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ABSTRACT Statistical analysis of speech is an emerging area of machine learning. In this paper, we tackle
the biometric challenge of Automatic Speaker Verification (ASV) of differentiating between samples
generated by two distinct populations of utterances, those of an authentic human voice and those generated
by a synthetic one. Solving such an issue through a statistical perspective foresees the definition of a
decision rule function and a learning procedure to identify the optimal classifier. Classical state-of-the-art
countermeasures rely on strong assumptions such as stationarity or local-stationarity of speech that may be
atypical to encounter in practice. We explore in this regard a robust non-linear and non-stationary signal
decomposition method known as the Empirical Mode Decomposition combined with the Mel-Frequency
Cepstral Coefficients in a novel fashion with a refined classifier technique known as multi-kernel Support
Vector machine. We undertake significant real data case studies covering multiple ASV systems using
different datasets, including the ASVSpoof 2019 challenge database. The obtained results overwhelmingly
demonstrate the significance of our feature extraction and classifier approach versus existing conventional
methods in reducing the threat of cyber-attack perpetrated by synthetic voice replication seeking unautho-
rised access.

INDEX TERMS Cyberattack, empirical mode decomposition, support vector machine, speech analysis.

I. INTRODUCTION
The prevalence of biometric authentication systems is
increasing in many data access points in smart devices and
remote data access settings. This has led to a new machine
learning based approach to address the resulting biometric
challenge of Automatic Speaker Verification (ASV). Modern
machine learning approaches are recently tackling the study
of ASV, see [1] and [2]. In this paper, we also look at a novel
machine learning solution for ASV that is designed around
feature extraction for speech signals, and we address the
challenge of biometric cyber-attack mitigation by seeking to
detect when data access is attempted through a deep fake arti-
ficial speech generation rather than a human speaker. In the
same vein as the biometric verification work for fingerprints
of [3], we will be performing identification and verification
speech biometrics.

The associate editor coordinating the review of this manuscript and

approving it for publication was Larbi Boubchir .

The key statistical component of our proposed speech
signature representation is based upon a non-stationary func-
tional basis characterisation for speech signal via the Empir-
ical Mode Decomposition (EMD). The EMD [4] is a basis
decomposition method dealing with non-stationary and non-
linear signals. It dynamically decomposes a signal into oscil-
latory, locally adapting AM-FM (amplitude and frequency
modulated) components [5], called Intrinsic Mode Functions
(IMFs). We employ the EMD to identify which voice signal
components provide discriminatory power in mitigating the
risk associated with biometric cyber attacks in ASV technol-
ogy frameworks, where the extracted IMF basis functions act
as an individual’s vocal signature allowing for discrimination
of the human voice from synthetic attacks using replicated
artificial voice. The EMD has been employed within speech
analysis in [5]; while [6] made use of the EMD for the
noise-robustness of automatic speech recognition systems.
Reference [7] focuses on speech-based emotion classification
utilising acoustic data and successfully employed the EMD
basis functions and the instantaneous frequencies derived
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through the Hilbert transform. Furthermore, [8] used the
EMD algorithm to extract the fundamental frequency F0.
ASV technologies are gaining widespread utilization in

contexts of call centers, human-computer interfaces, secure
access control for commercial and retail banking, see [9],
and [10]. An ASV system typically extracts speaker char-
acteristics from utterances and compares them to a given
speaker synthetic voice model, estimated from its identity.
In this context, one may distinguish between text-dependent
and text-independent frameworks. The former uses a fixed
collection of reference sentences, while the latter exploits
purely arbitrarily selected speech utterances. These are
usually referred to as Text-Dependent Speaker Verifica-
tion systems, or TD-SV, versus Text-Independent systems,
or TI-SV (see discussions in [9]). A further differentiation
might be given by speaker-dependent verification systems
(SD-SV) or speaker-independent verification systems
(SI-SV), where the former are trained by the individual who
uses the system, while the latter trained as a system-agnostic
to who is then using it. As with any biometric system, ASV
is subject to spoofing or presentation attacks, which mimic a
target speaker’s voice in person or remotely via artificial tools
such as voice conversion (VC) or speech synthesis (SS) algo-
rithms. The study of such attacks is of growing significance
in the services industry, particularly the financial services
sector, where clients’ data access is increasingly reliant on
biometric identification. Spoofing attacks on banking records
may be classed as a form of cyber attack. We seek to provide
a machine learning classifier solution to detect and mitigate
losses to data integrity and sensitive information by detecting
and preventing synthetic voice access attacks.

Consequently, a range of approaches is emerging to pro-
duce specific countermeasures to mitigate against different
types of cyber spoofing attacks (see [10], [11] for ASV
and [12] for a survey focusing on speaker recognition present-
ing several countermeasures). The standard approach inmany
of these countermeasures is to identify speech parametrisa-
tions carrying discriminative power to differentiate between
spoofed and real voices. The designed techniques make use
of a classifier that attempts to distinguish between sam-
ples from two distinct populations of utterance, those from
authentic voice and those from a synthetic generation of
voice, derived from the two classes of speech signals [13].
The raw speech time-domain signals are often transformed
into lower-dimensional sets of summary statistics or engi-
neered feature representations for such classifiers, see [14].
Furthermore, such countermeasures often rely on standard
time-frequency techniques constrained by assumptions such
as stationarity or linearity of the underlying speech signal.
The speech community has proposed multiple variations
of these classical methods to overcome the aforementioned
issues (see for example [15]–[18], [19], [20]) and so dealing
with different aspects faced by ASV systems in discriminat-
ing spoofed and real voices. The traditional practice foresees
the extraction or engineering of the raw speech data features
and then conducts the classification task by stacking them

within a vector. In this way, the classifier is often polluted
by multi-frequency content information all contained in the
proposed unique vector. The approach proposed in this work
aims to tackle such a problem by constructing a parsimo-
nious model that separates this frequency information con-
tent instead and selects the most discriminant areas of the
time-frequency plane regarding the speech scenario analysed.

A recently developed approach dealing with ASV chal-
lenges is given by Deep Learning (DL). The reader should
refer to [21] for an overview of deep learning based speaker
recognition approaches that could also be extended to
speaker verification tasks. These include multi-stage net-
works, end-to-end networks, generative networks or meta-
learning. As highlighted in [21], these techniques are at a
stage of minimal investigation with no asserted guidance on
how to perform them efficiently and compare them to exist-
ing methodologies. Furthermore, DL requires, in general,
high computational costs associated with big data training
sets, often making them difficult to use in practice, and,
therefore, further research is required to establish this direc-
tion. In the specific setting of ASV challenges, the idea
behind DL methods, particularly the one of Deep Neural
Network (DNN) quickly becoming the ‘‘new-state-of-the-
art’’ methods, is to identify the formants structure with the
complex function using many layers of perceptrons. This pro-
cedure is a high-cost learning procedure that will be replaced
in this work by the EMD technique, able to capture formant
structure with the requirement of much fewer parameters and
can be applied to small and large datasets providing a uniform
method in this regard. Hence, a sparse architecture in the
placement of DNNs is promoted by this work. Afterwards,
a much simpler classifier relying on the recent method known
as multi-kernel Learning [22] combined with the Support
Vector Machine is proposed.

Another important aspect is that not only speech is highly
non-stationary and non-linear per se, but when ASV chal-
lenges are solved, adverse environments might be the one of
interest, making the task even more difficult. For example,
the presence of noise affecting human speech during the
recording or the need for a very long speech signal to be
recorded by the user to train the system or reverberation
affecting the system. These challenges are discussed in [23],
where the authors propose a method for short fragments of
speech signals tackling the issues above described.

Given the great variety of approaches introduced in the
literature and the several databases built and considered
by researchers, it is hard to identify a uniform, standard
technique unifying the presented framework and tackling
the explained issues. The desired and sought technique
should carry three main properties: first, non-stationarity and
non-linearity should be heavily considered since speech is
highly affected by these two characteristics. Often, real-world
settings can be further corrupted by adverse environments
such as noise, which can cause classical Fourier methods
to fail to provide reliable and consistent results across dif-
ferent experiments and noise environments. Secondly, the
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discrimination power of the classifier should be the centre
of attention, and new classification methodologies should
be proposed and studied. Third, several benchmark ASV
features have been proved to be successful in multiple cases.
The focus should be on the statistical interpretability of the
ones able to identify discriminating insights in solving the
ASV challenge.

Our approach follows along the familiar line of attack miti-
gation adopting a classifier framework, and the novelty lies in
three components: the ability to treat the feature extraction in
a non-stationary formulation; secondly, an ensemble learning
multi-kernel classification framework is developed, see [22];
thirdly, the interpretability of the given feature extraction
framework in terms of formant structures differentiating real
and spoofed speech is provided. We demonstrate that it
can improve the ability to detect attacks when compared to
current state-of-the-art methods.

Furthermore, three datasets will be considered for the con-
ducted experiments setting up multiple speech scenarios as
text-dependent or text-independent and speaker-dependent
and speaker-independent. Among these datasets, two of them
are constructed explicitly by the authors without a recording
laboratory or particular microphones providing the setting
encountered in ASV challenges of adverse environments.
Therefore, the obtained results will provide robustness in
these settings.

A. CONTRIBUTIONS AND NOVELTY
The contributions of this work involve several core elements:
firstly, enhanced non-stationary time-frequency methods
applied to perform novel feature extraction techniques for the
capture of speech signatures or vocal fingerprints. Secondly,
using these new feature extraction methods to formulate
a multi-kernel classifier based on Support Vector Machine
techniques. This is highly beneficial in the classification tasks
depending on the speech system considered: the extracted
features are often combined in a unique vector, and the SVM
is then performed. Such a practice should be avoided since
it will add noise to the classification problem mixing the
formant structure depending on both the individual and the
gender. Therefore, if the analysed scenario is text-dependent
or text-independent or, for example, speaker-dependent or
speaker-independent, the standard operation of considering a
unique feature vector characterising the entire time-frequency
plane would pollute the classification learning procedure.
The third contribution foresees the performance comparisons
between benchmark ASV features extracted on the raw data
and on the EMD basis functions to highlight that speech is
highly non-stationary and that multiple situations generate
adverse environments that require the use of an adaptive
method relying on the given data system. Afterwards, the pro-
posed methodology is tested through the use of various TTS
algorithms within different speech scenarios. To achieve such
a goal, we developed the following components:

1) We extend existing speech engineering techniques to
non-stationary basis extraction methods and re-express

them within a statistical framework. This is achieved
via Empirical Mode Decomposition methods, which
we use to extract time-domain intrinsic mode basis
functions, which we represent via semi-parametric
spline model characterizations.

2) The instantaneous frequency of each Intrinsic Mode
basis function is derived in closed form via the Hilbert
transform analytic extension. We are then able to apply
the combination of time-domain non-stationary basis
characterization of the speech signals and the instan-
taneous frequency characterizations to form a com-
plete time-frequency signature of a person’s vocal and
speech characteristics. We demonstrate that such basis
functions are more amenable to classical speech fea-
ture extraction methods in the transformed cepstral
domain. This allows us to develop new approaches
to EMD-Mel Cepstral speech signature characteriza-
tion that we demonstrate is highly effective in cap-
turing individual speakers vocal tract specificities that
arise given a speakers glottal airflow shaped by the
vocal tract filter as it passes through it to produce
speech. We can then use these features to distinguish
between real speech and artificial computer-generated
spoofed synthetic speech by capturing these signature
features.

3) Our resulting speech signature feature characteriza-
tions allow us to solve important new biometric tasks
related to detecting cyber intrusion attempts to access
biometrically multi-factor secured data or systems
where speech is one of the security factors. We have
developed a class of multi-kernel support vector
machine classifier solutions to detect such cyber attacks
attempted through synthetically generated speech.

These contributions then form a complete system,
summarised in Figure 1, for a cyber threat detection frame-
work capable of accurately detecting synthetic spoofed voice
attacks on a speech based biometric system secure access.

FIGURE 1. Proposed biometric speech cyber risk mitigation system.

B. BACKGROUND ON STATISTICAL CHARACTERIZATION
OF SPEECH SIGNALS
According to the source-filter model [24], a speech signal
is the result of the glottal airflow shaped by the vocal tract
filter as it passes through it [25]. Under such a representation,
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it is common to consider two main feature classes for an
ASV system: voice source features or vocal tract features.
The former are indeed related to the source of voiced sounds
deriving from the glottal flow; however, numerous studies
provide evidence showing that vocal folds features are not
as discriminatory as vocal tract features [26]. We, therefore,
focus our attention on the vocal tract features and in partic-
ular representations that contain information about the reso-
nance properties of the vocal tract, also known as formants.
An individual’s speech formant structures are analogous to
that individual’s speech fingerprint, thereby characterizing
unique traits of the filter model specific to a human. Such
features are, therefore, highly discriminatory, as it is challeng-
ing for a synthetic voice model to capture these individual-
specific characteristics, see [27]. Considering features that
can capture information on formant structures is crucial to
mitigate biometric speech attacks on ASV-based security
systems successfully.

Several methods can be employed to try to extract aspects
of formant feature information, and they are often based on
basis decomposition techniques, see [5], [28]. Such meth-
ods aim to separate the signal into components whose fre-
quency spectra could be preferably dominated by a single
non-overlapping formant frequency. All such methods cur-
rently work under assumptions of stationarity; for instance,
see the Linear Prediction (LP) analysis framework [29].
However, as demonstrated in [29], such analysis provides
an inaccurate estimation of the vocal tract resonances and
the excitation source of the speech signal. A widely used
alternative is to adopt warped filter basis extraction methods
applied to windowed raw speech signal segments. A popular
choice in practice is theMel Frequency Cepstral Coefficients
(MFCCs), see [30]. In this work, we intend to demonstrate
that utilising non-stationary basis representations for speech
enhances the ability to identify formant structures. This will
be achieved by developing the Empirical Mode Decompo-
sition (EMD) basis representations, see [4]. We develop a
novel framework that utilises the EMD to define adaptive
non-stationary features which efficiently detect highly fre-
quent temporal variations characterising the original speech
time-series. The EMD features are further combined with
MFCCs so that summaries of speech capturing intrinsic
non-stationarity and formants structure are contemporane-
ously detected. Related approaches have been considered
mixing these concepts; we cite amongst other [31] and [32].
In the former, the authors propose the EMD as a dyadic filter
in substitution to the mel-filter banks commonly used for the
MFCCs. The extracted coefficients were therefore filtered
according to the EMD basis. In [32], authors compute the
MFCCs for the speech signal, and, after, the EMD is cal-
culated for each coefficient. Our approach differs from both
since the Mel Frequency Cepstral Coefficients are performed
to represent the extracted non-stationary EMD basis them-
selves. We argue this will outperform alternative methods
since it removes the requirement of local stationary assump-
tions that the methods mentioned above required for the first

stage of the MFCC transforms. The traditional assumption
made in speech is that speech signals should be approx-
imately stationary at 25 milliseconds sampling rate under
ideal background noise conditions. However, ASV systems
would often operate within non-ideal environments affected
by background noise or interference, which will be captured
along with voices (see [33] and [34]). Instead, the EMD basis
functions will accommodate non-stationarity of any level and
so produce more robust features.

C. NOTATION
The following notation is used throughout: γk (t) represents
the k-th Intrinsic Mode Function of the EMD basis functions;
K is the total number of convexity changes of the original
signal; fk (t) is the instantaneous frequency of the k-th IMF;
γ̃k (t) analytic extension of γk (t);  is the complex unit;HT [·]
is the Hilbert transform;H (·) represents the Shannon entropy;
H represents the Hilbert space of transformed features; ω
is the raw data sampling frequency (Hz); ω̌ is the sampling
frequency of the constructed IMFs (Hz) (according toNyquist
rule); φ is the Mel-scale frequency;m(l) is a Mel Frequency
Cepstral Coefficient; k(xi, xj) represents a kernel function; K
represents the Gram Matrix associated to a kernel function;
〈·, ·〉 is the inner product; |{ · }| represents the cardinality
set; I is the indicator function.

II. EMPIRICAL MODE DECOMPOSITION FOR
NON-STATIONARY FEATURES
The Empirical Mode Decomposition (EMD) non-stationary
basis extraction approach is not widely known to the sta-
tistical audience; consequently, we will review a few core
concepts of the EMD. Assume we have observed a con-
tinuous non-stationary speech signal s(t) through a sample
recording at times 0 = t1 < · · · < tN = T . When applying
the EMD basis decomposition framework, we first convert
the partially observed discrete signal s(t) into a continuous
analog signal, which we denote by s̃(t). To achieve this we use
natural cubic polynomial splines, we will also then express
the EMD bases {γk (t)}Kk=1 as natural cubic splines, derived
from representation s̃(t).
Definition 1: Given a set of l knots a = τ1 < τ2 < · · · <

τl = b, a function s̃ : [a, b]→ R is called a cubic polynomial
spline if:

• s̃(·) is a polynomial of degree 3 on each interval (τj, τj+1)
(j = 1, . . . , l − 1)

• s̃(·) is twice continuously differentiable

It is then a natural cubic spline when s̃′′(a) = s̃′′(b) = 0.
Hence, the speech signal representation s̃(t) is expressed in

the class of truncated power basis, where the knot points are
placed at the sampling times (τi = ti)

s̃(t) = a0 + a1t + a2t2 + a3 (t − τ1)3+
+ · · · + a3+l−2 (t − τl−1)3+ . (1)
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The coefficients are estimated by standard penalised least
squares

N−1∑
i=1

(s(ti)− s̃(ti))2 + λ
∫ ti+1

ti
s̃′′(t)2dt (2)

with natural cubic spline constraints s̃′′(0) = s̃′′(tN ) = 0
and where λ > 0 controls smoothness of the representa-
tion (see [35]). In this case, the number of total convexity
changes (oscillations) of the analog signal s̃(t) within the time
domain [0, tN ] is denoted by K ∈ N. One may now define the
EMD decomposition of a speech signal s̃(t) as follows.
Definition 2: The Empirical Mode Decomposition of sig-

nal s̃(t) is represented by the finite number of non-stationary
basis functions known as Intrinsic Mode Functions (IMFs),
denoted by {γk (t)}, such that

s̃(t) =
K∑
k=1

γk (t)+ r (t) (3)

where r (t) represents the final residual (or final tendency)
extracted, which has only a single convexity. Remark that the
above decomposition can be written as:

s̃(t) =
K+1∑
k=1

γk (t) (4)

where, for simplicity, the residual r (t) is denoted as γK+1(t).
We employ such a notation within the section VII. In general
the γk basis will have k-convexity changes throughout the
domain (t1, tN ) and each IMF satisfies:
• Oscillation The number of extrema and zero-crossing
must either equal or differ at most by one:

abs
(∣∣∣∣{dγk (t)dt

= 0 : t ∈ (t1, tN )
}∣∣∣∣− |{γk (t) = 0 :

t ∈ (t1, tN )}|) ∈ {0, 1} (5)

• Local Symmetry The local mean value of the envelope
defined by a spline through the local maxima denoted
s̃Uk (t) and the envelope defined by a spline through the
local minima denoted by s̃Lk (t) is equal to zero pointwise
i.e.

mk (t) =
(
s̃Uk (t) + s̃Lk (t)

2

)
I (t ∈ [t1, tN ]) = 0 (6)

The minimum requirements of the upper and lower
envelopes are:

s̃Uk (t) = γk (t), if
dγk (t)
dt
= 0 &

d2γk (t)
dt2

< 0,

s̃Uk (t) ≥ γk (t) ∀t ∈ (t1, tN )

s̃Lk (t) = γk (t), if
dγk (t)
dt
= 0 &

d2γk (t)
dt2

> 0,

s̃Lk (t) ≤ γk (t) ∀t ∈ (t1, tN ). (7)

Further, note that, in the above representation, γk (t) is
not explicitly expressed in a functional form, as opposed to

classical stationary methods where a parametric family of
basis functions are stated, such as a cosine basis or a wavelet
basis function. Here, the basis can take any functional form
so long as it satisfies the decomposition relationship and
the properties stated for an IMF. We utilise throughout the
same flexible natural cubic spline representation as used to
represent the speech signal s̃(t).

Note that each IMF carries a unique number of convex-
ity changes that can occur at any time spacings. Typically,
the times of convexity change are irregularly spaced and
reflect non-stationarity in a local bandwidth of the frequen-
cies that characterise the signal at that time instant. As a result
of this property, one can still order the basis IMF’s naturally
according to the unique number of total convexity changes
they produce in (t1, tN ).

As outlined in [4], the construction of an IMF basis is
directly linked to the concept of local symmetry required to
handle non-stationary data. This notion is enclosed by the
mean envelope that captures a local time scale, and the defi-
nition of a local averaging time scale is hence bypassed. Such
a requirement is fundamental to avoid asymmetric waves
affecting the concept of instantaneous frequency, formalised
below.

A. EXTRACTION OF EMD BASIS FUNCTIONS (IMFs)
We next briefly outline the process applied to extract the IMF
basis representations recursively. This procedure is known as
sifting. The first step consists of computing extrema of s̃(t);
this can be done based on observations or on the interpolated
signal, s̃(t). Using s̃(t), the roots of the first derivative s̃′(t)
produce the sequence of time points for successive maxima
and minima:{
t∗j
}K
k=1

=

{
t ∈ [t1, tN ]a1 + 2a2t + 3

3+l−2∑
i=3

ai (t − τ1)2+ = 0

}
.

(8)

Without loss of generality, we assume the maxima occur at
odd intervals, i.e. t∗2j+1, and minima occur at even intervals,
i.e. t∗2j.

The second step of sifting builds an upper (s̃Uk (t)) and
lower (s̃Lk (t)) envelope of s̃(t) using two natural cubic splines
through the sequence of maxima and the sequence of minima
respectively:

s̃Uk (t) = aUk0 + a
Uk
1 t + aUk2 t2 +

bK/2c∑
i=0

aUki+3
(
t − t∗2i+1

)3
+
,

s̃Lk (t) = aLk0 + a
Lk
1 t + a

Lk
2 t

2
+

bK/2c∑
i=0

aLki+3
(
t − t∗2i

)3
+
, (9)

such that s̃Uk (t∗2j+1) = s̃(t∗2j+1) for all odd t
∗
j and s̃

Uk (t) ≥ s̃(t)
and equivalently s̃Lk (t∗2j) = s̃(t∗2j) for all even t

∗
j and s̃Lk ≤

s̃(t). One then utilises these envelopes to construct the mean
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signal denoted by mk (t) given in equation (6), which will
then be used to compensate the original speech signal s̃(t)
in a recursive fashion, until an IMF is obtained. These bases
are recursively extracted, this means that, once the k-th IMF
is computed, it is subtracted from the main signal and the
sifting procedure is applied to the residual signal to obtain
the next IMF which will have one less convexity change
than the previously extracted IMF on (t1, tN ). The procedure
is detailed in Algorithm 1 in the Supplement Materials and
stopping criteria are discussed in [36].We illustrate the sifting
process for IMF basis extraction in Figure 2.

FIGURE 2. First two steps of sifting for an IMF γ (t).

B. OBTAINING INSTANTANEOUS FREQUENCY FROM IMF
BASIS FUNCTIONS
Classical Fourier methods require stationarity, where the fre-
quencies of basis components are pure harmonics that are
static over time [4]. Real world signals such as in speech anal-
ysis are often non-stationary and non-linear and, therefore,
carry time-varying frequency components. The EMD basis
functions, IMFswill admit a time-varying frequency structure
that can be characterized by instantaneous frequencies (IFs).
The IF of a given IMF basis is extracted in the following
stages. First one takes the Hilbert Transform of each γk (t),
so that we can construct an analytic extension. The Hilbert
Transform can be computed in closed form readily if γk (t)
respects the restrictions defined in (7). Define the analytic
signal zk (t) = γk (t) +  γ̌k (t) = ak (t)eθk (t). The analytic
extension of γk (t) with time varying amplitude ak (t) =√
γ 2
k (t)+ γ̌

2
k (t) and time varying phase θk (t) = arctan γ̃k (t)

γk (t)
.

Then γ̌k (t) is obtained via Hilbert Transform as follows:

γ̌k (t) =
1
π

lim
ε→∞

∫
+ε

−ε

γk (τ )
t − τ

dτ (10)

Once the analytic extension is defined and, therefore, zk (t)
is obtained, then the instantaneous frequency fk (t) for IMF k

is defined as:

fk (t) =
1
2π

dθk (t)
dt
=

1
2π

γ̌ ′k (t)γk (t)− γ̌k (t)γ
′
k (t)

γ 2
k (t)+ γ̌

2
k (t)

. (11)

We see that [4] imposed the conditions (7) characterizing
the IMFs properties to then ensure that the instantaneous
frequency remains positive and therefore admits ameaningful
physical interpretation.

It will be advantageous to obtain the Hilbert transform of
the k-th IMF by considering the natural cubic spline repre-
sentation per knot segmentation as a local cubic polynomial
for t ∈ [τi−1, τi]. Then the Hilbert transform is constructed as
the following sum of local cubic polynomial transforms, see
for details [37]:

γ̌k (t) = HT [γk (τ )] =
1
π

N−1∑
i=1

γ̌ki (t) τi−1 < t ≤ τi (12)

where 4i = τi − τi−1 and γ̌ki (t) is the Hilbert transform of
the i-th polynomial:

γ̌ki (t) =
(
aki t

3
+ bki t

2
+ cki t + dki

)
log

(
t

t −4i

)
+aki

(
4

2
i t

2
−4it2 −

4
3
i

3

)

+bki

(
−4it −

4
2
i

2

)
− cki4i. (13)

C. INTERPRETING EMD BASIS DECOMPOSITION
Having extracted the IMFs via the sifting process, then for
each IMF, one can evaluate the analytic extension using the
Hilbert transform. This allows one to obtain a signal repre-
sentation for s̃(t) expressed in a ‘‘Fourier-like’’ expansion as:

s̃(t) = Re

{
K+1∑
k=1

ak (t) exp{ θk (t)}

}

= Re

{
K+1∑
k=1

ak (t) exp{
∫ tN

t1
2π fk (t)dt}

}
(14)

in which the residual r(t) is set as the K + 1-th term. In the
case that the target signal is made of a finite number of
pure stationary harmonics as in Figure 3 denoted s1(t) and
s2(t) respectively, the IMF decomposition will match the
finite collection of Fourier bases as shown. When the signal
is not comprised of a finite number of pure harmonics or
is non-stationary, then the instantaneous frequencies for the
IMF bases are not pure harmonics. However, the IMF bases
extracted from EMD sifting decomposition can still be natu-
rally ordered, but in a different manner to classical notions
of frequency orders in Fourier analysis. They are ordered
by oscillation count (total convexity changes) rather than
frequency. This is not equivalent as the IMF bases are not,
in general, strictly periodic. Due to this interesting difference,
the IMFs may have some time intervals in (t1, tN ) where a
high order IMFmay have lower instantaneous frequency than
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FIGURE 3. Top panels represent s̃(t) = sin(4πt)+ sin(10πt). Bottom
panels provide the two IMFs basis functions.

a lower order IMF, so long as over the entire interval, it has
a greater number of convexity changes. Figure 4 presents an
example of such a fact.

FIGURE 4. Top panel: signal s̃(t) = sin(4πt)I [t ≤ t1]+ sin(15πt)I [t > t1].
Middle panel: IMF extracted to represent s(t) and Bottom panel:
instantaneous frequency for IMF.

III. EMD-MFCC SPEECH SIGNATURES VIA PITCH AND
VOCAL RESONANCE
In speech analysis, the formant frequencies act like a charac-
teristic signature of a given speakers vocal tract, like a speech
fingerprint that is characteristic of given speakers vocal tract
physiology, see [38], [39]. Formants are a concentration of
speech acoustic energy, usually occurring at approximately
each 1,000Hz frequency band, directly related to the oscilla-
tory modes of resonance of an individual vocal tract structure.
They are often indexed by F1, F2, F3, etc., where F0 is termed
the fundamental frequency and represents the rate at which
the vocal folds vibrate. This quantity corresponds to the
pitch and coincides with the first harmonic, H1; harmonics
are multiple of the fundamental frequency F0 characterizing
the glottal source. Suppose one can extract these features
from non-stationary voiced speech created by a human vocal,
physical, physiological system. In that case, they may have
the potential to be highly discriminatory factors to distinguish
a human versus a synthetic voice as they represent how vocal
tracts shape sound sources which therefore have representa-
tions unique to an individual.

These formant features are often approximated by a Mel
Cepstral basis projection, where the functional coefficients
form the MFCC representation of the speech signal that
approximate the formants. Such a characterization is working
well in capturing formant structure in ideal speech record-
ing environments with sufficient sampling rates to cap-
ture local stationary approximations of the non-stationary
speech signal. However, in real-world ASV systems that we
consider, speech is recorded in noisy real-world environ-
ments with more compressive sampling rates and background
non-stationary noise and distortions. The presence of back-
ground noise and distortion have been shown in [33] to render
the MFCC estimated coefficients as highly sensitive and not
statistically robust to a variety of potential types of back-
ground noise and distortions. Furthermore, the compression
of the signal prior to transmission to the ASV for comparison
in the biometric signal analysis can further create aliasing
distortions.
We will overcome these challenges by merging EMD with

MFCC, where rather than passing the raw speech signal into
theMFCC representation, we will first decompose the speech
signal into IMF basis representations, then we will perform
MFCC representations of each IMF basis as illustrated in
Figure 5. This can be shown to robustly estimate the formant
structures even in the presence of different speech signal
recording distortions and background noise environments.

FIGURE 5. Diagram of our proposed methodology characterising
EMD-MFCC features for formant detection.

There are existing works that have explored the develop-
ment of EMD methods to characterize formant structures,
see [40]. However, as explained in [5] they suffer from an
identification complication known as mode-mixing, which
is the inability to align formant structures and IMFs. This
occurs since these previous works apply the EMD method
to signals already based on stationary Fourier transforms
of the non-stationary speech signal. In our work, we avoid
the problem of mode-mixing by first performing the EMD
basis decomposition of the speech signal, then we study the
Mel Frequency Cepstral Coefficients (MFCCs) of each IMF
basis. In this way, we can align exactly the formants with
the ordering of the IMF bases represented through a second
stage MFCC family of coefficient functions. The MFCC acts
as a warped linear filter for each IMF expressed through
a functional coefficient in time and fixed local frequency
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selective basis. The resulting coefficients of the filter will be
non-linearly spaced in their spectral energy so that they can
be estimated to align with standing wave patterns of pitch and
harmonics of human speech formants.

We define the MFCC representation as follows, starting
from the base Mel-scale:

φ = 2595 log10

(
1+

ω̌

700

)
, (15)

where φ is the subjective pitch in Mels corresponding to
the original frequency ω̌ in Hz [41]. Let us consider the
k-th IMF γk (t) extracted from speech signal representation
s̃(t). Next, we provide a representation of the EMD-MFCC
characterisation we propose, followed by a brief numerically
stable approximation that also works well in practice.We first
pre-emphasise and Hamming-windowed, γk (t) to get γ ∗k (t)
to guard against issues of aliasing in discrete sample MFCC
representations of each IMF basis.

We then decimate the continuous signal γ ∗k (t) to a set of
Ts evaluated ‘‘sample’’ values in the local window frame.
We then obtain a discrete vector representation γ ∗k ={
γ ∗k

(
hω̌s
Ts

)}Ts−1
h=1

for ω̌s sampling frequency in Hz. Then per-
form the spectral transform of the k-th IMF representation γ ∗k
to obtain local Fourier representation 0∗k given by DFT as:

0∗k (h) =
Ts−1∑
n=0

γ ∗k (t) exp
(
−2πhnω̌s/Ts

)
(16)

The magnitude of spectrum
∣∣0∗k (h)∣∣ is then scaled in both

frequency and magnitude. The frequency is scaled through
convolution with a linear Mel filter bank H (h,m), a multi-
plicative transfer function in the frequency domain, and then
the logarithm of the result is taken to stretch or time-dilate the
resulting signal. The output of this process is a collection of
functional Mel Cepstral Coefficients for the k-th IMF given
in the frequency domain by,

Mk (m) = log10
( Ts−1∑
h=0

PM∗k (h)
)

= log10
( Ts−1∑
h=0

|0∗k (h)| · H (h,m)
)

(17)

for m = 1, 2, . . . ,M , where M is the number of Mel bases
used (or order of the filter bank). The Mel filter bank is a
sequence of triangular basis defined by the center frequencies
ω̌c(m) as follows:

H (h,m)

=



0 ω̌(h) < ω̌c(m− 1),
ω̌(h)− ω̌c(m− 1)
ω̌c(m) − ω̌c(m− 1)

ω̌c(m− 1) ≤ ω̌(h) < ω̌c(m),

ω̌(h)− ω̌c(m+ 1)
ω̌c(m)− ω̌c(m+ 1)

ω̌c(m) ≤ ω̌(h) < ω̌c(m+ 1),

0 ω̌(h) ≥ ω̌c(m+ 1),
(18)

which satisfies
∑M

m=1H (h,m) = 1. The center frequencies of
the basis are computed through equation (15) to approximate
the Mel scale. Afterwards, a fixed frequency resolution of the
Mel scale is computed, which is a logarithmic scaling of the
repetition frequency, obtained by1φ = (φmax −φmin)/(M +
1), where φmax and φmin are computed with equation (15) by
using ω̌max and ω̌min respectively and M is the number of
basis (filter banks). The center frequencies on the Mel scale
are given by φc(m) = m ·1φ for m = 1, 2, . . . ,M . In order
to obtain such center frequencies, the inverse of equation (15)
is used and then they are substituted in 18 to obtain the
Mel filter banks. The Mel Basis is illustrated in Figure 6 for
40 filter banks with a sampling frequency of 44.1 kHz giving
1102 samples, which is the one used in our real speech data
case study. Note that the higher is the frequency, the wider the
filter banks become.

FIGURE 6. The Mel filter bank structure for 40 filters. Each peak
represents the center frequency of the filters.

We then convert the frequency domain Mel Cepstral func-
tional coefficients back to the time domain via Discrete
Fourier transform, which simplifies to a simple Discrete
Cosine Transform (DCT) ofMk (m) to obtain:

mk (l) =
M∑
s=1

Mk (s) cos
[
l
π

M

(
s−

1
2

)]
(19)

for l = 1, 2, . . . ,M , where mk (l) is the l-th MFCC of the
k-th IMF.
Typical values forM in speech applications involve select-

ing the first 10-30 lowest center frequency cepstral coef-
ficients; we, therefore, used 12 coefficients (the lowest) to
model the individual speakers and the synthetic voice.

IV. CLASSES OF FEATURES TO REPRESENT SPEECH
SIGNALS
The first step in a classification task is to summarise the
underlying signals through feature extraction. The EMD
captures several non-stationary attributes of the considered
speech time-series through different spaces such as parameter
space, basis space, instantaneous frequencies. This section
aims to explain the representations we considered in ASV
speaker verification applications.

In the table 1 we provide a summary of the multiple
feature representations considered. The time mesh defined to
summarise the features is denoted by t ′i such that t ′i ∈ {0 =
t ′1, . . . , t

′
N = N }. In obtaining the IMF and instantaneous

frequency features, the EMD sifting process is performed
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TABLE 1. Sets of Speech features. Note that k = 1,2,3,K ,K + 1
represents the IMF index. Note that the Spline Coefficients are vectors
collecting the entire set of coefficients required to construct each IMF k.
The classical statistics are presented in section IV. Such features are
extracted over a window, and this procedure is explained in the text.

over each interpolated voice sample, and then 5 IMFs are
stored, which capture a range of high frequency and low
frequency structure: the first three with the highest number
of oscillations, the lowest oscillation count and the residual
with just one convexity sign. We will refer to such IMF basis
functions either as γ1(t ′), γ2(t ′), γ3(t ′), γK (t ′), γK+1(t ′) or as
IMF1, IMF2, IMF3, IMFK, IMFK+1. Note that for the sake
of our notation, we refer to the oscillation index defined in
equation 4 and, therefore, the index for the last IMF is K and
the index for the residual r(t ′) corresponds to K + 1.

In addition, instead of using the values of the EMDbasis on
a time mesh, one can also compress the feature representation
further by instead taking the model parameters that charac-
terise the IMF representation. In our work, these are given by
the cubic spline coefficients for each IMF. We also consid-
ered just basic classical statistics of the sampled IMF signal
over local sliding time windows of fixed length, denoted by
W
[
τ1, τj+1

]
. The considered classical statistics are, in order

from the top to the bottom of table 1, mean, variance, min-
imum, maximum, kurtosis, skewness, and root mean square
(RMS). We also extract such classical statistics for the instan-
taneous frequencies and the cubic spline coefficients.

Finally, we considered EMD-MFCC specialized speech
formant features, where we used 12 Mel Frequency Cep-
stral Coefficients to represent each IMF basis function.
Throughout the paper, we will refer to such features either
as EMD-MFCC or IMF-MFCC.

Each speech signal is first pre-emphasised with 0.97 pre-
emphasis factor. The signal is then segmented into frames
of 25ms with 50% overlap, meaning, for a sampling fre-
quency fs = 44.1 kHz, that the total number of samples in
each frame is Ns = 1102.5 (same size of the DFT defined
as Ts). Each frame is also Hamming-windowed, and then the
extracted coefficients are computed as detailed above. Note,
for each IMF, the 12 lowest coefficients were kept.

V. CLASSIFICATION FRAMEWORK: EMD-SUPPORT
VECTOR MACHINE
Support Vector Machine (SVM) is a method of super-
vised machine learning which allows for classification and

regression based on structural risk minimization, see [42].
The goal is determining a hyperplane of separation with
the maximum distance to the closest points of the identified
classes. These points are called Support Vectors. By consid-
ering a training set {(xi, yi)}Ni=1, a feature vector xi ∈ RD and
class labels yi ∈ {−1,+1}, the hyperplane of separation can
be defined as d(xi,w, b) = w · xi + b = 0, where w ∈ RD

represents theweight vector and b a scalar and the operation is
a dot product. The optimal hyperplane that separates data into
two classes is the one that minimises the following objective
function:[

1
n

n∑
i=1

max (0, 1− yi(w · xi − b))

]
+ λ‖w‖2. (20)

This corresponds to a quadratic optimisation problem and
can be solved in the parameter space with respect to w and
b. There are several solutions to solve this problem, such as
sub-gradient descent and coordinate descent methods. Start-
ing from this primal form of optimization we next introduce
slack variables where for all i ∈ {1, . . . , n}, the slack
variables ξi = max (0, 1− yi(w · xi − b)), measure the dis-
tance ξi between a point and its crossing of the margin. This
relaxation allows one to accommodate less than perfect linear
separation of training set data. The optimisation problem is
then given by:

minimize
1
n
C

n∑
i=1

ξi + λ‖w‖2 (21)

subject to yi(w · xi − b) ≥ 1 − xi and ξi ≥ 0, for all i.
Note that C is the trade-off factor, compromising between
the maximization of the margin and the minimization of the
misclassification error.

The primal problem is typically reformulated to as a dual
problem through a Lagrangian, and the solution is guaran-
teed if the Karush-Kuhn-Tucker conditions [43] are veri-
fied. By solving for the Lagrangian dual, the problem then
becomes:

maximize f (α1 . . . αn)

=

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiαi(xi · xj)yjαj (22)

subject to
∑n

i=1 αiyi = 0, and 0 ≤ αi ≤
1

2nλ for all i.
Since the dual maximization problem is a quadratic function
of the αi subject to linear constraints, it is efficiently solvable
by quadratic programming algorithms. Here, the variables αi
are defined such that w =

∑n
i=1 αiyixi. Moreover, αi = 0

exactly when xi lies on the correct side of the margin, and
0 < αi < (2nλ)−1 when xi lies on the margin’s boundary.
It follows that w can be written as a linear combination of the
support vectors. The offset, b, can be recovered by finding
an xi on the margin’s boundary and solving yi(w · xi − b) =
1 ⇐⇒ b = w · xi − yi. (Note that y

−1
i = yi since yi = ±1.)

The presented framework provides a linear classifier
assuming linear separability of the data which is, in practice,
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rare to observe. The solution tackling this problem is known
as kernel trick and extends such methods to non-linear set-
tings by projecting the feature data xi ∈ X (in Table 1) into
a transformed feature space through a non-linear map φ(xi)
which if selected adequately will provide close to perfect
linear separability. This map φ : X → H is called the feature
map, H is the transformed feature space. In most cases,
knowledge of this mapping is difficult to select explicitly to
achieve this objective, so instead it is common to utilise an
implicit solution to selecting thismapping by replacing it with
a kernel representation. Consider a kernel function defined on
the original feature space, k(xi, xj) = 〈φ(xi, 9), φ(xj, 9)〉H.
It is selected to satisfy that k : X × X → R and acts as an
inner product representation on the implicit Separable Hilbert
Space H and feature map φ : X → H such that ∀xi, xj ∈ X
we have k(·, ·) = 〈φn(xi), φn(xj)〉H. The classification vector
w in the transformed space satisfies w =

∑n
i=1 αiyiφ(xi)

where, the αi are obtained by solving the maximization prob-
lem with cost function f given as follows:

f (α1 . . . αn) =
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiαi〈φ(xi), φ(xj)〉yjαj

=

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiαik(xi, xj)yjαj (23)

subject to
∑n

i=1 αiyi = 0, and 0 ≤ αi ≤
1

2nλ for all i. The
coefficients αi can be solved for using quadratic program-
ming, as before. Again, we can find some index i such that
0 < αi < (2nλ)−1, so that φ(xi) lies on the boundary of the
margin in the transformed space. Finally, the optimal decision
function of a classifier is

z 7→ sgn(w · φ(z)− b) = sgn

([
n∑
i=1

αiyik(xi, z)

]
− b

)
,

(24)

producing non-linear classification decision boundaries
dependent on the kernel choice and kernel hyper-parameters.

A. FAMILIES OF KERNELS AND MULTI-KERNEL
COMBINATION
It is widely known in machine learning that kernel algebra
allows one to construct kernel functions in various means.
For instance through a sequence of composite maps, where
k(xi, xj) = k(〈φ̃n(xi), φ̃n(xj)〉H) is still a kernel when φ̃n(xi) =
(φn ◦ φn−1 ◦ · · · ◦ φ1) (xi). In this paper, this is analogous
to transforming the speech signal through multiple repre-
sentations such as IMF decomposition, followed by MFCC
characterisation. Alternatively, weighted linear combinations
of kernels will also produce a valid kernel. This would be
equivalent to combining feature maps, one from each IMF,
one from each instantaneous frequency signal, one from each
MFCC coefficient function, etc. This concept approach to
multiple feature combining has become known as multiple
kernel learning (MKL). The motivation behind these meth-
ods is the additional flexibility within the learning process

and the need for representing multiple, heterogeneous data
properties, see [22]).

In constructing such MKL frameworks, two main
approaches can be considered: a two-stage process which
learns first each kernel hyper-parameters and then secondly
learns the combining function/weights. The other method
jointly learns both the kernel hyper-parameters and the
combining function/weights. In practice, it is common to
encounter the use of a convex weighted combining rule

Kη(xi, xj) =
M∑
m=1

ηmKm(xmi , x
m
j ) (25)

with ηm ∈ [0,m] and η1 + . . .+ ηM = 1. Within such a con-
struction, each Km(xmi , x

m
j ) characterizes a distinct sub-set

of features of the data. It is then possible to interpret the
contribution of each individual component to the learning
process. The η coefficients can be interpreted to understand
which features are more relevant for discrimination. In order
to estimate such η weights, we adopt the approach of [44];
using the performance obtained by each kernel separately,
select

ηm =
πm − δ∑M

m=1(πm − δ)
(26)

where πm is the accuracy ofKm used individually and δ is the
threshold that should be less than or equal to the minimum
of the accuracies obtained from single-kernel learners. This
work explores six different kernels as outlined in Table 2.

TABLE 2. Kernel functions. Note: C cost or trade-off factor as given in
eqn. 21; α alpha or scale; r offset; d degree and ν order.

Successful SVMs are strictly dependent on the selected
hyperparameters of the kernel functions. Optimal selec-
tions can be made for performance measurements evaluated
through a cross-validation score of the training set. Several
methods are available to search for optimal hyperparame-
ters; the grid-search results tend to be the most numerically
stable and easy to implement. In this work we set hyperpa-
rameter regions as follows: C ∈ {2−2, 2−1, . . . , 26}, r ∈
{2−5, 2−4, . . . , 2−2}, d ∈ {1, 2, 3}, ν ∈ {1, 2}. Regarding
the grid for α, we adopted the kernlab package approach for
R, which uses the sigest function to obtain the grid range
for this parameter. The selected values for α corresponds
to a trimmed mean of its grid. The case study is imple-
mented with 2-fold cross-validation of the training set to tune
hyperparameters.
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VI. STATISTICAL PERSPECTIVE OF EMD-SVM FROM A
DECISION-THEORY VIEW
This section provides two different interpretations to statis-
tically interpret the Support Vector Machine: a loss function
regularised settings and a Bayesian binary decision frame-
work. Whilst this is known, we believe the reader should
benefit from such an interpretation and better understand the
proposed approach we adopted as part of our solution.

A. INTERPRETATION THROUGH REGULARISED LOSS
FUNCTION
The SVM has become an important method in classification
problems, yet it is often presented from an optimisation per-
spective. In this section, we provide a statistical perspective
based on [45] and [46]. Supervised learning algorithms, such
as the SVM, are given a set of training samples x1, . . . , xn
with labels y1, . . . , yn to predict Yn+1 given Xn+1. These
methods make use of a hypothesis f such that f (Xn+1) will
be an approximation of Yn+1. To achieve a reliable approx-
imation, a loss function `(y, z) is associated with the risk of
f measuring how different z is as a prediction of the true y.
We would then like to choose a hypothesis that minimises the
expected risk, defined as the expectation of the loss function:

ε(f ) = E [`(Yn+1, f (Xn+1))] (27)

In most cases, the risk ε(f ) cannot be obtained since the
joint distribution ofXn+1, Yn+1 is unknown. A common strat-
egy is choosing the hypothesis that minimizes an estimation
of ε(f ) via the empirical risk:

ε̂(f ) =
1
n

n∑
k=1

`(yk , f (xk )) (28)

Under certain assumptions about the sequence of random
variables Xk , yk (for example, that a finite Markov process
generates them), if the set of hypotheses is small enough,
the minimiser of the empirical risk will closely approximate
the minimiser of the expected risk as n grows large.
In order for the minimisation problem to have a well-

defined solution, we have to place constraints on the set H
of hypotheses. If H is a normed space (as is the case for
SVM), a particularly effective technique is to consider only
those hypotheses f for which ‖f ‖H < k . This is equivalent
to imposing a regularization penalty R(f ) = λk‖f ‖H, and
solving the new optimization problem given as:

min
f ∈F

ε̂(f )+R(f ) = min
f ∈F

1
n

n∑
k=1

`(yk , f (xk ))+ λk‖f ‖H (29)

where λ gives the degree of the penalization, F a deci-
sion function class, ` represents the considered loss function
and ‖f ‖H is usually referred to as regularisation functional.
Amongst other classifiers, we consider the large margin clas-
sifier Support Vector Machine, which uses the hinge loss,
or soft margin loss, defined as [1−yf (x)]+.

B. INTERPRETATION THROUGH BAYESIAN DECISION
PERSPECTIVE
A second statistical perspective on the SVM in the binary
classification context is to consider such classifier as the
solution to the classical binary hypothesis testing problem,
in which a realization x of the random variable X is observed
from an observation space X , such that X ∈ X . There are
two hypothesis labelledH0 andH1 defining a decision region
X1 ∈ X which rejects the null H0 in favour of H1 if and
only if X ∈ X1. The test could be alternatively formalized
through the binary value of φ(X ), where φ represents the
indicator function onX1. To interpret an SVM classifier as an
inference framework, we may consider a Bayesian setting in
which X follows a distribution π0 under H0 and π1 under H1.
The log-likelihood ratio is defined by the logarithm of the
Radon−Nykodim derivative as L = log(dπ1/dπ0). Given a
threshold c ∈ R, the log-likelihood ratio test (LRT) states H1
to be true if and only if L(X ) ≥ c. That meansX1 = {x ∈ X :
L(x) ≥ c} and, therefore, φ(x) = I(L(x) ≥ c). Such decision
rule (LRT) is taken into account since it reaches the minimum
probability of error, called Bayes error, and it represents the
best error rate that any classifier could achieve. An alternative
perspective, achieving perfect discrimination is via the SVM;
suppose there exists a set X1 such that X ∈ X1 under H1 and
X ∈ X c

1 otherwise. To obtain an effective test, assume a given
family of functions F ; a test is then sought among the class
of indicators φ(x) = I(f (x) ≥ c), with c scalar threshold.
As in [46], the next optimization problem is considered to
construct a test that is optimal over this class:

1∗ = max
f ∈F

inf
x1,x0

(f (x1)− f (x0)) (30)

where the infimum is over all training data {x1} observed
under H1 and {x0} observed under H0. If 1∗ > 0, then a
maximizer f ∗ will produce a test that perfectly discriminates.
In such cases, it is possible to conclude that for some c ∈ R:

f ∗(X )� c under H1 and f ∗(X )� c under H0 (31)

Such a criterion then finds its explanation in the LRT.
Suppose that perfect discrimination is possible; let us take any
pair of probability distribution π0 and π1 mutually singular
and model data assuming X ∼ πi under Hi. Then ( 31 ) is
satisfied by using the LRT:

L(X ) = +∞ under H1 and L(X ) = −∞ under H0 (32)

It is precisely in this way, that the SVM optimisation
problem can be enclosedwithin a statistical inference context.
Looking at SVM from this perspective is particularly help-

ful for classifier evaluations; this paper tries to differentiate
between synthetic and real voices by setting up a binary
classification that exploits several features. In binary classi-
fication problems, such as ours, assessing the ability of the
classifier (SVM) is commonly done through the contingency
table or confusion matrix. Such a table is built by comparing
the true values of the two classes (previously obtained by
labelling data as positive and negative values) and the pre-
dicted one computed by the classifier.
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VII. EXPERIMENTAL SET-UP
There are three classes of experiments shown in table 4 that
foresee the use of three datasets, which are described in
table 3. We introduce the three datasets, and then the different
types of experiments are presented.
We first focus on datasets one and two since they consider
two specific classes of sentences, respectively. We highlight
the use of these two sets to test our novel methodology within
a text-dependent and a speaker-dependent verification system
(TD-SD-SV) relevant to ASV challenges characterised by
these conditions. The first dataset involves a set of sentences
constructed to be challenging and reflect a real ASV setting in
which sentences are not phonetically balanced. We obtained
them from the first text (Inferno) that makes up Dante
Alighieri ‘‘The Divine Comedy’’. The second dataset is a
reference set based on the IEEE Recommended Practices for
Speech Quality Measurements, as described in [47], exten-
sively used in speech analysis testing of speaker verification.
It sets out seventy-two lists of ten phrases described as the
1965 Revised List of Phonetically Balanced Sentences, oth-
erwise known as the ‘Harvard Sentences’. These are widely
used in telecommunications, speech, and acoustics research,
where standardised and repeatable speech sequences are
needed.

TABLE 3. Description of the datasets employed throughout the various
sets of experiments. The number of utterances for each speaker is
balanced across each dataset. For example, in dataset one, training set,
there are 800 utterances; given that the number of speakers is 8, this
means 100 utterances per speaker. This is valid for every other set. For
the classification tasks, gender has been taken into account. Hence,
the speakers have been divided between male and female voices. The
considered methodology aims to detect the energy concentration of the
formant structure, which heavily differs amongst these two categories.
Each dataset is further described within the text. The procedure applied
to extract a subset of the ASVspoof 2019 challenge dataset is presented
in VII-C.

In both datasets, two real-language sources were used
from a female (speaker 1) and a male (speaker 2); for the
synthetic speech, five correspondent sources (T1, T2, T3,
T4, T5 described in table 10) were employed for the female
case and one source (T1) for the male one. The synthetic
speech voices of all TTS algorithms were selected to have
an English accent. The voice recordings were sampled at
44.1kHz without significant channel or background noise to
develop a text-dependent scenario relevant for speaker veri-
fication tasks [48]. Recording environments of both training
and testing voice samples were identical to avoid mismatched
conditions (see [13], and [48]). Common sentences were used
for each speaker and the synthetic voice.

Note that no recording laboratory or specialised microphone
was used, and the utterances were recorded in noisy, reverber-
ant environments. This is particularly relevant since it sets up
the setting for adverse environments commonly encountered
in ASV challenges. Therefore, the obtained results will carry
the added feature of robustness to these kinds of speech
settings.

The duration of each sentence speech recording was
approximately 15sec to 1min maximum producing between
661k and 2,646k samples per spoken sentence. The start and
end of each sample were trimmed to remove any non-speech
segments and decimated to a set of 60k total samples. Regard-
ing the IMFs extraction procedure, each set of 60k samples
for one sentence was then windowed into non-overlapping
collections of 5,000 samples and passed to the EMD sifting
procedure. Afterwards, the features presented in Table 1 were
extracted. We note that in some cases, we found that for
high-frequency instantaneous frequency features, it would be
advantageous also to apply a median filter (we used a window
of 2ms).

In the first dataset, the total number of recorded sentences
was 960, equally proportioned samples of the same sentences
across all voice recordings, with 80% randomly selected
for training and the rest for testing. In the second dataset,
we use the first sentence from each of the seventy-two lists of
the Harvard Sentences to construct the training dataset. The
testing dataset was given by the second sentence from each
of the seventy-two lists of the Harvard Sentences. This led
to 1,152 utterances split equally between training and testing
sets.

The third dataset corresponds to a subset of the
ASVspoof 2019 challenge database described in [55].
Details on the extracted sets of sentences are given in
subsection VII-C.We underline the importance of the settings
provided by this dataset: they will tackle text-independent
and speaker-independent verification systems (TI-SI-SV) to
test our novel methodology in the most general environment
encountered in ASV challenges.

Table 4 presents the set of experiments considered. With
experiment one, we firstly present a discussion showing
how the EMD-MFCC approach provides more powerful
discrimination in detecting individual vocal tracts required
in ASV systems compared to other sets of EMD fea-
tures (IMFs, IFs, Spline Coefficients, etc.). We also pro-
vide the benchmark model comparison of the traditional
MFCC extraction on the raw speech signals presented in
table 6. Furthermore, given the wide variety of features
often employed in Speaker Verification or Speaker Recogni-
tion tasks (see [56]), we also propose additional benchmark
features applied both on the raw data and on the IMFs.
Table 5 provides a detailed description of such features, with
the used configuration and references required for further
understanding. Results of these features run on the IMFs are
provided in table 7. We discuss results for the individual
speech features and then introduce the EMD-MFCC-MKL
framework.

136842 VOLUME 9, 2021



M. Campi et al.: Machine Learning Mitigants for Speech Based Cyber Risk

TABLE 4. Table describing the three experiments conducted. Note that, in experiment one, both dataset one and dataset two are employed. Note that all
the proposed sets of features have been extracted on dataset one and are widely discussed. For the second dataset, the MFCCs on the raw data and the
EMD-MFCCs for the female voice only were considered. In experiment two, both datasets are used, and the MFCCs on the raw data and the IMFs basis
functions are employed to assess the discrimination power of the EMD-MFCC-MKL-SVM in detecting different types of TTS algorithms. Experiment three
provides results for the EMD-MFCC-MKL-SVM applied to a subset of the ASVspoof 2019 challenge dataset considering both the male and the female cases
and multiple TTS algorithms. Details are provided within each section related to the different experiments.

TABLE 5. Table describing the selected benchmark ASV features extracted on the raw data and the IMFs for dataset 1. Note that results for the raw data
are provided in table 6. The results of the IMFs are provided in table 7. The number of retained coefficients for every feature is 12. The pre-emphasis used
for each feature corresponds to 0.97. When cepstral coefficients are computed, a window of 1024 samples is the length of the FFT, with an overlap
of 128 samples, and hamming window is the one applied. Note that all the filters are filterbanks type except for the LPCs and the LPCCS. In these cases,
no FFT and, hence, frequency magnitude is passed through the filter. Instead, after the preliminary phase, including pre-emphasis, framing and
windowing, a digital all-pole filter is taken into account, and the autocorrelation method is employed to estimate the LPCs. For the LPCCs, a further step is
taken to compute the cepstral coefficients directly from the LPCs in a recursive fashion. The reader might refer to [12] and [54] for a more detailed
description of such a procedure and the presented features. This is the conventional procedure also applied to PLPs and RPLPs; the last column of these
two features shows LP + Cep. Analysis indeed, precisely referring to this process.

Experiment two focuses on a different aspect often faced
by ASV systems: the different TTS algorithms. Several tech-
niques produce a spoofing attack: impersonation, synthetic
speech or TTS, voice conversion, and replay. In this work,
we only consider TTS spoofing attacks. As highlighted in
their work, [57] explains how TTS algorithms can nowa-
days produce high-quality voice through several kinds of
methods as concatenative TTS unit selection [58], statisti-
cal parametric TTS [59], formant synthesis [60] and Deep
Learning-based procedures (see [61]–[64]). Each of these
procedures carries specific pros and cons, highlighted in
Figure 12. Note that [57] also suggest the hybrid approach
as presented in [65]. We select the best performing features
for dataset one and dataset two for the female voice only
obtained in Experiment one and repeat a similar exercise
by considering the different TTS algorithms presented in
table 10. We show the best performance and provide the
additional results within the Supplement Materials.

Experiment three runs the EMD-MFCC-MKL solu-
tion for ASV systems on a selected subset of the
ASVspoof 2019 challenge dataset. In this way,

a text-independent and speaker-independent environment is
tested. Results will be presented for a range of different TTS
algorithms and male and female voices. We focus on the best
performing cases and present the additional results in the
Supplement Materials.

In each experiment, we focus on presenting key aspects of
the out-of-sample analysis that represent the most challeng-
ing cases for assessing our proposed EMD-MFCCmethodol-
ogy. All additional results are provided in the Supplement
Materials, all code and data sets, including user guides,
are provided at https://github.com/mcampi111/Speech-
Experiment.

A. EXPERIMENT ONE: BIOMETRIC CYBER RISK
MITIGATION VIA SYNTHETIC VS REAL VOICE
DISCRIMINATION
Throughout these sections, we focus on the female voice
examples to present the results. We found they generally
presented the more challenging task in TD-SD-SV scenarios
given the wider variation in spectral energy in the speech
signals and higher non-stationary generally present in the
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formant structures in the 5kHz to 20kHz range. Note that
results for the individual SVMs of the male voice are pre-
sented in the Supplement Materials.

We start by assessing the ability of the benchmark ASV
features in the classification of real and synthetic voices.
We extract such features for the female voice versus the
synthetic voice generated with TTS algorithm T1 for dataset
one. This is done firstly on the raw speech data, and then
the features are extracted not on the raw speech but rather
on the IMF basis function representations of the speech. It is
this combined EMD-feature representation that we advocate
as a framework able to significantly enhance the discrimina-
tory power of each of the familiar spectral, temporal speech
features. We show that performances are improved univer-
sally by adopting our proposed approach of EMD-features
compared to just features on raw speech. Indeed, apply-
ing gold standard (Short-Time Scale Discrete Fourier Trans-
form) ST-DFT based feature on the EMD functions produces
greater discriminatory power since the EMD non-stationary
bases are better adapted to the speech recording environment
and the non-stationary nature of the speech signal. Amongst
the selected benchmark ASV features, we show that MFCCs
are the best performing and select those to construct our new
methodology combining EMD-MFCCs. We provide further
evidence showing how this method better captures the for-
mant structure of a given speaker through spectrograms and
other plots below presented.

Hence, the baseline reference to our proposed methodol-
ogy will be the benchmark ASV features and, in particular,
the MFCCS constructed from the raw speech data. This con-
trasts with our proposed methodology of first extracting the
IMF bases and applying MFCC to each IMF to produce more
significant discrimination. We argue that the non-stationarity
of higher frequency components in speech is more pro-
nounced than lower-frequency components. Consequently,
low-frequency bandwidths should be more comparable in
terms of relative performances between MFCCs and EMD-
MFCC features. At these frequencies, the fundamental fre-
quency F0 more closely reflects a stationary component, and,
therefore, MFCCs should be equally performing over either
method. The majority of the difference is expected at higher
frequencies, where it is more likely that non-stationarity
will be non-uniformly distributed. We highlight that, in this
first experiment, the setting foresees a text-dependent and a
speaker-dependent scenario. Hence, only one speaker at a
time is considered for the classification task, and speakers
are making use of the same sentences. This is highly relevant
since when multiple speakers and utterances are considered,
the expected results will change. This will be presented in
experiment three.

SVM WITH SPEECH BENCHMARK ASV FEATURES
We first set up the results for the benchmark comparison,
which is based on applying the benchmark ASV features to
the raw speech signal. Table 6 presents the results. Note that,
for this task, we focus on the female voice discrimination

task with TTS algorithm T1 for dataset one. The configu-
ration applied to obtain such coefficients are presented in
table 5. We performed one SVM per individual coefficient.
We selectedM = 12 as is the standard recommendation when
utilizing these features in speech analysis. We present results
for the radial basis function kernel. Other kernels have been
employed and produced similar results.

The features are divided into cepstral coefficients or linear
prediction coefficients, and they use various filter banks when
the former are considered, or different transforms are applied
once the linear prediction coefficients are obtained when it
comes to the latter ones. These variants find their roots within
different purposes. MFCCs, for example, try to capture for-
mants by mimicking the human cochlear auditory capacity;
the LFCCs are a similar feature, making use of a linear
filter bank rather than the mel-filter bank to obtain a higher
frequency resolution at high frequency [66]. BFCCs repre-
sents an alternative to MFCCs [67] whose filter banks should
replicate the basilar membrane placed inside the cochlea that
contains sensory receptors for hearing and performs spectral
analysis for speech intelligibility perception. GFCCs [68]
make use of the Gammatone filter bank for their cepstral
analysis and model physiological changes in the inner ear and
external, middle ear. IMFCCs consider the inverted-mel-filter
bank and give a high-frequency resolution to low frequencies
rather than high frequencies. We also consider MSRCCs
and PSRCCs proposed in [19] whose final goal is to model
the human auditory system by the functional relationship
between the onset firing rate of auditory neurons and sound
pressure level. The former ones capture information about
the magnitude spectrum while the latter ones about the phase
spectrum. The NGCCs [20] use a Normalized Gammachirp
filter bank and incorporates the properties of the peripheral
auditory system aimed to improve robustness in noisy speech
settings. We then propose linear prediction coefficients and
variations as the LPCCs, the PLPs and the RPLPs. These
features rely on the stationarity of the underlying system,
and even framing the speech signal into batches at which it
turns stationary does not tackle the issue, especially when
adverse environments are present. The highest accuracy is
achieved by the NGCCs and the PLPs with an accuracy
score of 0.850. Next, we perform an equivalent procedure
and extract these features on the IMF basis functions of the
correspondent dataset. Results are in table 7. Our proposed
methodology relies on this new approach for which, instead
of the raw speech, each IMF basis is passed one by one
through an individual transformation of the selected features
(i.e. MFCCs, LFCCs, BFCCs, etc.) to form adaptive features
for the classification of real and synthetic voice. The standard
practice of classification problems for this kind of setting
is constructing a vector collecting all the coefficients for
the feature of interest or multiple features and then carry-
ing the learning procedure. Since voice is highly biometric,
highly non-stationary and adverse environments might arise,
such standard procedures tend to create noise in the classi-
fication tasks rather than provide discriminant information.
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Therefore, our idea is to partition the time-frequency plane
through a non-stationary and non-linear decomposition
method and quantify energy generated by the formant struc-
ture. Furthermore, depending on the targeted task, i.e. TD-
SD-SV or TI-SI-SV, the discriminant areas might differ given
the use of the same utterances or not or the presence of
multiple speakers or not or the consideration of gender.
We observe that all features (except for the LPCs and the
PSRCCs) achieve higher accuracy scores on the IMFs, par-
ticularly on the highest bases as IMF1 or IMF2, suggesting
higher formants of the female speaker voices in a TD-SD-SV
environment should provide most of the discriminant power.
The MFCCs and the IMFCCs gave the highest accuracy
scores. Given these performances, their interpretability and
their wide use within SV tasks, we selected the MFCCs
to construct new features combined with the EMD. Hence,
we focus on the individual speech features MFCCs extracted
on the IMFs and further discuss them in the following sec-
tions. They will be used to construct the EMD-MFCC MKL.
Before that, we firstly provide further evidence to show how
the EMD-MFCCs better capture formant structures compared
to standard MFCCs on the raw speech data.

FORMANT DETECTION FOR REAL AND SYNTHETIC VOICE
In Figure 7 we demonstrate the wide-band spectrograms,
which are plotted to visualise the formant structure of a given
speech signal. The four panels represent the same sentence for
Speaker 1, Speaker 2, and the female synthetic voice and the
male synthetic voice. Each spectrogram has been performed
on a window of 1024 samples (corresponding approximately
to 23 milliseconds), with an overlap of 128 samples, the same
pre-emphasis factor and windowing applied for the MFCCs
(0.97 and hamming window), a dynamic range of 50dB and
frequency range set of 0-10 kHz so that five formants should
be visible (one at around each 1 kHz spaced carrier fre-
quency). In [24] it is noted that the first five formants are the
ones necessary for speaker verification. Black lines highlight
the five detected formants over time in each sub-figure, which
line up with the EMD decomposed IMFs after transformation
to IFs.

The top panel corresponds to the female speaker. The first
four formants are within 0-5 kHz. This confirms that female
speakers tend to have higher formant frequencies due to
smaller vocal tracts (see [38]) and a higher fundamental fre-
quency F0 compared to males. The second panel shows five
formants in the interval 0-5 kHz, typical for a male voice. Fur-
thermore, a lower fundamental frequency generates a smaller
interval between voice harmonics resulting in a strength-
ened formants definition. This shows that for male voice
EMD decomposition versus female voice, the IMFs obtained
will have energy concentration in different spectrum regions.
Consequently, the resulting EMD-MFCC coefficients, if the
Mel Cepstrum bases are kept constant in both cases, will have
the coefficients for lower order IMFs being more influential
than higher order IMFs. The opposite will be valid for the
female voice. Note how the first two spectrograms show

FIGURE 7. Spectrograms of the same sentence for Speaker 1 (top panel),
Speaker 2 (second panel), the synthetic female voice (third panel) and the
synthetic male voice (bottom panel). Black lines represent formants
aimed to be detected by the IMF-Mel Cepstral basis representations.
Colour scale in dB.

how human voices enunciate individual words much more
than the last two spectrograms, where the separation between
them seems dissipated. Furthermore, the formant structures
referring to female voices (the first and the third plots) appear
to behave much more alike than those characterising the male
voices (the second and the fourth plots). This fact strongly
depends on the synthetic voice generation algorithm, which
will spread energy across a significant range of frequencies
even by synthesising a male voice. Such a fact will result in
a less challenging task for detecting synthetic and real male
voices than the female case, and it justifies our choice to focus
on the female case.

Next, to illustrate the EMD-MFCCmethod versus the clas-
sical MFCC on the raw speech, we selected a sentence ran-
domly from the real female voice recordings, and we present
the speech signal in the time domain and the spectrogram
in Figure 8.

Then we plot the results of the PM∗k (h) = |0
∗
k (h)| ·H (h,m)

which are the PSD weighted Mel Cepstral bases for indexes
m ∈ {1, . . . , 12} in Figure 9. We compare the classical situ-
ation in which one applies the MFCC directly to the speech
signal (Figure 9, panel a) to the cases in which the MFCC
are instead applied to each IMF individually, precisely the
first three IMFs (Figure 9, panels b,c,d). In each case, we do
this over the entire time interval of the recording, followed by
a sequence of local MFCC applications on 200ms windows
with no overlap. This demonstrates that the resulting MFCC
summary features captured byPM∗k (h) applied to the raw data
signal are not overly responsive, although, in adjacent 200ms
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FIGURE 8. The top panel show one of the original sentences considered
for Speaker 1; the bottom panel presents its related spectrogram. Colour
scale in dB. The sentence corresponds to ‘‘When halfway through the
journey of our life.’’

windows, there are significant differences in the spectrogram
energy signatures, as also demonstrated in Figure 8.

Following this discussion, our proposed methodology con-
siders the EMD decomposition followed by the MFCC. The
MFCC decomposition is performed under the same set-up for
each IMF basis extracted, first for the entire IMF signal, then
on successive 200ms windows. We see from this analysis that
since the IMF-MFCC features adapt to local non-stationarity
better than the ST-DFTMFCC analysis, we can more respon-
sively capture the energy variation in bands of the formants
to a greater degree. In the subsequent classification of the
biometric speech attack analysis, we will demonstrate that
this leads to demonstrably better performance in our proposed
method over state of the art methods.

Figure 10 further presents the MFCCM(s) coefficients of
the original signal and the EMD-MFCC Mk (s) coefficients
for each IMF (see Eqn. 17). The entire time-domain signal
is split into 200ms windows. We illustrate the coefficient
weight function variation of the MFCC and, importantly, its
improved responsivity and selectivity for formants based on
the IMF-MFCC framework we propose.

In Figure 11, we explore the IMF-MFCC discrimina-
tory potential of features between real and synthetic voice
via application of the t-SNE projection method, see details
in [69]. The details of the t-SNE technique and how we
utilised this method for our case analysis are summarised in
the SupplementMaterials. The plots demonstrate the discrim-
inatory power of the IMF-MFCC coefficient representations
when applied on local windows of length 50ms, producing
features vectors in dimension d = 1068, after decimation for
dimension reduction. One can see that there is evident poten-
tial for these IMF-MFCC features to have strong discrimina-
tory power in all IMFs for the male case and hin several IMFs
for female ones. As expected, the female lower frequency
IMF-MFCC features have less discriminatory power than the
higher frequency signatures, and the IMF-MFCC captures
this clearly in all sentences as discriminatory between the
real and synthetic voice. This indicates that the IMF-MFCC
should act very well as spectral signatures to capture an

individual’s particular vocal tract structure and therefore have
a solid performance to mitigate attacks from the synthetic
voice.

SVM-SPEECH FEATURE LIBRARY CONSTRUCTION:
CLASSIFICATION PERFORMANCE FOR INDIVIDUAL SPEECH
FEATURES
Note that we focus on the female voice examples to present
the results and provide similar results for the male voice in
the supplementary appendix. In table 6, we see that applying
MFCC to raw speech produces an accuracy of discrimina-
tion between real female voice and synthetic female attack
spoofed voices, out of sample for the same sentences, which
did not exceed 77.5%. This type of accuracy score is often not
acceptable for real-world applications where sensitive private
data is seeking to be accessed via voice biometrics.

The benchmarkMFCCs on raw speech is further compared
to two sets of features individually trained and tested. The
first set corresponds to summary statistics obtained from
the EMD applied to the raw speech signal. This produces
the summary statistics of the IMF bases, the Instantaneous
Frequency signals and the spline coefficients that characterize
the IMF bases. We summarize these three signals using the
summary statistics described in Table 1. These results are
in Tables 1 and 2 in the Supplement Materials and demon-
strate the out-of-sample classification results for dataset one
for Speaker 1 versus synthetic voice attacker and Speaker 2
versus synthetic voice attacker.

We performed one SVM training and then out-of-sample
testing per feature component, where, for instance, we took
each sentence and then took each IMF. After, given each
IMF, we extracted summary statistics and then ran the SVM
training and out-of-sample testing for various kernel families.
This allows building a library of individual features and their
performance in the real vs synthetic voice discrimination over
the voice recordings database. It forms the basis for the mul-
tiple kernel learning framework that ultimately creates our
proposed EMD-MFCC multi-kernel classification solution.
We bold all performances greater than 90% accuracy when
presenting the results, which is a realistic minimum accu-
racy required for many real-world biometric applications.
In general, we observe individual features from the summary
statistics of the IMFs and IFs (for a range of kernel choices)
outperforming the standard comparison of MFCC applied to
raw speech in both in-sample out-of-sample analyses. This
indicates that the approach we advocate for constructing
IMF-MFCC rather than just MFCC on raw speech signals
will outperform the current standard approach in this type of
cyber mitigation ASV classification context.

The second set of features is obtained from an EMD
applied to speech to get IMF bases, then the MFCCs are
extracted from each IMF. This is our newly proposedmethod-
ology which utilized EMD-MFCC. Table 6 shows the out-of-
sample results for the EMD-MFCCs of the female voice for
dataset one, and table 3 in the Supplement Materials presents
the correspondent results for the male voice. The results are
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FIGURE 9. This Figure shows four panels. By looking at panel (a), seven subplots can be found. The
first and biggest subplot represents the PM∗ component of the MFCC decomposition presented in
Eqn. 17 for one of the original speech signals of Speaker 1 (the female voice). We afterwards extract
the same quantity over batches of t as shown in the subfigures below such biggest plot. Panel (b),
(c) and (d) take instead into account the correspondent PM∗1 , PM∗2 and PM∗3 components of the MFCC
decomposition of γ1(t), γ2(t) and γ3(t), i.e. the first, the second and the third IMFs respectively of the
original speech signal considered in panel (a). The time unit of the batches is in ms, and the frequency
on the x-axis is in Hz. The y-axes of PM∗1 , PM∗2 and PM∗3 differ from the y-axis of PM∗ since the IMFs
do not include the residual or tendency.

presented for the radial basis function kernel choice, and
the remaining results for other kernel choices are similar in
performance, so we omit them to reduce space. The way to

interpret these results is as part of a stage of constructing a
library of individual feature sets to pass to a multiple-kernel
learning solution.
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FIGURE 10. The panels represent the coefficient functions Mk (s) given in Eqn. 17 computed on a sliding
window for one sentence of Speaker 1. Note that panel (a) refers to the original signal, and the
correspondent quantity is denoted as M(s) with no sub-index. We split the sentence 200ms windows and
calculated M(s) for every window. We then repeated the procedure on the IMFs basis of the same
sentence of Speaker 1 and showed the results in the remaining panels obtaining M1(s), M2(s), M3(s),
MK (s) and MK+1(s). Remark that K is the last IMF and, in this specific case, equals 14 and K + 1
corresponds to the residual. The different colours denote the associated window over which the extraction
has occurred. Remark that the x-axes differ amongst the panels since the IMFs do not take into account
the residual.

EMD-MFCC MULTI KERNEL LEARNING SVM PERFORMANCE
We now present our proposed solution by combining the
selection of the best-performing features from the EMD
along with the EMD-MFCC SVM feature libraries we have
constructed for various kernel choices and individual fea-
tures above described (note that the results for the individual
features are within the Supplement Material). We achieved
the combination through the Multi Kernel Learning (MKL)
introduced in V-A. By being the best performing within the
individual features studies, the EMD-MFCCs are selected
in this task and demonstrated for the female case as the
most challenging. Each of these chosen features (individually
trained in previous experiments) will be combined according
to eqn. 26. The procedure consists of selecting the best kernel

amongst the best feature for each feature. As a consequence,
our final combined kernel should be more representative
of the classification problem. Table 8 displays results for
Speaker 1 out-of-sample performance for dataset 1. Since
we select the best performing EMD-MFCC features amongst
several kernels, the header of table 8 is organised as fol-
lows: the top row shows which is the basis of interest, i.e.
γ1(t ′), γ2(t ′), γ3(t ′), γK (t ′) and γK+1(t ′). The index following
MFCC- gives this information. The second row highlights
the best individually performing coefficient and, therefore,
the one selected for theMKL formulation. The last row shows
which kernel offers the best performance for that feature; for
example, for column one of the table, for the first IMF γ1(t ′)
(MFCC-1), the best performing coefficient was the 7-th one
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FIGURE 11. Results of t-SNE for the MFCCs of Speaker 1 (top panels) and Speaker 2 (bottom panels).
Note that the t-SNE algorithm is presented in the Supplement Materials. For each speaker, five sub-plots
are provided related to each IMF taken into account. A PCA step was applied to reduce the initial data
dimensionality, 90% of explained variation was retained. The axes represent the two dimensions
identified by the t-SNE algorithm denoted as X̄1 and X̄2.

when a Laplace kernel was used. The rest of the columns can
be interpreted equivalently. We then put the header referring
to the weights ηm for m = 1, . . . , 5. Each row represents
a new model and shows the weights ηm defined in eqn. 26,
which are associated with features given at the head of the
table. When considered individually, they reflect their out-
of-sample performances and, therefore, reflect which feature
provides more significant discrimination. Thus, the rows pro-
vide the new models’ characterisation obtained through the

combination rule given in eqn. 25 with related performance
in the last column provided by the accuracy score. Note that
performances are ordered according to the level of accuracy
achieved.

Perfect discrimination is achieved when the MFCCs of
γ1(t ′) or γ2(t ′) are included within the combined kernel. Such
findings reinforce the initial analysis of the t-SNE thatmost of
the discrimination between a real female voice and a synthetic
female voice lies in the high-frequencyMFCC coefficients of
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TABLE 6. Out-of-sample results of the SVMs carried with the standard features used in ASV tasks applied to the raw data. The features description is
given in table 5. Equivalent results for these features applied to the IMFs are provided in table 7. Note that each value corresponds to the accuracy
achieved by the SVM carried with the coefficient given in the row of the feature given in the column.

the first IMF. Indeed, the selected coefficients for this case
corresponds to the 7-th. Different combinations have been
tried, and similar excellent performance was observed. These
results are far higher than those of the current state-of-the-art
reference of MFCC applied to raw speech when also placed
in an MKL-SVM framework. This demonstrates the superior
performance of the IMF-MFCC feature class when combined
with an MKL-SVM classifier framework. Note that each
EMD-MFCC-MKL table will follow the structure described
in this section. Note that the individual performances related
to the MFCCs on the raw speech signals are not presented for
other datasets.

HARVARD PHONETICALLY BALANCED SENTENCES EXAMPLE:
REAL SPEECH VS SYNTHETIC SPEECH CLASSIFICATION
As performed for dataset one, a similar analysis was con-
firmed by dataset two on the gold standard speech data
set given by the Harvard phonetically balanced sentences.
Table 9 shows results related to Speaker 1, hence the female
discrimination case study (as per the above study one).
We provide a summary of the EMD-MFCC features only and
MKL-SVM classifier compared to the MFCC on raw speech
in an MKL-SVM classifier. In this example, we utilised a
Radial basis function kernel, and the feature set was based
upon the EMD-MFCCs that best performed in individual
feature classifiers in the out-of-sample analysis.

B. EXPERIMENT TWO: OTHER TTS ALGORITHMS
In this subsection, we replicate the EMD-MFCC-MKL
conducted in experiment one by taking into account
different Text-To-Speech (TTS) algorithms, presented
in Table 10. Note that we replicate the experiment for
the female voice only but both dataset one and dataset
two. The first TTS algorithm corresponds to the interface
of the Google-Text-to-Speech API interface provided by
the Python library gTTS. It relies on WaveNet [62] and

hence uses a Deep Learning procedure. It offers 120 lan-
guages and dialects (see https://cloud.google.com/speech-to-
text/docs/languages). The second TTS algorithm corresponds
to Espeak (online at http://espeak.sourceforge.net/) that
instead employs a formant synthesis procedure. It also pro-
vides several languages (the complete list is given online).
Afterwards, we use the Python library Pyttsx, a cross-
platform text-to-speech wrapper providing access to different
TTS tools. Amongst others, we select the Microsoft Speech
Engine SAPI5 (online at https://docs.microsoft.com/en-
us/previous-versions/windows/desktop/ms723627(v=vs.85)),
making use of a concatenative algorithm. The last TTS
algorithm is the IBM Watson TTS (whose documentation
can be found online at https://cloud.ibm.com/docs/text-to-
speech), which also provides access to its API through a
Python interface and relies on neural voice technologies,
hence making use of Deep Neural Network (DNN). The TTS
service is in the IBM Watson Cloud and supports a large
number of languages, from which we selected the option of
UK English.

As in experiment one, we firstly carry out individual fea-
ture SVMs, hence one for each mel-frequency cepstral coef-
ficient of the obtained IMFs. Results concerning these SVMs
are provided in the Supplement Materials in tables 4 and 5
for dataset one and tables 6 and 7 for dataset two. We then
selected the best performing cepstral coefficients per IMF
basis function and then carried out the EMD-MFCC-MKL
procedure as presented in experiment one. Results for the
IBM TTS algorithm are provided in tables 11 and 12
for dataset one and dataset two, respectively. Results for
the remaining algorithms are in Supplement Materials in
tables 8, 9, 10 and 11. As in the previous experiments,
the best performing MFCCs for the first three IMFs are
high-frequency ones confirming our initial claim that most
of the discrimination power for female voices should come
from these regions of the time-frequency plane. Furthermore,
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TABLE 7. Out-of-sample results of the SVMs carried with the standard features used in ASV tasks applied to the IMFs. The features description is given in
table 5. Results for these features applied to the raw data are provided in table 6. Note that each value corresponds to the accuracy achieved by the SVM
carried with the coefficient given in the row of the IMF basis in the column referring to the feature provided.

the achieved accuracy levels are consistent with experiment
one across both datasets and all the TTS algorithms, with
the EMD-MFCCs outperforming the traditional MFCCs on
the raw data in each case study. This highlights that the
EMD-MFCC-MKL within a TD-SD-SV system is robust to
different types of TTS spoofing attacks. Tables 11 and 12
show that when using the combination of five and four EMD-
MFFCs features, a level of accuracy greater than 90% is
attained, hence providing the necessary countermeasure for
an ASV system.

C. EXPERIMENT THREE: APPLICATION ON THE
ASVspoof 2019 CHALLENGE DATASET
One of the biggest problems affecting ASV studies is
the comparison of various techniques evaluated over

different datasets. As a result, since 2015, the research
community [70]–[73] has started to release evaluation
databases as SAS, ASVspoof 2015, ASVspoof 2017,
ASVspoof 2019 challenge, AVspoof, RedDots Replayed
databases. Consistently with these purposes, we investigate
the new technique combining EMD-MFCCs by employing
the ASVspoof 2019 challenge database [55]. Table 13 (also
at https://www.asvspoof.org/asvspoof2019/asvspoof2019_
evaluation_plan.pdf) describes the structure of such a dataset.
It subdivides into two different scenarios: logical access (LA)
and physical access (PA). The former involves spoofing
attacks directly injected into the ASV system. Such attacks
are generated using text-to-speech synthesis (TTS) and voice
conversion (VC) technologies. In the PA scenario, speech
is assumed to be captured by a microphone in a physi-
cal, reverberant space. Hence, replay spoofing attacks are
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FIGURE 12. Pros and Cons of TTS algorithms.

irecordings of bonafide speech assumed to be captured and
then represented to the microphone of an ASV system using
a replay device. In this work, we only take into account the
Logical Access scenario to target the TTS algorithms used
within this database. The LA database contains bonafide
speech and spoofed speech data obtained using 17 dif-
ferent TTS and VC systems. Figure 13 shows its spoof-
ing attacks structure and the ones we extracted for our
experiments. Note that data for the training of TTS and
VC systems partly comes from the VCKT database (online
at http://dx.doi.org/10.7488/ds/1994), but there is no overlap
with the data contained in the 2019 database. Among the
17 spoofing voice generation systems, 6 are known attacks,
while 11 are unknown. The training and development sets
contain known attacks only, while the evaluation set con-
tains 2 known and 11 unknown spoofing attacks. Regarding
the 6 known attacks, there are 2 VC systems and 4 TTS
systems. Particularly, VC systems use neural-network-based
and spectral-filtering-based approaches [74]. TTS use either
waveform concatenation or neural-network-based speech
synthesis using a conventional source-filter vocoder [75] or
a WaveNet-based vocoder [62]. We extract three of the TTS
spoofing attacks for the training and development sets.

The generation algorithms for the spoof voices fall into
either Deep Learning or Concatenative types and can be

FIGURE 13. Extracted spoofing attacks for experiment three from the
ASVSpoof 2019 challenge database from the Logical Access set.

compared to our results (see table 10). In particular, the cho-
sen algorithms are decoded in the LA protocol of the
ASVspoof 2019 challenge as ‘‘A01’’, ‘‘A02’’ and ‘‘A04’’,
respectively. The TTS ‘‘A01’’ algorithm is obtained with a
neural waveform model, while the TTS ‘‘A02’’ algorithm is
generated through a vocoder. Lastly, the TTS ‘‘A04’’ algo-
rithm is a waveform concatenation. There are 8 male and
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TABLE 8. Multi kernel learning SVMs results of the synthetic voice
generated with TTS T1 versus Speaker 1 for dataset 1. We select the best
features according to their performances when individually tested (i.e.
through the out-of-sample accuracy). The first line indicates the
considered features, which is always an IMF-MFCC. The IMF indices are
given in each MFCC component as −1, −2, −3, −K, −K+1. The second line
refers to the coefficient number, and the third line to the selected kernel
for that feature. The table represents a model selection comparison in
which each row corresponds to a different MKL model combining
different sets of features. The numbers in each row refer to the ηm
weights as expressed in Eqn. 26. The highlighted accuracy scores
correspond to those combinations of features and kernel models greater
than 90%. The first portion of the table demonstrates the
EMD-MFCC-MKL solutions, while the second portion is the
state-of-the-art reference of the classical MFCC-MKL.

12 female speakers for bonafide speech utterances and the
selected TTS algorithms in the training set. However, there
are 12 female and 8 male voices for the bonafide speech
in the development set, but 6 female and 4 male voices for
the selected synthetic ones. Note that the speakers differ
between the training and the development sets, and the utter-
ances differ amongst the speakers. Hence, a text-independent
and speaker-independent scenario is the one of interest in
this experiment (TI-SI-SV). Furthermore, the number of

TABLE 9. Multi kernel learning SVMs results of the synthetic voice
generated with TTS T1 versus Speaker 1 for dataset 2. We select the best
features according to their performances when individually tested (i.e.
through the out-of-sample accuracy). The first line indicates the
considered features, which is always an IMF-MFCC. The IMF indices are
given in each MFCC component as −1, −2, −3, −K, −K+1. The second line
refers to the coefficient number, and the third line to the selected kernel
for that feature. The table represents a model selection comparison in
which each row corresponds to a different MKL model combining
different sets of features. The numbers in each row refer to the ηm
weights as expressed in Eqn. 26. The highlighted accuracy scores
correspond to those combinations of features and kernel models greater
than 90%. The first portion of the table demonstrates the
EMD-MFCC-MKL solutions, while the second portion is the
state-of-the-art reference of the classical MFCC-MKL.

utterances per speaker and type of speech (i.e. bonafide or
synthetic) differ.
Therefore, the selected subset is unbalanced in terms of the
number of utterances in the bonafide or natural set versus
the spoof groups. This results from a different number of
speakers’ utterances (this information is not evident in the
proposed tables). As a result, we balance both the training
and development subsets. For the training set, we decide to
select the minimum number of utterances available for one
speaker and then randomly select the same number from
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TABLE 10. Table describing the Text-To-Speech (TTS) Tools employed in
experiment two for comparisons of different Speech Synthesis algorithms
producing different synthetic voices and generating different types of
attacks. Note that speech generated through TTS T1, corresponding to the
online TTS, was obtained from http://www.fromtexttospeech.com/.

TABLE 11. Multi kernel learning SVMs results of the synthetic voice
generated with the IBM TTS algorithm versus Speaker 1 for dataset 1.
We select the best features according to their performances when
individually tested (i.e. through the out-of-sample accuracy). The first line
indicates the considered features, which is always an IMF-MFCC. The IMF
indices are given in each MFCC component as −1, −2, −3, −K, −K+1.
The second line refers to the coefficient number, and the third line to the
selected kernel for that feature. The table represents a model selection
comparison in which each row corresponds to a different MKL model
combining different sets of features. The numbers in each row refer to
the ηm weights as expressed in Eqn. 26. The highlighted accuracy scores
correspond to those combinations of features and kernel models greater
than 90%. The first portion of the table demonstrates the
EMD-MFCC-MKL solutions, while the second portion is the
state-of-the-art reference of the classical MFCC-MKL.

each of the other available speakers in every group (bonafide
and spoofed). This corresponds to 127 utterances for every
speaker, 2,540 utterances for every group (i.e. natural, A01,

TABLE 12. Multi kernel learning SVMs results of the synthetic voice
generated with the IBM TTS algorithm versus Speaker 1 for dataset 2.
We select the best features according to their performances when
individually tested (i.e. through the out-of-sample accuracy). The first line
indicates the considered features, which is always an IMF-MFCC. The IMF
indices are given in each MFCC component as −1, −2, −3, −K, −K+1.
The second line refers to the coefficient number and the third line to the
selected kernel for that feature. The table represents a model selection
comparison in which each row corresponds to a different MKL model
combining different sets of features. The numbers in each row refer to
the ηm weights as expressed in Eqn. 26. The highlighted accuracy scores
correspond to those combinations of features and kernel models greater
than 90%. The first portion of the table demonstrates the
EMD-MFCC-MKL solutions, while the second portion is the
state-of-the-art reference of the classical MFCC-MKL.

TABLE 13. Summary of the ASVspoof 2019 challenge database as
highlighted at https://www.asvspoof.org/index2019.html.

A02, A04), with a total of 10,160 utterances. Regarding the
development subset, we first balanced the number of speak-
ers within each gender and randomly selected the minimum
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TABLE 14. Summary of the extracted database from the
ASVspoof 2019 challenge database to conduct our experiment three. Note
that we selected two subsets, i.e. the training and the development.
Furthermore, for the spoofed speech, we considered three of the TTS
voices only. Note that the datasets is balanced in terms of number of
utterances per speaker. We make use of the training set to train our SVMs
proposed models and the development set for the testing.

TABLE 15. Multi kernel learning SVMs results of the female case versus
the synthetic voice generated with the A0 TTS algorithm of the ASVspoof
challenge dataset. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample
accuracy).

number between the two, giving 4 male and 4 female voices
in each group (bonafide, A01, A02 and A04). Furthermore,
we applied the same procedure followed for the training set

TABLE 16. Multi kernel learning SVMs results of the female case versus
the synthetic voice generated with the A02 TTS algorithm of the ASVspoof
challenge dataset. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample
accuracy).

and randomly selected the minimum number of utterances
available per speaker within each group corresponding to 77.
Therefore, each group will have 616 utterances leading to
2464 utterances for the development set. For our experi-
ments, we used the training set to train the individual features
required to develop the EMD-MFCC-MKL and the develop-
ment set for testing such a procedure with the added trait of
gender, hence dividing the utterances according to it. Table 14
provides a summary of such a dataset. Each utterances speech
recording duration was approximately 1sec to 3sec maxi-
mum sampled at 16kHz producing between 25k and 150k
samples per spoken utterance. The start and end of each
sample were trimmed to remove any non-speech segments
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TABLE 17. Multi kernel learning SVMs results of the male case versus the
synthetic voice generated with the A1 TTS algorithm of the ASVspoof
challenge dataset.

and decimated to a set of 40k total samples. The procedure
concerning the EMD extraction followed the same applied to
the other datasets, i.e. each set of 40k samples for one sen-
tence was then windowed into non-overlapping collections
of 5,000 samples and passed to the EMD sifting procedure.
Then, for each IMFs, we extracted M = 12 cepstral coeffi-
cients similarly to experiments one and two. We carried one
individual SVM per coefficient per IMF for the female and
male cases by considering the three different TTS algorithms.
Results of the individual features are provided in the Supple-
ment Materials in tables 14 and 15. For both genders, better
performances are achieved by theMFCCs of the second or the
third IMF basis function detecting lower speech formants and
the fundamental frequency. In this context, multiple speakers
are trained together through a unique model, and, particularly
at high-frequencies of female voices, the non-stationarity of
each speaker might be strongly biometric, resulting in out-of-
sample accuracy levels of 70% for high cepstral coefficients

TABLE 18. Multi kernel learning SVMs results of the male case versus the
synthetic voice generated with the A02 TTS algorithm of the ASVspoof
challenge dataset.

of IMF1. What is instead detected more efficiently in a
TI-SI-SV environment are lower formants and the funda-
mental frequency depicted by lower cepstral coefficients of
IMF3. Therefore, the EMD-MFCCs provide interpretable
high-performing features for this kind of speaker verification
system. The following step corresponds to the EMD-MFCC-
MKL analysis. Results for the female case versus the A01 and
A02 TTS algorithms and the male case versus the same TTS
algorithms are provided in tables 15, 16, 17 and 18. The other
results considering the TTS algorithmsA04 are in the Supple-
ment Materials in tables 14 and 15. The MKL performances
reinforce the findings related to the individual SVMs. In both
female and male SVMs, highest accuracy levels (>90%) are
shown when the cepstral coefficients of IMF2 and IMF3 have
been included in the MKL model. Furthermore, the male
EMD-MFCC-MKL performances appear overall higher than
the female ones; most of the formants lie, in male voices,
at the lower frequency bandwidths and, compared to female
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formants, present in general lower non-stationarity levels.
Hence, better performances are achieved if low cepstral coef-
ficients of IMF2 and IMF3 are considered. Furthermore,
the EMD-MFCC-MKL framework provides a higher level of
accuracy in every case compared to the individually trained
EMD-MFCC. Indeed, in the latter case, no feature achieves
an accuracy level greater than 90% (these are in tables 12 and
13 of the Supplement Materials). This strongly supports our
proposed methodology. Regarding the TTS algorithms, A04,
hence the concatenative approach, represents a more chal-
lenging spoofing attack than A01 and A02.

VIII. DISCUSSION AND CONCLUSION
A new speech biometric cyber-attack mitigation framework
was developed in the class of ASV system. This allowed
addressing the challenge of the classification of synthetic
and real voices. Such a biometric security task needs to
account for three main factors: firstly, speech is highly non-
stationary and, therefore, methods that can depict such a prop-
erty are required. Secondly, the fundamental characteristic of
a speech signal is its formants structure. Since each individ-
ual has distinct vocal tracts, observing formants structure is
the keystone in speech applications. Furthermore, measuring
energy concentration around such frequencies should provide
the discriminatory power required to differentiate spoofed
and bonafide voices. Thirdly, the speech scenario considered
provides different settings affecting the interpretation of the
identified discrimination power. Hence, the flexibility of the
classification technique in this respect is highly required.
The method should be adaptive and interpretable, hence
dependent on the given speech dataset but relying on a robust
technique whose interpretation can be derived according to
the scenario of interest (i.e. TD-SD-SV, TD-SI-SV, etc.).

Our proposed solution is achieved by building upon
existing methodologies and adapting them to work with
non-stationary signals more effectively. In this way, more
robust features reducing sensitivity and enhancing per-
formance in attack mitigation are achieved. Our robust
method for speech synthesis spoofing attacks combines
EMD and MFCCs with a multi-kernel learning SVM clas-
sifier framework. The new formulated feature libraries called
EMD-MFCCs are explored and compared in various real data
studies of different complexities. We demonstrate that, since
the IMFs separate frequency bands of the original signals,
the employment of the MFCCs relying on the mel-filter
allows us to observe how frequency formants are concen-
trated in each IMF. The out-of-sample analysis offers better
performances than the current state-of-the-art MFCC based
solutions when applied directly to speech signals. We note
that the current methodology of MFCC features applied
directly to speech and utilised in a multi-kernel learning
SVM could not achieve the minimum required standard for
classification of 90% typical of biometric security. The new
proposed methodology had many instances of out-of-sample
performance with accuracies well above this threshold for all
experiments taken into account.

The standard practice in these settings is to consider the
MFCCs applied to the raw data and then construct a fea-
ture vector containing the entire set of coefficients. In this
regard, we claim that the discrimination power identified
by the classifier would be reduced and polluted by the dif-
ferent frequency bandwidths, and hence the different for-
mants captured within a unique feature representation. The
time-frequency plane must be partitioned with an a poste-
riori technique since the location of the formants is strictly
individual-related and cannot be known a priori. Once this
step is achieved, a parsimonious model trained with the
computationally efficient classifier SVM-MKL is proposed.
At this stage, we highlight that the ‘‘new-state-of-art’’ meth-
ods for speech classification tasks highly rely on DNNs. This
class of methodologies requires a massive amount of data
and high computational capacity due to the large volume of
training required. The posed objective for a DNN applied in
ASV settings, or equivalently in Automatic Speaker Recog-
nition framework, is to learn individual or multiple speakers
formants structure (depending on the selected speech sce-
narios) by training many layers of perceptrons. This proce-
dure is replaced with the proposed methodology through a
functional characterisation of the EMD and its basis func-
tions. Therefore, rather than learning the formants through
piece-wise functions using DNN complex layer structures,
we extract them through the EMD and construct a simpler
classifier. We propose a sparse architecture that replaces the
DNN learning the formants with an EMDbasis representation
requiring far fewer parameters and can be applied to small
and large datasets. It is computationally very efficient and,
through an MKL ensemble method, achieves high accuracy
levels in performances similar to the ones often achieved by
the DNN when combined.

From a speech scenario perspective, text-dependent,
speaker-dependent and text-independent, speaker-
independent speaker verification systems have been tested.
The proposed EMD-MFCC-MKL performed better than the
standard benchmark features applied to the raw speech data in
both cases. Furthermore, the created features have proven to
produce interpretable machine learning solutions that provide
flexibility for the targeted system. Several Text-To-Speech
algorithms have been considered for the spoofing attacks in
both the proposed scenarios and the studied features capture
the synthetic voice better than standard ones. In the case
of TI-SI-SV, the concatenative TTS algorithm appears to
be the most difficult to capture in both female and male
cases.

The proposed feature libraries correspond to are not overly
engineered with excessive parametrisations. We showed that
the EMD-MFCCs features offer the advantage of more reli-
able and robust MKL-SVM classifiers. As a result, they can
be generalised in different non-stationary and noisy envi-
ronments. This is particularly important in real-world situa-
tions usually associated with speech biometric access ASV
technologies where a speaker may be providing a record-
ing of speech through a non-ideal background noise mobile
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environment. Hence, the signal transmission will not be sub-
ject to distortions, and the receiving device would then pro-
cess reliable speech features to determine if access should be
granted to sensitive data.
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