natural connected speech. The speech materials were 

sampled from: spontaneous dialogues, news broadcasts and read-aloud stories, and 

contain 50,277 word tokens, time-locked to the EEG data. We cleaned the EEG data 

by labelling and removing artefacts with the aid of an automatic artefact classifier. 

Eye-related activity was removed with independent component analysis. The EEG 

data (raw and cleaned), containing 1.5 million word epochs, is freely available 

(license: CC BY 4.0) and offers new research opportunities to investigate neural 

correlates of speech processing. 

 

2.1 Introduction 

This article presents the Dutch EEG Speech Register Corpus (henceforth DESRC), 

which consists of 207 hours of recorded electroencephalography (EEG) from 48 

participants listening to Dutch speech sampled from three different registers: 

spontaneous dialogues, news broadcasts, and read-aloud stories. In each of three 

sessions, participants listened to 90 minutes of each register, approximately 270 

minutes of EEG were recorded. 

We recorded EEG data for the corpus with a paradigm different from classic ERP 

experiments (see Luck 2014 for an overview). Participants listened to long (4 – 15 

minutes) continuous stretches of natural speech, while the EEG signal was recorded. 

We time-locked the EEG materials to all words in the speech materials. The use of 

long continuous stretches of natural speech is similar to, for example, the approach 

taken in Willems et al. (2016), who conducted an fMRI study with participants 

listening to excerpts from audio books. We will refer to this new approach as the 

naturalistic sample approach.  
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The naturalistic sample approach is based on three ideas. First, it is important to also 

conduct experiments on naturalistic stimuli to improve the ecological validity of 

experimental results (see also Willems, 2015). Second, by increasing the number of 

stimuli (i.e., by considering all words in the language materials, rather than a subset 

of target words), it is possible to relax strict control over the stimuli. The nuisance 

effects of, for example, stimuli surface forms (see Luck, 2014) will average out over 

the large number of stimuli (i.e., hundreds versus hundreds of thousands of stimuli). 

Third, the large amount of data allows us to replace categorical predictors with 

continuous predictors and forego the need of artificially binning linguistic materials. 

For example, Frank et al. (2015) recorded EEG during a forced-paced reading task 

with sentences sampled from novels. They used a continuous predictor of word 

surprisal to predict the amplitude of the N400, while in classical N400 experiments 

words are typically grouped categorically into congruent and incongruent sets. The 

use of continuous predictors fits well with the graded effects observed with, for 

instance, the N400 (e.g., Federmeier & Kutas, 1999).  

The naturalistic sample approach requires a large amount of data to be collected. 

For EEG-recordings, this results in a non-trivial amount of work concerning the 

preprocessing of the data. To remove artefacts from 207 hours of EEG-data, we 

used a novel approach by training and employing a convolutional neural network to 

detect artefacts (see Section 2.3). 

We enriched the orthographically transcribed speech materials used in the EEG 

experiment with part-of-speech (POS) tags, word frequency and several information 

theoretic measures such as word surprisal, entropy and cross-entropy (see Bentum 

et al. 2019). The resulting dataset can be used to answer many different research 

questions. This paper provides the accompanying description of the DESRC. In the 

following sections, we explain the speech material selection, the EEG recording 

procedure, and the steps taken to clean the EEG data. 

 

2.2 Corpus 

The DESRC contains EEG materials recorded from participants listening to speech 

sampled from different registers. In general, the communicative situation influences 

the register adopted by a speaker and research shows that there are important 

differences between registers (see Biber and Conrad, 2009 for an overview). For 

example, people chatting socially use a different vocabulary compared to a person 

giving a formal address. Bentum et al. (2019a) found that word surprisal as 
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estimated by a statistical language model depends both on the preceding words and 

speech register. Furthermore, the communicative situation influences 

pronunciation; formal occasions trigger more careful pronunciation than informal 

occasions (Ernestus et al. 2015). The differences between speech registers could 

influence a listener’s speech processing. To capture register variation, we sampled 

from multiple registers and used the findings reported by Bentum et al. (2019a) to 

select three distinct speech registers. 

 

2.2.1 Materials 

The speech materials were sampled different corpora; the news broadcasts and read-

aloud stories were taken from the Netherlandic Dutch part of the Spoken Dutch 

Corpus (Oostdijk, 2001). The spontaneous dialogues were taken from the IFADV 

corpus (Van Son et al., 2008). Both corpora provide manual orthographic and 

automatically obtained phonemic annotations and segmentations, which allowed us 

to align the speech input with the EEG recordings. Short excerpts from each speech 

style are part of the supplementary materials of this article. Table 1 lists general 

statistics for the speech materials used for the EEG recording sessions. 

The spontaneous dialogue materials consist of six 15-minute dialogues between 

well acquainted dyads (e.g., friends, colleagues). They freely talked about any topic 

that came to mind. One of the 11 speakers is present in two dialogues. The news 

broadcast materials consist of radio news broadcasts from the late nineties and early 

2000s, which were grouped into seven blocks of 12-minutes, with each block further 

subdivided into sections of four minutes. The read-aloud stories materials consist of 

seven 12-minute-long excerpts from read-aloud Dutch audio books.  
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Table 1. Overview of the materials per speech style: the number of word tokens and types 
per register (word type is defined as the orthographic surface form), the average word 
duration in milliseconds, the number of speakers and the speakers’ age range. 

speech register 

word tokens 

(word types) 

average word 

duration 

speakers 

(male) 

speaker 

age 

range 

spontaneous 

dialogues 

21,718 

(2,435) 
206 ms 11 (2) 20 - 62 

news broadcasts 
15,350 

(3,526) 
289 ms  8 (7) 23 - 46 

read-aloud stories 
13,209 

(2,349) 
256 ms 7 (3) 38 - 75 

total 
50,277 

(5,866) 
245 ms 26 (13) 20 - 75 

 

2.2.2 EEG Participants 

Forty-eight neurologically unimpaired right-handed native speakers of Dutch (18-

29 years), 34 women and 14 men, participated in all three sessions of EEG 

recordings. All participants gave informed consent to participation and the public 

release of the recorded EEG-signal. Participants were paid 80 euros for their 

participation. 

 

2.2.3 EEG Procedure 

The participants came to the lab on three separate occasions; which were separated 

by at least one week. They were fitted with the correct size electrode cap and seated 

in a sound-attenuating booth. Participants listened to 90 minutes of speech from one 

register (see Table 1). The order of the registers was counter-balanced across 

participants. The audio materials were presented via in-earphones (Etymōtic ER1) 

at a comfortable listening volume; a short audio sample was used to set the volume. 

Participants were asked to sit still and keep eye-movement and blinks to a minimum. 

The audio materials were presented in blocks of approximately 15 minutes and the 

order of blocks was counter-balanced across participants. During pauses in the audio 
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materials (every four minutes for the news broadcasts and approximately every 15 

minutes for the other registers), yes-no comprehension questions were visually 

presented to encourage attentive listening. Participants responded with a button box. 

At the end of each experimental block, the participant could take a break before 

resuming the experiment. 

 

2.2.4 EEG recording 

The electroencephalogram (EEG) was recorded from 26 silver-chloride cap-

mounted electrodes. The electrodes were placed according to the Standard 

International 10 - 20 System (Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, 

C4, T7, T8, P3, Pz, P4, P7, P8, CP1, CP2, CP5, CP6, O1, O2). Four additional 

electrodes were used to monitor eye-related artefacts (eye-movements and blinks), 

placed at the outer left and right canthi, and below and above the left eye, converted 

off-line to horizontal and vertical electro-oculogram (EOG). Two additional 

electrodes were placed on the left and right mastoid. All electrodes were referenced 

to the left mastoid electrode and all electrode impedances were below 15 kΩ before 

recording started. The EEG signal was amplified with an Easycap system and band-

pass filtered with 0.01 and 100 Hz cut-off frequencies and digitized at a 1000 Hz 

sample frequency.  

 

2.2.5 Preprocessing 

The data were re-referenced off-line to the mean of the left and right mastoids and 

filtered with a 5th-order Butterworth bandpass filter with cut-off frequencies at 0.05 

and 30 Hz. We removed artefacts from the data semi-automatically by using a deep 

neural network (see Section 2.3). Subsequently, we used independent component 

analysis (ICA) to filter out activity related to eye-movement and blinks. Following 

Winkler et al. (2015), we computed the ICA on 1-30 Hz bandpass filtered data (after 

removing the artefacts). We visually determined EOG related ICA components 

based on the topography and the correlation with the EOG channels. We 

recomposed the 0.05-30 Hz bandpass filtered data without these components. The 

original recordings, the artefact annotations and the ICA-decompositions are all 

available in the online dataset (see Table 2 for an overview of the EEG materials). 
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In the following section we describe how we trained and applied an EEG artefact 

classifier to automatically detect and remove artefact sections and channels to clean 

the EEG data. 

 

Table 2. Overview of EEG materials, (before) and after artefact removal. Word epochs are 
defined as EEG materials from 300 milliseconds before to 1000 milliseconds after word 
onset 

speech registers    hours  word epochs content word epochs 

spontaneous 

dialogues   51   (70)   701,335 (1,020,305) 368,407    (537,470) 

read-aloud stories   47   (66)    438,086   (631,970) 229,807    (332,322) 

news broadcasts   44   (71)    371,603   (731,649) 204,269    (401,130) 

total 142 (207) 1,511,024 (2,383,924) 802,483 (1,270,922) 

 

2.3 Automatic EEG artefact detection with a convolution neural 
network 

Artefact removal from EEG data is a time-consuming process. Several 

neuroimaging packages, such as EEGLAB (Delorme et al., 2004), MNE (Gramfort 

et al., 2014) and FIELDTRIP (Oostenveld et al., 2011), provide statistical means to 

aid artefact detection. Statistical artefact rejection is also described in Nolan et al. 

(2010). These methods use various measures to describe the data (e.g., amplitude, 

amplitude range, variance, correlation between channels), which are typically 

transformed to z-scores. The measures are thresholded at a conservative value (e.g., 

|z| > 3) to find data that contain artefacts.  

Unfortunately, the use of statistics on simple measures (e.g., amplitude range) for 

artefact removal has serious limitations. The z-score is typically calculated 

separately for each participant, which results in a different rejection criterion per 

participant. Furthermore, any z-score thresholding only rejects outliers, but is not 

informative about the quality of the rejected data. For example, if a dataset is noisy 

it will only remove extremely noisy subsets and keep potentially corrupted data, 

while if the dataset is clean, it will remove potentially usable data. 
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Instead of using threshold statistics to detect artefacts, we trained a convolutional 

neural network (CNN) to distinguish between clean and artefact EEG data. The 

classifier is trained to discover features that distinguish between clean and artefact 

data without relying on statistics of simple measures (e.g., amplitude, channel 

correlation) that only imperfectly capture that distinction. In the following 

subsections, we describe how we trained and tested this CNN for artefact detection.  

 

2.3.1 Manual annotation 

We manually annotated approximately 60 hours of EEG data, by marking artefacts 

by their start and end boundaries. We divided the artefacts in two types: stretch and 

channel artefacts. Stretch artefacts are visible on all or most EEG channels during a 

stretch of time. The artefacts can be due to muscle activity, a sweaty scalp, etcetera. 

Channel artefacts occur on individual channels, due to poor connection with the 

scalp, technical problems (e.g., faulty electrode), etcetera. The solutions for these 

artefact types differ. If all or most channels show artefacts (i.e., stretch artefacts), it 

is best to remove a complete section of EEG data (i.e., all channels). If a specific 

channel shows artefacts over an extended period of time (i.e., channel artefacts), 

that single channel should be removed from the dataset.  

 

2.3.2 Training, test and validation materials 

The EEG data was first downsampled from 1000 to 100 Hz for training and 

classification purposes. We created separate datasets for the stretch and channel 

artefacts and performed the following steps for each. We windowed the EEG data 

into 1-second windows (i.e., 100 samples) with 99% overlap (i.e., at every sample 

a window was started). We labelled each window as artefact when half or more of 

the samples overlapped with the manually annotated artefacts. All other windows 

were labelled clean. After this labeling procedure, we assigned each window 

randomly to one of a 100 sets. Ninety sets were used for training and ten sets were 

held out for validation and testing. 

For the stretch dataset we selected 25 channels, excluding the Fp2 channel due to 

overall poor signal quality. Each window consisted of a matrix of 25 channels by 

100 samples and had a label: clean or artefact. For the channel dataset we created a 

separate window for each channel. Every window consisted of a matrix of 32 

channels by 100 samples. We created this matrix by copying the target channel to 
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the following rows 1, 7, 13, 19, 25, 31 of the window matrix. All other rows were 

filled by the 25 channels in fixed order. This approach was used to fix the order of 

the channels while ‘marking’ the target channel as target. 

We normalized the EEG signal within each window to a value between 0 and 1. 

Before normalizing the stretch artefact windows, we set the threshold value to ± 100 

µV, and for the channel artefacts we used ± 300 µV (i.e., all larger values were set 

to these threshold values). Lastly, we multiplied the resulting windows with a 

Hamming window. 

 

2.3.3 Model specification 

We specified the CNN in Tensorflow (Abadi et al., 2016) and started with a standard 

CNN model architecture inspired by its use in image classification (e.g., Krizhevsky 

et al., 2012). The typical CNN architecture for image classification specifies 

multiple convolutional layers of n by n (e.g., n = 5) kernels. For EEG data this 

appears to be suboptimal, arguably because the time and channel dimensions have 

a different impact and statistical behavior compared to the height and width 

dimensions of images. We therefore adapted the model according to Schirrmeister 

et al. (2017), who reported good results with EEG-data classification where the first 

two convolutional layers of their model separately specify the time and channel 

dimensions, respectively. We found that this separation approach also strongly 

improved the performance of our classifier. 

We defined a separate stretch and a channel model. The structure of these models is 

presented in Table 3. The first layer (1 by 25 kernel) is exposed to 25 samples (i.e., 

from 25 consecutive time points) from one EEG channel. The second layer, a 6 by 

1 kernel, steps through the window exposed to six EEG-channels at each time point. 

Subsequently, the output is pooled and followed by a kernel of 5 by 5 (6 by 6 for 

the channel model) and a second round of pooling, followed by a fully connected 

layer, which is mapped to an output class vector of length 2 (i.e., clean or artefact).  
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Table 3. Overview of convolutional neural network architecture for the section and channel 
models. (Values that are different for the channel model are between brackets). Conv. 
stands for convolutional layer, Relu for rectified linear unit, ch for channel. 

Layer Type 
In 

ch. 

Out 

ch. 
kernel size 

feature map  

(channel model) 
Stride Activation 

1 conv. 1 32 1 × 25 25 (32) × 100 × 32 1 ReLu 

2 conv. 32 64 6 × 1 25 (32) × 100 × 64 1 ReLu 

3 pool 64 64 2 × 2 13 (16) × 50 × 64 2  

4 conv. 64 128 5 (6) × 5 (6) 13 (16) × 50 × 128 1 ReLu 

5 pool 128 128 2 × 2 7 (8) × 25 × 128 2  

6 linear 128 1  2400  ReLu 

7 softmax    2   

 

2.3.4 Training, classification and manual correction 

We trained both models with stochastic gradient descent. Each training cycle, a 

model was exposed to 200 windows drawn randomly from a specific training set. 

To ensure an equal number of clean and artefact windows, we downsampled in favor 

of the artefact windows to a 50/50 ratio (approximately 7% of windows contain 

artefacts in the original data). We repeated training cycles until the classifier 

performance plateaued on the validation set.  

The stretch and channel models were used to classify the complete set of EEG-

materials. Subsequently, we transformed the windows classified as artefacts to start 

and end boundaries in the EEG signal. If a start boundary followed an end boundary 

within two seconds of a previous annotation, we combined the two artefacts. The 

resulting artefact boundaries were corrected based on visual inspection. We skipped 

sections of materials (40 seconds or longer) considered clean by the automatic 

classifiers because of time constraints. Artefacts tend to cluster, and therefore, long 

clean stretches are less likely to contain artefacts. We trained the classifiers to have 

a high recall of artefacts (by class downsampling in favor of the artefacts), to reduce 
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the chance of missing artefacts. Nevertheless, since we did not check all materials 

it is possible that some artefacts remained unidentified. 

After manual correction, we marked channels as bad (i.e., to be removed from the 

data for subsequent processing) if the data from a channel contained artefacts for 

more than 40% of an experimental block (see Section 2.2.3), otherwise channel 

artefacts were relabeled as stretch artefact. These manually corrected annotations 

were used to remove EEG data contaminated with artefacts (see Section 2.2.5). 

 

2.3.5 Classifier validation 

We analyzed the quality of the CNN classifier by comparing the resulting artefact 

annotations with manually corrected annotations and a simple threshold approach 

which we detail below. As a unit of validation of the classification procedure, we 

chose the word epoch. Word epochs were defined as EEG materials from 300 

milliseconds before word onset to 1000 milliseconds after word onset. We extracted 

all word epochs from the EEG materials and labelled each as clean or artefact based 

on different annotation sets. As ground truth, we used the manually corrected 

automatic annotations (see Section 2.3.4). We compared the labelling based on the 

automatic CNN annotations with a labelling based on thresholding, a procedure 

whereby word epochs were considered clean if the maximum value of the word 

epoch EEG materials was between ± 75 μV. 

We computed the precision, recall and F1-scores for the threshold and automatic 

CNN labeling of word epochs. The automatic classification based on the CNN 

classifier outperformed the threshold approach (see Table 4) with an F1-score of 

0.89 compared to 0.73.  

The validation results show that there is a clear trade-off between time spent 

cleaning the EEG materials and quality or amount of the EEG materials. The 

threshold approach is very fast, because no prior labelling of EEG data is required. 

However, this time gain comes at the cost of missing 28% of the usable data and 

27% of the artefacts. The uncorrected output of the CNN classifier performed better 

(missing only 10% and 13% respectively), however, this came at the cost of 

approximately 300 hours of annotation work. Manually correcting the classifier 

output further improves the quality of the EEG materials; however, this entailed 

another 240 hours of work. 
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Table 4. Overview of word epoch labelling performance for different classification 
strategies. 

 
threshold CNN 

 
precision recall f1-score Precision recall f1-score 

artefact 0.60 0.73 0.66 0.83 0.87 0.85 

clean 0.82 0.72 0.77 0.92 0.90 0.91 

average 0.74 0.72 0.73 0.89 0.89 0.89 

 

2.4 Conclusion 

The EEG speech style corpus (DESRC) provides a large database of EEG 

recordings from participants listening to long (4 – 15 minutes) stretches of natural 

speech. The DESRC will be made available under license CC BY 4.0 and provides 

a rich set of meta-data; complete orthographic and phonemic transcriptions time-

locked to the EEG data. We enriched the transcriptions with part-of-speech (POS) 

tags, word frequency and information theoretic measures such as word surprisal, 

entropy and cross-entropy. Furthermore, we annotated the EEG data for artefacts to 

allow easy exclusion of data contaminated with artefacts.  
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Quantifying expectation 
modulation in human speech 
processing 

Chapter 3 

 

This chapter is a reformatted version of: 

Martijn Bentum, Louis ten Bosch, Antal van den Bosch & Mirjam Ernestus (2019). 

Quantifying expectation modulation in human speech processing. INTERSPEECH 
2019 – 20th Annual Conference of the International Speech Communication 
Association, September 15-19, Graz, Austria, Proceedings, 2019 

 

Abstract 

The mismatch between top-down predicted and bottom-up perceptual input is an 

important mechanism of perception according to the predictive coding framework 

(Friston, 2005). In this paper we develop and validate a new information-theoretic 

measure that quantifies the mismatch between expected and observed auditory input 

during speech processing. We argue that such a mismatch measure is useful for the 

study of speech processing. To compute the mismatch measure, we use naturalistic 

speech materials containing approximately 50,000 word tokens. For each word 

token we first estimate the prior word probability distribution with the aid of 

statistical language modelling, and next use automatic speech recognition to update 

this word probability distribution based on the unfolding speech signal. We validate 

the mismatch measure with multiple analyses, and show that the auditory-based 

update improves the probability of the correct word and lowers the uncertainty of 

the word probability distribution. Based on these results, we argue that it is possible 

to explicitly estimate the mismatch between predicted and perceived speech input 

with the cross-entropy between word expectations computed before and after an 

auditory update.  
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3.1 Introduction 

Listeners are able to extract words from speech input in a wide range of (adverse) 

listening conditions. The difficulty of this task is attested by the many decades of 

research aimed at creating artificial systems with similar performance. The details 

of the cognitive processes underlying human speech processing are still contentious. 

A long-standing debate revolves around the importance and timing of top-down 

versus bottom-up influence for word recognition during speech comprehension 

(Magnuson et al., 2018; Norris et al., 2018). Certain autonomous models, for 

example Shortlist A & B (Norris, 1994; Norris & McQueen, 2008) claim that early 

speech processing is exclusively bottom-up, and top-down influence is only exerted 

at the lexical phase of word recognition. Other interactive models, for example 

Trace (McClelland & Elman, 1986) allow for a certain degree of top-down 

influence, congruent with the predictive coding framework (Friston, 2005). 

The predictive coding framework (Friston, 2005) assumes that perception entails 

anticipation based on a generative model, whereby cognitively higher levels 

generate predictions about upcoming (low-level) perceptual input. The mismatch 

between the prediction and the actual input provides an error signal, which informs 

to what extent the hypotheses generated by the generative model need to be adapted. 

If we think about human speech processing in this framework, we need a model to 

assign a probability to upcoming words, given the preceding words, and a 

mechanism to quantify the mismatch between bottom-up observations and top-

down expectations. The first part, the probability of upcoming words, can be 

estimated according to Equation 1, which lies at the basis of a statistical language 

model (SLM), whereby P denotes the conditional probability of word Wi given a 

sequence of n preceding words: 

 

!,(#$|-./0120) = 	!(#$|#$&', … ,#$&*)																				(1) 

 

Several studies (e.g., Smith & Levy, 2013; Frank et al., 2015; Willems et al., 2016) 

have successfully used statistical language modelling to study human language 

processing. They employed an SLM to compute word probabilities from a text 

corpus and show that listeners and readers are indeed sensitive to the probability of 

a word given the preceding words. These results suggest that listeners anticipate 

likely upcoming words. The predictive coding framework makes an additional 
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prediction, namely that human listeners generate low-level auditory expectations 

based on the anticipated words.  

This paper addresses the estimation of the mismatch (i.e., the error signal) between 

the expected word form and the observed word form as it comes in as speech input. 

To estimate this error signal, we make use of the concept of a word probability 

distribution (WPD), consisting of a list of words, whereby each word is assigned a 

probability. We compute two types of WPD. The prior WPD is based on the top-

down expectation at word onset without any auditory input. In this WPD, each word 

is assigned a probability given the preceding words as estimated by an SLM. A post 
WPD is based on the prior WPD in combination with the bottom-up acoustic 

evidence received so far: i.e., the word probabilities are updated according to the 

unfolding auditory information.  

We analyze the auditory input with statistical paradigms developed in the automatic 

speech recognition (ASR) domain, to generate a probability distribution on a large 

set of phone sequences that could all potentially match a possible word start. These 

phone sequence probabilities are used to update word probabilities matching these 

phone sequences, resulting in a post WPD. The error signal can then be defined as 

the cross-entropy between the prior and post WPD, which captures the mismatch 

between the high-level expectation (word probabilities) and the sensory input (a 

spoken word). The cross-entropy between prior and post WPD can be computed 

with Equation 2, whereby H denotes cross-entropy, p the prior WPD, q the post 

WPD and X the WPD word list.  

 

6(7, 8) = − : 7(2) log 8(2)
>	∈	@

																				(2)	

  

To summarize, the prior WPD captures high-level expectations (based on preceding 

words). The post WPD differs only from the prior WPD in the added auditory 

information. We therefore propose that the cross-entropy between prior and post 

WPD quantifies the mismatch between high-level expectations and auditory input.  

To validate the computation of the mismatch measure, we test if the auditory update 

improves the post WPD in relation to the prior WPD. We expect the auditory update 

to decrease the entropy of the post WPD and increase the probability of the correct 

word. In addition, we test whether these measures improve with more auditory 

input. Since our goal is to compute a mismatch measure which is relevant for human 

speech processing, we also test the optimal amount of auditory materials for cross-
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entropy computation. In the following sections, we will describe the language 

materials and methods used to compute both the prior and post WPDs and the 

subsequent analyses. After these sections, results are presented, followed by a 

discussion and a future outlook. 

 

3.2 Method 

3.2.1 Materials 

We used materials from three corpora, namely, the Spoken Dutch Corpus (Oostdijk, 

2001), IFADV (Van Son et al., 2008) and NLCOW14, henceforth COW (Schäfer, 

2015; Schäfer & Bildhauer, 2012). The first two corpora consist of audio recordings 

and transcriptions of spoken Dutch materials. The COW corpus consists of 4,7 

billion words of web-crawled Dutch text. 

We pre-processed the COW corpus by excluding all non-Dutch sentences, removing 

sentences with three or more repeating words or characters, or characters that are 

not used in standard Dutch orthography. We replaced characters with diacritics to 

the equivalent characters without diacritics. Furthermore, we mapped all numbers, 

websites and tagged words (e.g., @tag@) to special word codes. We removed all 

punctuation, except for commas. We normalized all apostrophe words to a standard 

spelling (e.g., ‘t becomes het, ‘the’). The Spoken Dutch Corpus and IFADV were 

already appropriately tokenized (see Goedertier et al., 2000); we only applied the 

apostrophe normalization and diacritic removal to these texts.  

For our experiments we extracted a subset of the Spoken Dutch Corpus and the 

IFADV containing 50,277 word tokens (see Table 1). This subset, henceforth called 

Speech Corpus, consists of annotated speech from different speech registers (i.e., 

spontaneous dialogues, news broadcasts, and read aloud stories). The selection 

criteria for our materials were based on a different experiment. The differences in 

speech styles reflected in our materials will not be important in the current study. 
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Table 1: Overview of the materials in the Speech Corpus. 

speech style word tokens  

(word types) 

average word 

duration 

(milliseconds) 

spontaneous dialogues 21,718 (2,435) 206 

read-aloud stories 13,209 (2,349) 256 

news broadcast 15,350 (3,526) 289 

total 50,277 (5,866) 245 

 

3.2.2 Procedure 

For each word in the Speech Corpus we created two types of word probability 

distributions (WPD), one prior and one post auditory information integration (see 

Figure 1). We will explain how we created these WPDs for a given word (henceforth 

‘target word’) in the Speech Corpus. To create the prior WPD, we used an SLM and 

a lexicon (i.e., the set of words in the WPD). We trained a 4th order Markov SLM 

on the Dutch COW corpus by using SRILM (Stolcke, 2002) with Kneser-Ney 

discounting for smoothing (Chen & Goodman, 1999). For the lexicon we selected 

approximately 200,000 Dutch phonemically transcribed words that are in the top .9 

cumulative probability of the word unigrams of the SLM. We estimated the 

probability of each word in this lexicon based on the words preceding the target 

word in the Speech Corpus. 
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Figure 1: Diagram of prior and post WPD construction. 

 

 

 

Post WPD construction was done in multiple steps. In the first step, we used the 

forced aligned phonemic transcriptions (present for all materials in the Speech 

Corpus) to determine the word onset of the target word in the audio materials and 

defined 28 gates of different durations (110, 130, …, 650 ms), starting from word 

onset. In step 2, each gate was used to create a post WPD, resulting in 28 post WPDs 

per target word. Figure 1, bottom part, shows post WPD construction for one gate. 

To create the post WPDs, we used KALDI (Povey et al., 2011) to estimate a 

phonemic probability distribution for the gated speech input. We did this by first 

creating a ‘Phoneme Lexicon' consisting of all lexically licensed phoneme 

sequences up to length 8, approximately 400,000 entries. For example, the word 

universiteit ‘university’ with phonemic representation /y n i v ɛ r s i t ɛi t/ yields the 

eight cohort forms /y/, /y n/, ..., /y n i v ɛ r s i/ to be included into the Phoneme 

Lexicon. This Phoneme Lexicon, in combination with a flat language model (i.e., 

each phoneme sequence has an equal prior probability), was used in the KALDI 

decoding of the gated speech chunks. For each gate, this decoding leads to a 

weighted phone lattice. The 500 best paths through this lattice were chosen as a 

decoding result. This step resulted in scaled logprob scores for each of the 500 

phoneme sequences. 

Speech Corpus

N02003_4

verder te kunnen praten
precontext target word

gate

precontext + lexicon

Extract a word with precontext

'able to continue talking' SLM

For each word in the 
lexicon, add it to the 
precontext and estimate 
the logprob with an SLM 

prior WPD

The prior WPD 
consists of the 
lexicon with a 
logprob for each 
word given the 
current precontext

Extract audio target word

Estimate the 
logprob of each 
phoneme sequence 
in the phoneme 
lexicon based on the 
gate with an ASR

ASR top 50 phoneme sequences 

Update words in the prior WPD 
with the logprob values of 
matching phoneme sequences

target word
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The scaled logprob scores were 'descaled' to a genuine probability distribution. The 

descaling factor determines the decay of the phoneme string probabilities (i.e., the 

probability difference between the winning hypothesis, runner-up, etc.). This 

descaling factor was estimated by investigating the entropy of the phonemic 

probability distribution for different gate durations. We assume that the entropy of 

the phoneme probability distribution should decrease for increasing gate lengths, 

because more acoustic material should yield a better identification and thereby a 

sharper distribution of the phoneme sequence probabilities. We therefore chose the 

factor which resulted in the highest entropy decrease across gates to descale the 

logprobs.  

After descaling the logprobs, we inspected the phoneme n-best lists for multiple 

words from the Speech Corpus to determine a useful value of n. The top-50 appeared 

to be a sufficient threshold to exclude implausible phoneme sequence strings.  

The logprobs of the top-50 phoneme strings were used to update the prior WPD to 

the post WPD. However, directly adding logprob values has (for our purposes) an 

unfortunate effect of generating the biggest difference in unlikely candidates. Since 

we truncated our n-best phoneme sequence set, this would result in a bad update. 

We therefore shifted the logprobs by adding the absolute value of the logprob of 

phoneme sequence 51 (from the n-best list) to the top-50 phoneme sequences. The 

most likely phoneme sequence now causes the biggest shift in the post WPD and 

normalization of this distribution ensures that unlikely words are shifted downwards 

appropriately. 

To perform the auditory update, we matched each of the top-50 candidate phoneme 

sequences to all words in the lexicon (i.e., the set of words in the WPD). For 

example, the word kat ‘cat’, represented in the Dutch lexicon as ‘kat, k ɑ t’ would 

match with the phoneme sequences /k/, /k ɑ/, /k ɑ t/ and mismatch with /ɑ/, /ɑ t/ or 

/k ɑ t s/. We computed the word probabilities of the post WPD by adding the shifted 

logprob values of phoneme sequences to the logprob values of matching words in 

prior WPD.  

 

3.2.3 Analysis 

We performed two analyses to validate our approach and one to investigate the 

amount of auditory materials needed for the best cross-entropy computation. For 

Analysis 1, we tested whether the auditory update from prior to post WPD lowered 

the surprisal of the correct word, which tests whether the auditory update assigns 
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more probability to the correct word. Furthermore, we test whether the entropy of 

the post WPD was lower compared to the prior WPD, indicating that there is less 

uncertainty in the post WPD, which is expected if the auditory update functions 

correctly. 

To make the comparison between prior and post WPD, we conducted two tests to 

check that both surprisal and entropy decrease after the auditory update. The first 

test was a conservative test that compares surprisal of the correct word and entropy 

of the prior WPD to the highest (i.e., worst) surprisal and entropy values of the set 

of 28 post WPDs for a given word. The less conservative test compared the surprisal 

of the correct word and entropy of the prior WPD to the mean of the surprisal and 

entropy over the same set of post WPDs. In both cases (conservative and less 

conservative), the post WPD surprisal and entropy values are compared with the 

corresponding prior WPD values. 

For Analysis 2, we tested whether the surprisal value of the correct word and the 

entropy of the post WPDs decreased with increasing gate duration. We tested this 

by first computing the difference in surprisal of the correct word between prior and 

post WPD for each gate. Longer gates should improve the post WPD more, because 

a longer gate provides more information about the upcoming word. Of course, this 

only holds if the gate is shorter than the word, because otherwise information of 

following words is also incorporated in the auditory update. We therefore excluded 

all cases where the word was shorter than the gate. 

Finally, Analysis 3 investigated which gate should be used for the cross-entropy 

computation. We want to use the cross-entropy to predict human speech processing 

cost and therefore we tested which gate duration performs the best update for all 

words (including words shorter than a given gate). This analysis reflects the 

situation for a human listener, who does not know the duration of upcoming words. 

For this analysis, we computed the difference in surprisal for the correct word 

between prior and post WPD for all words and gate durations.  

 

3.3 Results 

We used R (R Core Team, 2015) for all analyses. For Analysis 1, we compared the 

surprisal of the correct word between the prior and post WPD with a simple linear 

regression model. The regression model was fitted on 80% of the data and tested on 

20% unseen data. Based on the results of the unseen data, we computed the R2
CV 
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(cross validated). Similar R2 and R2
CV values indicate that the model generalizes 

well to unseen data and was not overfitted to the current sample. We created separate 

models for the conservative (i.e., worst) and less conservative (average) test, as 

detailed in Section 3.2.2. We used the same approach to compare the entropy 

between prior and post WPD. As expected, both surprisal and entropy decrease (i.e., 

have negative betas) after the auditory update, as can be seen in Table 2. This 

appears both from the conservative and less conservative test. 

 

Table 2: Simple linear regression models for surprisal and entropy comparison between 
prior and post WPD. 
 

R2 (R2CV) B SE B P 

worst surprisal 0.02 (0.02) 
  

< .001 

update* 
 

-0.49 0.01 < .001 

avg.† surprisal 0.64 (0.64) 
  

< .001 

update* 
 

-2.80 0.01 < .001 

worst entropy 0.14 (0.14) 
  

< .001 

update* 
 

-1.85 0.02 < .001 

avg.† entropy 0.80 (0.80) 
  

< .001 

update* 
 

-6.30 0.01 < .001 
*Difference between prior and post WPD, †average 

  

For Analysis 2 we tested whether the surprisal of the correct word of the post WPD 

improves with increasing gate length. We fitted a linear regression model on the 

difference in surprisal between prior and post WPD for each gate length. We 

modelled the relationship between surprisal difference and gate length with a 7th 

order polynomial, to capture possible non-linear relationships and established the 

order of the polynomial with model comparison by selecting the highest uneven 

order that still improved the model. We used the same approach to test entropy 

difference in relation to gate length; for this model we used an 11th order polynomial 

on gate duration. Both the surprisal and the entropy model were fitted on 80% of 

the data. Again, we used the remaining 20% unseen data to compute the R2
cv, to test 

whether the model generalizes well.  
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Figure 2: Predicted difference in surprisal and entropy as a function of gate duration, with 
99% confidence intervals. 

 

 

We do not report the betas for all polynomials in the surprisal and entropy model, 

because they are hard to interpret. Instead, we visualized the results of both models 

in Figure 2. The surprisal of the correct word shows a clear negative trend with 

increasing gate length (R2 = 0.13, R2
CV = 0.14, p < .001). Similarly, the entropy of 

the post WPD also shows a clear negative trend with increasing gate length (R2 = 

0.22, R2
CV = 0.22, p < .001). The negative trend for surprisal means that with 

increasing gate length the probability of the correct word increases (if only words 

longer than the gate duration are considered). The negative trend for entropy means 

that the amount of uncertainty in the post WPD keeps decreasing when more 

relevant acoustic information becomes available.  

Finally, we investigated which gate duration most improved the surprisal of the 

correct word for all words. We fitted a linear regression model on 80% of the data 

to predict the difference in surprisal by gate duration with a 7th order polynomial, 

R2 = 0.13, R2
CV = 0.13, p < .001. In Table 3 we report the top 3 gate durations that 

most improved the surprisal of the correct word after the auditory update. In 

addition, we fitted the same regression model on a randomly selected subset (10% 

of the data) a 1000 times. For each model we ranked the predicted surprisal 

difference, with rank 1 for best performance. Table 3 shows that the auditory update 

of 190 milliseconds resulted in the largest reduction in the surprisal of the correct 

word.  
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Table 3: Predicted surprisal difference and number of times a gate duration (milliseconds) 
showed best improvement in surprisal between prior and post WPD. 

gate predicted 99% CI # rank 1 

170 -0.978 -1.004, -0.952 285 

190 -0.982 -1.006, -0.958 715 

210 -0.944 -0.968, 0.920 0 

 

3.4 Discussion 

The goal of this study was to quantify a mismatch measure between high-level 

expectations and low-level input in speech perception. We created two types of 

word probability distributions (WPD), one prior and one post auditory update. The 

prior WPD is completely based on preceding words and represents the high-level 

expectations. The post WPD is an update of the prior WPD integrating auditory 

information. We hypothesized that the difference between prior and post WPD 

captures the mismatch between expectations and speech input and could be 

quantified by cross-entropy.  

To validate the mismatch measure, we investigated whether the auditory update 

performed as expected. In Analysis 1, we showed a decrease in both the surprisal of 

the correct word and the entropy of the post WPD, in line with our expectations. 

Furthermore, we showed in Analysis 2 that the surprisal and entropy further 

decrease with increasing gate length (only considering words that are longer than 

the gate duration). This was also expected; longer gate durations provide more 

information for the auditory update and should therefore improve update results.  

The results show that the difference between the prior and post WPD reflects 

auditory information, which improved the probability of the correct word and 

lowered the uncertainty (entropy) of the post WPD. Prior and post WPD differ in 

word probabilities based on the extra information that the auditory input provides. 

We therefore argue that the cross-entropy between both distributions captures the 

mismatch between expected and observed auditory input. 

After validating our results, we investigated the amount of auditory materials 

needed to compute the mismatch measure in Analysis 3. For this analysis we 

included all words, because this more closely resembles the situation of a human 

listener (who does not know how long the next word will be). We compared 
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surprisal improvement of the correct word between different gate durations and 

found that a gate of 190 milliseconds performed best. We also confirmed this with 

smaller subsets of the data, suggesting that this result generalizes to unseen data. 

The mismatch measure we developed can be usefully applied in language research 

and could inform the discussion about autonomous versus interactive language 

processing. Norris et al. (2016), arguing for the autonomous word recognition 

models, discusses the evidence pertaining predictive coding and suggests that more 

evidence is needed to provide insight for the role of predictive coding in language 

processing. The mismatch measure can elucidate whether cognitively high-level 

anticipations are relevant during the processing of low-level incoming speech 

sounds in human listeners, which, if found, would provide evidence against a strong 

autonomous bottom-up-only mechanism for speech perception (see below for a 

possible experiment). 

A further question concerning the role of prediction in language processing is to 

what extent listeners predict speech input in regular non-experimental situations. 

Huettig (2015) notes that most evidence for prediction in language processing 

comes from experiments that only investigated the extremes of predictability, 

comparing, for example, highly predictable words with unpredictable words. Recent 

studies (e.g., Smith & Levy, 2013; Frank et al., 2015; Willems et al., 2016) using 

information-theoretic measures, such as word surprisal and entropy to predict 

processing costs during language processing, investigate the whole spectrum of 

predictability. These studies show that human listeners and readers are sensitive to 

these information-theoretic measures across the whole predictability spectrum. 

Similarly, the mismatch measure we developed quantifies the whole range of 

mismatch between high-level expectations and low-level input. This will allow us 

to investigate the importance of predictive coding in regular speech processing. 

A key test of the mismatch measure is to analyze its relation to data from human 

listeners. For example, in an experiment using electroencephalography (EEG) it has 

been shown that listeners are sensitive to violations of expected auditory forms 

(Connolly & Phillips, 1994; Brunellière & Soto-Faraco, 2013); this effect is referred 

to as the phonological mismatch negativity (PMN). We hypothesize that our 

measure should predict the amplitude of the PMN, whereby higher cross-entropy 

between prior and post WPD would result in a more negative deflection of the EEG-

signal. 
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3.5 Conclusions 

The predictive coding framework proposes that the mismatch between cognitively 

high-level expectations and low-level perceptual input is an important mechanism 

in perception. We showed that we can quantify this mismatch for speech perception 

with the aid of statistical language modelling and an automatic speech recognition 

system. We used naturalistic speech recordings, containing approximately 50,000 

words, to compute the mismatch measure. This opens up the possibility of 

investigating the importance of predictive coding during normal speech processing. 

We propose that the mismatch measure could be used to predict processing 

measures of listeners during speech perception. The results can inform the 

discussion about autonomous versus interactive models of speech perception. 
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naturalistic speech 
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Listening with great expectations: An investigation of word form anticipations in 

naturalistic speech. INTERSPEECH 2019 – 20th Annual Conference of the 
International Speech Communication Association, September 15-19, Graz, Austria, 
Proceedings, 2019 

 

Abstract 

The event-related potential (ERP) component named phonological mismatch 
negativity (PMN) arises when listeners hear an unexpected word form in a spoken 

sentence (Connolly & Phillips, 1994). The PMN is thought to reflect the mismatch 

between expected and perceived auditory speech input. In this paper, we use the 

PMN to test a central premise in the predictive coding framework (Friston, 2005), 

namely that the mismatch between prior expectations and sensory input is an 

important mechanism of perception. We test this with natural speech materials 

containing approximately 50,000 word tokens. The corresponding EEG-signal was 

recorded while participants (n = 48) listened to these materials. Following Chapter 

3, we quantify the mismatch with two word probability distributions (WPD): a WPD 

based on preceding context, and a WPD that is additionally updated based on the 

incoming audio of the current word. We use the between-WPD cross-entropy for 

each word in the utterances and show that a higher cross-entropy correlates with a 
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more negative PMN. Our results show that listeners anticipate auditory input while 

processing each word in naturalistic speech. Moreover, complementing previous 

research, we show that predictive language processing occurs across the whole 

probability spectrum. 

 

4.1 Introduction 

Human listeners easily perceive words when listening to continuous speech in 

normal circumstances. This apparent ease hides the profound difficulty of extracting 

words from a speech stream, which is for example attested by the challenge of 

developing artificial speech recognition systems with human-like performance. The 

details of the human speech processing system are still contentious. A long-standing 

debate concerns the timing and importance of top-down and bottom-up processing. 

Autonomous models of word recognition, for example Shortlist (Norris, 1994; 

Norris & McQueen, 2008), claim that early phases of speech processing are 

exclusively bottom-up and that top-down information can only exert influence at 

the lexical level. In contrast, interactionist models allow for top-down influence to 

affect lower-level acoustic processing, for example TRACE (McClelland & Elman, 

1986). We investigate the influence of top-down expectations on the processing of 

low-level auditory speech input with an event related potential (ERP) called the 

phonological mismatch negativity (PMN). 

The PMN (also referred to as N200, N250 or phonological mapping negativity) was 

first reported by (Connolly & Phillips, 1994; Connolly et al., 1990; Connolly et al., 

1992). They presented spoken sentences to participants while recording the 

electroencephalography (EEG) signal. The sentences were highly constraining, for 

example, “the gambler had a streak of bad …” and the final word either initially 

matched the expected word (e.g., luggage, when luck is expected), or, alternatively, 
mismatched the expected word. A mismatching word showed an early negativity, 

around 200 milliseconds from word onset compared to the initially matching word.  

The PMN is interpreted by Connolly & Phillips (1994) as reflecting a mismatch 

between expected word forms (based on the context) and observed auditory input 

(for a different interpretation of the PMN see Van den Brink et al., 2001; Hagoort, 

2007). As noted by Brunellière & Soto-Faraco, 2013), this interpretation is closely 

related to an important claim in the predictive coding framework (Friston, 2005), 

namely, that higher-level cognitive processes generate predictions about low-level 

perceptual input. The mismatch between these predictions and the perceived input 
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results in an error signal, useful for generating new expectations. For speech 

perception, this could mean that listeners generate word form expectations based on 

the preceding context, and violations of these expectations incur a processing cost. 

In the current study, we aim to investigate predictive language processing. As 

Huettig (2015) notes, many experiments investigating predictive language 

processing only test extremes of predictability (see also Van Berkum et al., 2005; 

Norris et al., 2016). For example, the N400, an ERP component thought to reflect 

word predictability (Kutas et al., 2011; but see Hagoort, 2007 for a different 

interpretation) is typically based on a comparison of very likely versus very unlikely 

words. The aforementioned PMN is for example elicited with highly constraining 

sentences as the example above. This leaves open the question of whether language 

processing normally involves prediction, or only in these extreme cases.  

Recently, several studies (e.g., Frank et al., 2015; Smith & Levy, 2013) have shown 

that the whole spectrum of word predictability can be investigated by utilizing 

information-theoretic measures. For example, Frank et al. (2015) used word 

surprisal, estimated with a statistical language model, to successfully predict the 

amplitude of the N400 measured while participants were reading sentences. Their 

approach is not based on the dichotomy of likely versus unlikely words, but instead 

uses the whole range of word probabilities. Furthermore, they used a large set of 

naturalistic language materials (see also Willems, 2016), improving the ecological 

validity of their findings. These studies provide stronger evidence for prediction 

during normal language processing.  

In the current study we expand on this type of research with a mismatch measure 

inspired by the predictive coding framework. The measure developed in Chapter 3 

quantifies the mismatch between expected and actual sensory speech input. To 

implement this mismatch measure, we need to quantify the mismatch between top-

down expectations and bottom-up observations. The top-down expectations are 

estimated with a statistical language model (SLM). The SLM estimates the 

probability P of a word Wi given the preceding words Wi-n … Wi-1 and thus captures 

the top-down expectations (see Equation 1). 

 

!,(#$|-./0120) = 	!(#$|#$&', … ,#$&*)																				(1) 

 

The bottom-up speech input will be represented with an auditory fragment of the 

initial part of the current word. This audio fragment needs to be processed in such a 
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way that it can update word expectations. To achieve this, we use automatic speech 

decoding techniques used in speech recognition software and adapt these to estimate 

the probability of a phoneme sequence given the partial auditory fragment of the 

current word. We use the resulting phoneme sequence probabilities to update the 

top-down expectations (i.e., word probabilities estimated with the SLM). In this 

manner we compute two word probability distributions (WPD): one prior WPD 

based only on the SLM output (which is based on the previous words), and one post 

WPD, which is the prior WPD updated with the phoneme sequence probabilities 

based on the audio fragment of the current word. 

The post WPD differs only from the prior WPD in the added auditory information. 

We therefore propose that the cross-entropy between prior and post WPD quantifies 

the mismatch between high-level expectations (based on previous word context) and 

auditory input. The cross-entropy can be computed according to Equation 2, 

whereby H denotes cross-entropy, p the prior WPD, q the post WPD and X the WPD 

word list.  

 

6(7, 8) = − : 7(2) log 8(2)
>	∈	@

																				(2)	

  

In the current study we test whether we can predict the amplitude of the PMN with 

the cross-entropy between prior and post WPDs. Based on the predictive coding 

framework and the EEG literature, we hypothesize that with increasing cross-

entropy a listener incurs a higher processing cost (i.e., the sensory speech input is 

more surprising), which is reflected in a more negative amplitude in the 200 

millisecond latency range. In the following sections, we will describe the EEG 

experiment and the methods used to test our hypothesis, followed by the results, a 

discussion and a conclusion.  

 

4.1 Method 

4.1.1 Participants 

Forty-eight neurologically unimpaired right-handed native speakers of Dutch (18-

29 years, mean age = 21.7 years), 14 men and 34 women, participated in the three 

sessions of EEG recordings. All participants gave informed consent to participation. 
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4.1.2 Materials 

For the experimental stimuli, we used materials from two corpora: the Spoken Dutch 

Corpus (Oostdijk, 2001) and IFADV (Van Son et al., 2008). These corpora contain 

audio recordings of Dutch speech. We extracted stretches of speech from these 

corpora, varying in duration from 4 to 15 minutes). The extracted speech stretches 

contain 50,277 word tokens (see Table 1). This subset, henceforth called Speech 

Corpus, consists of annotated speech from three speech registers (see Table 1). The 

different registers were selected for a different experiment and will not be relevant 

for the current study. For the estimation of the cross-entropy (see Section 4.2.3) we 

used NLCOW14, henceforth COW (Schäfer, 2015; Schäfer & Bildhauer, 2012), 

which is a large collection of web-crawled Dutch texts (4,7 billion words). 

 

Table 1: Overview of the materials in the Speech Corpus. 

speech style word tokens  

(word types) 

average word 

duration (ms) 

spontaneous dialogues 21,718 (2,435) 206 

read-aloud stories 13,209 (2,349) 256 

news broadcast 15,350 (3,526) 289  

total 50,277 (5,866) 245 

 

4.1.3 Computing cross-entropy 

We computed the cross-entropy (as detailed in Chapter 3) for all words longer than 

60 and shorter than 700 milliseconds (46,734 word tokens, 5,254 word types). All 

subsequent analyses are performed on this subset of the Speech Corpus. To compute 

the cross-entropy, we need a word probability distribution (WPD) at the start of a 

word and a WPD after the auditory update. Therefore, we estimated for each word 

one WPD prior and one WPD post auditory update. These WPDs consists of a list 

of approximately 200,000 word types with associated probabilities. We created the 

word type list by selecting the most frequent word types in the COW corpus. We 

use the term word type to refer to the surface form of a word, i.e., boy and boys are 

two different word types. 
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The prior WPD is an estimation of word probabilities at the start of a word, given 

the preceding words (see Eq. 1). For example, consider the phrase he played the 
guitar, the prior WPD for the word guitar consists of the 200,000 word types with 

corresponding probabilities, given the preceding words he played the. To estimate 

the probabilities, we trained a 4th order Markov SLM on the COW corpus with the 

SRILM (Stolcke, 2002) toolkit (for smoothing we used Kneser-Ney discounting 

(Chen & Goodman, 1999)). We used this SLM to create a prior WPD for each word 

in the Speech Corpus.  

We created the post WPD by updating the prior WPD with an auditory fragment of 

part of the current word (i.e., guitar). To perform this update, we transformed the 

audio fragment into probabilities of phoneme sequences. To estimate these 

probabilities, we extracted an audio fragment from word onset. By testing different 

durations for the auditory update, Chapter 3 showed that a fragment of 190 

milliseconds, is the optimal duration for the cross-entropy computation. We 

analyzed audio material by using KALDI (Povey et al., 2011) as a speech decoding 

framework. We provided KALDI with a dedicated decoding lexicon whereby each 

entry was a sequence of 1 – 8 phonemes. We limited the set of phoneme sequences 

(n » 400,000) to those that are found in Dutch words. The KALDI analysis resulted 

in a 50-best list of phoneme sequences with corresponding probabilities. The 

phoneme sequences were matched with the word types in the prior WPD and the 

probabilities were adjusted accordingly by the conventional Bayes rule, with the 

post WPD as result. 

 

4.1.4 Procedure 

Participants visited the lab on three occasions. Consecutive visits were separated by 

at least a week. Participants were fitted with the correct size electrode cap and seated 

in a sound-attenuated booth. They were asked to sit still and keep eye-movement 

and blinks to the minimum. During each visit, participants listened to approximately 

90 minutes of speech, 270 minutes in total. The speech materials were presented 

over in-ear headphones (Etymōtic ER1) on a comfortable listening level (tested with 

a short audio fragment). The speech materials were presented in blocks of 

approximately 15 minutes, followed by a short break. During breaks in the 

experiment, yes-no comprehension questions were visually presented and 

participants responded via a button box. 
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4.1.5 EEG recording 

We placed 26 cap-mounted silver-chloride electrodes according to the 10 - 20 

international system (Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, 

T8, P3, Pz, P4, P7, P8, CP1, CP2, CP5, CP6, O1, O2). We used four additional 

electrodes to monitor eye-related artefacts (eye-movements and blinks), placed at 

the outer left and right canthi, and below and above the left eye (converted off-line 

to horizontal and vertical EOG signals). Two additional electrodes were placed on 

the left and right mastoid. All electrodes were referenced to the left mastoid 

electrode and all electrode impedances were below 15 kΩ before recording started. 

The EEG-data was amplified with an Easycap system, band-pass filtered with 0.01 

and 100 Hz cut-off frequencies, and digitized at a 1000 Hz sample frequency. 

 

4.1.6 Preprocessing 

The EEG-signal was re-referenced off-line to the left and right mastoid channels 

and filtered with a 5th order Butterworth bandpass filter with cut-off frequencies at 

0.05 and 30 Hz. We removed artefacts from the EEG data semi-automatically, 

whereby all suggested artefacts were manually checked. We determined per block 

whether EEG channels with poor signal quality should be removed from the dataset. 

The Fp2 channel was completely removed from all recordings, due to poor overall 

signal quality. 

Subsequently, we removed activity related to blinks and eye movements from the 

EEG signal with the aid of independent component analysis (ICA). Following 

Winkler et al. (2015), the ICA was computed on data bandpass filtered with cut-off 

frequencies at 1 – 30 Hz, with aid of the MNE toolkit (Gramfort et al., 2014; 

Gramfort et al., 2013). We visually inspected the resulting components and selected 

those that were related to blinks and eye movement. We recomposed the EEG-data, 

bandpass filtered at 0.05 – 30 Hz, without the selected components.  

The cleaned EEG-signal was time-locked to the words in the Speech Corpus. We 

extracted an epoch from 300 milliseconds before to a 1000 milliseconds after word 

onset for each word. All word epochs exceeding ± 75 µV on any channel were 

excluded from the dataset. We excluded the data of 9 (of the 48) participants because 

of poor signal quality (i.e., less than 40% of the data remaining after artefact 

removal). This resulted in a dataset of 1,172,894 word epochs (52.3% of all data). 

This dataset is part of the Dutch EEG speech register corpus (see Chapter 2) 
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4.2 Results 

Based on previous literature (e.g., Connolly & Phillips, 1994; Van den Brink et al., 

2001; Brunellière & Soto-Faraco, 2013), we expected a divergence of the grand 

average ERPs for low, middle and high cross-entropy (i.e., we split the data into 

terciles based on cross-entropy) at around 200 milliseconds from word onset at 

frontal sites. To select a latency range and a set of channels for analysis, we also 

inspected the grand average ERPs for all channels (see Figure 1 for a subset and 

Figure 2 for topographic plot of the relevant time window). We computed the 

average over the 150 – 350 millisecond time window and the following channels: 

F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7 and T8. The result of this averaging 

was one value for each word epoch. Following Winkler et al. (2015), we did not 

subtract the baseline from the ERP. Instead, we used the baseline as predictor in our 

statistical model. We computed the baseline by averaging over the same channel set 

for the -150 – 0 millisecond time window. 
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Figure 1: Grand average ERPs for words with low (blue), middle (yellow) and high (red) 
cross-entropy. The x-axis shows time in milliseconds and the y-axis shows amplitude in µV 
(negative is plotted upwards). The vertical dashed lines indicate the window between 150 
and 350 milliseconds. 

 

 

 

We analysed the data with linear mixed effects models Bates et al., 2015 in R (R 

Core Team, 2015), with the per-word ERP amplitude as dependent variable and 

cross-entropy as predictor of interest. The standardized covariates are the 

aforementioned baseline, the surprisal of the word, the entropy of the prior WPD, 

log frequency of the word in the COW corpus, the duration of the word, the word 

number in the sentence, and the word number in the block. Furthermore, we added 

participant and word as random effects. We considered a random slope for cross-

entropy by participant but did not include it in the final model, because it resulted 

in a convergence error. 
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Table 2: Overview of the fixed effects in the linear mixed effect model with the PMN as 
dependent variable. The variable names, the beta (B) value, the standard error (SE B) and 
the t-value (t) are reported. 

name B SE B   t 

intercept -0.23 0.04 6.5 

entropy 0.11 0.01 16.3 

surprisal -0.02 0.01 -1.9 

baseline 6.02 0.01 1145.9 

log frequency 0.07 0.02 3.8 

word duration -0.06 0.01 -6.7 

word in sentence -0.04 0.01 -6.4 

word in block -0.05 0.01 -8.5 

cross-entropy -0.02 0.01 -3.6 

 

We computed two models: a simple model without the predictor of interest, cross-

entropy, and a second model with this predictor. Table 2 lists the fixed effects of the 

second linear mixed effect model. Model comparison reveals that the model with 

cross-entropy significantly improves compared to the simple model χ2 (1) = 4.86, 

p < .05. The PMN is more negative with increasing values of cross-entropy. 
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Figure 2: Topographic difference plot between words with a high cross-entropy versus 
words with a low cross-entropy, averaged over the time window 150 - 350 milliseconds 
after word onset. 

 

 

4.3 Discussion 

According to the predictive coding framework Friston (2005), the mismatch 

between prior expectations and sensory input is an important mechanism for 

perception. We tested this claim for speech perception with an event related 

potential (ERP) component named the phonological mismatch negativity (PMN). 

This component is thought to reflect the mismatch between expected and actual 

auditory word forms. Following Chapter 3, we quantified the mismatch between 

expectations and sensory input as the cross-entropy between two-word probabilities 

distributions (WPD), one based on preceding words, and an updated version based 

additionally on the auditory input. We found that in line with our hypothesis, the 

cross-entropy has a negative correlation with the PMN amplitude, i.e., higher cross-

entropy corresponds with a more negative amplitude of the PMN (see Figure 1 & 2 

and Table 2). We propose that speech processing involves a comparison between 

high-level expectations and the auditory speech input. When the input mismatches 

with the expectations, this incurs a processing cost. 

We recorded the electroencephalography (EEG) signal while participants listened 

to naturalistic speech. Following Willems (2015), the speech materials were 

extracted from corpora and represented normal language. Participants listened to 

long stretches of speech (approximately 15 minutes), instead of individually 
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presented sentences or words. This has the distinct advantage that more relevant 

EEG data can be acquired. However, the downside is an increase of artefacts, 

because it is not possible for participants to sit perfectly still or refrain from blinking 

for a block of 15 minutes. As a result, more materials needed to be removed (~ 50% 

of the word epochs) than in more classical EEG experiments. However, because we 

analysed most words (93%) in the speech materials, we were able to create a dataset 

with approximately one million word epochs, orders of magnitude larger than 

analysed in classical EEG experiments. 

The amount of data is important for this experiment. We investigated an ERP based 

on stimuli (i.e., words) while we could not control for sensory form or the preceding 

context, i.e., the target stimuli were the spoken words occurring in naturalistic 

speech. ERPs are sensitive to these kinds of differences (Luck, 2014) and it is only 

by averaging over very many tokens, which we had available, that this diversity 

averages out in the EEG signal. 

Since we investigate many words in many contexts, we could investigate predictive 

language processing not just in highly constraining or artificially (un)likely 

contexts. As Huettig, 2015) noted, most experimental evidence for predictive 

language processing is based on experiments using these kinds of artificial language 

input. Recent studies (e.g., Frank et al., 2015; Smith & Levy, 2013; Willems et al., 

2016) have been using a new approach, whereby language processing costs are 

predicted based on information theoretic measures, investigating a wide range of 

the probability spectrum. We extended these findings by using the mismatch 

measure (developed in Chapter 3) to predict processing costs of word forms during 

natural language perception. Our study shows that listeners do indeed anticipate 

word forms over the whole range of predictability, in line with the idea of graded 
predictions (see Van Berkum, 2005). 

We propose that our finding is best explained by top-down feedback. This 

explanation is at odds with autonomous models of word recognition (e.g., Shortlist 

(Norris, 1994; Norris & McQueen, 2008)), which claim that early speech perception 

consists of bottom-up-only processing and do not allow for top-down feedback. 

Norris et al. (2016) defend the idea of no feedback by stating that processing of the 

acoustic signal is already optimal (by means of Bayesian inferencing), and therefore 

cannot be improved by feedback. However, feedback can be highly informative as 

an error-detection device, informing the listener whether the current word priors are 

on point (i.e., how well do they explain the current input). If the overall error 

increases, then the generative model needs to be adapted. The difference between 

the expected and perceived speech input (the error signal) provides a mechanism to 
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dynamically adapt perceptual processing (and a built-in learning system to boot). 

This ‘error signal’-based reasoning is in line with predictive coding, which proposes 

that early stages of sensory input processing involves propagating the mismatch 

between the expected and actual sensory input. 

 

4.4 Conclusions 

We used a novel experimental approach in which participants listened to naturalistic 

speech while their EEG signal was recorded. Based on one million EEG word 

epochs, we showed that the ERP named the PMN has a negative correlation with 

cross-entropy, which quantifies the mismatch between expected and perceived 

auditory input. We showed that naturalistic speech stimuli can be used in an EEG 

experiment, and that it is possible to analyse most words (93%) in these speech 

materials. Furthermore, we extended research using an information-theoretic 

measure to predict processing costs of word forms, and provided additional 

evidence for extensive predictive language processing.  
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Do speech registers differ in 
the predictability of words? 

Chapter 5 

 

This chapter is reformatted version of: 

Martijn Bentum, Louis ten Bosch, Antal van den Bosch & Mirjam Ernestus (2019). 
Do speech registers differ in the predictability of words? International Journal of 
Corpus Linguistics, 24(1), 98-130. 

 

Abstract 

Previous research has demonstrated that language use can vary depending on the 

situational context. The present paper extends this finding by comparing word 

predictability differences between 14 speech registers ranging from highly informal 

conversations to read-aloud books. We trained 14 statistical language models to 

compute register-specific word predictability and trained a register classifier on the 

perplexity score vector of the language models. The classifier distinguishes 

perfectly between samples from all speech registers and this result generalizes to 

unseen materials. We show that differences in vocabulary and sentence length 

cannot explain the speech register classifier’s performance. The combined results 

show that speech registers differ in word predictability.  

 

5.1 Introduction 

People communicate in different situations and modalities, ranging from casual 

conversations between friends to formal lectures or public addresses. Many 

previous studies have shown that these different situations elicit different language 

use; see Biber & Conrad (2009) for an overview. The term ‘register’ is used to 

provide a link between a communicative act and the context of the situation it occurs 

in (Marco, 2000). Likewise, we will use the term register to refer to language 
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variation in relation to the situation of use (see Lee, 2001 for a discussion). In this 

paper, we investigate register-specific differences in word predictability, defined as 

the conditional probability of a word given the preceding words. We conducted five 

experiments to test whether speech registers differ in word predictability. 

To investigate register differences in word predictability, we use statistical language 

modelling, a technique widely used within the discipline of Natural Language 

Processing (NLP). We compute register-specific word predictability scores with the 

aid of statistical language models (SLM) and use these scores to train a speech 

register classifier. The performance of the classifier shows, to what extent speech 

registers differ in word predictability. In Section 5.2, we will explain how this NLP 

approach complements register analysis. In Section 5.3, we introduce the corpora 

we use for this study and outline our analysis approach. In the following sections, 

we describe the experiments we conducted. In Study 1, we investigate how to create 

SLMs that allow cross register comparison. In Study 2, we train and test register-

specific SLMs to estimate register-specific word predictability. These word 

predictability scores are then used to train a speech register classifier. In Study 3, 

we validate the results from Study 2, by testing the speech register classifier on the 

validation corpus. In Study 4, we investigate the amount of data necessary for 

classification. Finally, in Study 5, we investigate the influence of average sentence 

length on word predictability. We end with a general discussion of our findings. 

 

5.2 Characterizing text in register analysis and natural language 
processing 

The most fundamental approach in register analysis is to count lexico-grammatical 

features (e.g., demonstrative pronouns), and compare their prevalence across 

registers. The studied materials may be written, or consist of orthographic 

transcription of speech samples. For example, Tottie (1991) investigates differences 

between spoken and written British English and found that negatives are twice as 

prevalent in spoken language as in written text. Van Gijsel et al. (2006) compare 

excerpts from different speech registers in Dutch and show that word type-token 

ratio (TTR) is lower for informal dialogues than for formal monologues.  

Biber (1988, 1995) develops an approach for register analysis known as 

multidimensional analysis, which aims at identifying co-occurring linguistic 

features and discovering underlying dimensions of language use by means of factor 

analysis. For example, Biber (1988) finds that discourse particles, first and second 
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person pronouns, and present tense verbs are typical of involved language. 

Conversely, a high frequency of nouns and prepositions and a high word type-token 

ratio are typical of informational language. The dimensions can be used to group or 

distinguish between different registers and give a functional interpretation to the 

patterns of lexico-grammatical features (Biber & Conrad, 2009). 

In contrast to the interpretative approach of register analysis, text classification 

methods as developed within the discipline of NLP, characterize texts by a large set 

of (mostly) automatically generated features (see Killgariff, 2001 for an overview). 

The feature set typically consists of n-grams, which can for example consist of POS 

tags, or words. Based on n-grams, an SLM can be created that estimates the 

probability of a word given the preceding words. SLMs are a staple technology for 

applications such as machine translation, automatic speech recognition, and 

document retrieval (Jurafsky & Martin, 2009). 

Both register analysis and NLP have advantages and disadvantages. For example, 

because register analysis uses a relatively small set of lexico-grammatical features 

to describe and interpret differences between registers (Biber & Conrad, 2009), it 

precludes data-driven research. Registers can only be characterized with features 

that are defined beforehand, based on previous research or on the researcher’s 

intuitions. Statistical language modelling avoids this and opens up the possibility of 

a data-driven search of patterns in a corpus.  

From the perspective of register analysis, there is a disadvantage to SLMs; because 

typically many features are used, the interpretation of patterns of textual differences 

is difficult. The feature set is essentially a long list of item co-occurrence statistics, 

and therefore ill-suited for human interpretation. Still, n-grams are a valuable tool 

for various types of analysis. For example, Gries (2001) successfully uses the 

statistics of word co-occurrences to disambiguate the meanings of near synonyms. 

Denoual (2006) uses character n-grams (i.e., based on graphemes instead of words) 

to classify texts on a dimension ranging from literary to oral.  

We propose that investigating the distribution of word n-grams across speech 

registers may reveal register differences not accessible with current register analysis 

tools. We use word n-grams because they are theory neutral; only minimal 

assumptions have to be made to count and compare n-grams of words (see also Gries 

& Ellis, 2015: 231). Moreover, previous research shows that listeners are sensitive 

to the statistics of word n-grams.  

For our current study, word predictability is a crucial concept. We define word 

predictability as the probability of a word given the previous context (i.e., the 
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preceding words). For example, the predictability of the word gun given the context 

The policeman pulled out his … is high compared to a word like socks. Word 

predictability is thus the conditional probability P(word|context) of a word word 
given the preceding context context, which can be estimated with an SLM (e.g., 

Smith & Levy, 2013). 

Word predictability plays an important role in language comprehension (e.g., Kutas 

et al., 2010). Converging evidence from studies using different methodologies such 

as self-paced reading (e.g., Monsalve et al., 2012; Smith & Levy, 2013), eye-

tracking (e.g., Frisson et al., 2005), EEG (e.g., Van Berkum et al., 2005), and fMRI 

(e.g., Willems et al., 2016) show that that the processing of speech and text is 

influenced by the predictability of a word given the previous context. For an 

overview of frequency effects in language processing, see Ellis (2002). 

Word predictability also plays a role in language production. For example, Bell et 

al. (1999) found that the pronunciation of English function words depends on word 

predictability, whereby less predictable words are pronounced in fuller form. 

Similarly, Pluymaekers et al. (2006) found that the duration and number of segments 

of Dutch suffixes are influenced by the predictability of the carrier word. 

The widespread and converging evidence for the importance of word predictability 

in language comprehension and production led us to investigate to what extent word 

predictability differs across registers. One reason to suspect differences is the 

aforementioned finding that lexical richness differs across speech registers (e.g., 

Van Gijsel et al., 2006); more formal registers have higher word type-token ratios 

than more informal registers. If one register contains more word types compared to 

other registers, it is likely that this influences word predictability. We will use SLMs 

to compute register-specific word predictability and test whether predictability 

patterns distinguish between registers.  

 

5.3 Methodology 

We describe the corpus we use in Section 5.3.1 and our methods of analysis in 5.3.2.  

 

5.3.1 Corpus 

We used a subset of the Spoken Dutch Corpus (Oostdijk, 2001). This corpus is 

ideally suited to investigate speech register differences, because it consists of 
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components reflecting speech in different situations of use, ranging from 

spontaneous conversations to television news broadcasts and read-aloud stories. We 

used the orthographically transcribed recordings of adult native speakers in the 

Netherlands. We excluded the Flanders part (approximately one-third) of the 

corpus, because possible differences between Northern Dutch and Flemish Dutch 

speech styles are outside the scope of our study. In addition, we excluded one 

component (“Masses and solemn speeches”) because it is comparatively small 

(fewer than 6,000 word tokens). This left 14 components for analysis (see Table 1). 

This subset consists of approximately five million word tokens of Netherlandic 

Dutch speech, a variety of Dutch spoken in the Netherlands. 

 

Table 1. Overview of the 14 components in the Spoken Dutch Corpus used for Studies 1 - 4  

ID Component description 

a Spontaneous conversations (face-to-face) 

b Interviews with teachers of Dutch 

c Spontaneous telephone dialogues via a platform 

d Spontaneous telephone dialogues via a minidisc recorder 

e Business negotiations 

f Radio and television interviews and discussions 

g Debates, discussion and meetings (especially political) 

h Classes 

i Spontaneous radio and television commentaries (e.g., sports) 

j Radio and television newsroom and documentaries 

k News broadcast on radio and television 

l Reflections and commentaries broadcast on radio and television 

n Lectures and speeches 

o Read-aloud stories 

 

We also created a validation corpus to validate our findings and ensure they 

generalize beyond the materials in the Spoken Dutch Corpus. It consists of materials 

from three different corpora: two corpora of Dutch spontaneous speech, the Institute 

of Phonetic Sciences Amsterdam Dialogue Video Corpus, henceforth IFADV (Van 

Son et al., 2008), and the Ernestus Corpus of Spontaneous Dutch, henceforth ECSD 
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(Ernestus, 2000), and two components of the STEVIN Dutch Reference Corpus, 

henceforth SoNaR, (Oostdijk et al., 2013), namely a subset of Dutch teleprompt 

texts (news broadcasts) and Dutch books. We will refer to the combination of these 

new materials as the validation corpus, which consists of approximately 2.2 million 

word tokens.  

The materials in the validation corpus were chosen because they correspond to three 

specific components in the Spoken Dutch Corpus. The two corpora of spontaneous 

speech (IFADV and ECSD) correspond to component “a” (“Spontaneous 

conversations”), the set of Dutch teleprompt texts correspond to component “k” 

(“News broadcasts on radio and television”) and, finally, the Dutch books 

correspond to component o (“Read-aloud stories”). 

The SoNaR texts are not an orthographic transcription of speech, while this is the 

case for all other corpora that were used in this study. They are nevertheless similar 

to the respective components “k” and “o” in the Spoken Dutch Corpus, because 

news broadcasts (component “k”) are typically read from teleprompts and should 

conform to the teleprompt texts closely, and read-aloud stories (component “o”) are 

a collection of read-aloud audiobooks. Still, differences could occur between the 

SoNaR materials and the orthographically transcribed texts, for instance, in the 

placement of sentence boundaries. 

 

5.3.2 Analysis  

We used SLMs to investigate whether speech registers influences word 

predictability. The reasoning is as follows. SLMs are sensitive to the difference 

between the language materials they are trained on and the materials they are tested 

on. The performance of a language model in terms of predicting the next word 

correctly on the basis of a sequence of previous words is known to suffer in general 

if the difference between the training and test set increases. We assert that this is 

also likely to apply to differences in speech register. For example, if an SLM is 

trained on spontaneous conversations and subsequently tested on read-aloud stories, 

the model’s predictive performance (i.e., its ability to assign the correct probability 

to the next word given the preceding context) is likely to be worse than in a test on 

an unseen set of spontaneous conversations. SLM performance can thus be utilized 

to assess the similarity of different registers to the register the model was trained on. 

We use this language model characteristic to determine word predictability 

differences between speech registers. 
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To test whether speech registers systematically differ in word predictability, we 

train a classifier on the SLM performance measures. If word predictability differs 

between speech registers, the classifier should be able to differentiate these registers 

and achieve good register classification results. In addition, we investigate the 

amount of data necessary to achieve accurate classification of speech registers. 

Furthermore, we aim to rule out that our classifier results are driven by sentence 

length differences between speech registers. This is important because sentence 

length could influence the SLM results, as SLMs tend to assign higher likelihood 

scores to shorter sentences. Furthermore, registers can differ in sentence length 

(Wiggers & Rothkrantz, 2007). 

Because we aim to compare SLM word predictability scores between registers, the 

SLM vocabulary (i.e., a list of all words used to train the SLM) deserves special 

consideration. An SLM’s vocabulary is typically based on the texts it is trained on, 

referred to as a ‘training set’. The ‘out-of-vocabulary words’ (i.e., words not part of 

the language model, also referred to as ‘OOV words’) are typically ignored in 

performance evaluation. However, we train SLMs on different registers and want to 

compare between them. If the number of OOV words differs between SLMs trained 

on different speech registers, this can influence test results of the SLM; for instance, 

if a register contains many OOV words, the SLM could attain an artificially boosted 

performance. Therefore, for a fair comparison between all register-specific SLMs, 

they should have the same register-insensitive vocabulary.  

For the creation of the fixed SLM vocabulary, we need a corpus containing multiple 

registers and an approach for vocabulary word selection. Two extreme approaches 

are possible: ‘greedy selection’, that is, selection of all or nearly all words occurring 

in the corpus; or ‘robust selection’, that is, selection of only those words that are 

most likely present if the corpus would be created again, regardless of register. For 

example, consider the word gamble, which can be used in many different registers, 

while the word inning typically occurs in sports commentaries. In this example, the 

word gamble is a good candidate for a robust vocabulary, while inning may not be.  

The advantages of greedy selection are the maximum use of available data and a 

straightforward inclusion criterion, which typically consists of the selection of all 

words occurring above a certain frequency threshold (e.g., word frequency of 5) in 

the corpus. The disadvantage of greedy selection relates to the unreliability of the 

decision to include a word. For example, the ‘burstiness’ of words, the phenomenon 

that a word’s likelihood increases if it has been used recently (Church & Gale, 

1995), lead to an uneven distribution of tokens throughout a corpus. These findings 
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make word frequency an unreliable measure to base word selection criteria on 

(Kilgariff, 2001; Gries & Ellis, 2015). 

Robust selection addresses the word burstiness problem. Savický & Hlaváčová 

(2002) developed a metric called average reduced frequency (ARF), which adjusts 

word frequency based on the word’s dispersion in a corpus, whereby a word with 

low dispersion (i.e., with a bursty distribution) results in a lower ARF as compared 

to a word that is more evenly distributed (cf. Section 5.4.1). If a word is used 

regularly throughout the corpus, it is more likely it will be found again in a newly 

sampled corpus, whereas a word that only occurs in local bursts may be an 

idiosyncratic (e.g., topical) characteristic of a specific corpus. Therefore, a 

vocabulary based on the highest scoring ARF words could improve word selection 

quality. 

A potential disadvantage of robust selection is the reduction of the available data, 

because the resulting vocabulary will be significantly smaller than the vocabulary 

resulting from greedy selection. In addition, the word exclusion criterium is more 

complex and the quality of the vocabulary depends on the viability of these criteria. 

In sum, both approaches have their advantages and disadvantages, and it is unclear 

whether greedy or robust selection is the best way to create an SLM vocabulary for 

our purposes. Therefore, we test the greedy and robust SLM vocabulary selection 

strategies in Study 1 and select the best approach. The four subsequent studies use 

this approach to create SLMs. In these studies we test word predictability 

differences between registers, rule out confounds, and test the robustness of the 

found differences between registers. The methodological details of each study will 

be discussed in the respective sections.  

 

5.4 Study 1: SLM vocabulary selection 

In study 1 we tested whether robust or greedy selection is better suited for the 

creation of a SLM vocabulary. 

 

5.4.1 Procedure 

We extracted the orthographic transcriptions from the Spoken Dutch Corpus and 

removed the special corpus-specific word codes (explicitly marking foreign words, 

dialectal words, regionally accented words, new words, interjections, 
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onomatopoeia, hesitations and mispronunciations, see Goedertier et al., 2000). 

Further text normalization was not necessary because the orthographic 

transcriptions were already tokenized and normalized according to the protocol 

described in Goedertier et al. (2000). 

We defined word type as the word surface form (i.e., run and runs are two different 

word types) and created the greedy vocabulary by selecting the 50,000 most 

frequent word types from the corpus. We created the robust vocabulary by ranking 

word types based on their average reduced frequencies (see below) and selected all 

word types with an average reduced frequency (ARF) of at least 50. This lower 

bound of the ARF was based on the trade-off between coverage and the constraint 

that word types should be present in most components of the corpus. This resulted 

in a list of 585 words types, covering 77.5% of all word tokens in the corpus.  

To compute the ARF of each word in the corpus, we extracted the first 61,834 word 

tokens (i.e., the number of tokens in the smallest component) from each component, 

which ensures that the ARF scores are not influenced by the amount of materials of 

each component in the corpus. We then calculated the reduced frequency (RF) of 

each word (Savický & Hlaváčová, 2002). The RF (Equation 1) equals the word’s 

frequency if the word is evenly distributed throughout the corpus, while it has a 

lower bound of one if the word is clustered in one location in the corpus (Hlaváčová 

& Rychly, 1999). That is, words with the highest ARF are those words that occur 

evenly throughout the corpus and are therefore neither topic-specific nor register-

specific.  

To compute the RF for each word w, the corpus is divided into a number of intervals 

(Nintervals) equal to the frequency of word w. The RF is then computed as the number 

of intervals word w occurs in. Therefore, it is important to keep the original word 

order of texts and to group register-specific texts together. 

 

   BC = ∑ EF(G)	
HIJKLMNOPQ
$  

R
EF(i) = 1,																				GE	0ℎ1	U.VW	U	.--XVY	G/	0ℎ1	GZ[	G/01V\]^		
EF(i) = 0,					GE	0ℎ1	U.VW	U	W.1Y	/.0	.--XV	G/	0ℎ1	GZ[	G/01V\]^

												(1) 

 

The RF depends on the start and end points of the intervals and the start point of the 

first interval determines the start and end points of all other intervals. There are 
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many possible starting points for the first interval. To avoid this arbitrariness, the 

RF is calculated for all non-redundant starting points in the corpus, that is, for the 

first word of the corpus, up to and including the word with number v = 

⌊aFbcde/a$'Zgchije⌋, where v denotes the number of starting points, Nwords the 

number of word tokens in the corpus and Nintervals denotes the number intervals the 

corpus is divided into. We computed the average reduced frequency for each word 

by averaging over all RFs. 

To compare the greedy and robust vocabularies, we created two versions of our 

corpus. All OOV words were mapped to the dummy string unk. In one version, we 

used the greedy vocabulary to determine the OOV words and in the other version 

we used the robust vocabulary.  

We used frequency profiling, described in Rayson & Garside (2000), to discover 

those n-grams (restricted to unigrams, bigrams or trigrams) in each component that 

distinguish a given component from the other components, for both the greedy and 

robust corpus versions. Frequency profiling compares the frequency of a n-gram in 

different corpora by computing the log-likelihood (Equation 2) of the n-grams 

frequency in one corpus compared to the frequency in one or more other corpora. 

For the computation of the log-likelihood we used the regular frequency (not the 

ARF) of the n-gram.  

 

ll'mcin = 	2o	: p$
$

	^/ q
p$
r$
st																				(2) 

In Equation 2 Oi denotes the n-gram frequency in the i-th corpus. Ei denotes the 

expected value of the n-grams frequency in the i-th corpus and is computed 

according to Equation 3, 

 

r$ =
a$ ∑ p$$

∑ a$$
																				(3) 

where Ni refers to the total number of n-gram tokens in the i-th corpus. 
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To compute the log-likelihood statistic we used the Colibri-Core toolkit (Van 

Gompel & Van den Bosch, 2016), which includes an implementation of frequency 

profiling. To investigate n-grams that are specific for a component compared to the 

rest of the corpus, we used the leave-one-out approach; we compared all n-grams in 

each component against the combination of the 13 other components. The log-

likelihood statistic was calculated for all word unigrams, bigrams and trigrams, for 

both the robust and greedy corpus.  

 

5.4.2 Results and discussion 

The Colibri-Core toolkit returns n-gram lists ranked on log-likelihood, whereby the 

n-grams that distinguish a component most compared to the others are ranked at the 

top. We checked whether the greedy vocabulary resulted in a more uneven 

distribution of word forms across components compared to a robust vocabulary. We 

found that this was indeed the case. To illustrate this, we list the highest ranking 

unigrams for a sample of four components, in Table 2 for the greedy vocabulary 

version, and in Table 3 for the robust vocabulary version.  
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Table 2. Overview of the most distinguishing word forms of four speech registers based on 
frequency profiling, greedy vocabulary (50,000 most frequent word forms) 

Casual 

conversation 

Interviews with teachers 

of Dutch 

Political debates Sports commentary 

ja (“yes”) uh (“ehm”) het (“it”) bal (“ball”) 

nee (“no”) leerlingen (“pupils”) de (“the”) Kluivert* 

oh (“oh”) Nederlands (“Dutch”) voorzitter (“chairman”) Bergkamp* 

‘k (“I”) lezen (“read”) motie (“motion”) Zenden* 

zo (“later”) onderwijs (“education”) u (“you”) de (“the”) 

echt (“really”) literatuur (“literature”) heer (“gentleman”) balbezit 

mmm (“ehm”) klas (“class”) van (“of”) (“ball possession”) 

wel (“well”) school (“school”) mevrouw (“lady”) Overmars* 

gewoon (“just”) vak (“course”) minister (“minister”) Boer* 

maar (“but”) ik (“I”) vraag (“question”) Cocu* 

NOTE: * name of Dutch soccer player 

 

Table 3. Overview of most distinguishing words of four speech registers based on frequency 
profiling and a robust vocabulary (585 top ranking ARF words) 

Casual  

conversation 

Interviews with 

teachers of Dutch 

Political debates Sports commentary 

ja (“yes”) uh (“ehm”) het (“it”) unk* 

nee  (“no”) lezen (“read”) voorzitter (“chairman”) de (“the”) 

oh (“oh”) school (“school”) de (“the”) speelt (“plays”) 

'k (“I”) ik (“I”) u (“you”) nul (“zero”) 

zo (“later”) vind (“think”) heer (“gentleman”) nu (“now”) 

wel (“well”) mmm (“ehm”) van (“of”) helft (“half”) 

mmm (“ehm”) heel (“very”) minister (“minister”) voor (“before”) 

echt (“really”) dus (“so”) unk* meter (“meter”) 

maar (“but”) ben (“am”) vraag (“question”) tweede (“second”) 

gewoon (“just”) kinderen (“children”) om (“to”) gaat (“go”) 

NOTE: * unk is the dummy string that out-of-vocabulary words are mapped to. 
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We observe that the greedy selection approach produces a topicality confound (i.e., 

differences in n-gram frequency between components due to the topics discussed in 

the components). For example, the component containing interviews with teachers 

of Dutch contains many words specifically related to education (e.g., the Dutch 

equivalents of pupils, school, class), while the sports commentary component 

contains many proper names of Dutch soccer players (e.g., Kluivert, Zenden). A 

similar pattern is present in the higher order n-grams (i.e., bigrams and trigrams). 

Consequently, if we create SLMs based on a greedy vocabulary, it will not be 

possible to ascertain whether components are distinguished based on register or 

topic. The robust strategy, as illustrated in Table 3, attenuates the topicality 

confound. For example, the most distinguishing words for the sports commentary 

do not include proper names, and we see only few terms specifically related to 

education for the component containing interviews with teachers of Dutch. Note 

that, by using ARF to select words, we do not restrict the vocabulary to function 

words. As can be observed in Table 3, content words are also present in the robust 

vocabulary. 

In sum, Study 1 showed that a greedy vocabulary introduces a topicality confound. 

Such a vocabulary contains many words that are specific for topics that happened 

to be discussed in one or several components of the Spoken Dutch Corpus. As a 

consequence, when we train the speech register classifier based on the SLM results 

obtained with the greedy vocabulary, we do not know whether speech registers are 

distinguished based on genuine register-specific word predictability or the 

coincidental distribution of topic-specific words. The robust vocabulary remedies 

this confound by excluding words that are not evenly distributed across the corpus.  

 

5.5 Study 2: Training and testing of the speech register classifier  

In Study 2 we test whether we can distinguish between register-specific components 

of the Spoken Dutch Corpus with a classifier based on word predictability. 

 

5.5.1 Procedure 

We used the same subset of the Spoken Dutch Corpus as described in Study 1 to 

train SLMs and create the speech register classifier. The Spoken Dutch Corpus was 

pre-processed as described in Study 1. We trained register-specific tri-gram models 

with the SRILM-toolkit1 (Stolcke, 2002), using the robust vocabulary created in 
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Study 1. For smoothing, we used Witten-Bell discounting with interpolation (Witten 

& Bell, 1991). We could not use the standard smoothing technique, that is, modified 

Kneser-Ney discounting (Chen & Goodman, 1998), because of our small 

vocabulary of relatively frequent words. Kneser-Ney discounting needs counts of 

infrequent n-grams to assess the probability mass needed for unseen n-grams. 

Witten-Bell is able to deal with truncated count-of-count lists2 because it uses the 

first occurrence of n-grams to assess the probability mass needed for unseen n-
grams. 

To create register-specific SLMs, we first mapped all OOV word tokens to the 

dummy string unk. The mapping was used to maintain the serial structure of the 

sentences. Next, we created training and test sets for each component in the Spoken 

Dutch Corpus by grouping all sentences of a given component into a single text file. 

Subsequently, the sentences of a given component were randomly assigned to one 

of ten equally-sized partitions to ensure a fair sampling of the register in all of the 

partitions. 

For each component we ran a ten-fold cross-validation experiment on the partitions, 

using nine parts for training and one part for testing in a rotating fashion (see also 

Figure 1). The ten-fold cross-validation experiments yield perplexity scores for each 

of the ten folds. Perplexity is a measure of how well a register-specific SLM predicts 

words (based on the preceding words) in new, unseen texts. Importantly for our 

study, registers similar to the SLM will generate lower perplexity scores than less 

similar registers. 

The perplexity scores were computed with Equation 4, where word stands for a 

specific word token in the test file and context stands for the preceding words 

(maximally a bigram). aFbcde	and aeg'Zg'vge represent the number of word tokens 

and sentences in the test set, respectively, and awwx	represents the number of out-

of-vocabulary words, which always equal 0 in our test sets, because all OOV words 

were mapped to the unk token.  

 

71V7^12G0y = 	
∑ 10jbm!(U.VW|-./0120)ijj	Fbcde	

(aFbcde 	−	awwx +	aeg'Zg'vge)
																				(4) 
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Figure 1. Workflow overview for the creation of a speech register classifier based on word 1 
predictability 

 

 

For each test file (ten from each of the 14 components), we created a 14-dimensional 

vector of perplexity scores (i.e., a list of 14 perplexity scores, one for each SLM) by 

applying all 14 trained language models to that test file. The resulting perplexity 

vector describes how well the test file is predicted by the 14 register-specific 

language models. The perplexity vectors for the 140 test files form a 140-by-14 

similarity matrix, whereby each row describes the location of a test file in a 14-

dimensional space, while the columns correspond to the register-specific SLMs in 
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the Spoken Dutch Corpus. The perplexity similarity matrix shown in Figure 1 (step 

3) is a subset of the complete similarity matrix we created based on the 14 

components in the Spoken Dutch Corpus.  

We used Linear Discriminant Analysis (LDA) to create a speech register classifier 

based on the similarity matrix. LDA finds a linear combination of features that 

maximizes class separation (see Equation 5).  

 

2| = 	
]V}~]2	

2 	
2Z ∑ 2�
2Z ∑ 2F

																				(5) 
 

The between-class and within-class scatter matrices are represented by ∑ 	� and ∑ 	F  

respectively. A vector of weights 2| is found that maximizes the coefficients of the 

between-class and within-class scatter matrices, which results in an optimal class 

separation when two assumptions hold about the data: homoscedasticity (identical 

within-class scatter matrices) and within-class multivariate Gaussian distributions. 

Because our data do not conform to these assumptions, we validated our classifier, 

as will be discussed in Study 3. 

 

5.5.2 Results and discussion 

The speech register classifier was able to distinguish perfectly (accuracy 100%, on 

the held-out test sets) between all registers within the Spoken Dutch Corpus 

material. Compared to chance performance (accuracy 7.14%), the speech classifier 

performed considerably better. Performance metrics in terms of precision, recall and 

f1 can be found in Appendices 1–8. 

  

5.6 Study 3: Validation of the speech register classifier 

We showed that a classifier based on register-specific word predictability can 

distinguish between speech register-specific components (Cf. Study 2). In study 3 

we tested whether the classifier is indeed sensitive to register differences between 

components. Furthermore, the LDA assumptions do not hold for our dataset and it 

was therefore important to test the robustness of our results. First, we compared the 

results of the speech register classifier with a classifier trained on a random version 
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of the corpus, and second, we tested the speech register classifier on materials from 

different corpora, to test whether the performance of the classifier generalizes to 

new data. 

 

5.6.1 Procedure 

We constructed 1,000 pseudorandom corpora with materials from the Spoken Dutch 

Corpus to validate the speech register classifier. For each pseudorandom corpus the 

sentences from the Spoken Dutch Corpus were randomly assigned to one of 14 

components. The random components were made to contain as many word tokens 

as the original components in the corpus. We trained component-specific SLMs and 

tested these on held out test sets with ten-fold cross validation as in Study 2). 

Subsequently, we trained an LDA classifier for each pseudorandom corpus, also 

following the procedure of Study 2. If the speech register classifier based on the real 

corpus outperforms the classifiers based on the pseudorandom corpora, then the 

classification accuracy of the register classifier must be due to the grouping of 

sentence according to speech register. 

The four components in the validation corpus were pre-processed individually. 

Since IFADV was annotated with the same protocol as used for the Spoken Dutch 

Corpus (Van Son et al., 2008; Goedertier et al., 2000), we used the same pre-

processing steps as in Study 1. The ECSD used a slightly different annotation style 

with more elaborate punctuation. To approximate the annotation and tokenization 

of the Spoken Dutch Corpus, we created sentences by splitting the text materials on 

question marks, exclamation marks, commas and points. We replaced the capital 

letter at the start of each sentence with the lowercase equivalent, even if it was part 

of a proper name, since proper names were not included in the SLM vocabulary.  

All sentences in the teleprompt texts and Dutch books from the SoNaR corpus 

already start with lower-case characters. We split on questions marks, exclamation 

marks, colons, commas and points and removed all remaining punctuation. For the 

set of teleprompt texts, we also removed special recording instructions (e.g., start 
audio). 

The four components in the validation corpus were each split into ten equally sized 

partitions, equal to the ten-fold cross-validation structure we created for the Spoken 

Dutch Corpus. On each partition we applied the corresponding SLMs trained on the 

Spoken Dutch corpus. The resulting perplexity vectors were used as classifier test 

sets for the register classifier trained on the materials from the Spoken Dutch 
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Corpus. Importantly, the validation materials did not influence the SLMs (which 

were exclusively trained on the Spoken Dutch Corpus) and did not influence the 

register classifier (which were trained only on the perplexity feature vectors from 

the Spoken Dutch Corpus). This validation therefore provides a strong test of 

whether our approach generalizes to new unseen data. 

 

5.6.2 Results and discussion 

The classifiers based on the pseudorandom corpora performed poorly, with a mean 

accuracy of 12% and a standard deviation of 5%. The performance is close to chance 

level performance (accuracy 7%). The result shows that a classifier based on 

perplexity scores cannot distinguish between random collections of sentences. The 

high performance of the classifier developed in Study 2 therefore indicates that the 

components of the Spoken Dutch Corpus are more homogeneous than those in the 

pseudorandom Corpora and that they differ in word predictability. 

The speech register classifier developed in Study 2 yields an accuracy score of 93% 

on the validation corpus, compared to 100% accuracy on the held out classifier test 

sets of the Spoken Dutch Corpus. The classifier thus attained a high accuracy on 

materials from new corpora, which shows that the speech register classifier is not 

overfitted to idiosyncratic aspects of the Spoken Dutch Corpus. The accuracy score 

on the validation corpus was not perfect, however. The confusion matrix in Table 4 

shows that all classification errors are made on the ECSD corpus of spontaneous 

speech. Interestingly, the ECSD is confusable with component “b”, (“Interviews 

with Teachers of Dutch”). There is considerable overlap between ECSD and 

component “b”, as both are unscripted dialogues, which suggests that the 

classification mistakes are not random. 

 

Table 4. Confusion matrix of the speech register classifier test on the validation corpus 

corpora a b k o 

SoNaR-books 0 0 0 10 

ECSD 7 3 0 0 

IFADV 10 0 0 0 

SoNaR-teleprompt 0 0 10 0 
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In conclusion, a speech register classifier based on word predictability can 

distinguish between genuine speech registers, but not between randomly sampled 

sets of sentences. In addition, we showed that the register classifier cannot only 

classify materials from the training corpus (the Spoken Dutch Corpus), but also 

materials from the validation corpus. The combined results suggest that word 

predictability differs across speech registers. 

 

5.7. Study 4: How much text material is needed for speech 
register classification? 

The aim of Study 4 was to investigate the amount of text materials needed for a 

reliable register classifier. We divided the speech registers into differently sized 

subsets. Classifiers trained on smaller subsets are expected to especially confuse 

more similar registers, which would provide further evidence that classification is 

based on register characteristics. 

 

5.7.1 Procedure 

We used materials from the Spoken Dutch Corpus and the validation corpus as 

described in Section 5.3. We used a similar procedure to that described in Study 2 

except that we created perplexity vectors based on sets containing the following 

number of sentences from a specific speech register: 2, 4, 8, 16, 32, 64, 128, 256, 

512, and 1024. We did this by dividing the text materials of each register from the 

Spoken Dutch Corpus into sets of a specific number of sentences. We computed the 

perplexity vectors for all sentence sets according to Equation 5 with the SLMs we 

created in Study 2. We trained and tested separate classifiers on the perplexity 

vectors for sentence sets with a given cardinality (i.e., 2, 4, … or 1024 sentences). 

For each register we randomly grouped half of the perplexity vectors for training 

and the other half for testing each classifier.  

In addition, we used the text materials from the validation corpus obtained in Study 

3. We divided each register into sentence sets containing the same number of 

sentences as before (2, 4, … 1024) and computed the perplexity vectors for all 

sentence sets. The register classifiers we trained on the Spoken Dutch Corpus 

materials were used to classify the sentence sets from the validation corpus. Again 

a classifier trained on sentence sets with a given cardinality (i.e., 2, 4, … or 1024) 

was used to test sentences sets with the same cardinality. 
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5.7.2 Results and discussion 

The results, shown in Figure 2, show that the speech register classifier reaches 

ceiling performance (100%) when using sets of 512 sentences, while the 

classification of the validation corpus reaches its maximum performance (95%) with 

sets of 256 sentences. The accuracy results based on sets of 128 sentences are similar 

(92%) for the validation and Spoken Dutch Corpus. Larger sentence sets show 

slightly better performance for the Spoken Dutch Corpus, possibly a result of 

overfitting. 

For the smaller sets of 2 – 64 sentences, the accuracy results for the validation 

corpus are higher than for the Spoken Dutch Corpus, which might come as a 

surprise. However, the components of the validation corpus belong to three very 

distinct speech registers, while the Spoken Dutch Corpus consists of 14 speech 

registers, including closely related registers (e.g., spontaneous conversations and 

telephone dialogues). This makes classification of the registers in the Spoken Dutch 

Corpus harder.  

Importantly, with small sets of sentences reasonably high accuracy is achieved. For 

the Spoken Dutch Corpus only 64 sentences are needed for 90% accuracy and for 

the validation corpus only 16 sentences are needed for a similar accuracy. 
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Figure 2. Speech register classifier accuracy as a function of the number of sentences in a 
set 

 

 

To investigate whether some speech registers are more similar in word predictability 

compared to others, we created a scatterplot based on the first two Linear 

Discriminants from the register classifier based on sets of 128 sentences (see Figure 

3). Each point in the scatterplot is based on a set of 128 sentences. The squares 

represent sentence sets from the Spoken Dutch Corpus and triangles represent 

sentence sets from the validation corpus (with the validation corpus components 

shown in capitals). The scatterplot shows that the four components of the validation 

corpus are located closely to the counterparts in the Spoken Dutch Corpus. Most 

registers are separated from all other registers except for the spontaneous dialogues 

(components “a”, “c”, “d”), which show considerable overlap.  
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Figure 3. Scatterplot of all registers in the Spoken Dutch corpus and the validation corpus 
plotted on the first two Linear Discriminants  

 

 

Taken together the results show that it is possible to classify registers with a small 

amount of speech (i.e., 128 sentences) with high accuracy (92%). The scatterplot 

and the classification errors show that the spontaneous registers are similar, while 

all other components in the Spoken Dutch Corpus are more distinct. 

  

5.8. Study 5: The sentence length confound 
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of sentences, which could influence perplexity scores. The classifier may therefore 

be based on average sentence length rather than on word predictability. We 

investigated this possibility by selecting a subset of our materials in such a way to 

reduce the difference in average sentence length between components. Furthermore, 

we created a classifier based on sentence length to test to what extent such a 

classifier can successfully distinguish between registers. 

 

5.8.1 Procedure 

We used the same materials as in Study 4, with the exception that, across all 

components, we only selected sentences containing 2 - 25 words. We excluded one-

word sentences because they are mostly backchannels, which occur predominantly 

in more spontaneous speech registers and may therefore have a strong influence on 

overall perplexity score differences between speech registers. We excluded 

sentences longer than 25 words to restrict the range in average sentence length over 

all components. 

 To show the extent of average sentence length variability across registers, we 

tabulated, in Table 5, the average sentence length for the different speech registers 

in the Spoken Dutch Corpus and the validation corpus (its components are 

capitalized in the table). The average sentence length differs quite extensively 

(range 6 – 28 words on average per sentence). The range was reduced to 7 – 15 

words on average per sentence in the subset restricted by sentence length. Table 5 

also shows that similar registers can differ in sentence length in different corpora. 

For example, components “k” and “o” from the Spoken Dutch Corpus have a high 

average sentence length, while the validation corpus equivalents (i.e., books and 

teleprompt texts) do not. 
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Table 5. Number of words, sentences and the average sentence length across datasets  

All Sentences Sentences with 2 - 25 words 

 com-

ponent 

word tokens sentences average 

sentence 

length 

% of total 

word 

tokens 

% of total 

sentences 

average 

sentence 

length 

a 1,745,854 303,186 6 88 70 7 

b 249,844 23,835 11 67 68 10 

c 738,794 129,351 6 88 68 7 

d 509,960 83,514 6 87 70 8 

e 136,438 179,14 8 77 69 9 

f 538,795 52,274 10 68 73 10 

g 217,626 110,63 20 42 68 12 

h 278,749 34,496 8 83 78 9 

i 130,336 124,12 10 76 94 9 

j 90,614 7,620 12 73 82 11 

k 285,278 21,176 14 96 98 13 

l 80,081 6,210 13 72 85 11 

n 61,799 2,190 28 28 54 15 

o 551,441 47,944 12 79 90 10 

BOOKS 1,000,042 121,256 8 93 91 8 

TP* 1,000,044 107,080 9 95 95 9 

IFADV 70,170 12,203 6 92 74 7 

ECSD 157,106 19,197 8 71 72 8 

NOTE: *teleprompt texts  

 

We trained the speech register classifiers using the same procedure and sentence 

sets as described in Study 4. In addition, we created a speech register classifier based 

solely on sentence length. To create the latter classifier, we computed sentence 

length counts (counts of sentences with specific numbers of words) for each speech 

register in the Spoken Dutch Corpus. The histogram of sentence lengths per register 

represents a register-specific sentence length model analogous to the SLM used 

before. We created test sets for the sentence length model by computing sentence 

length counts for all sentence sets (of 2, 4, 8 … 1024 sentences) for both the Spoken 

Dutch Corpus and the validation corpus. We compared these test sets with the 
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(speech register-specific) sentence length models using the Kullback-Leibler 

divergence (ÅÇÉ), presented in Equation 6. We used the ÅÇÉ as a similarity metric 

analogous to how we used perplexity scores.  

 

ÅÇÉ(7||8) = 	:7(G)	^.}
$

7(G)

8(G)
																				(6) 

 

In Equation 6 q denotes the observed distribution (test set) and p the modelled 

distribution. The ÅÇÉ	is a measure of the asymmetric difference between q and p. In 

our case the observed distribution q is the sentence length counts for a given set of 

sentences and the modelled distribution p is the sentence length counts of a given 

register (i.e., a component in de the spoken Dutch corpus).  

We calculated the ÅÇÉ for each combination of a sentence set and speech register, 

similar to the approach used with the SLMs. We used the resulting ÅÇÉ similarity 

vectors for each sentence set to train and test register classifiers based on the Spoken 

Dutch Corpus. We validated these classifiers with sentence sets from the validation 

corpus. Classifiers for the smaller sentence sets (sets of 2,4,…,16 sentences) were 

not created, because of the prohibitively long computing time necessary for the 

calculation of all the ÅÇÉ values. 

To quantify performance difference between word predictability and sentence 

length based classifiers, we calculated the average cross-entropy (ACE) for both the 

sentence length and word predictability classifiers (both LDA based). The cross-

entropy reflects the difference between the probability the classifier assigns to each 

possible class (the fourteen different registers in this case) and the correct class. If a 

classifier assigns a high probability to the correct class, this results in a low cross-

entropy. The cross-entropy is calculated according to Equation 7, where p denotes 

the probability of the class for the current test set (i.e., the correct class equals one 

and all other classes equal zero) and q denotes the probability for each class 

according to the classifier. 

 

6(7, 8) = −	:7(2)	^.}
>

8(2)																				(7)  
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We computed the cross-entropy for all sentence sets for both the classifier based on 

word predictability and the one based on sentence length. Subsequently, we 

computed the ACE by averaging the cross-entropy across all sentence sets of 

specific cardinality for each classifier (based either on word predictability or 

sentence length) and compared the results.  

 

5.8.2 Results and discussion 

Figure 4 shows the results of the two different types of speech register classifiers, 

the one based on word predictability and the one based on sentence length. The 

results are provided for both the Spoken Dutch Corpus and for the validation corpus.  

 

Figure 4. Classification accuracy of speech registers based on word predictability and 
sentence length, as a function of sentence set cardinality 
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The speech register classifiers based on word predictability reach ceiling 

performance (accuracy 100%) with sets of 512 sentences. The validation corpus 

reaches maximum performance (accuracy 98%) with sets of 1024 sentences. The 

results are comparable to the results obtained in Study 3, which were based on all 

sentences (see Figure 2). This is a first indication that average sentence length 

differences across registers do not underlie the accuracy of our classifiers assumed 

to be based on word predictability, because differences in average sentence length 

were reduced in the current experiment.  

The classifiers based just on sentence length were able to classify speech registers 

in the Spoken Dutch Corpus with reasonable accuracy. The classification 

performance does not generalize to the validation corpus. Furthermore, the ACE 

results also show that the word predictability based classifiers outperform the 

sentence length classifiers (Table 6): The comparison between classifier types 

shows a clear advantage for the word predictability classifier. We conclude that 

sentence length differences between registers cannot explain the results found with 

the classifiers based on word predictability.  

 

Table 6. Performance comparison of the speech register classifiers  

Sentence set 

ACE scores for each register classifier 

Sentence length Word predictability 

32 1.74 0.43 

64 1.49 0.23 

128 1.23 0.08 

256 0.94 0.01 

512 0.68 0.0001 

1024 0.38 < 0.0001 

NOTE: ACE scores are based on the data from the Spoken Dutch Corpus. Lower 

scores indicate better performance. 

 

In conclusion, the results from Study 4 show that the performance of the speech 

register classifier based on word predictability cannot be attributed to sentence 

length differences between the components in the Spoken Dutch Corpus. When we 

restrict the corpus to sentences of 2-25 words (to attenuate differences in sentence 
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length between speech registers), the accuracy results are very similar to the results 

based on all sentences. Additionally, when we trained a classifier based on sentence 

length, the classifier performance did not generalize to the validation corpus and 

this classifier was also clearly outperformed by a classifier based on word 

predictability, as shown by the ACE comparison. 

 

5.9 General Discussion and Conclusion 

We conducted five studies to investigate differences in word predictability between 

speech registers in Dutch. We used statistical language modelling (SLM) to quantify 

register-specific word predictability and trained a LDA classifier on the SLM 

output. In fives studies we determined the best approach to create the SLMs, 

whether the classifier can distinguish speech registers and the robustness of the 

results. 

 The aim of Study 1 was to test the best approach to create a balanced SLM 

vocabulary for training register-specific SLMs. We found that there were substantial 

differences in word token frequency for some word types between speech registers. 

We used averaged reduced frequency (ARF) to filter out bursty words (i.e., words 

that only occur in concentrated bursts in the corpus). This approach was able to 

attenuate speech register vocabulary differences related to topic specificity. Future 

studies that investigate differences in register or genre thus best use a word selection 

criterion that penalizes topic-specific words. For the current study, we treated word 

burstiness and the topic-specificity of words as equivalent. Future research may 

investigate their relationship and the possibility to create a measure that more 

specifically targets topic-specificity, which may result in an improved inclusion 

criterion for a robust vocabulary.  

The aim of Study 2 was to create a speech register classifier based on word 

predictability. We used register-specific SLMs in combination with LDA to create 

the classifier and found that it was able to distinguish perfectly between 14 (register-

specific) components of the Spoken Dutch Corpus. This result shows that the 

classifier can distinguish between texts grouped into components. We conducted 

Study 3 to test whether the classifier is indeed sensitive to register differences 

between the components. We performed the procedures from Study 2 on 1000 

pseudo-random variants of the components. The resulting classifiers performed 

poorly and could not distinguish the randomized components. This result shows that 

a classifier trained on perplexity scores cannot distinguish between random 
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(heterogeneous) sets of sentences and that the perfect accuracy results obtained in 

Study 2 are based on systematic word predictability differences between speech 

registers. 

Furthermore, we created a validation corpus, with materials from other corpora. The 

validation of our register classifier is important in light of the finding by Miller & 

Biber (2015), who showed that the number of word types keeps growing with the 

addition of new texts to a corpus, even if they are from a restricted domain (i.e., 

psychology textbook). It is therefore important to test whether results hold across 

corpora. We tested the speech register classifier (trained on material from the 

Spoken Dutch Corpus) on the validation corpus and found that it can also accurately 

classify registers in this corpus. This shows that our speech register classifier is not 

overfitted to idiosyncratic aspects of the Spoken Dutch Corpus. The combined 

results support our hypothesis that word predictability differs across speech 

registers. 

The aim of Study 4 was to investigate the amount of text materials needed to classify 

the register of a text based on word predictability. We found that sets of 128 

sentences are sufficient to train a classifier with a classification accuracy of 92% on 

the Spoken Dutch Corpus (with similar performance on the validation corpus). We 

conclude that register differences can be identified with a small amount 

(approximately 1000 words) of materials. 

Figure 3 shows speech register differences captured by our classifier by means of a 

scatterplot based on the first two linear discriminants of the LDA. The plot 

illustrates that, compared to other registers, the spontaneous registers cluster 

together closely. This is corroborated by the confusion matrices of the classifiers; 

most classification errors are made between the spontaneous conversations a and 

the two telephone dialogue components “c” and “d”. All other registers are well 

separated. 

The clustering of spontaneous speech registers corresponds well with previous 

literature. Multiple factors contribute to the similarity of spontaneous speech 

registers (e.g., Leech, 2000: 697-701; Ellis, 2002: 156). For example, shared context 

between interlocutors reduces the need for specificity. Another contributing factor 

is the available processing time. Speakers only have limited time for processing and 

no possibility of editing, which typically results in a limited and reused repertoire. 

(i.e., the use of formulaic language to achieve a certain speech act; e.g., Schmitt, 

2010: 8-12). These factors work together to produce spontaneous speech registers 

that are similar, as is attested by the result from our study. 
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Previous research reported a distinction between informational and involved 

dimension in language use (Biber, 1988, 1995) with factor analysis. Our cluster of 

spontaneous registers could be interpreted as registers that use involved language; 

however, the other registers do not cluster together in an informational counterpart. 

This could be because instead of using comparatively small sets of lexico-

grammatical features, we used large sets of n-grams with statistical language 

modelling. It is possible that a large feature set such as n-grams is sensitive to 

differences between registers that use informational language, which would explain 

why we did not find a cluster of informational registers. Our results suggest that 

register differences are not exclusively related to lexico-grammatical features, 

because word n-grams reveal subtle but robust differences across registers. We 

propose that register analysis based on lexico-grammatical features, could be 

fruitfully complemented by this new approach. 

Speech registers differ in the average length of sentences (see Table 5). In Study 5 

we tested whether sentence length influences the performance of the speech register 

classifier. We used a subset of the corpus with reduced differences in average 

sentence length between registers. We found results similar to those in Study 4, 

which suggests that sentence length differences cannot account for the performance 

of the speech register classifier. Furthermore, we trained a register classifier based 

solely on sentence length, which could distinguish between speech registers to some 

extent, similar to Wiggers & Rothkrantz (2007) findings. However, the classifier 

based on sentence length was clearly outperformed by the classifier based on word 

predictability. Additionally, the performance of the classifier based on sentence 

length did not generalize to the validation corpus, indicating that sentence length is 

not a robust basis for a register classifier. The results showed that the classifier 

performance is best explained by word predictability differences and cannot be 

explained by sentence length differences between registers. 

Our results have implications for studies investigating word predictability in relation 

to language comprehension. Given the sensitivity of readers and listeners to the 

predictability of words (e.g., Smith & Levy, 2013), it is plausible that they are also 

sensitive to register-specific differences in word predictability. In addition, Study 4 

showed that the differences in word predictability between registers are already 

substantial in only 128 sentences (i.e., approximately 5 minutes of speech 

materials). It is therefore plausible that human listeners can notice these substantial 

differences as well. Future research has to show whether readers and listeners adapt 

their expectations based on the wider context of situation of use when 

comprehending written or spoken language. 
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Our results also raise important questions about the nature of lexical representations. 

For example, what type of lexical representation allows speakers to systematically 

adapt their word use to the appropriate register? Are different word predictabilities 

stored for every speech register and if so, how many registers are lexically 

represented? If listeners use register-specific word predictability to tune their 

anticipations of upcoming words, the question is again how these register-specific 

word predictabilities are mentally represented.  

The study shows that the combination of register analysis and text classification 

with the aid of statistical language modelling provides important new insights about 

registers and the requirements needed for speech processing and the mental lexicon. 

Importantly, the study extends the finding that situation of use determines language 

variation, by reporting differences across speech registers in word predictability. 

 

Notes  

1. SRILM release 1.5.12, http://www.speech.sri.com/project 

2. A count-of-count list lists the number of n-grams occurring a specific number of 

times (i.e., there are 15 unigrams that occur 3 times) in the training data.  
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Appendix 1. Precision, recall and f1 scores for the speech register classifier in Study 2 

Component precision recall f1 

Spontaneous dialogues 1.00 1.00 1.00 

Interviews with teachers of Dutch 1.00 1.00 1.00 

Spontaneous telephone dialogues (platform) 1.00 1.00 1.00 

Spontaneous telephone dialogues (minidisc) 1.00 1.00 1.00 

Business negotiations 1.00 1.00 1.00 

Radio and television interviews & discussions 1.00 1.00 1.00 

Debates, discussion and meetings  1.00 1.00 1.00 

Classes 1.00 1.00 1.00 

Spontaneous radio & television commentaries  1.00 1.00 1.00 

Radio & television newsroom & documentaries 1.00 1.00 1.00 

News broadcast on radio & television 1.00 1.00 1.00 

Reflections & commentaries broadcast  1.00 1.00 1.00 

Lectures and speeches 1.00 1.00 1.00 

Read-aloud stories 1.00 1.00 1.00 

 

Appendix 2. Precision, recall and f1 scores for the speech register classifier tested on the 
validation materials in Study 3 

Component precision recall f1 

Spontaneous dialogues 1.00 0.85 0.92 

News broadcast on radio & television 1.00 1.00 1.00 

Read-aloud stories 1.00 1.00 1.00 
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Appendix 3. Precision, recall and f1 scores for the speech register classifier tested on the 
validation corpus materials in Study 4 

Component precision recall f1 

Spontaneous dialogues 1.00 0.61 0.76 

News broadcast on radio and television 1.00 1.00 1.00 

Read-aloud stories 1.00 1.00 1.00 

NOTE: The scores are provided for the classifier trained and tested on 128-

sentence sets. 

 

Appendix 4. Precision, recall and f1 scores for the speech register classifier in Study 4 tested 
on the Spoken Dutch corpus materials 

Component precision recall f1 

Spontaneous dialogues 0.98 0.96 0.97 

Interviews with teachers of Dutch 1.00 1.00 1.00 

Spontaneous telephone dialogues (platform) 0.90 0.89 0.90 

Spontaneous telephone dialogues (minidisc)  0.81 0.90 0.85 

Business negotiations 1.00 1.00 1.00 

Radio and television interviews & discussions 1.00 1.00 1.00 

Debates, discussion & meetings  1.00 1.00 1.00 

Classes 1.00 0.99 1.00 

Spontaneous radio & television commentaries  1.00 1.00 1.00 

Radio & television newsroom & documentaries 0.97 1.00 0.98 

News broadcast on radio & television 1.00 1.00 1.00 

Reflections and commentaries broadcast  1.00 1.00 1.00 

Lectures & speeches 1.00 1.00 1.00 

Read-aloud stories 1.00 1.00 1.00 

NOTE: The scores are provided for the classifier trained and tested on 128-

sentence sets. 
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Appendix 5. Precision, recall and f1 scores for the speech register classifier (based on word 
predictability scores) tested on the validation corpus materials in Study 5 

Component precision recall f1 

Spontaneous dialogues 1.00 0.73 0.84 

News broadcast on radio & television 1.00 1.00 1.00 

Read-aloud stories 1.00 1.00 1.00 

NOTE: The scores are provided for the classifier trained and tested on 128-

sentence sets. 

 

Appendix 6. Precision, recall and f1 scores for the speech register classifier (based on 
sentence length) tested on the validation corpus materials in Study 5 

Component precision recall f1 

Spontaneous dialogues 0.75 0.19 0.30 

News broadcast on radio & television 0.00 0.00 0.00 

Read-aloud stories 0.01 0.01 0.01 

NOTE: The scores are provided for the classifier trained and tested on 128-

sentence sets. 
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Appendix 7. Precision, recall and f1 scores for the speech register classifier (based on word 
predictability) tested on the validation corpus materials in Study 5 

Component precision recall f1 

Spontaneous dialogues 0.99 0.98 0.99 

Interviews with teachers of Dutch 1.00 1.00 1.00 

Spontaneous telephone dialogues (platform) 0.94 0.91 0.93 

Spontaneous telephone dialogues (minidisc) 0.86 0.94 0.90 

Business negotiations 1.00 1.00 1.00 

Radio and television interviews & discussions 1.00 1.00 1.00 

Debates, discussion and meetings  1.00 1.00 1.00 

Classes 1.00 1.00 1.00 

Spontaneous radio & television commentaries  1.00 1.00 1.00 

Radio and television newsroom & documentaries 1.00 1.00 1.00 

News broadcast on radio & television 1.00 1.00 1.00 

Reflections & commentaries broadcast  1.00 1.00 1.00 

Lectures & speeches 1.00 1.00 1.00 

Read-aloud stories 1.00 1.00 1.00 

NOTE: The scores are provided for the classifier trained and tested on 128-

sentence sets. 
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Appendix 8. Precision, recall and f1 scores for the speech register classifier (based on 
sentence length) tested on the validation corpus materials in Study 5 

Component precision recall f1 

Spontaneous dialogues 0.77 0.56 0.65 

Interviews with teachers of Dutch 0.36 0.38 0.37 

Spontaneous telephone dialogues (platform) 0.40 0.47 0.44 

Spontaneous telephone dialogues (minidisc) 0.23 0.29 0.26 

Business negotiations 0.24 0.48 0.32 

Radio and television interviews & discussions 0.55 0.47 0.51 

Debates, discussion & meetings  0.84 0.87 0.85 

Classes 0.36 0.36 0.36 

Spontaneous radio & television commentaries  0.18 0.51 0.27 

Radio & television newsroom & documentaries 0.12 0.53 0.20 

News broadcast on radio and television 1.00 0.99 0.99 

Reflections & commentaries broadcast  0.15 0.30 0.20 

Lectures and speeches 0.67 0.67 0.67 

Read-aloud stories 0.66 0.37 0.48 

NOTE: The scores are provided for the classifier trained and tested on 128-

sentence sets 
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Speech register influences 
listeners’ word expectations 

Chapter 6 

 

Abstract 

We investigate the influence of speech register on predictive language processing 

using the N400 effect. Participants listened to long stretches (4 – 15 minutes) of 

naturalistic speech from different registers (dialogues, news broadcasts, and read-

aloud books), totaling approximately 50,000 words, while the EEG signal was 

recorded. We estimated the surprisal of words in the speech materials with the aid 

of statistical language models. Word surprisal was estimated in such a manner that 

it reflected different processing strategies; generic, register-specific, or recency. The 

N400 amplitude was best predicted with register-specific word surprisal, indicating 

that the statistics of the wider context (i.e., register) influences predictive language 

processing. Furthermore, the comparison between processing strategies shows that 

adaption to speech register cannot merely be explained by recency effects; instead, 

listeners adapt their word anticipations to the presented speech register. 

 

6.1 Introduction 

Human perception of sensory input involves more than passive registration. A rich 

body of research (e.g., Bar, 2007; Friston, 2005, 2012) shows that prediction is a 

core aspect of perception. Similarly, humans engaged in reading or listening show 

sensitivity to the statistical structure of the language input (e.g., Ellis, 2002). 

Importantly, as studies investigating register variation show (e.g., Staples et al., 

2015), patterns of language use differ extensively between registers, influencing the 

statistical distributions of the different varieties. Consequently, expectations on the 

occurrences of words that are valid for one register might be invalid for a different 

register. In the current study, we use the N400 effect to investigate whether listeners 

adapt their word expectations as a function of the speech register they are listening 

to.  
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6.1.1 Register variation 

Below we present three examples to show a range of registers: chatting with friends 

(1), a reporter providing coverage of a news event (2), a novelist telling a story (3). 

 

(1) It just irritated me and then Joanne, Joanne’s like “did you hear someone 

page Dan’s brother-in-law?” I said “he wouldn’t give his name.” And she 

just started laughing.  

Barbieri, 2005 

(2) The leader’s gunshot wounds are taking their toll, complicating efforts to 

persuade him to surrender.  

Biber, 1999 

(3) Last summer, a short time before my son was due to leave home for college, 

my wife woke me in the middle of the night.  

Nicholls, 2014 

 

The examples illustrate that language use varies in relation to the communicative 

context (Borrillo, 2000) and purpose (Biber & Conrad, 2001): Conversational 

speech (1) allows for more interaction and opportunity for clarification and is 

produced in real time, with no preparation or opportunity to revise the utterance and 

is typically more personal, leading to, for example, disfluencies, a lower type-token 

ratio and a frequent use of pronouns. News reportage (2) is typically prepared and 

intended to convey information about a certain event, which results in a more 

frequent use of time and place adverbials as well as proper nouns. A novel (3) is 

written without interaction between writer and readers, which allows the writer to 

revise and refine their language use, affording a rich vocabulary and complex 

sentence structure.  

Many studies found evidence for systematic differences in patterns of language use 

between registers (see Biber & Conrad, 2009, for an overview). For example, word 

choice differs between registers (Biber, 1999); the use of like in (1) is typical for 

informal conversation (Barbieri, 2005). The usage of grammatical constructions 

also varies between registers (Staples et al., 2015), for example, the retention of the 

complementizer in that-clauses, as in (4), differs between conversational speech and 

academic prose. In conversation that-omission is typical, while academic prose 

typically retains it (Biber, 1999). 
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(4) I hope [that] Paul tells him off.  

Staples et al., 2015 

 

This lexical and grammatical variation results in register-specific word co-

occurrence statistics. In Chapter 5 we indeed found that word predictability differs 

between speech registers. The probability of a word thus not only depends on the 

directly preceding words but also on the wider context of register. This raises the 

question whether language perceivers adapt their word expectations based on the 

register of the language input.  

 

6.1.2 Predictive language processing and the N400 effect 

Evidence for predictive language processing is well established in the literature (see 

Elman, 2009; Huettig, 2015; Kuperberg & Jaeger, 2016 for overviews). 

Importantly, there is converging evidence from many different experimental 

paradigms. For example, self-paced reading studies show that unlikely words are 

read more slowly compared to more likely words (Rayner, 1998; Kliegl et al., 2006). 

The visual word paradigm used in eye-tracking studies shows that listeners gaze in 

anticipation to a picture of a cake (among multiple objects) when they hear The boy 
eats compared to The boy moves (Altmann & Kamide, 1999).  

The N400 effect also provides important evidence for anticipatory language 

processing (see Kutas & Federmeier, 2011 for an overview). The N400 is a negative 

deflection of the event related potential (ERP), which peaks 400 milliseconds after 

word onset at central posterior electrode sites. When participants read short 

sentences, such as (5), with occasionally an anomalous final word, as in (6), the 

semantically incongruous word socks results in a more negative deflection of the 

ERP compared to the congruent word work (Kutas & Hillyard, 1980). 

 

(5) It was his first day at work 

(6) He smeared the warm bread with socks 

 

Later experiments revealed that semantic incongruency is not required for an N400 

effect (e.g., Hagoort & Brown, 1994). For example, constraining sentence pairs such 

as (7) which raise a strong expectation for a specific word (i.e., palms), elicit a 
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graded N400 effect. The unexpected but semantically related word pines results in 

an attenuated N400 amplitude compared to the unexpected and unrelated tulips 

(Federmeier & Kutas, 1999). Importantly, the different sentence final words (i.e., 

palms, pines and tulips) are all possible non-anomalous endings, indicating the 

N400 effect is not dependent on semantic anomaly. 

 

(7) They wanted to make the hotel look more like a tropical resort. 

So, along the driveway, they planted rows of [palms / pines / tulips] 

 

The N400 also provides strong evidence for anticipatory activation of words (e.g., 

Wicha et al., 2004; Van Berkum et al., 2005). These experiments use a paradigm 

where the anticipatory effects are measured before the expected word is presented. 

For example, when participants read sentence (8), the determiner an resulted in a 

more negative deflection of the N400 waveform compared to a, indicating that 

readers were expecting the following word to start with a consonant (DeLong et al., 

2005). Furthermore, they found that word predictability (as estimated with a cloze 

test) correlates with the N400 amplitude, indicating that people generate 

probabilistic expectations of upcoming language input. 

 

(8) The day was breezy so the boy went outside to fly [a kite / an airplane] 

 

Despite the wealth of evidence, predictive language processing remains (to some 

extent) controversial. For example, Huettig (2015) notes that much evidence for 

prediction is based on studies that only use the extremes of predictability and 

questions whether prediction plays an important role during natural language 

perception across the entire range of word probabilities. For example, the N400 

effect is typically elicited by comparing highly likely versus highly unlikely words 

(e.g., Hagoort & Brown, 2000), which does not reflect normal language use.  

We follow Kuperberg & Jaeger (2016) and use prediction to mean graded 
probabilistic prediction, whereby multiple candidates (e.g., words) have 

probabilities assigned based on the preceding context. In this interpretation, there 

will (almost) always be prediction error since not all probability is assigned to a 

single word. For example, it is well attested that even with highly constraining 

sentences (e.g., Federmeier & Kutas, 1999), words semantically related to the 
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expected word show an attenuated N400 compared to unrelated words. This 

interpretation of prediction is congruent with the predictive coding framework (e.g., 

Friston, 2005, 2018). 

 

6.1.3 Word predictability estimation, cloze tests and statistical language modeling 

Word predictability is typically established with cloze tests, whereby participants 

fill in blanks in sentences, such as So, along the driveway, they planted rows of … 

The percentage of participants that fill in a specific word, such as palms, is referred 

to as the word’s cloze probability. This percentage provides a measure of how 

expected that word is. This approach has two drawbacks: It is labor intensive to 

gather cloze probabilities and the method cannot distinguish among the 

predictability of low cloze probability words (Kuperberg et al., 2017).  

A different approach to estimate word predictability is the use of statistical language 

modelling. Work on statistical language modelling shows that, given a set of n 

preceding words, it is possible to assign a probability to the next word (e.g., Chen 

& Goodman, 1999; Och & Ney, 2003; Kilgarriff, 2001). In their most basic 

implementation, a statistical language model (SLM) is based on counting ‘word n-

grams’ (henceforth n-gram) in corpora. An n-gram is a sequence of n consecutive 

units. For example, the fast horse is a word trigram with the bigrams the fast and 

fast horse; and the unigrams the, fast and horse. Based on counts of these n-grams 

in a large body of text, context-dependent word probabilities can be estimated with 

Equation 1.  

 

!,(#$|-./0120) = 	!(#$|#$&', … ,#$&*)																				(1) 

 

Whereby P denotes the conditional probability of word Wi given a sequence of n 

preceding words. The automation of word predictability estimation allows for the 

investigation of predictability effects for many words across the whole predictability 

spectrum. Smith & Levy (2013) used this approach to determine that reading time 

is log-linearly related to the probability of a word on the basis of a dataset of 

approximately 50,000 words. 

The log-linear relation between word probability and reading time fits well with 

Surprisal Theory of language processing (Hale, 2001; Levy, 2008), according to 

which language processing costs relate to surprisal. Surprisal is an information 
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theoretic measure that captures the amount of Shannon information an item (i.e., 

word) in a message conveys. It is defined as the negative logarithm of the probability 

of a word. It can informally be thought of as the ‘unexpectedness’ of a word. Frank 

et al. (2015) used statistical language modelling to estimate word surprisal for all 

content words in sentences from unpublished novels. In this manner they could 

analyze a large set of approximately 30,000 word tokens. They used these sentences 

in an EEG experiment. Participants read sentences word-by-word while their EEG 

was recorded. Less expected words (i.e., words yielding high surprisal) elicited a 

larger negative amplitude in the N400 time window compared to more expected 

words.  

 

6.1.4 Discourse based ERP research 

Most ERP studies investigating language processing use sentences presented in 

isolation. However, there have been discourse-level studies, whereby discourse is 

typically interpreted as anything more than one sentence, for example, short 

narratives such as (9 & 10). 

 

(9) The brave knight saw that the dragon threatened the benevolent sorcerer. 

He quickly reached for a [sword / lance] …  

(10) The benevolent sorcerer saw that the dragon threatened the brave knight. 

He quickly reached for a [sword / lance] …  

Van Berkum, 2012 

 

The short narratives were carefully matched on prime words; only brave knight and 

benevolent sorcerer switch position in (9 & 10). The sentence He quickly reached 
for a … does not constrain in favor of either sword or lance. The preceding sentence 

in (9) favors sword while in (10) it does not. In (9) the unexpected word lance 
resulted in an N400 effect compared to the expected sword, whereas in (10) this did 

not occur (Otten & Van Berkum, 2007). This and other results (see Van Berkum, 

2012 for an overview) show that readers and listeners use the wider context of 

discourse to build up predictions of upcoming input. 

One understudied aspect of predictive language is the effect of discourse beyond 

multi-sentence short narratives. In more natural communication situations readers 

or listeners are engaged with reading or listening within a much wider context, 
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which is itself modulated by the register. In the following section, we explain how 

we studied the influence of register variation on listeners’ language processing. 

  

6.1.5 Current study 

In the current study we investigate whether listeners’ word anticipations depend on 

speech register information. We use long stretches (4 – 15 minutes) of natural 

speech from different registers. Following Frank et al. (2015), we use statistical 

language modeling to estimate the word surprisal of all content words in our 

language materials and use word surprisal to predict the N400 amplitude for the 

content words. We estimate and compare four different types of word surprisal: 

register-specific, register-mismatch, generic, and recency-based word surprisal.  

The different types of word surprisal reflect different processing strategies, which 

we compare to investigate the role of register in predictive language processing. 

Register-specific surprisal reflects the word predictability of a specific register. We 

hypothesize that if listeners adapt their word expectations based on register 

information, this register- specific surprisal will best predict the N400 amplitude. 

Register-mismatch word surprisal is used as a sanity check and reflects the word 

predictability based on an incorrect (mismatching) register. It should therefore 

predict the N400 amplitude less accurately than a register-specific model if listeners 

adapt their predictions to the register at hand. Generic word surprisal reflects the 

word predictability of register-unspecific, average language use. If listeners do not 

adapt to a register, this word surprisal should perform on par with register-specific 

word surprisal. Finally, recency-based word surprisal reflects generic word surprisal 

updated with information on recent words, of which the likelihood of recurring is 

temporarily boosted. If listeners do not use register characteristics, but instead recent 

language input, recency-based word surprisal should best predict the N400 

amplitude. 

The word surprisal types can be estimated by training SLMs on a specific set of 

language materials, as the estimated word surprisal depends crucially on the selected 

language materials the SLM is trained on. For example, an SLM trained on a book 

corpus will perform worse when tested on news materials as compared to when 

tested on an unseen book corpus. We therefore train SLMs on register-specific 

language materials, to estimate register-specific word surprisal. Register-mismatch 
word surprisal is estimated by using an SLM trained on language materials from a 

mismatching register (see section 6.2.2). 
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Generic word surprisal is more difficult to operationalize, because sampling 

language materials always introduces bias in some manner (Kilgarriff, 2007; Biber 

& Conrad, 2001); i.e., there is no ‘general’ corpus to train a bias-free SLM. To 

address this issue, we train an SLM on a large corpus (see Section 6.2.1.1) that does 

not overlap with the register-specific language materials. The resulting SLM can be 

considered generic (register-unspecific) to the extent that the register-specific SLMs 

are expected to show improved performance on the register-specific materials, i.e., 

the register-specific SLMs can be expected to assign overall higher probabilities to 

the next words in register-specific texts as compared to the generic SLM. Lastly, we 

estimate recency-based word surprisal with a cached SLM, a standard extension of 

the generic SLM, whereby the SLM is updated with the most recent n unigrams (i.e., 

words).  

The current study also tests whether the effect that word surprisal predicts the N400 

amplitude (for reading, Frank et al., 2015) generalizes to a listening study. There 

are two methodological reasons why this effect may be difficult to detect in a 

listening study. First, word onsets are harder to accurately determine in connected 

speech compared to the onsets of visually presented words. The uncertainty in word 

onset determination could potentially lead to temporal ‘smearing’ of the ERP (Van 

Berkum et al., 2005) and thereby to less clear temporal patterning of ERP 

components. Second, while it is possible to use fixed-paced presentation for a 

reading experiment (with a predetermined pause between words), this is neither 

feasible nor desirable with auditory presentation of natural speech. For example, 

due to co-articulation in speech, it would sound wholly unnatural to insert pauses 

between the words of a recorded sentence. The continuous nature of speech 

therefore likely results in overlapping, temporally smeared word effects in the EEG 

signal. As a result, the N400 could be attenuated when this ERP is elicited with all 

content words in long stretches of natural connected speech. 

To counterbalance the issue of smaller expected effect sizes, we collected a large 

amount of data. We used audio recordings of speech from three different speech 

registers: dialogues, (read-aloud) books, and (broadcast) news. The registers were 

selected to be distinct in word predictability, based on the findings by Bentum et al. 

(2019a), and were assigned to three separate experiments. The reasons for 

conducting separate experiments are twofold. First, an experiment dedicated to one 

register allows the participant to adapt their anticipations to that speech register. 
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Second, it is possible to present more materials of each register by spreading them 

over three experiments, fulfilling our requirement of a large dataset4.  

In summary, in this study we test whether listeners anticipate words in long stretches 

(4 – 15 minutes) of natural speech, sampled from three speech registers. We estimate 

word surprisal and test whether this predicts the N400 amplitude and compare how 

well register-specific, register-mismatched, generic, and recency-based word 

surprisal estimates predict the N400 amplitude. With this comparison, we test 

whether listeners adapt their anticipations of upcoming words based on speech 

register; i.e., whether register-specific word surprisal is a better predictor of the 

N400 amplitude compared to the other word surprisal estimates.  

 

6.2 Methods 

6.2.1.1 Participants 

Forty-eight neurologically unimpaired right-handed native speakers of Dutch (18 - 

29 years, mean age = 21.7 years), 14 men and 34 women, participated in the three 

EEG experiments of the study. All participants gave informed consent for the 

experiments and the subsequent publication of the EEG recordings. They were paid 

80 Euros for their participation. 

 

6.2.1.2 Materials 

The stimuli for the EEG experiments consisted of audio recordings of Dutch speech 

from different registers, with approximately 90 minutes of speech materials for each 

register. The recordings were extracted from two corpora: the Spoken Dutch Corpus 

(Oostdijk, 2001) and the Institute of Phonetic Sciences Amsterdam Dialogue Video 
Corpus, henceforth IFADV (Van Son et al., 2008), see also Section 6.2.2.1. The 

books and the news speech materials were extracted from the Spoken Dutch Corpus, 

the dialogues were extracted from IFADV.  

 

4 This dataset will be made freely available as the Dutch EEG Speech Register Corpus, DESRC for 

short. 
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The IFADV dialogues materials used for the EEG experiment consisted of six 

dialogues of 15 minutes each. All dialogues were between two well-acquainted 

interlocutors (e.g., friends, colleagues), who freely talked about any topic that came 

to mind (see Van Son et al., 2008, for details). The books experiment consisted of 

12-minute excerpts from seven read-aloud Dutch novels. Finally, the news 

experiment consisted of 21 sections of approximately four minutes long. Each 

section contains multiple news items presented by the same broadcaster. We 

inserted 0.9 seconds of silence between news items and combined the four-minute 

sections into seven 12-minute blocks. 

All recordings used in the experiments were orthographically and phonemically 

annotated, which allows time-locking of each individual word to the EEG-

recording. All recordings were equalized at 60 dB with Praat (Boersma & Weenink, 

2018). See Table 1 for an overview of the speech materials presented in the EEG 

experiments. 

 

Table 1. Overview of the materials per speech style. The table shows the number of word 
tokens and types per register (word type is defined as the orthographic surface form), the 
average word duration in milliseconds, the number of speakers and the speakers’ age 
range. 

speech register 

word tokens 

(word types) 

avg. word 

duration 

speakers 

(male) 

speaker 

age range 

dialogues 21,718 (2,435) 206 ms 11 (2) 20 – 62 years 

news  15,350 (3,526) 289 ms  8 (7) 23 – 46 years 

books 13,209 (2,349) 256 ms 7 (3) 38 – 75 years 

total 50,277 (5,866) 245 ms 26 (13) 20 – 75 years 

 

6.2.2 Estimating generic, register-mismatch, recency and 
register-specific word surprisal 

6.2.2.1 Training and test materials 

To train statistical language models we used language materials from four corpora, 

NLCOW14, SoNaR, the Spoken Dutch Corpus and IFADV. The NLCOW14 
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corpus, henceforth COW (Schäfer, 2015; Schäfer & Bildhauer, 2012), is a collection 

of web-crawled Dutch texts consisting of approximately 4,7 billion words. The 

SoNaR corpus (Oostdijk et al., 2013) is a collection of written Dutch texts of 

approximately 500 million words. We used a subset of the Dutch teleprompt texts 

(SoNaR news) and Dutch books (SoNar books). The Spoken Dutch Corpus 

(Oostdijk, 2001) is a corpus of recorded and transcribed Dutch speech from different 

registers containing approximately 10 million word tokens. We used three 

components from the Spoken Dutch Corpus: the spontaneous dialogue component 

(CGN dialogues), the news broadcasts (CGN news) and the read-aloud books (CGN 

books). Finally, we used the IFADV corpus (Van Son et al., 2008), a collection of 

recorded and transcribed dialogues, containing approximately 70,000 word tokens.  

We preprocessed the COW corpus by excluding sentences with three or more word 

or character repetitions, or with characters not used in standard Dutch orthography. 

The following preprocessing steps were performed for all language materials from 

all corpora. We replaced characters with diacritics to the equivalent characters 

without diacritics, and mapped all numbers, websites and tagged words (e.g., #tag#) 

to special word codes. We removed punctuations, except for commas. We 

normalized shortened words with apostrophes to a standard spelling (e.g., ‘t’ 
becomes het ‘the’).  

IFADV, CGN news and CGN books contain language materials used in the EEG 

experiment. For the purpose of SLM training, we removed these particular 

materials. Subsequently, we created register-specific sets by combining CGN 

dialogues with IFADV, CGN books with SoNaR books and, finally, CGN news 

with SoNaR news. We will refer to these sets as dialogues, books and news 

respectively. Each set was split randomly into a training set with 80% of the 

materials and a test set with the remaining 20% of the text materials. We used all 

preprocessed materials from COW for training purposes (approximately 1 billion 

words). 

 

6.2.2.2 Statistical language modeling 

We trained the SLMs with the aid of the SRILM toolkit (Stolcke, 2002) and used 

the same settings for each language model; a tetragram SLM with Kneser-Ney 

discounting (Chen & Goodman, 1999) for smoothing.  

We trained separate SLMs on the following training materials: COW, dialogues, 

news, and books. The SLM trained on the COW materials will be referred to as the 
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generic SLM. This SLM was also used for the computation of the recency-based 
SLM and as the background language model, which we interpolated with the SLMs 

trained on the dialogues, news and book training materials to create register-specific 
SLMs.  

To find the best interpolation weights for the register-specific SLMs, we 

interpolated each with the background SLM (trained on the COW corpus) and tested 

a series of weights. We chose the weight resulting in the lowest perplexity on the 

register-specific held-out test materials (perplexity is a performance metric for 

SLMs whereby a lower score indicates better performance). The optimal weights 

for the background model were .3 for both news and books and .13 for the dialogues 

model.  

Finally, we created a recency-based SLM, henceforth cache SLM based on the 

generic model trained on the COW materials. We determined the optimal cache size 

(number of preceding words used to update the SLM) by testing different sizes (i.e., 

2, 4, 8, …, 512, 1024 words) on the test materials of the different registers. The 

SLM performance asymptotes quickly with increasing cache sizes and we therefore 

selected a cache size of 64.  

Table 2 shows an overview of the perplexity scores for each SLM on the materials 

used in the EEG experiment and (between brackets) the score on the test materials. 

We observe that each register-specific model performs better on the corresponding 

register material compared to the mismatching register material, and the cache 

model performs better still. The book SLM performed worse on the materials used 

in the EEG experiment compared to the testing materials, indicating a discrepancy 

between the training and test materials and the language materials used in the EEG 

experiment. However, this model still improved compared to the generic SLM (i.e., 

714 versus 1736). 
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Table 2. Performance of SLMs expressed as the rounded perplexity score on the 
experimental and (test) materials. Lower scores indicate better performance in terms of 
perplexity. Best performance per register in bold face, second best underlined. 

SLM dialogues  news books 

generic 3943 (4340) 807 (1312) 1736 (1834) 

cache 328 (453) 287 (325) 343 (371) 

dialogues 454 (460) 723 (955) 722 (923) 

news 1188 (1384) 314 (327) 828 (639) 

books 1463 (1775) 601 (623) 714 (417) 

 

6.2.2.3 Word surprisal estimation 

To estimate word surprisal, we used the generic, cache and register-specific SLMs 

described in Section 6.2.2.2. The different SLMs were used to estimate the surprisal 

of each word in the experimental speech materials. We used the generic and cache 

SLM to estimate generic and recency-based word surprisal respectively. The 

register-specific SLMs were used to compute register-specific word surprisal for 

the different register-specific materials, i.e., the dialogues SLM was used to estimate 

word surprisal in the dialogue materials, etcetera. Finally, we used mismatching 

pairs of registers, e.g., books SLM to estimate probability for words in the news 

materials5. We refer to this as register-mismatch word surprisal. 

 

6.2.3 Procedure 

Participants came to the lab on three separate occasions. Consecutive visits were 

separated by minimally a week. Participants were fitted with the correct size 

electrode cap and the electrodes were placed. The participants were seated in a 

sound-attenuating booth and listened to approximately 90 minutes of speech from a 

specific register (i.e., dialogues, books, or news), 270 minutes in total. The order of 

the speech registers was counterbalanced across participants. The audio materials 

were presented via in-earphones (Etymōtic ER1) at a comfortable listening volume. 

To this end, a short audio fragment was played to check the volume (speech in the 

 

5 We used the following mismatch pairs (SLM-materials): books-news, news-dialogues, news-books 
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audio fragment corresponded to the register of the experiment). When necessary, 

the ear-plugs or volume were adjusted. The participants were asked to sit still and 

keep eye movements and blinks to a minimum. 

The audio materials were presented in blocks of approximately 15 minutes. The 

order of block presentation was counterbalanced across participants. After each 

block the participant could take a break before the experiment continued. To ensure 

participants listened attentively, yes-no comprehension questions were visually 

presented during breaks in the experiment and participants responded with a button 

box.  

 

6.2.4 EEG recording 

The electroencephalogram (EEG) was recorded from 26 silver-chloride cap-

mounted electrodes. The electrodes were placed according to the Standard 

International 10 - 20 System (Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, 

C4, T7, T8, P3, Pz, P4, P7, P8, CP1, CP2, CP5, CP6, O1, O2). Four additional 

electrodes were used to monitor eye-related artefacts (eye movements and blinks), 

placed at the outer left and right canthi, and below and above the left eye (converted 

off line to horizontal and vertical electro-oculogram (EOG) signals). Two additional 

electrodes were placed on the left and right mastoids. All electrodes were referenced 

to the left mastoid electrode and electrode impedances were below 15 kΩ before 

recording started. The EEG-data was amplified with an Easycap system and band-

pass filtered with 0.01 and 100 Hz cut off frequencies and digitized at a 1000 Hz 

sample frequency.  

 

6.2.5 Preprocessing 

The data was re-referenced off-line to the mean of the left and right mastoids and 

filtered with a 5th order Butterworth bandpass filter with cut-off frequencies at 0.05 

and 30 Hz. We removed sections containing artefacts from the data in a semi-

automatic fashion whereby all proposed artefacts were manually checked. 

Individual channels were removed when a channel was contaminated with artefacts 

for minimally 40 % of an experimental block. Otherwise, we removed the section 

(all channels) where a channel showed artefact corruption. The Fp2 channel was 

removed for all recordings, due to poor overall signal quality. 
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After artefact removal, independent component analysis (ICA) was used to filter out 

activity related to eye blinks and eye movement. Following Winkler et al. (2015), 

the ICA was computed on the EEG data band-passed filtered at cut off frequencies 

of 1 - 30 Hz. Subsequently, components were selected that reflected eye blinks and 

eye movements based on visual inspection of topographic and time-course plots. 

The ICA solution was then used to recompose the EEG data (band-pass filtered at 

cut off frequencies of 0.05 - 30 Hz) without the eye-activity-related components. 

This approach attenuates the sensitivity of ICA to slow drift (Winkler et al., 2015) 

without adversely affecting ERP analysis (see Tanner et al., 2015). 

We extracted EEG-data in the time window -300 to 1000 milliseconds relative to 

word onset, for each content word (i.e., nouns, verbs, adverbs and adjectives) in our 

dataset that did not overlap in time with other words (only relevant in the dialogues 

experiment) and was not the first word of a sentence. The second exclusion criterion 

- the removal of the first word of a sentence - was applied to lower the correlation 

between word surprisal and word frequency (a covariate in our statistical model, see 

below). Furthermore, we excluded those words which overlapped with artefactual 

EEG data or if the signal exceeded ± 75 µV in the previously defined time window 

of the word. Finally, we excluded all data from nine participants because less then 

40% of the data remained after artefact removal. Across all experiments, these steps 

resulted in a dataset of 600,276 word epochs. This dataset is part of the Dutch EEG 

speech register corpus, see Chapter 2 for further details. 

 

6.2.6 Analysis 

Based on previous literature, we defined the N400 amplitude as the average of the 

channel set C3, C4, Cz, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, O2 within the 

time window 300 – 500 milliseconds after word onset. Following Frank et al. 

(2015), we did not subtract the baseline from the ERP. Instead, the baseline was 

used as a covariate in the statistical model. We computed the baseline by averaging 

over the time window -150 – 0 milliseconds (relative to word onset) and the same 

channel set.  

We estimated several linear mixed effect (LME) models (Bates et al., 2015) with 

the statistical package R (R Core team, 2015) to predict the N400 amplitude. We 

first estimated a null LME model with the following standardized covariates: the 

aforementioned baseline, the log word frequency (based on the COW corpus), the 

word duration, the word position in the sentence and finally a factor for experiment 
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(with three levels, one for each register). In addition, we added participant and word 

as random effects.  

The predictor of interest (word surprisal) was added to the null model to create a 

generic, recency-based, register-specific, and register-mismatch LME model, based 

on the corresponding word surprisal type (i.e., generic word surprisal corresponds 

with a generic LME model). We also added an interaction term between word 

surprisal and experiment to allow for differences between speech registers. We 

considered to include a random slope for word surprisal by participant but his 

resulted in convergence issues. 

 

6.3 Results 

Model comparison with the anova likelihood-ratio test revealed that the LME model 

with generic word surprisal improved compared to the null model χ2 (3) = 38.73, 

p < .001. The N400 amplitude is more negative with increasing values of word 

surprisal (see Figure 1).  

 

Figure 1. (left) Grand average plot of the ERP response averaged over all content words, 
participants and channel set. The blue shaded area indicates the analysis window (300 – 
500 milliseconds from word onset). X-axis shows time in milliseconds and y-axis amplitude 
in µvolt. The solid line shows the average of words with highest tertile generic word 
surprisal, the dotted line the lowest tertile. (right) Topographic difference plot between 
content words with the highest tertile generic word surprisal values versus words in the 
lowest tertile. 
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Subsequently we compared the generic, register-mismatch, recency and register-

specific LME models. For these comparisons, we were precluded from using the 

anova likelihood-ratio test since these models were not nested versions of each 

other. We therefore compared the AIC of each LME model and computed the 

corresponding relative likelihood. This comparison revealed that the register-

specific word surprisal values best predict the N400 amplitude (see Table 3, left). 

The recency-based model performed better than the generic model, while the 

register-mismatch model performed similar to the generic model. 

 

Table 3. Comparison between {generic, register-mismatch, recency} and register-specific 
word probability estimates based on the AIC of LME models (AIC difference between 
parenthesis). The p-value indicates the probability that a model with generic, mismatch or 
recency is a better fit compared to the register specific word surprisal. (left) Compares 
register-specific LME model to the generic, mismatch and recency models on all 
experimental data. (right) Compares the register-specific LME model with both the null and 
generic model on subsets of the experimental materials (dialogues, news and books). 

LME model relative likelihood 

(Δ AIC) 

register-specific 

 

experimental 

materials 

relative likelihood (Δ AIC) 

(null | generic) vs register-

specific 

generic p < .001 (44)  dialogues  p < .05  (8)  |  p < .001 (15) 

register-mismatch p < .001 (44)  news               (-7)  |                 (-1) 

recency-based p < .001 (25)  books  p < .01 (13) |  p < .01    (10) 

 

In the register-specific LME model (see Table 4) the interaction term for the news 

materials and word surprisal has a t-value of 8.03. To further investigate this 

interaction effect, we split the data according to register (dialogues, books and news) 

and fitted LME models to each subset. Table 3 (right) shows the result of the 

comparisons between the register-specific LME model and both the generic and null 

model for the dialogues, books and news materials. For both the book and dialogue 

materials, the register-specific model outperformed both the null and generic model, 

while for the news materials the register-specific model did not improve compared 

to either the null or the generic model (see also Figure 2). 
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Figure 2. Grand average plots of the ERP response averaged over all content words, 
participants and channel set split between speech registers: dialogues, books and news. 
The solid line shows the average of words with highest tertile register-specific surprisal, 
dotted line the lowest tertile. 

 

 

Table 4. Overview of the fixed effects of the linear mixed effect model with the N400 as 
dependent variable. The fixed effect names, the beta (β), the standard error (SE β) and the t-
value (t) are reported. The predictor of interest (register-specific word surprisal) is bolded. 

fixed effect β SE β t 

intercept -0.409 0.046   -8.97 

baseline  5.407 0.009 603.44 

log word frequency  0.171 0.029     5.95 

experiment news  0.400 0.028   14.36 

experiment books  0.268 0.025   10.61 

surprisal -0.149 0.020    -7.38 

word duration  0.075 0.017     4.41 

word position in sentence  0.184 0.010   18.72 

exp. news: surprisal  0.212 0.026     8.03 

exp. books: surprisal  0.022 0.026     0.87 
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6.3.1 Exploratory analysis 

The results informed us about an effect we did not foresee. The grand average plots 

revealed an unexpected post N400 positivity (PNP), see Figures 1 & 2, which was 

most pronounced for the dialogue materials, and absent for news. Based on the time 

course information, topographic plot Figure 3, and observations in the literature 

(e.g., Van Petten & Luka, 2012), we decided to analyze the average amplitude over 

the channel set (CP5, CP1, CP2, CP6, P3, Pz, P4) and time window 600 – 900 

milliseconds. We excluded the news materials, since these showed no effect.  

We used a similar null LME model as before, however, this time the PNP average 

was the dependent measure. We created a second LME model (see Appendix A, 

Table 1 for an overview of the fixed effects) by adding generic word surprisal as 

predictor of interest to the null model. We considered a random slope between 

participant and word surprisal but did not include it due to convergence issues.  

Model comparison with the anova likelihood-ratio test revealed that the model with 

word surprisal outperformed the null model χ2 (1) = 7.39 (which would amount to 

p < .01 in a confirmatory testing analysis). In addition, we tried an interaction 

between experiment and surprisal, however, this did not show an improvement. 

Also, replacing generic word surprisal by register-specific word surprisal did not 

further improve the model. The exploratory analysis indicates that posterior PNP 

amplitude is more positive with increasing values of word surprisal, i.e., when 

words were less expected. 
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Figure 3. Topographic difference plot of the post-N400-positivity between content words 
with the highest tertile generic surprisal values versus words in the lowest tertile in the time 
window 600 – 900 milliseconds. 

 

 

6.4. Discussion 

In the current study, we recorded the EEG signal from participants who listened to 

long (4 – 15 minutes) stretches of natural speech sampled form different speech 

registers: dialogues, news broadcasts, and read-aloud books. The speech materials 

were analyzed with the aid of statistical language models (SLM) to estimate word 

surprisal. We found that the N400 amplitude was more negative for words with high 

surprisal (i.e., unexpected words) and was best predicted by register-specific word 

surprisal estimates. 

To investigate the influence of speech register on prediction in speech 

comprehension, we compared different word surprisal types. We compared generic 

with register-specific word surprisal and found that register-specific word surprisal 

best predicted the N400 amplitude. This finding indicates that listeners are sensitive 

to the specific statistical structure of the speech register they listen to, and that they 

adjust their anticipations accordingly. To test whether the adaptation of word 

anticipations was the result of register, we also compared register-specific word 

surprisal with register-mismatch word surprisal. This comparison provides a sanity 

check to test whether any ‘specific’ word surprisal would better predict the N400 

amplitude compared to generic word surprisal. Register mismatch was defined as 

the surprisal estimated on mismatching register materials, e.g., the SLM was trained 



 

 
121 

on books but used to estimate surprisal for the news materials. We found that 

register-mismatch word surprisal did not improve upon generic word surprisal, 

providing further evidence that register-specific information influenced 

participants’ word expectations.  

Furthermore, we tested whether the register-specific effects could be explained 

merely by tracking recent input. In theory, listeners could adapt their expectations 

not based on register characteristics, but solely by utilizing recent input. We 

therefore also compared the register-specific word surprisal to recency-based word 

surprisal. The recency-based word surprisal is computed by updating the generic 

SLM with caching of a number (n = 64) of recent words. As Table 3 shows, the 

recency-based word surprisal better predicts the N400 amplitude compared to the 

generic word surprisal. Importantly, the register-specific word surprisal does better 

still. This finding indicates that listeners do not only use recent language input to 

adjust their predictions of upcoming words but also register information. Listeners 

may have stored representations of the statistical structure of registers, whereby 

different expectations are generated when listening to a story than when listening to 

a dialogue.  

Our results are relevant for the question whether prediction occurs during normal 

language processing (Huettig, 2015). In our experiments, we used long stretches (4 

– 15 minutes) of naturalistic speech. Therefore, there are no artificial pauses 

between the presentation of words, which could potentially influence predictive 

processing (Luka & Van Petten, 2014). Our finding shows that listeners anticipate 

words in normally-paced language input. Furthermore, we investigated most words 

in the speech materials, which allows for the investigation of predictive language 

processing across the whole probability spectrum, from very unexpected to highly 

expected words. This is relevant in light of Huettig's (2015) criticism that most 

evidence for prediction comes from comparing extremes of predictability. The 

current result shows that listeners do indeed engage in predictive language 

processing while listening to natural everyday speech (without artificially 

constraining sentences). This result is in line with the results reported with reading 

studies by Smith & Levy (2013) and Frank et al. (2015). 

We found an unexpected difference between the speech registers: we did not 

observe an N400 effect for the news broadcast speech materials (see Figure 2). It is 

unlikely that this difference was caused by news broadcasts being less predictable 

than the other speech materials: The perplexity scores for SLMs tested on news 

materials were comparable to results on dialogues and books (see Table 2), 

indicating that the SLMs could predict upcoming words in the news materials with 
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performance similar to the other register materials. If news broadcasts were less 

predictable, the SLMs performance should drop accordingly. An explanation for the 

interaction effect between word surprisal and register could be participants’ 

attention to the speech materials. Participants possibly found it harder to concentrate 

on the news materials compared to dialogues and book materials. 

Attention difficulties for the news materials could be caused by the high topic 

density in this register. The news materials consisted of sequences of short news 

items on many different topics. In fact, because of this high density of topics, we 

decided to segment the news materials into 4-minute sections, while books and 

dialogues materials were segmented into 12- and 15-minute sections, respectively. 

Still the participants performed worse on average for the comprehension questions 

on news (83% correct) than on books (96% correct) and dialogues (94% correct), 

indicating that they indeed found it harder to pay attention to the news materials. 

There is evidence that attention can modulate the N400 (for a discussion, see Kutas 

& Federmeier, 2011), but it is unclear to what extent lack of attention would 

completely suppress the N400 effect.  

Unexpectedly, we found a post N400 positivity (PNP), also referred to as the late 

positivity complex or the semantic P600 (Van Petten & Luka, 2012). Exploratory 

analysis revealed a posterior PNP effect (see Figure 3). Van Petten & Luka (2012) 

hypothesized that two late positivities can be distinguished based on the topography: 

an anterior positivity, mostly related to the difficulty of integrating unexpected but 

plausible words, and a posterior positivity, related to the processing of implausible 

words, such as summer in He pounded the nails with a book/summer. DeLong et al. 

(2014) found evidence supporting this hypothesis, whereby implausible words show 

a more posterior effect compared to a more anterior effect for unlikely but plausible 

words (e.g., book in the previous example).  

We found a posterior positivity, which is puzzling, since this would indicate that 

our materials contained many implausible sentence continuations. This is 

unexpected because these speech materials were sampled from natural language use 

in books and dialogues (we excluded the news materials for the PNP analysis). It is 

therefore unlikely that there were many anomalous or implausible sentences. A 

possible explanation could be the presence of counterfactual stories in our 

experimental materials. Kolk et al. (2003) found that a (semantic) P600 can be 

elicited with a sentence such as The mouse chased the cat. In general, we can say 

that this was not the case for our experimental materials. Unfortunately, we cannot 

analyze this in detail, since we do not have plausibility ratings for our materials. 

Another explanation for the posterior PNP could be that the distinction between 
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anterior and posterior late positivities is not ironclad and that posterior late positivity 

also occurs in response to an unexpected but plausible continuation. Further 

investigation is necessary to distinguish between the alternative explanations. 

We found an unexpectedly high correlation between word surprisal and log word 

frequency. A high correlation between the predictor of interest (word surprisal) and 

a covariate make statistical results less reliable (effects can flip, because the variance 

can be ascribed to either of the variables). The reason for the unexpected high 

correlation is related to the first word in a sentence. The dialogues materials contain 

a high number of very short sentences resulting in a relatively high proportion of 

first words. Statistical language models (SLM) generally do not use cross-sentence-

boundary pre-context. Therefore, the word surprisal of the first word in a sentence 

will tend to the frequency of that word. We therefore removed the first word of each 

sentence for our analyses. In future studies, it would be interesting to test whether 

SLMs could be used that take cross-sentence-boundary pre-context into account. 

Our study raises questions for future research. First, how do listeners adjust their 

expectations to a specific register? Our results show that simply using the most 

recent words to adjust anticipations does worse in modelling N400 amplitude in 

listeners compared to using register-specific information. This would indicate that 

listeners do not merely use recent context to adjust expectations, and would imply 

that registers are represented in some form and can be utilized to adapt expectations 

to upcoming input. This could mean that multiple generative models (e.g., registers, 

schema’s) are represented and language perceivers switch between these models 

(see also Kuperberg, 2016). Second, does speech register provide the correct level 

of granularity for a predictive model of language? The current study found evidence 

that listeners can use register-specific information to adjust their anticipations. 

However, register is a high-level construct that correlates with, for example, topic. 

It could be that topic differences are also an important factor in structuring language 

perceivers’ expectations. Third, how to interpret the success of SLMs in modelling 

language perceivers’ processing costs? SLMs are an implausible cognitive model 

for language prediction. For example, an SLM could not model prediction effects 

found with sentences 9 & 10 (Section 6.1.4) because these effects are based on long 

range dependencies. What aspects of predictive human language processing do 

SLM capture that make them successful in modelling processing costs and when 

would they fail? 
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6.5 Conclusion 

We analyzed ERPs elicited with spoken words from long stretches (4 - 15 minutes) 

of naturalistic speech and found that word surprisal predicts the N400 amplitude. 

Listeners anticipate words while listening to natural speech that is not highly 

constrained nor limited to very likely or very unlikely words. Moreover, by 

comparing generic, recency-based and register-specific word surprisal, we showed 

that listeners broadly adapt their expectations to the register of the speech they are 

perceiving, which indicates that listeners also use cues from the wider context to 

predict upcoming words.  
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Appendix A. Overview of the fixed effects of the linear mixed effect model with the PNP as 
dependent variable. The fixed effect names, the beta (B), the standard error (SE B) and the t-
value (t) are reported. The predictor of interest is bolded. 

fixed effect B SE B t 

intercept 0.099 0.063   1.57 

baseline  4.491 0.012 379.63 

log word frequency  0.140 0.042     3.33 

experiment books  0.085 0.030   2.82 

generic surprisal 0.074 0.020    3.66 

word duration  0.169 0.023     7.50 

word in sentence  0.285 0.013   21.40 
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It is difficult to make predictions, especially about the future 

Niels Bohr   
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Discussion 
Chapter 7 

 

In this thesis, I investigated the role of predictive language processing by modelling 

event-related potentials (ERP) based on information-theoretic measures that capture 

different aspects of predictability. In this manner, I investigated listeners’ 

anticipations of words and word forms based on the preceding context and speech 

registers.  

The electroencephalography results of this thesis are summarized in the plots 

presented in Figure 1. On the left-hand side, results are shown from Chapters 3 and 

4, where I investigated auditory word form anticipation based on preceding words. 

The plot shows a grand average of the event-related potential (ERP) averaged over 

words, participants and EEG channels. The ERP data was split in tertiles based on 

the cross-entropy value for each word, whereby averages were taken across words 

with low and high cross-entropy values and plotted with the dotted and solid line, 

respectively. The plots and statistical analysis (Chapter 4) reveal that the 

phonological mismatch negativity (PMN) is more negative with increasing values 

of cross-entropy. As I detail in the following sections, this finding is in line with the 

idea that listeners anticipate auditory words forms while listening to natural speech.  
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Figure 1. Grand average plot of the ERP response averaged over words, participants and 
channels. The data was split in tertiles, based on cross-entropy (left) and surprisal (right).  

 

On the right-hand side of Figure 1, results are shown from Chapters 5 and 6, where 

I investigated the influence of speech register on predictive language processing. 

Again, the grand average of the ERP response (averaged over content words, 

participants and EEG channels) is plotted but now for different values of word 

surprisal (the unexpectedness of a word). The data was split in tertiles based on word 

surprisal values. Again, the low and high valued words were averaged and plotted 

with the dotted and solid line, respectively. The plot and statistical analysis (see 

Chapter 6) reveal that higher surprisal values result in a more negative N400 

amplitude. In addition, the comparison of several processing strategies (see Chapter 

6) suggests that human listeners use the wider context of speech register to adapt 

their word anticipations. 

In the following sections, I discuss the results presented in this thesis per research 

question as formulated in the Introduction (Section 1.4). First, I discuss the EEG 

data corpus and the convolutional neural network that was trained and applied to 

clean 200 hours of EEG data. Second, I discuss the mismatch measure and the study 

investigating auditory word form anticipation with the PMN. Third, I discuss the 

corpus study investigating word predictability differences between speech registers 

and the EEG study investigating the influence of register on listeners’ word 

anticipations. Fourth, I give a rough sketch of possible theoretical implications of 

the results presented in this thesis. 
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7.1 How can we investigate predictive language processing with 
event-related potentials (ERP) evoked by words in long stretches 
of natural speech? 

It is possible to investigate human speech processing of long stretches of natural 

connected speech with ERPs. The secret is to collect a lot of data. I recorded 

approximately 200 hours of EEG data and extracted approximately 1.5 million word 

epochs from this data. Based on two predictability measures, I successfully 

modelled the amplitude of the N400 for content words and the phonological 

mismatch negativity (PMN) for all words. I will elaborate on these results in Section 

7.2 and 7.3. In the current section, I focus on big data collection for ERP research 

and the use of naturalistic language materials in relation to predictive language 

processing. 

 

7.1.1 EEG data cleanup and the convolutional neural network artefact classifier 

For ERP research it is important to clean the EEG data prior to statistical analysis. 

Typically, recorded EEG materials must be cleaned by removing trials (i.e., word 

epochs) contaminated by artefacts. This can be accomplished with manual or 

automatic approaches or a combination of both. Manual artefact rejection is more 

precise; however, due to the prohibitively large number of epochs, a completely 

manual approach was not feasible. A drawback of automatic methods is that they 

are less precise. For example, it is possible to automatically threshold the EEG data 

on a specific value, for example, ± 75 µV, and to exclude all EEG data which 

exceeds that threshold. The drawback of this method is that it rejects usable data, 

for example, data contaminated by eye-blinks, which can easily be attenuated with 

independent component analysis (ICA). 

Experimental paradigms with well-defined short trials achieve relatively clean EEG 

data by asking participants to refrain from blinking during those short trials. In my 

research this option was unavailable because participants listened continuously to 

the experimental materials and could not be expected to refrain from blinking for 

up to fifteen minutes at a time. As a consequence, my EEG dataset was more heavily 

contaminated by eye-blink related activity compared to data from classic style EEG 

experiments. It was therefore important to be able to attenuate eye-blink related 

activity without rejecting all this data. To deal with this problem for a large amount 

of data, I developed a more sensitive algorithmic approach to clean the EEG data 
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by training and applying a convolutional neural network (CNN) to automatically 

classify EEG artefacts.  

To create training material for training the classifier, I manually annotated 60 hours 

of EEG materials (i.e., about 30 percent) by marking the start and end boundaries 

of EEG data that I judged to be contaminated by artefacts. For my annotations, I 

distinguished between two artefact annotation types: channel and stretch artefacts. 

The channel artefacts were indicated per channel when only one or a few channels 

showed artefacts, while the stretch artefacts were marked for all channels when most 

channels showed artefacts. I distinguished between channel and stretch artefacts to 

achieve a balance between specificity and speed in the annotation process. The 

channel artefact annotations allowed for the removal of channels with poor signal 

quality without removing the data from the other channels, thereby saving data. The 

stretch artefact annotations speeded up annotation time, because all channels could 

be annotated simultaneously (instead of individually). Still, manual artefact 

annotation is time-consuming work: annotating 60 hours of EEG data for both the 

channel and stretch artefacts took approximately 300 hours of work. 

The CNN classifier was trained and tested on 1-second chunks of EEG data labeled 

clean or artefact. These labels were based on the manual annotations. I found that 

the CNN classifier clearly outperformed the thresholding procedure mentioned 

before (see Chapter 2, section 3.5). To further ensure the quality of the EEG dataset, 

all automatically annotated artefacts were manually checked. Correcting 

automatically generated artefacts speeded up the annotation work compared to 

complete manual annotation. This is because artefacts tend to cluster, and I could 

therefore skip long stretches of clean EEG data.6  

The performance evaluation (see Chapter 2, Table 4) revealed that the current CNN 

artefact classifier is best used in combination with manual post-correction to ensure 

the quality of the resulting annotation. The results (see Chapter 2) show that the use 

of a CNN artefact classifier provides a good approach for cleaning a large amount 

of EEG data. However, there is room for improvement. In the following paragraphs, 

 

6 This correction approach (skipping sections classified as clean) is a tradeoff between speed and 

accuracy. I trained the classifier to err on the side of classifying something as artefact to reduce the 

chance of missing them, however, there is still a chance that artefacts in clean sections were missed. 

Since artefacts tend to cluster, I think overtraining on artefacts and skipping clean sections is the best 

approach, because there are sharply diminishing returns for the extra effort to remove the last 

remaining artefacts embedded in clean sections. 
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I discuss challenges and propose improvements for CNN based artefact classifiers 

related to generalizability, artefact definition and CNN architecture. 

 

7.1.1.1 Generalizability 

The real benefit of a CNN artefact classifier would lie in its generalizability, using 

a pre-trained classifier to classify newly recorded data (preferably without the need 

for manual correction). Currently, the classifier is trained and utilized on the same 

dataset and can probably only classify EEG data from the same or (maybe) a very 

similar EEG channel layout. This is because I used windowed EEG data, whereby 

the input data consisted of one second of data from all EEG channels. The 

consequence of this setup is that the CNN artefact classifier will not be able to 

process EEG data with a different number or a different set of EEG channels. 

Generalizability of the classifier can be improved by training solely on channel level 

annotations. As mentioned in the previous section, in the current approach I 

annotated stretch and channel artefacts. I distinguished between stretch and channel 

artefacts to speed up annotation. Annotating all channels separately (i.e., without 

stretch artefact annotations) would dramatically increase annotation times, because 

for every stretch artefact every channel would need to be annotated.  

By using annotations only on channel level, a more generalizable classifier could be 

trained because, in this case, the input to the CNN model could consist of a target 

channel with a set of k nearest neighboring channels. This data structure (a channel 

with a set of neighboring channels) can be created irrespective of the channel layout 

or the number of channels. However, there are two potential problems. First, the 

channel data is likely to systematically differ across channels, depending on their 

location (e.g., anterior channels will show more eye-related activity compared to 

more posterior channels). Second, the correlation between the target channel and its 

neighbors will differ for low compared to high density recording setups (e.g., 32 

versus 256 channels). It is an empirical question whether these problems might 

frustrate the goal of a generalizable artefact classifier.  

The complete channel level approach would also provide a more fine-grained 

insight into the quality of the EEG data and more flexibility with respect to 

removing channels or stretches. The annotations provided with the EEG speech 

register corpus (DESRC) could be extended to create such a classifier. However, to 

test whether such a classifier genuinely generalizes, other EEG datasets need to be 

annotated as well.  
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7.1.1.2 Artefact definition 

The windowed EEG data were labelled as either clean or artefact based on the 

amount of overlap with manually annotated artefacts; windows with 50% or more 

overlap were labelled as artefact and all other windows were labelled clean.  

In retrospect, this labelling scheme was not ideal. The windows were created in a 

sliding window fashion whereby each window started at the datapoint following the 

start point of the previous window and neighboring windows overlapped by 99 %. 

Each window created in this manner was randomly assigned to a training, test, or 

validation set. However, since neighboring windows overlapped by 99%, the 

separation between training, test and validation was not as strict as it could have 

been. Very similar (but not identical) windows could be incorporated in the training 

and test sets.  

An alternative approach would be to label a window based on the status of the 

central column of the window (i.e., at half a second). The window would be labelled 

artefact if the central column falls within an artefact annotation and labelled clean 

otherwise. This scheme clearly separates the windows and prevents contamination 

between the classifier training and test data. Furthermore, labelling clean and 

artefact windows in this manner would also better reflect the translation of window 

classifications to start and end boundaries in the EEG signal. In Chapter 2, the start 

and end boundaries were automatically generated by taking the middle timepoints 

of the first and last window, in a sequence of artefact windows. This approach was 

most suitable, due to the overlap between neighboring windows. The new labelling 

scheme would more closely match this translation between window classification 

and start and end boundary annotation, thereby potentially further improving the 

automatic annotations. 

 

7.1.1.3 CNN architecture 

The present classifier used a simple CNN architecture inspired by Krizhevsky et al. 

(2012) and Schirrmeister et al. (2017). The main architecture is similar to a standard 

image classification CNN. An important difference is the stepwise processing of the 

time and channel dimensions (Schirrmeister et al., 2017) compared to the one-step 

processing of the combination of width and height of images. Without this 

adaptation, the model never improved much beyond chance level.  
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The automatic artefact annotations of the CNN artefact classifier needed to be 

improved with manual correction. Ideally, the classifier would work wholly or 

mostly autonomously. One weakness of the current CNN classifier is the very 

limited context awareness in the time dimension (i.e., 1 second). This is suboptimal, 

because artefacts can occur over much longer timescales and tend to cluster 

together.  

I hypothesize that a better artefact classifier should be able to deal with the time 

dimension at multiple levels of granularity and propose that an architecture inspired 

by Wavenet (Oord et al., 2016) could improve the artefact classifier performance. 

Wavenet utilizes dilated causal convolutional layers to achieve sensitivity over 

different temporal scales (i.e., increasing the receptive field in the time dimension 

of the model).  

Wavenet is a deep neural network developed to perform speech synthesis.7 It is a 

generative model which attempts to predict the value of an unknown sample based 

on context. For artefact classification, however, a discriminative model is needed. 

Fortunately, a generative model can easily be converted into to a discriminative 

model by training separate models on the classes that need to distinguished. Separate 

models could be trained on clean and artefact contaminated EEG data. The data 

could then be classified by testing which model best predicts the data (the clean or 

artefact model). 

 

7.1.2 Event-related potentials and big data 

An important limitation of ERP research is the poor signal-to-noise ratio (Luck, 

2014). Many trials are needed to reveal an ERP component in the EEG signal. 

Experimental paradigms that allow for the collection of a large amount data open 

up new research lines. In the current experimental setup (inspired by Frank et al., 

2015; see also Willems, 2015), I analyzed ERPs elicited by words in natural speech. 

Analyzing most of the words in the speech materials presented to participants, 

increased the size of the EEG dataset. For the word form anticipation study (Chapter 

4), I analyzed over a million word epochs and for the speech register study (Chapter 

 

7 For examples of the speech synthesis produced by the model, visit the following website: 

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio 
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6) I analyzed well over half a million word epochs. The size of these datasets is 

orders of magnitudes larger than classic EEG experiments. 

The setup has important ecological consequences. It affords the study of more 

naturalistic language materials. If an experiment contains dozens of target words 

distributed over a small number of conditions, it becomes very important to 

carefully match these target stimuli. The ideal for classical ERP research is to use 

the same stimulus, but change the context to ensure that the surface form does not 

influence the results. This careful matching makes it difficult to use ecologically 

valid materials. Fortunately, this matching becomes less important as the size of the 

dataset increases because nuisance variation can be averaged out over the large 

number of stimuli.  

The results presented in this thesis suggest that big data collection is a feasible and 

fruitful approach for ERP research. Possible new applications might be the 

collection of data from a more diverse participants pool, by incorporating 

participants from a wider age range and a more diverse educational background (our 

current dataset only contains data from university students within specific age 

bandwidth without reported health issues). These more general data could elucidate 

whether our predictability results generalize across human listeners in general. 

 

7.2 To what extent do listeners anticipate the auditory word form 
while listening to natural speech?  

Do listeners anticipate speech sounds while they are listening to someone talk? To 

investigate this, I developed a novel mismatch measure to capture the probability of 

a speech sound given the preceding speech input (see Chapter 3). This mismatch 

measure was used to predict the amplitude of the phonological mismatch negativity 

(PMN). I analyzed a large EEG dataset with over a million EEG word epochs. The 

results (see Chapter 4) indicate that listeners anticipate auditory word forms based 

on preceding language input. 

 

7.2.1 Measuring mismatch with the cross-entropy between word probability distributions 

To investigate predictive speech processing, I developed a mismatch measure 

(Chapter 3) inspired by the predictive coding framework (Friston, 2005). This 

framework proposes that cognitively high-level expectations feed backward to low-
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level perceptual input. Low-level sensory input is explained to a greater or lesser 

extent by the high-level expectations. The remaining unexplained prediction error 

travels upward to adjust the generative model (generating expectations). I 

operationalized this idea for speech perception by applying the concept of a word 

probability distribution (WPD).  

The WPD is implemented as a lexicon whereby each word has an associated 

probability and a phonological representation. I used two WPDs, a prior WPD based 

solely on top-down word probabilities as estimated with the aid of an SLM, and a 

post WPD, which is the prior WPD but updated with information from the auditory 

onset of a word (the first 190 milliseconds). The prior WPD captures the high-level 

expectation based on the preceding context; the post WPD differs from the prior 

WPD to the extent that the auditory word onset was unexpected. If the speech signal 

does not support the prior WPD, the difference between prior and post WPD is large, 

while if the audio matches the expected word, the difference is small. The mismatch 

measure was computed by taking the cross-entropy between the prior and post 

WPDs. In this manner, the mismatch measure captures the unexpectedness of the 

auditory input given the preceding context (i.e., the prediction error).  

The cross-entropy between prior and post WPD captures a plausible mechanism of 

predictability. Consider, for example, the following cases: When the sentential 

context is highly constraining, i.e., a few words have a high probability8, the cross-

entropy will be high if the actual next word is unexpected. This is true because the 

word onset will not match the words with most probability mass in the prior WPD. 

As a consequence, the post WPD will have a markedly different probability 

distribution9 resulting in a high cross-entropy. In contrast, when the context is highly 

constraining and the actual word is expected, the cross-entropy will be low because 

the post WPD will have a very similar probability distribution. Finally, when the 

context is less constraining, probability will be more evenly distributed among 

words, and therefore the cross-entropy will not be as high for mismatching word 

 

8 The WPD tends to follow a power law distribution; there is a quick decline in probability from the 

most likely to the second most likely word and from the second to third word, etcetera, ending in a fat 

tail (i.e., unlikely words are not astronomically unlikely). Furthermore, it is the case that the amount 

of probability assigned to the most likely words depends on the constraining character of the sentential 

context, whereby less constraining contexts result in less probability for the most likely words and vice 

versa for more constraining contexts. 

9 This is because the post WPD is updated with the mismatching auditory word onset, resulting in a 

large shift of word probabilities. For implementation details, see Chapter 3. 
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onsets because the shift in the probability distribution (i.e., mismatch) is smaller 

compared to highly constraining contexts. 

The advantage of the mismatch measure is that it can be applied to all words in a 

sentence and is not dependent on having an (artificially) high constraining sentential 

context. Furthermore, it is no longer necessary to bin target words into artificial sets 

of expected or unexpected words, because the mismatch measure is continuous, 

which allows for investigating the whole spectrum of predictability. This approach 

provides evidence that anticipatory processes are not limited to artificially 

constraining sentences but are also employed while listening to natural speech. 

 

7.2.2 The underlying cognitive process indexed by the phonological mismatch negativity 

There are different accounts for the underlying cognitive process indexed by the 

PMN, which is why the component is referred to by different names (i.e., N200, 

N250 and the phonological mapping negativity). The accounts mainly differ with 

respect to the processing level at which the purported mismatch occurs at. One 

interpretation explains the PMN as a mismatch between expected and perceived 

phoneme input (e.g., Connolly et al., 1994; Desroches et al., 2009; Brunellière & 

Soto-Faraco, 2013). According to this account, the speech processing system 

anticipates specific speech sounds based on the preceding context. When the word 

onset mismatches with this anticipatory process, a larger PMN effect is elicited 

compared to a word onset that confirms the anticipated sounds. The current results 

are best explained by an account of anticipated and mismatching auditory word 

onsets. 

A competing explanation is related to an assumed modular speech processing 

system, such as Shortlist (Norris, 1994), in which early speech processing stages are 

exclusively feedforward. From this perspective, there cannot be a mismatch 

between expected and perceived phonemes because this would imply feedback to 

early (i.e., prelexical) stages of speech processing. To account for a N200 effect, it 

is assumed that this ERP component is sensitive to a mismatch between the 

sentential context and the set of semantic features of the word cohort activated by 

the auditory onset of the word (e.g., Van den Brink et al., 2001; Hagoort, 2007). 

Van den Brink et al. (2001:979) argue against a phonological mismatch explanation 

(they refer to an N200 effect). Their data showed an early negativity for both 

expected and unexpected word onsets, whereby unexpected word onsets showed an 

increased negativity compared to expected onsets. According to their argument, if 
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the N200 effect indexes a phonemic mismatch, you would not expect to see an early 

negativity with an expected word onset. However, they argue specifically against 

the case whereby only a single word form would be predicted from the preceding 

context. We showed that it is also possible that the anticipatory process results in a 

probability distribution over a large set of words and, by extension a probability 

distribution over a large set of possible word onsets (for implementation details, see 

Chapter 3). If probability is distributed over different word onsets, it makes sense 

that even high probability word onsets results in an early negativity, because the 

anticipatory system also assigns some probability to the other word onsets.  

The current results do not rule out the semantic account of the PMN (or N200) effect 

(e.g., Van den Brink et al., 2001; Hagoort, 2007). It is possible that the PMN indexes 

both anticipatory auditory and lexical interface processes (similar to the N400 

effect, which shows sensitivity to both semantic congruency and contextual 

expectedness). The current results suggest that one part of the semantic account is 

less tenable, however, which is the proposed feedforward only processing, whereby 

the auditory onset results in a cohort of matching words that only subsequently can 

be matched with the sentential context. In the following section, I discuss this issue 

further. 

 

7.2.3 Feedforward models of speech processing 

A long-running debate in language perception concerns the status of feedback 

(Norris et al., 2016; Magnuson et al., 2018). Autonomous models such as the 

previously mentioned model Shortlist (Norris, 1994; Norris & McQueen, 2008) 

assume that speech input is processed in a strictly feedforward manner. In Shortlist, 

no feedback is allowed from the lexical to the prelexical stages. In contrast, 

interactive models such as TRACE (McClelland & Elman, 1986) allow feedback 

from lexical to prelexical levels. 

Norris et al. (2016) argue for the feedforward position from a Bayesian perspective. 

They argue that Bayesian inference from the available evidence (i.e., speech input) 

cannot be improved by feedback. In their model, prior probability is based on word 

frequency and the likelihood is based on the speech input. Bayes’ theorem provides 

an optimal method to combine the prior and likelihood to compute the posterior 

probability of a word (i.e., an update of word probabilities with newly available 

evidence). Since the prior and likelihood are both part of the equation, nothing can 
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be gained by feedback from lexical (i.e., prior) to the prelexical level (i.e., 

likelihood).  

We argue that Norris et al. (2016) underrate the practical relevance of what can be 

ignored or minimized with feedback. As they themselves note, predictive coding is 

a compressive algorithm. Instead of passing through the whole signal, only 

differences between expected and perceived input are passed along (Friston, 2005). 

Norris et al. (2016) note that the predictive processing code could be learned 

(offline), while during online processing only feedforward mechanisms are 

necessary. The ERP results presented in Chapter 4 are in conflict with this 

hypothesis. I found evidence that online processing of natural language results in an 

ERP-component sensitive to the mismatch between expected and actual word form 

input. This result can be explained if perception entails high-level probabilistic 

feedback to low-level processing. 

  

7.2.4 The sensory hypothesis and word recognition hypothesis 

In a recent overview article, Nieuwland (2019) provides a critical overview of early 

ERP effects in relation to predictive language processing. In this overview, he 

makes a distinction between a sensory hypothesis and a word recognition 

hypothesis. The sensory hypothesis is closely related to the predictive coding 

framework, based on matching predicted and perceived sensory input (Nieuwland, 

2019). The word recognition hypothesis proposes that prediction effects occur 

during the recognition of a specific word form. The sensory hypothesis is further 

characterized as non-linguistic/perceptual and the word recognition hypothesis as 

linguistic processing. The PMN/N200 effect is categorized under the word 

recognition hypothesis. 

The current results do not neatly correspond to the sensory or word recognition 

hypothesis. I designed the mismatch measure (i.e., cross-entropy) in such a manner 

that it captures the mismatch between expected and actual auditory input (see 

Chapter 3). In this sense, it is closely related to the sensory hypothesis. However, I 

would not claim that the found effect is purely non-linguistic, nor would I assume a 

sharp divide between non-linguistic and linguistic processing. I argue that the results 

are best explained by the predictive coding framework and that this should not be 

viewed as a purely non-linguistic explanation because different levels of processing 

are coupled; high-level anticipations (based on preceding words) feed backward to 

auditory processing. 
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Nieuwland (2019) further argues that there is insufficient evidence for dissociating 

the PMN/N200 from the N400 and proposes that the results reported in the literature 

could be explained solely by the N400 component (by assuming the N400 has an 

early onset when elicited with auditory stimuli). I propose that the current results 

provide further evidence that the PMN component is dissociable from the N400. In 

this thesis, I used the same EEG dataset to analyze both the PMN and the N400 and 

found that the components can be dissociated by different information theoretic 

measures: The mismatch measure developed in Chapter 3 predicted the PMN 

amplitude, while word surprisal predicted the N400 amplitude. 

The PMN is smaller in amplitude and closely precedes the N400. The overlapping 

component problem could explain why the PMN was not always reported when one 

would expect it (e.g., Van Petten, 1999). In addition, classical EEG experiments 

only collect a limited number of observations. Since EEG suffers from a poor signal-

to-noise ratio, and the PMN effect has limited amplitude difference, it is 

unsurprising that the PMN effect is not always observed.  

The dissociability of the PMN and N400 components could be further explored with 

the topographic distribution of found effects. For the PMN, I found a frontal lateral 

effect, and for the N400 a central parietal effect. I did not explore this further since 

a topographical analysis was not within the scope of our experiments, but I assume 

that topographic distinctions underpin the difference between PMN and N400. 

Further evidence that the PMN and N400 effects are dissociable could be obtained 

by performing a similar experiment with MEG recordings. Since MEG data has a 

far better spatial resolution compared to EEG data, this would provide more 

interpretable results of the underlying brain regions responsible for processing 

different aspects of natural speech.  

 

7.3 To what extent do listeners adapt their expectations of 
upcoming words based on the speech register they are listening 
to?  

If listeners are sensitive to the local context of preceding words, is it also the case 

that they are sensitive to the broader context? To investigate this, I used statistical 

language modelling to compare word predictability differences between speech 

registers and found that they differ systematically. Based on these findings, an EEG 

study was conducted in which participants listened to speech from different 

registers. The analysis of the EEG data showed that listeners adapt their expectations 

of upcoming words to the register they are listening to. 
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7.3.1 Word predictability differences between speech registers 

In Chapter 5, word predictability differences between speech registers were 

investigated. To model register-specific word predictability, I used statistical 

language models (SLMs) by training individual SLMs on different register-specific 

language materials (e.g., dialogues, news broadcasts, read-aloud stories, etcetera). 

These register-specific SLMs were then applied to unseen language materials from 

multiple registers. The performance of the register-specific SLMs was computed 

and used to train a register classifier. The logic behind this approach is the 

following: SLMs performance depends on the similarity of the training and testing 

materials. An SLM trained on language materials from dialogues will likely perform 

worse when applied on language materials from news broadcasts compared to when 

it is applied to dialogue materials. I used the SLM performance measure (i.e., 

perplexity) as input to train a linear discriminant analysis (LDA) classifier to 

distinguish between 14 speech registers taken from the Spoken Dutch Corpus. The 

resulting classifier was able to perfectly distinguish between all speech registers (see 

Chapter 5).  

To rule out confounds and test whether the classifier results were due to speech 

register differences in word predictability, I conducted several more experiments. 

First, I repeated the experiment with randomly grouped language materials instead 

of language materials grouped on register. SLMs were trained on the randomly 

grouped materials, and a classifier was again trained on the SLM performance 

measure. The resulting classifier could not distinguish between the randomly 

grouped sets of language materials. This result shows that the register classifier 

distinguishes between language materials grouped on the basis of some criterium 

(e.g., register), since it cannot distinguish randomly grouped sets of sentences. This 

result provides additional support that the speech register classifier results were 

based on systematic differences in word predictability among speech registers.  

Second, I investigated whether the results would generalize beyond the Spoken 

Dutch Corpus. I extracted materials from other corpora and showed that the 

classifier could also correctly distinguish between registers with language materials 

from other corpora (see for example, Figure 3, Chapter 5). This shows that the 

classifier is not sensitive to differences between corpora and the results are not an 

artefact of an idiosyncratic aspect of the Spoken Dutch Corpus.  

Third, I tested whether our classifier results could alternatively be explained by 

sentence length difference between registers. Sentence length might be an obvious 

predictor for register since it is related to speech style and therefore to speech 
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register. Prepared speech, such as read-aloud stories or news broadcasts, contain 

longer sentences than more spontaneous speech, such as dialogues. Since sentence 

length differences potentially influence SLM performance, I investigated whether 

sentence length influenced the classifier results. I reran the experiment with a subset 

of the language materials, excluding very short and very long sentences, thereby 

reducing the average difference in sentence length among registers. The resulting 

classifier was still able to distinguish between the registers. In addition, I trained a 

sentence length classifier to test how well registers can be distinguished based on 

sentence length compared to a classifier based on word predictability. The classifier 

based on sentence length was clearly outperformed by the word predictability 

classifier (see Chapter 5). Furthermore, the classifier based on sentence length did 

not generalize to materials from other corpora. This indicates that the results of the 

word predictability-based classifier cannot be explained by sentence length 

difference between registers. 

Fourth, I observed that topic correlates with register. For example, many soccer 

terms and names of famous soccer players occur very frequently in sports 

commentary, while they hardly occur at all in read aloud stories. To attenuate the 

influence of topic on the classifier results, I used a restricted SLM vocabulary (see 

Chapter 5.4) by only including words that were most evenly distributed across the 

different registers. In this manner, words strongly related to one specific register 

could not drive the classifier results. 

The combined results from the different experiments provide strong evidence that 

speech registers indeed systematically differ in word predictability. 

 

7.3.2 Register adaption during natural speech perception 

In Chapter 6, I investigated the influence of register on predictive speech processing. 

The study was based on two observations: First, as shown by the corpus study in 

Chapter 5, speech registers systematically differ in word predictability. Second, as 

argued in the Chapter 1, language perception entails the anticipation of upcoming 

input. Most evidence of anticipatory language processing is limited to very local 

context (i.e., preceding words and sentences). I extended previous research by 

investigating the influence of the wider context represented by different speech 

registers.  

The EEG dataset, described in Chapter 2, was used to test whether listeners adapt 

their word anticipations to the speech register they are listening to. Recall that the 
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EEG dataset consists of recordings from participants who listened to three distinct 

speech registers, namely dialogues, news broadcasts and read-aloud stories.  

The language materials of the EEG dataset were analyzed with statistical language 

models (SLMs) to estimate word surprisal. Word surprisal increases in relation to 

how unexpected a specific word is given the preceding words. Different SLMs were 

trained in such a manner to reflect different anticipatory processing strategies, 

namely generic, register-specific, or recency. A generic strategy captures the case 

of no adaptation, register-specific captures register adaptation and recency captures 

adaptation to local context. The strategy-specific word surprisal values from these 

SLMs were used to model the EEG data.  

I analyzed the event related potential (ERP) elicited by the content words (n » 

600,000) and found that, as expected, the N400 amplitude was more negative for 

words with higher surprisal (i.e., more unexpected words) and best predicted by 

register-specific word surprisal. This finding indicates that listeners adapt their 

word anticipations to the wider context of the current language input. 

 

7.3.3 How to explain the register effects on anticipatory word processing? 

I propose two possible explanations for the results from Chapter 6: A recognition 

hypothesis and a recency hypothesis. The recognition hypothesis assumes that there 

are cognitive representations of the wider context, possibly in the form of registers. 

The recognition of a given register (or another kind of representation of the wider 

context) results in an update of the anticipatory processes. This update results in a 

different probability estimate of a word given the local context (i.e., a number of 

preceding words).  

The recognition hypothesis received support from the current findings (the register-

specific strategy outperformed all other processing strategies). Furthermore, 

recognition-based adaptation would be beneficial for anticipatory word processing: 

Recognizing the current context allows for faster updates compared to slowly 

continuously adapting to the context. However, it does entail positing multiple 

mental constructs representing different registers or other representational variants 

that encode the wider context. 

In contrast, the recency hypothesis entails that the wider context is not explicitly 

represented and adaptation does not depend on the recognition of the wider context. 

Instead, anticipatory processes are continuously updated based on the received 
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recent input. In Chapter 6, I found evidence that simple recency effects cannot 

explain the found results: The register-specific word surprisal values better 

predicted the N400 amplitude compared to the recency-based values. However, 

these surprisal values may be based on a too simplistic view of recency. I used a 

specific implementation of recency updating, whereby the generic SLM was 

updated with the last 64 encountered words. There are perhaps more optimal ways 

to implement recency effects. For example, long short term memory (LSTM) 

models (e.g., Sundermeyer et al., 2012) provide a state of the art method for 

language modelling. In these types of models, longer contextual effects can be 

modelled. Perhaps recency effects could be successfully modelled with this type of 

model, without the need of explicit reference to a specific register.  

A viable approach to provide further evidence for either the recognition or recency 

hypothesis would be to study the speed of adaptation to the wider context. If the 

recognition hypothesis is correct, adaptation should show a sudden shift, because 

once the register is recognized, word anticipations can be adapted to it. In contrast, 

with continuous updating based on recency no sudden shift in word anticipations 

would be expected. Whether this can be investigated with the current approach is 

unclear; because ERP analysis requires many trials (i.e., many word epochs) to 

average out noise, it is an open question whether it would have enough temporal 

resolution to capture this sudden shift in adaptation. 

Another approach to decide between both hypotheses would be to vary the 

familiarity the participants have with a given register. For example, a participant 

group of soccer enthusiasts and a neutral group could listen to soccer match 

commentaries. If the recognition hypothesis holds, then the soccer fans should show 

a greater register specificity effect compared to non-soccer fans. A potential pitfall 

would be attentional differences between the participant groups because soccer fans 

could be more engaged by the materials. Alternatively, participants could be 

exposed to unfamiliar registers and subsequently be tested on materials related or 

unrelated to these registers. Again, if the recognition hypothesis holds, the 

familiarized materials should result in a greater register specificity effect.  
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7.4 Future outlook 

Given the results presented in this thesis, I briefly consider some broader theoretical 

implications which might be useful for future research. 

 

7.4.1 Information theoretic measures and the perception of language 

Information theoretic measures are central in this thesis, and they prove to be 

valuable for modelling linguistic predictive processing. What can this tell us about 

human speech perception?  

First, it is important to keep in mind that information has multiple senses; 

information in the colloquial sense means something very different from the 

information as formal measure as put forward by Shannon (1948). Shannon 

information is purely defined in terms of channel capacity without any notion of 
semantic content, while the colloquial use of information does entail semantics. The 

difference is illustrated with the images of a cat and random numbers in Figure 2. 

The image of a cat contains less Shannon information compared to the random 

numbers because the cat image is structured. It depicts a cat, snow, and a bench. 

Consequently, some colors, like orange and white, occur more often than other 

colors and are grouped together in specific constellations. This structure affords a 

more efficient manner to record the information by, for example, assigning short 

codes to frequent colors and long codes to infrequent colors. Structure allows for 

code efficiencies, which reduces the amount of Shannon information. In contrast, in 

a set of random numbers, structure is absent by definition and no code efficiencies 

are possible, which is why a random sequence has the highest amount of Shannon 

information.  
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Figure 2. Left-hand side, a picture of a cat. This picture has a lower amount of Shannon 
information but a higher amount of colloquial information compared to the picture on the 
right-hand side which depicts a set of random numbers. 

  

 

Colloquial information is a less well-defined concept. It overlaps with Shannon 

information e.g., a book contains more information than a paragraph, but colloquial 

information includes semantics, which Claude Shannon kept outside his definition 

of information (Shannon, 1948). Therefore, colloquial information can conflicts 
with Shannon information; for example, a book with a random sequence of letters 

contains more Shannon information compared to an equally long novel, while only 

the novel contains any colloquial information worth mentioning. There is no 

mathematical formula that captures colloquial information, and it is difficult to 

study with rigor (e.g., Mitchell, 2009). 

With the distinction between colloquial and Shannon information in place, we are 

better positioned to relate the findings in this thesis to predictive language 

processing. I used information-theoretic measures to model the PMN (Chapter 4) 

and N400 (Chapter 6) effects elicited by words in connected speech. The question 

is: Why is the human speech processing system sensitive to Shannon information, 

which entails that an image of random numbers contains more information than an 

image of a cat? Intuitively, this feels completely backwards. Language is about the 

colloquial kind of information rather than the Shannon kind.  
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A possible solution to this puzzle is that there are multiple routes for predictive 

language processing. One route is sensitive to the sequential nature of language and 

is best modelled with information theoretic measures as investigated in the 

dissertation. However, this route does not capture the whole story. Take the 

following example: 

 

1 The brave knight saw that the dragon threatened the benevolent sorcerer. 

He quickly reached for a [sword / lance] …  

2 The benevolent sorcerer saw that the dragon threatened the brave knight. 

He quickly reached for a [sword / lance] …  

Van Berkum, 2012 

 

The target words sword and lance elicit a different ERP response dependent on 

whether the knight or the sorcerer is reaching for a weapon. Notice that this effect 

is observed while there are many intervening words between knight/sorcerer and 

sword/lance, which makes it unlikely that probabilistic anticipation modelled with 

information theoretic measures can account for this effect (see Aurnhammer & 

Frank, 2019). Importantly, as argued above, the different semantic relations between 

knight/sorcerer and sword/lance cannot be accounted for with information theoretic 

measures. 

Frank and Willems (2016) compared semantic similarity with word surprisal and 

found evidence that semantic similarity and word surprisal independently predict 

word processing effort, whereby semantically more similar words and more 

expected words both result in less processing effort as indicated by reduced BOLD 

signal and N400 amplitude. Furthermore, the fMRI results indicate that the semantic 

similarity and word surprisal are processed in distinct neural areas.  

Anticipatory language processing might thus be handled by a processing route based 

on the statistical structure in the sequential language input and another based on 

semantic similarity. I propose that the first route (modelled with information 

theoretic measures) is closely related to associative learning because it is based on 

the statistical structure in the environment and links co-occurring stimuli together. 

For example, a bell that reliably precedes food makes dogs salivate in expectation 

of food (Pavlov, 2010). Similarly, linguistic elements can be a signal for upcoming 

linguistic input if they co-occur reliably.  



 

 
149 

There is some experimental support linking associative learning to language 

processing. Baayen et al. (2011, 2013) used the Rescorla-Wagner equation to model 

language processing effects including n-gram effects. The Rescorla-Wagner model 

(Rescorla & Wagner, 1972), was developed to explain classical conditioning effects 

and correctly predicts many experimental results (e.g., Siegel & Allen, 1996). 

Furthermore, the link between associative learning and predictive languages 

processing provides a plausible explanation as to why Frank and Willems (2016) 

found that semantic similarity and word surprisal are complementary. This could be 

due to blocking (see Kamin, 1967). Blocking is the effect that with classical 

conditioning, associative links are only formed if they are informative. To the extent 

a word is already expected based on semantic similarity, blocking could prevent any 

additional associative learning.  

A theoretic conjecture is only as good as the predictions it makes. Since this is only 

a sketch, I will end with one prediction based on the experiment by Bransford & 

Johnson (1972). In this experiment, participants were presented with enigmatic 

instructions to do a simple task (see below). The experimental manipulation 

consisted of whether or not the instruction was preceded with a clarification that the 

instructions concerned doing the laundry. The clarification improved the recall of 

participants. In a similar vein an fMRI experiment could be conducted whereby 

participants read a paragraph with or without a clarifying title. If the data were 

analyzed in a similar fashion as the Frank & Willems (2016) paper (see before), I 

predict a dissociation between word surprisal and semantic relatedness. The 

experimental manipulation (title or no title) would not influence the word surprisal 

findings, since the manipulation does not change the sequential structure of the 

stimulus. However, it would influence the semantic relatedness findings by causing 

a reduction in the BOLD response for the title compared to no title, because the 

semantic content of the input can be more easily integrated. 
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The procedure is actually quite simple. First you arrange things into 

different groups. Of course, one pile may be sufficient depending on 

how much there is to do. If you have to go somewhere else due to lack 

of facilities that is the next step, otherwise you are pretty well set. It 

is important not to overdo any particular endeavour. That is, it is better 

to do too few things at once than too many. In the short run this may 

not seem important, but complications from doing too many can easily 

arise. A mistake can be expensive as well. At first the whole procedure 

will seem complicated. Soon, however, it will become just another 

facet of life. It is difficult to foresee any end to the necessity for this 

task in the immediate future, but then one never can tell. After the 

procedure is completed one arranges the materials into different 

groups again. Then they can be put into their appropriate places. 

Eventually they will be used once more and the whole cycle will have 

to be repeated. However, that is part of life.  

(Bransford & Johnson, 1972) 

 

To recap, language input is sequential and structured; words follow each other, and 

some words are more likely to follow than others. Associative learning is sensitive 

to the statistical structure of the environment (in this case, language input) but can 

be blocked to the extent an input is already explained by other means. Words are 

semantically related to each other, and this leads to semantically-based expectations 

(e.g., a tree is cut down with a chain saw or an axe but not with a scalpel or a 

banana). The effect of blocking results in a complementary effect of prediction 

based on the statistical structure of language (modelled with information theoretic 

measures) and semantic similarity. The processing routes can be dissociated by 

manipulating a factor that only one route is sensitive to, as proposed in the previous 

paragraph. 
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7.5 Conclusion 

This thesis focused on predictive language processing of natural speech. I used a 

novel approach to study natural speech processing. Participants were presented with 

long stretches of natural connected speech stimuli while their EEG was recorded. 

Natural speech stimuli are by their nature highly variable, which can be problematic 

for EEG analysis, since the EEG signal is highly sensitive to stimulus variation. 

However, by collecting a large EEG dataset, the nuisance variation could be 

averaged out over the large number of target items. The resulting EEG dataset 

contains well over a million word epochs and will be made freely available for 

further research.  

The results presented in this thesis show that listeners anticipate speech sounds and 

words during the processing of natural speech. Listeners are not only sensitive to 

the local context of the immediately preceding words but also take into account the 

wider context of register. Predictive language processing is partially based on the 

sequential nature of the language input, which can be modelled with information 

theoretic measures.  
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Nederlandse samenvatting 
Hoofdstuk 8 

 

Gesproken taal verstaan is bijzonder uitdagend. Dit kan je ervaren wanneer je 

luistert naar een taal die je niet volledig machtig bent. Het lijkt dan alsof de 

spraakklanken onduidelijker zijn en het allemaal veel te snel gaat. Dit in 

tegenstelling tot het gemak waarmee je je eigen moedertaal verstaat. Een belangrijk 

verschil is de hoeveelheid ervaring die je hebt opgedaan met het luisteren naar 

verschillende talen. Veel ervaring helpt bij het classificeren van de spraakklanken 

en het herkennen van en anticiperen op woordreeksen. Een verklaring voor het 

gevoel dat een taal die je onvoldoende machtig bent te snel gesproken wordt, is dat 

het je slechter lukt om te anticiperen op wat er komen gaat.  

Anticiperen op woorden en woordreeksen lijkt misschien een vergezocht idee. Er 

zijn immers zoveel manieren om je uit te drukken. De overvloed aan 

uitdrukkingsmogelijkheden gaf theoretici lang het idee dat taal voorspellen een 

zinloze exercitie is (Jackendoff, 2002). De redenatie is als volgt: Als iemand een 

bijna oneindige hoeveelheid uitdrukkingsmogelijkheden heeft, dan is de kans op één 

daarvan verwaarloosbaar klein en zal voorspellen meer kwaad dan goed doen. Deze 

veronderstelling gaat er alleen aan voorbij dat, hoewel er vele mogelijke manieren 

zijn om met woorden welgevormde zinnen te vormen, het echter niet zo is dat alle 

welgevormde woordreeksen met dezelfde waarschijnlijkheid voorkomen. 

Sommige woorden komen namelijk vaker voor dan anderen, denk bijvoorbeeld aan 

huis of mes in vergelijking met residentie of keukengerei. Hetzelfde geldt voor 

woordreeksen, zoals we gaan er nu vandoor of moet ik opstaan in vergelijking met 

we zullen terstond vertrekken of is het facultatief dat ik me verhef. De voorbeelden 

illustreren dat hoewel we op verschillende manieren uitdrukking kunnen geven aan 

een voorwerp of een situatie, bepaalde manieren geëigender zijn dan anderen. 

Wanneer we het grondiger aanpakken en de computer inschakelen om woorden te 

tellen in grote hoeveelheid teksten, blijkt dat de frequentie van woorden en 

woordreeksen scheef is verdeeld. Een kleine groep komt zeer vaak voor en een zeer 

grote groep komt maar zelden voor. 

 Deze zeer scheve frequentieverdeling is een belangrijke vingerwijzing dat het 

mogelijk is om te anticiperen op taaluitingen. Woorden of woordreeksen die vaak 
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voorkomen, hebben namelijk een grotere kans gehoord of gelezen te worden. 

Kennis van woordkansen kan taalperceptie ondersteunen door simpelweg de 

verwachting op woorden bij te stellen aan de hand van hoe waarschijnlijk ze zijn. 

Dat woordkansen ook daadwerkelijk belangrijk zijn bij taalperceptie blijkt uit 

experimenteel onderzoek. Bijvoorbeeld een leesexperiment (Smith & Levy, 2013) 

liet zien dat als een woord minder waarschijnlijk is, een lezer langer zal pauzeren 

en de lengte van de pauze langer duurt naarmate het woord onwaarschijnlijker is. 

Zo zijn er nog legio voorbeelden te noemen van experimenten die laten zien dat 

woord- en woordreekskansen luisteraars of lezers beïnvloeden (zie bijvoorbeeld de 

inleiding van dit proefschrift). 

De experimenten die ik heb ondernomen en beschreven in dit proefschrift belichten 

nieuwe aspecten van anticipatieprocessen gedurende waarneming van natuurlijke 
gesproken taal. Met natuurlijke taal bedoel ik taal die niet specifiek bedacht en 

opgenomen is voor een experiment, maar bijvoorbeeld een gesprek tussen twee 

mensen of een voorgelezen boek. Het voordeel van dit soort taaluitingen te 

gebruiken voor experimenten is dat het minder kunstmatig is dan het taalmateriaal 

dat speciaal voor onderzoek wordt ontwikkeld. Het nadeel is dat het moeilijker is 

om vast te stellen waardoor een gevonden effect wordt veroorzaakt. Nieuwe 

statistische methodes maken het nu echter mogelijk ook effecten te achterhalen in 

dit soort moeilijkere gevallen. Het gebruik van natuurlijke taal in experimenten is 

een recente ontwikkeling (Willems, 2015) en is een belangrijke aanvulling op het 

gebruik van experiment-specifiek materiaal. Het laat namelijk zien in hoeverre 

eerder gevonden effecten ook te generaliseren zijn naar taalgebruik buiten het 

onderzoekslab.  

Er zijn twee overkoepelende thema’s in mijn onderzoek. Het eerste thema gaat over 

de anticipatie van spraakklanken. Woorden zijn opgebouwd uit spraakklanken. Als 

je luistert naar een gesprekspartner ben je typisch alleen bewust van de woorden of 

de bedoeling die wordt gecommuniceerd, maar onbewust verwerk je eerst de 

klanken waar woorden uit bestaan. Achtereenvolgens komen deze klanken binnen 

en onthullen successievelijk welke woorden gesproken worden. Als anticipatie een 

belangrijk mechanisme is bij het waarnemen van gesproken taal, dan zou het zo 

kunnen zijn dat dit niet enkel op woordniveau gebeurt, maar ook op het 

spraakklankniveau. Met een nieuw ontwikkelde metriek en experimenteel 

onderzoek heb ik bestudeerd of luisteraars inderdaad anticiperen op spraakklanken. 

Het tweede thema gaat over de ruimere context waarin woorden gebruikt woorden, 

zoals bijvoorbeeld het verschil tussen een gesprek in de kroeg en een voordracht 

van een nieuwslezer. Het verschil in communicatiesituatie (kroeggesprek of 
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nieuwsbericht) beïnvloed taalgebruik en daarmee mogelijk de waarschijnlijkheid 

van woorden. Ik heb onderzocht of woordwaarschijnlijk-heden systematisch 

verschillen tussen communicatiesituaties en of luisteraars daar gevoelig voor zijn.  

Om te testen of luisteraars gevoelig zijn voor woord- en spraakklankkansen heb ik 

gebruikgemaakt van elektro-encefalografie (EEG). Dit is een techniek die 

hersenactiviteit meet met behulp van op de hoofdhuid geplakte elektrodes. Hersenen 

bestaan uit cellen genaamd neuronen en die communiceren met elkaar doormiddel 

van elektrochemische signalen. De elektrische activiteit van neuronen kan gemeten 

worden op de hoofdhuid. De EEG-meeting kan met behulp van statistiek gekoppeld 

worden aan experimentele manipulaties. Bijvoorbeeld, wanneer iemand het 

volgende hoort: Hij smeert zijn brood met sokken, dan zal bij het woord sokken een 

reactie optreden die is terug te zien in het EEG-signaal (Kutas en Federmeier, 2011). 

De uitdaging hierbij is dat de spanningsverschillen die je meet op de hoofdhuid zeer 

zwak zijn. Het is daarom nodig om metingen van vele observaties bij elkaar te 

nemen en te middelen om de effecten zichtbaar te maken.  

Voor mijn onderzoek was er nog een extra uitdaging omdat ik natuurlijke gesproken 

taal onderzoek. Dit is uitdagend omdat EEG-metingen zeer gevoelig zijn, de 

gebruikte woorden of de manier van spreken kan het EEG-signaal beïnvloeden. Om 

ongewilde invloeden op het signaal te voorkomen wordt normaal gesproken het 

experimentele materiaal zo gemaakt dat er geen verschillen zijn, behalve hetgeen 

wat onderzocht wordt. In het voorgaande voorbeeld zal het woord sokken 

bijvoorbeeld ook in een zin gebruikt worden waarin het wel past Hij vult de 
kleerkastlade met sokken. Het nadeel van deze aanpak is dat het experimentele 

materiaal nogal kunstmatig wordt. Er zijn namelijk zoveel aspecten waarin woorden 

verschillen dat er maar een beperkt aantal mogelijkheden overblijft en met 

gesproken taal komt daar ook nog de invloed bij van de spreker bij. Natuurlijke 

spraak zit vol met verschillen.  

De oplossing hiervoor was om zeer veel data te verzamelen. Zoals eerder vermeld, 

is het EEG-signaal zeer zwak en gevoelig. Het is daarom uitdagend om effecten te 

observeren in EEG-opnames. Door meerdere observaties bij elkaar te nemen kan je 

onderliggende effecten zichtbaar maken. In mijn onderzoek heb ik deze werkwijze 

een stap verder doorgevoerd. Een klassiek EEG-experiment bevat duizenden 

observaties, voor mijn onderzoek heb ik er meer dan een miljoen verzameld. De 

extra observaties helpen om met behulp van statistiek de onderliggende effecten, nu 

ook verstoord door de verschillen in het experimentele materiaal, zichtbaar te 
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maken. De gevonden effecten zal ik hieronder verder beschrijven. De precieze 

beschrijving van de totstandkoming van de EEG-dataset is te vinden in Hoofdstuk 2.  

 

Ik zal nu verder ingaan op het eerste thema, de anticipatie van spraakklanken. In de 

jaren negentig is hier al onderzoek naar gedaan met behulp van EEG-metingen. 

Connolly en collega’s (1990, 1992, 1994) lieten een zin zoals de volgende horen, 

de man leefde van een klein [pensioen, penseel, kussen]. Waarbij een zin werd 

afgemaakt met een van de drie woorden tussen haakjes. De experimentele 

manipulatie was dat de laatste woorden niet in de context van de zin passen en het 

tweede woord penseel met de eerste lettergreep pen overeenkomt met het passende 

woord pensioen. Ze vonden een verschil in het EEG-signaal tussen de niet passende 

woorden penseel en kussen. Dit effect is door onderzoekers verschillend 

geïnterpreteerd.  

Sommige onderzoekers (Connolly en collega’s 1992, 1994; Brunnelier en Soto-

Faraco, 2013) veronderstellen dat het gerelateerd is aan het anticiperen op 

spraakklanken. Andere onderzoekers (Van den Brink en collega’s, 2001; Hagoort, 

2008) veronderstellen dat het gerelateerd is aan een semantisch effect, waarbij de 

eerste lettergreep van een woord een lijst van woorden activeert die overeenkomen 

met die lettergreep. Wanneer de semantische aspecten van de woorden in die 

woordenlijst niet overeenkomen met de voorgaande zin, zou het EEG-effect 

daardoor kunnen optreden. Een laatste interpretatie (Nieuwland, 2019) is dat het 

effect niet een verschil in verwerking laat zien, maar een verschil in timing. Het 

verschil tussen penseel en kussen is dat bij het woord penseel pas later ontdekt wordt 

dat het niet in de zinscontext past. Het zou dan niet liggen aan de spraakklanken, 

maar aan het niet passende woord, zoals bij het eerder vermelde voorbeeld van 

sokken waarmee een boterham werd belegd. 

In mijn onderzoek ben ik uitgegaan van de eerste veronderstelling, dat het EEG-

effect gerelateerd is aan het anticiperen op spraakklanken. Bij het waarnemen van 

taal creëer je op basis van hetgeen je gehoord hebt, verwachtingen over mogelijke 

volgende woorden. Op basis van deze verwachtingen is het mogelijk om 

verwachtingen te hebben over de spraakklanken die je zult horen. In het voorgaande 

voorbeeld zou je het woord pensioen kunnen verwachten en daarmee de lettergreep 

pen. In de hiervoor genoemde experimenten werd gebruikgemaakt van speciaal 

geformuleerde zinnen met woorden die ofwel zeer verwacht (pensioen) of zeer 

onverwacht waren (penseel of kussen) en precies overeenkwamen of verschilden in 

de eerste lettergreep van het woord. In mijn onderzoek maak ik gebruik van 
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natuurlijke spraak en kan dus niet de taaluitdrukkingen aanpassen om de verschillen 

in woordkansen en spraakklanken te benadrukken.  

Een alternatieve manier om tot een vergelijking te komen tussen een woord met een 

verwachte klank (penseel) en een onverwachte klank (kussen), is een metriek te 

ontwikkelen die aangeeft hoe verrassend een spraakklank is, gegeven welke 

woorden je verwacht. De metriek is gebaseerd op basis van een kansdistributie van 

woorden en spraakklanken. Een kansdistributie is een set van kansen die wordt 

verdeeld over verschillende mogelijkheden, bijvoorbeeld woorden. De 

woordkansen worden geschat op basis van tellingen van woorden in een grote 

hoeveelheid tekst. De spraakklankkansen worden geschat op basis van automatische 

spraakherkeningssoftware. Deze software analyseert audiomateriaal en geeft 

spraakklanken een waarde die omgezet kan worden tot een kans. Door de woord en 

spraakklank kansdistributies te combineren konden we waardes berekenen voor de 

kans op bepaalde spraakklanken gegeven de voorafgaande woorden. Deze 

spraakklank verrassingsmetriek is op verschillende manieren getest (voor meer 

details, zie Hoofdstuk 3), waarmee we konden valideren dat de metriek inderdaad 

een systematisch verloop van waardes laat zien voor verwachte tot onverwachte 

spraakklanken.  

Zoals eerder genoemd hebben we EEG-data verzameld van mensen die luisterden 

naar natuurlijke spraak. Om te onderzoeken of luisteraars gevoelig zijn voor de kans 

op een bepaalde spraakklank hebben we het volgende gedaan. Voor elk woord in de 

natuurlijke spraak die de deelnemers van het experiment hebben gehoord, hebben 

we de hiervoor besproken metriek gebruikt om een verwachtingswaarde toe te 

kennen aan ruwweg de eerste lettergreep van het woord. Vervolgens hebben we 

voor elk woord de bijbehorende EEG-data genomen. Op basis van een statistisch 

model konden we laten zien dat er een verband is tussen de onverwachtheid van een 

spraakklank en de bijbehorende EEG-waardes (zie Hoofdstuk 4). We hebben dit 

effect gevisualiseerd in de grafiek op pagina 57, waarbij te zien is dat onverwachte 

spraakklanken een andere EEG-waarde opleveren ten opzichte van verwachte 

spraakklanken.  

De resultaten komen overeen met de veronderstelling dat luisteraars onbewust 

verwachtingen hebben over spraakklanken. Dit is een interessant resultaat. Een 

theoretische stroming (Norris en collega’s, 2018) veronderstelt namelijk dat de 

perceptie van spraakklanken niet beïnvloed worden door verwachtingen op basis 

van net gehoorde woorden. De redenering is dat het beter is om een zo accuraat 

mogelijke perceptie te hebben van de klanken die binnenkomen, in plaats van een 

door verwachtingen gekleurde perceptie. Anders zou je wellicht de ander niet meer 
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verstaan en alleen maar horen wat je verwacht te horen. Hoewel dit soms weleens 

lijkt te gebeuren lukt het de meeste luisteraars toch echt om te verstaan wat de ander 

zegt. Het lijkt dus een redelijke veronderstelling dat spraakperceptie opgebouwd 

wordt door het nauwkeurig waarnemen van de simpelste eenheden - de 

spraakklanken - en dat je die waarneming beter niet kan verkleuren door hetgeen je 

al denkt te weten. Toch laten de resultaten van mijn onderzoek zien dat die 

verkleuring juist wel gebeurt. Hoe zit dat dan? 

Een theorie over perceptie die dat zou kunnen verklaren is predictive coding 
(Friston, 2005, 2012, 2018). Deze theorie veronderstelt dat perceptie gebeurt aan de 

hand van voorspellingen omdat de prikkels die binnenkomen via de zintuigen zeer 

moeilijk te interpreteren zijn. Wat je hoort en ziet is namelijk een samenspel van 

vele invloeden. Als je bijvoorbeeld iemand hoort spreken zijn er vaak ook nog 

allerlei andere geluiden, zoals andere sprekers, muziek of het gezoem van een oude 

koelkast. Al deze invloeden maken het ingewikkeld om in de luchttrillingen die je 

trommelvlies bereiken de woorden te herkennen die gesproken zijn. Het heeft 

bijvoorbeeld een goede zestig jaar geduurd voordat het lukte om een computer 

gesproken woorden te laten herkennen en mensen zijn er vaak toch nog beter in. 

Predictive coding veronderstelt dat om toch complexe ervaringen zoals het 

herkennen van woorden of het zien van een huis uit simpele prikkels (trilling van 

het trommelvlies of fotonen op de retina) te destilleren, er gebruik gemaakt kan 

worden van voorspellingen. De anatomie van de hersenen lijkt dit idee te 

ondersteunen. De verschillende waarnemingsgebieden in de hersenen voor 

bijvoorbeeld zicht of het gehoor zijn hiërarchisch opgebouwd, waarbij gebieden 

onderaan de hiërarchie simpele waarnemingskarakteristieken verwerken zoals 

contouren en gebieden aan de top complexe waarnemingen verwerken, bijvoorbeeld 

een woord of een huis, die zijn opgebouwd uit de simpele waarnemingen van lagere 

gebieden. Het is hierbij opvallend dat er in de hersenen vele verbindingen zijn die 

lopen vanaf hogere gebieden naar lagergelegen gebieden.  

Het idee van predictive coding is dat gebieden aan de top van de hiërarchie 

voorspellingen doorgeven aan lagere gebieden. Op basis van een complexe 

waarneming, bijvoorbeeld een boom, kunnen er namelijk een voorspellingen 

gedaan worden over welke minder complexe waarnemingen daarbij waarschijnlijk 

zijn, welke contouren bijvoorbeeld verwacht worden bij een boom. De lagere 

gebieden geven dan vooral informatie door wanneer een voorspelling niet uitkomt. 

Op deze manier word je snel gewaar wanneer de dingen niet zo zijn zoals je dacht, 

zonder overweldigd te worden door de veelheid van indrukken die binnenkomen. 

Een voorbeeld van het effect dat een complexe waarneming een simpelere 
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waarneming kan beïnvloeden, kan je ervaren als je naar de omslag van dit 

proefschrift kijkt. Als je niet weet wat er staat afgebeeld, zie je waarschijnlijk alleen 

een hoop zwarte vlekken, maar als je weet dat er in het midden een dalmatiër is 

afgebeeld, dan zie je opeens een hond verschijnen. 

De resultaten die we gevonden hebben met het EEG-onderzoek en de spraakklank 

verrassingsmetriek komen overeen met hetgeen je zou verwachten op basis van de 

predictive coding theorie. Dit is verder nog interessant, omdat predictive coding een 

algemene theorie is over waarneming. In het taalonderzoek is lange tijd uitgegaan 

van het idee dat taal bijzonder is en niet zonder meer te vergelijken met andere 

vormen van perceptie. Het is natuurlijk zonder meer waar dat taal bijzonder is, maar 

het lijkt erop dat de perceptie van taal dus zeker ook overeenkomsten vertoond met 

andere vormen van perceptie. 

 

Ik zal nu ingaan op het tweede thema; de invloed van de communicatiesituatie op 

woordkansen en de verwachtingen van luisteraars. Er is veel onderzoek gedaan 

(Biber en Conrad, 2001) waaruit blijkt dat de situatie waarin gecommuniceerd wordt 

het taalgebruik beïnvloed. Een kroeggesprek heeft bijvoorbeeld een heel andere 

dynamiek en vocabulaire dan een nieuwsbericht. Dit komt omdat de situatie 

communicatiemogelijkheden op allerlei manieren beïnvloed. In een gesprek wissel 

je spreekbeurten af en als er miscommunicatie is, dan is dit eenvoudig op te lossen 

door een vraag te stellen. Het is ook ongebruikelijk dat je veel tijd hebt om hetgeen 

wat je zegt voor te bereiden. Door deze mogelijkheden en beperkingen kenmerkt 

een spontaan gesprek zich door een beperkter vocabulaire en simpelere 

zinsconstructies. De sprekers hebben immers niet de tijd om het perfecte woord te 

vinden of een zin nog eens aan te passen. In tegenstelling, een nieuwslezer houdt 

een monoloog waarbij eventuele miscommunicatie niet gesignaleerd kan worden. 

De voordracht is meestal voorbereid waardoor er een ruimer vocabulaire gebruikt 

kan worden en het type woorden zal formeler zijn dan wat er in de kroeg gebruikt 

wordt. 

Omdat het taalgebruik verschilt per situatie, zou het ook zo kunnen zijn dat 

woordkansen verschillen per situatie. We hebben daarom onderzocht of we 

systematische verschillen in woordkansen konden vinden tussen taalgebruik in 

verschillende communicatieve situaties. We hebben hiervoor onder meer het Corpus 

Gesproken Nederlands (Oostdijk, 2001) gebruikt. Dit een verzameling van audio-

opnames van gesproken taal in verschillende situaties, zoals dialogen, voorgelezen 

verhalen en nieuwsberichten. De opnames zijn helemaal uitgeschreven. Hierdoor is 
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het eenvoudig de voorkomende woorden te tellen. Op basis van deze woordtellingen 

konden we bij benadering woordkansen vaststellen voor het taalgebruik in de 

verschillende communicatiesituaties die zijn opgenomen in Corpus Gesproken 

Nederlands (zie Hoofdstuk 5).  

Met behulp van een classificatie-algoritme genaamd lineaire discriminantanalyse, 

konden we vaststellen dat er inderdaad systematische verschillen zijn in 

woordkansen tussen het taalgebruik in verschillende communicatieve situaties. Een 

illustratie van het resultaat is te vinden op pagina 84. De afbeelding geeft de 

classificatie weer van verschillende soorten tekst. Elk puntje staat voor een stuk 

tekst (bijvoorbeeld een dialoog of een nieuwsbericht). Punten die dicht bij elkaar 

staan lijken volgens het algoritme meer op elkaar dan punten die verder weg staan. 

De afbeelding visualiseert dat het classificatie-algoritme het taalgebruik in de 

verschillende communicatieve situaties kan onderscheiden. Stukjes taalgebruik uit 

dezelfde communicatieve situatie clusteren namelijk samen, terwijl er duidelijk 

afstand te zien is tussen taalgebruik uit verschillende communicatieve situaties. In 

Hoofdstuk 5 staat de precieze methode beschreven en extra tests die we hebben 

uitgevoerd, waarmee we alternatieve verklaringen voor de verschillen (zoals 

zinslengte of situatie-gebonden onderwerpen) konden uitsluiten. 

Nadat we hadden vastgesteld dat er systematisch woordkansverschillen zijn tussen 

taalgebruik in communicatieve situaties hebben we getest in hoeverre luisteraars 

hiervoor gevoelig zijn. We hebben hiervoor de eerder beschreven EEG-dataset 

gebruikt. De deelnemers luisterden naar verschillende soorten natuurlijk gesproken 

taal; dialogen, voorgelezen boeken en nieuwsberichten. 

Voor alle inhoudswoorden zoals zelfstandige en bijvoeglijke naamwoorden, 

bijwoorden en werkwoorden hebben we de EEG-data verzameld. Voor elk van deze 

woorden hebben we ook de waarschijnlijkheid vastgesteld. Om de 

woordwaarschijnlijkheden te schatten hebben we gebruikgemaakt van 

taalmodellen. Een taalmodel gebruikt de voorgaande woorden om te bepalen wat de 

kans is op het volgende woord.  

Een taalmodel kan woordkansen schatten door patronen te ontdekken in een grote 

hoeveelheid tekst. Een belangrijk gegeven hierbij is aan welke soort teksten het 

taalmodel wordt blootgesteld. Als het taalmodel bijvoorbeeld enkel leert te 

voorspellen op basis van teksten uit kookboeken, dan zal het woorden uit een recept 

goed kunnen voorspellen, maar veel moeite hebben met een krantenbericht. Dit 

gegeven hebben we gebruikt om verschillende soorten taalmodellen te maken voor 

dialogen, voorgelezen verhalen en nieuwsberichten. Daarbij hebben we ook een 
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algemeen taalmodel gemaakt dat gebaseerd was op zeer veel verschillende teksten. 

Elk taalmodel schat woordkansen net anders in en met deze verschillende 

woordkansen konden we onderzoeken welk taalmodel het beste de EEG-data van 

de deelnemers van het experiment voorspelt. 

Het zou bijvoorbeeld zo kunnen zijn dat luisteraars gelijke woordverwachtingen 

hebben ongeacht het taalgebruik dat ze horen, of ze nu naar een dialoog luisteren of 

naar een nieuwsbericht. Het zou ook kunnen zijn dat luisteraars hun verwachtingen 

bijstellen afhankelijk van het soort taalgebruik dat ze horen. Met behulp van 

statistiek hebben we vergeleken welke woordkansen de EEG-data het beste kon 

voorspellen. Het is namelijk zo dat woordkansen zich op een bepaalde manier 

verhouden tot de waarde van het EEG-signaal in reactie op een woord. Naarmate 

een woord minder verwacht is, kan je een negatievere waarde zien in het EEG-

signaal. Het is wel zo dat dit alleen zichtbaar is in de gemiddelde EEG-waardes van 

vele woorden tezamen genomen. 

Door te vergelijken welke woordkansen, gebaseerd op een specifiek of algemeen 

taalmodel, het beste de EEG-data voorspellen konden we achterhalen dat de 

woordkansen gebaseerd op een taalmodel getraind op eenzelfde taalgebruik 

(bijvoorbeeld dialogen) als hetgeen de luisteraars hoorden, het best overeenkwamen 

met de EEG-metingen. Dit resultaat komt overeen met onze hypothese dat 

luisteraars gebruikmaken van het soort taalgebruik bij het anticiperen op mogelijke 

woorden.  

Aangezien er nog niet veel onderzoek is gedaan naar de invloed van het soort 

taalgebruik op woordverwachtingen is niet mogelijk om hier harde conclusies aan 

te verbinden en roept het ook veel vragen op. Hoe lukt het luisteraars om hun 

verwachtingen bij te stellen? Is het zo dat het soort taalgebruik herkend wordt en op 

basis van de herkenning verwachtingen worden bijgesteld? Of is het zo dat naarmate 

je meer luistert, je langzaamaan verwachtingen aanpast, zonder iets te herkennen? 

Dat laatste hebben we onderzocht door ook een taalmodel te maken dat gebruik 

maakt van recente input om verwachtingen bij te stellen. De vergelijking met het 

specifieke taalmodel liet zien dat de woordkansen gebaseerd op het specifieke 

taalmodel de EEG-metingen beter voorspelden. Dit geeft dus enige aanleiding om 

te veronderstellen dat soorten taalgebruik worden herkend en op basis daarvan 

woordverwachtingen worden bijgesteld. 

 

In dit proefschrift is onderzoek beschreven naar de rol van anticipatie bij het 

verstaan van spraakklanken en woorden. De verschillende experimenten laten zien 
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dat anticipatie plaatsvindt op verschillende tijdschalen, van heel kort bij 

spraakklanken tot zeer lang onder de invloed van het soort taalgebruik. De 

resultaten laten zien dat anticipatie een belangrijk onderdeel is van taalwaarneming.  
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