34 research outputs found

    Multi-level stochastic collocation methods for parabolic and Schrödinger equations

    Get PDF
    In this thesis, we propose, analyse and implement numerical methods for time-dependent non-linear parabolic and Schrödinger-type equations with uncertain parameters. The discretisation of the parameter space which incorporates the uncertainty of the problem is performed via single- and multi-level collocation strategies. To deal with the possibly large dimension of the parameter space, sparse grid collocation techniques are used to alleviate the curse of dimensionality to a certain extent. We prove that the multi-level method is capable of reducing the overall computational costs significantly. In the parabolic case, the time discretisation is performed via an implicit-explicit splitting strategy of order two which consists shortly speaking of a combination of an implicit trapezoidal rule for the stiff linear part and Heun\u27s method for the non-linear part. In the Schrödinger case, time is discretised via the famous second-order Strang splitting method. For both problem classes we review known error bounds for both discretizations and prove new error bounds for the time discretisations which take the regularity in the parameter space into account. In the parabolic case, a new error bound for the "implicit-explicit trapezoidal method" (IMEXT) method is proved. To our knowledge, this error bound stating second-order convergence of the IMEXT method closes a current gap in the literature. Utilising the aforementioned new error bounds for both problem classes, we can rigorously prove convergence of the single- and multi-level methods. Additionally, cost savings of the multi-level methods compared to the single-level approach are predicted and verifed by numerical examples. The results mentioned above are novel contributions in two areas of mathematics. The first one is (analysis of) numerical methods for uncertainty quantification and the second one is numerical analysis of time-integration schemes for PDEs

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions

    Drift-diffusion models for innovative semiconductor devices and their numerical solution

    Get PDF
    We present charge transport models for novel semiconductor devices which may include ionic species as well as their thermodynamically consistent finite volume discretization

    Mathematical and Numerical Aspects of Dynamical System Analysis

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    Applied Mathematics and Fractional Calculus

    Get PDF
    In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia
    corecore