157 research outputs found

    The Argyris isogeometric space on unstructured multi-patch planar domains

    Full text link
    Multi-patch spline parametrizations are used in geometric design and isogeometric analysis to represent complex domains. We deal with a particular class of C0C^0 planar multi-patch spline parametrizations called analysis-suitable G1G^1 (AS-G1G^{1}) multi-patch parametrizations (Collin, Sangalli, Takacs; CAGD, 2016). This class of parametrizations has to satisfy specific geometric continuity constraints, and is of importance since it allows to construct, on the multi-patch domain, C1C^1 isogeometric spaces with optimal approximation properties. It was demonstrated in (Kapl, Sangalli, Takacs; CAD, 2018) that AS-G1G^1 multi-patch parametrizations are suitable for modeling complex planar multi-patch domains. In this work, we construct a basis, and an associated dual basis, for a specific C1C^1 isogeometric spline space W\mathcal{W} over a given AS-G1G^1 multi-patch parametrization. We call the space W\mathcal{W} the Argyris isogeometric space, since it is C1C^1 across interfaces and C2C^2 at all vertices and generalizes the idea of Argyris finite elements to tensor-product splines. The considered space W\mathcal{W} is a subspace of the entire C1C^1 isogeometric space V1\mathcal{V}^{1}, which maintains the reproduction properties of traces and normal derivatives along the interfaces. Moreover, it reproduces all derivatives up to second order at the vertices. In contrast to V1\mathcal{V}^{1}, the dimension of W\mathcal{W} does not depend on the domain parametrization, and W\mathcal{W} admits a basis and dual basis which possess a simple explicit representation and local support. We conclude the paper with some numerical experiments, which exhibit the optimal approximation order of the Argyris isogeometric space W\mathcal{W} and demonstrate the applicability of our approach for isogeometric analysis

    外部距離離によるノンパラメトリック多様体回帰

    Get PDF
    Open House, ISM in Tachikawa, 2017.6.16統計数理研究所オープンハウス(立川)、H29.6.16ポスター発

    Stable splitting of bivariate spline spaces by Bernstein-Bézier methods

    Get PDF
    We develop stable splitting of the minimal determining sets for the spaces of bivariate C1 splines on triangulations, including a modified Argyris space, Clough-Tocher, Powell-Sabin and quadrilateral macro-element spaces. This leads to the stable splitting of the corresponding bases as required in Böhmer's method for solving fully nonlinear elliptic PDEs on polygonal domains

    Scattered data fitting on surfaces using projected Powell-Sabin splines

    Get PDF
    We present C1 methods for either interpolating data or for fitting scattered data associated with a smooth function on a two-dimensional smooth manifold Ω embedded into R3. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of local projections on the tangent planes. The data fitting method is a two-stage method. We illustrate the performance of the algorithms with some numerical examples, which, in particular, confirm the O(h3) order of convergence as the data becomes dens

    A tension approach to controlling the shape of cubic spline surfaces on FVS triangulations

    Get PDF
    We propose a parametric tensioned version of the FVS macro-element to control the shape of the composite surface and remove artificial oscillations, bumps and other undesired behaviour. In particular, this approach is applied to C1 cubic spline surfaces over a four-directional mesh produced by two-stage scattered data fitting methods

    A Hermite interpolatory subdivision scheme for C2C^2-quintics on the Powell-Sabin 12-split

    Get PDF
    In order to construct a C1C^1-quadratic spline over an arbitrary triangulation, one can split each triangle into 12 subtriangles, resulting in a finer triangulation known as the Powell-Sabin 12-split. It has been shown previously that the corresponding spline surface can be plotted quickly by means of a Hermite subdivision scheme. In this paper we introduce a nodal macro-element on the 12-split for the space of quintic splines that are locally C3C^3 and globally C2C^2. For quickly evaluating any such spline, a Hermite subdivision scheme is derived, implemented, and tested in the computer algebra system Sage. Using the available first derivatives for Phong shading, visually appealing plots can be generated after just a couple of refinements.Comment: 17 pages, 7 figure

    Near-best C2C^2 quartic spline quasi-interpolants on type-6 tetrahedral partitions of bounded domains

    Full text link
    In this paper, we present new quasi-interpolating spline schemes defined on 3D bounded domains, based on trivariate C2C^2 quartic box splines on type-6 tetrahedral partitions and with approximation order four. Such methods can be used for the reconstruction of gridded volume data. More precisely, we propose near-best quasi-interpolants, i.e. with coefficient functionals obtained by imposing the exactness of the quasi-interpolants on the space of polynomials of total degree three and minimizing an upper bound for their infinity norm. In case of bounded domains the main problem consists in the construction of the coefficient functionals associated with boundary generators (i.e. generators with supports not completely inside the domain), so that the functionals involve data points inside or on the boundary of the domain. We give norm and error estimates and we present some numerical tests, illustrating the approximation properties of the proposed quasi-interpolants, and comparisons with other known spline methods. Some applications with real world volume data are also provided.Comment: In the new version of the paper, we have done some minor revisions with respect to the previous version, CALCOLO, Published online: 10 October 201
    corecore