4,581 research outputs found

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    Machine Learning Mitigants for Speech Based Cyber Risk

    Get PDF
    Statistical analysis of speech is an emerging area of machine learning. In this paper, we tackle the biometric challenge of Automatic Speaker Verification (ASV) of differentiating between samples generated by two distinct populations of utterances, those of an authentic human voice and those generated by a synthetic one. Solving such an issue through a statistical perspective foresees the definition of a decision rule function and a learning procedure to identify the optimal classifier. Classical state-of-the-art countermeasures rely on strong assumptions such as stationarity or local-stationarity of speech that may be atypical to encounter in practice. We explore in this regard a robust non-linear and non-stationary signal decomposition method known as the Empirical Mode Decomposition combined with the Mel-Frequency Cepstral Coefficients in a novel fashion with a refined classifier technique known as multi-kernel Support Vector machine. We undertake significant real data case studies covering multiple ASV systems using different datasets, including the ASVSpoof 2019 challenge database. The obtained results overwhelmingly demonstrate the significance of our feature extraction and classifier approach versus existing conventional methods in reducing the threat of cyber-attack perpetrated by synthetic voice replication seeking unauthorised access

    Multi-Time-Scale Features for Accurate Respiratory Sound Classification

    Get PDF
    The COVID-19 pandemic has amplified the urgency of the developments in computer-assisted medicine and, in particular, the need for automated tools supporting the clinical diagnosis and assessment of respiratory symptoms. This need was already clear to the scientific community, which launched an international challenge in 2017 at the International Conference on Biomedical Health Informatics (ICBHI) for the implementation of accurate algorithms for the classification of respiratory sound. In this work, we present a framework for respiratory sound classification based on two different kinds of features: (i) short-term features which summarize sound properties on a time scale of tenths of a second and (ii) long-term features which assess sounds properties on a time scale of seconds. Using the publicly available dataset provided by ICBHI, we cross-validated the classification performance of a neural network model over 6895 respiratory cycles and 126 subjects. The proposed model reached an accuracy of 85%±3% and an precision of 80%±8%, which compare well with the body of literature. The robustness of the predictions was assessed by comparison with state-of-the-art machine learning tools, such as the support vector machine, Random Forest and deep neural networks. The model presented here is therefore suitable for large-scale applications and for adoption in clinical practice. Finally, an interesting observation is that both short-term and long-term features are necessary for accurate classification, which could be the subject of future studies related to its clinical interpretation

    Multi-time-scale features for accurate respiratory sound classification

    Get PDF
    The COVID-19 pandemic has amplified the urgency of the developments in computer-assisted medicine and, in particular, the need for automated tools supporting the clinical diagnosis and assessment of respiratory symptoms. This need was already clear to the scientific community, which launched an international challenge in 2017 at the International Conference on Biomedical Health Informatics (ICBHI) for the implementation of accurate algorithms for the classification of respiratory sound. In this work, we present a framework for respiratory sound classification based on two different kinds of features: (i) short-term features which summarize sound properties on a time scale of tenths of a second and (ii) long-term features which assess sounds properties on a time scale of seconds. Using the publicly available dataset provided by ICBHI, we cross-validated the classification performance of a neural network model over 6895 respiratory cycles and 126 subjects. The proposed model reached an accuracy of 85% ± 3% and an precision of 80% ± 8%, which compare well with the body of literature. The robustness of the predictions was assessed by comparison with state-of-the-art machine learning tools, such as the support vector machine, Random Forest and deep neural networks. The model presented here is therefore suitable for large-scale applications and for adoption in clinical practice. Finally, an interesting observation is that both short-term and long-term features are necessary for accurate classification, which could be the subject of future studies related to its clinical interpretation

    Audio-visual football video analysis, from structure detection to attention analysis

    Get PDF
    Sport video is an important video genre. Content-based sports video analysis attracts great interest from both industry and academic fields. A sports video is characterised by repetitive temporal structures, relatively plain contents, and strong spatio-temporal variations, such as quick camera switches and swift local motions. It is necessary to develop specific techniques for content-based sports video analysis to utilise these characteristics. For an efficient and effective sports video analysis system, there are three fundamental questions: (1) what are key stories for sports videos; (2) what incurs viewer’s interest; and (3) how to identify game highlights. This thesis is developed around these questions. We approached these questions from two different perspectives and in turn three research contributions are presented, namely, replay detection, attack temporal structure decomposition, and attention-based highlight identification. Replay segments convey the most important contents in sports videos. It is an efficient approach to collect game highlights by detecting replay segments. However, replay is an artefact of editing, which improves with advances in video editing tools. The composition of replay is complex, which includes logo transitions, slow motions, viewpoint switches and normal speed video clips. Since logo transition clips are pervasive in game collections of FIFA World Cup 2002, FIFA World Cup 2006 and UEFA Championship 2006, we take logo transition detection as an effective replacement of replay detection. A two-pass system was developed, including a five-layer adaboost classifier and a logo template matching throughout an entire video. The five-layer adaboost utilises shot duration, average game pitch ratio, average motion, sequential colour histogram and shot frequency between two neighbouring logo transitions, to filter out logo transition candidates. Subsequently, a logo template is constructed and employed to find all transition logo sequences. The precision and recall of this system in replay detection is 100% in a five-game evaluation collection. An attack structure is a team competition for a score. Hence, this structure is a conceptually fundamental unit of a football video as well as other sports videos. We review the literature of content-based temporal structures, such as play-break structure, and develop a three-step system for automatic attack structure decomposition. Four content-based shot classes, namely, play, focus, replay and break were identified by low level visual features. A four-state hidden Markov model was trained to simulate transition processes among these shot classes. Since attack structures are the longest repetitive temporal unit in a sports video, a suffix tree is proposed to find the longest repetitive substring in the label sequence of shot class transitions. These occurrences of this substring are regarded as a kernel of an attack hidden Markov process. Therefore, the decomposition of attack structure becomes a boundary likelihood comparison between two Markov chains. Highlights are what attract notice. Attention is a psychological measurement of “notice ”. A brief survey of attention psychological background, attention estimation from vision and auditory, and multiple modality attention fusion is presented. We propose two attention models for sports video analysis, namely, the role-based attention model and the multiresolution autoregressive framework. The role-based attention model is based on the perception structure during watching video. This model removes reflection bias among modality salient signals and combines these signals by reflectors. The multiresolution autoregressive framework (MAR) treats salient signals as a group of smooth random processes, which follow a similar trend but are filled with noise. This framework tries to estimate a noise-less signal from these coarse noisy observations by a multiple resolution analysis. Related algorithms are developed, such as event segmentation on a MAR tree and real time event detection. The experiment shows that these attention-based approach can find goal events at a high precision. Moreover, results of MAR-based highlight detection on the final game of FIFA 2002 and 2006 are highly similar to professionally labelled highlights by BBC and FIFA

    A Statistical Perspective of the Empirical Mode Decomposition

    Get PDF
    This research focuses on non-stationary basis decompositions methods in time-frequency analysis. Classical methodologies in this field such as Fourier Analysis and Wavelet Transforms rely on strong assumptions of the underlying moment generating process, which, may not be valid in real data scenarios or modern applications of machine learning. The literature on non-stationary methods is still in its infancy, and the research contained in this thesis aims to address challenges arising in this area. Among several alternatives, this work is based on the method known as the Empirical Mode Decomposition (EMD). The EMD is a non-parametric time-series decomposition technique that produces a set of time-series functions denoted as Intrinsic Mode Functions (IMFs), which carry specific statistical properties. The main focus is providing a general and flexible family of basis extraction methods with minimal requirements compared to those within the Fourier or Wavelet techniques. This is highly important for two main reasons: first, more universal applications can be taken into account; secondly, the EMD has very little a priori knowledge of the process required to apply it, and as such, it can have greater generalisation properties in statistical applications across a wide array of applications and data types. The contributions of this work deal with several aspects of the decomposition. The first set regards the construction of an IMF from several perspectives: (1) achieving a semi-parametric representation of each basis; (2) extracting such semi-parametric functional forms in a computationally efficient and statistically robust framework. The EMD belongs to the class of path-based decompositions and, therefore, they are often not treated as a stochastic representation. (3) A major contribution involves the embedding of the deterministic pathwise decomposition framework into a formal stochastic process setting. One of the assumptions proper of the EMD construction is the requirement for a continuous function to apply the decomposition. In general, this may not be the case within many applications. (4) Various multi-kernel Gaussian Process formulations of the EMD will be proposed through the introduced stochastic embedding. Particularly, two different models will be proposed: one modelling the temporal mode of oscillations of the EMD and the other one capturing instantaneous frequencies location in specific frequency regions or bandwidths. (5) The construction of the second stochastic embedding will be achieved with an optimisation method called the cross-entropy method. Two formulations will be provided and explored in this regard. Application on speech time-series are explored to study such methodological extensions given that they are non-stationary

    Robust estimation of directions-of-arrival in diffuse noise based on matrix-space sparsity

    Get PDF
    We consider the estimation of the Directions-Of-Arrival (DOA) of target signals in diffuse noise. The state-of-the-art MUltiple SIgnal Classification (MUSIC) algorithm necessitates accurate identification of the signal subspace. In diffuse noise, however, it is difficult to identify it directly from the observed spatial covariance matrix. In our approach, we estimate the target spatial covariance matrix, so that we can identify the orthogonal complement of the signal subspace as its null space. We present a unified framework for modeling noise covariance in a matrix space, which generalizes four state-of-the-art diffuse noise models. We propose two alternative algorithms for estimating the target spatial covariance matrix, namely Low-rank Matrix Completion (LMC) and Trace Norm Minimization (TNM). These rely on denoising of the observed spatial covariance matrix via orthogonal projection onto the orthogonal complement of the noise matrix subspace. The missing component lying in the noise matrix subspace is then completed by exploiting the low-rankness of the target spatial covariance matrix. Large-scale experiments with real-world noise show that TNM with a certain noise model outperforms conventional MUSIC based on Generalized EigenValue Decomposition (GEVD) by 5% in terms of the precision averaged over the dataset

    Error Signals from the Brain: 7th Mismatch Negativity Conference

    Get PDF
    The 7th Mismatch Negativity Conference presents the state of the art in methods, theory, and application (basic and clinical research) of the MMN (and related error signals of the brain). Moreover, there will be two pre-conference workshops: one on the design of MMN studies and the analysis and interpretation of MMN data, and one on the visual MMN (with 20 presentations). There will be more than 40 presentations on hot topics of MMN grouped into thirteen symposia, and about 130 poster presentations. Keynote lectures by Kimmo Alho, Angela D. Friederici, and Israel Nelken will round off the program by covering topics related to and beyond MMN

    Experimental study of aural discrimination between speech and non-speech

    Get PDF
    Imperial Users onl
    corecore