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Scattered Data Fitting on Surfaces Using

Projected Powell-Sabin Splines

Oleg Davydov1⋆ and Larry L. Schumaker2

1 Department of Mathematics, University of Strathclyde, 26 Richmond Street,
Glasgow G1 1XH, Scotland

2 Department of Mathematics, Vanderbilt University, Nashville, TN 37240

Abstract. We present C1 methods for either interpolating data or for
fitting scattered data associated with a smooth function on a two-dimen-
sional smooth manifold Ω embedded into R

3. The methods are based on
a local bivariate Powell-Sabin interpolation scheme, and make use of
local projections on the tangent planes. The data fitting method is a
two-stage method. We illustrate the performance of the algorithms with
some numerical examples, which, in particular, confirm the O(h3) order
of convergence as the data becomes dense.

1 Introduction

Let Ω be a 2-dimensional smooth manifold. For simplicity we assume that Ω is
compact and has no boundary. Suppose we are given the values of a (possibly
unknown) smooth function f defined on Ω at a set of points X on Ω. Our aim
is to construct a function s defined on Ω that approximates f . This problem
arises frequently in practice, see Remark 1, but there do not seem to be many
methods available for general manifolds. Several methods have been developed
for the case when Ω is the sphere, see Remark 2.

Our approach to solving this problem is as follows. Suppose we have an atlas
Φ = {(Uξ, φξ)}ξ∈Ω for Ω, where for each ξ ∈ Ω, Uξ are open sets on Ω containing
ξ, and φξ are mappings of Uξ into R

2. We assume that the φξ depend smoothly
on ξ in a certain sense, see [7]. Then for each ξ ∈ Ω, we project the data locations
into φξ(Uξ) ⊂ R

2, and use a local bivariate Powell-Sabin spline to compute the
value s(ξ) of the approximating function s. The resulting function s is C1 on Ω,
and it has the usual approximation properties of the Powell-Sabin spline. This
approach is related to methods for interpolation and data fitting on manifolds
introduced by Demjanovich [10, 11] and Pottmann [25], see Remarks 3 and 4.

In this paper we examine the case when Ω is a C2-surface, i.e. a compact
2-dimensional C2-manifold embedded in R

3. Our implementation is based on a
natural atlas Φ defined by local projections onto the tangent planes at all points
on the surface Ω, see Section 2.1. General smooth 2-manifolds are treated in
[7], where we also prove the main theoretical results about smoothness of s and
error bounds for interpolation and data fitting.

⋆ Partially supported by the Edinburgh Mathematical Society Research Support Fund.
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The paper is organized as follows. In Section 2 we introduce some basic con-
cepts and notation. In Section 3 we first present a method for constructing an
interpolant to the data on any smooth 2-dimensional manifold Ω embedded in
R

3, assuming we are also given values for the gradients at each of the data points
in X . Next, we describe a two-stage data fitting method that works only with the
data {fξ}ξ∈X , and which is more appropriate than interpolation for large data
sets or noisy data. Theoretical results on C1 smoothness of the interpolating or
approximating functions on Ω, as well as error bounds for the approximation
of smooth functions are given here without proof. Numerical examples are pre-
sented in Section 4 for both the sphere and for certain ring-type manifolds. We
conclude the paper with remarks and references.

2 Preliminaries

2.1 Projection atlas

Let 〈·, ·〉 be the usual inner product in R
3, and let ‖a‖2 be the Euclidean norm

of any 3-vector a. Since Ω is embedded in R
3, it can be represented locally

as a regular level surface of a C2 function of three variables. More precisely,
each point ξ ∈ Ω has a neighborhood Gξ in R

3 such that Gξ ∩ Ω = F−1
ξ (0),

where Fξ : Gξ → R is a C2 function with nonzero gradient ∇Fξ everywhere in
Gξ ∩ Ω, see [17]. Then nξ := ∇Fξ(ξ)/‖∇Fξ(ξ)‖2 is a normal vector to Ω at ξ.
Moreover, the tangent plane Γξ is the unique plane in R

3 that contains ξ and is
orthogonal to nξ. Clearly, for all ζ ∈ Gξ ∩Ω, a normal vector to Ω at ζ can also
be computed as ∇Fξ(ζ)/‖∇Fξ(ζ)‖2. It coincides with either nζ or −nζ. Clearly,
〈nξ,∇Fξ(ζ)〉 > 0 for all ζ ∈ Gξ ∩Ω.

We are now ready to define an atlas associated with Ω. For each ξ ∈ Ω,
let Uξ be the connected component of the open set {ζ ∈ Ω : 〈nξ, nζ〉 6= 0}
that contains ξ. Then Uξ is an open neighborhood of ξ. Clearly, the orthogonal
projection πξ : Uξ → Γξ defined by

πξ(ζ) = ζ + 〈ξ − ζ, nξ〉nξ, ζ ∈ Uξ,

is invertible. Assuming that γ
[1]
ξ , γ

[2]
ξ are orthogonal unit vectors in Γξ such that

γ
[1]
ξ × γ

[2]
ξ = nξ, we can also write

πξ(ζ) = ξ + 〈ζ − ξ, γ
[1]
ξ 〉 γ[1]

ξ + 〈ζ − ξ, γ
[2]
ξ 〉 γ[2]

ξ .

Define φξ by the formula

φξ(ζ) := [〈ζ − ξ, γ
[1]
ξ 〉, 〈ζ − ξ, γ

[2]
ξ 〉]T , ζ ∈ Uξ.

We call Φ = {(Uξ, φξ)}ξ∈Ω the projection atlas associated with Ω, and (Uξ, φξ),
ξ ∈ Ω, are its charts.

Let us show that Φ is indeed an atlas in the sense of the standard definition of
a C1-manifold, see e.g. [17]. This requires that φξ : Uξ → R

2 is a homeomorphism
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between Uξ and an open subset of R
2. Moreover, for every ξ, ζ ∈ Ω, φζξ := φζ ◦

φ−1
ξ : φξ(Uζ ∩Uξ) → φζ(Uζ ∩Uξ) should be a C1 mapping whenever Uξ ∩Uζ 6= ∅.

Clearly, φξ is invertible by the choice of Uξ. Consider the coordinate sys-

tem for R
3 with coordinate vectors γ

[1]
ξ , γ

[2]
ξ , nξ and origin ξ. For any µ ∈ Uξ,

the equation Fµ = 0 determines an implicit function x[3] = δµ(x[1], x[2]) in a
neighborhood of φξ(µ), such that

φ−1
ξ (x[1], x[2]) = ξ + x[1]γ

[1]
ξ + x[2]γ

[2]
ξ + δµ(x[1], x[2])nξ.

Since 〈nξ,∇Fµ(µ)〉 = 〈nξ, nµ〉‖∇Fµ(µ)‖2 6= 0, the implicit function theorem
implies that δµ(x[1], x[2]) is a C2 function in a neighborhood of φξ(µ). Assuming
µ ∈ Uξ ∩ Uζ , we also have

(φζ ◦ φ−1
ξ )(x[1], x[2]) = φζξ(x

[1], x[2]) = [φ
[1]
ζξ (x[1], x[2]), φ

[2]
ζξ (x[1], x[2])]T ,

where for i = 1, 2,

φ
[i]
ζξ(x

[1], x[2]) = 〈ξ − ζ + x[1]γ
[1]
ξ + x[2]γ

[2]
ξ + δµ(x[1], x[2])nξ, γ

[i]
ζ 〉 (1)

in a neighborhood of φξ(µ). Therefore φζξ : φξ(Uξ ∩ Uζ) → φζ(Uξ ∩ Uζ) is a C2

mapping. Note that even if a C1 mapping φζξ would suffice for our goals, we do
need the assumption that Ω is a C2 surface to ensure that the normal nξ changes
smoothly with ξ, which guarantees the C1 smoothness of our approximants, see
[7].

For a C1 function f defined in a neighborhood U of ζ ∈ Ω, we define Jζ(f) :
U ∩ Uζ → R

2×2 by

Jζ(f)(µ) := J(f ◦ φ−1
ζ )(φζ(µ)), µ ∈ U ∩ Uζ,

where for any smooth function g : R
2 → R

2, g = [g[1], g[2]]T , J(g) denotes its
Jacobian

J(g) :=

[

∂g[1]

∂x[1]

∂g[1]

∂x[2]

∂g[2]

∂x[1]

∂g[2]

∂x[2]

]

.

We write
Jζξ := Jξ(φζ), on Uζ ∩ Uξ,

so that
Jζξ(µ) = Jξ(φζ)(µ) = J(φζξ)(φξ(µ)), µ ∈ Uζ ∩ Uξ,

is the Jacobian of φζξ evaluated at φξ(µ). Since φ−1
ζξ = φξζ , the well-known

properties of the Jacobian imply

[Jζξ(µ)]−1 = Jξζ(µ). (2)

For later use, we now obtain explicit formulas for the Jacobian Jζξ(ξ) :=
J(φζξ)(φξ(ξ)) and its determinant in the case of the projection atlas. By the
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above construction, the implicit function x[3] = δξ(x
[1], x[2]) is C2 in a neighbor-

hood of the origin φξ(ξ). Moreover, it vanishes together with its gradient at the
origin. Hence, by (1),

Jζξ(ξ) = [〈γ[i]
ζ , γ

[j]
ξ 〉]i,j=1,2. (3)

Clearly, the determinant of this matrix is the projection of nζ = γ
[1]
ζ × γ

[2]
ζ on

nξ, i.e.,
detJζξ(ξ) = 〈nζ , nξ〉. (4)

2.2 Projected gradients

Let f ∈ C1(Ω), and let fξ = f ◦ φ−1
ξ . Since Ω is embedded in R

3, the gradient

∇fξ =
[

∂fξ

∂x[1] ,
∂fξ

∂x[2]

]

of fξ can be identified with the 3-vector

grad fξ =
∂fξ

∂x[1]
γ

[1]
ξ +

∂fξ

∂x[2]
γ

[2]
ξ

lying in the tangent plane Γξ ⊂ R
3. We write

gradξf(µ) := (gradfξ)(φξ(µ)), µ ∈ Uξ,

for the gradient of fξ evaluated at φξ(µ). We call gradξf(µ) the projected gradient
of f at µ. It is easy to see that gradξf(ξ) coincides with the standard gradient
of a function on a 2-surface in R

3, as defined for example in [28, p. 96]. We also
need projected gradients when µ 6= ξ.

Lemma 1. For any ξ ∈ Ω and ζ ∈ Uξ, the projected gradient gradζf(ζ) is the
orthogonal projection of gradξf(ζ) onto Γζ . In particular,

gradζf(ζ) = gradξf(ζ) − 〈gradξf(ζ), nζ〉nζ , (5)

and

gradξf(ζ) = gradζf(ζ) − 〈gradζf(ζ), nξ〉
〈nζ , nξ〉

nζ , if 〈nζ , nξ〉 6= 0, (6)

where nζ and nξ are the unit normal vectors to Γζ and Γξ, respectively.

Proof. We have

gradξf(ζ) =
∂fξ

∂x[1]

(

φξ(ζ)
)

γ
[1]
ξ +

∂fξ

∂x[2]

(

φξ(ζ)
)

γ
[2]
ξ .

Its projection onto Γζ is therefore

(

∂fξ

∂x[1]

(

φξ(ζ)
)

〈γ[1]
ξ , γ

[1]
ζ 〉 +

∂fξ

∂x[2]

(

φξ(ζ)
)

〈γ[2]
ξ , γ

[1]
ζ 〉

)

γ
[1]
ζ

+

(

∂fξ

∂x[1]

(

φξ(ζ)
)

〈γ[1]
ξ , γ

[2]
ζ 〉 +

∂fξ

∂x[2]

(

φξ(ζ)
)

〈γ[2]
ξ , γ

[2]
ζ 〉

)

γ
[2]
ζ .
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This last expression coincides with gradζf(ζ), since

∇fζ(φζ(ζ)) = ∇fξ(φξ(ζ))Jξζ(ζ) = ∇ξf(ζ) [〈γ[i]
ξ , γ

[j]
ζ 〉]i,j=1,2

by the chain rule and (3).
The formulas (5) and (6) for the projection and inverse projection, respec-

tively, follow immediately.

2.3 Consistent triangulations

Given a finite set V of points in Ω, let T be a set of triples τ = {v, u, w} of
points v, u, w ∈ V such that

– any two triples have at most two common points,
– any pair of points in V belong to at most two different triples in T , and
– for any v ∈ V , the set of all triples containing v forms a cell, i.e. {τ ∈ T :
v ∈ τ} = {τi : i = 1, . . . , n} for some n ≥ 3, where τi = {v, vi, vi+1}, with
v1, . . . , vn all different, and vn+1 = v1.

If these conditions are satisfied, we say that T is a triangulation of Ω with
vertices V . We say that two vertices v1, v2 are connected in T if there is a triple
τ ∈ T containing both v1 and v2. This definition of a triangulation of a manifold
Ω is described by connectivity of vertices only, and does not involve “edges”
or “triangles” on Ω. Indeed, T is essentially an abstract simplicial complex [21]
with vertices in Ω.

Given ξ ∈ Ω, assuming that all vertices of τ = {v, u, w} ∈ T are in Uξ, we de-
note by φξ(τ) the (open) planar triangle in Bξ with vertices φξ(u), φξ(v), φξ(w).
Note that the triangle φξ(τ) may be degenerate. We set Tξ = {τ ∈ T : τ ⊂ Uξ}
and △ξ = {φξ(τ) : τ ∈ Tξ}.

Definition 1. A triangulation T of Ω is said to be consistent with the projec-
tion atlas Φ = {(Uξ, φξ)}ξ∈Ω if for any ξ ∈ Ω,

– every triangle T ∈ △ξ is non-degenerate,

– △ξ is a planar triangulation of Pξ := ∪T∈△ξ
T ,

– φξ(ξ) lies in the interior of Pξ.

For any ξ ∈ Ω, let Vξ be the set consisting of vertices of all τ ∈ Tξ such that
φξ(ξ) lies in the closure of φξ(τ), i.e.

Vξ := {v ∈ V ∩ Uξ : φξ(ξ) ∈ φξ(τ) for some τ ∈ Tξ with a vertex at v}.

For a consistent triangulation T , it is not difficult to check that Vζ ⊆ Vξ for all
ζ ∈ Ω sufficiently close to ξ, see [7]. Moreover, if ξ is a vertex in V , then Vξ

consists of ξ and all vertices connected to it. For any point ξ ∈ Ω \ V , the set Vξ

contains either three or four points, depending on whether φξ(ξ) belongs to the
interior of a triangle in △ξ or it lies on a common edge of two such triangles.
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In addition to consistency, we will need the following assumption, specifically
related to the Powell-Sabin spline:

for every ξ ∈ Ω, if φξ(ξ) ∈ T for a T ∈ △ξ, then △ξ also includes
three triangles sharing edges with T .

(7)

We extend Vξ to Ṽξ by adding to Vξ the vertices of the triangles described in
(7).

3 Interpolation and data fitting

3.1 An interpolation method

Let T be a consistent triangulation of Ω. We assume that T is fine enough for (7)
to hold. Let D := {av, cv}v∈V , where av are real numbers and cv are 3-vectors in
Γv. We now show how to construct a C1 function sT defined on Ω that satisfies
the interpolation conditions

sT (v) = av, gradvsT (v) = cv, all v ∈ V . (8)

Algorithm 1. Given ξ ∈ Ω, compute sT (ξ):

1. Let T := 〈w1, w2, w3〉 be a triangle in △ξ such that φξ(ξ) ∈ T , and let
T1 := 〈w4, w3, w2〉, T2 := 〈w5, w1, w3〉, and T3 := 〈w6, w2, w1〉 be the three
triangles in △ξ sharing edges with T , see Figure 1(left).

2. Let TPS be the Powell-Sabin split of T into six triangles obtained by con-
necting the incenter w of T to the incenters of T1, T2, T3, and to the vertices
w1, w2, w3, see Figure 1(right).

3. Let gi := cvi
− 〈cvi

,nξ〉

〈nvi
,nξ〉

nvi
, where vi = φ−1

ξ (wi), for i = 1, 2, 3.

4. Let sT (ξ) be the value at φξ(ξ) of the Powell-Sabin C1 quadratic spline sξ

defined on TPS that interpolates the values {avi
}3

i=1 and the gradients cor-
responding to {gi}3

i=1 at the vertices {wi}3
i=1, see [26].

Since the Powell-Sabin interpolant in step 4 is uniquely defined by the values
{(avi

, gi)}3
i=1 at the vertices {wi}3

i=1, it follows that sT is uniquely defined by
the data D. By construction, sT satisfies (8). It would be tempting to consider
sT to be a spline on a partition of the manifold Ω obtained by drawing curves
on Ω between connected vertices of T . Indeed, sT possesses a kind of piecewise
structure, see [7]. However, this does not seem to be of a practical significance.
What is important is that sT is a smooth function.

Theorem 1 ([7]). The interpolant sT defined by Algorithm 1 is a C1 function
on the manifold Ω.

Suppose that sT (f) is the interpolant sT corresponding to the data

av := f(v), cv := gradvf(v), all v ∈ V ,
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w6 w5
w1

w2 w3

w4

T1

T2T3

w6 w5
w1

w2 w3

w4

• •

•

Fig. 1. The triangles in Algorithm 1.

where f is a smooth function defined on Ω. Denote by h the mesh size of T ,
by which we mean in the current setting the maximum distance in R

3 between
any pair of vertices v ∈ V connected in T . By actually connecting these pairs
of vertices by straight line segments, we obtain a 2-dimensional triangulation in
R

3. Let α be the smallest angle appearing in its triangles.

Theorem 2 ([7]). If f is a sufficiently smooth real function on Ω, then

‖f − sT (f)‖C(Ω) ≤ K h3, (9)

where K is a constant depending only on f and α.

Note that this error bound crucially depends on using the above formulas for
the transformation of the gradients in step 3 of Algorithm 1 and in step 1(d) of
Algorithm 2. These formulas are related to (6) and (5), respectively.

3.2 A two-stage data fitting method

In practice we are frequently given only values of an unknown function f at a
set X of scattered data points on the manifold Ω. In this case we can use a
two-stage method to construct an approximation. First we select a consistent
triangulation T of Ω satisfying (7). Let V be the set of vertices of T . Note that
we do not require that the vertices be located at the data points of X , and the
number of vertices may be much smaller than the number of data points.

In the first stage of the algorithm we compute approximations to the values
{f(v), gradvf(v)}v∈V based on the data {f(ξ)}ξ∈X . We perform these calcula-
tions in the sets Bv := φv(Uv) ⊂ R

2 using techniques available for local fitting
of bivariate data. To carry this out, we suppose that

X is sufficiently dense so that X ∩ Uv 6= ∅ for each v ∈ V . (10)

Experience with the bivariate case [8] suggests that for each v ∈ V , we
compute both av ≈ f(v) and cv ≈ gradvf(v) by averaging several estimates
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of the same quantities based on different sets of nearby data. It follows from the
consistency of T that for each vertex v ∈ V , all vertices of T connected to v
belong to the set Uv.

Algorithm 2. Given {f(ξ)}ξ∈X, compute {av, cv}v∈V :

1. For each v ∈ V,

(a) Let v0 := v, and let v1, v2, . . . , vn ∈ V be the set of all vertices of T
connected to v. Let ṽi = φv(vi), i = 1, . . . , n.

(b) Choose a set X̃v ⊂ φv(X ∩ Uv) of points in Bv near φv(v).

(c) Compute a bivariate approximation pv defined on Bv based on the data
{fv(ξ̃)}ξ̃∈X̃v

, where fv := f ◦ φ−1
v .

(d) Store the numbers av,vi
:= pv(ṽi) and vectors cv,vi

:= gradpv(ṽi) −
〈grad pv(ṽi), nvi

〉nvi
for i = 0, . . . , n.

2. For each v ∈ V, set

av :=
1

n+ 1

n
∑

i=0

avi,v, cv :=
1

n+ 1

n
∑

i=0

cvi,v.

In the second stage of the algorithm we construct our approximant sT as the
interpolant (8) to the data {av, cv}v∈V obtained from Algorithm 2.

We have not specified how T is selected and how the steps 1(b) and 1(c) of
Algorithm 2 are to be performed. However, the overall performance of the two-
stage method will depend significantly on the particular techniques used in these
steps. We discuss two numerical examples in Section 4, using recently developed
adaptive techniques based on local least squares fitting by bivariate polynomials
and radial basis functions [5, 6, 8].

We now give an error bound for this method in terms of the mesh size h and
the approximation power of the local approximations pv.

Let κ(ξ) be the minimum of 〈nξ, nv〉 over all v ∈ V ∩Uξ such that ξ = φξ(ξ)
belongs to the closure of a triangle of △ξ attached to φξ(v), and let

κ = min
ξ∈Ω

κ(ξ).

By the definition of Uξ, it follows that κ > 0. Moreover, κ→ 1 as the mesh size
h of T goes to 0.

For each v ∈ V , let Nv be the union of all triangles of △v attached to v, and
let pv be the bivariate approximation to fv = f ◦ φ−1

v , as in Algorithm 2.

Theorem 3 ([7]). Let sT be the approximant to a sufficiently smooth function
f on Ω constructed by the above two-stage scattered data fitting method. Then

‖f − sT ‖C(Ω) ≤ K
[

Cfh
3 + max

v∈V

{

‖fv − pv‖C(Nv)

+h‖gradfv − grad pv‖C(Nv)

}

]

,

where the constant K depends only on κ and the smallest angle α, and Cf

depends only on f .
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Clearly, this theorem shows that if the local approximations pv are powerful
enough to guarantee an O(h3) error, then the overall error of the two-stage
method is also O(h3). This asymptotic behavior of the error is confirmed by the
numerical examples in the next section.

4 Numerical examples

4.1 Scattered data fitting on the unit sphere

For our first example, we choose the manifold Ω to be the unit sphere in R
3

defined by x2 + y2 + z2 = 1. As a test function, we take the function

f1(x, y, z) := 1 + x8 + e2y3

+ e2z2

+ 10xyz

used in the examples in [1]. As in [1], we visualize this function as a kind of offset
surface to the manifold, i.e., we plot

{ξ + f1(ξ)nξ : ξ ∈ Ω},

where nξ denotes the unit outer normal to the manifold Ω at ξ, see Figure 2.

Fig. 2. Test function f1 on the sphere.

In order to study the behavior of the error as a function of mesh size, we
use the nested sequence of triangulations introduced in [1]. Let T0 be the regular
octahedron with vertices at ±ei, i = 1, 2, 3, where ei are the Cartesian coordinate
vectors. This triangulation has 6 vertices and 8 triangles. We now define Tn

by repeated refinement, where Tn is obtained from Tn−1 by adding vertices at
the midpoints of the great circle arcs connecting neighboring vertices of Tn−1,
and then splitting each triangle in Tn−1 into four subtriangles using these new
vertices. The number of vertices of Tn is Vn = 22n+2 + 2, and the number of
triangles is 22n+3. The triangulations T1 and T2 are shown in Figure 3. Note
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Fig. 3. Triangulations T1 and T2.

that T0 is not sufficiently fine for our Powell-Sabin interpolant to be defined, see
Section 3.1.

To get test data, we use a simple spherical random number generator, see
Remark 6. In particular, for each n = 1, 2, . . . , 6, we generate 3Vn = 3(22n+2 +
2) random points. We choose this number since as shown in Section 3.1, the
Powell-Sabin interpolant is uniquely defined by 3Vn degrees of freedom. We then
evaluate the test function f1 at these points, and create approximants sn by the
two-stage method described in Section 3.2.

In the first stage we use least squares multiquadric fitting as described in
[6] with the following parameter values: minimum number of points Mmin =
25, maximum number of points Mmax = 100, separation S = 35, and scaling
δ = 0.2 if n = 1, δ = 1.0 if n = 2, δ = 2.0 if n = 3, δ = 3.0 if n ∈ {4, 5},
δ = 4.0 if n = 6. See [6] for the exact meaning of Mmin, Mmax, S and δ. The
choice of increasing values for the δ’s as the number of data points increases is
motivated by numerical results in [6]. In our implementation we make use of the
corresponding subroutines from the software library TSFIT [9].

The results of our experiments are presented in Table 1. In the column la-
belled Two Stage, we list the relative maximum errors ‖f1 − sn‖∞/‖f1‖∞ for
n = 1, . . . , 6. For comparison purposes, in the column labelled Exact, we list the
relative errors when the exact function values and projected gradients are used
instead of the approximate values obtained from first stage fitting. In the column
labelled Spherical PS we also list the relative errors corresponding to using the
spherical Powell Sabin interpolant of [1] based on the exact function values and
gradients at the vertices of Tn.

The table shows that the errors for the three methods are comparable, and
indeed for n ≥ 2 are almost identical. To test the rate of convergence, in the
column labelled Ratio we list the ratios of the errors of our two-stage method,
i.e., ‖f1 − sn−1‖/‖f1 − sn‖ for n = 2, . . . , 6. Since the mesh size decreases by
approximately 1/2 at each refinement step, and since the error should be of size
O(h3), these ratios tend to 8 as they should.
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Table 1. Tests with random data on the sphere.

# data Two Stage Ratio Exact Spherical PS
T1 54 2.74 × 10−1 8.08 × 10−2 7.83 × 10−2

T2 198 2.15 × 10−2 12.7 2.17 × 10−2 2.10 × 10−2

T3 774 2.10 × 10−3 10.2 2.10 × 10−3 2.05 × 10−3

T4 3078 2.41 × 10−4 8.7 2.41 × 10−4 2.28 × 10−4

T5 12294 2.92 × 10−5 8.3 2.92 × 10−5 2.88 × 10−5

T6 49158 3.65 × 10−6 8.0 3.65 × 10−6 3.60 × 10−6

To illustrate the performance of the two-stage method with even fewer data
points, we recomputed the spline fit corresponding to the triangulation T2, but
with only 100 random points on the sphere. The parameters for the first step
were taken to be Mmin = 25, Mmax = 100, S = 25 and δ = 0.8. In this case
the maximum relative error was 2.18 × 10−2. Figure 4 shows the test function
f1 along with the data sites and the approximant computed using the two-stage
method.

Fig. 4. Test function with 100 data sites (left) and its approximation (right).

4.2 Ring type surfaces

As a second example, we consider the ring-type surfaces used in the examples
presented in [25]. Given a real number 0 ≤ a < 1 and an integer m ≥ 0, we
define a smooth 2-manifold in R

3 parametrically via

x = [2 + (1 + a cosmu) cos v] cosu, (11)

y = [2 + (1 + a cosmu) cos v] sinu, (12)

z = [1 + a cosmu] sin v, (13)
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where (u, v) runs over the parameter domain [0, 2π)× [0, 2π). When m = 0, this
corresponds to a torus with outer radius 3 + a and inner radius 1− a. In general
it is a surface of genus 1.

For our experiments, we choose a = 0.3 andm = 5, giving rise to the manifold
depicted in Figure 5 (left). As a test function, we now take

f2(x, y, z) := (1 + x8 + y3 + z2)/4000.

The corresponding surface is shown in Figure 5 (right).

Fig. 5. Ring-type surface with a = 0.3 and m = 5 (left), and the test function f2

visualized as an offset surface (right).

For comparison purposes, we generate a sequence of triangulations Tn, n =
1, . . . , 5, by starting with nested three directional meshes in the parameter do-
main [0, 2π) × [0, 2π) with vertices (ui, vj) given by

ui =
2πi

24 · 2n−1
, vj =

2πj

15 · 2n−1
,

and mapping these vertices onto the ring-type surface. The triangulations T1

and T2 are shown in Figure 6. The number of vertices of Tn is Vn = 90 · 4n,
and the number of triangles is 180 · 4n. To generate data for our experiments,
we evaluate the test function f2 at 3Vn random points on the surface. As in
Section 4.1, we use local multiquadric fitting [6] with the following parameter
values: Mmin = 25, Mmax = 100, S = 15, and δ = 2.0 if n = 1, δ = 3.0 if
n ≥ 2. Table 2 shows the relative maximum error for the two-stage method and
for the exact interpolant. The somewhat irregular convergence rate seen in the
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Fig. 6. Triangulations T1 and T2.

Table 2. Tests with random data on the ring type surface.

# data Two Stage Ratio Exact
T1 1080 5.57 × 10−2 5.50 × 10−2

T2 4320 2.84 × 10−2 1.96 2.84 × 10−2

T3 17280 4.01 × 10−3 7.08 4.01 × 10−3

T4 69120 9.18 × 10−5 43.7 9.17 × 10−5

T5 276480 1.14 × 10−5 8.05 1.14 × 10−5

’ratio’ column is probably due to the fact that we are using easy to generate
triangulations that are not well adapted to this particular manifold.

Figure 7 shows the T2-approximation computed using 1000 random data,
with parameters Mmin = 25, Mmax = 100, S = 15, and δ = 2.0. The relative
error of this approximation is 2.89 × 10−2.

5 Remarks

Remark 1. The problem of fitting functions defined on surfaces arises in many
applications, see [1–4, 10–14,19, 20, 23, 25, 27, 29], and references therein. Used
parametrically, such functions can be applied to the problem of modelling sur-
faces of arbitrary topological type from point clouds, see [15, 16, 30].

Remark 2. Many of the papers mentioned in the above remark deal with the
sphere in R

3. For a survey of interpolation and scattered data fitting methods
on the sphere, see [12]. For some specific methods, see [14, 19, 20, 22, 23, 27, 29].

Remark 3. The method of this paper is closely related to work of Demjanovich
[10, 11]. He also computes an interpolant s at a point ξ on the manifold by pro-
jecting into the tangent plane and using a bivariate finite element interpolation
method. A key difference is that for each evaluation point ξ, his method in-
volves interpolation of the original function at the points in the tangent plane
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Fig. 7. Powell-Sabin approximation computed using 1000 data points.

Γξ determined by the finite element scheme, whereas in our methods we only
interpolate projected gradients corresponding to the vertices of the underlying
triangulation T , compare steps 3 and 4 of Algorithm 1. Therefore, our interpo-
lation operator only requires function values and gradients at the vertices of T ,
which makes it possible to design a two-stage scattered data fitting method. In
[10, 11] only interpolation with Courant hat functions has similar properties for
general manifolds, but it does not produce a C1 interpolant.

Remark 4. The method of this paper is also closely related to work of Pottmann
[25], which also makes use of projected gradients. (It is not difficult to see that our
equation (6) describes the π-transform of [25].) However, instead of using local
approximation methods to estimate gradients, he constructs a kind of minimum
norm network.

Remark 5. Here we have made use of the standard bivariate C1 quadratic Powell-
Sabin macro-element to solve the interpolation problem in the tangent plane. Its
key feature is that it is constructed from only nine pieces of data, the values
and gradients at the three vertices of the macro-triangle. Using the same data,
we can also construct an interpolant based on the classical C1 reduced Clough-
Tocher macro-element. It is based on a split of the macro-triangle into three
subtriangles (typically using the barycenter), and is a cubic polynomial on each
piece. Along each edge its cross derivative is restricted to be a linear polynomial.
Yet another possibility is a modified quadratic Powell-Sabin macro-element on a
12-split [26], where the cross derivatives are assumed linear rather than piecewise
linear on the edges of the macro-triangles. Note that with either a Clough-Tocher
or 12-split Powell-Sabin macro-element the assumption (7) will not be needed.
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Remark 6. To simulate scattered data for our numerical experiments in Sec-
tion 4, we generated pseudo-random points uniformly distributed on the test
surfaces. For the surface of the sphere we use the following method described
e.g. in [24]: To obtain a point (x, y, z) on the unit sphere, generate two pseudo-
random real numbers z and t uniformly distributed in [−1, 1] and [0, 2π), respec-
tively, and then compute x = ρ cos t and y = ρ sin t, where ρ =

√
1 − z2. For

the ring-type surface defined parametrically by (11)–(13), the points r(u, v) =
(x(u, v), y(u, v), z(u, v)) will be uniformly distributed on the surface if (u, v) ∈
[0, 2π) × [0, 2π) are chosen according to the probability distribution p(u, v) =
α‖ru × rv‖2, with α ∈ R such that

∫

[0,2π)×[0,2π) p(u, v) du dv = 1. It is not diffi-

cult to see that ‖ru×rv‖2
2 = ψ2[(ψ′)2+(2+ψ cos v)2], where ψ(u) = 1+a cosmu.

Using this explicit formula, we employ the well-known von Neumann rejection
method to generate the points.
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