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1

Introduction

This document presents an extended overview/summary of published papers submitted
for the habilitation qualification at Freie Universität Berlin. In Chapter 2, we present
(mostly) macroscale drift-diffusion models which describe charge transport in a self-
consistent electric field with a particular focus on nonlinear diffusion, correctly describing
the physical statistics as well as relevant generalizations to ions and relevant applications
such as inverse problems. In Chapter 3, we discuss the numerical solution of these
models via the Voronoi finite volume method with careful focus on the different flux
discretization. Then in Chapter 5, we give a summary of each relevant paper, link in to
the previous two chapters, and explain to which extent the author was involved in the
implementation, conceptualization and writing.
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2

Semiconductor charge transport
models

2.1 Model hierarchy

In this section, we introduce macroscopic semi-classical drift-diffusion models which de-
scribe how electric charge carriers move in a semiconductor. The main premise of these
models is that electrons and holes do not act like discrete quantities but can be thought of
as oceans of charge with a fluid-type nature. This assumption is valid if particles collide
easily, that is the collision-free mean free path along which the particles do not change
their direction or energies is relatively short. In this case, one may introduce averaged
densities for currents or charge carriers. Such computed current densities can then be
directly compared to the current which experimentalists measure with an ammeter.

For completeness we point out some other types of charge transport models. If it
is no longer possible to introduce averaged densities, one has to resort to more general
kinetic equations of which the Boltzmann equation is arguably the most prominent one.
In this case, statistical distribution functions describe the charge carriers. While kinetic
equations may yield a more complete physical understanding, the arising systems are
significantly more complex and harder to solve. The Boltzmann equation, for example,
is a nonlinear integro-differential equation with seven different independent variables.
While quantum mechanical information enters macroscale drift-diffusion as well as kinetic
models indirectly, for example via the corresponding right-hand sides, at times even more
accurate quantum models may be required which involve Schrödinger type of equations.

Besides drift and diffusion, there are also additional types of transport mechanisms.
These include hopping, scattering or tunneling effects. While hopping we will at best
focus on indirectly via appropriate state equations [20], we neglect the other final two
completely.

More information concerning different types of model can be found in [36].1 The
current chapter is based in large parts on [PF2] and [PF25].

1My own publications are prefixed with my initials, e.g. [PF26], whereas general references are not,
e.g. [36].
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2.2 Drift-diffusion equations for charge transport

In this section, we describe an isothermal drift-diffusion-reaction model for an ensemble
of charge carriers as developed in [PF2]. The drift is due to an electric field (the negative
gradient of the electrostatic potential) which is self-consistently coupled to the moving
charge carriers via Poisson’s equation. The diffusion may take nonlinear effects into
account, increasing even more in areas of large changes in concentration. We denote
the charged species in the mixture with α and their particle densities with nα. The
electrostatic potential ψ is linked to the electrical field via E = −∇ψ. The general
system reads

−∇ · (εs∇ψ) = q
∑

α∈M
zαnα, (2.1a)

∂tnα +∇ · Jα = rα, α ∈ M, (2.1b)

where q is the positive elementary charge and zα ∈ Z denotes the charge number of
species α. The species are labeled by a finite index set M. With εs = ε0εr we refer
to the dielectric permittivity, where ε0 is the vacuum dielectric constant and εr the
relative permittivity of the material. The particle fluxes are given by Jα and the density
production/reduction rates of species α are denoted by rα. We point out that system (2.1)
is formulated in terms of densities. Eventually we will rewrite the system in terms of
quasi Fermi potentials φα since they allow a more compact formulation of the flux.

In the next sections, we introduce the fluxes Jα in the context of charge transport.

2.2.1 Maxwell-Stefan diffusion and electrostatic drift

As discussed in Section 2.1, under the assumption that the mean free path is relatively
short, the isothermal friction between the species in the mixture can be modelled via
Maxwell-Stefan diffusion [57, 99] and electrostatic drift

nα (∇Φα + zαq∇ψ) =
∑

β∈M,β ̸=α
ζαβ

(
Jβ
nβ

− Jα
nα

)
, α ∈ M, (2.2)

where Φα denotes the chemical potential (per particle) of species α (see [51, (18.2.4)])
and ζαβ = ζβα the symmetric binary friction coefficient between species α and β. The
quantities Jα/nα correspond to the velocities of species α.

Let us assume that one of the species within the mixture, β = L, represents the
lattice. Moreover, assume that the friction constitutes solely an interaction between the
lattice and the remaining species,

ζαβ = 0 and ζαL ≥ 0 , α, β ∈ M \ {L}.

In order to avoid that the lattice density nL appears in the mass balances (2.1b), we
describe the transport of the species α ∈ M \ {L} from the viewpoint of the crystalline
lattice. In other words, we assume that a vanishing flux, JL = 0, and that there is no
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production/reaction of lattice species, rL = 0. This implies by (2.1b) that ∂tnL = 0.
Furthermore, we assume that the friction does not cause a deformation of the lattice.
Moreover, the lattice shall not have a charge, i.e. zL = 0. This also implies that the
lattice species does not contribute to Poisson’s equation (2.1a).

Finally, we distinguish between mobile and stationary (immobile) species and refer
to the latter with the index set S ⊂ M. Hence, we model the different particle fluxes by

Jα = − nα
ζαL

nα (∇Φα + zαq∇ψ) , α ∈ M \ (S ∪ {L}), (2.3)

Jα = 0, α ∈ S ∪ {L}. (2.4)

Also, there should be no production of immobile species, i.e.

rα = 0, for α ∈ S ∪ {L}.

The quasi Fermi vs. electrochemical potential

In analogy to semiconductor theory, we use the following relation between the chemical
Φα, the electrostatic ψ and the quasi Fermi potential φα,

φα =
1

zαq
Φα + ψ, (2.5)

see also [51]. Using this definition, we can highlight the fact that the gradient of the quasi
Fermi potentials are the driving forces of the current particle densities (2.3), namely

Jα = −zαq
nα
ζαL

nα∇φα, α ∈ M \ (S ∪ {L}).

Particle vs. electric currents

The charge density carried by species α is given by zαqnα. The electric current jα
observed due to the transport of species α is related to the particle flux Jα via

jα = zαqJα α ∈ M \ (S ∪ {L}). (2.6)

Relating the friction coefficient of species α inversely to the mobility µα via

ζαL = q
nα
µα
, (2.7)

with phenomenological units kg/(m3s), leads to an electric current of the form

jα = −(zαq)
2 nα
ζαL

nα∇φα = −(zα)
2qµαnα∇φα, α ∈ M \ (S ∪ {L}). (2.8)

For such an electric flux the general drift-diffusion equation (2.1b) now finally reads

zαq∂tnα +∇ · jα = zαqrα , α ∈ M \ (S ∪ {L}). (2.9)

We emphasize that the carrier densities nα depend on the quasi Fermi potentials φα
and the electrostatic potential ψ, i.e. nα = nα(ψ,φα) which we discuss next. With this
dependence Equation (2.9) can be written exclusively in terms of potentials.
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State equation and generalized Einstein relation

It is possible to link the densities nα to their quasi Fermi potentials φα via a state
equation [43], given by

nα = NαFα
(
ηα(ψ,φα)

)
, ηα = zα

q(φα − ψ) + Eα
kBT

, (2.10)

where Fα : R → R describes the carrier statistics, Nα denotes an effective density and
Eα an energy. We assume that Fα is continuously differentiable and monotonously in-
creasing. Several different physically relevant choices for Fα will be discussed in Section
2.2.2. To see the connection with the literature, we express the electric fluxes (2.8) math-
ematically equivalently in terms of densities. To this end, we introduce the generalized
Einstein relation

Dα = µαUT gα (ηα) , (2.11)

where UT = kBT/q is the thermal voltage, kB denotes the Boltzmann constant, T the
constant absolute temperature, and g the nonlinear diffusion enhancement [38] given by

gα(ηα) =
Fα(ηα)
Fα′(ηα)

. (2.12)

Mathematically, the diffusion enhancement can be seen as some a nonlinear, potential-
dependent diffusion. With the help of the state equation (2.10) as well as the generalized
Einstein relation (2.11) it is now possible to derive the electric currents in drift-diffusion
form

jα = −zαqµα
(
UT gα (ηα)∇nα + zαnα∇ψ

)
= −zαq

(
Dα(nα)∇nα + zαµαnα∇ψ

)
. (2.13)

We stress that the diffusion enhancement gα in (2.12) can be equivalently reformulated
in terms of densities

gα

(
nα
Nα

)
=
nα
Nα

(
F−1
α

)′
(
nα
Nα

)
. (2.14)
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2.2.2 Statistics function

In the following, we present some physically meaningful choices for Fα given in the state
equation (2.10). Four common choices are conceivable:

Fα(η) = exp(η), (Boltzmann)

(2.15)

Fα(η) = FB,γ(η) :=
1

exp(−η) + γ
, (Blakemore)

(2.16)

Fα(η) = Fj(η) :=
1

Γ(j + 1)

∫ ∞

0

ξj

exp(ξ − η) + 1
dξ, j > −1. (Fermi-Dirac)

(2.17)

Fα(η) = G(η;σ) :=
1

σ

1√
2π

∫ ∞

−∞
exp

(
− ξ2

2σ2

)
1

exp(ξ − η) + 1
dξ. (Gauß-Fermi)

(2.18)

The Fermi-Dirac integral of order one-half [43], denoted by F1/2, with Γ(1/2+1) =
√
π/2,

is fundamental in the simulation of inorganic, classical three-dimensional (3D) semicon-
ductors [PF25, 78]. Especially for high doping concentrations or low temperatures Fermi-
Dirac statistics is indispensable. The Gauss-Fermi integral [29] is the statistics of choice
in the context of organic semiconductors, such as OLEDs. These integrals can be ap-
proximated by Blakemore (γ = 0.27) [97] and by Boltzmann statistics in the low density
limit. The relationships between the different statistic are shown in Figure 2.1.

Statistics functions deviating from the Boltzmann approximation lead to nonlinear
diffusion which grows for larger densities/potentials as can be seen from (2.11) and (2.12)
or visually in Figure 2.2. Non-Boltzmann statistics are indispensable for high doping
concentrations, organic semiconductors or very low temperatures. Since they lead to
nonlinear diffusion, solving the drift diffusion system in a thermodynamically consistent
way requires additional care [PF10].

Remark 2.1 Via the relation F ′
j(η) = Fj−1(η), the Fermi-Dirac statistics (2.17) can be

defined for negative integers j as well [81]. In particular, for order −1, we have

F−1(η) =
1

exp(−η) + 1
.

We observe that F−1 = FB,1. This type of statistics corresponds physically to a mean-field
ideal lattice gas, see [80, Eqn. 3.5.1].

We finish this section by motivating very briefly the state equation (2.10) for the case
of electrons. Assuming that the electrons in the conduction band are in quasi equilibrium,
i. e. they are described by the quasi Fermi level EFn = qφn, the electron density n = nn
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Figure 2.1: This figure, similar to a figure in [PF25], shows two important classes of
the statistical distribution function: for inorganic 3D semiconductors and for organic
semiconductors [29]. Both can be approximated using the Blakemore or Boltzmann
distribution function.
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Figure 2.2: Some common statistics F (left) and their corresponding diffusion enhance-
ments g (right). For the Blakemore and the Gauß-Fermi functions the carrier density
saturates for high values of η which implies that the corresponding diffusion enhancement
factors blow up. The figure is a color version of a figure found in [PF25].
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is given by a convolution integral of the density of states DOS(E)

n =

∫ ∞

−∞
DOS (E) fFD (E − EFn) dE, (2.19)

with the Fermi-Dirac distribution function fFD which is defined to be

fFD (E − EFn) =
1

exp
(
E−EFn
kBT

)
+ 1

(2.20)

Within the effective mass approximation [43], it is possible to express this convolution
as a product of the effective density of states Nα and one of the nondimensionalized
statistical distribution function F from the beginning of this subsection, leading to the
state equation (2.10).

2.3 The van Roosbroeck system

Even though we have introduced a rather general setup in the previous section, we
explicitly formulate the drift-diffusion model now for a (doped) bipolar semiconductor
device. The literature refers to this special case of (2.1) as basic semiconductor equations
or van Roosbroeck system [98]. In this special case, we can give a bit more meaning
to some of the constants, state boundary and initial conditions, discuss generation and
recombination as well as introduce the thermodynamic equilibrium. Because the van
Roosbroeck system is bipolar, we consider apart from the Poisson equation two continuity
equations for the density of free (negatively charged) electrons n = n(x, t) occupying the
conduction band as well as the density of (positively charged) holes p = p(x, t) occupying
the valence band. Here we have simplified the earlier notation in the sense that n = nn
and p = np. Furthermore, we consider fixed charges namely density of ionized built-in
dopants C(x) = N+

D (x)−N−
A (x), where N+

D denotes the density of singly ionized donor
atoms and N−

A is the density of singly ionized acceptor atoms.
Let Ω ⊂ Rd be a bounded domain for d ∈ {1, 2, 3}, the van Roosbroeck system

consists of three coupled nonlinear partial differential equations of the form

−∇ · (εs∇ψ) = q (p− n+ C) , (2.21a)
−q∂tn+∇ · jn = −q(G−R), (2.21b)
q∂tp+∇ · jp = q(G−R), (2.21c)

for x ∈ Ω and t ∈ [0, T ]. The current densities in (2.21b) and (2.21c) are given by the
usual expressions

jn = −qµnn∇φn and jp = −qµpp∇φp. (2.21d)

That is, the negative gradients of the quasi Fermi potentials are the driving forces of the
currents [44]. From the numerical point of view, this formulation is advantageous, as the
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quasi-Fermi potentials and the electrostatic potential have the same physical units and
similar ranges. The state equation (2.10) now reads

n = NcF
(
q(ψ − φn)− Ec

kBT

)
and p = NvF

(
Ev − q(ψ − φp)

kBT

)
. (2.22)

The state equations (2.22) indicate that the electric potential effectively leads to a bend-
ing of the energy band edge levels and thus a nonlinear, self-consistent coupling to the
carrier densities is achieved. We assume a constant temperature for both carrier species
and the crystal lattice. The generation and recombination rates G and R will be discussed
in Section 2.3.

Initial and boundary conditions

The van Roosbroeck system (2.21) must be supplemented with initial and boundary
conditions. The initial conditions for time t = 0 are given by the initial distributions ψI ,
φIn and φIp, i. e.

ψ(x, 0) = ψI(x), φn(x, 0) = φIn(x), φp(x, 0) = φIp(x) for x ∈ Ω.

As for the boundary conditions, we will discuss the three most important conditions. Let
us assume the boundary of the domain Ω can be decomposed into ohmic contacts, a gate
contact and artificial interfaces, i. e.

∂Ω =

(
NO⋃

α=1

ΓO,α

)
∪ ΓG ∪ ΓA.

Semiconductor-metal interfaces, such as ohmic contacts, are modeled usually by Dirichlet
boundary conditions. For any ohmic contact ΓO,α with α = 1, . . . , NO, we set

ψ(x, t) = ψ0(x) + Uα(t), (2.23a)
φn(x, t) = Uα(t), for all x ∈ ΓO,α and t ∈ [0, T ] (2.23b)
φp(x, t) = Uα(t), (2.23c)

where Uα denotes the corresponding externally applied contact voltage. The value ψ0 at
the boundary is defined by local charge neutrality:

0 = NvF
(
Ev − qψ0 (x)

kBT

)
−NcF

(
qψ0 (x)− Ec

kBT

)
+ C (x) . (2.24)

We just remark, that in general, this equation yields no analytical solution, and therefore
its solution needs to be obtained by a nonlinear solver. The boundary conditions for
the more advanced nonlinear semiconductor-metal interfaces (Schottky contacts) can be
found in [78].
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Gate contacts are modeled by Robin boundary conditions for the electrostatic poten-
tial and homogeneous Neumann boundary conditions for the quasi Fermi potentials

εs∇ψ(x, t) · ν + εox
dox

(ψ(x, t)− UG(t)) = 0,

jn(x, t) · ν = jp(x, t) · ν = 0,
for all x ∈ ΓG and t ∈ [0, T ], (2.25)

where εox and dox are the absolute dielectric permittivity and the thickness of the oxide,
respectively. The outer normal vector to the boundary ∂Ω is denoted with ν. The
function UG(t) is the gate voltage applied at the outside of the insulating gate oxide at
ΓG.

On the remaining (artificial) interfaces one typically imposes homogeneous Neumann
boundary conditions (natural boundary conditions), namely

∇ψ(x, t) · ν = jn(x, t) · ν = jp(x, t) · ν = 0 for all x ∈ ΓA and t ∈ [0, T ].
(2.26)

Generation and recombination rates

The recombination rate R on the right-hand side of equations (2.21b) and (2.21c) de-
scribes the radiative and non-radiative generation or recombination of carriers due to
thermal excitation and various scattering effects. We assume that the recombination
rate R(n, p) is given by the sum of the most common processes, namely the Shockley-
Read-Hall recombination RSRH, the spontaneous radiative recombination Rrad and the
Auger recombination RAuger. All of these rates are of the form

R(n, p) = r(n, p)np

(
1− exp

(
qφn − qφp
kBT

))
, (2.27)

where r(n, p) corresponds to one of three recombination mechanism [43, 78, 40]. In Figure
2.3, one finds the definitions of these rates together with a schematic illustration of the
corresponding processes. For Boltzmann statistics, (2.27) is equivalent to the widely used
R(n, p) = r(n, p)(np−N2

intr), where Nintr is the intrinsic carrier density given by

N2
intr = NcNv exp

(
−Ec − Ev

kBT

)
and UT =

kBT

q
. (2.28)

Electron-hole pairs may be generated optically for example via sunlight or lasers. In
this case, some photons are reflected with a constant reflectivity R. The other impinged
photons create electron-hole pairs, resulting in a generation rate

G(x) = Nph(1−R)S(x), (2.29)

where depending on the spatial dimension d, we may set the shape function S (normalized
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Figure 2.3: This figure, a modified version from an image found in [PF25], illustrates
three different recombination processes. The carrier life times τn, τp, the reference carrier
densities nT , pT and the coefficients rspont, Cn, Cp are material dependent parameters.

by
∫
Rd S(x)dx = 1) for example to be

S(x) =
1√
2πσ

exp

(
−1

2

(
x− x0
σ

)2
)
, (2.30)

S(x, z) =
1

2dA
exp

(
−|z|
dA

)
, (2.31)

S(x, y, z) =
1

2πσ2
1

2dA
exp

(
−1

2

(
x− x0
σ

)2
)
exp

(
−1

2

(
y − y0
σ

)2
)
exp

(
−|z|
dA

)
.

(2.32)

Here the σ denotes the beam width and dA the penetration depth. Nph is the impinging
photon rate on the whole surface of the sample given by

Nph =
Pλ

hc
, (2.33)

where P denotes the power of the light source, λ the wave length of the laser and
hc = 6.6× 10−34m2kg/s = 6.6× 10−34 Js the Planck constant.

2.3.1 Thermodynamic equilibrium

The thermodynamic equilibrium is characterized by vanishing current fluxes jn(x, t) =
jp(x, t) = 0. As a consequence, there is neither recombination nor generation R(n, p) =
G(x) = 0, the applied/gate voltages vanish Uα = UG = 0 and the quasi Fermi potentials
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assume constant values which due to (2.27) are equal and due to the boundary conditions
are zero:

φn = φp = 0.

Therefore, the van Roosbroeck system (2.21) reduces to the nonlinear Poisson equation

−∇ · εs∇ψ = q

(
NvF

(
Ev − qψ

kBT

)
−NcF

(
qψ − Ec
kBT

)
+ C

)
. (2.34)

The solution of (2.34) with corresponding boundary conditions defines the built-in po-
tential denoted with ψeq.

2.3.2 Free energy and dissipation rate

We consider consistency with fundamental principles of thermodynamics to be a quality
measure for models describing natural processes. So it is of significant interest to study
this consistency for continuous as well as discrete models. Due to our simplifying as-
sumption of constant temperature, we cannot expect energy conservation in the classical
sense. The second law of thermodynamics for nonequilibrium processes [92, 86] requires
non-negativity of the local entropy production which, multiplied by the temperature T ,
gives the dissipation rate.

For the sake of readability, we discuss these concepts for Boltzmann statistics [59]
here, see [68] and [49] for more general statistics. For the triple (ψ, n, p) and a ther-
modynamic equilibrium solution (ψeq, neq, peq) := (ψeq, n(ψeq), p(ψeq)) of the full van
Roosbroeck system the free energy is defined as

F(ψ, n, p) =
∫

Ω

(
n log

n

neq
− n+ p log

p

peq
− p+ neq + peq

)
dx

+

∫

Ω

εs
2
∥∇ (ψ − ψeq)∥2 dx+

1

2

∫

ΓG

εox
dox

(ψ − ψeq)
2 ds.

(2.35)

For a transient solution (ψ(t), n(t), p(t)) of (2.21), the function L(t) = F(ψ(t), n(t), p(t))
decays exponentially as t tends to infinity and one has

L(t) = L(0)−
∫ t

0
D(τ)dτ,

where D(t) is the nonnegative dissipation rate [59]

D(t) =
∫

Ω

(
nµn∥∇φn∥2 + pµp∥∇φp∥2 + r(n, p)(np− 1) log(np)

)
dx ≥ 0 (2.36)

depending on t because the densities n, p vary with time. This result confirms the consis-
tency with the second law of thermodynamics. Incidentally, the function L is a Lyapunov
function, allowing in certain situations to prove the global stability of the thermodynam-
ical equilibrium. Furthermore, it can be used as a tool to prove uniqueness of solutions
to the van Roosbroeck system (2.21). This leads us naturally to the following subsection.
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2.3.3 Existence and uniqueness results

When modeling complex physical phenomena, it is often necessary to simplify the un-
derlying physical model. Therefore, a sound mathematical investigation is necessary to
assess the implications of such simplifications. Take, for example, the electrostatic po-
tential of a device. Physically, we know that such a potential exists. Hence, a sound
model should guarantee its existence – also from a mathematical point of view. If the
existence cannot be shown, then the model does not represent the physical world ac-
curately. Apart from existence, uniqueness of the solution is often desirable as well as
continuous dependence on the initial data.

The mathematical technique used to prove existence and uniqueness depends on the
device geometry and the model. The first existence result of the van Roosbroeck system
was shown by Mock [83]. Since then several results have been obtained by Gajewski
and Gröger, we refer the interested reader to [73, 76]. In [76], the key tool to show the
existence and uniqueness of the time dependent system is based on finding a Lyapunov
function. Moreover, Gajewski and Gröger presented the first result which considered
Fermi-Dirac statistics instead of Boltzmann statistics. There are other important exis-
tence results. We would like to mention explicitly the results studied by Markowich see
for example [77], Jüngel [62], and Jerome [60].

We would like to point out that these results are not of purely analytical interest
but can also be used to design numerical methods. Gummel’s method [91], for example,
(see Section 3.7) is based on the same fixed point iteration technique used to obtain the
existence result which we discuss next. The connection to numerics can be found in [60].
We would like to give the reader an idea regarding the proof of a standard result without
going into the tricky details. We follow ideas from Markowich’s textbook [74].

We consider the stationary van Roosbroeck system with Boltzmann statistics. Using
a scaling that can be found in [74, Section 2.4] and making a change of variables, we can
rewrite the steady-state van Roosbroeck system in the following way

−λ2∆ψ = δ2e−ψv − δ2eψu+ C, (2.37a)

∇ · (µneψ∇u) = R̃, (2.37b)

∇ · (µpe−ψ∇v) = R̃. (2.37c)

The densities n and p are related to the so-called Slotboom variables u and v via n =
δ2eψu and p = δ2e−ψv. In (2.37), the parameter λ denotes the normed characteristic
Debye length of the device, δ2 indicates the scaled intrinsic carrier density and R̃ is the
scaled recombination term. It is of the form R̃ = c(ψ, u, v)(uv − 1) with c(ψ, u, v) > 0.
The chosen scaling and change of variables make it possible to rewrite the boundary
conditions. We consider only ohmic contacts and homogeneous Neumann boundaries.

In order to prove the existence of solutions for the system (2.37) equipped with suit-
able boundary conditions, we need to make several technical assumptions. We refer the
interested reader to [74] where these assumptions are well explained as well as physically
and mathematically justified. Here, we would rather like to focus on the key idea of the
proof which is exploited numerically, omitting mathematical detail. The existence proof
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is based on an iteration scheme which considers the Poisson equation (2.37a) decoupled
from the continuity equations (2.37b) and (2.37c). The proof consists of the following
steps:

1. We fix some u0, v0 > 0, and consider the semilinear elliptic problem

−λ2∆ψ = δ2e−ψv0 − δ2eψu0 + C, in Ω, (plus BC for ψ on ∂Ω). (2.38)

Using standard analytical results for semilinear elliptic equations (namely the
Leray-Schauder’s fixed point theorem and the maximum principle [52]) we prove
that there exists a unique solution of the problem (2.38) that we denote with ψ1.

2. We insert the solution ψ1 of (2.38) into the decoupled linear elliptic equations

∇ · (µneψ1∇u) = c(ψ1, u0, v0)(uv0 − 1), in Ω, (plus BC for u on ∂Ω),
(2.39)

∇ · (µpe−ψ1∇v) = c(ψ1, u0, v0)(u0v − 1), in Ω, (plus BC for v on ∂Ω).
(2.40)

We point out that in the right-hand side of (2.39) the rate c depends only on ψ1

determined from the previous step and on the fixed u0, v0. The other term, uv0−1,
depends linearly on the unknown u. Analogous considerations are valid for (2.40).
Physically, this means that in the factor describing relaxation to equilibrium, uv−1,
we freeze the hole density, more precisely the Slotboom variable v0, in the continuity
equation for the electrons and vice versa. Thanks to the non-negativity of c(ψ1, u, v)
there exist unique solutions u1 and v1 to (2.39) and (2.40). This is ensured by
standard results on linear elliptic equations (see for example [52]).

3. Based on the first two steps, we can now define a map H which maps (u0, v0) onto
(u1, v1). This map is known as Gummel map. It is possible to prove that this
map has a fixed point (u∗, v∗) which determines a (weak) solution (ψ∗, u∗, v∗) of
the coupled system (2.37). The electrostatic potential ψ∗ which solves Poisson’s
equation (2.37a) can be determined using the first step by substituting (u0, v0) with
(u∗, v∗).

Finally, we discuss the uniqueness of solutions to the van Roosbroeck system. It is
well known that for the steady-state system the uniqueness of the solution cannot be
shown without additional assumptions, for example, on the applied voltage. This is no
surprise, as in fact, some semiconductor devices (e.g. thyristors [67]) are designed to
have multiple steady states. However, for a device in thermal equilibrium (see Section
2.3.1), we have u = v = 1. In this case, there is a unique function which satisfies the
Poisson equation (2.37a). Hence, the solution (ψe, 1, 1) is the unique equilibrium solution
of the system (2.37), see [83]. For sufficiently small bias voltages the uniqueness of the
solution is shown in [74] under some specific assumptions on the recombination rates. All
recombination mechanisms appearing in Figure 2.3 fulfill these assumptions. However,
impact ionization rates for example are excluded.
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Figure 2.4: Striations from LPS measurement (left); temperature field simulation cre-
ated by a coil (the black line represents the solid-liquid interface at 1687K) as well
the corresponding striations (middle); LPS measurement setup (right). This image is a
modified version of a figure found in [PF3].

2.4 Inverse problems

Semiconductor crystals are the very basis for any optoelectronic component such as
transistors, LEDs or solar cells. Crystals are solid substances with an inherent struc-
ture/symmetry. The higher the crystal quality (the symmetry), the more technologically
challenging and expensive it is to grow these crystals.

Thus, it is important to improve the furnaces used for crystal growth. If one knows
the temperature field of these furnaces, better crystals can be grown. Unfortunately, it is
impossible to measure the temperature distribution during crystal growth without dam-
aging the crystal structure and introducing impurities. Moreover, silicon, for example,
melts at extremely high temperatures, around 1687K. While it is virtually impossible
to predict the temperature distribution in the furnace and the growing crystal experi-
mentally, one may reconstruct it after the crystal has cooled down. During growth along
the solid-liquid interface microscopic variations in the crystal appear, see Figure 2.4 (left
and middle). These so-called striations can be measured even in the cooled-down crystal
and correspond to isothermal contour lines of the temperature field. Thus, the striations
can be used to predict the temperature field. So the question of finding the temperature
field becomes a question of finding the striations which are proportional to the doping
gradient – ideally without damaging the crystal.

Traditionally, the local doping concentration is measured by studying the electrical
resistivity by a four-point-probe resistivity setup after the crystal has been sawed into
individual wafers or into a set of longitudinal cuts [95]. The main drawback of this
technique is the relatively poor spatial resolution (few millimeters [8]) and the rather
long acquisition time. Even though lateral resolution can be improved to approach the
micrometer scale by using spreading resistance imaging, this gain in resolution comes at
the expense of even longer acquisition times [89, 88]. Moreover since the tip touches the
wafer surface, the measurement itself may alter the surface properties. Another technique
is secondary ion mass spectroscopy (SIMS). Unfortunately, it is intrinsically destructive
and detects only high doping concentrations NA > 1× 1015 cm−3 for light elements such
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as boron [75]. There are also noninvasive microwave-based techniques such as scanning
microwave impedance microscopy [9]. Since microwaves have a larger penetration depth
than lasers, simulation times would take significantly longer.

To overcome all these limitations, the lateral photovoltage scanning method (LPS) has
been proposed [55]. This opto-electrical measurement procedure detects doping inhomo-
geneities at wafer-scale and room temperature in a non-destructive fashion, see Figure
2.4 (right). Interestingly, besides being very cost-effective and fast, this tabletop setup
is especially suitable for low doping concentrations (1012 cm−3 to 1016 cm−3) and thus
applies to a larger range of doping concentrations than SIMS. The LPS method excites
the semiconductor crystal with a laser, creating a voltage difference at the sample edges
which is proportional to the gradient in doping density at the illumination site. This
voltage difference can be measured, from which one can infer the doping profile from
the voltage difference. However, from a mathematical point of view one has to solve an
inverse problem. An efficient solution of this inverse problem – an ambitious future task –
requires a fast and reliable solution of the forward problem (where the voltage difference
is determined from a implicit boundary condition).

2.4.1 The lateral photovoltage scanning method

The laser generates a potential difference at both ohmic contacts ΓD1 and ΓD2 , see
Figure 2.4 (right). Let iD := jD1 = −jD2 be the current through the ohmic contact ΓD1

and the voltmeter be modeled as a simple circuit with resistance ∇.
We denote both electric potentials in the network at ohmic contacts ΓD1 and ΓD2 with

uD1 and uD2 , respectively. Without loss of generality, we set uD1 = 0, which implies that
the LPS signal is measured at the second contact uLPS := uD2 . Modified nodal analysis
(MNA) yields

uLPS + ψ0|ΓD2
− ψ0|ΓD1

= ∇iD(uLPS), (2.41)

where ψ0 refers to the charge neutral potential defined in (2.24). Notice that (2.41) is
an implicit equation for uLPS since iD depends on uLPS via the van Roosbroeck system
(2.21). Modeling ohmic contacts is achieved by Dirichlet boundary conditions for both
quasi Fermi potentials

φn|ΓD1
= φp|ΓD1

= uD1 = 0 and φn|ΓD2
= φp|ΓD2

= uD2 = uLPS . (2.42)

How to solve (2.21) thermodynamically consistently for nonlinear diffusion via Voronoi
finite volume methods has recently been addressed in [PF25, PF10, PF7] and will be
discussed in Chapter 3.1.

In the LPS application, the doping profile C is not known and the LPS voltage uLPS
is determined such that the implicit boundary condition (2.41) is automatically satisfied
by the voltmeter. Since the doping profile enters the van Roosbroeck system (2.21) as an
unknown parameter, we have indeed an inverse PDE problem. The forward problem, on
the other hand, assumes that the doping profile C is known but the LPS voltage uLPS
is not given explicitly. In this case, we have to guarantee that the nonlinear and implicit
boundary condition (2.41) is satisfied. We summarize both problems here:

16



Definition 2.2 (Forward LPS problem) For a given doping profile C and an unknown
LPS signal uLPS, we consider the van Roosbroeck system (2.21) with ohmic contacts
(2.42) and ensure that the implicit and nonlinear boundary equation (2.41) is satisfied.

Definition 2.3 (Inverse LPS problem) For a given LPS signal uLPS and an unknown
doping profile C, we consider the van Roosbroeck system (2.21) with ohmic contacts (2.42)
and use for the electrostatic potential the Dirichlet boundary conditions ψ|ΓD2

= uLPS
and ψ|ΓD1

= 0.
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3

Numerical solution and simulation
of charge transport

Several different numerical techniques were proposed to solve the previously introduced
models numerically such as finite difference (FD) [78, 27], finite element (FE) [22, 10,
12, 45] and mixed or discontinuous Galerkin (DG) methods [65, 6]. In the following, we
focus on the finite volume (FV) method on Voronoi meshes which is similarly flexible as
the finite element or the discontinuous Galerkin method. It can handle relatively well
boundary layers, nonlinear diffusion and complex domains. Furthermore, one can often
provably preserve physical properties such as exponential decay of the free energy or the
positivity of densities.

3.1 The finite volume method on Voronoi meshes

The finite volume method is close to the physicist’s approach to derive partial differen-
tial equations by subdividing the computational domain into representative elementary
volumes or control volumes. The two-point flux finite volume method described here can
be interpreted as a straightforward generalization of the one-dimensional Scharfetter-
Gummel scheme [85] to higher dimensions. The 2D variant of this approach was intro-
duced as box method in [79]. Historically, it goes back to [96]. The 3D variant of this
method was probably first investigated in [56, 59].

We first describe how we divide our computational domain into control volumes,
then dedicate several sections to consistent flux discretizations and finally discuss some
properties of these fluxes.

3.1.1 Finite volume method in higher dimensions

Suppose, we partition our domain Ω into N non-intersecting, convex, polyhedral control
volumes ωk. That is Ω =

⋃N
k=1 ωk. We associate with each control volume a node

xk ∈ ωk. For interior control volumes the node shall lie in the volume. However, if the
control volume intersects with the boundary of our domain, we demand that the node
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Figure 3.1: Two adjacent control volumes ωk and ωℓ with corresponding data.

lies on the boundary of the control volume xk ∈ ∂Ω ∩ ωk. We assume that the partition
is admissible in the sense of [53], that is the edge xkxℓ with length hkℓ = ∥xℓ − xk∥ is
orthogonal to ∂ωk ∩ ∂ωℓ. Thus, the normal vectors to ∂ωk can be calculated by

νkℓ =
xℓ − xk
∥xℓ − xk∥

,

see Figure 3.1 for details. We will refer to such to the set of nodes and control volumes
in 1D, 2D or 3D as Voronoi mesh since by construction cell k contains all points which
are closest in the Euclidean sense to the node xk. Even though Voronoi cells look rather
complicated, it has to be pointed out that they never have to be calculated explicitly
since the Voronoi mesh is the dual mesh of a Delaunay triangulation. Some more details
concerning the mesh generation will be given in Section 3.6.

In order to keep the following discrete version of the van Roosbroeck system (2.21)
simple, we introduce two abbreviations similar to (2.10), namely

ηn (ψ,φn) =
q (ψ − φn)− Ec

kBT
and ηp (ψ,φp) =

Ev − q (ψ − φn)

kBT
, (3.1)

and assume that we have one gate contact with gate voltage UG. Next, we integrate the
van Roosbroeck system (2.21) over ωk and apply Gauss’s divergence theorem, resulting
in the integral equations

−
∫

∂ωk

εs∇ψ · νds+
∫

∂ωk∩ΓG

εox
dox

(ψ − UG)ds = q

∫

ωk

(C −NcF (ηn (ψ,φn)) +NvF (ηp (ψ,φp))) dx

−q ∂
∂t

∫

ωk

NcF (ηn (ψ,φn)) dx+

∫

∂ωk

jn · νds = q

∫

ωk

Rdx,

q
∂

∂t

∫

ωk

NvF (ηp (ψ,φp)) dx+

∫

∂ωk

jp · νds = −q
∫

ωk

Rdx,

for k = 1, . . . , N . Here, ν is the outward-pointing unit normal, see Figure 3.1. These
equations represent a local integral version of the van Roosbroeck system for every control
volume. In particular, the first equation is Gauss’ law of electrodynamics. The other two
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equations are balance laws or continuity equations for the carrier densities. The densities
in each control volume change only due to either in and outflow through the boundary
or recombination/generation of charge carriers.

We split the surface integrals into the sum of integrals over the interfaces between
the control volume ωk and its neighbors. Employing one point quadrature rules for the
surface and volume integrals, we deduce the finite volume scheme

∑

ωℓ∈N (ωk)

|∂ωk ∩ ∂ωℓ|Dk,ℓ = q|ωk| (Ck −NcF (ηn (ψk, φn;k)) +NvF (ηp (ψk, φp;k)))

+|∂ωk ∩ ΓG|
εox
dox

(UG − ψk)

(3.2a)

−q|ωk|Nc
d

dt
F (ηn (ψk, φn;k)) +

∑

ωℓ∈N (ωk)

|∂ωk ∩ ∂ωℓ|jn;k,ℓ = q|ωk|Rk, (3.2b)

q|ωk|Nv
d

dt
F (ηp (ψk, φp;k)) +

∑

ωℓ∈N (ωk)

|∂ωk ∩ ∂ωℓ|jp;k,ℓ = −q|ωk|Rk. (3.2c)

In the above formulas, N (ωk) denotes the set of all control volumes neighboring ωk. In
2D, the measure |∂ωk ∩∂ωℓ| corresponds to the length of the boundary line segment and
in 3D to the area of the intersection of the boundary surfaces. The measure |ωk| is in
2D given by the area and in 3D by the volume of the control volume ωk. The unknowns
ψk, φn;k and φp;k are approximations of the electric potential as well as the quasi Fermi
potentials for electrons and holes evaluated at node xk which will have to be determined
by solving the nonlinear discrete system (3.2).

Accordingly, Rk is defined as

Rk = R
(
NcF (ηn (ψk, φn;k)) , NvF (ηp (ψk, φp;k))

)
.

The doping is defined by the integral average

Ck =
1

|ωk|

∫

ωk

C(x)dx

which can be estimated by its nodal value C(xk). The numerical fluxes Dk,ℓ, jn;k,ℓ
and jp;k,ℓ approximate −ε∇ψ · νkℓ, jn · νkℓ and jp · νkℓ, respectively, on the interfaces
between two adjacent control volumes ωk and ωℓ, see Figure 3.1. We assume that these
fluxes can be expressed as nonlinear functions depending on the values ψk, φn;k, φp;k and
ψℓ, φn;ℓ, φp;ℓ.

In theory, any classical technique such as central differences or upwinding could be
used to discretize the numerical fluxes. However, the former suffers from instability issues
[PF25] and neither scheme is consistent with the thermodynamic equilibrium which we
explain in Section 3.3.

Starting from the local perspective (3.2), we can assemble a global system by taking
into account every cell ωk. Supposing there are N cells, the finite volume scheme (3.2)
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yields a nonlinear system of 3N equations depending on 3N variables. We can directly
substitute Dirichlet boundary values in the equations. In practice, however, this way of
handling Dirichlet values is very technical to implement. Exploiting floating point arith-
metic, the Dirichlet penalty method [71] provides a reasonable alternative. Physically, it
replaces the Dirichlet boundary conditions by gate boundary conditions with very high
oxide permittivity, see (3.2a).

3.2 Flux discretization

In this section we introduce and discuss different flux approximations.

3.2.1 The electric displacement flux

The easiest flux to approximate is the electric displacement flux. We can simply employ
a central difference flux approximation of the form:

Dk,ℓ = −εs
ψℓ − ψk
∥xℓ − xk∥

.

Such an approach will not work for the drift-diffusion fluxes as unphysical oscillations
can be introduced in the system [PF25].

3.2.2 The classical Scharfetter-Gummel scheme

In 1D, Scharfetter and Gummel proposed for Boltzmann statistics [85] a highly efficient
flux approximation which is also sometimes referred to as exponential fitting. They derive
the numerical flux

jα;k,ℓ = −zαqµαNα
UT
hkℓ

{
B

(
−zα

ψℓ − ψk
UT

)
eηα;ℓ −B

(
zα
ψℓ − ψk
UT

)
eηα;k

}
(3.3)

by locally solving a linear two-point boundary value problem. The one-dimensional idea
immediately carries over to higher dimensions if we insert the Scharfetter-Gummel flux
(3.3) into the discrete system (3.2). However, if the Boltzmann approximation is not
valid anymore, we can no longer derive the flux like Scharfetter and Gummel suggested.

For the sake of readability, we continue providing the formulas for electrons only. The
formulas for holes follow similarly.

This motivated the work in [41] where the Scharfetter-Gummel idea was generalized
to a large class of nonlinear convection-diffusion problems, allowing to define consis-
tent numerical fluxes from nonlinear two-point boundary value problems. Unfortunately,
these generalized Scharfetter-Gummel schemes cannot be expressed by closed formulas.
Sometimes, however, the local fluxes can be obtained iteratively [24]. It is also possible
to approximate the two-point boundary value problems by simpler ones (for example by
freezing some coefficients). This leads to modified Scharfetter-Gummel schemes. We will
address some of these schemes now.
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3.2.3 Generalized Scharfetter-Gummel schemes

By the construction of the Voronoi mesh, the flux between two neighboring cell (nodes)
is perpendicular to the interface between both cells. Hence even in 2D or 3D, it suffices
to study the one-dimensional flux jn along the edge xkxℓ between node xk and xl.
Generalizing the original idea by Scharfetter and Gummel to general statistics F , see
[41], we solve the ordinary differential equation

d

dx
jα =

d

dx

(
− z2αqµαNαF (ηα (ψ,φα))

d

dx
φα

)
= 0

on the interval [0, hkℓ] with boundary conditions

φα (0) = φα;k and φα (hkℓ) = φα;ℓ,

where φα;k and φα,ℓ are the approximations of the quasi Fermi potential at the nodes
xk and xℓ, respectively. Assuming as before that the flux between both nodes jα;k,ℓ is
constant, we can integrate twice, leading to an integral equation for the unknown current,
namely

ηα;ℓ∫

ηα;k

[(
jα;k,l/j0
F(η)

− zα
ψℓ − ψk
UT

)]−1

dη = 1, (3.4)

where for simplicity we introduced the factor j0 = −zαqµαNα
UT
hkℓ

. The limits are given

by ηα;k = ηα (ψk, φα;k) and ηα;ℓ = ηα (ψℓ, φα;ℓ). For strictly monotonously increasing
F(η) this equation has always a unique solution [18].

For the Boltzmann approximation F(η) = exp(η) this integral equation can be solved
analytically and yields the classical Scharfetter-Gummel flux expression (3.3). In [24] it
was shown that for the Blakemore distribution function F (η) = 1

exp(−η)+γ , the integral
equation leads to a fixed point equation

ĵα;k,ℓ = B

(
γĵα;k,ℓ − zα

ψℓ − ψk
UT

)
eηα;ℓ −B

(
−
[
γĵα;k,ℓ − zα

ψℓ − ψk
UT

])
eηα;k (3.5)

for the non-dimensionalized edge current ĵα;k,ℓ = jα;k,l/j0. The right-hand side is a
Scharfetter-Gummel expression where the argument of the Bernoulli function is shifted
by γĵα;k,ℓ. Hence, for γ = 0 (3.5) reduces to the classical Scharfetter-Gummel scheme.

Again, since the Bernoulli function is strictly decreasing, this fixed point equation
possesses a unique solution ĵα;k,ℓ. If we want to use the flux given by (3.5) in the discrete
system (3.2), we need to solve for the flux ĵα;k,ℓ twice (once for electrons and once for
holes) on each discretization edge xkxℓ. A few Newton steps are sufficient to solve this
equation iteratively.

Even though (3.5) is restricted to the Blakemore approximation, it provides a useful
scheme in the context of organic semiconductors. There it arises naturally as a model
for materials with δ-shaped density of states [30, 23], describing a single transport level,
see Figures 2.1 and 2.2. Furthermore, it is useful for benchmarking purposes [PF10].
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Unfortunately, for a general statistical distribution function, no corresponding equa-
tion has been derived so far. Therefore, in [18] it was proposed to use piecewise approx-
imations of F by Blakemore type or rational approximations of Padé type in order to
obtain piecewise integrable expression from the local boundary value problem.

3.2.4 Modified Scharfetter-Gummel schemes

Whereas in the previous section, we focussed on fluxes which were exact solutions to
linear and nonlinear boundary value problems, we focus in this section on approximate
but reasonable solutions to nonlinear boundary value problems. Physically, these schemes
are inspired by either modifying the thermal voltage, the effective density of state or the
electric potential difference.

From (2.13) we see that for a nonlinear diffusion term g, we have to somehow freeze g
along the discretization edge. Bessemoulin-Chatard [25] derived a finite volume scheme
for convection-diffusion problems which is consistent with the vanishing analytic flux in
thermodynamic equilibrium. This idea was translated to a physical context in terms of
potentials and statistics in [PF12], introducing a logarithmic average of the nonlinear
diffusion enhancement

gα;k,ℓ =
ηα;k − ηα;ℓ

logF (ηα;k)− logF (ηα;ℓ)

along the discretization edge xkxℓ. Equation (2.13) implies that the diffusion enhance-
ment g can be interpreted as a modification factor of the thermal voltage UT . Replacing
UT in the Scharfetter-Gummel expression (3.3) by U∗

T = UT gα;k,ℓ, thus we obtain the
following modified Scharfetter-Gummel scheme [25, PF12]

jα;k,ℓ = −zα
qµnNαUT gα;k,ℓ

hkℓ

(
B

(
−zα

ψℓ − ψk
UT gα;k,ℓ

)
F (ηα;ℓ)−B

(
zα
ψℓ − ψk
UT gα;k,ℓ

)
F (ηα;k)

)
.

(3.6)
Instead of adjusting the thermal voltage by a suitable average along the edge, we may

start from the original Scharfetter-Gummel flux (3.3) and modify the density of states
Nα accordingly, for example choose

NαF(η) ≈ N∗
α;k,ℓ exp(η).

This choice makes it possible to use the original Scharfetter-Gummel flux (3.3) and
replace Nα with N∗

α;k,ℓ. One choice for the modified density of states is

N∗
α;k,ℓ(η

∗) = Nα
F(η∗)
eη∗

,

where η∗ ∈ [ηk, ηℓ], assuming ηk ≤ ηℓ. In practice, we might consider taking the geo-
metric average between Nα(ηk) and Nα(ηℓ), which leads to another modified Scharfetter-
Gummel scheme:

jα;k,ℓ =− zα
qµαUT
hkℓ

Nα

√
F (ηα;k)F (ηα;ℓ)

eηα;keηα;ℓ

(
B

(
−zα

ψℓ − ψk
UT

)
eηα;ℓ −B

(
zα
ψℓ − ψk
UT

)
eηα;k

)
.

(3.7)
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The idea behind this scheme was introduced in [16] for the numerical solution of the
generalized Nernst-Planck system which is similar to the van Roosbroeck system (2.21).
A variant of this scheme for Fermi-Dirac statistics is described in [44, 64] and numerically
implemented in the semiconductor device simulation package WIAS-TeSCA [13].

Finally, it is also possible to modify the drift term instead of the diffusion term.
Starting from (2.13), we may rewrite the flux as follows For a node xk it reads as follows

jα = −zαqµαUT
(
∇nα + zαnα∇

(
ψ

UT

)
+ nα∇ν(nα)

)
. (3.8)

where

ν(nα) = F−1(nα)− log(nα).

Then the corresponding scheme takes the form

jα = −zα
qµαNαUT

hkl

(
B(−Qα;k,ℓ)F (ηα;ℓ)−B (Qα;k,ℓ)F (ηα;k)

)
, (3.9)

where

Qα;k,ℓ = zα
ψℓ − ψk
UT

+ (ηα;ℓ − ηα,k)− log

(F(ηα;ℓ)

F(ηα;k)

)
.

The earliest reference, we could find for this thermodynamically consistent flux discretiza-
tion scheme is in [69]. This scheme was compared in [PF2, 7] and numerically analyzed
in [4]. We refer to it either as SEDAN or excess chemical potential scheme. The latter
is due to its interpretation in electrochemistry.

3.2.5 Quadrature-based Scharfetter-Gummel schemes

In [PF18] it was shown that it is feasible to numerically approximate the integral (3.4)
via quadrature. This is particularly useful if highly accurate flux approximations are
required. We introduce now a whole family of such approximation schemes by choosing
different quadrature rules and explain in detail the algorithms used to obtain them. Solv-
ing (3.4) numerically yields effectively new modified schemes, which become practically
exact schemes when the number of quadrature points is large enough. We refer to them as
quadrature-based Scharfetter-Gummel schemes. The implementation is challenging due
to two reasons: first one needs to approximate the integral accurately and then solve a
nonlinear equation. We will discuss both steps separately.

Discretization of the integral equation

Denoting the integrand in (3.4) with G(η; δψkℓ, jgsg) for jgsg = jα/j0 and δψkℓ = (ψℓ −
ψk)/UT , we can approximate (3.4) by

H(jgsg) :=
N∑

i=1

wiG(ηi; δψkℓ, jgsg)− 1 = 0, (3.10)
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where wi are some integration weights, ηi the quadrature nodes and N the number of
quadrature nodes. We make explicit choices for the numerical integration in Section 7.

When implementing this method one needs to treat two limiting cases separately.
For pure diffusive currents, i. e. δψkℓ = 0 and arbitrary δηkℓ, the integral equation (3.4)
implies that one obtains the current simply by integrating F(η) from ηk to ηℓ. On
the other hand, for small δηkℓ and arbitrary δψkℓ, the mean value theorem for definite
integrals yields

1 =

∫ ηℓ

ηk

F(η)

jgsg − zαδψkℓF(η)
dη =

δηkℓF
(
η̄kℓ +

1
2δηkℓξ

)

jgsg − zαδψkℓF
(
η̄kℓ +

1
2δηkℓξ

) ,

where η̄kℓ :=
ηℓ + ηk

2
,

for some ξ ∈ (−1, 1). Hence, in the pure drift limit when δηkℓ = 0, we obtain jgsg =
zαF(η̄kℓ)δψkℓ for any δψkℓ ∈ R. We point out that this case is incorporated in the
low-order series expansion of (3.4) for electrons zα = −1 as well as small δηkℓ and δψkℓ,
derived in [PF25], namely

jgsg =−F(η̄kℓ)δψkℓ + F(η̄kℓ)δηkℓ +
1

12

F ′(η̄kℓ)2

F(η̄kℓ)
δψ2

kℓδηkℓ

−
( F ′(η̄kℓ)2

12F(η̄kℓ)
+

F ′′(η̄kℓ)
24

)
δψkℓδη

2
kℓ +

1

24
F ′′(η̄kℓ)δη

3
kℓ

+O(δη5kℓ) +O(δψkℓδη
4
kℓ) +O(δψ2

kℓδη
3
kℓ) +O(δψ3

kℓ).

(3.11)

Due to these considerations, we propose the following implementation for some suitable
tolerances εη and εψ:

1 if |δηkℓ| < εη then
2 use series expansion (3.11);
3 else if |δηkℓ| ≥ εη and |δψkℓ| < εψ then
4 jgsg =

∫ ηℓ
ηk

F(η)dη;
5 else if |δηkℓ| ≥ εη and |δψkℓ| ≥ εψ then
6 use Newton’s method for (3.10) with the diffusion-enhanced scheme (3.6) as

starting guess;
7 end

Numerical integration

Numerical integration, also known as quadrature, approximates definite integrals of a
given function f . Without loss of generality, we confine the following considerations to
the interval [−1, 1]. For some weight function ω, let us introduce a general approximation
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Gauss-
Legendre

Clenshaw-
Curtis

Gauss-
Lobatto

Gauss-
Kronrod

polynomials Legendre Chebyshev Jacobi Stieltjies
degree 2N − 1 N 2N − 1 2N + 1

convergence exponential exponential exponential exponential
adaptivity no no no yes
integral
limits

not
included

are
included

are
included

not
included

weights positive positive positive positive

Table 3.1: Comparison of the several quadrature rules. The quantity N refers to the
number of quadrature points.

of an integral
∫ 1

−1
f(x)ω(x)dx ≈

N∑

i=1

wif(xi), (3.12)

where xi are the quadrature nodes, wi the quadrature weights and N is the number of
quadrature points.

A huge variety of quadrature rules are based on interpolation polynomials which are
simple to integrate. To evaluate the integral (3.4) we use four different quadrature rules
based on optimal points: Clenshaw-Curtis, Gauss-Legendre, Gauss-Lobatto and adaptive
Gauss-Kronrod quadrature [72, 37]. The nodes and the weights are chosen to minimize
the approximation error. We use the code [47] for Gauss-Legendre quadrature and [14]
for the other ones. There are several advantages to the quadrature rules studied here: the
quadrature weights for these quadrature rules are positive, minimizing numerical (can-
cellation) errors. Moreover, these quadrature rules converge exponentially for sufficiently
smooth integrands and there exist well-tested and well-documented implementations [46,
37]. For a quick comparison between the several quadrature rules used in our calculations,
we report the main features for each ones in Table 3.1.

Gauss-Legendre quadrature Gauss-Legendre quadrature exactly integrates polyno-
mials of degree 2N − 1 by choosing suitable nodes xi and weights wi for i = 1, . . . , N ,
where N is the number of quadrature points. The nodes xi are precisely the ith roots of
Legendre polynomials PN (x) on [−1, 1] and the weights wi are given by

wi =
2

(1− x2i )[P
′
N (xi)]

2
, (3.13)

see [90] for details. The zeros of the N Legendre polynomial are computed by means of
the Newton method. Gauss-Legendre quadrature is highly efficient for smooth integrands
and also excludes the integration limits.

In [18] it is shown that no pole can appear within the integration limits of (3.4).
However, poles can come close to the integration limits.
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Clenshaw-Curtis quadrature Clenshaw-Curtis quadrature is another numerical in-
tegration technique. It expands the integrand f by means of Chebyshev polynomials.
Using the change of variable x = cos(t) and the discrete cosine transform (DCT) we can
approximate our integrand with

f(t) =
a1
2

+
aN
2
TN +

N−1∑

i=2

aiTi(t), (3.14)

where ai and Ti(t) denote the Chebyshev coefficients and polynomials, respectively [93].
The jth node corresponds to a maximum or minimum of the Chebyshev polynomial Ti(t)
in the range [−1, 1] given by

tj = cos

(
πj

N

)
. (3.15)

The Clenshaw-Curtis quadrature also evaluates the integrand at N points but integrates
exactly only polynomials up to degree N rather than to degree 2N − 1 like Gaussian
quadrature. However, the Clenshaw-Curtis rule appears to be more than just half as
effective as Gaussian quadrature. In [87] the authors show that the method is fast and
as accurate as Gaussian quadrature.

Gauss-Lobatto quadrature Gauss-Lobatto quadrature is another numerical integra-
tion technique which exactly integrates polynomials up to order 2N − 1. In the early
seventies, Golub [82] proposed a method to compute the zeros of orthogonal polynomials
by using the eigenvalues of a tridiagonal Jacobi matrix. The idea is to generate the
nodes and weights needed for the quadrature rule by computing eigenvalues and the first
component of the respective eigenvectors of a modified tridiagonal matrix. The use of
the Gauss-Lobatto rule is efficient for extrapolating the nodes but the calculation of the
weights is quite complicated. A more simple and elegant approach is reported in [32],
where the authors derive the nodes via a special Jacobi matrix based on the derivatives
of Jacobi polynomial rather and also present an explicit formula to obtain the weights.

Adaptive Gauss-Kronrod quadrature An adaptive quadrature rule is a technique
where the integration interval is recursively split into two halves and the quadrature is
applied to each subinterval if the integral is not evaluated with the desired accuracy.
The Gauss-Kronrod quadrature, proposed by Alexander Kronrod in the 1960s, belongs
to the set of adaptive quadrature rules and was formulated as an extension of the Gaus-
sian quadrature formula. The integral approximation and resulting estimated error are
calculated by adding N+1 roots of Stieltjes polynomials to N nodes obtaining a formula
of order 2N + 1. These extra points allow to calculate a higher-order approximation of
the integral and the difference between this value with the lower-order one is used as an
estimate for the integration error to be compared with the required tolerance [1].
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3.3 Consistency with the thermodynamic equilibrium

As discussed in Section 2.3.1, the thermodynamic equilibrium is characterized by van-
ishing hole and electron fluxes. That is, there is neither recombination nor generation
(R = G = 0) as well as zero applied bias and gate voltage (Uα = UG = 0). A vanishing
applied bias results into zero Dirichlet boundary conditions. Due to Equation (2.21d),
zero fluxes are equivalent to constant quasi Fermi potentials.

If a numerical scheme with the same zero boundary conditions and vanishing right-
hand sides, results into zero numerical fluxes, we call it globally consistent with the ther-
modynamical equilibrium or slightly shorter thermodynamically consistent. In practice,
one can check this consistency by checking whether locally constant quasi Fermi potentials
φn;k = φn;ℓ and φp;k = φp;ℓ are equivalent to vanishing numerical fluxes jn;k,ℓ = jp;k,ℓ = 0.
Under the stated conditions the local consistency will translate into to the global one.
Violating this thermodynamic consistency causes unphysical dissipation (spurious Joule
heating) in the steady state attained despite zero bias boundary conditions [25].

Theorem 3.1 All generalized and modified schemes introduced in Sections 3.2.3 and
3.2.4 are consistent with the thermodynamical equilibrium.

Proof. Indeed, let us assume that locally the quasi Fermi potentials φn and φp between
two adjacent control volumes ωk and ωℓ are equal. The consistency of the classical
Scharfetter-Gummel (3.3), the scheme using a modified density of states (3.7) and the
Sedan scheme (3.9) are obvious since the Bernoulli function satisfies B (−x) = exB (x)
and the definition of η, see (3.1).

Due to the definition from the solution of the two-point boundary value problem,
the generalized Scharfetter-Gummel scheme defined in (3.4) and its specialization for
the Blakemore approximation (3.5) are consistent with the thermodynamic equilibrium.
Furthermore, the logarithmic average of the diffusion enhancement is the only possible
average wich guarantees consistency with thermodynamic equilibrium in the scheme (3.6).

For details see [24, 18, PF12]. Finally, we point out that the quadrature-based
Scharfetter-Gummel scheme are not thermodynamically consistent but on a practical
or numerical level they are [PF7].

3.4 Free energy and dissipation rate

For Boltzmann statistics it is rather straightforward to define discrete versions of the free
energy (2.35) and the dissipation rate (2.36). The positivity of the discrete dissipation
rate was shown in [59], and the exponential decay of the free energy to its equilibrium
value was proven in [35]. An overview of the entropy method for finite volume schemes
has been given in [21]. First results on more general statistics functions in this respect
have been obtained in [11, 4].

These pioneering works indicate that the chosen discretization approach results in
discrete models which are consistent with the structural assumptions of nonequilibrium
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thermodynamics. A full account of these issues in the context of general statistics func-
tions remains an open topic of research and depends on the underlying model.

3.5 Existence, uniqueness and convergence

There are very few existence proofs for the solutions of the discretized system (3.2).
For the Boltzmann approximation, Gärtner [34] proved that the discretized steady state
system has a solution which becomes unique if a small bias is applied. A similar result
for Fermi statistics has been obtained in [17].

A convergence theory for the finite volume scheme for the full discrete system (3.2)
and general flux functions is still missing. However, practical experience and a number
of results make its convergence plausible.

For example, in one space dimension, second order convergence in the discrete max-
imum norm for the Scharfetter-Gummel scheme has been shown in [84]. Under the
assumption that second derivatives of the continuous solution exist, in [61] for mod-
erately sized drift terms and two-dimensional, square grids, first order convergence for
the simple upwind scheme (see e.g. [39]), and second order convergence for the expo-
nential fitting scheme in the L2-norm has been shown. Re-interpretations of the finite
volume Scharfetter-Gummel scheme as a nonstandard finite element method allowed to
obtain convergence estimates for Scharfetter-Gummel schemes on Delaunay grids [63,
54], see Section 3.6. For a general approach to the convergence theory of finite volume
schemes, see [53]. In [41], weak convergence (no order estimate) for a generalization
of the Scharfetter-Gummel scheme to nonlinear convection-diffusion problems has been
shown. A convergence proof for a variant of the van Roosbroeck system discretized with
the simple upwind scheme was given in [48].

3.6 Mesh generation

In this section, we would like to give some practical information about generating the
Voronoi mesh. Even though the Voronoi mesh has a relatively complex structure, see
Section 3.1, we never need to compute the Voronoi cells directly. The reason is that the
Voronoi mesh is dual to a Delaunay mesh for which different mesh generators exist.

So let us begin with a partition of our polyhedral domain Ω =
⋃Nσ
k=1 σk into into

disjoint simplices σk as commonly used for finite element methods [50]. We denote the
set of all vertices with S. In 2D such a partition shall correspond to a triangulation and
in 3D to a tetrahedralization. We demand two additional properties of our mesh:

• Every simplex σ (triangle in 2D or tetrahedra in 3D) shall be Delaunay. That is,
no other simplex vertex in S shall lie in σ’s circumscribed sphere.

• The circumcenter of any boundary simplex shall lie inside our domain Ω.
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The first condition guarantees that the dual mesh is a Voronoi partition. For a given
vertex xi ∈ S, the corresponding Voronoi cell around S is given by the set

Vi =
{
x ∈ Rd : ∥x− xi∥ < ∥x− xj∥ for all xj ∈ S with xj ̸= xi

}
.

The Voronoi diagram – the set of Voronoi cells for all vertices in S – is dual to the
Delaunay triangulation of the point set S in the sense that for each edge xixj in the
Delaunay triangulation, ∂Vi ∩ ∂Vj ̸= ∅. Geometrically, the infinite Voronoi diagram can
also be obtained by connecting all circumcenters of each simplex and allowing boundary
edges to tend to infinity.

The second condition ensures that we can properly constrain the otherwise infinite
boundary Voronoi cells. To be more explicit, let us denote the restricted Voronoi cells
with ωi = Ω ∩ Vi. Interior cells are not affected by this restriction. However, if cir-
cumcenters near the boundary are outside of the domain Ω, Voronoi edges between two
neighboring boundary cells may be skewed. The second condition now ensures that
Voronoi edges between two neighboring boundary cells are perpendicular to the bound-
ary of the polygonal domain ∂Ω. It is sometimes reformulated in terms of a Gabriel
property [33, 31].

Such restricted Voronoi cells provide an admissible partition as required by the finite
volume method introduced in Section 3.1. A partition/mesh satisfying both conditions
is called boundary conforming Delaunay mesh [31].

For a 2D triangulation we may slightly rephrase these two conditions:

(i) For any two triangles with a common edge, the sum of their respective angles
opposite to that edge is less or equal to 180◦.

(ii) For any triangle sharing an edge with ∂Ω, its angle opposite to that edge is less or
equal to 90◦. That is, the circumcenter of the circle passing through the triangle
vertices lies within the domain.

Figure 3.2 shows 2D (boundary conforming) Delaunay triangulations.
We point out that in order to implement the finite volume method as described

in Section 3.1, there is no need for an explicit construction of the control volumes ωi.
Given the simplicial partition, it is sufficient to base the calculations on the simplicial
contributions skij = |∂ωi ∩ ∂ωj ∩ σk| and |ωi ∩ σK |, and to use a simplex based assembly
loop like often done for finite elements [59].

There are several efficient algorithms to construct Delaunay triangulations for a given
point set S [70, 26]. However, satisfying the boundary conforming Delaunay property is
more difficult as it requires the carefully inserting additional points on the boundary. In
3D slivers (very flat tetrahedra) must be avoided. And lastly, it may be very complicated
to fulfill additional requirements to improve the overall mesh size like constraints on
the minimum angle or the local element size. Even though there are still unsolved
problems, the triangle ([2], 2D, free for non-commercial use) and TetGen ([3], 3D, open
source) mesh generators help to create boundary conforming Delaunay meshes based on

30



Figure 3.2: First row: Piecewise linear description of computational domain with given
point cloud (black dots). Middle row: Delaunay triangulation of domain (gray edges)
and triangle circumcenters (blue dots). As some boundary triangles have angles larger
than 90◦ opposite to the boundary, their circumcenters lie outside of the domain. Last
row: Boundary conforming Delaunay triangulation with automatically inserted addi-
tional points at the boundary (green dots) by projecting the circumcenters outside onto
the boundary of the computational domain. The boundary conforming Delaunay tri-
angulation is created from the original point cloud (black dots) plus the projected cir-
cumcenters (green dots). Now all circumcenters (blue dots) lie within the computational
domain. The boundaries of the (restricted) Voronoi cells are shown as well (red edges).
Since the Voronoi cells are constructed from a boundary conforming Delaunay triangu-
lation, the edge between any two neighboring boundary cells is perpendicular to both
boundary nodes. This is by construction also true for interior nodes and the edge sepa-
rating them. The images were created with triangle [2].

algorithms which provably deliver meshes with the desired properties reasonably fast for
a broad class of piecewise linear geometries.

Other mesh generation approaches, in particular the advancing front [58] and the
octree method [66], are similarly widespread. However, while popular in finite element
community, their design makes it much harder to use them as a starting point for gener-
ating boundary conforming Delaunay meshes.

For simpler geometries rectangular and cuboid (tensor product) meshes are can be
used to generate admissible finite volume partitions [79]. Extending a 2D boundary
conforming Delaunay base mesh to a 3D prism mesh (and optionally further subdividing
these prisms into tetrahedra) provides another method to create an admissible finite
volume mesh [42].

3.7 Solvers

We briefly discuss two main techniques to solve the arising discrete nonlinear systems
introduced here.

3.7.1 Gummel iterations

Gummel [91, 78] suggested decoupling the three equations in the van Roosbroeck system.
He devised an iterative method at the continuous level, which for Boltzmann statistics
and drift-diffusion form leads to alternating between solving linear differential equations
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for the electric potential as well as the charge carrier densities. The connection between
Gummel’s map and Gummel’s iteration can be found in [60]. Gummel’s method is known
to have a larger convergence region and a slower asymptotic convergence rate compared
to Newtons’s method.

3.7.2 Newton’s method and path continuation

An important advantage of finite element and finite volume discretizations is the fact
that they create only next-neighbor couplings in the discretized systems. The resulting
linearized systems are therefore sparse, i. e. the maximum number of nonzero elements
in a matrix row is bounded by a constant independent of the number of discretization
cells, making it possible to use highly economic storage schemes.

Assuming that a good starting guess has been provided for example by following the
ideas in Section 2.3, Newton’s method constructs a new iterate by solving a linearized
system. The advantage of Newton’s method is that it converges quadratically if the
starting guess is sufficiently close to the solution [28], allowing to obtain highly accurate
discrete solutions at low additional cost. The major drawback is that the method might
converge very slowly or even fail to converge if the starting guess is too far from the
actual solution. Damping – multiplying the update with a factor less than 1 – is known
to increase the convergence region. Another remedy is parameter embedding where one
slowly changes a parameter, always using the old solution as a new starting guess.
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1 Introduction

The standard drift-diffusion model for semi-classical charge transport of free electrons and 
holes due to a self-consistent electric field in a semiconductor device is the van Roosbroeck 
system. We consider Voronoi finite volume schemes for the discretization of the semiconduc-
tor device equations. We are interested in the numerically more challenging degenerate case 
and pay particular attention to the choice of flux approximations. One of the most classical 
numerical flux scheme is arguably the Scharfetter–Gummel scheme (Scharfetter and Gummel 
1969), which yields a numerical stable and thermodynamically consistent numerical flux, but 
cannot be used for general charge carrier statistics. A generalization of the Scharfetter–Gum-
mel scheme is available (Eymard et al. 2006), but computationally expensive. Hence, several 
thermodynamically consistent numerical flux schemes, which modify this generalization to 
lower the computational costs, are proposed in the literature (Farrell et  al. 2017b, a, 2018; 
Patriarca et  al. 2018). We focus on the excess chemical potential scheme (Yu and Dutton 
1988) which appears to be used in parts of the device simulation community (Silvaco Interna-
tional 2016; Synopsys, Inc 2010). However, unfortunately, there seem to be no direct compari-
sons of this scheme with other recent modified Scharfetter–Gummel schemes. This paper aims 
to fill this gap by comparing it to the diffusion enhanced scheme (Bessemoulin-Chatard 2012), 
which was already compared to other modified Scharfetter–Gummel schemes and seems to 
be the most promising modified Scharfetter–Gummel flux (Farrell et al. 2017b). The integral 
flux by Eymard et al. is used as a reference flux. It supplements previously made temperature-
dependent observations (Kantner 2020).

2  Van Roosbroeck model

The stationary variant of the van Roosbroeck system is given by 

 where q denotes the elementary charge, �s the dielectric permittivity, NA and ND describe 
the density of singly ionized acceptor and donor atoms, and R the recombination. The set 
of unknowns is expressed by the electrostatic potential � and the quasi Fermi potentials 
for electrons �n and holes �p . The current densities in the continuity Eqs. (1b) and (1c) are 
given by

where the electron and hole densities n and p are defined by (Sze and Ng 2006) 

(1a)−∇ ⋅
(
�s∇�

)
= q

(
(p − NA) − (n − ND)

)
,

(1b)∇ ⋅ �n = qR(n, p),

(1c)∇ ⋅ �p = −qR(n, p),

(2)�n = −q�nn∇�n, �p = −q�pp∇�p,

(3a)n = NcF(�n), �n =
q(� − �n) − Ec

kBT
,
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 The strictly monotonously increasing statistics function F  will be discussed later. The 
conduction and valence band density of states are given by Nc and Nv , the mobilities by 
�n and �p and the Boltzmann constant by kB . The conduction and valence band-edge ener-
gies are denoted by Ec and Ev and T refers to the temperature. With help of the generalized 
Einstein relation it is possible to model the diffusion coefficients Dn and Dp via the the non-
linear diffusion enhancement

by (introducing the thermal voltage UT = kBT∕q)

With this relation, we can rewrite the electric fluxes (2) into a drift-diffusion form

In general, inorganic semiconductor devices can be modeled by choosing the Fermi-Dirac 
integral of order one-half (Sze and Ng 2006) for the statistics function F  . Non-degenerate 
semiconductors are modeled with the Boltzmann approximation F(�) = exp(�) . In this 
case, the diffusion enhancement (4) is equal to one. In this work, we focus on degenerate 
semiconductors, i.e. nonlinear diffusive problems. To compare our flux approximations, we 
choose the Blakemore statistics function F(�) = (exp(−�) + �)−1 with � = 0.27 which is a 
valid approximation of the Fermi-Dirac integral of order one-half in the low density limit 
𝜂 < 1.3 with a relative error of ≤ 0.03 (Blakemore 1952, 1982). Additionally, an expen-
sive but accurate numerical flux is known for the Blakemore case (Koprucki and Gärtner 
2013). The different statistics with the corresponding diffusion enhancements are depicted 
in Fig. 1. For brevity, we consider only the current density for electrons from now on and 
will partially omit the index n.

(3b)p = NvF(�p), �p =
q(�p − �) + Ev

kBT
.

(4)g(�) = �(F−1)�(�)

Dn = �nUTg

(
n

Nc

)
, Dp = �pUTg

(
p

Nv

)
.

(5)�n = −q�nn∇� + qDn∇n, �p = −q�pp∇� − qDp∇p.

Fig. 1  Left: Semi-logarithmic plot of different statistics functions F  for −5 ≤ � ≤ 5 . Right: Corresponding 
logarithmic plot of the diffusion enhancement g in (4). This function can be seen as a measure of how far 
away we are from the Boltzmann regime



 D. Abdel et al.

1 3

163 Page 4 of 10

3  Scharfetter–Gummel type fluxes

The open, bounded domain � , on which the model (1) is defined, is partitioned into N 
control volumes �K such that � =

⋃N

K=1
�K , where each �K is associated with a colloca-

tion point �K ∈ �K . We are interested in a numerical flux j along the edge connecting the 
collocation points of two neighboring control volumes �K and �L which is assumed to be 
aligned with the normal direction with respect to the interface �K ∩ �L . In the following, a 
subindex K corresponds to an evaluation of a physical quantity at node �K and a subindex 
L to an evaluation at node �L , respectively. Integrating (1b) over �K , using the Gauss diver-
gence theorem and one point quadrature rules yields the discrete counterpart

where N(�K) denotes the set of all control volumes neighboring �K . The nonlinear flux 
function jn;KL = jn;KL(�K , �L,�K ,�L) approximates the projected flux � ⋅ �KL locally along 
the edge ��K ∩ ��L , where �KL is the corresponding normal vector along ��K ∩ ��L . For 
details concerning the finite volume method see Farrell et al. (2017a).

Furthermore, one property which holds on a continuous level to avoid unphysical state 
dissipation is the preservation of thermodynamic equilibrium (Farrell et al. 2017a). Math-
ematically, this means that vanishing fluxes shall imply constant quasi Fermi potentials. 
A numerical flux j = jKL is now said to be thermodynamically consistent, if it satisfies an 
analogous discrete relation, i.e.

where ��KL = �L − �K and ��KL = (�L − �K)∕UT . Thermodynamic consistency is also 
important, when coupling the van Roosbroeck system to heat transport models (Farrell 
et al. 2017b). We discuss now different thermodynamically consistent numerical fluxes that 
may be used within a Voronoi finite volume framework.

3.1  Generalized Scharfetter–Gummel scheme

Under the assumption that the flux �n and the electric field −∇� are constant along each 
face of a Voronoi cell, the flux can be projected onto the shared edge between two neigh-
boring control volumes. Then, an integral equation can be derived (Eymard et al. 2006), 
which shall be satisfied by the unknown local numerical flux j

where � is defined in (3). The integration limits are given by �K = �n
(
�K ,�K

)
 and 

�L = �n
(
�L,�L

)
 and hKL denotes the Euclidean distance between two neighboring nodes 

�K and �L . The existence of a solution to (6) was proven by Gärtner (2015), even though 
the integral equation is in general not explicitly solvable. We refer to the solution of (6) as 
generalized Scharfetter–Gummel flux. Note that for non-degenerate semiconductor devices 
the generalized scheme reduces to the classical Scharfetter–Gummel scheme (Scharfetter 
and Gummel 1969)

∑

�L∈N(�K)

|��K ∩ ��L|jn;KL = q|�K|R(nK , pK),

j = 0 implies ��KL = ��KL,

(6)

�L

∫
�K

(
j∕j0

F(�)
+ ��KL

)−1

d� = 1, j0 = q�nNc

UT

hKL
,
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for a non-dimensionalized edge current jsg = j∕j0 with B as the Bernoulli function which is 
defined by B(x) ∶= x∕(ex − 1) , B(0) = 1 . Additionally, it was shown by Koprucki and Gärt-
ner (2013) that for degenerate semiconductors based on Blakemore statistics the integral 
Eq. (6) can be reduced to a fixed point equation, namely

The implicit Eq. (8) can be solved within a few Newton steps, but the efficiency of this 
flux is highly dependent on the choice of initial value. Hence, computationally less expen-
sive flux discretization schemes are needed as an alternative. Still, we will use this scheme 
as a reference flux for the case of degenerated semiconductors, modeled by Blakemore 
statistics.

3.2  Diffusion enhanced scheme

Recently, another modified Scharfetter–Gummel discretization scheme was introduced (Besse-
moulin-Chatard 2012). There, a logarithmic average for the nonlinear diffusion enhancement 
g in (4) is considered,

resulting in the local flux approximation

We stress that, in case of a denominator in (9) near zero, i.e. �K ≈ �L , regularization strate-
gies need to be developed to handle the removable singularity.

3.3  “Sedan” scheme

The earliest reference we could find for the excess chemical potential scheme is the source 
code of the SEDAN III simulator (Yu and Dutton 1988), therefore in the following, we will 
likewise refer to this scheme as the Sedan scheme. There are benchmarks computed by the 
device simulator SEDAN III itself available in literature, but to the best of our knowledge 
there are barely any comparisons of this flux discretization scheme with other schemes known. 
A numerical analysis focused comparison of this flux approximation is given by Cancès et al. 
(2021). The scheme is motivated by rearranging the drift part in (5) to include the excess 
chemical potential, �ex = logF(�) − � , yielding

with

(7)jsg = B
(
��KL

)
e�L − B

(
−��KL

)
e�K ,

(8)jg = B
(
��KL + �jg

)
e�L − B

(
−
[
��KL + �jg

])
e�K .

(9)gKL =
�L − �K

logF(�L) − logF(�K)
,

(10)jd = gKL

[
B

(
��KL

gKL

)
F
(
�L
)
− B

(
−
��KL

gKL

)
F
(
�K

)]
.

(11)js = B
(
QKL

)
F(�L) − B

(
−QKL

)
F(�K)

(12)QKL = ��KL + �ex
L
− �ex

K
= ��KL − (�L − �K) + log

F(�L)

F(�K)
.



 D. Abdel et al.

1 3

163 Page 6 of 10

4  Comparison of flux discretizations

This paper aims to extend a previous discussion (Farrell et al. 2017b) by examining similar 
aspects for the excess chemical potential flux approximation introduced in Sect. 3.3.

4.1  Taylor expansions

Taylor expansions of the following form dependent on ��KL and ��KL

can be derived for the flux approximations introduced in Sect. 3 for a sufficiently smooth 
statistics F  , when expanding in �̄�KL = (𝜂L + 𝜂K)∕2 , see Abdel (2020) and Farrell et  al. 
(2017b). Here, the fluxes jg, js and jd correspond to one of the flux discretization schemes 
introduced in Sect. 3. For the prefactors �j , j ∈ {1, 2, 3} , we have

The absolute error in these prefactors �j between the Taylor expansions of the general-
ized Scharfetter–Gummel scheme and the two modified ones is depicted in Fig. 2. For the 
depicted figures we choose the statistics function F  as the Blakemore statistics.

For large negative arguments of the function F  the Boltzmann and the Blakemore statis-
tics nearly coincide, corresponding to the non-degenerate case. Hence, the modified Schar-
fetter–Gummel schemes converge towards the classical scheme (7) and we observe nearly 
vanishing errors in Fig. 2. For large positive arguments we observe that the errors in the 
prefactors corresponding to the diffusion enhanced scheme increase with the exponents of 
��KL , whereas the error corresponding to the excess chemical potential scheme nearly van-
ishes. Due to this observation it gives rise to think that in case of no electrical field the 
excess chemical potential flux performs better than the diffusion enhanced scheme. How-
ever, neither the diffusion enhanced nor the excess chemical potential scheme is third-order 
accurate. To measure the quality of the fluxes in a different manner, second-order error 
estimates for the local flux errors are considered next.

When neglecting third-order terms, the following error bounds between the modified 
and the generalized flux dependent on the diffusion enhancement can be derived (Abdel 
2020; Farrell et al. 2017b)

(13)
jk = −F(�̄�KL)𝛿𝜓KL + F(�̄�KL)𝛿𝜂KL

+ 𝛼1𝛿𝜓
2
KL
𝛿𝜂KL + 𝛼2𝛿𝜓KL𝛿𝜂

2
KL

+ 𝛼3𝛿𝜂
3
KL
, k ∈ {g, s, d}

𝛼j = 𝛼j

(
F(�̄�KL),F�(�̄�KL),F��(�̄�KL),F���(�̄�KL)

)
.

Fig. 2  Errors between the third-order prefactors of Taylor series expansion of the exact Scharfetter–Gum-
mel scheme (6) and the two modified schemes for �̄�

KL
∈ [−5, 5]
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The error bounds indicate a better performance of the diffusion enhanced scheme for large 
values of the diffusion enhancement g, i.e. for statistics strongly deviating from the Boltz-
mann regime.

4.2  Error between local flux approximations

We study the logarithmic error between the modified flux schemes and the generalized 
scheme for two fixed averages �̄�KL . The errors for the simulation of a degenerate semicon-
ductor can be seen in Fig. 3. The black dashed lines correspond to thermodynamic consist-
ency, as well as pure drift currents, i.e. �K = �L . In both cases, the modified schemes agree 
exactly with the generalized scheme.

Since F(�̄�KL)∕g(�̄�KL) = F�(�̄�KL) , the derivative of the statistics function appears in the 
error estimates (14) and (15). The derivative of the Blakemore statistics decreases for 
large positive arguments. Hence, we observe in Fig.  3 that increasing the average �̄�KL 
results in a comparatively smaller error. Both, the error estimates (14), (15) and Fig. 3 
indicate a larger area, where the diffusion enhanced and the generalized scheme agree 

(14)|js − j| ≤ 1

2

F(�̄�KL)

g(�̄�KL)

(
|𝛿𝜓KL𝛿𝜂KL| + 𝛿𝜂2

KL

)
,

(15)|jd − j| ≤ 1

2

F(�̄�KL)

g(�̄�KL)
|𝛿𝜓KL𝛿𝜂KL|.
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well for small values of ��KL and large values of the potential difference ��KL . Fur-
ther, the red dashed line in Fig. 3 indicates agreement of the excess chemical potential 
scheme and the exact solution of (6) for a purely diffusive flux � , i.e. a vanishing electri-
cal field ��KL = 0 . This can be proven analytically, see Abdel (2020). In this specific 
case, the excess chemical potential scheme is the best possible flux approximation.

5  Numerical example

Finally, we study the impact of the different flux approximations on the simulation of 
degenerate semiconductor devices for a 6�m long GaAs p-i-n diode with a width of 
0.5�m and a depth of 1.0 ⋅ 10−4cm . A motivation for this example is given in Farrell 
et al. (2017b). Since the 3D device only varies along one axis, it suffices to simulate the 
device along one spatial dimension. On each 2�m long layer (p/n−doped or intrinsic) we 
choose N = 3 ⋅ 2nref−1 uniform nodes. The donor and acceptor doping densities are given 
by ND = 4.35 × 1017cm−3 and NA = 4.20 × 1018cm−3 . An open source solver, based on 
VoronoiFVM (Fuhrmann 2019–2020), was used which allows to use automatic dif-
ferentiation. The stationary van Roosbroeck system (1) with zero recombination sup-
plemented with Dirichlet-Neumann boundary conditions is considered. The resulting 
current voltage curves for a refinement level nref = 3 and the L∞ errors in the computed 
total currents based on the different flux approximations for the first nine refinement 
level are depicted in Fig. 4. It can be observed that eventually the errors in the computed 
total currents based on the flux schemes converge with order O(h2) . Furthermore, it sug-
gests that on coarse meshes, which are hard to avoid for expensive 3D simulations, the 
excess chemical potential flux performs better than the diffusion enhanced scheme, yet 
multidimensional device set-ups were not simulated.

Fig. 4  Left: The I–V curves computed with the different schemes for fixed mesh refinement. The reference 
solution was computed using the generalized Scharfetter–Gummel scheme on refinement level 10. Right: 
Convergence studies for the absolute errors of the total currents. The absolute errors correspond to the nine 
refinement level, where the rightmost point depicts the error on the coarsest mesh
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6  Conclusion

Our goal was to assess the quality of the excess chemical potential flux (11) which has 
received surprisingly little attention in the literature. To this end, we compared it to another 
modified Scharfetter–Gummel scheme (10) by studying its error with respect to the more 
accurate but expensive integral flux (6). For this, we analyzed Taylor expansions of the flux 
discretization schemes, the errors in the local flux approximations and simulated a p-i-n 
benchmark. Further applications and the impact of this scheme on realistic multidimen-
sional device settings will be part of future research.
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7

Modelling charge transport in
perovskite solar cells:
Potential-based and limiting ion
vacancy depletion

D. Abdel et al. Modelling charge transport in perovskite solar cells: Potential-based
and limiting ion vacancy depletion. Electrochimica Acta 390 (2021), p. 138696. doi:
10.1016/j.electacta.2021.138696

Abstract From Maxwell-Stefan diffusion and general electrostatics (see Section 2.2),
we derive a drift-diffusion model for charge transport in perovskite solar cells (PSCs)
where any ion in the perovskite layer may flexibly be chosen to be mobile or immobile.
Unlike other models in the literature, our model is based on quasi Fermi potentials instead
of densities. This allows to easily include nonlinear diffusion (based on Fermi-Dirac,
Gauss-Fermi or Blakemore statistics for example) as well as limit the ion depletion (via
the Fermi-Dirac integral of order −1). The latter will be motivated by a grand-canonical
formalism of ideal lattice gas. Furthermore, our model allows to use different statistics
for different species. We discuss the thermodynamic equilibrium, electroneutrality as well
as generation/recombination. Finally, we present numerical finite volume simulations to
underline the importance of limiting ion depletion.

Conception: Perovskites are one of the research topics in my research group, for which
I developed the research idea and led the team.

Execution: The code implementation has been carried out by Dilara Abdel, the mod-
elling by Petr Vágner and feedback/proofreading/corrections were pro-
vided by myself.

Reporting: The text was written jointly.
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Modeling and simulation of the
lateral photovoltage scanning
method

P. Farrell, S. Kayser, and N. Rotundo. Modeling and simulation of the lateral pho-
tovoltage scanning method. Computer and Mathematics with Applications 102 (2021),
pp. 248–260. doi: 10.1016/j.camwa.2021.10.017

Abstract The fast, cheap and nondestructive lateral photovoltage scanning (LPS)
method detects inhomogeneities in semiconductors crystals, see Section 2.4. The goal of
this paper is to model and simulate this technique for a given doping profile. Our model
is based on the semiconductor device equations combined with a nonlinear boundary
condition, modeling a volt meter. To validate our 2D and 3D finite volume simulations,
we use theory developed by Tauc [94] to derive three analytical predictions which our
simulation results corroborate, even for anisotropic 2D and 3D meshes. Our code runs
about two orders of magnitudes faster than earlier implementations based on commercial
software [5]. It also performs well for small doping concentrations which previously could
not be simulated at all due to numerical instabilities. We present a convergence study
which shows that the LPS voltage converges quadratically. Finally, our simulations pro-
vide experimentalists with reference laser powers for which meaningful voltages can still
be measured. For higher laser power the screening effect does not allow this anymore.

Conception: Together with Nella Rotundo I designed this paper project. Whereas I fo-
cussed on all numerical aspects, Nella Rotundo focussed on the analytical
aspect. The modeling was done jointly.

Execution: Stefan Kayser, our postdoc, carried out the implementation which I closely
supervised.

Reporting: The paper was written by all three authors.

Due to copyright reasons, this article cannot be included online.
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Assessing doping inhomogeneities in
GaAs crystal via simulations of
lateral photovoltage scanning
method

S. Kayser et al. Assessing doping inhomogeneities in GaAs crystal via simulations of
lateral photovoltage scanning method. Journal of Crystal Growth 571 (2021), p. 126248.
doi: 10.1016/j.jcrysgro.2021.126248

Abstract We performed a numerical feasibility study of the application of the lateral
photovoltage scanning (LPS) method to detect doping inhomogeneities (striations) in
GaAs. Those striations follow the shape of the crystallization front, enabling its visual-
ization. The obtained results allow direct validation of simulated temperature distribu-
tions in GaAs crystals. Our simulations revealed that realistic laser powers lead to LPS
signals on the order of nanovolts. The actually used LPS measurement setup detects
voltages at microvolt scale. So in order to build practical setups, one needs to either use
better voltage detection devices or improve the method itself.

Conception: This paper is a practical implication of [PF3] which we jointly developed.

Execution: Stefan Kayser, our postdoc, and myself carried out the implementation.
In particular, at the reviewers’ request I reran the simulations behind
Figure 3 and developed the code for Figure 4.

Reporting: The paper was written by all four authors.

Due to copyright reasons, this article cannot be included online.
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From atomistic tight binding theory
to macroscale drift diffusion:
multiscale modeling and numerical
simulation of uni-polar charge
transport in (In,Ga)N devices with
random fluctuations

M. O’Donovan et al. From atomistic tight binding theory to macroscale drift diffusion:
multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N
devices with random fluctuations. Journal of Applied Physics 130.6 (2021), p. 065702.
doi: 10.1063/5.0059014

Abstract Random alloy fluctuations significantly affect the electronic, optical and
transport properties of (In,Ga)N-based optoelectronic devices. Transport calculations
accounting for alloy fluctuations in the band-edge energies currently use a combination
of modified continuum-based models, which neglect to a large extent atomistic effects.
In this work, we present a model that bridges the gap between atomistic theory and
macroscopic transport models. To do so, we combine atomistic tight-binding theory and
continuum-based drift-diffusion solvers, where quantum corrections are included via the
localization landscape method. We outline the ingredients of this framework in detail
and present first results for uni-polar electron transport in single and multi (In,Ga)N
quantum well systems. Overall, our results reveal that both random alloy fluctuations
and quantum corrections significantly affect the current voltage characteristics of uni-
polar electron transport in such devices. However, our investigations indicate that the
importance of quantum corrections and random alloy fluctuations can be different for
single and multi quantum well systems.
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Conception: The original idea of this project is due to Stefan Schulz and Thomas
Koprucki.

Execution: Michael O’Donovan and myself are first authors for having done the most
work. Whereas I mostly worked on setting up the transport calculations
in ddfermi, Michael O’Donovan mostly focussed on the tight-binding cal-
culations and running the final code for various setups.

Reporting: Most of the report has been written by Michael O’Donovan. I wrote
the part concerning the drift-diffusion model and the appendix as well as
improved other parts of the documents.
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ABSTRACT

Random alloy fluctuations significantly affect the electronic, optical, and transport properties of (In,Ga)N-based optoelectronic devices.
Transport calculations accounting for alloy fluctuations currently use a combination of modified continuum-based models, which neglect to
a large extent atomistic effects. In this work, we present a model that bridges the gap between atomistic theory and macroscopic transport
models. To do so, we combine atomistic tight-binding theory and continuum-based drift–diffusion solvers, where quantum corrections are
included via the localization landscape method. We outline the ingredients of this framework in detail and present first results for uni-polar
electron transport in single and multi- (In,Ga)N quantum well systems. Overall, our results reveal that both random alloy fluctuations and
quantum corrections significantly affect the current–voltage characteristics of uni-polar electron transport in such devices. However, our
investigations indicate that the importance of quantum corrections and random alloy fluctuations can be different for single and multi-
quantum well systems.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0059014

I. INTRODUCTION

III-nitride (III-N)-based quantum well (QW) structures are at
the heart of modern short wavelength light emitting diodes
(LEDs).1,2 Here, (In,Ga)N/GaN multi-QWs (MQWs) are used to
realize devices operating in the visible part of the spectrum.
While in the blue wavelength range such III-N LEDs offer very high
efficiencies, achieving the same at longer wavelengths is very chal-
lenging. Therefore, to tailor and guide the design of future energy
efficient III-N LED structures operating over a wide spectral range,
accurately modeling their fundamental properties is essential.

It is important to note that nitride-based heterostructures have
in general very different properties to other III–V material systems,
such as GaAs or AlGaAs. This starts with the underlying crystal
structure: the thermodynamically stable phase for GaAs is zinc
blende, while III-N systems preferentially crystallize in the wurtzite
phase.3–5 This difference in the crystal structure has far reaching
consequences, resulting, for instance, in a spontaneous electric
polarization vector field in wurtzite III-N systems; such a field is
absent in a zinc blende structure.6 Therefore, in a nitride-based het-
erostructure, any discontinuity in the polarization vector field leads
to a very strong electrostatic built-in field, which then can give rise
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to a quantum confined Stark effect (QCSE).7,8 The QCSE is further
increased by strain dependent piezoelectric polarization contribu-
tions.9,10 As a consequence, the radiative recombination rates in
III-N heterostructures are strongly reduced by the QCSE.7,11,12

When it comes to modeling charge carrier transport in LED
structures utilizing III-N QWs, the effects of the built-in polariza-
tion field are taken into account in “standard” one-dimensional
(1D) drift–diffusion (DD) simulations. However, in general, the
turn-on voltages predicted by such an approach are considerably
higher compared to experiments.13–15 It has recently been shown
that this shortcoming in the simulation of (In,Ga)N-based LEDs16

or uni-polar devices15 is related to (i) treating these systems as 1D
as well as (ii) the semi-classical nature of DD models. Regarding
(i), theoretical and experimental studies have revealed that the elec-
tronic and optical properties of III-N-based heterostructures are
strongly affected by alloy fluctuations and accompanying carrier
localization,17,18 all of which is not fully reflected within a 1D DD
transport model.15,16,19 Furthermore, (ii) the semi-classical nature
of DD models neglects quantum mechanical effects, such as tun-
neling. Fortunately, such quantum effects can be included, to some
extent, in DD simulations via the so-called localization landscape
theory (LLT)20–22 or the (nonlocal) effective potential method to
smooth band edges.23–25

Thus, to accurately guide the design of future III-N-based
LEDs, a fully three-dimensional (3D), ideally atomistic, transport
model that includes quantum mechanical effects for the entire
device is required. While atomistic calculations have been per-
formed to target these questions,26,27 such a treatment is numeri-
cally extremely expensive.16 This becomes even more challenging
when device performance studies are required, where, for instance,
the well width or the composition in the well and barrier regions of
the device is systematically modified. Given the numerical burden
of the fully atomistic and quantum mechanical solvers, the work-
horse for transport calculations still remains largely DD. The chal-
lenge here is now to transfer atomistic effects accurately into a
modified, quantum-corrected DD transport model. Previous work,
targeting, for instance, (In,Ga)N LED or uni-polar devices, tackled
such a multiscale problem in the following way:16,28 First, a
random distribution of In and Ga atoms on either a cubic or wurt-
zite grid is generated. Second, based on such a distribution, the
local In content is determined by using averaging procedures on
the underlying grid. Equipped with this information, continuum-
based strain and built-in field calculations are performed, which
can then be used to generate an “energy landscape” (conduction
and valence band edges/confining potential), mainly in the frame-
work of a single-band effective mass approximation (EMA).
This information can either be directly used for 3D DD-based
transport calculations or even coupled with LLT to account for
quantum corrections. It is important to note that such an approach
relies on (i) identifying an interpolation procedure for the local
alloy content, (ii) the knowledge of how related material parameters
change with composition locally, and (iii) assuming that bulk
parameters can be used locally to obtain strain and built-in field
effects. Finally, it assumes that even when including random alloy
fluctuations, the modified continuum-based single-band EMA
describes the electronic structure of this complicated system accu-
rately. Thus, overall “atomistic” aspects enter mainly at the In atom

distribution level. However, it is difficult to judge how well local
fluctuations in strain or built-in fields are captured in comparison
with a fully atomistic approach (valence force field plus local polari-
zation theory). Furthermore, consequences of alloy fluctuations for
the electronic structure of the well and again how this compares to
a fully atomistic description, e.g., tight-binding, are not widely dis-
cussed or analyzed.

We have recently established a theoretical framework that
allows one to target these questions,29 which works as follows:
First, we generate an energy landscape that is directly obtained
from an atomistic tight-binding (TB) model, which accounts for
random alloy fluctuations and connected fluctuations in strain and
built-in fields on a microscopic level. Second, the electronic struc-
ture of, e.g., an (In,Ga)N QW, can be calculated within TB and a
single-band EMA (using this landscape) so that the data can be
directly compared since both operate on the same alloy microstruc-
ture. Here, in principle, the only free parameter in the modified
EMA is the effective mass; the confining potential (band edges) is
directly obtained from the TB model. Our results showed that
when operating on the same alloy microstructure (alloy configura-
tion) and the same confining energy landscape, the modified EMA
significantly overestimates the bandgap/transition energy of
(In,Ga)N/GaN QWs, at least for In contents larger than 5%.
However, as the calculations were performed on the same alloy
microstructure, it allows one to adjust the EMA. We have found
that using a rigid energy shift within the QW region results in a
good agreement between TB and EMA, at least in terms of transi-
tion energies and the distribution of (localized) energy states.29

In this work, we extend the theoretical framework above to
study charge carrier transport in III-N-based devices. We give the
details of the method and apply it to uni-polar transport in single
QW (SQW) and MQW (In,Ga)N systems. In general, we use the
energy landscape calculated from our atomistic TB model in con-
junction with LLT to generate a quantum-corrected energy land-
scape. This landscape presents the backbone of our DD simulation.
For the active (In,Ga)N QW region, we use a finite-element mesh
with as many nodes as atomic lattice sites, which we later enlarge to
work in combination with a specialized finite volume method. In
doing so, (n-doped) contact regions can be added to the system on a
much coarser grid to model a full device. We highlight that the
developed approach can be extended to investigate complete (In,Ga)
N-based LED structures (p–i–n systems) as well as AlGaN-based UV
LEDs in future studies.

Our obtained results for uni-polar (In,Ga)N SQW and MQW
structures show that when including LLT and alloy fluctuations,
smaller turn-on voltages are observed in comparison with a stand-
ard virtual crystal approximation (VCA) calculation; this agrees
with previous studies.15,16 Furthermore, and as discussed already
above, “standard” 1D uni-polar electron transport calculations,
which effectively correspond to our VCA results, give too large
turn-on voltages when compared to experiment. The fact that our
full 3D model gives smaller turn-on voltages compared to VCA
suggests already an improved description of experimental findings
and highlights again the importance of quantum corrections and
alloy fluctuations for an accurate description carrier transport in
(In,Ga)N-based devices. We stress that our results are achieved
without any re-fitting/adjusting of, e.g., piezoelectric coefficients,
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which is often applied in “conventional” 1D DD calculations found
in the literature.30,31

The remainder of the paper is organized as follows: We
present the theoretical ingredients of our multiscale model, namely,
TB, LLT, and DD, as well as the mesh generation (additional infor-
mation is supplied in an Appendix) in Sec. II. Our results for uni-
polar transport in (In,Ga)N-based SQW and MQW systems are
detailed in Sec. III. Finally, we summarize our framework and the
results in Sec. IV.

II. THEORETICAL FRAMEWORK: FROM AN ATOMISTIC
ENERGY LANDSCAPE TO DRIFT–DIFFUSION
SIMULATIONS

We present and discuss the different ingredients of our multi-
scale framework in this section. We start in Sec. II A with the TB
model and briefly describe the procedure to generate an energy
landscape that contains the contributions from random alloy fluc-
tuations and thus associated strain and built-in field fluctuations.
Section II B details how the obtained landscape is transferred to a
finite-element method (FEM) mesh, which presents the starting
point for our charge carrier transport calculations. Utilizing this
mesh, Sec. II B gives details on (i) how the random alloy fluctua-
tions are treated for later transport calculations and (ii) how the
LLT equation is solved on the underlying FEM mesh. The uni-polar
transport model based on the derived energy landscape, which we
employ for our numerical studies, is introduced in Sec. II D; here,
we also describe how the spatially varying band edges are handled
numerically.

A. Tight-binding model and local band-edge
calculations

In order to capture the effects of (random) alloy fluctuations
on the conduction (CBE) and valence band edges (VBE) and ulti-
mately on the electronic structure of the QW active region of a
III-N device, we employ atomistic TB theory. In the following, we
give a brief overview of the underlying model and how to extract
local band edges from a TB model; more details can be found in
Refs. 17, 29, and 32. While this approach is general, we discuss in
the following an (In,Ga)N/GaN QW system as an example.

The backbone of our theoretical framework is an empirical
nearest neighbor sp3 TB model.32 The TB parameters were deter-
mined by fitting GaN and InN bulk TB band structures to the cor-
responding hybrid functional density functional theory (DFT)
band structures.32 Given the (large) lattice mismatch between InN
and GaN (!10%), strain effects have to be taken into account in
(In,Ga)N/GaN QWs. To obtain an atomistic resolution of the
strain in such a structure, the equilibrium positions of all the atoms
in the simulation supercell are obtained using a valence force field
(VFF) model,17,32 which has been implemented in the software
package LAMMPS.33 As already discussed above, III-N heterostruc-
tures in general exhibit built-in (spontaneous and piezoelectric)
polarization vector fields. To account for (local) polarization effects
in (In,Ga)N/GaN QWs, a local polarization theory32 is employed.
The TB model summarized in this paragraph has been extensively
benchmarked against DFT as well as experimental data.32,34

As highlighted above, a key ingredient for DD transport calcula-
tions is the (local) CBE and VBE. This information can now be
extracted from our TB model by diagonalizing the Hamiltonian at
each lattice site.29 Our previous work29 already revealed that when
using this atomistically generated landscape directly in conjunction
with an effective mass model, electron as well as hole ground state
energies, and thus the connected transition energies, are significantly
underestimated, at least for systems with In contents larger than 5%.
However, the broadening of the energy spectrum due to alloy fluctua-
tions was in good agreement between the models, even though carrier
localization effects may not be treated accurately in the EMA. The
overall agreement between TB and EMA can be improved in terms of
transition energies, energy spectrum broadening, and to some extent
carrier localization characteristics by applying a (composition depen-
dent) rigid shift to the band edges in the QW region. We apply this
approach here too. In doing so, we find indeed good agreement
between TB and results obtained within LLT when operating on the
confining potential landscape extracted from TB.

B. Device mesh generation for transport calculations

The obtained local band edges on the atomistic wurtzite lattice
sites need to be transferred to a mesh that allows us to perform
the transport calculations. Two aspects are important here.
First, the mesh needs to be fine enough to capture alloy fluctua-
tions in the active region. Second, in regions where no alloy fluctu-
ations are present, the band-edge energies can be obtained from
the literature (e.g., n-doped GaN contacts). In this contact region,
the mesh can also be chosen much coarser when compared to the
atomistic region; this helps to keep the computational cost low. The
latter part is very important to make self-consistent 3D DD simula-
tions feasible. A schematic illustration of our approach to address
this challenge is shown in Fig. 1. We start from an atomistic TB
energy landscape as discussed above and ultimately construct a
larger mesh for the DD simulations.

Next, we discuss the post-processing within the atomistic
region before we explain the embedding into the larger mesh.
Using the atom lattice sites as nodes, we construct a FEM mesh via
TetGen.35,36 The TB energy landscape determines the energy values at
the nodes. We stress again that the underlying TB mesh with In, Ga,
and N atoms is not used to generate a composition profile/map on
which local averages for continuum-based calculations are determined;
we use TB directly to define the energy landscape. Figure 2(a) depicts
the TB model data for a 3.1 nm thick In0:1Ga0:9N SQW in the
x–z-plane, where the z-axis is parallel to the wurtzite c-axis. The
depicted test structure has 38 150 atoms and the corresponding FEM
mesh has 38 150 nodes, and 280 816 tetrahedra [see Fig. 2(b)]; this
mesh represents the atomistic region discussed above. We have
employed this transfer of TB data to an atomistic FEM mesh previ-
ously29 to compare the electronic structure of (In,Ga)N/GaN QWs
when using atomistic and continuum methods.

In order to perform full-device calculations, contact regions
(e.g., n-doped GaN contacts) have to be attached to the atomistic
region of the simulation. In the context of DD simulations for
semiconductor devices, the finite-volume method (FVM) has been
exceptionally successful. Our specific approach described in detail
in the Appendix requires a mesh that ensures that the numerical
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fluxes are perpendicular to the cell interfaces. Such a mesh is dual
to a boundary conforming a Delaunay tetrahedral mesh.
Therefore, the next step is the generation of such a finite-volume
mesh from the atomistic FEM mesh, which satisfies this addi-
tional requirement. Again via TetGen, we produce a so-called
boundary-conforming Delaunay tetrahedral mesh (for details, see
the Appendix), which includes the original FEM lattice sites and
interpolate the atomistic data onto it; see Figs. 2(b) and 2(c). The
FVM mesh has 47 248 nodes and 305 272 tetrahedra. Finally, we
attach coarser intrinsic meshes as well as n-doped GaN contact
regions to both sides of the atomistic region, again using TetGen.
Thus, a complete n–i–n diode has been created, see Fig. 2(d),
which contains the atomistic region (box with yellow-dashed
lines), the coarse grained intrinsic GaN (light blue and green),
and n-doped GaN (red and purple) regions. While as a test
system we have used here an n–i–n structure, the approach can
now be easily adapted for a p–i–n setup or other material systems.
The resulting boundary-conforming finite-volume mesh of the
complete n–i–n structure has in total 61 202 nodes and 369 430
tetrahedra and can be used for DD simulations with ddfermi.37

The tool chain for creating the combined meshes and transferring
TB data has been implemented with WIAS-pdelib38 and TetGen.35,36

C. Localization landscape theory and random alloy
fluctuations on a FEM mesh

Having transferred the TB band-edge data to a larger mesh
with contact regions as described above, care must be taken when

performing DD simulations on this mesh. It has already been dis-
cussed in the literature that for transport properties, the spatial
length scale of the potential fluctuations is effectively determined
by the de Broglie wavelength.16 Consequently, charge carrier wave
functions sample a wider “area” of the confining energy landscape
rather than just a single lattice site. While in VCA this may be of
secondary importance, in a strongly fluctuating energy landscape, it
is important to account for this. The question has been discussed
in detail in Ref. 16, and the authors applied a Gaussian averaging
procedure to determine the local alloy content. The same ad hoc
procedure has been employed by DiVito et al.28 While we follow a
similar approach here and employ Gaussian averaging, we employ
this to the original band-edge profile ETB

c from TB

Eσ
c (xi) ¼

P
j E

TB
c (xj) exp # (jxi#xj j)2

2σ2

! "

P
j exp # (jxi#xjj)2

2σ2

! " (1)

but not to the alloy content. Here, Eσ
c (xi) is the CBE energy at the

(lattice) site xi; σ denotes the Gaussian width and acts as a smooth-
ing parameter. This averaging procedure is of course only relevant
within the QW(s) and near the well–barrier interface. This scheme
has been implemented for the FEM mesh. Nodal values will be
interpolated to a finer boundary conforming the FVM mesh, fol-
lowing the approach described in Sec. II B. Given that we will focus
our attention on uni-polar transport, this procedure will be applied
to the CBE but can in future studies also be applied to the VBE.

FIG. 1. Schematic workflow to connect an atomistic tight-binding model to a continuum-based drift–diffusion solver (here ddfermi). The connection between the atomistic
and continuum-based grid is achieved in three steps. First, we generate an atomistic finite-element method (FEM) mesh with as many nodes as atomic sites. The data on
the FEM mesh are then interpolated on a Voronoi finite-volume method (FVM) mesh needed for stable drift–diffusion simulations. Finally, the FVM mesh is enlarged by
adding coarser contact and intrinsic regions. The inset details four different ways atomistic band-edge data are transferred to the FVM mesh. Whereas the data paths indi-
cated in black refer to the VCA type of data, the data paths in red refer to random alloy data. Solid arrows indicate an operation (stated in the box) on the FEM mesh, and
dashed arrows indicate interpolation to the FVM mesh. The meshes are shown visually in Fig. 2.
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We stress again that in Refs. 16 and 28 the In content at each point
is computed from a Gaussian average, and then the strain, built-in
field, and ultimately the CBE are evaluated in a pure continuum
framework. We go beyond this by calculating the CBE
(the confining potential) at each (lattice) site from the atomistic TB
approach, with no need to calculate local strain or built-in poten-
tials in a continuum-based framework before applying a Gaussian
function to the confining potential. Thus, in comparison with
Refs. 16 and 28, we have here a posteriori broadening and transfer
the atomistic effects on the band offset, strain, and built-in field
due to alloy fluctuations directly into the confining energy land-
scape before averaging.

In general, employing such a Gaussian averaging procedure
comes at the cost of having to correctly determine the width, σ, a
priori. To analyze the impact of the σ on the CBE profile, which
ultimately will also impact the transport, Fig. 3 shows the profile of

Eσ
c # qψ in a 3.1 nm wide In0:1GaN0:9=GaN SQW, comparing

random alloy fluctuations with different Gaussian widths σ to a
VCA. Here, ψ denotes the electrostatic potential in the n–i–n
device, including also piezoelectric and spontaneous polarization
effects; q denotes the elementary charge. At each plane along the
c-direction, the full range of CBE values over the x–y plane is
shown, which allows clear visualization of the impact of the alloy
fluctuations on the CBE. Several features are important. The most
striking difference between the VCA and the smoothed random
alloy (RA) CBE is that the potential barrier between the GaN and
(In,Ga)N QW material is significantly reduced. This feature is
expected to reduce the turn-on voltage of the device and will be dis-
cussed in detail further below. Moreover, the barrier–well interface
reduces further with increasing σ. However, the reduction between
σ ¼ 0:6 nm and σ ¼ 0:9 nm is smaller than the reduction from
σ ¼ 0:3 nm to σ ¼ 0:6 nm, even though the difference in σ values is

FIG. 2. Transfer of atomistic data to a larger finite-volume mesh for continuum-based drift–diffusion simulations. We start with a point set (a) defined by the atomistic
lattice sites as provided by tight-binding. Using TetGen, a tetrahedral finite-element mesh (b) is generated, which has exactly the same number of nodes as there are
atoms in (a). In doing so, the tight-binding input is exactly represented on the nodes of the atomistic finite-element method mesh. The colors in (b) represent the values of
the conduction band edge Ec , and (c) depicts the Ec profile of an In0:1Ga0:9N single quantum well in virtual crystal approximation. The data from the atomistic finite-element
method mesh are then interpolated to a finite-volume mesh (d), namely, a boundary-conforming Delaunay triangulation generated by TetGen.35,36 After attaching intrinsic
device regions and doped contact regions to the atomistic region, the full 3D device mesh (e) for drift–diffusion simulations is established.
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the same (Δσ ¼ 0:3 nm). We also note that while the average
band-edge energy in the well is basically unaffected by different σ
values, the CBE fluctuations in the well noticeably reduce.
Consequences of these effects on the current–voltage characteristics
are discussed below.

Having determined the local band edges from atomistic TB
theory, we can now also include quantum corrections using LLT.21

These corrections are not limited to a calculation that accounts for
random alloy fluctuations; LLT can also be used in conjunction
with a VCA description. We note that many commercial software
packages targeting carrier transport properties of III-N devices also
have the option to include quantum mechanical effects by solving
Schrödinger’s equation in the active region (QW region) of a device.
However, such an approach is numerically very demanding even for
a 1D simulation, not to mention a full 3D calculation, which is nec-
essary in the presence of random fluctuations. When using LLT, one
avoids having to solve the Schrödinger equation and thus a large
eigenvalue problem. In LLT, one is left with a linear partial differen-
tial equation, given by21

ĤEMAu : ¼ # !h2

2m* Δuþ Vu ¼ 1: (2)

Here, ĤEMA denotes a single-band effective mass Hamiltonian, m*

the effective (electron or hole) mass, and V the confining
potential energy. For the confining potential, V , we use our TB
band-edge data. Here, VCA data, V ¼ EVCA

c , or random alloy
data, V ¼ Eσ

c , for different σ values can be used. As described in
detail in Refs. 16 and 21, once u is determined by solving Eq. (2)
with appropriate boundary conditions, one can also extract an

effective confining potential W via

W(xi) ¼ 1=u(xi): (3)

This effective potential for the energy landscape can be used in
DD simulations to include both random alloy fluctuations and
quantum corrections at the macroscopic DD scale.16 More details
on LLT are found in Refs. 16, 21, and 22.

Regarding the computational aspects, we numerically solve the
LLT equation, Eq. (2), supplied with appropriate Dirichlet and
Neumann boundary conditions on the atomistic FEM mesh via a
standard FEM.39 The Dirichlet conditions are applied on the
left and right boundaries of the atomistic FEM mesh shown in
Fig. 2(b) and are implemented via a penalty technique.40 The FEM
discretization is implemented in WIAS-pdelib,38 using PARDISO
as a linear solver.41

Since LLT basically replaces the Schrödinger equation, LLT
provides also information about the energy spectrum and the wave
functions.42 Thus, the outcome of the LLT calculations can be
directly compared to our TB data. For the SQW structures analyzed
in Sec. III, we find very good agreement between TB and LLT when
applying a rigid band-edge shift of 129 meV and in line with
Ref. 29. All of these provides a feedback loop between our atomistic
model, the obtained landscape, and the resulting electronic struc-
ture. This benchmarking gives further confidence that the here
established simulation framework for performing transport calcula-
tions captures alloy fluctuations accurately in SQWs.

Examples for the resulting effective energy landscapes/confin-
ing potential energies W # qψ are given in Fig. 4. We observe that
similar to the random alloy case without quantum corrections, cf.

FIG. 3. Randomly fluctuating, smoothed conduction band-edge profile along the
z- (c)-axis of an n–i–n In0:1Ga0:9N/GaN single quantum system at zero bias
(more details given in the main text). The results are displayed in the absence
of quantum corrections via LLT but for three different Gaussian widths σ,
namely, σ ¼ 0:3 nm (red), σ ¼ 0:6 nm (blue), and σ ¼ 0:9 nm (green), as
well as for a “standard” virtual crystal approximation (VCA, black).

FIG. 4. Randomly fluctuating, smoothed conduction band-edge profile along the
z- (c)-axis of an n–i–n In0:1Ga0:9N=GaN single quantum well system at zero
bias (more details given in the main text). The results are displayed in the pres-
ence of quantum corrections via LLT but for three different Gaussian widths σ,
namely, σ ¼ 0:3 nm (red), σ ¼ 0:6 nm (blue), and σ ¼ 0:9 nm (green), as
well as a “standard” virtual crystal approximation (VCA, black).
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Fig. 3, the LLT treatment leads also to a reduction in the potential
barrier between the GaN material and (In,Ga)N QW. Therefore,
the strongly fluctuating TB landscape is “softened,” given that the
carrier wave functions sample a wider “area” on this landscape, as
one may expect from a quantum mechanical wave function analy-
sis. However, two additional aspects are important to note.
As already highlighted above, LLT can not only be combined with
the random alloy system, but can also be employed in a VCA type
calculation. Thus, from a VCA plus LLT description, it is also
expected that the potential barrier between the GaN and the
(In,Ga)N QW material is reduced. Therefore, including quantum
corrections in VCA should also affect the turn-on voltage of a
device when compared to a “standard” VCA calculation without
quantum corrections. Second, as one can infer from Fig. 4, once
LLT has been applied, increasing the Gaussian width σ for the CBE
softening in the random alloy case has very little impact on the
resulting band-edge profile. Below, we will analyze this aspect in
greater detail when looking at the I–V curves of (In,Ga)N/
GaN-based uni-polar devices.

D. Uni-polar drift–diffusion model with spatially
varying band edges

In Secs. II A–II C, we have discussed the mesh generation and
also how random alloy fluctuations and quantum corrections in the
confining potential are treated. In this section, we focus our atten-
tion on the semi-classical van Roosbroeck system, which models
DD charge transport in semiconductors.43 As discussed above, we
simulate here uni-polar DD transport in (In,Ga)N-based systems.
However, the framework is general and can be directly transferred
to the bipolar case.

For a bounded spatial domain Ω , Rd where d [ 1, 2, 3f g,
the stationary van Roosbroeck system44 consists of two coupled
nonlinear partial differential equations of the form

#∇ % εs(x)∇ψ(x)ð Þ ¼ q C(x)# n(x)ð Þ, (4a)

∇ % jn ¼ 0 (4b)

for x [ Ω. The Poisson equation, Eq. (4a), describes the electric field
E ¼ #∇ψ that is generated by a scalar electric potential ψ(x) in the
presence of a free charge carrier density. Here, εs(x) ¼ ε0εr(x)
describes the position dependent dielectric constant and q is the ele-
mentary charge. In a (doped) uni-polar semiconductor device, the
charge density is given by the density of free (negatively charged)
conduction band electrons, n(x), and the density of ionized built-in
dopants, C(x) ¼ Nþ

D (x), where Nþ
D denotes the density of singly

ionized donor atoms. The current density jn(x) is given by the usual
expression43

jn(x) ¼ #qμnn(x)∇wn(x): (5)

That is, the negative gradient of the quasi Fermi potential, wn(x), is
the driving force of the current; μn(x) denotes the free carrier
mobility.

Using the Boltzmann approximation, the densities of free car-
riers, n(x), in a solid are given by

n(x) ¼ Nc exp
q(ψ(x)# wn(x))# Edd

c (x)
kBT

# $
, (6)

where kB is the Boltzmann constant, T denotes the temperature,
Edd
c (x) is the (position dependent) band-edge energy used in the

transport calculations, and Nc is the effective density of states,

Nc ¼ 2
2πm*

ekBT
!h2

# $3=2

:

We note that we have different options for setting the
band-edge energy Edd

c in the DD simulations. One may choose
(smoothed) TB data Edd

c ¼ Eσ
c , VCA results Edd

c ¼ EVCA
c , or the

outcome of LLT calculations Edd
c ¼ W. A schematic illustration of

the different options is given in the inset of Fig. 1. Equation (6)
indicates that the electric potential, ψ , leads to a bending of the
energy landscape, Ec # qψ , and thus results in a nonlinear, self-
consistent coupling to the carrier densities. In the following, we
assume a globally constant temperature for carriers and the crystal
lattice of T ¼ 300 K.

We note that, for instance, due to random alloy fluctuations,
the CBE Ec varies spatially. Thus, the electron flux, Eq. (5), needs
to be correctly discretized. To this end, we extend the well-known
local Scharfetter–Gummel flux approximation47 to variable band
edges, here shown for the CBE Ec. Since by construction of the
FVM mesh (more details in the Appendix), the cell edges are
orthogonal to the fluxes, and we may consider only 1D fluxes,

jn ¼ #znqμnUTNc
1
h

B #z
δψ # δEc=q

UT

# $
exp(ηn,L)

%

#B z
δψ # δEc=q

UT

# $
exp(ηn,K)

&
: (7)

The parameter zn ¼ #1 is the charge number for electrons,
B(x) ¼ x=(exp(x)# 1) denotes the Bernoulli function, UT ¼ kBT

q
the thermal voltage, δψ ¼ ψL # ψK , δEc ¼ Ec,L # Ec,K , and

ηn,P ¼ zn
Ec,P # q(ψP # wn,P)

kBT
, P [ {K , L}:

The subindices K and L refer to the nodes xK and xL associated
with the corresponding cells. Further details of the numerical
implementation of the above expressions, especially how to embed
all this into a finite-volume framework, are given in the Appendix.
The physical parameters used in the DD simulations are listed in
Table I.

III. RESULTS

In this section, we apply the developed framework to uni-
polar, n-doped/intrinsic/n-doped (n-i-n), (In,Ga)N/GaN-based
devices: We analyze the impact of random alloy fluctuations and
quantum corrections introduced by LLT on the I–V curves of such
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structures. The results are compared with the data obtained from a
VCA description of the same structures. Special attention is paid to
the impact of the Gaussian broadening width, σ, on the results.
This analysis is carried out for both SQW systems, Sec. III A, as
well as for MQW structures consisting of three wells, Sec III B.
For all these calculations, the well width is 3.1 nm, the In content
in the well is 10%, and the barrier material is GaN. In the MQW
system, the width of the barrier between the wells is 8.0 nm.
Figure 5 gives a schematic illustration of the system. Except for the
VCA systems, all calculations make a random alloy assumption for
the InGaN alloy forming the QW; any additional penetration of In
atoms into the GaN barrier is not considered. The assumption of
such an abrupt interface between InGaN and GaN is consistent
with the experimental data in Ref. 18, at least for growth of InGaN
on GaN. When capping an InGaN QW with GaN, penetration of
In atoms into the GaN barrier may occur. However, recent experi-
mental studies show that by a careful choice of the growth condi-
tions, this effect can be reduced.48 Given that we are interested in
establishing a general simulation framework, these In atom “bleed-
ing” effects are of secondary importance for the present study but
can be incorporated in future investigations.

A. (In,Ga)N SQW system

In the first step and before looking at a full current–voltage
(I–V) curve of the In0:1Ga0:9N SQW system, we focus our attention
on the impact of random alloy fluctuations on the results. More
specifically, we will study the impact of the Gaussian width σ and
thus the related smoothing of the energy landscape on the current.
Figure 6 displays the current in the system at a fixed bias of 3V for
different σ values. The data are shown when including and when
neglecting quantum corrections arising from LLT. The calculations
have been performed for five different random alloy configurations
in the QW, allowing us to also study the influence of the alloy
microstructure on the current; the error bars indicate the standard
deviation. One can infer from Fig. 6 that when neglecting LLT
effects, the resulting current (strongly) depends on the width of the
Gaussian function, at least for σ , 0:6 nm (! 2a, where a is the
in-plane lattice constant of GaN). Above this threshold, the depen-
dence of the current I on σ is less pronounced. We will discuss the
impact of σ on the full I–V curve further below, but noting here
that σ may impact the results. In the literature, the value of σ has,
for instance, been estimated using atom probe tomography data,
and a value of σAPT ¼ 0:6 nm has been assumed.16 Turning now to
the calculations including quantum corrections via LLT, Fig. 6
reveals that once these effects are taken into account, σ is of secon-
dary importance for the obtained current I at the fixed bias of 3V;
this is at least the case for a SQW. We note, however, that this
aspect may depend on the in-plane dimensions of the simulation
cell and thus needs to be carefully investigated when performing
calculations that include random alloy fluctuations in general. This
observation agrees with our earlier conclusion that Gaussian
smoothing does not affect the band-edge profile, see Fig. 4, when
including LLT effects in the calculations.

FIG. 5. Schematic illustration of the simulation cell with three quantum wells
(QWs) in the active region. The n-doped regions (light blue) have a doping
density of n ¼ 5( 1018 cm#3 and a length of LD ¼ 160 nm. The intrinsic
regions on the coarse mesh (green) have a length of LI ¼ 40 nm. The atomistic
region, also assumed as intrinsic, contains regions of a GaN barrier material
(dark blue) with a length of LB ¼ 8:0 nm and In0:1Ga0:9N QWs (red) with a
length of LW ¼ 3:1 nm. The simulation cell has an in-plane dimension of w (
h ¼ 5:1( 4:4 nm2 along the entire system.

FIG. 6. Current I at a bias of 3V as a function of the Gaussian width, σ, without
LLT (purple) and with LLT (blue) corrections for an n–i–n system with a 3.1 nm
wide In0:1Ga0:9N single quantum well. The results are averaged over five different
microscopic alloy configurations, and errors bars are given by standard deviation.

TABLE I. Material parameters used in drift–diffusion simulations. Unless otherwise
stated, all parameters are taken from Ref. 16.

Physical quantity Value Units

m*
e GaN 0.2 m0

m*
e InN 0.07 m0

μn n-GaN 200 cm2=(V s)
μn i-GaN 44045 cm2=(V s)
μn i-(In,Ga)N 300 cm2=(V s)
εGaNr 9.746 ε0
εInNr 15.346 ε0
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Having gained initial insight into the impact of the Gaussian
width σ on the current I at a fixed voltage V , in the second step,
we focus our attention now on the full I–V curve of the SQW
system. Figure 7 depicts the obtained results within the different
approaches. Our reference point is again a “standard” VCA (black
solid line) model, which neglects both alloy fluctuations and LLT
effects. In addition, we present also the data of a combined VCA
and LLT treatment. Finally, Fig. 7 displays results for the random
alloy case for different σ values (red lines: σ ¼ 0:3 nm; blue lines:
σ ¼ 0:6 nm) with and without LLT effects included in the calcula-
tions. Turning to the result in the absence of LLT first, it becomes
clear that when accounting for random alloy fluctuations in the
model, the turn on voltage is shifted to lower values in comparison
with a standard VCA description. This is also consistent with pre-
vious literature results on uni-polar transport calculations of (In,
Ga)N/GaN-based QW systems.15 However, our calculations also
reveal, and in line with Fig. 6, that the obtained current at a given
voltage V depends on the Gaussian width σ. As already indicated
above, when neglecting quantum corrections via LLT, a further
analysis is required to determine σ: if σ is too small, the resulting
very strong fluctuations in the energy landscape within the well are
beyond the applicability of a continuum-based DD model; if σ is
too large, the fluctuations in the energy landscape are completely
removed as discussed in Sec. II C. Therefore, when neglecting LLT
effects, care must be taken when choosing σ.

In the second step, we turn and discuss the I–V curves when
including effects arising from LLT (dashed lines in Fig. 7, both in
the random alloy case but also in the VCA simulations). Looking at
the calculations including random alloy fluctuations and LLT first,
we observe that the Gaussian width σ is of secondary importance;

this is again consistent with our findings in Figs. 4 and 6. We note
also that when choosing a relatively large value of σ (e.g., 0.6 nm),
the random alloy I–V curves with and without LLT (blue) do not
differ significantly. We attribute this to the effect that both LLT and
a relatively large Gaussian broadening soften the well–barrier inter-
face and thus reduce the resistivity of the system. Furthermore, the
fluctuations in the energy landscape within the QW are reduced,
leading to a further decrease in the resistance of the QW region.
We note that in the presented test system, the in-plane dimensions
of the simulation cell are relatively small, and further test on the
impact of σ on the I–V curve may be required in future studies.
However, this is beyond the scope of the present work, which intro-
duces the general framework. Nevertheless, our results show that
the calculations including random alloy fluctuations and LLT
effects give the lowest turn-on voltage and highest current com-
pared to all other models discussed here. However, and interest-
ingly, we find also that the VCA plus LLT calculations give almost
the same I–V curve as the quantum-corrected random alloy simu-
lations. This indicates that for a SQW, once LLT is included in the
model, the VCA can provide a very good approximation of the I–V
characteristics of the uni-polar n–i–n system in comparison with a
full 3D random alloy model. Furthermore, since the (3D) VCA
neglects any in-plane variation in the system, already, a 1D VCA
simulation seems to lead to reliable results—as long as LLT is
included. Having only to rely on a 1D simulation would obviously
reduce the computational cost immensely compared to a full 3D
calculation including alloy fluctuations. However, and as we will
show in Sec. III B, for a MQW system, a 1D VCA plus LLT calcula-
tion is no longer sufficient.

B. (In,Ga)N MQW system

Having discussed a SQW system in Sec. III A, we focus our
attention now on a MQW system. Figure 8 shows the I–V curves
for a MQW system consisting of three In0:1Ga0:9N=GaN QWs with
a barrier width of LB ¼ 8:0 nm. Here, we followed the approach of
the SQW, and calculations have been performed using either a
VCA treatment or account for random alloy fluctuations in the
system. Again, the simulations are carried out both with and
without quantum corrections via LLT.

As in the SQW case, VCA calculations neglecting LLT effects
show the highest turn-on voltage and lowest current when com-
pared with all other data. When combining VCA and LLT, we find
similar to the SQW case that the turn-on voltage is reduced and
the current density is increased. However, and this is in strong con-
trast to the SQW data, cf. Fig. 7, in the MQW system, the results
from VCA plus LLT deviate noticeably from the outcome of calcu-
lations that accounted for both random alloy fluctuations and LLT;
cf. Fig. 8. We also note that VCA plus LLT simulations show signif-
icant deviations (lower currents, higher turn-on voltages) from
random alloy calculations that neglect LLT effects. Overall, we attri-
bute the aspect that random alloy fluctuations seem to become
more important in the MQW system to inherent features of LLT.
As discussed, for instance, in detail in Refs. 21 and 22, to predict
the ground state energy of a QW uainf LLT, the so-called reference
energy, Eref , has to be chosen appropriately. However, the choice of
Eref not only affects the prediction of the ground state energy of the

FIG. 7. Current–voltage curves for an n–i–n In0:1Ga0:9N single quantum well
system, within virtual crystal approximation (VCA, black) and a random alloy
(RA) with Gaussian widths of σ ¼ 0:3 nm (red) and σ ¼ 0:6 nm (blue). Solid
lines show results without quantum corrections, and dashed lines denote results
with quantum corrections included via localization landscape theory.
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system, but also affects the effective potential W, Eq. (2), which is
used in the DD transport calculations. If the QWs in a MQW
system in a DD simulation are energetically aligned, e.g., CBEs of
all wells forming the MQW have approximately the same energy
for an applied bias, and Eref can be chosen as the bottom of the
CBE. However, if there is a large difference in the CBEs of the dif-
ferent wells in the system, LLT may give a poorer approximation of
W for the well where the CBE is energetically furthest away from
the reference energy Eref . When applying a bias V in an n–i–n
system, this situation is often found. As a result, the softening of
the well–barrier interface along with an effective decrease of the
QW depth (confinement energy) may be different for the different
QWs in the MQW system. Obviously, for a SQW system, this issue
never arises. However, two important general aspects are to note.
First, the LLT treatment of MQWs may be further improved by
partitioning the MQW system into different sub-regions in which
LLT is then solved separately. This means that one could calculate
LLT in each region with its own reference energy and “stitch” the
resulting effective potentials together. Such an advanced treatment
is beyond the scope of the present work, where we are establishing
a general first framework; further refinements can be made in
future studies. Second, we note that in a p–i–n system, near the
turn-on voltage, the QW band edges are expected to be energeti-
cally not too different. In that case, even without partitioning the
system, LLT should provide a good approximation for biases near
the turn-on voltage.

In principle, the same difficulties with respect to Eref apply here
in the random alloy systems when including LLT in the calculations.
However, and compared to the outcome of VCA plus LLT studies,
our results show that for simulations including alloy fluctuations but
neglecting LLT, larger currents are observed. As discussed above, the
calculations taking random alloy fluctuations into account

automatically include some softening of the well barrier interface.
Combining LLT with random alloy fluctuations results in a further
increase of the current and reduction of the turn-on voltage. We
stress that standard 1D VCA DD calculations presented in the litera-
ture on n–i–n (In,Ga)N QW systems always predicted much higher
turn-on voltages when compared to the experimental studies.15

Thus, the here obtained results reveal and support again the origin
of this discrepancy: standard 1D VCA calculations neglect alloy fluc-
tuations. Thus, even though Eref still has to be treated carefully, the
resulting energy landscape should present an improvement over
VCA in terms of the predicted I–V characteristics.

While the above calculations have been performed at a fixed
Gaussian width σ of σ ¼ 0:6 nm, we still need to evaluate the
impact of σ on the I–V characteristics. In the SQW case, cf. Fig. 6,
the predicted current at a fixed voltage was virtually independent of
σ once LLT was applied. Due to the difficulty of choosing Eref in a
MQW system, the current may now depend more strongly on the
Gaussian width σ. However, our analysis reveals that after LLT has
been applied, at a fixed voltage of 3V, the obtained currents differ
only by less than 8% from the mean over a σ range from 0 to
0.9 nm (not shown). The change due to different Gaussian widths
σ is only a small correction compared to the change between, e.g.,
VCA and random alloy fluctuation calculations, indicating again
that calculations including both random alloy fluctuations and LLT
are robust against changes in σ. Random alloy calculations without
including LLT follow a similar trend to that of the SQW shown in
Fig. 6 (purple) where the result can strongly depend on the choice
of σ, particularly for σ less than 0.6 nm.

IV. CONCLUSIONS

In this work, we presented a general framework that allows
us to bridge the gap between atomistic tight-binding theory and
continuum-based drift–diffusion calculations. The model also
includes quantum corrections via the localization landscape method
to address charge carrier transport in III-N-based devices. Our
approach furthermore enables a feedback loop between atomistic
theory and continuum models since both operate on the same con-
fining energy landscape. Current models in the literature mainly use
modified continuum-based approaches that generate confining
energy landscapes from locally averaged alloy contents and do not
offer the option to compare the outcome of this with an atomistic
model.

In addition to establishing and providing insight into the
workflow of the overall framework, we have also targeted as a test
system uni-polar electron transport in (In,Ga)N-based single and
multi-quantum well structures. Overall, we find that random alloy
fluctuations and quantum corrections significantly impact the
current–voltage characteristics of uni-polar (In,Ga)N devices when
compared to standard virtual crystal approximation studies, which
are at the heart of most literature carrier transport solvers.
In general and independent of single and multi-quantum well
systems, the combination of quantum corrections and random
alloy fluctuations leads to lower turn-on voltages and higher
currents when compared to a virtual crystal approximation.
Overall, this effect is very important since literature studies on uni-
polar carrier transport have revealed that “standard” 1D continuum-

FIG. 8. Current–voltage curves for a three In0:1Ga0:9N quantum well system,
within virtual crystal approximation (VCA, black) and when random alloy (RA)
fluctuations (Gaussian width of σ ¼ 0:6 nm) are included in the model (blue).
Solid lines indicate results without quantum corrections, and dashed lines show
results with quantum corrections included via localization landscape theory.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 130, 065702 (2021); doi: 10.1063/5.0059014 130, 065702-10

© Author(s) 2021



based transport solvers, effectively corresponding to our virtual
crystal results, give turn-voltages considerably larger than the experi-
ment. Thus, our here predicted shift to lower turn-voltages due to
quantum corrections and alloy fluctuations indicates an improved
description of experimental data. However, we note that the relative
importance of quantum corrections and random alloy fluctuations
varies between single and multi quantum well systems. We find that
in the single quantum well system, quantum corrections are extremely
important. As a consequence, in the single quantum well, a combined
virtual crystal approximation plus LLT treatment leads to almost the
same current–voltage curve as in a calculation that also includes alloy
fluctuations. This indicates that for a single quantum well system, 1D
calculations including LLT may be sufficient; this reduces the computa-
tional demand significantly. However, our analysis also indicates that in
a MQW system this finding may not hold. In such cases alloy fluctua-
tions are required and so a full 3D transport calculation must be
carried out. Therefore, our investigations highlight that for MQW
systems, both atomistic as well as quantum mechanical effects should
be taken into account to achieve an accurate description of the I–V
characteristics of uni-polar (In,Ga)N-based devices.

We note that while we have applied this model to uni-polar
electron transport here, the toolchain is general and can thus be
applied to bi-polar devices. Furthermore, it may also be employed
to investigate other material systems, e.g., AlGaN, once an atomistic
energy landscape is extracted. All these questions can now be tar-
geted in future studies.
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APPENDIX: FINITE-VOLUME DISCRETIZATION

Unlike other previous studies,16 we discretize Eq. (4) via the
finite-volume method (FVM) on Voronoi cells.43 The 3D mesh is
shown in Fig. 2(c). The construction of such a mesh from a
boundary-conforming Delaunay triangulation is illustrated in
Fig. 9. Here, we briefly outline our approach.

We integrate the system given by Eq. (4) over a test volume ωk

and apply Gauss’s divergence theorem, resulting in the integral
equations

#
ð

@ωk

εs∇ψ % ν ds ¼ q
ð

ωk

C # n ψ , wnð Þð Þdx,

ð

@ωk

jn % ν ds ¼ 0

for k ¼ 1, . . . , N , where N corresponds to the number of cells.
Here, ν is the outward-pointing unit normal to the control volume
ωk. These equations represent an integral form of the van Roosbroeck
system discussed in the main text on every control volume. In particu-
lar, the first equation is Gauss’s law of electrodynamics. The second

equation constitutes a balance law for the electrons. The densities in
each control volume change only due to in- and outflow through the
boundary.

Next, the surface integrals are split into the sum of integrals
over the planar interfaces between the control volume ωk and its
neighbors. Employing one point quadrature rules for the surface

FIG. 9. First row: Piecewise linear description of computational domain with a
given point cloud (black dots). Middle row: Delaunay triangulation of domain
(gray edges) and triangle circumcenters (blue dots). As some boundary trian-
gles have angles larger than 90) opposite to the boundary, their circumcenters
lie outside of the domain. Last row: Boundary-conforming Delaunay triangulation
with automatically inserted additional points at the boundary (green dots) by pro-
jecting the circumcenters outside onto the boundary of the computational
domain. The boundary-conforming Delaunay triangulation is created from the
original point cloud (black dots) plus the projected circumcenters (green dots).
Now, all circumcenters (blue dots) lie within the computational domain. The
boundaries of the (restricted) Voronoi cells are shown as well (red edges). Since
the Voronoi cells are constructed from a boundary-conforming Delaunay triangu-
lation, the edge between any two neighboring boundary cells is perpendicular to
both boundary nodes. This is by construction also true for interior nodes and
the edge separating them. The images were created with triangle.49
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and volume integrals, we deduce the finite-volume scheme,

X

ω‘[N ωkð Þ
j@ωk > @ω‘jDk,‘ ¼ qjωkj Ck # n ψk, wn;k

( )( )
,

X

ω‘[N ωkð Þ
j@ωk > @ω‘jjn;k,‘ ¼ 0:

(A1)

In the above formulas, N ωkð Þ denotes the set of all control
volumes neighboring ωk. In 2D, the measure j@ωk > @ω‘j corre-
sponds to the length of the boundary line segment and in 3D to
the area of the intersection of the boundary surfaces. The measure
jωkj is in 2D given by the area and in 3D by the volume of the
control volume ωk. The unknowns ψk and wn;k are approximations
of the electric potential as well as the quasi Fermi potentials for
electrons evaluated at node xk. The doping is defined by the inte-
gral average

Ck ¼
1
ωk

ð

ωk

C(x) dx,

which can be approximated by its nodal value C(xk). The numeri-
cal fluxes Dk,‘ and jn;k,‘ in Eq. (A1) approximate the fluxes #ε∇ψ %
νk‘ and jn % νk‘ in Eq. (4), respectively, on the interfaces between
two adjacent control volumes ωk and ω‘. ψk, wn;k and ψ‘, wn;‘.

While the electron flux is numerically approximated via an
extension of the Scharfetter–Gummel scheme, Eq. (7), which can
handle a spatially varying band-edge profile Edd

c , the electric dis-
placement flux is approximated by

Dk,‘ ¼ #εs
ψ‘ # ψk

hk,‘
,

where

hk,‘ ¼ kx‘ # xkk

is the edge length. We point out that the flux approximation in
Eq. (A1) is crucial to obtain a stable and physics preserving numer-
ical solution.
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a b s t r a c t

We study different discretizations of the van Roosbroeck system for charge transport
in bulk semiconductor devices that can handle nonlinear diffusion. Three common
challenges corrupting the precision of numerical solutions will be discussed: bound-
ary layers, discontinuities in the doping profile, and corner singularities in L-shaped
domains. We analyze and benchmark the error and the convergence order of finite
difference, finite-element as well as advanced Scharfetter–Gummel type finite-volume
discretization schemes. The most problematic of these challenges are boundary layers in
the quasi-Fermi potentials near ohmic contacts, which can have a drastic impact on the
convergence order. Using a novel formal asymptotic expansion, our theoretical analysis
reveals that these boundary layers are logarithmic and significantly shorter than the
Debye length.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding charge transport in semiconductors is of vital importance to develop novel electronic devices. The
van Roosbroeck system, a drift–diffusion model, is commonly used to describe and numerically solve charge-transport
in bulk semiconductors. The assumption that thermodynamic processes in crystalline semiconductors are governed
by Boltzmann statistics becomes inaccurate for large densities, e.g., due to high doping or low temperatures [1]. For
organic semiconductors this inaccuracy becomes already problematic for low or moderate densities [2,3]. Only recently
thermodynamically consistent numerical schemes have been proposed to handle non-Boltzmann statistics [4–8]. A key
indicator to measure how well the semiconductor can be described by Boltzmann statistics is the diffusion enhancement
[2,9]. In the van Roosbroeck system charge transport is modeled in terms of carrier densities for electrons and holes as well
as the electrostatic potential [10]. This approach is fairly common in the mathematical literature regarding semiconductor
device modeling [10–13]. However, using quasi-Fermi potentials instead of carrier densities as unknowns can be advanta-
geous for various reasons: thermodynamic descriptions of semiconductors are naturally based on quasi-Fermi potentials
and electrostatic potential. The quasi-Fermi potentials also allow a more formalized description of heterojunctions and
boundaries using gradient flows [14,15]. Moreover, at heterojunctions and in thermodynamic equilibrium, densities are
discontinuous and change over orders of magnitude while the quasi-Fermi potentials are constant. Numerical schemes
need to ensure that the densities are positive, which quasi-Fermi potentials guarantee automatically via the equation of

∗ Corresponding author.
E-mail address: patricio.farrell@tuhh.de (P. Farrell).
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state. For this reason, we focus in the present work on numerical discretization schemes which are not only expressed in
terms of quasi-Fermi potentials but can also handle nonlinear diffusion for non-Boltzmann equations of state.

Ideal metallic contacts, i.e., ohmic contacts, are usually modeled by assuming pointwise electroneutrality and Dirichlet
boundary conditions [1,10]. However, as the asymptotic analysis in this study will reveal, this creates severe logarithmic
boundary layers in the quasi-Fermi potentials. The physical meaning of the resulting length scale is questionable once
the current density exceeds a certain threshold and the boundary layer becomes much shorter than the Debye length,
which often is addressed using boundary adapted meshes [16,17]. If the boundary layer is not treated appropriately,
standard numerical schemes might fail to provide meaningful solutions. Nevertheless, Markowich [11] showed that the
van Roosbroeck model with these Dirichlet conditions is mathematically well-posed. However, since Dirichlet conditions
at ohmic contacts have received some physical criticism [10], we point out that also other types of boundary conditions at
metallic contacts are discussed in the literature [18], i.e., natural boundary conditions with contact resistance. Additional
problems that corrupt the regularity of solutions emerge due to the lack of smoothness of the doping and due to
corner singularities, which are present in virtually every realistic semiconductor design. Despite their usefulness for
semiconductor simulations, we are not aware of systematic convergence studies for finite element and finite volume
discretizations that take into account the effect of nonlinear diffusion, boundary layers, nonsmooth doping profiles and
corner singularities.

The present paper aims at bridging this gap and provides a thorough comparison of different discretization philoso-
phies. We study three major challenges for recent finite difference/finite element and finite volume schemes which are
designed to deal with nonlinear diffusion in a thermodynamic consistent way and are based on quasi-Fermi potentials as
primary variables. In particular, we study the error and convergence rate of the numerical solutions in the presence of:
boundary layers, discontinuous doping profile and corner singularities. We provide a theoretical derivation and analysis
of the boundary layer near ohmic contacts, using an inner leading-order expansion of a matched asymptotic expansion
for the quasi-Fermi potentials. The discontinuity in the doping profile leads to slower convergence, which we examine as
well. Finally, we study how an L-shaped domain impacts the convergence order of the solutions due to corner singularities.

In the following section, we introduce the basic semiconductor device equations, the van Roosbroeck system, nondi-
mensionalize it as well as state and solve the leading order inner problem for boundary layers of the quasi-Fermi potentials
near ohmic contacts. In Section 3 we provide specific details for the spatial discretization of the van Roosbroeck system,
i.e., using finite differences, finite elements, and Scharfetter–Gummel type finite volume methods. The influence of the
boundary layers at ohmic contacts as well as the impact of the smoothness of the doping is examined with the help of a
1D problem in Section 4. In Section 5 we then compare how the different discretization schemes handle a 2D L-shaped
domain and study the influence of boundary layers and corner singularities on the convergence order in more detail.
The simulation data presented in this work is also published in data repository [19] and can be used for comparative
benchmark studies.

2. Modeling semiconductors with ohmic contacts

2.1. Stationary van Roosbroeck system

The van Roosbroeck system is a drift–diffusion model, which describes the recombination and transport of charge
carriers driven by diffusion and by electric fields within a semiconductor device. It consists of three nonlinear, coupled
partial differential equations for the electrostatic potential ψ : Ω → R as well as the non-negative electron and hole
densities n : Ω → R+ and p : Ω → R+, namely a Poisson equation and two continuity equations. We consider a
homogeneous material and some domain Ω ⊆ Rd for d ∈ {1, 2, 3} in an isothermal setting. Then the stationary van
Roosbroeck system is given by the system of elliptic partial differential equations

−∇ · (ε0εr∇ψ) = q (C + p − n) , (1a)

∇ · jn = +qR, (1b)

∇ · jp = −qR, (1c)

where q denotes the elementary charge, ε0 is the vacuum permittivity and εr is the relative permittivity of the material,
see Table 2. The recombination rate R and the charge-carrier currents jn, jp depend on the solution n, p, ψ and vanish in
thermal equilibrium. The doping concentration C:Ω → R varies spatially and can have discontinuities. The equations of
state are given by

n(ηn) = NcF
(
ηn
)
, ηn(ψ, ϕn) =

q(ψ − ϕn) − Ec
kBT

, (2a)

p(ηp) = NvF
(
ηp
)
, ηp(ψ, ϕp) =

q(ϕp − ψ) + Ev
kBT

, (2b)

where the statistical distribution function F relates the electron and hole densities n, p to the corresponding electrochem-
ical potentials ϕn, ϕp, which are also known as quasi-Fermi potentials. Working with quasi-Fermi potentials has all the
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advantages mentioned in the introduction, in particular from a modeling and computational point of view. Furthermore,
we set the recombination rate to zero as it plays a minor role for most of our considerations.

The effective density of states for electrons in the conduction band Nc and holes in the valence band Nv as well as
the corresponding band-edge energies Ec, Ev and the band gap Eg = Ec − Ev are material parameters and assumed to
be spatially constant in this paper. Temperature and the Boltzmann constant are denoted with T and kB. The three most
important reference cases for the statistical distribution functions are the Boltzmann, Blakemore and Fermi–Dirac function,
denoted by

F(η) = exp(η), (3a)

F(η) = (exp(−η) + γ )−1, (3b)

F(η) = Fα(η)=
1

Γ (α + 1)

∫
∞

0

tα

exp(t − η) + 1
dt, (3c)

respectively. For example, the behavior of three-dimensional bulk semiconductors is described most accurately using the
Fermi–Dirac–Integral Fα with index α = 1/2. For large negative arguments the F1/2 can be approximated by either of the
other two functions since they all share an exponential tail. By choosing the parameter γ = 0.27, the Blakemore function
(3b) approximates F1/2 fairly accurately as long as η ≤ 1.5, see [20]. For each distribution function, the corresponding
current densities in (1b) and (1c) are

jn = −qµnn∇ϕn = −qµnn∇ψ + qDn∇n, (4a)

jp = −qµpp∇ϕp = −qµpp∇ψ − qDp∇p. (4b)

Using the thermal voltage UT =
kBT
q , the diffusion coefficients Dn,Dp are linked to the carrier mobilities µn, µp via

generalized Einstein relations
Dn

µn
= UT g

(
ηn
)
,

Dp

µp
= UT g

(
ηp
)
, g(η) =

F(η)
F ′(η)

, (5)

where g is the diffusion enhancement as motivated in [21]. For the Boltzmann function (3a), we immediately see that
g ≡ 1, which gives the classical Einstein relation Dn = µnUT . For the Blakemore function (3b), we have g(η) = 1+γ exp(η).

The system (1) is supplied with mixed Dirichlet–Neumann boundary conditions. We will briefly discuss the case where
the boundary of the domain Ω can be decomposed into ohmic contacts (Γα) and an insulating interface (Γ ), i.e.,

∂Ω = Γ ∪

No⋃
α=1

Γα.

Ideal semiconductor–metal interfaces, such as ohmic contacts, are modeled by Dirichlet boundary conditions, where we
require a local charge neutrality C+p−n = 0 and a local equilibrium ϕn = ϕp, where outside thermodynamic equilibrium
the value of the quasi-Fermi potential might be different on each Γα . On any ohmic contact x ∈ Γα with α = 1, . . . ,No,
we set

ψ(x) = ψbi(x) + Uα, ϕn(x) = Uα, ϕp(x) = Uα, (6)

where Uα denotes the corresponding externally applied contact voltage and Uα ≡ 0 in equilibrium. Here we consider
two contacts No = 2 and set U1 = 0 and U2 = Vext. These Dirichlet conditions for the potentials correspond to Dirichlet
conditions for the densities, which we denote by n(x) = nα and p(x) = pα for all x ∈ Γα . The built-in potential ψbi at the
boundary is defined by the pointwise charge neutrality

0 = NvF
(

Ev−qψbi(x)
kBT

)
− NcF

(
qψbi(x)−Ec

kBT

)
+ C(x).

While for the Boltzmann function monotonicity ensures that such a ψbi always exists, for the Blakemore function charge
neutrality can only be attained at points x ∈ Ω where the doping satisfies −Nv < γ C(x) < Nc . We just remark, that
in general, this equation yields no closed-form solution, and therefore needs to be computed numerically. The boundary
conditions for the more advanced nonlinear semiconductor–metal interfaces such as Schottky contacts or gate contacts
can be found in [1,10]. On the remaining non-charged, insulating interfaces we impose (natural) homogeneous Neumann
boundary conditions

∇ψ(x) · ν = jn(x) · ν = jp(x) · ν = 0 for all x ∈ Γ , (7)

where ν denotes the outward-pointing normal vector to the interface. Finally, we present an argument why the Boltzmann
distribution function for the minority charge carriers is accurate near ohmic contacts even if in the interior a non-
Boltzmann distribution function is used. First note that most distribution functions, and in particular those in (3), satisfy
F(η) ≤ exp(η). Then, for a doping concentration C < 0, we use charge neutrality and the shift ψbi = q−1Ec − UTw to
estimate

0 = NvF(− Eg
kBT

+ w) − NcF(−w) + C ≤ Nv exp(−
Eg
kBT

+ w) + C, (8)
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which implies w ≥ log (−C/Nv)+ Eg/(kBT ). Assuming Eg ≫ kBT and |C | ∼ Nv we finally get w ≫ 1. A similar argument
for C > 0 shows that the Boltzmann distribution is a good approximation F(w) ∼ exp(w) for the equation of state of the
minority charge density near ohmic contacts when |C | ∼ Nc and Eg ≫ kBT .

2.2. Non-dimensionalization

Now we present the non-dimensionalization of the van Roosbroeck system (1), which will also motivate the following
boundary layer analysis. First we introduce the scalings,

x → ℓ x̃, ψ → UT ψ̃, ϕn,p → UT ϕ̃n,p, (n, p, C) → (ρ ñ, ρ p̃, ρ C̃),

so that we obtain the scaled stationary van Roosbroeck system

− ∇̃
2ψ̃ =

ℓ2

λ2
(̃C + p̃ − ñ), ∇̃ · j̃n = +

qℓ
J
R, ∇̃ · j̃p = −

qℓ
J
R, (9)

with the non-dimensional currents j̃n = −µ̄nñ∇̃ϕ̃n and j̃p = −µ̄pp̃∇̃ϕ̃p, where we introduced the reduced mobilities
µ̄n = µn/µ and µ̄p = µp/µ. Additionally, we also introduce the length scale λ and the current density scale J

λ2 =
ε0εrUT

qρ
, J =

qµρUT

ℓ
. (10)

We will make specific choices for the characteristic density ρ and current J in the next section. Note that, λ is interpreted
as a screening length, whereas in the context of electrolytes J is related to the classical diffusion-limited current density
of Nernst, e.g., [22].

When J is set to a typical current value for a given bias Vext, then (10) defines two length scales λ and ℓ, which
compete with the device length scale in the van Roosbroeck system (9). We denote the device length scale with L. We
have 0 < λ ≪ L for large densities ρ, whereas 0 < ℓ ≪ L holds for small densities ρ or for large currents J .

Before we can bring forward an argument about the ordering of the length scales, we need to determine the
characteristic density scale ρ. First, the Debye length λD is the characteristic length scale, on which deviations from
electroneutrality are observed, and typical values for λD are in the range of 1 nm to 100 nm. As the screening of charges
is dictated by the doping, it makes sense to define Cm = maxx∈Ω |C(x)| and then specify ρ = Cm for λ in (10), so that the
Debye screening length is

λ2D =
ε0εrUT

qCm
. (11)

Second, at ohmic contacts Γα where (8) holds for the minority charge density, the corresponding boundary condition is
determined from the ohmic contacts for Boltzmann statistics, which are

nα =
1
2

(
+C +

(
C2

+ 4N2
i

) 1
2
)

or pα =
1
2

(
−C +

(
C2

+ 4N2
i

) 1
2
)
, (12)

where N2
i = NcNv exp(−Eg/(kBT )). For simplicity we will assume C = ±Cm at the boundary. The previous assumptions

leading to (8) also imply Ni ≪ Cm, so that to leading order we can expand

nα≈
{
N2

i /Cm C < 0
Cm C > 0,

pα≈
{
Cm C < 0
N2
i /Cm C > 0.

(13)

We are going to discuss the case C < 0, where δ = Ni/Cm ≪ 1 and nα = N2
i /Cm = Cmδ

2, i.e., electrons are the minority
carriers.

If we use alternatively ρ = nα in the scaling for J in (10) then we can define the boundary layer thickness ℓJ via

ℓJ =
qµnαUT

J
=

qµCmUT

J
δ2. (14)

If we are interested in situations with ℓJ ≪ λD, this requires J ≫ Jlim, with the intrinsic limiting current Jlim defined as

Jlim =
qµnαUT

λD
=

q2µN2
i

ε0εr
λD. (15)

We get surprisingly low intrinsic limiting currents for typical semiconductors and typical Debye lengths, see Table 1. This
makes the physical interpretation and local mesh refinement of length scales ℓJ problematic.

2.3. Boundary layer expansion

We are going to present a concise argument for the existence of boundary layers for the quasi-Fermi potential
corresponding to the minority carrier density at ohmic contacts Γα . Here we discuss only electrons as minority charge
carriers, similar ideas for holes as minority charge carriers follow analogously. We have already discussed that near ohmic
contacts the Boltzmann approximation is valid for the minority charge carriers. In order to show and solve the leading
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Table 1
Typical values of Jlim for semiconductors at T = 300 K.
Material Ni µn εr Limiting current density Jlim
Si 1010cm−3 1400 cm2/Vs 11.7 3.5 · 10−10 A/cm2

· λD [nm]

Ge 1013cm−3 3900 cm2/Vs 16.2 7.0 · 10−4 A/cm2
· λD [nm]

GaAs 106cm−3 8500 cm2/Vs 12.9 1.9 · 10−17 A/cm2
· λD [nm]

Table 2
Material parameters used for simulations.
Parameter Value Parameter Value

kB 1.3806503 · 1023 J/K εr 12.9
q 1.602176565 · 10−19 C µn 0.85 m2/Vs
µp 0.047 m2/Vs ε0 8.854187817 · 10−12 As/Vm
T 300 K Nc 4.351959895 · 1023 m−3

Nv 9.139615903 · 1024 m−3 L 10−7 m
Cm 1023 m−3 Ec 1.424 eV
Ev 0 eV

order inner expansion for the matched asymptotic expansion of the van Roosbroeck system, assume that the length scales
are ordered as follows

0 < ℓJ ≪ λD ≪ L, (16)

showing that an asymptotic expansion would require multiple layers to succeed. We will show that, once the current
density at an ohmic contact becomes larger than the intrinsic limiting current, logarithmic boundary layers will appear in
the quasi-Fermi potential of the corresponding minority carriers. To show this, we examine the leading order asymptotic
problem as δ = Ni/Cm → 0. We fix the scales in the non-dimensionalization by setting µ = µn, ρ = nα and J = jn. After
dropping the tilde symbols in the rescaled van Roosbroeck equations (9) and using (14), the problem reads

−∇
2ψ = δ4

(
qµnCmUT

jnλD

)2

(C + p − n), (17a)

−∇ · n∇ϕn = δ2
(
q2µnCmUT

j2n

)
R. (17b)

The scaling ρ = nα implies that at the ohmic contact the boundary value for the minority charge carrier becomes n|Γα= 1.
The reader needs to keep in mind that this is the rescaled version of (12). We expand the solutions using

ψ = ψ0
+ δψ1

+ · · · , ϕn = ϕ0
n + δϕ1

n + · · · ,

and obtain the leading order problem

−∇
2ψ0

= 0, (18a)

−∇ · n0
∇ϕ0

n = 0, (18b)

where n0
= N̄c exp(η0n), η

0
n = ψ0

− ϕ0
n − Ec/(kBT ), and N̄c = Nc/nα . Assuming the ohmic contact Γα is located at x = 0,

the explicit solution is given by

ψ0(x) = ψα + ξx. (19)

where the constant ξ ≪ 1 remains to be determined by matching to an outer solution at the length scale λD. For the
quasi-Fermi potential we solve an equivalent problem in densities, which can be reduced to the 1D problem

∂x
(
∂xn0

− n0∂xψ
0)

= 0 (20)

and has the exact solution

n0(x) = exp(ξx) +
1
ξ
(exp(ξx) − 1) . (21)

with integration constant (∂xn0
− n0∂xψ

0) = 1 since we chose the scale J = jn. Using the equation of state n0
=

N̄c exp(ψ0
− ϕ0

n −
Ec
kBT

), the quasi-Fermi potential is

ϕ0
n (x) = ψ0(x) − log

(
n0(x)
N̄c

)
−

Ec
kBT

≈ ψ0(x) − log
(

1
N̄c

(1 + ξx) +
x
N̄c

)
−

Ec
kBT

≈ ψ0(x) − log
(
ε + x
ε

)
− log

(
1
N̄c

)
−

Ec
kBT

,
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where we approximated using ξ ≪ 1 several times. Due to the non-dimensionalization the boundary layer width is ε = 1.
In the original dimensional outer coordinates, when all quantities are represented in their original scales, we obtain the
following leading order the expansion

ϕ0
n (x) = UT ϕ̃

0
n (ℓ

−1
J x)

= ψ0(x) − UT log
(
ℓJ + x
ℓJ

)
−UT log

(
nα
Nc

)
−

Ec
q
, (22)

where the boundary layer width is ℓJ . This shows that once the current density at an ohmic contact J exceeds the intrinsic
limiting current Jlim, then the quasi-Fermi potential of the minority carriers develops a logarithmic boundary layer of size
ℓJ , where

0 < ℓJ =
Jlim
J
λD ≪ λD, (23)

and the electrostatic potential ψ can be approximated by an affine function in this region. The boundary layer analysis
of ϕp is entirely analogous.

3. Discretization of the van Roosbroeck system using potentials

Over the past decades many different methods have been proposed to solve the semiconductor device equations
numerically. Today, most commonly variants of the finite volume method (FV) are used. However, also discretization
schemes based on finite element methods (FE) or finite difference methods (FD) have been developed in the past or are
presently used. The finite volume method became very popular after Scharfetter and Gummel published their seminal
paper [23] in 1969. For Boltzmann statistics, their scheme can easily deal with the convection-dominated nature of these
equations. Even though Scharfetter and Gummel solved the van Roosbroeck system only in one spatial dimension and
interpreted their method as a finite difference scheme, others quickly realized that for several space dimensions it is
beneficial to translate their scheme into a finite volume setting [10,24–26].

The finite element method is probably the most prominent approach to compute solutions of partial differential
equations that arise in the natural sciences [27–30]. It works on general domains, allows a mathematical error analysis and
a systematic control over the approximation using the polynomial degree of elements. It is also popular for convection-
dominated problems [31,32]. For this reason variants of the finite element method have been applied to the van
Roosbroeck system as well [24,33–37]. Most of the authors use the electron and hole densities in the weak formulation.
Auf der Maur proposed to use quasi-Fermi potentials as primary variables instead [38]. We follow this approach here.

In the following we are going to explain standard discretization methods to solve the van Roosbroeck system. In one
spatial dimension we use a second-order finite difference (FD) method, whereas in two spatial dimensions we use a P1
finite element (FE) method. We will compare these discretizations with a Voronoï finite volume (FV) method. All three
methods are formulated in terms of the quasi-Fermi potentials as primary variables, which transforms the convection-
dominated drift–diffusion problem into a nonlinear elliptic system. The advantage of this approach is that quasi-Fermi
potentials are the natural variables from a thermodynamic point of view. Additionally, it is easier to control the behavior
of solutions at heterointerfaces using these variables. The final nonlinear discrete equations are solved using Newton’s
method.

In the following we collect the three different components of the solution in the vector-valued function u =

(ψ, ϕn, ϕp):Ω → R3. Evaluating this function at a specific point x ∈ Ω gives the vector u(x) =
(
ψ(x), ϕn(x), ϕp(x)

)
∈ R3.

Analogously, we denote the discrete solution with uh
= (ψh, ϕh

n, ϕ
h
p ) ∈ RN×3, where N is the number of degrees of freedom

for each component. The three columns of the matrix uh correspond to the three components of the solution, while the
kth row of uh approximates the solution at a point xk ∈ Ω and is denoted by uh

k = uh(xk) = (ψh
k , ϕ

h
n;k, ϕ

h
p;k) ∈ R3. If we

want to distinguish the different numerical solutions from each other, we drop the superscript h and replace it with the
acronym of the corresponding discretization method (FD, FE or FV) to make it clear which one is meant.

3.1. Finite difference method

In one spatial dimension we consider the interval Ω = [0, 3L] for some L > 0 and want to approximate the solution
u at discrete points 0 = x1 < . . . < xN = 3L. In particular we seek to approximate ψ(xk) ≈ ψh

k , ϕn(xk) ≈ ϕh
n;k, and

ϕp(xk) ≈ ϕh
p;k. The standard 3-point finite difference stencil for the elliptic operator [Au](x) = −

(
a(x)u′(x)

)′ is
(Auh)k = −

1
hk

[
ak+1/2

uh
k+1 − uh

k

hk+1/2
− ak−1/2

uh
k − uh

k−1

hk−1/2

]
, (24)

where hk±1/2 = |xk±1 − xk| and hk =
1
2 |xk+1 − xk−1|. The discretization of the Poisson equation (1a) uses a spatially

constant a = ε0εr , whereas in the discretization of the nonlinear transport equation for the electron current we use
ak+1/2 =

1
2qµn(nh

k + nh
k+1), where nh

k = n
(
ηn(uh

k)
)
is the electron density computed from the discrete potentials uh

k using
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Fig. 1. Domain and mesh with h ∼ 2−3 (left) uniform and (right) boundary adapted.

the equation of state (2). With vanishing recombination the total current I = L2(In + Ip) is computed from averages of the
constant local current density via In = −

1
3L

∫ 3L
0 qµnnϕ′

ndx and Ip = −
1
3L

∫ 3L
0 qµppϕ′

pdx. The purpose of the factor L2 is that
we end up with actual currents in Ampere and current densities in Ampere per area, so that one can compare 1D and 2D
simulations appropriately. Using trapezoidal rule, In is approximated by (analogously for Ip)

Ihn = −
1
3L

N−1∑
k=1

qµn(xk+1 − xk)
(nh

k + nh
k+1)

2

ϕh
n;k+1 − ϕh

n;k

xk+1 − xk
, (25)

which can be beneficial for its convergence order. A similar strategy will be used to evaluate the currents for the finite
element method.

3.2. Finite element method

Assume Ω ⊂ R2 is a polygonal domain and let Th be an admissible decomposition of Ω into Ntria triangles and Nvert
vertices, such thatΩ =

⋃Ntria
t=1 τt for τt ∈ Th as for example is shown in Fig. 1. Similar as in [33], we solve the stationary van

Roosbroeck system (1) using a standard P1 finite element method. We seek the electrostatic potential and the quasi-Fermi
potentials uh

= (ψh, ϕh
n, ϕ

h
p ) ∈ V h, such that the van Roosbroeck system can be written in the weak form as

0 =

∫
Ω

(
ε0εr∇ψ

h
· ∇vi − q

(
C + ph − nh)vi) dx, (26a)

0 =

∫
Ω

(
qµnnh

∇ϕh
n · ∇vj − qR(nh, ph)vj

)
dx, (26b)

0 =

∫
Ω

(
qµpph∇ϕh

p · ∇vk + qR(nh, ph)vk
)
dx, (26c)

for all suitable test functions vh = (vi, vj, vk) ∈ V h, where V h ∼= RNvert×3 is the 3Nvert dimensional space of vectorial
continuous functions which are piecewise linear on each triangle τt . The carrier densities nh

= n
(
ηn(ψh, ϕh

n)
)
, ph =

p
(
ηp(ψh, ϕh

p )
)
depend explicitly on uh via the equation of state (2). The basis functions for the function space V h are

uniquely defined by vj(xk) = δjk, where j, k run over all Nvert indices corresponding to vertices xj, xk of the triangulation.
This allows us to represent a solution of (26) as

ψh(x) =

Nvert∑
k=1

ψh
k vk(x), ϕh

n(x) =

Nvert∑
k=1

ϕh
n;kvk(x), ϕh

p (x) =

Nvert∑
k=1

ϕh
p;kvk(x), (27)

which explains the equivalence of functions ψh(x) ∈ V h and vectors ψh
∈ RNvert . Some integrals in (26) can be evaluated

exactly, the remaining integrals are computed using a standard 7-point Gauss quadrature for triangles [39].
At ohmic contacts ΓD we impose inhomogeneous Dirichlet boundary conditions uD as defined in (6). We realize them

by setting u = ũ+uD with ũ = 0 on ΓD so that all essential boundary conditions are automatically satisfied. This reduces
the dimension of the discrete problem to Nvert only representing vertices not lying on any Γα . For a given ohmic contact
α, in order to compute currents, we use an auxiliary function w with w(x) = δαβ for x ∈ Γβ and rewrite the currents to

Iαn =

∫
Γα

jn · ν da =

∫
∂Ω

w jn · ν da = −

∫
Ω

(
qµnn∇w · ∇ϕn − qwR

)
dx, (28a)

Iαp = −

∫
Ω

(
qµpp∇w · ∇ϕp + qwR

)
dx. (28b)
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Fig. 2. Two adjacent control volumes ωk and ωl with corresponding notation.

Then the total current I = L(Iαn + Iαp ) can be evaluated using the operators from the existing weak form of the van
Roosbroeck system (26). Again, the prefactor L ensures that we obtain a current I in Ampere. The auxiliary function w
is chosen by solving ∆w = 0 with Dirichlet data for w mentioned before and with homogeneous Neumann boundary
conditions on Γ , e.g., see [40].

3.3. Finite volume method

In this section, we present a Voronoï finite volume technique [1,10,40,41]. Similar as for finite elements, we start by
partitioning the domain Ω into non-intersecting, convex polyhedral control volumes ωk such that Ω =

⋃Nvert
k=1 ωk. Unlike

for finite elements, these control volumes need not to be triangular but fulfill the following orthogonality condition: we
associate with each control volume ωk a node xk ∈ ωk. For every boundary intersecting control volume, we demand that
this node lies on the boundary xk ∈ ∂Ω ∩ ωk. Assuming that the partition is admissible in the sense of [42], that is for
two adjacent control volumes ωk and ωl, the edge xkxl of length hkl is orthogonal to ∂ωk ∩ ∂ωl, the normal vectors to ∂ωk
can be calculated by νkl = (xl − xk)/∥xl − xk∥. For each control volume ωk, the finite volume discretization is given by the
three equations:∑

ωl∈N (ωk)

|∂ωk ∩ ∂ωl|jψ;k,l = q|ωk|
(
Ck + phk − nh

k

)
, (29a)

∑
ωl∈N (ωk)

|∂ωk ∩ ∂ωl|jn;k,l = +q|ωk|Rk, (29b)

∑
ωl∈N (ωk)

|∂ωk ∩ ∂ωl|jp;k,l = −q|ωk|Rk. (29c)

We denote with N (ωk) the set of all control volumes neighboring ωk. In 2D, the measure |∂ωk ∩ ∂ωl| corresponds to the
length of the boundary line segment and in 3D to the area of the intersection of the boundary surfaces. Furthermore, in
2D the measure |ωk| is given by the area and in 3D by the volume of the control volume ωk. The unknowns ψh

k , ϕ
h
n;k, ϕ

h
p;k

correspond to the electrostatic potential as well as the quasi-Fermi potentials for electrons and holes evaluated at node
xk. Accordingly, nh

k , p
h
k , Rk and Ck are defined as

nh
k = NcF

(
ηn(ψh

k , ϕ
h
n;k)
)
, Ck = C(xk), (30a)

phk = NvF
(
ηp(ψh

k , ϕ
h
p;k)
)
, Rk = R

(
nh
k, p

h
k

)
. (30b)

The notation is explained visually in Fig. 2. The nodes xk in the constrained Voronoï tesselation coincide with the vertices
of the FE triangulation.

Note that the doping profile C and the recombination rate R are given. The numerical fluxes jψ;k,l, jn;k,l and jp;k,l
approximate respectively −ε0εr∇ψ · νkl, jn · νkl and jp · νkl on the interfaces between two adjacent control volumes ωk and
ωl. These fluxes can be expressed as functions depending nonlinearly on the values ψh

k , ϕ
h
n;k, ϕ

h
p;k and ψh

l , ϕ
h
n;l, ϕ

h
p;l. The

flux corresponding to the electrostatic displacement is approximated by

jψ;k,l = −ε0εr
ψh

l − ψh
k

∥xl − xk∥
.

Next, we discuss numerical flux approximations which appear in the discretizations of the continuity equations.

3.3.1. Flux discretizations for Boltzmann statistics
Choosing the numerical fluxes jn;k,l and jp;k,l correctly is a rather delicate issue as the wrong choice may lead to either

instabilities or the violation of thermodynamic principles. Scharfetter and Gummel presented in [23] a suitable choice for
Boltzmann statistics. It is possible to derive it from the local one-dimensional homogeneous boundary value problem

∂x (Dn∂xn − vn) = 0 with n(xk) = nk and n(xl) = nl
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with the linear diffusion constant Dn = µnUT and the velocity v = µn
ψh
l −ψh

k
xl−xk

, assuming that the electrostatic potential
can be approximated locally with a linear function. We point out once more that the choice for the diffusion constant
implies that we are in the Boltzmann regime. The above differential equation is structurally the same as the leading-order
equation (20). Since it is homogeneous, it can be interpreted as demanding that the electron flux is constant. The solution
to this boundary value problem is readily verified to be

n(x) = nl
1 − e

v
Dn

(x−xk)

1 − e
v
Dn

(xl−xk)
+ nk

e
v
Dn

(x−xk) − e
v
Dn

(xl−xk)

1 − e
v
Dn

(xl−xk)
.

Thus the constant Scharfetter–Gummel flux is given by

jn;k,l = −
qµnNcUT

xl − xk

(
exp

(
ηhn;k

)
B
(

−
ψh

l − ψh
k

UT

)
− exp

(
ηhn;l
)
B
(
ψh

l − ψh
k

UT

))
(31)

with ηhn;k = ηn(ψh
k , ϕ

h
n;k) and η

h
n;l = ηn(ψh

l , ϕ
h
n;l). The Bernoulli function is given by B(η) = η/(eη − 1). A similar expression

can be derived for the hole flux. We point out that only in the Boltzmann regime this flux is thermodynamically consistent
in the sense that constant quasi-Fermi potentials imply that the flux vanishes.

Finally, we wish to reinterpret the width of the boundary layer from Section 2 in terms of numerical quantities. Making
use of the Boltzmann assumption, we invert (2) for the quasi-Fermi potential to obtain

ϕn(x) = ψ(x) − UT log
(
n(x)
Nc

)
−

Ec
q
. (32)

Now we use the expansion n(x) ≈
nhl −nhk
xl−xk

(x − xk) + nh
k, where nh

l , n
h
k and ψh

l , ψ
h
k denote the numerical solution of the

electron density and the electrostatic potential at nodes xl and xk. Assuming that the ohmic contact is located at xk, we
can derive a considerably simpler approximation for the quasi-Fermi potential by expanding (32) around x ≈ xk

ϕn(x) ≈ ψ(x) − UT log

(
x − xk + ℓhJ

ℓhJ

)
− UT log

(
nh
k

Nc

)
−

Ec
q
, (33)

very similar to (22) and where

ℓhJ = nh
k

(
xl − xk
nh
l − nh

k

)
≈

n
n′

⏐⏐⏐⏐
x=xk

≈ ℓJ

denotes the approximate boundary layer width, an approximation of the previously derived boundary layer width (14).
In particular, ℓhJ → ℓJ for h = |xl − xk| → 0. The approximations follow from the observation that in our setting

n′
=

q
kBT

n(ψ ′
− ϕ′

n)
(22)
≈

q
kBT

n
UT

ℓJ
=

n
ℓJ
.

3.3.2. Flux discretization for general statistics
In the past, techniques for other statistics functions have been suggested [43,44]. For general statistics functions F ,

ideas from Bessemoulin–Chatard [4] are useful to derive a finite volume scheme for convection–diffusion problems in a
thermodynamically consistent way by averaging the nonlinear diffusion term appropriately. In [5], the nonlinear diffusion
was expressed via the logarithmic average of the nonlinear diffusion enhancement

gkl =
ηhn;l − ηhn;k

logF
(
ηhn;l

)
− logF

(
ηhn;k

) (34)

along the discretization edge. Using the generalized Einstein relation (5), one immediately observes that the diffusion
enhancement g can be seen as a modification factor for the thermal voltage UT . Replacing UT in the original expression
(31) by U∗

T = UTgkl, we deduce the following modified Scharfetter–Gummel scheme

jn;k,l = −
qµnNcUT

xl − xk
gkl

(
F
(
ηhn;k

)
B
(

−
ψh

l − ψh
k

UTgkl

)
− F

(
ηhn;l
)
B
(
ψh

l − ψh
k

UTgkl

))
, (35)

approximating the (electron) current along the edge xk, xl. Again, a similar expression can be derived for the hole flux. A
problematic aspect of this scheme is that, even though the diffusion enhancement factor gkl is bounded from below by
one, it is not straightforward to compute it on a computer when ηhn;k approaches ηhn;l as the fraction contains a removable
singularity. In this case one needs to use a suitable regularization strategy such as a Taylor expansion.
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Fig. 3. Electron and hole densities n, p and doping C at bias Vext = 3V shown (left) with κ = 500 and (right) with κ = 5 · 105 , the former yielding
a smooth doping profile and the latter practically a discontinuous one.

4. Numerical comparisons in 1D

In this section, we are going to present numerical solutions of the van Roosbroeck system via FE/FD and the Scharfetter–
Gummel FV discretization. In one dimension we focus on two challenges, which have an impact on the convergence rate
of solutions: the size of a boundary layer and the regularity of the doping. Since in this section we are mostly concerned
with numerical solutions, we will drop the superindex h. If necessary, we replace it with the acronym of the corresponding
discretization method. Also we remind the reader that we solve the van Roosbroeck system without recombination, i.e.,
R ≡ 0. Throughout this section, we use the Blakemore distribution function Eq. (3b) with γ = 0.27.

As discussed before the solutions develop a boundary layer of thickness ℓJ , which already for small currents is
minuscule compared to the size of the computational domain O(L) – it is even several orders of magnitude smaller than
the Debye length λD. The physical parameter used here (see Table 2) suggests we have

λD = 13.6 nm, Jlim = 1.2 · 10−15 A/cm2,

so that ℓJ = (Jlim/J) λD is much smaller than the Debye length for typical currents J . Thus, it is both physically questionable
and numerically hopeless to resolve this length scale explicitly when J ≫ Jlim. As we have seen in Table 1 for typical
semiconductor materials the limiting currents are surprisingly low. Hence, it is likely that boundary layers appear.

Moreover, we are going to highlight the impact of the regularity of the doping on the convergence order of the solutions
by comparing smooth and quasi-discontinuous doping profiles. For this purpose, we consider the doping C:Ω → R on
the domain Ω = [0, 3L] with L = 10−7m given by

C(x) =
C0

2

[
1 + tanh

(
κ(0.1 − x[µm])

)
−
{
1 + tanh

(
κ(x[µm] − 0.2)

)}]
(36)

with ohmic contacts at x = 0 and x = 3L. Two cases κ = 500 and κ = 5 · 105 will be studied. Only the first case leads to
a doping in which the jumps are resolved by our sequence of meshes

h = 3L · 2−M for M = 1, . . . , 14. (37)

The prefactor is set to C0 = 1023m−3 and constitutes also the largest doping value Cm = C0. The bias is in the range
Vext ∈ [0, 3V ]. Hence, as long as h > L/κ one will observe an apparent jump discontinuity in the doping C with a direct
impact on the convergence rates.

4.1. Resolution of boundary layer

In Fig. 3 the densities n, p and the doping C are shown for the two cases κ = 5 · 102 and κ = 5 · 105 at Vext = 3V .
Note that in both cases, the hole density p has a boundary layer at x = 0 and the electron density n has a boundary layer
at x = 0.3 µm. This boundary layer, however, is on the length scale of λD and therefore nicely resolved by the mesh. On
the level of the plot, the difference in solutions corresponding to the two alternative doping profiles is not visible. In the
left panel of Fig. 4 we show the potentials (ψ, ϕn, ϕp) for Vext = 3V . While the electrostatic potential in both cases is a
rather smooth function (blue line), the quasi-Fermi potentials have a boundary layer of size ℓJ (green and red line) that
cannot be resolved on any of the uniform meshes in (37). This logarithmic boundary layer is predicted by our analysis in
Section 2. As one can see in Fig. 4 (middle and right panel), the solution effectively jumps within the last interval before
the ohmic contact.

An important first observation is that already for moderate mesh sizes the FV quasi-Fermi potentials agree on
coarse meshes relatively well with the quasi-Fermi potentials on the finest mesh. This implies that, already on meshes
which massively undersample the boundary layer width ℓJ , the FV solution quite accurately agrees with the asymptotic
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Fig. 4. Quasi-Fermi potentials of electrons and holes ϕn, ϕp and electrostatic potential ψ (left) with bias Vext = 3V as well as boundary layers in the
electron quasi-Fermi potential ϕn near x = 0.3 µm for different mesh resolutions h (middle) for finite difference and (right) Scharfetter–Gummel
type finite volume discretization for κ = 500 . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. (left) Electron quasi-Fermi potential ϕn from FD and FV solution compared to the boundary layer asymptotics for Vext = 3V with boundary
layer width ℓJ ∼ 10−24 µm and a (right) moderate boundary layer ℓJ ∼ 10−5 µm for an applied voltage Vext = 0.2V with (left) a linear and (right)
logarithmic scaling for the x axis. The FD method using a boundary-adapted mesh is able to resolve the layer.

logarithmic solution, see (22). The FD convergence is considerably slower near the ohmic contact. In particular, on the last
few intervals the FD approximation considerably deviates from the asymptotic solution. In order to analyze the behavior
near ohmic contacts in more detail, we compare in the left panel of Fig. 5 the electron quasi-Fermi potential ϕn from the
FV and FD solutions on the finest mesh with the asymptotic solution from (22) on a semi-logarithmic scale. The figure
depicts three different regions shown by the shaded areas. The rightmost shaded area (red) is the outer region where
x ∼ λD. Then there is a wide transient zone 0 < ℓJ ≪ x ≪ λD ≪ L (green), where the quasi-Fermi potential has a
logarithmic singularity. We can see that the FD scheme deviates from the predicted boundary layer asymptotic on the
last few grid points, as already observed in Fig. 4.

This singularity is only resolved when x ∼ ℓJ , where ϕn attains the value set by the Dirichlet boundary condition of
the ohmic contact. For example, for Vext = 0.2V we have a moderately small layer width ℓJ ∼ 10−3λD = 10−5 µm. The
right panel of Fig. 5 shows that in this case the boundary layer is well-resolved. However, for Vext = 3V the width of the
boundary layer is ℓJ ∼ 10−24 µm, which is beyond any meaningful physical scale for this problem. Note that the FV and
the FD solutions agree and follow the intermediate logarithmic singularity set by the asymptotic analysis.

4.2. Regularity of the doping

Next, we discuss the influence of the smoothness of the doping on the convergence order for the different discretization
methods. Whenever we compare a coarse discrete solution (of size 2h) to a finer one (of size h), we restrict the finer
solution to the coarser mesh. Then we can subtract uh from u2h and slightly abusing the notation write ∥uh

− u2h
∥ for

the corresponding norm.
In the left panel of Fig. 6 we show the current as a function of the bias Vext for the FV and FD methods on different

meshes for the levels M = 2, 5, 8. This already indicates the tendency of the FV method to deliver more accurate
solutions on coarser meshes, which is due to the more advanced flux discretization. This becomes even more obvious when
comparing the convergence orders for |Ih − I2h| in the right panel of Fig. 6. For the smooth doping with κ = 5 ·102 the FV
method has a quadratic convergence |Ih − I2h| ∼ h2. This order is influenced by the convergence order of the electrostatic
potential and the flux. If the Boltzmann approximation is valid and the electrostatic potential linear, then the flux would
be nodally exact. Provided that the doping is sufficiently smooth and the carrier densities converge sufficiently fast, then
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Fig. 6. For different mesh sizes h (left) total current I for the FD and FV discretization (right) and corresponding convergence rates for κ = 5 · 102

and κ = 5 · 105 and Vext = 3V .

Fig. 7. L2 convergence rates for solution (left) of the FD discretization and (right) of the FV discretization with κ = 500 in the top row and for
κ = 5 · 105 in the bottom row at Vext = 3V .

both FD and FV discretization of the Poisson equation are second order schemes, see the convergence for n, p, ψ in the
right panel of Fig. 7 and the left panel of Fig. 8. For the FD method this argument fails, since the quasi-Fermi potentials only
converge with order 1/2 but the densities converge linearly. However, due to the averaging involved in the computation
of the current in (28), the convergence order of the FD method in the right panel of Fig. 6 is at least linear.

When the doping is discontinuous (κ = 5 ·105), the bottom row in Fig. 7 shows that also the convergence order of the
FV electrostatic potential becomes linear, which is expected by standard FE error estimates. From Figs. 6 and 7 it appears
that while the error in the FD method is dominated by the error in the quasi-Fermi potentials, the error in the FV method
is dominated by the lack of regularity in the doping.

Interestingly, Fig. 8 (middle panel) shows the FV method also allows to evaluate the convergence in the L∞ norm
for κ = 500. Even though the L2 error of the solution converges quadratically, one can observe that first the L∞ error
of ϕn and later of ϕp converge linearly. This is due to the flux approximation scheme being first order consistent in the
quasi-Fermi potentials near an ohmic contact with logarithmic singularity. Note, if we had chosen to compute the L∞ error
interpolating the coarser solution to the finer one, we would see no convergence with respect to the grid size defined as
in (37).

Even though it appears that the FD scheme cannot compete with the FV method, it is easy to improve it by using
boundary-adapted grids as demonstrated in Fig. 8 (right panel). This leads us naturally to our next section, where we
study the impact of boundary layers and corner singularities in two spatial dimensions. As boundary layers degrade the
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Fig. 8. (left) L2 convergence of ψ in thermal equilibrium (similar for FV and FD), (middle) L∞ convergence of FV solution for κ = 500 and Vext = 3V
as well as (right) L2 convergence rates for FD discretization on a non-uniform grid for κ = 500 and Vext = 3V .

convergence order of the FD/FE schemes already in one dimension, we are going to compare solutions computed on
uniform meshes with those from boundary adapted meshes. However, we will not employ any local refinement strategy
near the corner singularity.

5. Numerical comparisons in 2D

5.1. Corner singularities and boundary adapted meshes

Semiconductor devices may often be angular-shaped. However, in particular L-shaped domains pose numerical
difficulties which we would like to study for the FE and FV methods. We consider a two-dimensional L-shaped domain

Ω = [0, 2L]2 \ [0, L]2 ⊂ R2, (38)

as shown in Fig. 1, and impose ohmic contacts at the boundaries (x, 0) and (0, y) for L ≤ x, y ≤ 2L. All other boundaries
are supplied with homogeneous Neumann boundary conditions. The p-i-n doping concentration C:Ω → R is given by

C(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+C0 0 ≤ x ≤ L/2,
−C0 0 ≤ y ≤ L/2,
+2C0(L − x)/L L/2 < x ≤ L,
−2C0(L − y)/L L/2 < y ≤ L,
0 otherwise

(39)

with x = (x, y) and as before L = 10−7m = 0.1 µm and C0 = Cm = 1023 m−3, see left panel of Fig. 9. With this choice we
ensure that the convergence order does not suffer from the regularity of the doping. However, constructing a non-convex
domain with a corner angle ϑ = θπ and θ = 3/2 imposes a corner singularity of the form ψ(x) ∼ r1/θ as r → 0 for
r =

√
(x − x0)2 + (y − y0)2 at x0 = y0 = 0.1 µm. Standard finite element error analysis for the Poisson equation gives

u ∈ Hσ with σ = 1 + 1/θ − ϵ < 2 for arbitrary small ϵ > 0, so that

∥u − uh
∥L2 ≤ C

(
hl+σ−1

+ h2k)
∥u∥H l+1 , l = min{k, σ − 1}, (40)

where k is the polynomial degree of the FE basis functions [30] used to expand uh. For linear finite elements we obtain
the estimate ∥u − uh

∥L2 ≤ Ch4/3−2ϵ
∥u∥H5/3−ϵ , so that the potentials should converge asymptotically not better than h4/3

in the L2 norm. It remains to be seen how the boundary layer behaves for the FE and FV discretization schemes in two
spatial dimensions. In addition to the series of uniformly refined structured meshes, we are also going to investigate
the convergence on meshes adapted to the boundary layers. For a general overview of different strategies for singularly
perturbed problems, in particular for boundary adapted meshes, we refer to [16]. The boundary layer is constructed using
an exponentially graded mesh, where one direction is kept uniform and towards the ohmic contact we refine until the
shortest triangle edge is approximately ∼ 10−5L, see right panel in Fig. 1.

The electron density is shown in the right panel of Fig. 10. Similar to 1D, one can observe a boundary layer in n, which
is well resolved by the mesh and of the order of the Debye length λD. However, the middle panel of Fig. 10 shows the
electron quasi-Fermi potential, which is not resolved and appears to jump on the last few triangles before the ohmic
contacts.

Additionally, in Fig. 9 (right panel) the total current density j = jn + jp is shown. A careful inspection already indicates
the presence of the corner singularity. Note, the corner singularity in the total current density |j| is slightly obscured by
the logarithmic scale.

For simplicity we will focus here on the discussion of the convergence order for the electrostatic potential ψ and the
electron quasi-Fermi potential ϕn. The previous analysis in one dimension should then indicate how the other potential
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Fig. 9. (left) Continuous doping concentration of L-shaped p-i-n diode and (right) total current density j = jn + jp in arbitrary units.

Fig. 10. (left) Electrostatic potential ψ , (middle) quasi-Fermi potential ϕn and (right) electron density n for L-shaped p-i-n diode at Vext = 3V .

Fig. 11. Convergence of solutions on different meshes as a function of relative triangle size h = 2−ℓ for (a) electron quasi-Fermi potential ϕn at
Vext = 3V , (b) electrostatic potential ψ at Vext = 3V , (c) electron quasi-Fermi potential ϕn at Vext = 0.2V , (d) electrostatic potential ψ at Vext = 0.2V .

and densities should converge. We systematically study the experimental order of convergence and compare uniform and
boundary adapted meshes.

The upper left panel of Fig. 11 shows the convergence of the electron quasi-Fermi potentials at Vext = 3V , where the
FE and FV are compared on a sequence of uniform and a sequence of boundary adapted meshes. As in 1D, the FV method
converges quadratically. Furthermore, for the FV discretization the error seems not to be influenced very much by the
boundary adapted meshes. In contrast, the FE method again has a lower convergence order and local adaptivity improves
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Fig. 12. Local errors for (left) electrostatic potential ψ in thermal equilibrium and at Vext = 3V for (middle) FV and for (right) FE electron quasi-Fermi
potential.

the L2 error of the solution by about one order of magnitude. The upper right panel of Fig. 11 shows the convergence
of the electrostatic potential at Vext = 3V , for which the convergence rates of both FV methods and the FE method on
uniformly refined meshes are of order O(h2). Only the FE method with adapted refinement converges slower, between
O(h) and O(h2). However, the error lies below the error for the FE with uniform mesh refinement.

The lower panels of Fig. 11 show the solutions at Vext = 0.2V , where the boundary layer is moderate and solutions are
closer to thermal equilibrium. Hence, the lower left panel shows the general tendency to have lower errors. However, the
convergence is slower with an order between O(h) and O(h4/3), indicating a stronger influence of the corner singularity.
This effect is even more pronounced in the lower right panel, in which for all the used methods the convergence of
the electrostatic potential nicely follows the O(h4/3) order predicted by the error analysis of the corner singularity. The
existence of the corner singularity for both bias values becomes obvious by a closer examination of the local error
err(x) = |uh(x) − u2h(x)| shown in Fig. 12 on a logarithmic scale. At the ohmic contacts the error vanishes since the
boundary conditions are solved exactly. A clearly symmetric and dominant corner singularity is visible in the left panel of
Fig. 12 for the electrostatic potential at thermal equilibrium. This matches also our previous observation, that the O(h4/3)
convergence order is most prominent in the electrostatic potential for low voltages in Fig. 11. In a similar manner, we can
see that the local error in the middle and right panel of Fig. 12 has corner singularities. However, while the local error of
the electron quasi-Fermi potential of the FV in the middle panel shows no specific problem near the ohmic contact, the
FE solution also has additional difficulties at the ohmic contact y = 0, where the boundary layer is located, compare with
Fig. 10.

Summarizing, in 2D both FE and FV discretizations deliver reasonable results. While the finite volume scheme often
shows better convergence rates, the finite element method can be drastically improved by using meshes which are finer
near ohmic contacts. We clearly observe that depending on the potential and the selected bias, the error is dominated
by the boundary layer or the corner singularity. While the FV method generally handles the boundary layer well, the FE
method in 2D introduces extra oscillations in the boundary layer, see Fig. 12.

6. Conclusion

We performed an extensive analysis and comparison of numerical methods for the van Roosbroeck system in one and
two spatial dimensions. We compared Scharfetter–Gummel type finite volume discretizations for non-Boltzmann statistics
with standard finite element and finite difference methods, where the electrostatic and quasi-Fermi potentials are used
as primary variables. This choice of variables transforms the convection-dominated problem with nonlinear diffusion into
a nonlinear elliptic system, making it susceptible for these alternative numerical discretization philosophies. A careful
asymptotic analysis showed that the quasi-Fermi potentials corresponding to minority carriers have logarithmic boundary
layers at ohmic contacts. The typical size ℓJ of these layers depends on the applied voltage via the current density J , i.e.,
ℓJ = λD (Jlim/J), which due to the smallness of Jlim generates layers much thinner than the Debye length for a bias Vext
slightly above the thermal voltage UT . We showed that for ℓJ ≪ x ≪ λD the quasi-Fermi potential has a logarithmic
singularity.

Nevertheless, all studied methods are able to give reliable predictions for the total electrical current and show the
expected convergence behavior in the L2 norm under mesh refinement. The finite volume approach even converges
with respect to the L∞ norm and generally has the best convergence order among all compared methods. For the finite
difference and finite element discretizations with quasi-Fermi potentials, the logarithmic boundary layer has the strongest
influence on the degradation of the convergence order.

Already in one dimension, the advantageous convergence order of the finite volume convergence order is distorted
when discontinuous doping profiles are used. However, when used on uniform meshes, the finite volume method usually
outperforms the finite element and finite difference approaches by one order of convergence. But also the finite element
method can be significantly improved by refining the computational mesh near ohmic contacts.

In higher dimensions corner singularities can be the ultimate restriction for the convergence order. In practice, their
impact is most noticeable at low applied biases. In particular in two dimensions, we have multiple error sources, so
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that the observed convergence order in the studied range of mesh sizes is not yet in the predicted asymptotic regime
dominated by the corner-singularity.

While Dirichlet boundary conditions at ohmic contacts are not always considered to be physically correct in the
literature, a similar behavior is relevant for depletion zones, e.g., at p–n junctions with strong reverse bias. This means
that the theory for contacts and interfaces should be extended [14,18], making FE more competitive.
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Highly Accurate Quadrature-based
Scharfetter-Gummel Schemes for
Charge Transport in Degenerate
Semiconductors

M. Patriarca et al. Highly Accurate Quadrature-based Scharfetter-Gummel Schemes for
Charge Transport in Degenerate Semiconductors. Computer Physics Communications
235 (2018), pp. 40–49. doi: 10.1016/j.cpc.2018.10.004

Abstract We introduce a family of two point flux expressions for charge carrier trans-
port described by drift-diffusion problems in degenerate semiconductors with non-Boltzmann
statistics which can be used in Voronoi finite volume discretizations. In the case of Boltz-
mann statistics, Scharfetter and Gummel derived such fluxes by solving a linear two point
boundary value problem yielding a closed form expression for the flux. Instead, a gen-
eralization of this approach to the nonlinear case yields a flux value given implicitly as
the solution of a nonlinear integral equation. We examine the solution of this integral
equation numerically via quadrature rules to approximate the integral as well as New-
ton’s method to solve the resulting approximate integral equation. This approach results
into a family of quadrature-based Scharfetter-Gummel flux approximations. We focus
on four quadrature rules and compare the resulting schemes with respect to execution
time and accuracy. A convergence study reveals that the solution of the approximate
integral equation converges exponentially in terms of the number of quadrature points.
With very few integration nodes they are already more accurate than a state-of-the-art
reference flux, especially in the challenging physical scenario of high nonlinear diffusion.
Finally, we show that thermodynamic consistency is practically guaranteed.

Conception: I developed and guided, the PhD student Matteo Patriarca for this project.

Execution: Matteo Patriarca carried out the implementation in a feedback loop to-
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A Novel Surface Remeshing Scheme
via Radial Basis Functions and
Higher-Dimensional Embedding

F. Dassi, P. Farrell, and H. Si. A Novel Surface Remeshing Scheme via Radial Basis
Functions and Higher-Dimensional Embedding. SIAM Journal on Scientific Computing
39.3 (2017), B522–B547. doi: 10.1137/16m1077015

Abstract Many applications heavily rely on piecewise triangular meshes to describe
complex surface geometries. The quality of the meshes directly impacts numerical sim-
ulations. In practice, however, one often has to deal with several challenges to construct
suitable meshes. Some regions in a naively built mesh may be overrefined, others too
coarse. Additionally, the triangles may be too thin or not properly oriented. We present
a novel surface remeshing procedure which greatly improves a problematic input mesh
and overcomes all of these drawbacks. By coupling surface reconstruction via radial ba-
sis functions (RBF) with the higher-dimensional embedding (HDE) surface remeshing
technique, we can automatically generate a new anisotropic surface mesh with improved
mesh quality. Moreover, we are not only able to refine or coarsen certain mesh regions
but also align the triangles according to the curvature of the reconstructed surface. This
yields an acceptable trade-off between computational complexity and accuracy.

Conception: Franco Dassi and I developed this project jointly.

Execution: I was in charge of the RBF part which I integrated together with Franco
Dassi into his HDE code.

Reporting: The report was written by Franco Dassi and myself.
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A NOVEL SURFACE REMESHING SCHEME VIA RADIAL BASIS
FUNCTIONS AND HIGHER-DIMENSIONAL EMBEDDING∗
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Abstract. Many applications heavily rely on piecewise triangular meshes to describe complex
surface geometries. The quality of the meshes directly impacts numerical simulations. In practice,
however, one often has to deal with several challenges to construct suitable meshes. Some regions in a
naively built mesh may be overrefined, others too coarse. Additionally, the triangles may be too thin
or not properly oriented. We present a novel surface remeshing procedure which greatly improves a
problematic input mesh and overcomes all of these drawbacks. By coupling surface reconstruction via
radial basis functions with the higher-dimensional embedding surface remeshing technique, we can
automatically generate a new anisotropic surface mesh with improved mesh quality. Moreover, we are
not only able to refine or coarsen certain mesh regions but also align the triangles according to the
curvature of the reconstructed surface. This yields an acceptable trade-off between computational
complexity and accuracy.

Key words. anisotropic meshes, radial basis functions, mesh optimization, variational implicit
surfaces, geometry processing

AMS subject classifications. 65M50, 65D05
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1. Introduction. Countless numerical methods need to transfer information
from a continuous domain to discrete points on a mesh. Most commonly this problem
arises when solving partial differential equations numerically, but it also appears in the
context of surface approximation [12, 19, 21, 35] or medical image reconstruction [16].

Hence, finding optimal meshes is of utmost importance. Obviously, optimal can
mean many things. For a general overview, we refer to [1, 3, 31]. However, two
desirable features stand out. On the one hand, our mesh should be built in such way
that the data we are interested in (for instance, the solution of a partial differential
equation) are approximated fairly accurately. That is, we want to grasp finer details
(for example, along boundary layers) as well as large-scale variations. On the other
hand, we want to be able to efficiently compute the discrete approximation and only
use nodes which enhance its quality.

This leads naturally in two dimensions (2D) and three dimensions (3D) to anisotro-
pic meshes which are able to achieve a reasonable trade-off between accuracy and
efficiency. Anisotropic meshes are often used in the context of finite element and finite
volume methods and thus appear very frequently in practical applications [17, 18, 20,
32]. However, how to obtain such an anisotropic mesh for a given application is a
very open problem. Unfortunately, not many numerical analysts focus on the art of
designing precise meshes but rather on discretization techniques for the solution of the
continuous problem (e.g., the governing differential equation).
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In this paper, we study how to automatically obtain curvature-adapted surface
meshes from low-quality ones. The initial mesh may be too coarse in certain regions
or too dense in others. Also, in practice one also has to deal with improperly oriented
triangles. While a stretched triangle is not per se unacceptable, it should not be
elongated in the direction where the curvature varies a lot. Figure 1 shows what our
method achieves. The original mesh on the left is extremely coarse and uniform. The
adapted mesh, on the other hand, is denser and refined where necessary. The stretched
triangles reflect the curvature nicely. For example, the curvature along the dashed
arrows varies more than along the corresponding solid ones. Hence, we need to refine
more in the direction of the dashed arrows, which means that the triangles will be
stretched along the solid arrows.

Fig. 1. A coarse input mesh on the left and the adapted mesh using the novel adaptation
procedure on the right. Both figures show a bone from the vertebrae mesh in subsection 5.4.

The key idea of our method is to combine surface approximation by radial basis
functions with the higher-dimensional embedding technique. Radial basis functions
(RBFs) have been used for decades in the context of multivariate data approximation
[14, 15, 25, 37]. Ironically, their main selling point is that they can be used to
interpolate unstructured data without relying on a mesh. Even though they are most
commonly used in the context of meshfree data approximation, they sometimes have
been employed in the context of mesh repair. Carr et al. [6] used polyharmonic
radial basis functions to fill in incomplete meshes. Similarly, Marchandise, Piret, and
Remacle [30] developed a method to repair meshes obtained from a CAD model or a
STereoLithography (STL) triangulation [8].

The higher-dimensional embedding (HDE) was introduced by Cañas and Gortler
in [5]. Since then several authors have expanded their ideas [7, 9, 28]. HDE produces
an anisotropic triangular curvature-adapted surface mesh that fits an input surface.
The anisotropy is obtained by finding a higher-dimensional space in which the mesh is
assumed to be uniform and isotropic. Previously, other approaches based on metric
tensor fields [19, 21] or minimizing objective functionals [12, 35] have been studied.
However, in order to be able to apply either of these strategies one needs to have a
priori or a posteriori knowledge of the error, which depends on the problem itself. The
HDE, on the other hand, does not require any information on the error. It is solely
based on information provided by the embedding map.

The remainder of this paper is organized as follows. After introducing RBFs
and the HDE technique in sections 2 and 3, we present our novel surface remeshing
approach in section 4 and supplement it in section 5 with extensive numerical studies
and successfully apply it to real-life problems.
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Table 1
Common examples of globally and compactly supported RBFs. All functions are positive definite

except the polyharmonic spline which is conditionally positive definite for d = 3 with (minimal) order
2. For positive r the truncation operator (·)+ leaves its argument unaltered. For negative arguments
it is set to zero. The last column indicates the regularity of the Wendland RBFs.

Global support Compact support (d = 3)

e−r2 Gaussian φ3,1(r) = (1− r)4
+(4r + 1) C2√

1 + r2 Multiquadric φ3,2(r) = (1− r)6
+(35r2 + 18r + 3) C4

1/
√

1 + r2 Inv. multiquadric φ3,3(r) = (1− r)8
+(32r3 + 25r2 + 8r + 1) C6

r3 Polyharm. spline due to Wendland [36]

For the rest of the paper, we will assume that the surface Γ is given implicitly by
the zero level set of some function F : Ω ⊆ R3 → R, i.e.,

(1) Γ =
{

(x, y, z)T ∈ Ω | F (x, y, z) = 0
}
,

for some bounded domain Ω.

2. Geometry reconstruction with RBFs. RBFs are commonly divided into
two categories: positive definite and conditionally positive definite functions. We state
both definitions here.

Definition 1 (positive definite function). Let Φ: Rd → R be a continuous
function. We define the matrix AΦ,X via its ijth entry,

aij = Φ(xi − xj) ,

for any data set X = {x1, . . . ,xN} ⊆ Rd of arbitrary length N ≥ 1. The function Φ is
called positive definite if the quadratic form

(2) cTAΦ,Xc

is positive for all vectors c ∈ RN \ {0}.
Definition 2 (conditionally positive definite function). Let Pm(Rd) denote

the space of d variate polynomials with absolute degree at most m and dimension
q := dimPm(Rd) =

(
m−1+d

d

)
. For a basis p1, . . . , pq of this space, define the N × q

polynomial matrix PX through its ijth entry,

pij = pi(xj) ,

where xj ∈ X. The function Φ is called conditionally positive definite of order m if
the quadratic form (2) is positive for all X and for all c ∈ RN \ {0} which additionally
satisfy the constraint PTXc = 0.

One typically speaks of RBFs if one additionally assumes that Φ is a radial
function, i.e., there exists a function φ : R≥0 → R such that Φ(x) = φ(‖x‖). Common
examples of RBFs are shown in Table 1. Trivially, a positive definite function is also
a conditionally positive definite function of order m = 0 and conditionally positive
functions of order m are also conditionally positive definite for any order higher than
m. Hence, the order usually shall denote the smallest positive integer m.

Suppose we want to recover a function f : Rd → R known on some data set
X = {xi}Ni=1. We can solve the interpolation problem

(3) f(xi) = s(xi), 1 ≤ i ≤ N,
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for the interpolant s : Rd → R using RBFs by making the ansatz

(4) s(x) =
N∑

j=1

αjΦ(x− xj)

in the case of a positive definite Φ and

(5) s(x) =
N∑

j=1

αjΦ(x− xj) +

q∑

k=1

βkpk(x)

in the case of conditionally positive definite functions. The coefficients α = (αj) ∈
RN ,β = (βk) ∈ Rq need to be determined by applying the interpolation condition (3)
to either (4) or (5). Hence, one needs to solve either

(6) AΦ,Xα = f or

(
AΦ,X PX
PTX 0

)(
α
β

)
=

(
f
0

)
,

where f = (f(xj)).
For positive definite functions, the linear system is positive definite by construction.

Hence, the coefficients can be determined uniquely. It is also not difficult to verify
that the second choice for the interpolant leads to unique coefficients in the case of
conditionally positive definite functions; see [37, Theorem 8.21] for details. In the case
of conditionally positive definite functions, it is known that at least N − q eigenvalues
of the matrix AΦ,X are positive [37, section 8.1].

Another criterion for classifying RBFs is whether they have compact support
or not. This is an advantageous feature for very large data sets since the matrix
AΦ,X becomes sparse if the support radius is small enough. It is well known that for
compactly supported RBFs the polynomial part in (5) has to vanish. There are no
nontrivial conditionally positive definite functions with compact support [37, Theorem
9.1]. Wendland [36] presented a class of compactly supported RBFs which consist of
polynomials within their support. The degree of the polynomials for a given space
dimension and smoothness parameter is minimal.

2.1. Surface reconstruction with RBFs. We cannot simply replace the target
function f in (3) with the function F whose zero level set describes the implicit surface
(1) since the right-hand sides of the linear systems (6) vanish, which implies that the
coefficients vanish as well. Carr et al. [6] therefore made the additional assumption that
the normal vectors are known. One then can also prescribe on-surface and off-surface
points. Assume that the points on the surface are denoted with X = {x1, . . . ,xN}
and the corresponding normal vectors with M = {n1, . . . ,nN}. Then one can define
the surface interpolation problem

(7)
s(xi) = F (xi) = 0, 1 ≤ i ≤ N (on-surface points),

s(xi + εni) = F (xi + εni) = ε, N + 1 ≤ i ≤ 2N (off-surface points),

for some parameter ε > 0. Since the right-hand side is no longer zero, we now find
nontrivial solutions to the linear systems (6). Actually, it is enough to define just
one off-set point to get a nontrivial solution. Moreover, it is even possible to add
more constraints. For example, if the quality of the approximation does not meet the
expectations, one can add more points (which increases of course the linear system that
needs to be solved). One possibility [6] is to consider s(xi − εni) = F (xi − εni) = −ε
for 2N + 1 ≤ i ≤ 3N . We denote the zero level set of the RBF approximation with Γs0.
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legend:

(a) L2 error (b) L∞ error (c) Condition numbers

Fig. 2. Comparison of different RBFs for varying mesh norms for ε = 1/8 and the implicit
function F given by (10). The arguments are scaled by 1/10.

2.2. Partitioning the RBF interpolant. To reduce the computational cost
when solving the linear system (6) or when projecting points onto the surface (see
subsection 4.3) we consider a disjoint partition of the surface

(8) Γinih = Γini1,h ∪ Γini2,h ∪ · · · ∪ ΓiniK,h

for K ∈ N. Let Xi denote the points on the surface patch Γinii,h and Mi the corresponding
normals. Now we can solve the interpolation problem (7) locally defined on each patch
Γinii,h and obtain local interpolants si whose zero level sets Γsi0 approximate Γinii,h . Then
the global interpolant is defined as

(9) s(x, y, z) :=





s1(x, y, z) if (x, y, z)T ∈ Γini1,h,

s2(x, y, z) if (x, y, z)T ∈ Γini2,h,
...

...
sK(x, y, z) if (x, y, z)T ∈ ΓiniK,h.

2.3. Errors and conditioning of the RBF interpolant. In order to study
the approximation quality and the conditioning of the RBF interpolant, we choose a
simple ellipsoid surface which is given by the zero level set of the function

(10) F (x, y, z) = x2/4 + y2/4 + z2/0.2− 1.

The reason for this relatively simple surface is that it allows one to compute the
error between our approximation and the exact solution. For nested point sets on the
ellipsoid where the mesh norm h (the radius of the largest ball which does not contain
any data point) is reduced each time by a factor of two, we see the results in Figure 2.
The L2 and L∞ errors of all RBF approximations considered seem to converge at least
quadratically.

The condition numbers, however, behave quite differently. Whereas all globally
supported RBFs behave eventually roughly like h−4, the condition numbers of the
compactly supported RBFs grow only very mildly (which is not even visible in the log
plot). As mentioned before, this is not a surprise as their compact support leads to a
sparse linear system. Even though these results might not yet capture the long term
behavior, they are from a computational point of view more interesting as one would
like to use as few points as possible.
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We report here that other surfaces (sphere and one-sheeted hyperboloid) have
been examined with similar results: at least quadratic convergence for both errors and
a growth in condition number of at least h−4.

3. Higher-dimensional embedding. The HDE technique fits a triangular sur-
face mesh to a given geometry by enlarging the space we are originally interested in.
The key assumption of HDE is that a uniform isotropic mesh in a higher-dimensional
space will correspond to an anisotropic mesh in a lower-dimensional space.

This concept is best explained with Figure 3. The left image shows a uniform
isotropic triangular mesh in R3. However, if projected onto R2 the mesh becomes
anisotropic, which is shown in the figure on the right.

Fig. 3. An isotropic mesh in the higher-dimensional space R3 (left) and the corresponding
anisotropic mesh in R2 (right). This figure encapsulates the key idea behind the HDE technique [28].
Courtesy of B. Lévy.

To obtain an anisotropic curvature-adapted mesh of an input surface Γ ⊂ R3, we
define the embedding map Ψ : Γ→ R6 by

(11) Ψ(x) = (x, y, z, σ nx, σ ny, σ nz)
T ,

where n = (nx, ny, nz)
T denotes the unit normal to Γ at x = (x, y, z)T and σ > 0

is a constant that controls the influence of the normals in the embedding map. For
small σ the mapping Ψ is close to the identity in R3 embedded in R6, i.e., Ψ(x) ≈
(x, y, z, 0, 0, 0)T . Larger values of σ put more emphasis on the normal components of
the surface Γ.

In the higher-dimensional space points on Γ are enriched with surface normal
information. Consider for instance two generic points a,b ∈ Γ and the edge ab. If
the surface is a plane, the normals at the endpoints are the same. Consequently, the
length of the edge in R3, denoted with lab, coincides exactly with the length measured
in the higher-dimensional space l6dab. On the other hand, if the surface is curved, the
normals at the endpoints are different and l6dab becomes much larger than lab.

3.1. Mesh generation in higher dimensions. There are two established ways
to build a uniform isotropic mesh in the higher-dimensional space. In [28], the authors
propose an approach based on the restricted centroidal Voronoi tessellation. Starting
from the embedding defined in (11), they compute the Voronoi tessellation of an
initial point set {pi}Ni=0. Then, they optimize this tessellation to get a restricted
centroidal Voronoi tessellation, i.e., a restricted Voronoi tessellation where pi = gi for
all i = 1, 2, . . . , N . Here, gi denotes the centroid of the Voronoi cell associated with
the point pi. The triangular mesh is finally obtained by duality from this Voronoi
diagram.
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This mesh generation strategy presents a couple of challenges. First, the com-
putation and the optimization of the restricted Voronoi tessellation is made in the
higher-dimensional space, incurring a high computational cost. Second, the sharp
features of the input geometry are smoothed and overrefined. Moreover, this method
can produce invalid meshes with selfintersection.

In [7, 9], a different method was proposed to construct a uniform isotropic mesh
in the higher-dimensional space. The idea is to exploit the standard scalar product
in the higher-dimensional space. Consider three points a, b, and c on the surface Γ,
then the lengths and the angles in the higher-dimensional space are defined as

l6dab :=
∣∣∣∣Ψ(a)−Ψ(b)

∣∣∣∣
6d

:=

√(
Ψ(a)−Ψ(b),Ψ(a)−Ψ(b)

)
6d

,

(12)

cos
(
θ6d
acb

)
:=

(
Ψ(a)−Ψ(c),Ψ(b)−Ψ(c)

)
6d

l6dac l
6d
bc

.

We define a target edge length l6d in the higher-dimensional space. Then the HDE
remeshing procedure modifies an initial mesh Γini

h in such a way that

(13) l6de ≈ l6d and cos
(
θ6d
α

)
≈ 1

2
∀e ∈ E and ∀α ∈ A ,

where E and A are the sets of edges and angles of all mesh triangles.

Remark 3. The method proposed in [7, 9] does not embed the mesh in R6. Only
the lengths and angles are computed in the higher-dimensional space. The mesh is
modified in R3 by standard mesh operations for triangular elements such as edge
flipping, edge splitting/contraction, and node smoothing.

This method overcomes all of the previously discussed drawbacks. It is computa-
tionally cheaper, the sharp features of the input mesh are preserved, and no triangle
of the resulting mesh intersects with itself [9].

4. Surface remeshing by RBF and HDE. In this section, we describe in
detail the novel anisotropic curvature adapted remeshing procedure. Starting from a
conformal triangular surface mesh Γinih , we proceed as follows:

(1) Build RBF approximation Γs0 of the initial surface mesh Γinih (subsec-
tion 4.1), and

(2) Construct final adapted mesh Γfinh via HDE including:
• local mesh modifications (subsection 4.2), and
• projections onto the surface Γs0 (subsection 4.3).

4.1. Building RBF approximation. When constructing the continuous ap-
proximation of Γinih , the user has to specify the type of RBF Φ, the parameter ε, and
the number of partitions K. In order to set up the interpolation problem defined
in (7), we use the vertices of Γinih as interpolation nodes X. By averaging the normals
of the triangles that share a generic vertex xi, we define the normals ni at this point
and obtain the set M . Finally, we construct and solve the linear system (6) to derive
the continuous interpolant s.

4.2. Surface remeshing via HDE. Our surface remeshing algorithm is stated
in Algorithm 1. It takes five inputs:
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• σ, the (anisotropy) parameter of the embedding map Ψ;
• l6d, the target edge length in the higher-dimensional space;
• Γinih , the initial surface mesh;
• lenFactor, the relative tolerance in the interval (0, 1) for the target edge

length l6d; and
• maxIter, the maximal number of iterations.

The last two parameters are the stopping criteria we employ for our algorithm. It
is possible to incorporate other stopping criteria such as (anisotropic) mesh quality
measures.

Starting from the initial mesh Γinih , this algorithm iteratively modifies the mesh to
make it as uniform as possible with respect to the embedding map Ψ. The algorithm
terminates either when all edge lengths are within a prescribed tolerance of the target
edge length (line 11 in Algorithm 1), or when it reaches the maximal number of
iterations maxIter. Since there is no guarantee that all 6d edge lengths will satisfy the
condition in line 11, the additional parameter maxIter is used to force the algorithm
to terminate. In section 5, we always consider lenFactor=0.4 and maxIter=9.

Algorithm 1. The anisotropic mesh adaptation.

Improve(σ, l6d, Γinih , lenFactor, maxIter)

1: for i = 1, . . . , maxIter do
2: repeat
3: contract all edges which satisfy l6de < 0.5 l6d;
4: smooth 30% of vertices;
5: flip edges if (14) holds;
6: until l6de ≥ 0.5 l6d for all edges e
7: split all edges which satisfy l6de > 1.5 l6d;
8: flip edges if (14) holds;
9: smooth 30% of vertices;

10: flip edges if (14) holds;
11: if |l6de − l6d|/l6d < lenFactor for all edges e then
12: break;
13: end if
14: end for

This algorithm employs the common local mesh modification procedures such as
edge flipping, edge contraction, edge splitting, and vertex smoothing [10, 21, 23, 24],
but it computes the edge lengths and angles in the higher-dimensional space. In the
following, we first explain these mesh modifications.

The most challenging task is to correctly implement the edge splitting and edge
contraction operations. Indeed both of these operations require adding or moving
nodes in such a way that they stay on the surface. In section 4.3, we explain a special
projection method which achieves this.

Edge-flip. Consider two triangles ∆abc and ∆bad whose common edge is ab.
Flipping the edge ab creates two new triangles ∆cda and ∆dcb and replaces the edge
ab with cd; see Figure 4.

It is not always possible to flip the edge ab in a triangular surface mesh. The
edge ab is flippable if it satisfies the following conditions:

(i) ab does not belong to the boundary of the mesh;
(ii) cd does not already belong to the mesh;
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(a) (b)

Fig. 4. Example for an edge flip (a) and two neighboring triangles in (b) that do not satisfy
criterion (iii).

(iii) the internal angles of the triangles satisfy

θabc + θabd < π and θbac + θbad < π ;

(iv) the angle between the normals of the triangles ∆abc and ∆bad is lower than
some threshold value. Here we set 80◦.

If an edge ab satisfies all these conditions, it is flippable. We decide to actually
flip the edge ab if the relation

(14) θ6d
acb + θ6d

adb > π

holds, where θ6d
acb and θ6d

adb are the angles measured in the higher-dimensional space.
This condition is inspired by the well-known Delaunay criterion, reinterpreted in the
higher-dimensional space [11].

Edge contraction and edge splitting. We try to approximately match all
edge lengths of our mesh to a given target edge length l6d by

• contracting the edge e if l6de < 0.5 l6d,
• splitting the edge e if l6de > 1.5 l6d, and
• otherwise applying neither edge contraction nor edge splitting.

Node smoothing. Unlike the previous mesh modification procedures, this oper-
ation does not change the topology of the mesh. It simply moves a point x to a new
location x′. This new location can be computed as follows:

(15) x′ = x + α
∑

xi∈ωx

w(d(x ,xi))ui .

Here α is a scaling parameter, w : R→ R is a weight function, ωx is the set of vertices
that are connected to the old point x, ui denotes the unit vectors that point from x
to xi and d is the distance between x and xi.

Different choices of α and w in (15) lead to different node smoothing meth-
ods. Here we use the node smoothing method proposed in [9]. That means the
distances d are computed in the higher-dimensional space and the parameter α is set
to 1/(

∑
xi∈ωx

w(d(x ,xi))) and w(x) := (1− x4)e−x
4

as introduced in [4].

4.3. Projection of nodes onto Γs
0. In this section, we describe how we apply

edge splitting and edge contraction while constraining all new points onto the RBF
surface Γs0. Applying these operations naively will fail.
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Projection after edge splitting or node smoothing. If we apply edge split-
ting or node smoothing to a triangular surface mesh, it is not a priori guaranteed that
these operations yield a new point that lies on the reconstructed surface Γs0.

Consider, for instance, the edge splitting operation. If we simply halve the edge,
the new point lies only under very special circumstances on Γs0. Moreover, since the
new point is usually not on the surface, the unit normal is not defined. Node smoothing
leads to a similar problem.

To avoid this issue, we exploit a projection algorithm. If we split an edge or move
a point using node smoothing, we project the resulting point onto the RBF surface
reconstruction Γs0. Hartmann [22] provided a robust algorithm to project a point onto
a surface defined via the zero level set of a function. This procedure is a combination
of orthogonal projections on tangent planes as well as tangent parabolas. It requires
only first-order derivatives and uses a steepest descent method. In our case, the surface
is described via Γs0, i.e., the zero level set of the interpolant s. Figure 5 provides a
two-dimensional example of node projection after edge splitting.

(a) (b) (c)

Fig. 5. Figure (a) shows a coarse input mesh (solid line) which approximates the reconstructed
curve (dashed line). In figure (b) the edges are halved. The midpoints v1 and v2 do not lie on the
reconstructed curve. Finally, figure (c) shows the new points v∗1 and v∗2 projected onto the dashed
curve using a steepest descent method.

Edge contraction to endpoint. An edge e can be contracted to different
locations. We decide to contract it to one of the endpoints [11] to avoid having to
project this point onto Γs0. The endpoints lie on Γs0 by construction where the normals
are well defined. Figure 6 provides a two-dimensional example.

(a) (b) (c)

Fig. 6. Figure (a) shows a fine input mesh (solid line) which approximates the reconstructed
curve (dashed line). In figure (b), the edge v1v2 is contracted to its midpoint v, which does not lie
on the reconstructed curve. However, in figure (c) the edge v1v2 in contracted to the endpoint v1

which by construction automatically lies on the dashed curve.

Defining normals on Γs
0. Consider the interpolant s and the RBF approxima-

tion of the discrete input surface Γs0. We use the gradient components of the function
s to obtain the unit normal of Γs0 for a point x = (x, y, z)T .
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Let (∇s)x, (∇s)y, and (∇s)z be the x, y, and z the components of s, respectively.
Then, the unit normal n = (nx, ny, nz)

T at point x is defined as

(16) nx :=
(∇s)x
||∇s|| , ny :=

(∇s)y
||∇s|| , nz :=

(∇s)z
||∇s|| ,

where ||∇s|| denotes the standard Euclidean norm of ∇s. We point out that by
construction ||∇s|| does not vanish on Γs0.

Overlapping and projection. To reduce the computational effort, we may
choose to partition the domain according to (8). Then the interpolant s whose zero
level set defines the surface Γs0 is given by (9).

Each time we project some node onto the surface, we have to determine the
local function si on which we want to project. However, near the boundary between
neighboring patches the node can be projected on more than one local interpolant.
Also having to determine which local interpolant to project on involves a costly point
search algorithm. Unfortunately, we cannot use a standard nearest-neighbor search
since it is not a priori guaranteed that the closest reconstructed patch is the one we
want to project our point on.

For a given patch Γinii,h with 1 ≤ i ≤ K, we assign to each of its points the flag i.
Whenever we halve an edge, we have to project the new point on one of the patches.
If both endpoints belong to the same patch, the new point inherits the same flag and
we project it on this patch. On the other hand, if the endpoints have different flags,
say i and j, we assign to the new point the flag k := min{i, j} and project it on Γsk0 .

(a) (b)

(c) (d)

Fig. 7. A two-dimensional example illustrating the discontinuity arising from projecting on a
partitioned surface. The dashed lines are the reconstructed curves. For each point we denote the
patch it belongs to by a number (a). When we split an edge whose endpoints belong to different
patches, we choose the smaller one, leading to a discontinuity (a kink) in the surface (b). The
third figure shows the new curves constructed from overlapping interpolation point sets (c). This
considerably reduces the discontinuity along the boundary between both patches (d).

This strategy will avoid the onerous searching procedure, but it may lead to
discontinuities near the boundary of two patches; see Figure 7 (a) and (b). Hence,
we introduce overlapping patches. Consider a partition Γinii,h and the set of vertices
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that lie on its boundary. We add to the sets Xi and Mi the vertices of Γinih which
share a triangle T that has at least one vertex on the boundary of the patch ∂Γinii,h ;
see Figure 8. This process is usually also done for the neighboring patch, creating two
patches which now overlap. If necessary, we successively increase the overlap, thus
enlarging the sets Xi and Mi; see Figure 8 (c) and (d). The parameter Ov will count
how many overlap layers have been added. The impact of this parameter on the global
approximation is studied in subsection 5.1.1.

Γinih and Ov =0 points to be added Ov =1 Ov =2

(a) (b) (c) (d)

Fig. 8. A simple example of the overlap for a structured mesh on a square. In (a) the original
patch Γini

1,h is shown. Furthermore, (b) shows the patch Γini
1,h, its boundary ∂Γini

1,h, and the points

which will be added, highlighted with circles. The cases Ov = 1 and Ov = 2 are provided in (c) and
(d), respectively.

5. Numerical examples. In the following, we study different input meshes to
assess the quality and robustness of our new anisotropic remeshing method, described
in section 4. We start by examining three model geometries to analyze the condition
numbers as well as the impact of the different parameters such as the overlap parameter
Ov , the edge length l6d, and the embedding parameter σ on the final mesh Γfinh .
Additionally, we show that our method can not only be used to fill in more detail but
also to thin out very complex meshes. In the last subsection, we apply our method to
real-life examples from medical applications for which we would like to build anisotropic
meshes.

To assess the degree of anisotropy of our mesh, we compute the global aspect ratio

(17) qΓh
:= max

T∈Γh

qT ,

where qT := RT /(2 rT ) is the so-called aspect ratio of the triangle T . Here RT and
rT are the radii of the circumscribed and inscribed circle of T , respectively [34]. We
observe that qT ≥ 1 by construction. If qT = 1, then T is an equilateral triangle, while
if qT � 1, the triangle T is stretched.

The partitioning strategy described in section 2.2 helps to reduce the linear systems
to a size where we can use unpreconditioned direct solvers for all examples in this
section. For our computations we have used the PARDISO solver [26, 33]. However,
if the systems become even larger, it is necessary to employ iterative solvers. If the
matrix AΦ,X is symmetric positive definite, we can use the conjugate gradients method.
On the other hand, if the matrix has the saddle-point structure given in (6), the whole
system is no longer guaranteed to be positive definite and one could use GMRES.
Another way to reduce the computational cost is to employ preconditioners. Finding
useful preconditioners for RBF systems is still an open topic [2, 29]. In order to take
advantage of the saddle-point structure for conditionally positive RBFs, one might
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adapt ideas from [13]. In general, it is well known that the condition numbers grow
when two points on the surface become very close [37]. Hence, distributing the points
in such a way that the separation distance (the smallest distance between any two
points in the data set) is comparable to the mesh norm is useful.

5.1. Sensitivity analysis of the parameters. We analyze the most relevant
parameters in the adaptation procedure for a model input mesh (the cat mesh shown
in Figure 9 on the left). More precisely, in subsection 5.1.1, we focus on the influence of
the Ov parameter when constructing Γs0. In subsection 5.1.2 we compute the condition
numbers of the matrices for different partitions. In subsection 5.1.3, we conduct a
sensitivity analysis of the target edge length l6d and the embedding parameter σ.
Finally, in subsection 5.1.4, we study the input tolerance lenFactor which serves as
one of our termination criteria. Throughout this subsection, we consider the discrete
input surface shown in Figure 9 (left).

5.1.1. Overlap analysis. We study more carefully the influence of the overlap
parameter Ov . This is a key parameter when partitioning like in (8) since it reduces
the discontinuities of Γs0 along the patch boundaries. To understand its effect on the
reconstructed geometry, we use thin plate splines, ε = 0.1 and K = 20.

initial data Ov = 0 Ov = 1 Ov = 2

Fig. 9. The cat geometry used for the sensitivity analysis of the overlap parameter Ov, the edge
length l6d, and the embedding parameter σ. The RBF surface reconstruction Γs

0 for the cat with
different values for Ov.

From Figure 9 we infer that the smoothness of the approximation increases for
higher values of the parameter Ov . Heuristically, an overlap parameter of 2 or 3 yields
acceptable approximations.

5.1.2. Condition number analysis. In this subsection, we analyze how the
stability of the linear systems (6) benefits from the partitioning introduced in section
2.2. We choose thin plate splines, ε = 0.1 and Ov = 2. We report the largest and
the smallest condition numbers among all partition matrices, denoted by maxcond and
mincond, respectively. Naturally, for K = 1 the partition consists only of one patch
and both numbers coincide. The results are shown in Table 2. The condition numbers
decrease for lager values of K.

5.1.3. Mesh adaptation parameters. Next, we perform experiments to an-
alyze the sensitivity of the target length l6d and the embedding parameter σ. To
construct Γs0, we use as before thin plate splines, ε = 0.1 and K = 20. Additionally,
we set Ov = 2 and consider the following sets of values:

σ ∈ {1, 5, 10} and l6d ∈ {20, 15, 10} .
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Table 2
Largest and smallest condition numbers for different numbers of partitions K.

K maxcond (matrix size) mincond (matrix size)
1 2.1292e+16 (704) 2.1292e+16 (704)
3 2.8812e+15 (268) 1.6045e+13 (242)
6 9.8719e+14 (148) 3.3762e+12 (130)
9 6.9304e+14 (100) 9.4852e+11 (90)

In Figure 11, we show the resulting meshes and provide a quantitative analysis in
Table 3. Our remeshing algorithm behaves as expected. If we fix the parameter σ
and decrease l6d, the resulting mesh becomes finer; see the columns in Figure 11 and
Table 3.

On the other hand, if we fix the target edge length l6d and increase the parameter
σ, we observe a similar behavior; see the rows of Figure 11 and Table 3, respectively.
The lengths in the higher-dimensional space (12) grow when increasing the parameter
σ, which implies there is a greater amount of sampling to achieve the same target edge
length. However, since σ controls the influence of the normals in the embedding map,
the sampling is localized only in high curvature regions; see the details in Figure 10.

In Table 3, we also collect the computation times. More specifically, RBF refers
to the time required to construct the RBF approximation while remesh is the average
time of one iteration in the adapation procedure of Algorithm 1. As expected the time
to construct the RBF approximation is not influenced by the remeshing parameters.
However, the time for the remeshing procedure grows for higher values of σ and lower
values of l6d since these two parameters increase the sampling of the initial mesh.

Furthermore, to understand how different the mesh Γh is from the geometry
reconstructed via the RBFs Γs0, we introduce the Hausdorff distance

(18) dist(Γh,Γ
s
0) := max

T∈Γh

s(xbar,T ) ,

where xbar,T is the barycenter of the triangle T and s is the signed distance function
whose zero level set defines the reconstructed surface Γs0. The smaller the Hausdorff
distance, the closer is the final mesh Γh to the surface Γs0.

Finally, in Table 4, we provide the percentage of each mesh operation during the
remeshing process.

σ = 1 σ = 5 σ = 10

Fig. 10. A detail of the cat for l6d = 15 and different values of σ. In this region the normals
vary greatly. Hence, the mesh adaptation procedure refines more and more for increasing values of σ.

5.1.4. The termination tolerance lenFactor. In this subsection, we analyze
the impact of the termination parameter lenFactor on the adaptation procedure.
To construct Γs0, we use as before thin plate splines, ε = 0.1, K = 20, and Ov = 2.
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Table 3
Global aspect ratios qΓh

, number of elements (#ele.), Hausdorff distance (HD dist.), time spent
on creating the RBF surface reconstruction, as well as the remeshing procedure (average time for
one iteration) for different values of σ and l6d.

l6d \σ 1 5 10

20

qΓh
2.597e+00 qΓh

1.449e+01 qΓh
3.567e+01

#ele. 1826 #ele. 3318 #ele. 7743
HD dist.: 1.3794e-02 HD dist.: 6.5628e-03 HD dist.: 2.8499e-03

RBF: 0.197 sec. RBF: 0.201 sec. RBF: 0.198 sec.
remesh: 0.544 sec. remesh: 0.804 sec. remesh: 1.461 sec.

15

qΓh
1.684e+00 qΓh

8.441e+00 qΓh
2.076e+01

#ele. 2142 #ele. 4960 #ele. 13 248
HD dist.: 9.3048e-03 HD dist.: 3.5687e-03 HD dist.: 1.6709e-03

RBF: 0.207 sec. RBF: 0.196 sec. RBF: 0.198 sec.
remesh: 0.556 sec. remesh: 0.832 sec. remesh: 1.786 sec.

10

qΓh
2.419e+00 qΓh

1.914e+01 qΓh
2.935e+01

#ele. 3264 #ele. 10 029 #ele. 27 943
HD dist.: 4.5342e-03 HD dist.: 1.1085e-03 HD dist.: 1.0419e-03

RBF: 0.198 sec. RBF: 0.198 sec. RBF: 0.199 sec.
remesh: 0.577 sec. remesh: 0.989 sec. remesh: 2.284 sec.

Table 4
Percentage breakdown of operations in remeshing procedure for each choice of σ and l6d.

l6d \σ 1 5 10

20

flips: 18% flips: 22% flips: 21%
smooth: 15% smooth: 21% smooth: 41%

contr: 33% contr: 27% contr: 17%
split: 34% split: 30% split: 21%

15

flips: 17% flips: 19% flips: 16%
smooth: 19% smooth: 33% smooth: 54%

contr: 31% contr: 22% contr: 12%
split: 33% split: 26% split: 18%

10

flips: 15% flips: 14% flips: 10%
smooth: 28% smooth: 51% smooth: 71%

contr: 27% contr: 15% contr: 5%
split: 30% split: 20% split: 14%

We fix the target edge length l6d = 15, the embedding parameter σ = 5, as well as
maxIter = 100, and vary the tolerances lenFactor. In particular, we use the following
tolerances:

lenFactor = {0.2, 0.3, 0.4, 0.5} .

For each value of lenFactor we report in Table 5 the number of iterations, #iter,
as well as the minimal and maximal 6d edge lengths of the mesh, l6dmin and l6dmax,
respectively. Since our algorithm does not guarantee that all final 6d edge lengths are
within the lenFactor tolerance of the target edge length, the adaptation procedure
may require a large number of iterations if the tolerance lenFactor is small. Indeed
when we set lenFactor to 0.1 or 0.2, the maximal number of iterations is reached and
Algorithm 1 stopped without satisfying this condition. However, in both these cases
l6dmin and l6dmax are close to the target edge length l6d = 15, which means that the mesh
is approximately uniform and isotropic in the higher-dimensional space.

5.2. Bunny. We examine the well-known Stanford bunny, depicted in Figure 12.
To construct Γs0, we use thin plate splines, ε = 0.001, K = 200, and Ov = 3. The
largest condition number for this setup is given by maxcond = 1.7997e+12 (matrix size:
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σ = 1 σ = 5 σ = 10

Fig. 11. Adapted cat meshes for different values of σ (columns) and l6d = 20, 15, 10 (rows, from
top to bottom).

940) and the smallest one by mincond = 1.2369e+11 (matrix size: 664). We run the
anisotropic adaptation procedure with l6d = 0.001 and σ = 1.0. In Figure 12, we show
both the initial and the resulting mesh. The resulting mesh is strongly anisotropic; in
fact. the global aspect ratio qΓh

is 3.989e+02 and it is more refined than the initial
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Table 5
Experiments for different lenFactor: The table shows the number of iterations, iter, minimal

and maximal 6d edge lengths of the mesh, l6dmin and l6dmax, for varying termination tolerances lenFactor.
The first two lines show that the algorithm stopped because maxIter = 100 was reached. In the other
three cases, the algorithm terminated since all edge lengths are within the prescribed tolerance. In
this case, the number of iterations are reported as well.

lenFactor #iter l6dmin l6dmax

0.1 100 10.627 16.013
0.2 100 10.627 16.013
0.3 85 10.503 15.859
0.4 5 9.1762 16.009
0.5 1 7.9340 17.667

one. While the initial mesh has 69 451 elements, the final one has 110 350 triangles.

initial mesh final mesh

Fig. 12. The initial bunny mesh (left) and the resulting anisotropic adapted one (right).

The triangles are aligned and stretched according to the curvature of the surface.
This can be clearly seen when zooming in on the ears of the bunny; see Figure 13. In
the initial mesh Γinih , the triangles are too big to capture the helix of the bunny’s ears
and their orientation and shape do not reflect the curvature of the surface. However
in the final mesh Γfinh all these problems disappear.

Moreover, the final anisotropic adapted mesh exhibits a more detailed structure.
For instance, unlike for the initial mesh Figure 12 (left), finer details in the fur of the
bunny are clearly visible in the final mesh; see Figure 12 (right).

5.3. Lucy. In both previous examples, we started from a coarse initial mesh
that poorly approximates the input geometry. However, our mesh anisotropic mesh
adaptation procedure can also be used to simplify a dense initial mesh, coarsening it
in regions with little curvature variation.

We consider the geometry shown in Figure 14. This mesh is another well-known
benchmark in surface mesh adaptation (“Lucy”). Here the mesh is so fine that one
would not be able to see the faces of the triangles because of the density of the edges;
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initial mesh final mesh

Fig. 13. A detail of the initial bunny mesh (left) and the same detail for the anisotropic adapted
one (right).

initial mesh l6d = 30 l6d = 50

Fig. 14. The “Lucy” mesh (excluding edges) with 510 180 elements as well as the thinned out
meshes for l6d = 30 and 141 674 elements as well as for l6d = 50 and 67 888 elements.

see Figure 14 left. Hence, we only show the faces of the surface without the edges. To
construct the surface approximation, we use thin plate splines, ε = 0.1, K = 3000,
Ov = 3, and the σ = 10. We point out that the number of partitions is rather high. If
we want to reduce the number of partitions or avoid dealing with large dense linear
systems, we can employ compactly supported RBFs. The largest condition number
for this setup is given by maxcond = 2.0923e+20 (matrix size: 2960) and the smallest
one by mincond = 5.8935e+15 (matrix size: 2158).

The initial mesh offers a very fine approximation of the input geometry, but
managing this huge data set requires an unacceptably high computational cost. By
choosing a large target length l6d our anisotropic adaptation procedure effectively
becomes a mesh simplification method. The mesh detail in Figure 15 shows that the
shape of the initial mesh is still preserved, but uses considerably fewer elements. To
be more precise, we reduce the number of elements by 73% for l6d = 30 and by 87%
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initial mesh l6d = 30 l6d = 50

Fig. 15. A detail of the “Lucy” mesh which is thinned out according to different target edge
lengths.

for l6d = 50. The final meshes are more anisotropic compared to the initial one. We
increase the global aspect ratio qΓh

from 1.21 to 95.83 and to 65.04, for l6d = 30 and
l6d = 50, respectively.

5.4. Real-life examples. Finally, we study two real-life applications from mag-
netic resonance imaging processes.

Bronchus. This mesh represents the trachea and the main branches of the
bronchi [16]. The geometry is rather complex. It consists of a sequence of branches
that become smaller at each bifurcation. Triangles in the initial mesh are not aligned
according to the curvature of the geometry; see Figure 16 and the detail in Figure 17.

The surface Γs0 is built using thin plate splines, ε = 0.1, K = 200, and Ov = 3.
The largest condition number for this setup is given by maxcond = 2.5151e+12 (matrix
size: 462) and the smallest one by mincond = 2.2246e+7 (matrix size: 474). We set σ
to 1 and consider three different target edge lengths:

l6d ∈ {0.25, 0.5, 1.0} .
After applying our remeshing procedure the previously problematic triangles

disappear and are replaced by new curvature-aligned ones. This example underlines
the flexibility of the proposed adaptation procedure. In fact, it is possible to achieve
different tasks by tuning the parameter l6d. On the one hand, if we consider a large
value for l6d, the remeshing process becomes a mesh simplification method; see the
detail in Figure 17 corresponding to l6d = 1.0. On the other hand, if we consider
a relatively short target edge length, our algorithm creates a surface mesh that is
smoother and finer than the initial one; see the detail in Figure 17 corresponding
to l6d = 0.25. Moreover, if we tune the target length in such a way that we obtain
approximately the same number of elements as in Γinih , the computational effort to
deal with this mesh is the same as before but its triangles are curvature-aligned. See
Figure 17 with target edge length l6d = 0.5.

This observation is numerically verified by the data in Table 6. Here we state
the number of elements in the initial and adapted meshes for different target lengths.
In this table, we additionally provide the values of the global aspect ratio qΓh

which
quantify the degree of anisotropy.

Vertebrae. Finally, we look at a mesh which represents one vertebra of the dorsal
spine. The triangles in the Γinih are highly irregular. Many regions are too coarse and
nonsmooth; see the initial mesh in Figure 18 and the detail in Figure 19.

The surface Γs0 is built using thin plate splines, ε = 0.1, K = 19, and Ov = 2.
The largest condition number for this setup is given by maxcond = 4.5525e+11 (matrix
size: 462) and the smallest one by mincond = 4.8159e+10 (matrix size: 378).
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Table 6
The number of elements for the bronchus meshes. We provide the percentage of the triangles in

the mesh with respect to the number of triangles in the adapted meshes as well as the global aspect
ratios and the timings defined in the previous section.

Initial mesh l6d = 0.5 l6d = 1.0 l6d = 0.25

#ele.
42 692 34 954 12 026 132 784
100% 82% 28% 311%

qΓh
6.00e+01 1.28e+02 7.53e+02 7.08e+02

RBF - 27.306 sec. 27.261 sec. 27.651 sec.
Remesh - 1.821 sec. 2.818 sec. 4.158 sec.

initial mesh l6d = 0.5

l6d = 1.0 l6d = 0.25

Fig. 16. The initial bronchus mesh, courtesy of Fetita et al. [16], and the adapted ones for
different target edge lengths.
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initial mesh l6d = 0.5

l6d = 1.0 l6d = 0.25

Fig. 17. A detail of the initial bronchus mesh and the adapted ones for different target edge
lengths.

We set σ to 5 and consider three different edge lengths:

l6d ∈ {0.5, 1.5, 3.0} .

The triangles in the resulting meshes are perfectly oriented and stretched to fit
the input geometry, which can be seen in Figure 19. Even though some regions in
the input mesh are too coarse and miss some details, in the final adapted meshes
these undesirable features completely disappear; see Figure 19. Moreover, the smaller
l6d, the smoother the approximation of the input surface. In Table 7, we show the
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computation times for each case.

Table 7
The number of elements for the vertebrae meshes. We provide the percentage of the triangles in

the mesh with respect to the number of triangles in the adapted meshes as well as the global aspect
ratios and the timings defined in the previous section.

Initial mesh l6d = 0.5 l6d = 1.5 l6d = 3.0

#ele.
1928 123 572 15 557 3710
100% 6409% 807% 192%

qΓh
3.27e+01 2.74e+02 2.84e+02 2.93e+02

RBF - 0.953 sec. 0.964 sec. 0.940 sec.
Remesh - 10.387 sec. 1.868 sec. 0.758 sec.

initial mesh l6d = 3.0

l6d = 1.5 l6d = 0.5

Fig. 18. The initial vertebrae mesh and the adapted ones with different target edge lengths.

We conclude this section with a comparison between our algorithm and the state-
of-the-art open-source software package Geogram [27]. Geogram also implements
the HDE for surface remeshing, using the algorithm in [28]. The difference in our
algorithm is that Geogram directly uses the input surface information whereas we
reconstruct a new surface. The initial mesh is the same one as in Figure 18. For
the comparison, we used the mesh generated with a target edge length of l6d = 0.5
(bottom right in Figure 18). Geogram’s output mesh was obtained using the release
version on a MacBook Pro with CPU Intel i7 quad core and 16 GB memory via
the command vorpalite spineNew.1.mesh output.mesh pts=95000 aniso=5. We
specified approximately the same number of mesh points as in the l6d = 0.5 mesh as
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initial mesh l6d = 3.0

l6d = 1.5 l6d = 0.5

Fig. 19. A detail of the initial vertebrae mesh and its corresponding adaptations for different
target edge lengths.

well as the same anisotropy parameter σ = 5. The resulting surfaces and meshes are
shown in Figure 20. In terms of the CPU time, Geogram runs very fast (4.74 seconds),
compared to our preliminary unoptimized time, which is about 90 seconds. However,
we do observe the effect of the fundamental difference between both algorithms: the
mesh produced by Geogram is not as smooth as ours. Furthermore, our algorithm
seems to approximate the curvature of the underlying surface better and the anisotropy
of the surface is more pronounced as the detail in Figure 20 reveals.

6. Conclusion. We presented a new anisotropic surface remeshing algorithm,
which can be used to improve problematic inputs coming from discrete surface data
sets. The anisotropy is guided by the curvature of the surface. Depending on the target
edge length parameter, our new method becomes either a mesh simplification, a surface
remeshing, or a mesh refinement algorithm. In particular, when the initial mesh is
extremely coarse, the algorithm increases the resolution of the poor initial data. The
influence of the different parameters in the algorithm were studied and tested on several
classical and even real-life meshes. To reduce the computational cost a partitioning
strategy with an overlap was introduced. A very moderate overlap already led to
useful meshes. We discussed how standard meshing procedures such as edge splitting
and edge contraction could be adapted in such a way that they can be projected on
the continuous surface reconstruction provided by the RBFs. We showed how much
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Fig. 20. First row: the input mesh (left), the reconstructed surfaces by Geogram (middle), and
our algorithm (right). Second row: a comparison of the resulting meshes using Geogram (left) and
our algorithm (right).

each remeshing procedure contributed to the remeshing algorithm and broke down
the timings spent on reconstructing the surface and adapting the mesh. Furthermore,
we studied the influence of the target edge length and the normal parameter σ. As
expected a larger normal parameter σ led to more edges in high-curvature regions. We
showed that the degree of anisotropy could be increased considerably while keeping
the number of elements relatively low. Finally, we compared our algorithm to the
state-of-the-art software package Geogram and demonstrated the advantages of our
algorithm in terms of smoothness and anisotropic curvature approximation. In this
paper, we assume that the discrete data represent a smooth surface. Future research
may look at discrete data which contain sharp features.
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smoothing surface triangulations on a local parametric space, Internat. J. Numer. Methods
in Engrg., 66 (2006), pp. 740–760, https://doi.org/10.1002/nme.1584.

[13] P. Farrell and J. Pestana, Block preconditioners for linear systems arising from multiscale
collocation with compactly supported RBFs, Numer. Linear Algebra Appl., 22 (2015),
pp. 731–747, https://doi.org/10.1002/nla.1984.

[14] P. Farrell and H. Wendland, RBF multiscale collocation for second order elliptic boundary
value problems, SIAM J. Numer. Anal., 51 (2013), pp. 2403–2425, https://doi.org/10.1137/
120898383.

[15] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, Interdiscip. Math. Sci. 6,
World Scientific, Hackensack, NJ, 2007, https://doi.org/10.1142/6437.

[16] C. Fetita, S. Mancini, D. Perchet, F. Preteux, M. Thirie, and L. Vial, An image-based
computational model of oscillatory flow in the proximal part of tracheobronchial trees,
Comput. Methods Biomech. Biomed. Engin., 8 (2005), pp. 279–293, https://doi.org/10.
1080/10255840500289624.

[17] L. Formaggia, S. Micheletti, and S. Perotto, Anisotropic mesh adaptation in computational
fluid dynamics: Application to the advection-diffusion-reaction and the Stokes problems,
Appl. Numer. Math., 51 (2004), pp. 511–533, https://doi.org/10.1016/j.apnum.2004.06.007.

[18] L. Formaggia and S. Perotto, New anisotropic a priori error estimates, Numer. Math., 89
(2001), pp. 641–667, https://doi.org/10.1007/s002110100273.

[19] P. J. Frey, Generation and adaptation of computational surface meshes from discrete
anatomical data, Internat. J. Numer. Methods Engrg., 60 (2004), pp. 1049–1074, https:
//doi.org/10.1002/nme.992.

[20] P. J. Frey and F. Alauzet, Anisotropic mesh adaptation for CFD computations, Comput.
Methods Appl. Mech. Engrg., 194 (2005), pp. 5068–5082, https://doi.org/10.1016/j.cma.
2004.11.025.

[21] P. J. Frey and H. Borouchaki, Geometric surface mesh optimization, Comput. Vis. Sci., 1
(1998), pp. 113–121, https://doi.org/10.1007/s007910050011.

[22] E. Hartmann, On the curvature of curves and surfaces defined by normal forms, Comput.
Aided Geom. Des., 16 (1999), pp. 355–376, https://doi.org/10.1016/S0167-8396(99)00003-5.

[23] H. Hoppe, Progressive meshes, in Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, ACM, New York, 1996, pp. 99–108, https://doi.org/
10.1145/237170.237216.

[24] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Mesh optimization,
in Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Tech-
niques, ACM, New York, 1993, pp. 19–26, http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.6.2515&rep=rep1&type=pdf.

[25] A. Iske, Multiresolution Methods in Scattered Data Modelling, Lect. Notes Comput. Sci. Eng.
37, Springer, Berlin, 2004, https://doi.org/10.1007/978-3-642-18754-4.



A NOVEL SURFACE REMESHING SCHEME VIA HDE AND RBFs B547

[26] A. Kuzmin, M. Luisier, and O. Schenk, Fast methods for computing selected elements of
the Greens function in massively parallel nanoelectronic device simulations, in Euro-Par
2013 Parallel Processing, Lecture Notes in Comput. Sci. 8097, F. Wolf, B. Mohr, and
D. Mey, eds., Springer, Berlin, Heidelberg, 2013, pp. 533–544, https://doi.org/10.1007/
978-3-642-40047-6 54.

[27] B. Levy, Geogram version 1.3.10, http://alice.loria.fr/software/geogram/doc/html/index.html
(2016).

[28] B. Lévy and N. Bonneel, Variational anisotropic surface meshing with Voronoi parallel linear
enumeration, in Proceedings of the 21st International Meshing Roundtable, Springer, Berlin,
Heidelberg, 2013, pp. 349–366, https://doi.org/10.1007/978-3-642-33573-0 21.

[29] L. Ling and E. J. Kansa, Preconditioning for radial basis functions with domain decomposition
methods, Math. Comput. Modelling, 40 (2004), pp. 1413–1427, https://doi.org/10.1016/j.
mcm.2005.01.002.

[30] E. Marchandise, C. Piret, and J.-F. Remacle, CAD and mesh repair with radial basis
functions, J. Comput. Phys., 231 (2012), pp. 2376–2387, https://doi.org/10.1016/j.jcp.2011.
11.033.

[31] E. Marchandise, J.-F. Remacle, and C. Geuzaine, Optimal parametrizations for sur-
face remeshing, Eng. Comput., 30 (2014), pp. 383–402, https://doi.org/10.1007/
s00366-012-0309-3.
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Abstract Given a tetrahedral mesh for example be used in a FVM simulation as de-
scribed in Section 3.1 as well as objective functionals measuring the mesh quality which
take into account the shape, size, and orientation of the mesh elements, our aim is to im-
prove the mesh quality as much as possible. In this paper, we combine the moving mesh
smoothing, based on the integration of an ordinary differential equation coming from
a given functional, with the lazy flip technique, a reversible edge removal algorithm to
modify the mesh connectivity. Moreover, we utilize radial basis function (RBF) surface
reconstruction to improve tetrahedral meshes with curved boundary surfaces. Numerical
tests show that the combination of these techniques into a mesh improvement framework
achieves results which are comparable and even better than the previously reported ones.
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a b s t r a c t

Given a tetrahedral mesh and objective functionals measuring the mesh quality which take into account
the shape, size, and orientation of the mesh elements, our aim is to improve the mesh quality as much as
possible. In this paper, we combine the moving mesh smoothing, based on the integration of an ordinary
differential equation coming from a given functional, with the lazy flip technique, a reversible edge
removal algorithm to modify the mesh connectivity. Moreover, we utilize radial basis function (RBF)
surface reconstruction to improve tetrahedral meshes with curved boundary surfaces. Numerical tests
show that the combination of these techniques into a mesh improvement framework achieves results
which are comparable and even better than the previously reported ones.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The keymesh improvement operations considered in this work
are smoothing, which moves the mesh vertices, flipping, which
changes themesh topologywithoutmoving themesh vertices, and
a smooth boundary reconstruction. Previous work shows that the
combination of smoothing and flipping achieves better results than
if applied individually [1,2]. In this paper, we combine the recently
developed flipping and smoothing methods into one mesh im-
provement scheme and apply them in combination with a smooth
boundary reconstruction via radial basis functions.

Mesh smoothing improves the mesh quality by improving
vertex locations, typically through Laplacian smoothing or
some optimization-based algorithm. Most commonly used mesh
smoothingmethods are Laplacian smoothing and its variants [3,4],
where a vertex is moved to the geometric center of its neigh-
boring vertices. While economic, easy to implement, and often
effective, Laplacian smoothing guarantees neither a mesh quality
improvement nor mesh validity. Alternatives are optimization-
based methods that are effective with respect to certain mesh
quality measures such as the ratio of the area to the sum of the
squared edge lengths [5], the ratio of the volume to a power of the
sumof the squared face areas [6], the condition number of the Jaco-
bian matrix of the affine mapping between the reference element
and physical elements [7], or various other measures [1,8–10].

✩ This special issue was edited by Scott Canann, Steven J. Owen & Hang Si.

* Corresponding author.
E-mail addresses: franco.dassi@unimib.it (F. Dassi), kamenski@wias-berlin.de

(L. Kamenski), farrell@wias-berlin.de (P. Farrell), si@wias-berlin.de (H. Si).

Most of the optimization-based methods are local and sequential,
combining Gauss–Seidel-type iterations with location optimiza-
tion problems over each patch. There is also a parallel algorithm
that solves a sequence of independent subproblems [11].

In our scheme, we employ the moving mesh PDE (MMPDE)
method, defined as the gradient flow equation of a meshing func-
tional (an objective functional in the context of optimization) to
move the mesh continuously in time. Such a functional is typically
based on error estimation or physical and geometric considera-
tions. Here, we consider a functional based on the equidistribution
and alignment conditions [12] and employ the recently developed
direct geometric discretization [13] of the underlying meshing
functional on simplicial meshes. Compared to the aforementioned
mesh smoothing methods, the considered method has several
advantages: it can be easily parallelized, it is based on a continuous
functional for which the existence of minimizers is known, the
functional controlling the mesh shape and size has a clear geomet-
ric meaning, and the nodal mesh velocities are given by a simple
analytical matrix form. Moreover, the smoothed mesh will stay
valid if it was valid initially [14].

Flipping is the most efficient way to locally improve the
mesh quality and it has been extensively addressed in the litera-
ture [15,1,16,2]. In the simplest case, the basic flip operations, such
as 2-to-3, 3-to-2, and 4-to-4 flips, are applied as long as the mesh
quality can be improved. Themore effectiveway is to combine sev-
eral basic flip operations into one edge removal operation, which
extends the 3-to-2 and 4-to-4 flips. This operation removes the
common edge of n ≥ 3 adjacent tetrahedra by replacing themwith
m = 2n − 4 new tetrahedra (the so-called n-to-m flip). There are
at most Cn−2 possible variants to remove an edge by a n-to-m flip,

https://doi.org/10.1016/j.cad.2017.11.010
0010-4485/© 2017 Elsevier Ltd. All rights reserved.
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where Cn =
(2n)!

(n+1)! n! is the Catalan number. If n is small (e.g., n < 7),
one can enumerate all possible cases, compute the mesh quality
for each case, and then pick the optimal one. Another way is
to use dynamic programming to find the optimal configuration.
However, the number of cases increases exponentially and finding
the optimal solution with brute force is very time-consuming.

In this paper, we propose the so-called lazy searching flips. The
key idea is to automatically explore sequences of flips to remove a
given edge in the mesh. If a flip sequence leads to a configuration
which does not improve the mesh quality, the algorithm reverses
this sequence and explores another one (see Section 3 and Figs. 2a
to 2c). Once an improvement is found, the algorithms stops the
search and returns without exploring the remaining possibilities.

When considering more arbitrary meshes (which may not be
piecewise planar), we need to make sure that new nodes are
added in a consistent way. To achieve this we use RBF surface
reconstruction as introduced in [17]. Radial basis functions are a
very useful tool in the context of higher-dimensional interpolation
as they dispense with the expensive generation of a mesh [18–20].
Here, we will employ them to approximate the underlying con-
tinuous surface so that we can project nodes onto it as proposed
in [21,22]. This problem turns out to be very challenging formeshes
with arbitrary boundary. Hence, we begin with a relatively simple
mesh. Formore complicated exampleswe first refine the boundary
by using the RBF reconstruction and projection method and then
keep the boundary nodes fixed while interior nodes may move.

In this paper, we provide a detailed numerical study of a com-
bination of the MMPDE smoothing with the lazy searching flips
and RBF surface reconstruction. More specifically, we compare the
results of the whole algorithm with Stellar [2], CGAL [23] and
mmg3d [24]. We also compare the lazy searching flips and the
MMPDE smoothing with the flipping and smoothing procedures
provided by Stellar.

2. The moving mesh PDE smoothing scheme

The key idea of this smoothing scheme is tomove themesh ver-
tices via amovingmesh equation,which is formulated as the gradi-
ent system of an energy functional (the MMPDE approach). Origi-
nally, themethodwas developed in the continuous setting [25,26].
In this paper, we use its discrete form [13,14,27], for which the
mesh vertex velocities are expressed in a simple, analytical matrix
form, which makes the implementation more straightforward to
parallelize.

2.1. Moving mesh smoothing

Consider a polygonal (polyhedral) domain Ω ⊂ Rd with d ≥ 1.
Let Th denote the simplicial mesh as well as #Nh and #Th the
numbers of its vertices and elements, respectively. Let K be a
generic mesh element and K̂ the reference element taken as a
regular simplex with volume |K̂ | = 1/#Th. Further, let F ′

K be the
Jacobian matrix of the affine mapping FK : K̂ → K from the
reference element K̂ to amesh elementK . For notational simplicity,
we denote the inverse of the Jacobian by JK , i.e., JK := (F ′

K )
−1 (see

Fig. 1).
Then, the mesh Th is uniform if and only if

|K | =
|Ω|

#Th
and

1
d
tr

(
JTKJK

)
= det

(
JTKJK

) 1
d ∀K ∈ Th. (1)

The first condition requires all elements to have the same size and
the second requires all elements to be shaped similarly to K̂ (these
conditions are the simplified versions of the equidistribution and
alignment conditions [28,26]).

Fig. 1. Reference element K̂ , mesh element K , and the corresponding mappings FK
and F−1

K .

The corresponding energy functional for which the minimiza-
tion will result in a mesh satisfying Eq. (1) as closely as possible
is

Ih =

∑
K

|K | G (JK , det JK ) (2)

with

G(J, det J) = θ
(
tr

(
JJT

)) dp
2 + (1 − 2θ) d

dp
2 (det J)p, (3)

where θ ∈ (0, 0.5] and p > 1 are dimensionless parameters
(in Section 6, we use θ = 1/3 and p = 3/2). This is a specific
choice and other meshing functionals are possible. The interested
reader is referred to [29] for a numerical comparison of meshing
functionals for variational mesh adaptation.

In Eq. (2), Ih is a Riemann sum of a continuous functional
for variational mesh adaptation based on equidistribution and
alignment [12] and depends on the vertex coordinates xi, i =

1, . . . ,#Nh. The corresponding vertex velocities vi for the mesh
movement are defined as

vi :=
dxi
dt

= −

(
∂ Ih
∂xi

)T

, i = 1, . . . ,#Nh, (4)

where the derivatives dxi
dt are considered to be row vectors.

2.2. Vertex velocities and the mesh movement

The vertex velocities vi can be computed analytically
[13, Eqs (39) to (41)] using scalar-by-matrix differentiation
[13, Sect. 3.2]. Denote the vertices of K and K̂ by xKj and x̂j, j =

0, . . . , d, and define the element edge matrices as

EK = [xK1 − xK0 , . . . , xKd − xK0 ],

Ê = [x̂1 − x̂0, . . . , x̂d − x̂0].

Note, that ÊE−1
K = JK . Then, the local mesh velocities are given

element-wise [13, Eqs (39) and (41)] by⎡⎢⎣(vK
1 )

T

...

(vK
d )

T

⎤⎥⎦ = −GKE−1
K + E−1

K
∂GK

∂J
ÊE−1

K +
∂GK

∂ det J
det(Ê)
det(EK )

E−1
K , (5)

(vK
0 )

T
= −

d∑
j=1

(vK
j )

T ,

where GK = G(JK , det JK ) and

∂GK

∂J
=

∂G
∂J

(JK ) = dpθ
(
tr(JKJTK )

) dp
2 −1

JTK ,

∂GK

∂ det J
=

∂G
∂ det J

(det JK ) = p(1 − 2θ )d
dp
2 (det JK )p−1

are the derivatives of G with respect to its first and second argu-
ment [13, Example 3.2] evaluated at J = JK and det(J) = det JK .
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(a) The initial state. (b) The lazy flip search tree for removing the edge [a, b]. pi identifies the face [a, b, pi] which is flipped via a 2-to-3 flip. The search
path is highlighted with arrows.

(c) The sequence of flips. The edge [a, b] is represented by one vertex in the center (except (8)). A face [a, b, pi] is represented by an edge. Arrays attached
to each figure show the current content of A. (1) n = 5 tetrahedra share the edge [a, b]. In (2) and (3), [a, b, p1] is removed by a 2-to-3 flip. In (4) and (5), a
2-to-3 flip is performed on [a, b, p3]. In (6) and (7), [a, b, p5] is removed by a 2-to-3 flip. In (8), the edge [a, b] is removed by a 3-to-2 flip.

Fig. 2. An example of an edge removal by a sequence of flips.

The moving mesh equation (4) becomes

dxi
dt

=

∑
K∈ωi

|K | vK
iK , i = 1, . . . ,#Nh, (6)

where ωi is the patch of the vertex xi and iK is the local index of xi
on K .

The moving mesh governed by Eq. (6) will stay nonsingular if
it is nonsingular initially: the minimum height and the minimum
volume of the mesh elements will stay bounded from below by
a positive number depending only on the initial mesh and the
number of the elements [14]. This holds for the numerical inte-
gration of Eq. (6) as well if the ODE solver has the property of
monotonically decreasing energy [14]. For example, algebraically
stable Runge–Kutta methods preserve this property under a mild
step-size restriction [30].

During smoothing, we use the current vertex locations as the
initial position and integrate Eq. (6) for a time period (with the
proper modification for the boundary vertices, see Section 2.3).
The connectivity is kept fixed during the smoothing step. The time
integration can be carried out for a given fixed time period or
adaptively until the change of the energy functional (2) is smaller

than the prescribed absolute or relative tolerances, that is until

|Ih(tn+1) − Ih(tn)| ≤ εabs or |Ih(tn+1) − Ih(tn)| ≤ εrelIh(tn+1).

In our examples in Section 6, we use the explicit Runge–Kutta
Dormand–Prince ODE solver [31] and integrate until t = 10, which
worked well with the provided examples.

2.3. Velocity adjustment for the boundary vertices

The velocities of the boundary vertices need to be modified.
If xi is a fixed boundary vertex, then its velocity is set to zero
Otherwise, xi is allowed to move along a boundary curve or a
surface represented by the zero level set of a function φ and its
velocity is modified so that its normal component along the curve
(surface) is zero:

∇φ(xi) ·
∂xi
∂t

= 0.

For the special case of a piecewise linear complex (PLC) [32] the
velocity adjustment is straightforward:

facet vertices: project the velocity onto the facet plane,
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segment vertices: project the velocity onto the segment line,
corner vertices: set the velocity to zero.

For a general non-polygonal or non-polyhedral domain, a sim-
ple way to adjust the boundary vertices is to move the vertex and
thenproject it onto the boundary towhich it belongs,whichproved
to work well for simple surface geometries (see Section 6.2). How-
ever, for complicated geometries, this simple projection can fail
and a more reliable approach is needed.

3. Lazy searching flips

In this section, we explain how to remove an edge and how to
reverse the removal using flips. In addition, we present the lazy
searching algorithm which can be used to improve the quality of a
mesh.

3.1. Edge removal and its inverse

A basic edge removal algorithm performs a sequence of ele-
mentary 2-to-3 and 3-to-2 flips [33]. We extend this algorithm by
allowing the flip sequence to be reversed. Our algorithm saves the
flips online and it uses no additional memory.

Let [a, b] ∈ Th be an edge with endpoints a and b and
A[0, . . . , n − 1] be the array of n ≥ 3 tetrahedra in Th sharing
[a, b]. For simplicity, we assume that [a, b] is an interior edge of Th,
so that all tetrahedra in A can be ordered cyclically such that the
two tetrahedra A[i] and A[(i+1) mod n] share a common face. The
index i takes values in {0, 1, . . . , n − 1}. Throughout this section,
additions involving indices will be modulo n.

Given such an array A of n tetrahedra, we want to find a se-
quence of flips that will remove the edge [a, b]. Moreover, we also
want to be able to reverse this sequence in order to return to the
original state.

Our edge removal algorithm includes two subroutines

[done,m] :=flipnm(A[0, . . . , n − 1], level),
flipnm_post(A[0, . . . , n − 1],m)

with an array A (of length n) of tetrahedra and an integer level
defining the maximum recursive level as input.

flipnm executes ‘‘forward’’ flips to remove the edge [a, b]. It
returns a Boolean value indicatingwhether the edge is removed
or not and an integerm (3 ≤ m ≤ n). If the edge is not removed
(done = FALSE), m indicates the current size of A (initially,
m := n).

flipnm_post must be called immediately after flipnm. It re-
leases thememory allocated in flipnm and can perform ‘‘back-
ward’’ flips to undo the flip sequence performed by flipnm.

The basic subroutine flipnm(A[0, . . . , n − 1], level) consists
of the following three steps:

Step 1. Return done = TRUE if n = 3 and flip32 is possible for
[a, b] and done = FALSE otherwise.

Step 2. For each i ∈ {0, . . . , n−1} try to remove the face [a, b, pi]
by flip23. If it is successfully flipped, reduce the size of A
by 1. Update A[0, . . . , n−2] so that it contains the current
set of tetrahedra sharing the edge [a, b]. Reuse the last en-
try, A[n− 1], to store the information of this flip23 (see
Fig. 2c). It then (recursively) calls flipnm(A[0, . . . , n −

2], level). When no face can be removed, go to Step 3.
Step 3. If level > 0, try to remove an edge adjacent to [a, b] us-

ing flipnm. For each i ∈ {0, . . . , n− 1}, let [x, y] be given
by either edge [a, pi] or edge [b, pi]. Initialize an array
B[0, . . . , n1−1] ofn1 ≥ 3 tetrahedra sharing [x, y] and call

flipnm(B[0, . . . , n1−1], level−1). If [x, y] is successfully
removed, reduce |A| by 1. Update A[0, . . . , n − 2] to con-
tain the current set of tetrahedra sharing the edge [a, b].
Reuse the last entry, A[n − 1], to store the information
of this flipnm and the address of the array B (to be able
to release the occupied memory later). Then (recursively)
call flipnm(A[0, . . . , n − 2]). Otherwise, if [x, y] is not
removed, call flipnm_post(B[0, . . . , n1 −1],m1) to free
the memory. Return done = FALSE if no edge can be
removed.

Since flipnm is called recursively, not every face and edge
should be flipped in Steps 2 and 3. In particular, if B is allocated,
i.e., flipnm is called recursively, we skip flipping faces and edges
belonging to the tetrahedra in A ∩ B.

In the simplest case, that is, ignoring the option to reverse the
flips, flipnm_post(A[0, . . . , n− 1],m) simply walks through the
array A from A[m] to A[n− 1] and checks if a flipnm flip has been
saved. If so, the saved array address B is extracted and its memory
is released.

In Step 2 there are at most
( n
n−3

)
/(n − 3)! different flip se-

quences, depending on the specific choice of faces in A. Each
individual flip sequence is equivalent to a sequence of then vertices
(apexes) in the link of the edge [a, b]. We reuse the entries of
A to store each flip sequence. After a 2-to-3 flip, the number of
the tetrahedra in array A is reduced by one (two tetrahedra out,
one tetrahedron in), since only one of the three new tetrahedra
contains the edge [a, b]. The remaining tetrahedra are shifted by
one in the list, so that the last entry, A[n − 1], can be used to
store this flip (cf. Fig. 2c). In particular, the following information
is saved:

• a flag indicating a 2-to-3 flip;
• the original position i, meaning that the face [a, b, pi] is

flipped.

Both is compressed and stored in the entry A[n − 1] (note that
a flag requires just a few bits of space). This stored data allows us
to perform the reversal of a 2-to-3 flip as follows:

• use A and the position i with

A[i − 1] = [a, b, pi−1, pi+1]

to locate the three tetrahedra sharing the edge [pi−1, pi+1]:
[pi−1, pi+1, a, b], [pi−1, pi+1, b, pi], and [pi−1, pi+1, pi, a];

• perform a 3-to-2 flip on these three tetrahedra;
• insert two new tetrahedra into the array A:

A[i − 1] = [a, b, pi, pi−1],

A[i] = [a, b, pi, pi+1].

In Step 3, if the selected edge [a, pi] is removed, the sequence
of flips to remove [a, pi] is stored in B. We then use the last entry
A[n − 1] to store this sequence of flips. In particular, the following
information is saved:

• a flag indicating that this entry stores the flip sequence to
remove the edge [a, pi];

• the original position i, i.e., the edge [a, pi] is flipped;
• the address of the array Bwhich stores the flip sequence.

This information allows us to reverse this sequence of flips
exactly.

3.2. Lazy searching flips

During the mesh improvement process we perform flips to im-
prove the mesh quality. Let us consider the case when it becomes
necessary to remove an edge. The maximum possible number of
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flips for an edge removal is the Catalan number Cn−2 (n is the
size of A). Hence, the direct search for the optimal solution is only
meaningful if n is very small. In most situations, an edge may not
be flipped if we restrict ourselves to adjacent faces of the edge.
Our strategy is to search and perform the flips as long as they
improve the current mesh quality. Our lazy searching scheme is
not restricted by the number n and can be extended to adjacent
edges.

The lazy searching flip scheme is like a walk in a k-ary search
tree (a rooted treewith atmost k children at each node, see Fig. 2b).
The root represents the edge [a, b] to be flipped and each of the tree
nodes represents either an adjacent face [a, b, pi] or an adjacent
edge [a, pi] or [b, pi] of [a, b]. The edges of the tree represent our
search paths. In particular, the directed edge from level l to l + 1
represents either a flip23 or a flipnm, and the reversed edge
represents the inverse operation. The tree depth is given by the
parameter level.

At level > 0, in order to decide if an adjacent face [a, b, pi]
should be flipped, we check if [a, b, pi] is flippable and make sure
that this flip improves the local mesh quality. Note that we need to
check only two of the three new tetrahedra: [a, pi−1, pi, pi+1] and
[b, pi−1, pi, pi+1]. The tetrahedron [a, b, pi−1, pi+1] will be involved
in the later flips, and will be flipped if the edge [a, b] is flipped.

Once an improvement is found, the algorithm moves on to the
next edge without exploring other possibilities.

4. Radial basis functions to handle curved boundaries

Wedescribe in this section how to project themesh on a smooth
surface in order to deal with curved boundaries. We achieve this
with the help of radial basis functions (RBFs), see [18–20].

4.1. Basic concepts and examples

Let Pm(Rd) denote the space of d variate polynomials with
absolute degree at most m and dimension q := dimPm(Rd) =(m−1+d

d

)
. For a basis p1, . . . , pq of this space, define the M × q

polynomial matrix PX through its ijth entry,

pij = pi(xj) ,

where xj ∈ X and X = {x1, . . . , xM} ⊆ Rd denotes a data set. The
function Φ is called conditionally positive definite of order m if the
quadratic form

cTAΦ,Xc

for the distance matrix AΦ,X with its ijth entry defined by

(AΦ,X )ij = Φ(xi − xj) ,

is positive for all data sets X and for all c ∈ RM
\ {0} which

additionally satisfy the constraint PT
X c = 0.

Conditionally positive functions of order m are also condition-
ally positive definite for any order higher than m. Hence, the
order shall denote the smallest positive integer m. A conditionally
positive definite function of orderm = 0 is called positive definite.

One speaks of radial basis functions if one additionally assumes
that Φ is a radial function, i.e., there exists a function φ : R≥0 → R
such that Φ(x) = φ(∥x∥). Common examples of RBFs include:

Gaussian: e−∥x∥2 ,

Multiquadric:
√
1 + ∥x∥2,

Inverse Multiquadric: 1/
√
1 + ∥x∥2,

Polyharmonic Spline: ∥x∥3.

Fig. 3. The polyharmonic spline ∥x∥3 .

For the numerical examples in this paper, we exclusively use the
polyharmonic spline ∥x∥3 (Fig. 3) which is conditionally positive
of order 2.

We assume now that the interpolant s : Rd
→ R is given by a

linear combination of translated radial basis function, augmented
by a polynomial part, i.e.

s(x) =

M∑
j=1

αjΦ(x − xj) +

q∑
k=1

βkpk(x). (7)

Thus, we have M + q unknown coefficients, M of which are
determined from the interpolation conditions and q conditions
from requiring that PT

X c = 0. For positive definite functions,
the linear system is positive definite by construction. Hence the
coefficients can be determined uniquely. It is also not difficult to
verify that the interpolation and polynomial constraint conditions
for conditionally positive definite functions lead to a uniquely
solvable system, see [20, Theorem 8.21] for details. In the case of
conditionally positive definite functions, it is known that at least
M − q eigenvalues of the matrix AΦ,X are positive [20, Section 8.1].

4.2. Surface reconstruction with RBFs

Wewill assume that the surfaceΓ is given implicitly by the zero
level set of some function F : Ω ⊆ R3

→ R, i.e.

Γ =
{
(x, y, z)T ∈ Ω | F (x, y, z) = 0

}
, (8)

for some bounded domain Ω .
We cannot simply assume that the target function (which we

wish to interpolate) is the zero level set of the function F since
the right-hand side of the linear system one needs to solve would
vanish which in turn implies that the coefficients vanish as well.
Carr et al. [17] therefore made the additional assumption that the
normal vectors are known. Then one can also prescribe on-surface
and off-surface points. Assume that the points on the surface are
denotedwith X = {x1, . . . , xN} and the corresponding normal vec-
tors with M = {n1, . . . ,nN}. We define the surface interpolation
problem

s(xi) = F (xi) = 0, 1 ≤ i ≤ N
s(xi + εni) = F (xi + εni) = ε, N + 1 ≤ i ≤ 2N

(9)

for some parameter ε > 0. Since the right-hand side of the linear
system does not vanish anymore, we find a nontrivial solution.
Recently, this surface interpolation technique was combined with
the higher dimensional embedding technique [21,22] to construct
curvature-aligned anisotropic surface meshes. In this context the
data set X corresponds to the vertices of the mesh.
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Algorithm 1 The proposed mesh improvement scheme.
Improve(T ini

h , θlim)
1: repeat

2: repeat
3: repeat
4: repeat

5: repeat
6: MMPDE-based smoothing
7: RBF surface reconstruction
8: lazy flips
9: until no point is moved or no flip is done or Q (Th) ≥ θlim

→ smooth and flip

10: remove the edges le < 0.5 lave
11: lazy flips
12: until no edge is contracted or Q (Th) ≥ θlim
13: split the edges le > 1.5 lave
14: RBF surface reconstruction
15: lazy flips
16: until no edge is split or Q (Th) > θlim
17: split the tetrahedra K such that θmin,K < θlim
18: lazy flips
19: until no tetrahedron is removed or Q (Th) > θlim

→ main loop

20: change the flip criterion for the lazy flips
21: until no operation is done in the main loop or Q (Th) > θlim

Fig. 4. Edge splitting. In (a), a coarse input mesh (solid line) approximates the
reconstructed curve (dashed line). In (b), the edges are halved, themidpoints v1 and
v2 are not on the curve. In (c), new points v∗

1 and v∗

2 are projected onto the curve
using a steepest descent method.

Fig. 5. Edge contraction. In (a), a fine input mesh (solid line) approximates the
reconstructed curve (dashed line). In (b), the edge v1v2 is contracted into its
midpoint v, which is not on the curve. In (c), the edge v1v2 is contracted into its
end point v1 , which, by construction, is on the curve.

4.3. Projection onto the reconstructed surface

There are two important parts of the projection algorithm: edge
splitting and edge contraction. If we split an edge or move a point
during smoothing, we project the resulting point onto the RBF
surface reconstruction (Fig. 4).

The projection itself is realized with ideas from [34]. This
procedure is a combination of orthogonal projections on tangent
planes as well as tangent parabolas. It requires only first order
derivatives and uses a steepest descent method. The combination
of this projection method with RBF surface reconstruction has also
been discussed in [21,22].

When it becomes necessary to contract an edge, we contract it
into one of its endpoints (Fig. 5).

5. Mesh improvement strategy

The goal of the proposed algorithm is to obtain a new isotropic
meshwhose elements come ‘‘as close as possible’’ to the equilateral
one. To achieve this goal, we combine the local and global mesh
operations described in Sections 2 and 3.

5.1. Mesh quality

To say ‘‘as close as possible to an equilateral tetrahedron’’ is
somewhat vague from a mathematical point of view. To have a
more precise criterion, the majority of the mesh improvement
algorithms define a computable quantity q(K ) which quantifies
how far a tetrahedron K is from being equilateral [2,24,35–38].
Here, we take into account the following two:

Aspect ratio: This is one of the most classical ways to evaluate
the quality of a tetrahedron. It is defined as

qar (K ) :=

√
2
3
L
h
, (10)

where L is the longest edge and h is the shortest altitude of the
tetrahedron K . By construction, qar (K ) ≥ 1 and an equilateral
tetrahedron is characterized by qar (K ) = 1.

Min–max dihedral angle: For each tetrahedron K we consider
both the minimal and the maximal dihedral angles θmin,K and
θmax,K . An equilateral tetrahedron has θmin,K = θmax,K =

arccos(1/3) ≈ 70.56◦. Applying an operation that increases
θmin,K or decreases θmax,K of a given tetrahedron K makes K
‘‘closer’’ to the equilateral shape. Note that this is not a classical
quality measure since we associate two quantities with each
tetrahedron, which is one of the novel aspects of the proposed
mesh improvement procedure.

These two quality measures refer to a single tetrahedron K of
the mesh. However, the design of our mesh improvement scheme
requires a quality measure for the whole mesh as a stopping cri-
terion. To estimate the quality of the whole mesh, we define the
global parameter

Q (Th) := min
K∈Th

(
θmin,K

)
. (11)
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(a) LShape.
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(b) TetgenExample.

Fig. 6. Comparison of flipping only (first row) and smoothing only (second row) for the initial meshes LShape and TetgenExample.

Ifwe consider a target dihedral angle θlim and obtain amesh Th with
Q (Th) > θlim, then all dihedral angles are guaranteed to be greater
than θlim.

5.2. The scheme

The inputs for the mesh improvement algorithm are a tetrahe-
dralmesh T ini

h of a PLC and a targetminimumangle θlim. The output

is a mesh T fin
h where each element has a minimum dihedral angle

greater than θlim.
The scheme is presented in Algorithm 1 and consists of five

nested ‘‘repeat . . .until’’ loops, whose stopping criterion depends
on the operations done inside the loop and Q (Th). We apply the
MMPDE smoothing and the lazy flip in themost internal loop (lines
5 to 9). The lazy flip is also exploited in the outer loops both on the
whole mesh (lines 11, 15 and 18) and on the tetrahedra involved
in the local operations (lines 10, 13 and 17).

It is possible to consider several flipping criteria for the lazy
flip, which makes the design of the scheme flexible. We exploit
this feature by using two objective functionals and changing the
flipping criterion in each iteration of the outer loop (line 20) by

1. maximizing θmin,K and minimizing θmax,K (simultaneously),
2. minimizing the aspect ratio.

The stopping criterion is always based on the minimal dihedral
angle, Q (Th), and the number of operations done.

After a number of iterations both the flipping and the smoothing
procedure can stagnate, i.e., the mesh Th converges to a fixed
configuration where neither flips nor smoothing can improve the
quality of themesh. Unfortunately, it is not a priori guaranteed that
such a mesh satisfies the constraint on the target minimum dihe-
dral angle θlim. To overcome this difficulty, we apply edge splitting,

edge contraction, and point insertion when this stagnation occurs
(lines 10, 13 and 17 in Algorithm 1).

For the edge contraction and splitting, we use the standard edge
length criterion: we compute the average edge length lave of the
actual mesh, contract the edges shorter than 0.5 lave (line 10), and
split (halve) the ones longer than 1.5 lave (line 13). In line 17, we
split a tetrahedron K with θmin,K < θlim via a standard 1-to-4 flip
by placing the newly added point at the barycenter of K [39]. In this
way, the algorithm constructs via flipping and smoothing a mesh
satisfying Q (Th) > θlim. At the moment, we are not interested in
optimizing these operations,we exploit themonly to overcome the
stagnation of the algorithm.

The MMPDE smoothing can be easily parallelized because the
nodal velocities in each smoothing step can be assembled through
independent element-wise computation (Eqs. (5) and (6)), similar
to the assembly of a finite element stiffness matrix. We parallelize
the computation of the nodal velocities with OpenMP [40]. Once
the velocities are computed, all mesh nodes are moved simulta-
neously and independently of each other. On the other hand, the
lazy flip may propagate to neighbors and neighbors of neighbors,
thus, it is complex and difficult to parallelize; in our tests we use a
sequential implementation.

6. Numerical examples

We test the proposed mesh improvement algorithm and com-
pare it with the mesh improvement algorithm of Stellar [2], the
remeshing procedure of CGAL [23], and mmg3d [24]. We compare
the histograms of the dihedral angles of final meshes, the minimal
and the maximal dihedral angles θmin,Th and θmax,Th , the mean
dihedral angle µTh , and its standard deviation σTh .



Please cite this article in press as: Dassi F., et al. Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction.
Computer-Aided Design (2017), https://doi.org/10.1016/j.cad.2017.11.010.

8 F. Dassi et al. / Computer-Aided Design ( ) –

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

Fig. 7. Rand1. The initial mesh with #Th = 5104, the final (optimized) mesh, and statistics of dihedral angles for the final meshes.
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Fig. 8. LShape. The initial mesh with #Th = 4072, the final (optimized) mesh, and statistics of dihedral angles for the final meshes.

6.1. Piecewise linear complexes (PLCs)

To analyze the effectiveness of the proposed mesh improve-
ment scheme in case of a piecewise linear complex domain, we
consider the following three examples (for more PLC examples,
see [41]):

• Rand1 tetrahedral meshes of a cube generated by inserting
randomly located vertices inside and on the boundary [2]
(Fig. 7),

• LShape is a tetrahedral mesh of an L-shaped PLC generated
by TetGen [33] without optimizing the minimal dihedral
angle (switches -pa0.019, Fig. 8),
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(a) The initial mesh with #Th = 3545 and the final optimized mesh.
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(b) Dihedral angle comparison for the final meshes.
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(c) Aspect ratio comparison for the final meshes.

Fig. 9. TetgenExample. The initial mesh with #Th = 3545, the final (optimized) mesh, and statistics of the dihedral angles and the aspect ratio.
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Fig. 10. Example of tetrahedral mesh improvement with a curved (reconstructed) surface.

• TetgenExample is a tetrahedral example mesh of a non-
convex PLC with a hole provided by TetGen (Fig. 9).

Smoothing and flipping by themselves. Before testing the full mesh
improvement scheme, we test the effectiveness of the MMPDE
smoothing and the lazy flip by themselves and employ smoothing
and flipping separately, i.e., we improve a tetrahedral mesh ex-
ploiting only the flipping operation or the vertex smoothing. We
compare our results with the ones provided by Stellar for the
examples LShape and TetGenExample.

The results of the lazy flip are comparable to the Stellar flips
(Fig. 6, first row). However, the MMPDE smoothing is better than
its counterpart in Stellar (Fig. 6, second row): in both examples
it achieves larger θmin,Th , noticeably smaller θmax,Th , and a smaller
standard deviation of the mean dihedral angle.

Full scheme. We compare the whole scheme with the mesh im-
provement algorithm of Stellar [2], the remeshing procedure of
CGAL [23], and mmg3d [24] (Figs. 7 to 9).

Although all methods provide good results, the new scheme is
better: θmin,Th is larger than the value obtained by CGAL or mmg3d
and comparable to the value obtained by Stellar. Moreover,
θmax,Th is smaller than the values obtained by Stellar, CGAL, or
mmg3d in all examples but one see Fig. 9a.

Our method provides mean dihedral angles µTh around 69.6◦,
which is close to the optimal value of arccos(1/3) ≈ 70.56◦.
Moreover, standard deviations σTh are always smaller than the
ones of other methods. Indeed, we get a distribution of dihedral
angles close to the mean value. This quantitative consideration
becomes clearer from the shape of the histograms in Figs. 7 to 9.

For the TetgenExample (Fig. 9) we also provide aspect ratio
histograms (the results for the other examples are very similar and
we omit them). The aspect ratio of an equilateral tetrahedron is
equal to 1 and themore a tetrahedron is distorted and stretched the
greater its aspect ratio becomes. Our method and Stellar clearly
provide the best aspect ratio distribution. For our method, the vast
majority of tetrahedra have an aspect ratio smaller than 1.8. The
Stellarmesh is slightly worse withmost of its tetrahedra having
aspect ratios below 2.6.

6.2. Curved boundary domains

In the last part of this section, we experimentally demonstrate
someexampleswith curveddomains.We study two types of exam-
ples: one academic example for using the RBF surface reconstruc-
tion to project the boundary vertices on the smooth approximation
of the discrete surface and twomore complex examples with fixed
boundary vertices.

First, we consider the discrete ellipsoid mesh (Fig. 10). Though
it has a simple geometry, it requires some effort since the boundary

is curved and no longer a PLC. The main challenge is to project the
boundary vertices back onto the smooth surface if they leave it
after amesh improvement step. For this reason, we reconstruct the
surface via RBFs (see Section 4.2) to assist the mesh optimization
and project themoved (smoothed) boundary vertices to the recon-
structed surface. Fig. 10 shows that RBF reconstruction smoothes
the initially rough surface approximation. The obtained tetrahedral
mesh has high quality: the mean dihedral angle is close to the
optimal value (≈70.69◦) and the standard deviation of the dihedral
angles is small (≈18.16◦).

However, it has to be pointed out that complicated boundaries
cannot be handled as easily as an ellipsoid and require more
sophisticated methods.

In our next examples, we restrict ourselves to the case of fixed
boundary vertices since Stellar does not handle curved surfaces
described via an implicit function, start with a good isotropic
triangular mesh as input, and keep the boundary vertices fixed for
each of the algorithms.

Fixed boundary. The next two examples are meshes of a spinal
bone and of an elephant (Figs. 11 and 12). The initial surface
meshes in both examples are constructed by means of the higher
dimensional embedding approach for surface mesh reconstruc-
tion [22] and their minimal face angles are approximately 33◦. The
initial volumemeshes are constructed by TetGen using the -Y flag
to preserve the fixed boundary.

Figs. 11 and 12 present the histograms of the dihedral angles
of the resulting optimized meshes. In comparison to the PLC ex-
amples, where the geometry is simpler and the boundary vertices
are allowed to move, the smallest dihedral angles for the spinal
bone and the elephant examples are worse (smaller) than for the
PLC examples. In comparison to Stellar, our algorithm achieves
better values for θmin,Th and θmax,Th , as well as a smaller mean
deviation from the mean value.

These examples, too, show the ‘‘aggressive’’ nature of theStel-
lar mesh improvement algorithm, which aggressively removes
vertices during the mesh improvement. In contrast, our mesh
improvement scheme is able to produce a high-qualitymeshwhile
keeping the number of vertices close to the original input.

7. Conclusions

Mesh improvement is a challenging problem and we tackled
it by combining several recently developed techniques, namely,
movingmesh smoothing, lazy flipping, andRBF surface reconstruc-
tion. In comparison to the mesh improvement algorithm Stellar
and the re-meshing procedures provided by CGAL and mmg3d, we
obtain better results in terms of the distributions of dihedral angles
for all considered examples. However, there are several directions
in which this work could be extended.
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Fig. 11. Spine example: the initial mesh with #Th = 688 420 and the final optimized mesh.
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Fig. 12. Elephant example: the initial mesh with #Th = 260 401 and the final optimized mesh.

First, for smooth and relatively simple boundaries, our ap-
proach works excellently but complicated curved boundaries pose
a challenging problem. One possible solution could be the di-
rect incorporation of the boundary description into the MMPDE
smoothing scheme (parametrization) so that the boundary vertices
will always stay on the surface. This will avoid the sometimes
troublesome projection of vertices and velocities back onto the
surface after a smoothing step.

Second, we need to find a more sophisticated method for edge
contraction and splitting in order to improve the performance of
both the MMPDE smoothing and the lazy flip.

Third, the MMPDE smoothing is based on the moving mesh
method [13] which allows the definition of a metric field. Hence,
the moving mesh smoothing can be extended to the adaptive and
anisotropic setting.
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Computational and Analytical
Comparison of Flux Discretizations
for the Semiconductor Device
Equations beyond Boltzmann
Statistics

P. Farrell, T. Koprucki, and J. Fuhrmann. Computational and Analytical Comparison of
Flux Discretizations for the Semiconductor Device Equations beyond Boltzmann Statis-
tics. Journal of Computational Physics 346 (2017), pp. 497–513. doi: 10.1016/j.jcp.
2017.06.023

Abstract We compare three thermodynamically consistent numerical fluxes known in
the literature, appearing in a Voronoi finite volume discretization of the van Roosbroeck
system with general charge carrier statistics. Our discussion includes an extension of the
Scharfetter-Gummel scheme to non-Boltzmann (e. g. Fermi-Dirac) statistics. It is based
on the analytical solution of a two-point boundary value problem obtained by projecting
the continuous differential equation onto the interval between neighboring collocation
points. Hence, it serves as a reference flux. The exact solution of the boundary value
problem can be approximated by computationally cheaper fluxes which modify certain
physical quantities. One alternative scheme averages the nonlinear diffusion (caused by
the non-Boltzmann nature of the problem), another one modifies the effective density
of states. To study the differences between these three schemes, we analyze the Taylor
expansions, derive an error estimate, visualize the flux error and show how the schemes
perform for a carefully designed p-i-n benchmark simulation. We present strong evidence
that the flux discretization based on averaging the nonlinear diffusion has an edge over
the scheme based on modifying the effective density of states.

Conception: The idea of this project was almost exclusively due to myself and improved
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by ideas from the other co-authors.
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Uniform Second Order Convergence
of a Complete Flux Scheme on
Unstructured 1D Grids for a
Singularly Perturbed
Advection–Diffusion Equation and
Some Multidimensional Extensions

P. Farrell and A. Linke. Uniform Second Order Convergence of a Complete Flux Scheme
on Unstructured 1D Grids for a Singularly Perturbed Advection–Diffusion Equation
and Some Multidimensional Extensions. Journal of Scientific Computing 72.1 (2017),
pp. 373–395. doi: 10.1007/s10915-017-0361-7

Abstract The accurate and efficient discretization of singularly perturbed advection-
diffusion equations on arbitrary 2D and 3D domains remains an open problem. An
interesting approach to tackle this problem is the complete flux scheme (CFS) proposed
by G. D. Thiart and further investigated by J. ten Thije Boonkkamp. For the CFS,
uniform second order convergence has been proven on structured grids. We extend a
version of the CFS to unstructured grids for a steady singularly perturbed advection-
diffusion equation. By construction, the novel finite volume scheme is nodally exact in
1D for piecewise constant source terms. This property allows to use elegant continuous
arguments in order to prove uniform second order convergence on unstructured one-
dimensional grids. Numerical results verify the predicted bounds and suggest that by
aligning the finite volume grid along the velocity field uniform second order convergence
can be obtained in higher space dimensions as well.

Conception: The idea of this project was mostly due to Alexander Linke.
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Execution: The execution of this project was mostly due to myself.

Reporting: The reporting of this project was performed by myself.

Due to copyright reasons, this article cannot be included online.
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On Thermodynamic Consistency of
a Scharfetter-Gummel Scheme
Based on a Modified Thermal
Voltage for Drift-Diffusion
Equations with Diffusion
Enhancement

T. Koprucki et al. On Thermodynamic Consistency of a Scharfetter-Gummel Scheme
Based on a Modified Thermal Voltage for Drift-Diffusion Equations with Diffusion En-
hancement. Optical and Quantum Electronics 47.6 (2015), pp. 1327–1332. doi: 10.
1007/s11082-014-0050-9

Abstract Driven by applications like organic semiconductors there is an increased in-
terest in numerical simulations based on drift-diffusion models with arbitrary statistical
distribution functions. This requires numerical schemes that preserve qualitative prop-
erties of the solutions, such as positivity of densities, dissipativity and consistency with
thermodynamic equilibrium. An extension of the Scharfetter-Gummel scheme guarantee-
ing consistency with thermodynamic equilibrium is studied. It is derived by replacing the
thermal voltage with an averaged diffusion enhancement for which we provide a new ex-
plicit formula. This approach avoids solving the costly local nonlinear equations defining
the current for generalized Scharfetter-Gummel schemes.

Conception: This project has been devised by Thomas Koprucki.

Execution: I was involved in the implementation of the method.

Reporting: I helped writing the report.
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