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Abstract

This research focuses on non-stationary basis decompositions methods in time-
frequency analysis. Classical methodologies in this field such as Fourier Analysis
and Wavelet Transforms rely on strong assumptions of the underlying moment
generating process, which, may not be valid in real data scenarios or modern
applications of machine learning. The literature on non-stationary methods is
still in its infancy, and the research contained in this thesis aims to address
challenges arising in this area. Among several alternatives, this work is based
on the method known as the Empirical Mode Decomposition (EMD). The EMD
is a non-parametric time-series decomposition technique that produces a set of
time-series functions denoted as Intrinsic Mode Functions (IMFs), which carry
specific statistical properties. The main focus is providing a general and flexible
family of basis extraction methods with minimal requirements compared to those
within the Fourier or Wavelet techniques. This is highly important for two main
reasons: first, more universal applications can be taken into account; secondly,
the EMD has very little a priori knowledge of the process required to apply it, and
as such, it can have greater generalisation properties in statistical applications
across a wide array of applications and data types.
The contributions of this work deal with several aspects of the decomposition.
The first set regards the construction of an IMF from several perspectives: (1)
achieving a semi-parametric representation of each basis; (2) extracting such
semi-parametric functional forms in a computationally efficient and statistically
robust framework. The EMD belongs to the class of path-based decomposi-
tions and, therefore, they are often not treated as a stochastic representation.
(3) A major contribution involves the embedding of the deterministic pathwise
decomposition framework into a formal stochastic process setting. One of the
assumptions proper of the EMD construction is the requirement for a continuous
function to apply the decomposition. In general, this may not be the case within
many applications. (4) Various multi-kernel Gaussian Process formulations of the
EMD will be proposed through the introduced stochastic embedding. Particu-
larly, two different models will be proposed: one modelling the temporal mode of
oscillations of the EMD and the other one capturing instantaneous frequencies
location in specific frequency regions or bandwidths. (5) The construction of
the second stochastic embedding will be achieved with an optimisation method
called the cross-entropy method. Two formulations will be provided and ex-
plored in this regard. Application on speech time-series are explored to study
such methodological extensions given that they are non-stationary.
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Impact Statement

The research presented in this thesis provides benefits both inside and out-
side academia and contributes to methodological and application-related devel-
opments which address essential questions of four main research areas: non-
stationary time-series, machine learning (ML) for Gaussian Processes(GP) and
multi-kernel methods (MKL), automatic speaker verification (ASV) problems
and health diagnostic.
In the era of big data, one relevant aspect that should be taken into account when
doing data analysis is the non-stationary and non-linear nature characterising the
data system of the studied phenomenon. This thesis explores the discrimination
power for classification problems of a time-series and time-frequency method
known as the Empirical Mode Decomposition (EMD) and introduces it to a
statistical context. Different components of the method are explored, enhanced
and exploited for feature extraction tasks that provide robust performances in
multiple classification settings.
A further relevant point that should be considered in analysing data is that the
observed signal of the studied phenomenon might be comprised of multiple, time-
varying basis components whose structural behaviour cannot be easily detected
given their intrinsic composite nature using standard ML procedures. In the
framework of Gaussian Processes, a solution offered to this problem is enclosed
by MKL methods. These techniques employ complex kernel structures for GP
to reproduce the underlying signal structure. This thesis proposes an alternative
way to construct an MKL by using the time-series method above introduced,
the EMD, whose statistical interpretation is highly beneficial in the context of
multi-component signals. As a result, a more powerful tool for GP development
is constructed and could be applied.
These core methodological developments could impact the public and private
sectors in the data analysis process since a powerful non-stationary technique
is proposed in combination with a refined version of the standard GP-MKL
framework and, therefore, complex data system setting could be challenged.
At an application level, the proposed method deal with two relevant speech anal-
ysis problems. The first one is the one of ASV system. Particularly in the private
sector, and within several contexts as financial services, call centres, mass-market
of human-computer interfaces, ASV technologies are nowadays facing the chal-
lenge of spoofing attacks mimicking a target speaker’s voice in person or remotely
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via artificial tools. The EMD extracts speech signal features to assess their dis-
crimination power in classifying natural and synthetic voices. Results provide
robust performances within multiple ASV scenarios, such as in the presence or
absence of background noise. The second application involves the health diagnos-
tic of Parkinson’s disease through speech sample voices. This topic has become
of central interest for two critical reasons, i.e. to facilitate the daily routine of
a patient affected by recurrent visits to the clinic and remove the subjectiveness
of the disease assessment, which strictly links to a set of questions posed by the
doctor. The proposed methodological framework aims to detect the presence or
absence of the disease through speech samples in order to promote telemonitoring
for such a disease. Results provide high performance in this sense, overcoming
gold standard existing methodologies.
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Chapter 1

Introduction

The importance of data analysis has become increasingly critical in fields such
as finance, biology, environmental studies, economics, engineering, amongst oth-
ers. This has been driven by the necessity of statistical modelling to facilitate a
deeper understanding of real-world phenomena to predict the future according
to the past. One of the most essential approaches in statistical science considers
observations which are sequentially recorded over time and produce a time-series.
The way statisticians typically analyse a time-series is by viewing it as a reali-
sation of a stochastic process, such that future realisations will depend on past
observations in a stochastic manner. The goal of time-series analysis may vary
across applications and can include trend forecasting, summarising features dy-
namically over time or producing explanatory summaries from smoothed, filtered
or predictive stochastic models. However, the central task is always to specify the
probability law of the underlying process in order to capture its dynamics, pro-
vide an accurate description and compute reliable forecasts of future outcomes.
Different perspectives can be considered in the analysis, and this is reflected in
the methodologies, which exploit different sets of assumptions.
The data generating mechanism of a stochastic process may be either discrete
or continuous in its inherent nature. As a result, the choice of modelling links
accordingly to the class of analysed processes. One possibility of the continuous
class of models is working with diffusions respecting mathematical properties,
such as, for example, the existence of the stochastic differential equation (SDE)
form. Another option is a time-series model, which has specific attributes such
as linearity or dynamic volatility, etc. Such models are applicable in the case
of continuous processes partially observed over time. In the case of a partially
observed discrete time process, a time-series may offer a more efficient modelling
solution. Within these classes of models, several assumptions have to be fulfilled.
For example, to characterise solutions to the diffusion equation, restrictions on
drift or volatility may be necessary, Whilst in the case of a time-series model,
constraints on stationarity often apply. These kinds of features outline the char-
acterisation of the family which describes the data. One of the statisticians’
tasks is to consider such a dataset under the assumptions of the possible families
characterising it and estimate a lower-dimensional representation. Statisticians
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refer to such a reduced data representation as a model, and it could one of two
basic forms, i.e., non-parametric or parametric.
If the probability law belongs to a family specified according to finite-dimensional
parameters, then the adopted model is named a parametric model. They usu-
ally consist of model identification, parameter estimation, model checking and
forecasting. Parametric models offer a well-structured framework, allowing a
straightforward interpretation and a known likelihood. This allows for the esti-
mation of parameters to be more tractable in general, guaranteeing the statistical
properties, such as efficiency, absence of bias, consistency and asymptotic nor-
mality of the resulting parameter estimates. However, model-misspecification
frequently occurring in non-stationary contexts affects the performance of such
stationary parametric models. Furthermore, adjusting classical parametric model
families to capture non-stationarity can result in models with excessively high
dimensional parameter spaces, producing biases of the parameter estimates or
requiring a large number of parameters to detect the essential dynamics of the
original process. Moreover, testing the assumptions that have to be satisfied by
the time-series to embed the parametric specification may be considerably chal-
lenging. These issues may be overcome by considering a non-parametric model.
Non-parametric models provide a great deal of flexibility to capture features of
the data; yet, they may not generalise as well in out-of-sample analysis. Their
significant advantages correspond to higher flexibility, together with fewer as-
sumptions for the model specification. Drawbacks of these methods are enclosed
in their definition: they can be considered “black boxes", which become prob-
lematic to interpret or compare, since they usually lack mathematical definition
in closed form. As a consequence, several algorithms are taken into account to
estimate the model. In addition, the model may not be fitted on the original raw
data but rather summaries of the data. One method often applied is given by
two stages: feature extraction and data modelling.

A fundamental approach employed to fully comprehend the underlying struc-
ture of a process or a time-series is representing it in terms of core components
(functions or processes), which depend on two perspectives: pathwise decompo-
sition and stochastic process decomposition. In the classical approach, one can
think of a decomposition of a process, say of a time series, as representing the
time series as n-decomposable into weighted combinations of other simpler pro-
cesses or random variables. The classical linear process decomposition has to be
attributed to Wald, where a time series is decomposed into a linear form (Note:
linear in the coefficients of the basis). In terms of the model specification, this
is equivalent, for a given time-series St to the following:

St =
∑
i

wiφi(St) (1.1)

where wi represents a certain coefficient defining a linear combining rule, while,
φi(St) is the basis taken into account, which is non-linear. The majority of the
time-series models fall into this class, whether parametric or non-parametric.
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The reason for considering this approach as a meaningful representation is the
power of the basis, which can better capture features of the original stochastic
process and then reconstruct it efficiently. A relevant aspect in this context is the
definition of the basis; regardless of the domain taken into account, one of the
most significant challenges affecting the time-series community is the problem
of a priori or a posteriori basis decomposition methodologies. A priori models
typically rely on stationarity and linearity (or both) of the given data generating
process and often produce a decomposition that requires an infinite number of
bases. When it comes to the a posteriori basis, a data-driven modelling procedure
can be formulated. Following this concept, all the mathematical constraints given
by an a priori basis are, therefore, avoided. The main issue of an a posteriori set
of functions considered as the basis is the lack of a theoretical definition. As a
consequence, sets of non-unique bases are obtained, since they are strictly defined
at an empirical level. The lack of uniqueness of the basis function is a challenge
that is encountered with the method of focus in this thesis, the Empirical Mode
Decomposition (EMD).
The need for stochastic modelling is of great relevance at this point. Observed
time-series are one of the sets of results of a stochastic process, which indeed
carries a random component. Therefore, uncertainty in the set of observations
has to be controlled by the given method. The common practice of a simple case
as the regression model is as follows: the method is deterministic, conditional
on the observed time-series; by considering a set of assumptions, the model is
posed, and an objective function (or risk functional) with associated loss function
defining the class of estimator is minimised or solved for the unknown parameters,
in terms of x and y, given values. A deterministic system of equations is then
obtained, which, for instance in linear regression modelling, corresponds to the
Least Squares minimisation (which in this case is attainable in a closed-form
system of equations). Then, the solution to these estimating equations produces,
in statistics, the resulting estimators of the model parameters, or basis coefficient
weights in the case of decomposition (1.1), which will naturally be realisations
of random variables themselves, as they are comprised of functions of the input
observation data. Typically, S is treated as known or could be generated from a
random process or given from experimental design, while y is a random outcome.
Therefore, the estimator although deterministic from the way it was obtained
(optimising a loss function minimisation), is, by definition, random since it is a
function of the data, which is a realisation of a random process.
The time variation of a time-series is fundamental to describe its evolution. How-
ever, there are several applications in which the analysis of a stochastic process
on the time domain does not fully describe it and, consequently, it is advanta-
geous to consider another aspect of characterisation of a process or time series,
namely the frequency domain perspective. The frequency-domain perspective
provides an alternative characterisation of information in the process that may
be more readily interpreted and can shed additional insight on structures in the
process or time series under study. Analysing a time-series through its spectral
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representation can often reveal superimposition of different waves, which can be
interpreted more straightforwardly and hence offer more efficient summaries of
the original process, as well as insight into appropriate choices for basis decom-
positions, such as presented in 1.1.
This thesis finds its location in the above discussions by considering a time-
frequency, non-parametric basis decomposition technique, commonly used in
signal processing and communication engineering, called the Hilbert Spectrum,
which is defined by the Empirical Mode Decomposition (EMD), along with the
Huang Hilbert Transform (HHT) (Huang et al., 1998). It offers a representa-
tion of the original process as a summary expressed by the EMD basis, called
Intrinsic Mode Functions (IMFs). The Properties of this a posteriori extraction
method are deeply investigated, since it accommodates non-stationarity and non-
linearity of the given process. Each basis represents an estimator of a certain
locally time-adapted oscillatory mode characterising the original time-series and
is fully expressed as a function of the data. Moreover, through the HHT, it is pos-
sible to observe each IMF within its frequency domain. The main contribution
will be studying the statistical properties of these bases.
An essential aspect being considered is that EMD is a deterministic pathwise
technique. Therefore, the given decomposition would not accommodate a stochas-
tic model formulation without further statistical assumptions being made. It is
the intention of this thesis to embed this pathwise deterministic characterisation
into a more general stochastic model framework that brings it into the realm of
time-series models and allows one to move from pathwise extrapolation to ac-
tually performing statistical forecasting in a meaningful time-series sense. The
purpose is to characterise the distribution of each underlying stochastic process
carrying a specific mode of oscillation whose observed realisation corresponds
to the decomposition basis function. To accomplish this goal, the estimator
characterisation of the basis representation has to be consistently expressed as
a natural consequence of the chosen stochastic model family of the original sig-
nal. Consequently, the first question to be addressed is the identification of a
suitable family of stochastic models. The required assumption to proceed asserts
that the convolution of the stochastic processes of the pathwise realisation of the
bases provides the stochastic process describing the observed pathwise realisa-
tion of the original signal. Several statistical tools have to be studied. First and
foremost, the choice of the stochastic model falls into the class of Gaussian Pro-
cesses. These are stochastic models offering relevant properties, such as flexibility
or smoothness, suitable for real-world applications. Moreover, the convolution
of each Gaussian process for the basis estimators will combine and produce the
Gaussian process for the original signal, so that the desired assumption will be
fulfilled.
The primary interest of this thesis is to study several aspects of this stochas-
tic embedding. A significant step will be the estimation stage of the Gaussian
processes. This class of stochastic processes also allows great versatility in the
covariance function. Several solutions have been proposed in the literature cov-
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ering such a task and will be reviewed in detail within this work. Different
perspectives in the estimation approach used to compute the covariance function
could reveal the unknown data structure more efficiently. For example, the choice
of stationary or non-stationary covariance functions might increase or decrease
the performance of the tasks of interest, such as classification or forecasting, es-
pecially in real-world application studies. Given the extensive use of Gaussian
processes in the machine learning community, various enhancements have been
introduced in the literature on kernel methods that directly link to the study of
covariance functions. The equivalence between covariance matrices and Mercer’s
kernel gram matrices given by Mercer’s theorem and its conditions will be pre-
sented and discussed in this work. This thesis reviews several approaches, both
stationary and non-stationary, to construct kernel functions to investigate the
given embedding properties.
The structure of the stochastic embedding for the EMD that is considered in
this thesis involves a convolution of multiple Gaussian processes, one for each
extracted basis characterising one of the oscillation modes of the original signal.
In this regard, each mode, and therefore each basis function, carries a specific
covariance structure that can be modelled according to a unique kernel, differ-
ing one from another. The development of these settings became of particular
interest since it captures the idea behind the proposed methodology, a recent
method used in many machine learning techniques, known as multiple kernel
learning. Instead of considering a unique kernel, this approach relies on different
kernel functions, one for each extracted feature representation of the original
data. Afterwards, it merges the predefined kernels into a unique expression, ei-
ther in a linear or nonlinear fashion, according to a weighting combination rule
function. The benefit in the developed setting of this framework is that it allows
modelling each decomposition basis function stochastic process according to a
specific kernel and then merging them by following such a multi-kernel technique.
The challenge addressed by this research stems from the lack of a statistical or
probabilistic background of the EMD method. It aims to shed light on method-
ological research questions, introducing statistical properties and behaviours of
the technique. The targeted issues that are considered examine and extend this
adaptive decomposition method and correspond to different classification prob-
lems. The purpose is to disclose statistical properties of the EMD by extracting a
set of features characterising the decomposition procedure and then investigating
their discriminatory power.
The applications selected to develop this statistical background concern speech
signals within different scenarios. By being strongly non-linear and non-stationary,
speech time-series embody an exemplary candidate for such a challenge.
The first application, relevant within several contexts, such as financial ser-
vices, call centres, mass-market or human-computer interfaces, involves Auto-
matic Speaker Verification (ASV) technologies, which are subject to spoofing
attacks mimicking a target speaker’s voice, either in person or remotely via ar-

30



M. Campi 1. Introduction

tificial tools. The EMD is employed to extract features from speech signals to
assess their discrimination power in classifying natural and synthetic voices.
The second application aims to exploit the EMD to detect Parkinson’s disease
(PD) within a set of male and female speakers at different stages. One of the
symptoms affecting PD patients consists of cerebellar dysfunction resulting in
impaired coordination, or “ataxia”. The speech disturbance that results from
cerebellar dysfunction is referred to as ’ataxic speech’. The EMD bases are
employed to provide an objective assessment of the dysfunction by quantifying
disturbances in the acoustic equivalences of disturbance in displacement, direc-
tion and rate (velocity). The IMFs provide a powerful tool to capture such
time-dependent speech attributes.

1.1 Motivation
A core tenet of statistical modelling is to form a parsimonious characterisa-
tion of data to be used in statistical exercises, such as regression, classification
or interpolation, to have summary statistics or summary characterisations of a
time-series. In this regard, one of the most discussed scenarios corresponds to
stationary versus non-stationary settings. The natural question to ask is which
kind of functional representation provides a parsimonious view of the observed
time-series to generalise modelling. The primary motivation behind this work is
to explore the category of non-stationary methods and to compare them to sta-
tionary methods for different tasks. Within such a perspective, time-frequency
analysis is the focus of this thesis. Such an area strongly requires the defini-
tion of a functional representation dealing with non-stationarity. A feature often
affecting non-stationary data is non-linearity. Most of the time-frequency lit-
erature provides methods which can deal either with one or the other, even if
non-linearity and non-stationarity are usually linked. Therefore, the first part of
this thesis investigates the existing time-frequency analysis methods and com-
pares the functional representation basis employed to summarise the data.
Time-frequency analysis methods have been widely investigated algorithmically,
given their ability to separate the variability of a stochastic process into contri-
butions related to oscillations. The second motivation for this work is to explore
the statistical interpretation of such methods to characterise them from a math-
ematical perspective. Time and frequency domains reflect statistical traits of a
time-series that reveal the structure of the data-generating process.
The second part of this thesis focuses on embedding the selected time-frequency
analysis method into a stochastic framework. An essential differentiation consists
of a deterministic basis function decomposition based on spectral analysis versus
a stochastic spectral decomposition. Within the former, the decomposition re-
lies on the basis representation of a deterministic signal, while, from a stochastic
perspective, the method relies on processes’ characteristic functions. It is central
to this thesis to define the connection between the deterministic decompositions
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on a sample path and their extensions to a stochastic embedding, allowing us to
investigate them at a probabilistic level. Motivations to achieve such a stochas-
tic embedding are to use each basis significantly for regression, forecasting and
classification. The ultimate purpose is to quantify factors such as predictive un-
certainty and make a model selection through inference procedures to formally
define performance rates. The primary challenge of this area is to structure a
kernel function dealing with non-stationarity, generated by the superimposition
of different dynamics intrinsic to the basis functions. Another relevant movita-
tion of this work is to study the stability of the selected kernel functions for the
EMD bases and find an efficient technique defining the kernel hyperparameters.
Gaussian Processes are the machine learning method employed to develop such
a framework, since they allow kernel functions with a non-stationary structure
highly suitable for tackling mode-mixing affecting the EMD.
One recent method that could be compared to the EMD is the decomposition
method presented in subsection 1.2.3, known as Singular Spectrum Decomposi-
tion (SSD), which represents a generalisation of the existing SSA. This technique
relies on the definition of a trajectory matrix, which finds its roots in studying
the evolution of a dynamic system (Packard et al. (1980), Ruelle (1980)). This
method aims to efficiently identify time scales associated with the original signal
and uses the SVD to define elementary matrices to capture its structural varia-
tion. The problem of “isolating” the various time scales characterising a given
signal has been a challenging issue, greatly affecting different time-frequency
methods. One motivation at the base of the proposed stochastic embedding is
tackling this problem by characterising the stochastic distribution of each specific
intrinsic time scale through a Gaussian Process modelled according to a distinct
kernel function.
Another relevant point in statistics is forecasting models that differentiate be-
tween the high-frequency content of their underlying stochastic process and the
low-frequency content. The EMD suits this framework by providing basis func-
tions ordered according to their frequency contents. Therefore, given the fore-
casting techniques using the EMD presented in subsection 1.2.2, an essential
aspect is proposing a reliable statistical forecasting model adapted to the non-
stationary context, which considers only low-frequency or high-frequency content
separately. Such a challenge is one of the motivations of this work and will be
solved in this thesis.
One of the most discussed issues affecting traditional time frequency methods
arises from their time-resolution. The problem encountered with these methods
is referred to as the “uncertainty principle” in signal processing, in analogy to
Heisenberg’s uncertainty principle. This principle states that it is impossible to
determine a given particle’s position and velocity simultaneously with arbitrary
accuracy. One way to understand this concept in time-frequency is by considering
the Short Time Fourier Transform. This chops the time domain data into pieces
and then tapers each piece with an appropriate window function. Finally, it
estimates the power spectrum for each window segment. The problem associated
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with this process is the choice of the window size. If too large, there will be a
good frequency resolution but a reduced time localisation. Conversely, if chosen
too narrow, the window provides a good localisation in time but a poor one in
the frequency domain. Hence, there is a trade-off that needs to be accounted for,
and this difficulty affects most of the existing time-frequency transforms. The
EMD with the Hilbert transform provides a natural solution to this problem
by being a fully data-adaptive method. However, this method often fails in the
most complex settings (highly non-stationary), due to the mode-mixing of the
sifting procedure. In subsection 1.2.5, a stochastic embedding is proposed that
aims to tackle this issue by constructing an adaptive time-frequency resolution
partitioning the frequency domain through an optimisation technique known as
cross-entropy. This will allow more flexibility and a much better resolution in
generating new bases, called band-limited IMFs, derived from the existing ones
but achieving a much better resolution of the time-frequency domain.
A further motivation connects to the considered application concerning speech
analysis. Speech signals are inherently non-stationary, and the speech community
is actively looking for techniques to handle such a feature. Furthermore, speech
is considered the result of the superimposition of different frequencies known
as “formants”, which correspond to concentrations of acoustic energy around a
particular frequency in the speech wave. Specifically, each format corresponds
to a resonance mode of the vocal tract. The ranges at which such frequencies
lie are unknown a priori and depend directly on the vocal tract length, making
their estimation a highly biometric task. The first application develops a method
dealing with speaker verification, i.e., the detection of real speaker voices versus
synthetic or spoofed ones. The central motivation is to provide robust character-
isations of speech time-series which address several problems, such as different
sources of disturbance, like background noise or the different pitch of different
speakers, or different algorithms generating the synthetic voice. The second ap-
plication foresees the study of the proposed stochastic embedding in detecting
the presence or absence of Parkinson’s disease by using voice signals. The cen-
tral motivation is to characterise the two families of utterances by using different
kernel structure.

1.2 Background and related work
This section aims to provide a background of the different works considered in
this thesis to develop a statistical perspective and analysis of the EMD. Multiple
literature reviews have been required, considering various perspectives of three
disciplines: nonparametric statistics, machine learning and signal processing.
Therefore, a review of the main components employed to tackle the set of research
questions is given. The first part introduces the main history of the EMD,
an explanation of why it is relevant within different research areas is the first
objective of this section. Furthermore, the history of the notion of instantaneous
frequency will also be presented, since this is of high priority. The second part
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will cover the different forecasting techniques that have been developed in the
literature, making use of the EMD. This is highly central to understanding the
need for the proposed stochastic embedding models. Afterwards, a recent method
introduced in the signal processing community is presented. This method is
presented and discussed in this thesis since, using a different perspective, it
tackles a similar problem of defining the time scales of a given signal to capture
its frequency variations over time. The author believes this is of relevance to
understanding the motivation behind this work better. The following subsections
describe machine learning techniques, such as Gaussian Processes and Multi
kernel learning, employed in the development of this thesis. After that, the
cross-entropy method is presented. This method comes from the literature of
rare event simulations and will be used to propose a stochastic embedding model.
Last, an introduction to speech signals is presented, with an explanation of why
this topic is relevant to the constructed methodology .

1.2.1 History on the Empirical Mode Decomposition
A key focus of this thesis will be to consider decompositions of the form given in
Equation 1.1 that are adapted to non-stationary and non-linear contexts. The
core method studied will be based on the Empirical Mode Decomposition, which
was introduced by Huang et al. (1998). In this framework, the basis function
in Equation (1.1) will not be a priori specified in a parametric functional form;
rather it will be a non-linear, time-varying basis that will only be specified by
some characterising mathematical properties. This makes the extraction, and
functional representation of such basis functions, a very interesting statistical
modelling challenge. Before addressing these challenges, the mathematical prop-
erties and justification for the EMD basis representation framework are first
explained.
In their work, Huang et al. (1998) highlight that the ideal basis for expanding the
original time-series should embed four main features, named as locality, adaptiv-
ity, completeness and orthogonality. Locality and adaptivity detect non-linear
structures in the data and non-stationarity properties, respectively. Locality is
the most critical feature able to deal with non-stationarity since there is no con-
stant time scale of the data. Hence, all events are strictly dependent on their
occurrences and must be defined by such time points. In practice, this means
that both the amplitude of the signal and its frequency should be functions of
time. Such an assumption is opposed to the case of a periodic data system,
where the underlying signal can be described according to repeated or periodic
time scales. Adaptivity is required to adjust the bases to local variations of
the original signal due to the non-stationarity and non-linearity of the system.
Hence, they will not just fulfil the mathematical definition requirements but will
also capture the underlying physics of the process. However, non-linearity is of
significant interest for this basis feature: in the case of Fourier analysis, such
a property manifests as harmonic distortion, and the strength of non-linearity
generates the distortion. Completeness is required to achieve a certain degree of
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precision with respect to the expansion of the data; orthogonality provides pos-
itivity of energy and excludes leakage of it across spurious bases. Consequently,
even with infinite numbers of such bases, predetermined bases will not fit all the
existing phenomena with a universal, constant representation. Indeed, generat-
ing an efficient mechanism to extract bases derived from the data provides the
most efficient solution.
An essential attribute of the EMD basis expansion approach pertains to the no-
tion of instantaneous frequency (IF), which is a feature that has generated sig-
nificant discussion in the literature; see Cohen (1995), Gabor (1946), Boashash
(1992a). It requires particular attention, since it could carry great discrimina-
tory power within different statistical tasks. Overall, the concept of frequency
takes its definition from mechanics when a vibratory motion comes into play
and is associated with a vibrating body. The vibrating body fulfils a complete
oscillation by moving from the equilibrium position to one end of the path, then
to the other end of the path and back to the equilibrium position. Through this
model, the frequency can be defined for any vibratory motion. Amongst others,
the harmonic motion is of particular interest given its widespread use in several
applications (solid bodies, atmosphere, etc.) due to its ability to describe the
motion of a particle at any fixed point. For example, the frequency ω of a wave
motion is defined as the number of waves that pass by any fixed point per unit
time. Equivalently, the frequency ω of electric current in a circuit corresponds
to the number of cycles per unit time. Therefore, if the intention is to compute
spectral decomposition and the signal s(t) is a weighted sum of harmonic vibra-
tions, then the Fourier Transform (FT) would achieve this task. The spectrum
S(ω) obtained can be computed at any time t, and it will be meaningful if the
underlying signal s(t) is stationary. Indeed, any stationary signal can be repre-
sented as the weighted sum of sine and cosine waves with specific frequencies,
amplitudes and phases, constant in time. Therefore, the concept of frequency
per se is unambiguous. Nevertheless, since it defines the number of cycles during
one unit of time of a body in periodic motion, there seems to be an apparent
paradox in associating the word “frequency” with the word ’instantaneous’.
There are two main difficulties in defining the IF. First, its definition relies on sine
or cosine basis functions assuming constant amplitude, phase, and period over the
whole data set, accounting for global frequency content concepts. In its standard
form, it cannot be adaptive to capture local phase and period variations often
encountered with non-stationary signals. To achieve this with Fourier bases,
one would need to accommodate a time-varying coefficient model. This can
be problematic, as one would need a potentially infinite number of functional
coefficients for the potentially infinite number of bases required for non-stationary
and non-linear signals. This poses a significant challenge when developing a
model, as it becomes infeasible to work with a large, possibly infinite number,
of infinite-dimensional functional coefficients. The second issue is the lack of a
unique definition. Cohen (1995) describes the central paradoxes associated with
the instantaneous frequency. These are essential difficulties inherent to such
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a notion when defined as the derivative of the phase function and are partly
resolved through the Hilbert Transform. The five paradoxes are given as follows:
(1) the instantaneous frequency may not be one of the frequencies present in the
spectrum. (2) If the spectrum consists of a line spectrum characterised by only a
few sharp frequencies, then the instantaneous frequency may be continuous and
range over an infinite number of values. (3) Even if the spectrum of the analytic
signal is zero for negative frequencies, then the instantaneous frequency may be
negative. (4) Even in the presence of a band-limited signal, the instantaneous
frequency may go outside the band. (5) If the instantaneous frequency is an
index of the frequencies which exist at time t, the direct intuition for this is
that the only information concerning it is the one at present, hence at time t.
However, to calculate the analytic signal at time t, the signal has to be known at
all times. Therefore, even with its local nature, it may be essential to recognise
the non-locality of this concept and find a different way to define it. The reader
might refer to Boashash (1992a), Boashash (1992b) for a review of the definition
of such a concept. In this thesis, the IF is employed to investigate its statistical
properties in solving classification problems.
Several solutions have been proposed in the literature studying a generalisation of
the IF suitable to non-stationarity (see Gabor (1946), Boashash (1992a)). A cen-
tral and relevant step was the one given by Gabor (1946), who proposed a method
for generating a unique complex signal from the real one. This method first finds
the FT of the real signal s(t) and then suppresses the amplitudes belonging to
negative frequencies and multiplies the amplitudes of positive frequencies by two.
By doing so, most of the issues introduced above can be alleviated. This method
is equivalent to the following time-frequency procedure:

z(t) = s(t) +  H [s(t)] = a(t)eθ(t) (1.2)

where z(t) is usually referred to as the Gabor’s complex signal or analytical
signal, s(t) is the real signal, a(t) and θ(t) are the instantaneous amplitude and
the instantaneous phase respectively and given as

a(t) = [s(t)2 +H [s(t)]2]1/2

θ(t) = arctan
(
H [s(t)]
s(t)

) (1.3)

and H[·] is the Hilbert Transform (HT) defined as

H [s(t)] = p.v.
∫ +∞

−∞

s(t− τ)
πτ

dτ (1.4)

where p.v. denotes the Cauchy Principal value of the integral. The defini-
tion for the complex signal z(t) allowed Gabor to define a one-to-one correspon-
dence between s(t) and z(t), whose modulus and argument are given by the pair
[a(t), θ(t)]. Proof of such a fact is provided in Boashash (2015). Furthermore, the
central moments of the frequency of the signal through the complex spectrum
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Z(ω) can be defined as

E [ωn] =
∫+∞
−∞ fn |Z(ω)|2 df∫+∞
−∞ |Z(ω)|2 df

(1.5)

If the spectrum of the real signal, S(ω), was used instead in the above equation,
all odd moments would be zero, since |S(ω)|2 is even and this would not fit the
physical reality. This is because the obtained frequencies will only be negative,
and such a quantity, in order to carry physical meaning describing a real world
phenomenon, is required to be positive. Hence, utilising the complex spectrum
instead allows suppression of the negative frequency part and retention of only
the positive ones. Following on from Gabor’s work, Ville (1958) defined the IF
of a signal given as s(t) = a(t) cos θ(t) whereby,

ωi(t) = 1
2π

d

dt
[argz(t)] = 1

2π
dθ(t)
dt

(1.6)

He also showed that the average frequency in a spectrum of such a signal is equal
to the time average of the IF:

E [ω] = E [ωi] (1.7)

where
E [ω] =

∫+∞
−∞ ω |Z(ω)|2 dω∫+∞
−∞ |Z(ω)|2 dω

(1.8)

and
E [ωi] =

∫+∞
−∞ ωi(t) |z(t)|2 dt∫+∞
−∞ |z(t)|2 dt

(1.9)

Through these results, Ville then formulated a distribution of the signal in time-
frequency which is nowadays commonly referred to as the Wigner-Ville Distri-
bution (WVD) and is given as

W [t, ω] =
∫ +∞

−∞
z(t+ τ/2) z?(t− τ/2)e−2πωτdτ (1.10)

where z? represents the complex conjugate of z and W [t, ω] practically corre-
sponds to the FT of the product z(t+ τ/2) z?(t− τ/2) with respect to τ and is
evaluated through Fast Fourier Transform algorithms. Ville (1958) showed that
the first moment of the WVD with respect to the frequency leads to the IF

ωi(t) =
∫+∞
−∞ ωW [t, ω]dω∫+∞
−∞ W [t, ω]dω

(1.11)

Therefore, Ville and Gabor showed that, with the introduction of the Hilbert
transform, the following could be obtained: (1) the definition of a complex sig-
nal z(t) whose spectrum is identical to that of the real signal, s(t), for positive
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frequencies and zero for the negative frequencies; (2) the definition of both ampli-
tude and phase of a signal can be derived unambiguously, allowing the derivation
of an expression for the instantaneous frequency.
Gabor defined, through the Hilbert transform, his complex signal as z(t) =
s(t) + H [s(t)], known as Gabor’s analytical signal, where s(t) corresponds to
the real part and H [s(t)] to the imaginary part. The two signals s(t) and H [s(t)]
are said to be in quadrature, since they are out of phase of π/2. In practice and
under certain conditions, it does not always generate a signal plus its imaginary
quadrature component (see Gabor (1946)). This is because the HT operation
preserves the positive frequency domain of the spectrum and inverts the sign
of the spectrum in the negative frequency domain. Thus, it does not simply
transform the cosine term into a sine term. If there is any significant leakage of
the positive spectral components into the negative region, then the HT will not
yield to the quadrature component of s(t). The requirement in this framework,
so that the HT signal H[s(t)] will be the quadrature of the input s(t), is enclosed
by Bedrosian’s product theorem (BPT) (Boashash (1992a)). In practice, this
theorem states that, if there is a modulated signal of the form a(t) cos θ(t), where
physical meaning is attached to the amplitude a(t) and the phase θ(t), and if the
spectra of a(t) and θ(t) are not separated in frequency, then the HT will be a
result of overlapping and phase-distorted functions. Hence, the desired situation
is when the spectra of a(t) and cos θ(t) are separated in frequency, providing
then that the amplitude a(t) and phase θ(t) are considered independently. Such
a fact is manifests when a signal approaches a “narrow band” condition and, in
that case, the Hilbert Transformed signal approximates the quadrature signal.
Furthermore, in several areas, a signal is often referred to as a “multicompo-
nent signal”, meaning a signal that is characterised by many intrinsic frequency
components, each carrying its specific instantaneous frequency. Nevertheless,
equation (1.6) can only express a signal IF value at a given time, rather than a
collection of them, which is what is required to capture the notion of a multi-
component signal. Hence, there will be one frequency value at any given time.
This led Cohen (1995) to introduce the term “monocomponent function”. There
is no clear definition of such a term, and the adoption of a narrow band signal
provided by Schwartz et al. (1996) is employed as a limitation for the data so
that the instantaneous frequency makes sense. Beyond the definition of a nar-
row band signal, what is also required at this point is the separation of these
many intrinsic frequencies to obtain a meaningful, well-defined instantaneous
frequency. One solution to this problem is making use of the Empirical Mode
Decomposition, which decomposes the signal into narrow band components by
empirically defining the physical time scales intrinsic to the data.
There are two definitions of bandwidth. One is related to the probability prop-
erties of signals and waves, in which processes are often assumed as Gaussian
and stationary and can be defined in terms of spectral moments, while the sec-
ond refers to the moments of the spectrum. To introduce the former definition,
let us first define N0 = 1

π

(
m2
m0

)1/2
as the expected number of zero-crossings per
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unit time and N1 = 1
π

(
m4
m2

)1/2
as the expected number of extrema per unit time,

with mi corresponding to the ith moment of the spectrum. A classic bandwidth
measure (see Rice (1944), Rice (1945)) is often given by the parameter ν, which
is given as

N2
1 −N2

0 = 1
π2
m4m0 −m2

2
m2m0

= 1
π2ν

2

For a narrow band signal ν = 0, since the expected numbers of extrema and
zero crossings have to be equal. The second definition of narrow band is again
related to the moments of the spectrum but in a more general way. Consider a
complex valued function in polar coordinates as z(t) = a(t)eθ(t) with both a(t)
and θ(t) being functions of time. If this function has a spectrum, S(ω), the mean
frequency is given as E [ω] =

∫
ω |S(ω)|2 dω, which can also be expressed as

E [ω] =
∫
z∗(t)1



d

dt
z(t)dt

=
∫ (

dθ(t)
dt
− da(t)/dt

a(t)

)
a2(t)dt

=
∫ dθ(t)

dt
a2(t)dt

By following Cohen (1995), the definition of instantaneous frequency can be
enclosed by dθ(t)

dt
. According to these definitions, the bandwidth is given as

ν2 = (ω − E [ω])2

E [ω]2
= 1

E [ω]2
∫

(ω − E [ω])2 |S(ω)|2 dω

= 1
E [ω]2

∫
z∗(t)

(
1


d

dt
− E [ω]

)2

z(t)dt

= 1
E [ω]2

∫ (
da(t)
dt

)2

dt+
∫ (

dθ(t)
dt
− E [ω]

)2

a2(t)dt


In order to obtain a narrow band signal, the above quantity needs to be small,
and therefore a(t) and θ(t) have to be gradually varying functions. Both defi-
nitions of the bandwidth are still given in a global sense, while, to capture the
concept of instantaneous frequency, a local definition is required instead. Other
solutions have been considered to tackle such a problem, as in Melville (1983),
who made use of filtering. However, in non-stationary and non-linear systems,
spurious harmonics are present, and filtering cannot work. In practice, for any
function having a meaningful instantaneous frequency, the real part of its Fourier
transform has to have only positive frequencies (see Gabor (1946), Titchmarsh
(1948), Bedrosian (1963), Boashash (1992a)). Such a restriction is still global and
has to be translated to a local equivalent. Huang et al. (1998) show in their work,
with a basic example of a simple sine signal, that the instantaneous frequency
can be defined if the given function is restricted to be symmetric locally with
respect to its zero mean level. This led Huang et al. (1998) to define a new class
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of functions named Intrinsic Mode Functions (IMFs), carrying precisely such a
local property, and for which the IF could be derived. What is more, Huang
et al. (1998) introduced a decomposition technique, i.e., the Empirical Mode De-
composition, which decomposes the data into components whose instantaneous
frequencies can be derived. The obtained functions are the basis functions and
are, indeed, the IMFs.
Once the necessary conditions for the instantaneous frequency to exist are taken
into account, the definition of the basis can be given. Formally, the proposed class
of functions, the Intrinsic Mode Functions, are defined by Huang et al. (1998)
to meet the following conditions: (1) the number of extrema and the number
of zero crossings must either equal or differ at most by one within the whole
data set; (2) the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero at any point. The importance of the
two conditions can be interpreted as follows: while the first one is related to the
classical assumption of narrow band for a stationary Gaussian Process, the second
one has been made so as to reduce to a local restriction necessary to determine the
instantaneous frequency and avoid asymmetric waves affecting it. By doing so,
the local mean forcing local symmetry replaces the local time scale that cannot
be defined in the case of non-stationary data. The name intrinsic mode functions
was given by Huang et al. (1998) to represent the oscillation modes characterising
the data. Within each cycle provided by the zero-crossings, a basis represents
one single mode of oscillation. It can, indeed, be a non-stationary basis. Once
the Hilbert transform is applied, each IMF can be written in the form of an
analytic signal z(t). By performing a Fourier transform on z(t) as follows

F [z(t)] =
∫ ∞
−∞

a(t)e(θ(t)−ωt)dt

then, by the stationary phase method (see Copson and Copson (2004)), the max-
imum contribution to F [z(t)] is given by the frequency satisfying d

dt
(θ(t)− ωt)

from which it follows ω = dθ(t)
dt

. Such definition agrees with the definition of
frequency for the classic wave theory (Whitham (2011)) and, more importantly,
with the best-fit sinusoidal function locally.
Beyond the definitions of instantaneous frequency and a basis for determining
it, the decomposition of the data has to be constructed. The decomposition is
achieved with three main assumptions highlighted in Huang et al. (1998): (1) the
time-series has to have at least two extrema, one maximum and one minimum.
(2) The time-lapse between extrema defines the time scale. (3) If there were
no extrema present in the data, then it can be differentiated to reveal them.
The central point of the EMD is, indeed, extracting oscillatory modes of a time-
series according to its intrinsic time scales by exploiting the a posteriori basis.
The choice in identifying the different scales falls on extrema, rather than on
inflexions, since a better resolution of the oscillatory modes can be obtained that
can, moreover, also be applied to non-zero mean data. The process to extract
the IMFs is called a sifting procedure.
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The EMD provides a set of basis functions and a residue which represents the
single convexity tendency function, akin to a trend or a constant characterising
the original time-series. The only ingredient required by the technique is the
location of the extrema. The zero-mean reference is obtained through the sifting
process and this is one of the advantages of the EMD, since it removes the issue of
the mean values produced by a significant DC component of the data with non-
zero mean. The critical point is that the basis usually carries a physical meaning
representative of the scales intrinsic in the original process. However, this is not
always the case, since there are certain phenomena which are intermittent by
nature and, therefore, the decomposition would be affected: a single IMF would
detect two different scales and, to interpret the decomposition, the whole set of
bases would be necessary. Nevertheless, the gain of this technique versus other
basis expansions, such as the Fourier one, is the physical interpretation implied
by the EMD, usually lacking in the other approaches.
As previously mentioned, two main properties needed for the basis are complete-
ness and orthogonality. The former is satisfied both theoretically and practically
by the EMD; a time-series s(t) can be completely represented according to such
decomposition as s(t) = ∑L

i=i γi(t) + r(t), where γi(t) is an IMF basis for a finite
number of K IMF basis functions indexed by i = 1, ..., L and r(t) a residual ten-
dency term. Each basis is ordered in the number of oscillations compared to the
previous. Regarding orthogonality, the EMD provides it only at a practical level.
Huang et al. (1998) defined an index of orthogonality to detect it a posteriori.
However, even by using such a criterion, some small leakage can be found. This
is true also in the case of pure sinusoidal components carrying different frequen-
cies, given observed data of finite length. In general, orthogonality is a property
which can be associated only with linear decomposition systems and does not
make physical sense for a nonlinear decomposition, as with the EMD.
Having extracted all the IMFs of the original signal allows computing the whole
set of instantaneous frequencies through the application of the Hilbert transform
on each basis. As a result, the observed time-series can be represented as the
sum of different functions expressed as a generalised Fourier expansion since
amplitude and frequency are time-varying. This set of components denoting
the frequencies as a function of time is defined as the Hilbert spectrum and
given as H(f, ω). It provides a three-dimensional plot where the x-axis is the
time, the y-axis is the frequency and the z-axis the energy. The interpretation
of this spectrum is entirely different to the one of classical Fourier analysis: in
the latter one, the presence of energy at a certain frequency ω means that a
sine or cosine function basis is persistent within the whole set of data. In the
former one, instead, the presence of energy at a frequency ω represents that such
specific wave has a higher likelihood to have appeared locally. Therefore, the
EMD and the Hilbert spectrum together provide a probabilistic spectrum for
non-stationary data.
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1.2.2 Forecasting Techniques with the EMD
Forecasting time-series represents a core activity in scientific research. Different
methodologies associated with various aspects can be considered, depending on
factors like the area of interest, the size of the dataset or the data features.
In multiple applications, such as wind speed, financial time-series, earthquake
data, geophysical research, and many others, the original time-series behaviour
results from multiple underlying time-series whose information content relates
to different time scales. For example, the financial share price can often be
decomposed into high and low frequency contents deriving from discontinuities or
ruptures, versus long-term trends in the original data. Time-frequency methods
and, among these, also the EMD, have been widely employed to solve this kind of
task. Awajan et al. (2019) proposed an extensive review of the EMD forecasting
methods developed within many different applications. An equivalent table to
the one provided by Awajan et al. (2019) is represented below:

Cite Year Method Data Category
Li and Wang (2008) 2008 EMD-ARIMA Wind Speed
Lin et al. (2012) 2012 EMD-LSSVR Exchange Rate

Zheng et al. (2013) 2012 EMD-RBFNN Wind power
An et al. (2013) 2013 EMD, FFNN Electricity demand

Okolobah and Ismail (2013) 2013 EMD, ANFIS Peak Load
Abadan and Shabri (2014) 2014 EMD-ARIMA Prices of rice

Kisi et al. (2014) 2014 EMD-ANN River stage
Abadan et al. (2015) 2015 EMD-ARIMA Exchange rates
Duan et al. (2015) 2015 AR-EMD-SVR Ship motion
Ismail et al. (2015) 2015 EMD, LSSVM River Flow
Duan et al. (2016) 2016 EMD-AR Ocean waves

Yang and Lin (2016) 2016 EMD, SVR, ARIMA Stock market
Zhu et al. (2017) 2017 EMD, LS-SVM Carbon Price
Yahya et al. (2017) 2017 EMD, ANN Tourism

Ismail and Shabri (2017) 2017 EMD-SVM River flow
Tao et al. (2017) 2017 iEEMD, ARIMA, ELM, PF Hog price
Zhao et al. (2017) 2017 EEMD-ARIMA Occupancy of hotels

Bedi and Toshniwal (2018) 2018 EMD-based deep learning Electricity Demand
Sun and Wang (2018) 2018 FFEMD Wind Speed

Büyükşahin and Ertekin (2019) 2019 EMD-ARIMA-ANN Sunspot
Zhang and Hong (2019) 2019 CEEMDAN-SVRQDA Electric load
Xia and Wang (2020) 2020 EMD-PSOLSSVM Energy consumption structure
Dai and Zhu (2020) 2020 SOPEEMD Stock market returns

Table 1.1: Forecasting method using EMD or its variations in combination with other
techniques. Note that the abbreviations for the proposed model methods are provided.
The reader might refer to the actual references for further details.

The most relevant papers were selected. As shown, several studies and different
advancements have been made to exploit EMD, or variations of it, to achieve
more powerful forecasting performances. The ordinary procedure of most of the
above-given forecasting techniques involving EMD goes as follows: the time-
series is decomposed, and the IMFs are extracted; the forecasting method of
interest is applied to each IMF; finally, the forecasted IMFs (or their combina-
tions) are combined according to different techniques. At this stage, it is essential
to comprehend that EMD fully applies to the deterministic pathwise realisation
of a time-series. Therefore, its combination with any other procedure would still
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carry this feature without accounting for any stochasticity or randomness un-
avoidably induced by the original time-series process. The ideal solution should
first tackle the unique characterisation of each stochastic process of the IMFs.
Afterwards, the convolution of the stochastic processes of the IMFs needs to
be derived and examined. Through this approach, a valid and more powerful
forecasting technique is achieved.

1.2.3 Alternative Adaptive Decomposition Techniques
In general, spectral analysis has the final aim of estimating the global power-
frequency spectrum distribution of a given random process. Many applications
require such a tool, which must not rely on classical-method assumptions such
as stationarity of the underlying signal. The need is set for a time-frequency
representation indicating how the power spectrum changes over time. The use
of the concept of instantaneous frequency is central in this discussion. However,
the definition of a meaningful instantaneous frequency is a difficult task, strongly
affecting the research community.
A standard solution commonly adopted to handle the above problem has been
to perform bandpass filtering of the signal and then apply the Hilber transform
to extract the instantaneous frequency for each passband of interest (Freeman
(2004), Liang et al. (2005)). However, the choice of passbands is heuristic and,
therefore, the instantaneous frequencies obtained are difficult to interpret.
The alternative decomposition method known as the singular spectrum analysis
(SSA or “Caterpillar” SSA) corresponds to a principal component analysis based
on nonparametric spectral estimation (Vautard and Ghil (1989), Vautard et al.
(1992), Ghil et al. (2002)). SSA windows the time-series and stores the windows
within the columns of a matrix, commonly referred to as a trajectory matrix. The
second step performs the singular value decomposition (SVD) of the trajectory
matrix and represents it as a sum of rank-one bi-orthogonal elementary matrices.
Afterwards, the elementary matrices are split into several groups and summed up
together within each group. Lastly, the diagonal averaging of the new aggregated
matrices is undertaken, producing a set of time-series, equivalent to additive
components of the initial time-series. The derived SSA components are data-
adaptive. As a result, in contrast with classical Fourier components, they can
capture non-harmonic oscillations of the underlying time-series highly prevalent
in non-linear and non-stationary series. However, several drawbacks are intrinsic
to the procedure itself. First, the window length, also known as embedding
dimension, must be chosen appropriately, since the reconstructed components
strongly depend on it. Second, as in most applications employing the SVD, the
required principal components used in reconstructing a specific SSA component
time-series must be meticulously chosen to carry physical meaning associated
with the studied phenomenon. This is achieved when the frequency content of
the component is narrow-banded.
Reasons for introducing the SSA lie in a recent method called Singular Spectrum
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Decomposition (SSD) (Bonizzi et al. (2012), Bonizzi et al. (2014)) that builds
upon the SSA and provides a solution to the introduced problem. The advan-
tages of SSD compared to the standard SSA are: (1) the entirely data-driven
choice of the embedding dimension set to obtain a well-defined frequency band
in the spectrum of the original signal. (2) The automated selection of the prin-
cipal components to reconstruct a specific component signal that minimises the
generation of spurious components. Like the EMD, the SSD corresponds to a
fully data-driven decomposition technique based on the extraction of the energy
associated with different intrinsic time scales. This result is attained by defining
a new trajectory matrix used in the SSD method, guaranteeing a decrease of
energy characterising the residual within an iterative approach.
The main objective of these decomposition techniques is to separate the multiple
intrinsic frequencies proper of the original signal. This is done within both the
SSD and the EMD by using an iteration scheme that, according to different
properties of the signal, extracts monocomponent functions carrying energy in
a decreasing fashion. The SSD was born as an alternative method to the SSA,
addressing some of the main drawbacks of the EMD. In practice, and often in
cases such as signal intermittency, the EMD components can be affected by
mode mixing. This means that a single EMD basis carries different time scales,
reflecting different intrinsic frequencies of the original signal, making physical
meaning unclear. Hence, by transforming the SSA into an automated data-
driven decomposition method, SSD should provide an interesting alternative to
EMD.
Another procedure that should be taken into account in this context is the work of
Daubechies et al. (2011) (and reference within). The authors propose the applica-
tion of the wavelet synchrosqueezed transform to the EMD basis functions. This
time-frequency transform reassigns signal energy in frequency, compensating for
the spreading effects caused by the mother wavelet. Unlike other time-frequency
reassignment methods (Hainsworth and Macleod (2003)), synchrosqueezing only
allows reassignment in the frequency direction by preserving the time resolution.
As a result, the inverse synchrosqueezing algorithm can reconstruct an accurate
representation of the original signal. The central motivation for introducing such
a method is that, like the direction of this thesis, Daubechies et al. (2011) aims
to find a more robust representation of an IMF basis function by employing
a particular time-frequency reassignment method. However, the reader should
bear in mind that the application of synchrosqueezing requires the given signal
to be an intrinsic mode type (IMT) function, which is formally introduced as a
continuous function (for further details, see Daubechies et al. (2011)) carrying
a unique frequency component. The IMT functions are defined as the set of
IMT bases well-separated in the frequency domain up to a certain level of ac-
curacy. Hence, it corresponds to a subspace of L∞(R) and does not correspond
to a vector space. As a result, and similarly to the EMD, the obtained IMT
basis functions might not be well separated, and this approach would not work
efficiently in the presence of highly non-stationary signals.

44



M. Campi 1. Introduction

This alternative method further highlights the need for a complete data-adaptive
decomposition technique dealing with the non-stationary data characteristics ex-
pressed in both domains, the time and the frequency. Hence, this further sup-
ports the proposed stochastic models, representing the EMD as a novel stochastic
decomposition method.

1.2.4 Gaussian Processes, Kernel Methods and Multi-
kernel Techniques

Over the past decade, Gaussian processes (GPs) have become the leading re-
search technique for both classification and regression tasks in machine learning.
Such a tool was initially proposed under the name kriging in the geostatistical
literature (Cressie (2015)) and represents a non-linear nonparametric technique
that has been used in multiple applications and whose literature has been widely
developed (Rasmussen and Williams (2005), MacKay (1997), Ripley (2007)). In
a nutshell, a Gaussian process generalises the Gaussian probability distribution
and, while a probability distribution describes a random variable, a stochastic
process controls functions instead. The great advantage of this inference tech-
nique lies in the wide range of data properties that can be easily reproduced,
like smoothness, periodicity, scalability, etc., that are entirely controlled by the
positive definite covariance kernel function. This operator determines the simi-
larity between pair of points in the domain of the random function. Given this
role, the covariance structure significantly affects the performance of a Gaussian
process on the task of interest, and extra care must be taken when this is chosen,
in order to unveil hidden data patterns. A common assumption made in this
setting is to consider GPs that carry a zero-mean function. In such a case, the
learning problem to infer a Gaussian process reduces to the learning problem of
its kernel function hyperparameters.
Several choices could be considered for the covariance function structure, coming
from different kernel methods branches. It could have a traditional station-
ary structure (Rasmussen and Williams (2005)) or might be derived from its
spectral representation (Wilson and Adams (2013)) or could be a parametric
or nonparametric kernel (Abbasnejad et al. (2012)). In this thesis, a review of
kernel methods is provided in Chapter 4. A recent approach that became highly
popular in the machine learning community is one of multiple kernel learning
(Gönen and Alpaydın (2011a)). The idea behind such a notion is that more
sophisticated covariance structures can be achieved by composing together a few
standard kernel functions. This thesis applies this intuition and combines it with
the Gaussian process framework to propose a stochastic embedding of the IMF
basis functions. The proposed model foresees each IMF distributed according to
a Gaussian process, whose convolution will reproduce the Gaussian process of
the original signal. Specifically, both the original signal stochastic process mean
and kernel functions will be equivalent to the sum of the mean functions and the
sum of the kernel functions of the IMFs’ stochastic processes, respectively. The
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idea of such a model relies on the fact that the convolution of Gaussian processes
will produce a Gaussian process and an additive structure for both mean and
kernel functions of the stochastic process of the original signal.
This intuition will be further extended to define an alternative stochastic embed-
ding of the EMD bases, which proposes the construction of new “band-limited”
bases derived from the instantaneous frequencies of the original IMFs. The criti-
cal issue tackled with this model is the phenomenon known as mode-mixing, often
encountered when the EMD sifting procedure is applied to a signal and does not
identify basis functions that carry a unique frequency mode. Hence, a single
IMF might carry multiple frequency components. The idea developed with this
second stochastic embedding aims to determine an adaptive, optimal partition of
the obtained Hilbert spectrum and regroup the IMFs’ sample points according to
the location of their instantaneous frequencies’ sample points. Hence, if mode-
mixing is present, the IMFs whose IFs belong to the same frequency partition
will be aggregated, and a new band-limited IMF will be defined.
The central component required to achieve such stochastic embedding is a par-
tition of the Hilbert spectrum that is a priori unknown. This is constructed
through an optimisation method known as the cross-entropy method and pre-
sented in the subsection below.

1.2.5 The Cross-Entropy Method
The construction of the second stochastic embedding proposed in this thesis
requires the definition of an optimal partition of the instantaneous frequencies
domain, which is achieved through the optimisation method known as the cross-
entropy method. The idea is that IF sample points derived from the original IMF
bases functions might fall within the same frequency regions and hence should
be modelled accordingly, since they capture an equivalent oscillating mode of
the original signal. As a result, a new set of Quasi-IMF (QIMF) bases will be
defined, called “band-limited” IMFs, by aggregating the original IMFs according
to the location of their IFs within the regions of the computed partition. The
intuition behind such a partition model is to characterise particular adaptive
local bandwidths of the IMFs’ frequency domain with different kernel classes
(stationary, non-stationary, etc.) in a Gaussian process setting, rather than try
to formally define the stochastic process of the instantaneous frequencies, which
may be much more involved. The formulation of this model is presented in Chap-
ter 6. The significant aspect to consider is that the desired partition of the IFs
domain is unknown a priori, and for its formulation and derivation, a stochas-
tic optimisation method is employed in this work. These two are presented in
Chapter 7.
The formulation of the problem requires that a partitioning rule of the instan-
taneous frequency domain derived from the IFs sample points and an irregular
sampling that best captures each frequency region must be jointly chosen. The
algorithm selected to solve such a problem relies on a cross-entropy solution and
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is presented in Chapter 7. The final goal is to identify a partition as close as
possible to a uniform dispersal of signal energy per IMF to the sets of spectral
partitions over time and frequency. Note that this is only one possible framework;
different criteria could be considered, instead. This would imply a well-behaved
obtained EMD decomposition, capturing all the existing oscillating modes of the
original signal. The constructed procedure provides the partition by relying on
the entropy measure; specifically, the Kullback–Leibler divergence will be used.
Further explanations are given in Chapter 7.
Several everyday tasks in operations require the use of optimisation problems.
Examples could be the travelling salesman problem, quadratic assignment prob-
lem, and max-cut problem; all these correspond to combinatorial optimisation
problems (COPs), which are entirely known and static. One solution tackling
these kinds of settings is discrete event simulation so as to estimate an unknown
objective function. The cross-entropy method was first introduced by Rubinstein
and Kroese (2004) through an adaptive algorithm for estimating probabilities of
rare events in complex stochastic networks. It was soon revealed that it was also
highly efficient in solving hard COPs (Rubinstein (2001), Rubinstein (1999)).
This is achieved via a translation of the deterministic optimisation problem into
a related stochastic optimisation one and then using a rare event simulation tech-
nique, as shown in Rubinstein (1999). The procedure foresees two main stages:
(i) generate a random data sample according to a specific mechanism; (ii) up-
date the parameters of the random mechanism based on the data to produce
a “better” sample in the next iteration. Its important gain is the definition of
a precise mathematical framework for deriving fast and optimal learning rules
based on advanced simulation theory. Alternatives could be simulated annealing
(Aarts and Korst (1989)), tabu search (Glover and Laguna (1997)) or genetic
algorithms (Goldberg and Holland (1988)).
The cross-entropy method has been successful when applied to both determin-
istic and stochastic COPs. In the second class, the objective function is ran-
dom or needs to be estimated via simulation. There is an increasing interest
in the cross-entropy method, with spacing of applications to buffer allocation
(Alon et al. (2005)), or static simulation models (Homem-de Mello and Rubin-
stein (2002)), or neural computation (Dubin (2002)), or DNA sequence align-
ment (Keith and Kroese (2002)), vehicle routing (Chepuri and Homem-De-Mello
(2005)) and many others. For further reference, the reader might use Rubinstein
and Kroese (2004) and De Boer et al. (2005).
In this thesis, the cross-entropy method is employed to develop two different
algorithms to construct the partition required to formulate the band-limited
IMF basis functions. The two algorithms consider two sampling distributions;
one continuous and one discrete, to compare alternative approaches of this novel
technique constructing new bases derived from Empirical Mode Decomposition.
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1.3 Research Questions and Outline of the The-
sis

Based on the motivations and context previously discussed in Section 1.2 and
Section 1.1, the following research objectives and questions have been developed
and characterise the thesis research contributions. These will be presented from
a macro through to a micro-level of detail as follows:
To fully exploit all the facets of Empirical Mode Decomposition framework, the
first step that has to be taken corresponds to a statistical analysis of it with
the final aim of understanding how to incorporate this method in a statistical
modelling context. Such an investigation lacks in this literature and will be
beneficial for the next set of research questions strictly related to how to construct
the EMD basis or IMFs efficiently:

• Traditional time-frequency methods rely on the assumption that the un-
derlying signal is linear and stationary. Furthermore, classical Fourier-like
methods that cannot deal with non-stationarity often provide an infinite
number of basis functions that cannot be used in practical applications.
Moreover, the time-frequency resolution of these methods is subject to a
trade-off for which either time or frequency cannot be efficiently speci-
fied without the associated cost of losing information in the other domain.
Hence, the need for a method that is fully data-driven is highly required.

• How to robustly estimate and extract EMD functions to obtain a reliable
basis if the underlying signal is subject to high levels of non-stationarity
and non-linearity. Furthermore, hoow to formally define the EMD in a
formal mathematica expression.

• In their work, Huang et al. (1998) highlighted that one area of future
research needs to focus on the ideal class of functions used to represent the
general IMF basis. Several choices are available, and one of the research
questions of this thesis is showing the different representations available in
the literature and how they might influence the decomposition. A further
question is how to estimate the parameters defining this class of functions
effectively and concisely. The algorithm that is used to extract each basis
sifts the original signal several times until a certain stopping criterion is
satisfied. The selected functional representation for the IMFs will optimise
the number of sifting, and the number of IMFs identified since this is not
unique.

• Another critical point in the extraction of the IMFs is the stopping criterion
selected within the sifting procedure. Several options have been proposed,
each affecting the final decomposition and, hence, the algorithm’s conver-
gence in finding an accurate IMF. The question concerns the selection of
the best stopping criterion for the sifting procedure to produce the best
IMF set. This means that the sifting procedure will not sift too many
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times and lose some of the physical meaning of an IMF basis, and, con-
temporarily, it will not sift too few times without identifying a real IMF.
A study of how the different stopping criteria influence the decomposition
will be, therefore, provided.

• As highlighted by Huang (2014), the EMD is a “Reynolds type” decompo-
sition, which means that it is used to extract variations from the data by
separating its mean (expectation value), in this case, the local mean, from
the fluctuations by spline fits. Therefore, a system of nested equations can
be built, and each IMF is represented as a linear combination of the spline
coefficients of the original signal. One of the resolved research questions in
this thesis presents such a system. This further justifies the importance of
the chosen representation of the original signal since it will be the one also
expressing each IMF.
A relevant point related to the instantaneous frequency and how to com-
pute it in closed form. After having a selected a functional form for the
representation of an IMF basis function, the Hilbert Transform of that
representation is calculated. Challenges may arise in this case since the
HT integral may not converge to a finite quantity and, consequently, the
resulting instantaneous frequency will not exist and cannot be expressed
in closed form. This work has been achieved in the literature by el Malek
and Hanna (2020). One of the point raised in this thesis is to provide a
stastical interpretation for it and how to use it within machine learning
classification tasks.

The first part of the thesis addresses the above research questions and contributes
to introducing the EMD to a statistical framework developed in the second part.
Furthermore, it will provide a deep understanding of the EMD to then formulate
an EMD feature library for non-stationary and non-linear signals whose insights
will be precious to tackle different classification tasks.
The second set of research questions developed in the second part of the thesis
tackles the problem that the EMD is a pathwise deterministic decomposition
method often used to solve problems that are instead stochastic. The aim is to
produce a stochastic embedding representation that deals with non-stationary
processes. To attain such a goal, a Gaussian Process embedding of the EMD
representation of the signal is performed by proposing a new set of models dealing
with multiple assumptions in terms of the derived distributions for the IMF basis
functions and the residual tendency. In this respect, the proposed method will
offer a natural construction of a multi-kernel Gaussian Process for the stochastic
process of the original signal with a covariance function corresponding to the
sum of the covariance matrices of the individual IMFs. Chapter 4 will present
kernel methods in order to study kernel functions available that could be used in
this setting. This framework is developed in the second part of the thesis. The
stochastic embedding will be presented in Chapter 6.
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Chapter 5 will instead introduce a machine learning method called the Support
Vector Machine. One of the objectives of this thesis is to test the produced EMD
feature library above mentioned to solve different classification tasks affected by
non-stationary signals and time-varying properties. In this way, these features
can be interpreted at a statistical level and provide valuable insights for the
application of interest.
Part of this second set of research questions will construct a second class of
EMD stochastic embedding whose aim is to characterise the stochastic process
of specific frequency bandwidths of the original signal by using the observed in-
stantaneous frequencies. The formulation of such a model will be achieved by
solving an optimisation method by computing an optimal partition of the time-
frequency plane, which will compute the distance between an ideal distribution
assumed for the frequency bandwidths and the observed instantaneous frequen-
cies. The optimisation method employed is called the cross-entropy method and
will be presented in Chapter 7.
The third part of this thesis deals with a set of research questions linked to the
application: speech signals. The first application deals with Automatic Speaker
Verification technologies and aims to differentiate utterances of a real voice versus
a synthetic one. The EMD feature library derived will be used in this setting
to solve such a classification task. Furthermore, the advantage of using such a
non-stationary technique will provide interpretable features for the classification
problem. The use of the SVM will allow for a multi-kernel framework empowering
the classifier in dealing with non-stationary speech signals. Results show that the
EMD combined with traditional speech analysis methods outperforms standard
techniques. This part is presented in Chapter 8.
Chapter 9 deals instead with the problem of detecting Parkinson’s disease through
speech signals. This Chapter will test the developed stochastic embedding and
combine it with a novelty use of the Fisher kernel, which will provide a data-
adaptive fitting and testing procedure. Results show that the stochastic embed-
ding strongly outperforms standard speech methods.

1.4 Glossary and notation
The following notation is used throughout:

I is the indicator function;
s(t) discrete-path realisation signal; s̃(t) continuous analog signal representation;
S(t) the stochastic process of the signal s(t);
S̃(t) the stochastic process of the approximated signal s̃(t);
E [·]the expectation operator;
Cov [·, ·]the covariance operator;
ρ [·, ·] is the autocorrelation function operator;
l corresponds to a realization of one IMF
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L is the total number of convexity changes of the original signal;
|{ · }| represents the cardinality set;
γ(t) represents the l-th Intrinsic Mode Function (IMF) of the EMD basis func-
tions;
r(t) residual obtained with the EMD;
ωl(t) is the instantaneous frequency of the k-th IMF;
 complex unit;
γ̃l(t) analytic extension of γl(t)
F [·] is the Fourier transform;
S(f) = F [s(t)] is the Fourier transform of the signal s(t);
HT [·] is the Hilbert transform;
CWT [a, b] is the continuous Wavelet transform;
ψ(t) is the basic wavelet;
W [t, ω] is the Wigner-Ville distribution;
Re (·) and Im (·) the real and the imaginary opeartor respectively;
f is the raw data sampling frequency (radians)
ω is the raw data sampling frequency (Hz)
ω̌ is the sampling frequency of the constructed IMFs (Hz) (according to Nyquist
rule)
H represents the Hilbert space of transformed features; φ is the Mel-scale fre-
quency
H(·) represents the Shannon entropy; Fourier basis or harmonic function or har-
monic will be used with the same meaning;
m(l) is a Mel Frequency Cepstral Coefficient;
k(xi, xj) represents a kernel function;
K represents the Gram Matrix associated to a kernel function; 〈·, ·〉 is the inner
product;
M(θ, τ) is the characteristic function;
A(θ, τ) is the ambiguity function;
z(t) is the Gabor’s complex signal or analytical signal;
a(t) is the instantaneous amplitude;
θ(t) are the instantaneous phase;
z∗ is the complex conjugate;
H(ω, t) is the Hilbert Spectrum;
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Chapter 2

Time-Frequency Analysis

Data analysis plays a central role in both theoretical and applied research. Sev-
eral methodologies have been developed in statistics to perform such a task
within various contexts and application domains. The chosen method that is
deemed most appropriate for a given context will depend on data features and
assumptions the data science is willing to assume when developing a model.
Many perspectives exist, and a large variety of benchmark models have been
exploited. However, a specific area is looking at data that forms the focus of
this research work and offers significant benefits in the time-series and stochastic
process context: time-frequency analysis.
The time representation of a signal is fundamental to detect variations of the
process over time, but to deeply understand its features, another representation
also plays a central role: the frequency content. A rich literature that studies
the characteristics and relationship between time-domain analysis and frequency-
domain analysis of signals has been established over the last fifty years of research
in statistics, signal processing and applied probability. More recently, there has
been a renaissance of these ideas appearing in new contexts in the machine
learning literature. As a result, the relationship between time and frequency of
a signal has become central and provided many advantages. Different tools to
switch from one domain to the other have been introduced and investigated.
Within his book, (Cohen, 1995) showed why time-frequency analysis is relevant
by offering a list of examples of particular interest. Either domain by itself does
not provide enough information about the existence of frequencies and the time
at which they happened. This is true for the spectrum representation, where it
is possible to know which frequencies existed, but the time location cannot be
detected. Spectra change over time for two main reasons. Firstly, frequencies
come from physical phenomena that may differ over time. Secondly, the propa-
gation of waves within a medium depends on the signal frequencies. As a result,
the detection of when they existed is particularly relevant for researchers and
scientists. Thus, a joint time-frequency distribution is crucial to determine what
is happening with respect to the analysed phenomenon: locating the frequencies,
how long they last and their intensities.
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The first one introducing the concept of frequency representation was Fourier,
with the final aim of analysing the heat equation. The superimposition of a
frequency over another, resulting in a signal expressed as a sum of sinusoidal
waves called harmonics, is likely one of the most critical mathematical defi-
nitions (1807). Several variations were built (Fast Fourier Transform, Short
Fourier Transform, the spectrogram, etc.), and similar methods were presented,
such as the Wigner distribution (later become the Wigner-Ville distribution), the
Wavelet analysis, the Evolutionary Spectrum. The idea beyond all these trans-
forms is to identify a basis that is an a priori basis able to deal with intrinsic
data properties (stationary, non-stationary, linear, nonlinear, etc.).
The idea of this Chapter is to introduce the fundamental techniques of time-
frequency and their power developed in data analysis through their definitions,
properties and primary use. The first part of the Chapter reviews some of the
statistical data properties and definitions usually sought (or checked) when real
datasets come into play. Afterwards, the time-frequency methods are classified
into main categories: stationary and non-stationary. In the stationary ones,
the one presented is the Fourier Analysis. Several mathematical properties are
introduced since the reader might benefit in understanding the central concepts
behind such a technique and how this differs from the EMD introduced later
in Chapter 3. The non-stationary time-frequency methods presented are the
Short Time Fourier Transform, the Wavelet Transform and the Wigner-Ville
distribution. Last, a discussion on the time-frequency resolutions of the discussed
transforms is provided. This is highly central to motivating the need for the
research work conducted in this thesis.

2.1 Statistical Data Properties
This section reviews some core definitions of attributes that characterise phenom-
ena often observed in real datasets. The purpose is to explain the main concepts
required to understand and compare the reviewed time-frequency methods in this
thesis. Most of the proposed methodologies can only deal with non-stationarity or
non-linearity of the data system, but not with both contemporaneously. There-
fore, the concept of stationarity, linearity and non-stationarity are presented. The
assumption of stationarity is a common assumption of many statistical tools, and
therefore even non-stationary processes tend to be transformed into stationary
ones. Of course, this assumes the type of non-stationarity is sufficiently simple
that pre-determined simple transformations may remove it. By being a property
of stochastic processes, lets first consider the definition of a stochastic process:

Definition 2.1.1 (Stochastic process). A stochastic process {..., S(1), S(2), ...,
S(t), S(t + 1), ...} = {S(t)}∞t=−∞ is a sequence of random variables indexed by
time t.

In most applications the time index is a regularly spaced index representing
calendar time. Within time series analysis, the ordering imposed by this index
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is relevant to capture possible temporal relationships. The time index can either
be discrete (t ∈ N) or continuous (t ∈ R). In the latter case the sequence
corresponds to an uncountable infinite number of random variables. A realisation
of a stochastic process with T observations in the sequence of observed data will
be denoted by:

{S(1) = s(1), S(2) = s(2), ..., S(T ) = s(T )} = {s(t)}Tt=1 (2.1)

Next, the concept of stationarity of a time series is discussed. Roughly speaking,
stationarity implies time-invariance of the joint probability distribution of the
data generating process (strict stationarity), or just of its first two moments
(weak stationarity). Other “levels” of stationarity could be considered up to
an order m, where m represents the first m moments of the joint probability
distribution. The definitions of both strict and weak stationarity are provided:

Definition 2.1.2 (Strict stationarity). A random process {S(t)} 1 is said to be
strictly stationary if for all k ∈ N, τ ∈ Z and (t1, t2, ..., tk) ∈ Zk,

(S(t1), S(t2), ...., S(tk), ) d= (S(t1+τ ), S(t2+τ ), ...., S(tk+τ ), ) (2.2)

where d= defines equality in distribution.

This means that all the distributions have the same mean, variance, etc, assum-
ing that these quantities exist. However, strict stationarity does not make any
assumption about the correlation between S(t), S(t1), ..., S(tr), other than the
correlation between S(t) and S(tr) only depends on t− tr and not on t. That is,
strict stationarity allows for general dependence between the random variables
in the stochastic process. There might be processes that instead of being defined
through this first definition, they rely instead on the following:

Definition 2.1.3 (Weakly stationarity). A random process {S(t)} is said to be
weakly stationary (or covariance stationary) if for all τ, t ∈ Z,

E [S(t)] = µ (2.3)

Cov [S(t), S(t− τ)] = Cov (τ) (2.4)
with Cov (0) <∞.

Strictly stationarity implies weakly stationarity, but not the converse. In the
above defintion, eqn. 2.4 represents the autocovariance function of the random
process {S(t)}. In practice, the covariance between two instances S(t1) and S(t2)
at two different times t1 and t2 of a stochastic process is called autocovariance.
A formal definition is given as follows

Definition 2.1.4 (Autocovariance Function). The autocovariance function of a
random process {S(t)} is the covariance between S(t) and S(t− τ) defined as

Cov [S(t), S(t− τ)] = E [S(t)− E [S(t)]] E [S(t− τ)− E [S(t− τ)]] (2.5)
1This notation is equivalent to {S(t)}∞t=∞.
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As shown in eqn. 2.4, for stochastic processes which are stationary at least up
to order m = 2, the autocovariance function only depends on the difference
τ = t− (t− τ) and can therefore be defined as Cov(τ). A further quantity often
used in the study of a stochastic processes is the autocorrelation function.

Definition 2.1.5 (Autocorrelation Function). The autocorrelation function of a
random process {St} is defined as

ρ [S(t), S(t− τ)] = Cov [S(t), S(t− τ)]√
Var [S(t)]

√
Var [S(t− τ)]

(2.6)

As for the autocovariance function, if the stochastic process is stationary at least
up to orderm = 2, then the autocorrelation function is a function of τ = t−(t−τ)
and can therefore be defined as ρ(τ).
Another assumption that most data analysis methods rely on is the concept of
linearity. They take into account datasets by supposing that they come from a
linear system. Mathematically, a stochastic process {S(t)} is defined as linear
according to the following definition.

Definition 2.1.6 (Linear Stochastic Process). A linear stochastic process {S(t)}
is a process that can be written on the form

S(t) = ε(t) +
∞∑
i=1

ψi ε(t− i) =
(

1 +
∞∑
i=1

ψiB
i

)
ε(t) = ψ(B)ε(t) (2.7)

where ε(t) is i.i.d. with E [ε(t)] = 0, E [ε(t)]2 <∞ and ∑∞0 ψi <∞.

Note that B represents the backward shift operator such that BS(t) = S(t −
1), BiS(t) = S(t − i) and ψ(B)ε(t) is called the transfer function. The above
processes are often referred to Moving-Average (MA) Processes. For comparison,
the Wold’s Theorem is also provided in the following definition

Definition 2.1.7 (Wold’s Theorem). Any covariance-stationary process S(t) has
a unique representation as the sum of a purely deterministic component and an
infinite sum of white noise terms, given as

S(t) = δt +
∞∑
i=1

ψiε(t− i)

with ψ0 = 1, ∑∞i=0 ψ
2
i < ∞ and the terms εt defined as the linear innovations

S(t)−E[S(t)|Ht−1] where E[·] denotes the linear expectation or projection on the
space Ht−1 that is generated by the observations S(s), s ≤ t− 1

Hence, a linear stochastic process is a process that satisfy the above represen-
tation and Wold’s theorem. This means that it can be re-expressed uniquely
as the sum of purely deterministic component and a non-deterministic compo-
nent given as the infinite sum of withe noise terms with a linear representation
coefficients. To identify a non-linear process instead, one should consider any
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process that cannot be expressed in the above form uniquely. There are many
covariance-stationary processes that are not linear since the innovations are not
independent (though white noise) or the absolute coefficients do not converge.
There is no definite definition for nonlinearity provided. In Potter (1999), the
three main model dealing with nonlinearity are described. The reader might
refer to that for further details.
The concepts of a stationarity and linearity of a stochastic process have been
introduced. What happens in practice is that these assumptions on a process
are idealised and do not hold in real-world applications. It is indeed likely that
the investigated stochastic process happens to be strongly non-linear ad non-
stationary. A stochastic process is said to be non-stationary if its mean and
autocorrelation functions averaged over the sample functions (and not over time)
change with respect to a general time t. Therefore, it is highly challenging to
detect properties of such processes since they are depending on time and changing
over its domain. Given these issues in defining a general technique to analyse
non-stationary data, several solutions have been considered. One example is
that methodologies of a specific class of stochastic processes have been developed.
Another solution is considering piecewise stationary data which is a method that
splits non-stationary data in intervals that are approximately locally stationary
so that they can be analysed approximately under the stationarity assumptions
just defined above. Otherwise, it is possible to factorise the sample functions of
some non-stationary processes in one of the following ways:2

s(t) = a(t) + u(t)
s(t) = a(t) u(t)
s(t) = u(tn)

where u(t) is a sample function coming from a stationary random process {u(t)}
and a(t) is a deterministic function repeating over each function. The three
equations correspond to: (1) decomposition of trend into non-stationary and
stationary components, (2) decomposition of volatility into non-stationary and
stationary components and (3) non-stationarity from a time dilation or time-
scaling effect. It is possible to combine together the above functions and fit
different kind of nonstationary data. The idea of this section is providing a
general overview of different situations that can be found within data analysis.
Three main properties have been described that may lead to the employment of
different methodologies that are going to be presented in the next section.
A critical remark has to be taken into account when reading the following sec-
tions. The concepts of a stochastic process and stationarity, linearity, and its
autocovariance function have been presented. This is required to understand
and describe the data properties derived from such stochastic processes. In prac-
tice, scientists directly deal with realisations of stochastic processes, which could

2However, it has been provided lot of evidence proving that working with non-stationary
data creates several issues in terms of estimation and forecasting. Since physical phenomena
tend to be non-stationary, a well-defined technique able to deal with them is highly required.
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be considered deterministic if the random component and the distribution of
the process are instead ignored. Therefore, the presented time-frequency meth-
ods are all introduced for a deterministic and continuous signal s(t). This is
highly relevant since, in Chapter 3, the primary method of this thesis, i.e. the
Empirical Mode Decomposition, is also introduced with this perspective. The
stochastic embedding taking into account the randomness of the signal, will then
be introduced in later Chapters.

2.2 Stationary Time-Frequency Methods
One of the most common goals of data analysis is synthesizing a general set of
data through the use of an elementary basis. This procedure can be considered in
mathematics for deterministic functions as to expressing a general function f as
a linear combination of elementary basis functions. To provide an example, the
power functions 1, s, s2.. can be exploited to summarise an arbitrary function
f (s) as a linear combination of the power series as follows:

f (s) = a0 + a1x+ a2s
2 + ... (2.8)

where each coefficient ak is by the Maclaurin formula:

ak = f (k) (0)
k! , k = 0, 1, 2, 3.. (2.9)

By observing the general equation for the coefficients, it is evident that it can
only work if f, f ′, f ′′.. are defined at s = 0. Therefore, even if a large number of
functions are part of this set, not every function can be defined through the use
of this specific basis. By looking at this simple example, it has to be noted that
defining a basis and then trying to synthesize an arbitrary function is a process
that may raise several issues (depending on the basis itself, the arbitrary function,
how the basis fits the function, assumptions made on both, etc.). The extension
of these concepts to stochastic processes or sample paths/ observed trajectories of
such processes i.e. time-series brings additional levels of complexity. By focusing
on time-frequency analysis as a framework, several basis have been introduced.
As discussed previously, the Fourier method was the first approach to shed light
on the concept of frequency analysis and hence the possibility of switching the
domain. The main problem of this transform, however, is created by strong
required assumptions. As a consequence, further methods have been developed
within the literature for non-stationary data such as the spectogram, the Wavelet
analysis or the Wigner-Ville distribution. These techniques overtake the Fourier
analysis in most of the applications since they might be considered as variations of
the original Fourier spectral analysis. Even if they provide better performances,
data often present both non-stationary and non-linearity; thus, several issues are
still present and need to be solved. An alternative to all these methodologies
is the Huang-Hilbert Transform. The innovation of this procedure is the main
approach in defining a basis for the analysis of data: it is an adaptive basis strictly
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depending on data without the need of strong mathematical assumptions. This
procedure is the main focus of this thesis and will be introduced in Chapter 3.
The section is organised as follows: the first part is entirely dedicated to the
Fourier transform and the explanation of its main difficulties. Then, non-stationary
methods are presented3 by underlying lacks in their possible data applications.

2.2.1 The Fourier Analysis
The basic idea of the Fourier transform is the decomposition of a signal into the
sum of sinusoids characterised by different frequencies. Therefore, the original
signal can be interpreted as the sum of waveforms distinguished by different
frequencies (and hence their amplitudes). The mathematical relationship of this
concept can be expressed as follows:

S(ω) = F [s(t)] =
∫ ∞
−∞

s (t) e−2πωtdt (2.10)

where s (t) is the signal that has to be decomposed into the sum of sinusoids,
F [s(t)] is the Fourier transform of s (t) and  =

√
−1. Note that throughout

the thesis, the frequency units will be interchangeably denoted in radians by f
and in hertz by ω where the conversion between units is given by f = 2πω. It is
common practice to define the above integral with f(x) or f(t) instead of s(t). In
this thesis, the considered signal will always be a function of time and therefore
defined as s(t).
Usually, periodic functions are associated with the term Fourier series instead
of Fourier transforms. However, it has been shown that the Fourier series is a
special case of the Fourier transform. While, if the original signal is not periodic,
then the Fourier transform is a continuous function of frequency. This results
in synthesising s (t) as the weighted infinite sum of an infinite number of bases
terms, one for each frequency in the infinite continuum of frequencies required in
this commonly arising case. This is the formalisation of the concept previously
defined when talking about deformed signals in section 1.2. The point is that the
Fourier transform expresses a signal within the domain of frequency. It should
carry precisely the same information as the original waveform with the advantage
of looking at it from a different perspective. Several applications have been
exploited as a problem-solving tool in analysing data by assuming another point
of view.4 In the following subsections, the Fourier integral is firstly introduced for
a continuous signal s(t). Then, its inverse transform is presented to obtain the
original signal s(t) again from the frequency domain. Afterwards, the conditions
for the existence of the Fourier integral are discussed to explain which signal
s(t) will be suitable for such a transform. Finally, the main Fourier transform
properties are introduced.

3The wavelet analysis, the Wigner-Ville distribution and the spectrogram were chosen as
the most used in time-frequency analysis for non-stationary signals.

4Some examples of applications are: linear systems, antennas, optics, random process,
probability, quantum physics, boundary-value problems, etc.
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The Fourier Integral

Given a function of the real variable t the following integral can be formed:

S(ω) = F [s(t)] =
∫ ∞
−∞

s (t) e−j2πωtdt (2.11)

If this exists for every real value of the parameter f , then it defines a function
F [s (t)] known as the Fourier transform or Fourier integral of s (t).5 The Fourier
transform can be considered as a complex quantity given by:

S(ω) = Re (ω) +  Im (ω) = |S(ω)|eθ(ω) (2.12)

where Re (ω) and Im (ω) define the real and the imaginary part of the Fourier
transform respectively. |S (ω) | represents the amplitude of the Fourier spectrum
of s (t) and is given by

√
Re (ω)2 + Im (ω)2. Finally, θ (ω) represents the phase

angle of the Fourier transform and is given by tanh−1
[

Im(ω)
Re(ω)

]
.

Fourier Transform Properties.

Having defined when the Fourier Integral is well defined, it is now worth to con-
sider the basic properties that such an integral transform respects. The Fourier
transform implies the respect of some basic properties that are listed within this
section. As before, Brigham and Morrow (1967) is followed.

• Linearity
If s (t) and r (t) have Fourier transforms defined respectively as S (ω) and
R (ω) then the sum s (t) + r (t) has Fourier transform equal to the sum of
their related Fourier transforms S (ω) +R (ω).∫ ∞
−∞

[s (t) + r (t)] e−j2πωtdt =
∫ ∞
−∞

[s (t)] e−j2πωtdt+
∫ ∞
−∞

[r (t)] e−j2πωtdt =

= S (ω) +R (ω)
(2.13)

• Symmetry
If s (t) and S (ω) are a Fourier transform pair, then this relationship is
establishes as:

s (−t) =
∫ ∞
−∞

S (ω) e−j2πωtdω (2.14)

and by interchanging the parameter t and f as follows:

s (−ω) =
∫ ∞
−∞

S (t) e−j2πωtdt (2.15)
5Remark that t defines time and f is the index indicating the frequency. Hence, F [s (t)] is

function of the frequency while s (t) is determined as a function of time.
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• Time Scaling
If S (ω) is the Fourier transform of s (t), then by scaling the function of a
real parameter k > 0, i.e. s (kt), its Fourier transform is given by:∫ ∞

−∞
s (kt) e−j2πωtdt =

∫ ∞
−∞

s (t′) e−j2πt′(
ω
k )dt′

k
= 1
k
S
(
ω

k

)
(2.16)

where t′ = kt. If k < 0, then the result is 1
|k|S

(
ω
k

)
given a change of the

sign. If impulses are taken into account, then the result is:

δ (at) = 1
|a|
δ (t) (2.17)

• Frequency-scaling
If S (ω) is the inverse Fourier transform of s (t), then the inverse Fourier
transform of F (kω) (with k real constant) is given by:∫ ∞

−∞
S (kω) e−j2πωtdf =

∫ ∞
−∞

s (ω′) e−j2πω′(
t
k)dω

′

k
(2.18)

= 1
|k|
c
(
t

k

)
(2.19)

where ω′ = kf . If impulses are the functions of interest, then the result is:

δ (aω) = 1
|a|
δ (ω) (2.20)

• Time-shifting
By shifting s (t) of a constant t0, the Fourier transform is:∫ ∞

−∞
s (t− t0) e−j2πdt =

∫ ∞
−∞

s (s) e−j2πω(s+s0)ds (2.21)

= e−j2πωt0
∫ ∞
−∞

s (s) e−j2πω(s)ds (2.22)

= e−j2πft0S (ω) (2.23)

where s = t− t0.

• Frequency-shifting
By shifting S (t) of a constant ω0, the inverse Fourier transform is:∫ ∞

−∞
S (ω − ω0) e−j2πωtdt =

∫ ∞
−∞

S (s) e−j2πt(s+ω0)ds (2.24)

= e−j2πtω0
∫ ∞
−∞

S (s) e−j2πtsds (2.25)

= e−j2πtω0s (t) (2.26)

where s = ω − ω0.
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Some comments need to be pointed out after introducing the Fourier analysis,
its existing conditions and properties. Given its expressive power and simplic-
ity, the Fourier transform has been highly exploited in time-frequency analysis.
Offering another perspective in analyzing a signal as the sum of sinusoids has
provided several advantages within data analysis. The primary assumption to
make the decomposition valid is stationarity of data; an overview of the concept
of stationarity has been provided. Nevertheless, data obtained by observing real
phenomena (especially physical phenomena) can often come from non-stationary
processes. Therefore, the application of the Fourier transform generates unre-
liable results: the decomposed signal does not synthesize the original one, and
extra harmonics are often needed. These challenges make the Fourier transform
inefficient for non-stationary data.
Fourier transform-based alternative methods have been constructed to apply it
to non-stationary data as the Fast Fourier Transform or the Short Fourier Trans-
form. However, issues have still been found. Another developed option may be
considering piecewise stationary processes; the problem here is that the time
interval taken into account often seems too short due to the need for approxima-
tions.
The second strong assumption that makes the Fourier analysis of limited use
is linearity. Non-stationary data often derive from a non-linear system; thus,
they usually deviate their classical wave-profile of sine or cosine. Given the
concept of the superimposition of trigonometric functions as a base for the Fourier
transform, if any deformation is present because of non-linear data, additional
spurious harmonics are again needed.
To sum up, the Fourier analysis has been popular for its simplicity. However,
new methodologies able to deal with non-stationary data and non-linear systems
are highly needed. As an answer to this requirement, the following section has
been introduced.

2.3 Non-stationary Time-Frequency Methods
The following methods have been developed within the literature in order to deal
with non-stationary data. Many of them depend on the Fourier analysis or are
based on similar principles. Therefore, the non-linearity and non-stationarity of
the data will still represent a challenge. Such a fact encloses the main reason for
the need for an adaptive basis decomposition (as the Huang-Hilbert Transform
later introduced). Several methodologies could be considered. The following
are the selected methods for this thesis since widely used within the literature:
the Short Time Fourier transform, also known as the spectrogram, the Wavelet
analysis and the Wigner-Ville distribution.
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2.3.1 The Short Time Fourier Transform
The reasoning behind this transformation is taking the Fourier transform and
making it better suited to the analysis of non-stationary data. The basic con-
cept is building a piecewise stationary process and then considering limited-
width Fourier spectral analysis over time. The method consists of moving this
window through the whole domain of the signal and then get a time-frequency
distribution. A graphical display of the Short Time Fourier Transform (STFT)
magnitude is called the spectrogram of the signal.
The main challenges of this methodology find their roots in, firstly, choosing the
window size combined with the time scale of the signal. Secondly, the length
of the signal may also arise issues since it could be too short to embedding
the authentic features of the analysed physical phenomenon. A further critical
point is a trade-off given by the localisation of changes over time: the window
should be narrow enough to detect an event precisely; conversely, synthesising
the frequency requires a bigger time span. An effect of narrowing the window too
highly is the identification of meaningless spectra of the signals obtained from the
decomposition of the original one. Furthermore, as in the Fourier transform, this
method uses an a priori basis, which does not consider data-driven characteristics.
To define a short duration time signal, a window function u (t) centered at time
t is exploited; the idea is multiplying it times the original signal by assigning
more weight to that part and less to the rest of it. The modified signal can be
determined as:

st (τ) = s (τ)u (t− τ) (2.27)
The new signal is a function of two different times: window index and time index,
given by:

st (τ) =
s (τ) for τ near t

0 for τ far away from t
(2.28)

By looking at the above definition, it can be observed that the decomposed signal
will be the same as the original around t, while 0 for the times far from it. As
a result, the word “ window ” should be clarified since the concept looks at
one piece by time of the original signal and analyse its properties by making it
stationary. Since the modified signal emphasises the signal around the time t,
the Fourier transform will reflect the distribution of frequency around that time:

S (ω) = 1√
2π

∫
e−ωτst (τ) dτ (2.29)

Note that, compared to the original definition in eqn. 2.11, the Fourier transform
is defined by taking 2π in front of the integral. By substituting 2.27 within it:

S (ω) = 1√
2π

∫
e−ωτs (τ)u (t− τ) dτ (2.30)

Therefore, for each time t there is an energy density spectrum given by

P (t, ω) = |S (ω) |2 =
∣∣∣∣∣ 1√

2π

∫
e−ωτs (τ)u (t− τ) dτ

∣∣∣∣∣
2

(2.31)
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The mathematics community refers to the above as the short time Fourier trans-
form or STFT. By looking at the spectra as a whole, then the time-frequency
distribution of the original signal is given. This may be named differently but is
generally indicated as the “ spectrogram ”. The final purpose of the STFT is to
study frequencies that may be of particular interest and provide further insights
on properties of the signal. However, the same reasoning could be done from a
time perspective: by employing a window U (ω) and moving it through the spec-
trum, the time transform is applied. This is indeed the inverse of the Fourier
transform and usually referred to as the short-frequency Fourier transform. If
the time window is short, then the frequency window U (ω) is big and vice versa.
In the former case, the spectrogram is called a broadband spectrogram, while in
the latter is a narrowband spectrogram. General properties of the spectrogram
are given as follows:

• Characteristic function
The characteristic function of the spectrogram is obtained as follows:

M (θ, τ) =
∫ ∫

|S (f) |2eθt+τωdtdω (2.32)

= As (θ, τ)Au (−θ, τ) (2.33)

where As (θ, τ) represents the ambiguity function of the signal and is given
by:

As (θ, τ) =
∫
s∗
(
t− 1

2τ
)
s
(
t+ 1

2

)
ejθtdt (2.34)

and Au (−θ, τ) is the ambiguity function of the window defined as the above
by replacing s (t) with u (t).

• Total energy
The total energy of the spectrogram is computed by evaluating the char-
acteristic function at zero. Hence, it is given by:6

E =
∫ ∫

P (t, ω) dtdω = M (0, 0) (2.35)

= As (0, 0)Aω (0, 0) (2.36)

=
∫
|s (t) |2dt×

∫
|u (t) |2dt (2.37)

It is worth noting that if the energy of the window is resulting to be one
(by choosing an appropriate window) then the energy of the spectrogram
equals the energy of the signal.

• Marginals
6The total energy results from integrating over all time and frequency. This computation

is a general rule to obtain it.
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The marginal of time is computed by integrating over the frequency:

P (t) =
∫
|S (f) |2dω (2.38)

= 1
2π

∫
s (τ)u (τ − t) s∗ (τ ′)u∗ (τ ′ − t) e−f(τ−τ ′)dτdτ ′df

=
∫
x (τ)u (τ − t) s∗ (τ ′)u∗ (τ ′ − t) δ (τ − τ ′) dτdτ ′

=
∫
|s (τ) |2|u (τ − t) |2dτ

=
∫
A2
s (τ)A2

u (τ − t) dτ

It is possible to deal with the same procedure for the marginal frequency
and obtain the marginal frequency as:

P (ω) =
∫
B2 (ω′)B2

H (ω − ω′) dω′ (2.39)

where B(ω) represents the spectral amplitude. It can be observed that the
marginal of the spectrogram do not generally respect the correct marginals,
namely |s (t) |2 and |S (ω) |2,

P (t) 6= A2 (t) = |s (t) |2 (2.40)

P (ω) 6= B2 (ω) = |S (ω) |2 (2.41)

This results from the fact that the spectrogram spreads and blurs the en-
ergy distributions of the window with the ones of the original signal. As a
result, the time-frequency representation tends to be unreliable. It it im-
portant to point out that the time marginal only depends on the magnitude
of the window and the signal and not on the phase. Likewise, the frequency
marginal is only connected to the amplitudes of the Fourier transforms.
The next property is caused by this last feature of the marginals.

• Averages of Time and Frequency Functions
Since both time and frequency marginals do not respect the marginals
as per the statements in Equations (2.40) and (2.41), then any average
measure of time and frequency will always be biased. This can be proven
as follows:

E [g1 (t) + g2 (ω)] =
∫ ∫
{g1 (t) + g2 (ω)}P (t, ω) dωdt (2.42)

6=
∫
g1 (t) |s (t) |2dt+

∫
g2 (ω) |S (ω) |2dω (2.43)
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• Localization trade-off
As previously introduced, one of the main problems related to this method
is the localization of changes over time. A narrow time window is required
to pick a specific event. On the other hand, a refined frequency detection
is given by a narrow frequency window. However, they cannot be both
narrow simultaneously. Therefore, the need of a trade-off in the choice of
the windows is suggested. It is a procedure that depends on the signal
itself and on the window as well.

• Number of windows
It has been proven that the consideration of more windows has brought
many advantages in detecting specific times and frequencies. Hence, de-
pending on the studied problem, there might be a different solution related
to the number of the chosen windows.

The short-time Fourier transform has been discussed within this section since it is
often exploited as a solution for working with non-stationary processes. Several
disadvantages have been found. The localisation trade-off with the lack of a
mathematical solution regarding the sliding window setting are some of them
and profoundly affect such a method. It is a heuristic procedure, rigorously
depending on the dataset. The most relevant issue is represented by the fact
that this is not an a posteriori method. The importance of this last point will
be further explained in the followings Chapters.

2.3.2 The Wavelet Transform
The Wavelet transform is an alternative transform to the STFT that tries to
resolve issues with the uncertainty associated with window selection in either
time or frequency domains. It has a high resolution in both time and frequency
domains. Hence, it does provide both information about the frequencies present
in a signal and at which time these frequencies have occurred. As presented be-
low, this is accomplished through the employment of different scales. There is an
essential difference between the STFT and the Wavelet transform. In the STFT
and the Wavelet transform, the frequency resolution is directly proportional to
the window size. However, in the Wavelet transform, a centre frequency shift is
required along with a window size change (time scaling).
A fundamental assumption made on the signal s (t) is that it has to be square
integrable as follows: ∫ ∞

−∞
s2 (t) dt <∞ (2.44)

which is equivalent to writing s (t) ∈ L2 (R).7

The Wavelet transform, similarly to the STFT, maps a time function into a
two-dimensional function of a parameter a, named the scale (or dilation factor),

7"Note that a dc signal is not an L2 (R) function, neither a pure sinusoid. However, all
functions of finite magnitudes and magnitudes and compact support are." (Chan 1995).)
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and a factor τ , called the translation. The parameter a scales the function by
compressing it or stretching it, while the parameter τ controls the function along
the time axis. The continuous wavelet transform of a signal s (t) is defined as:

CWT (a, τ) = 1√
a

∫ ∞
−∞

s (t)ψ
(
t− τ
a

)
dt (2.45)

where ψ (t) is the basic or mother wavelet function and ψ ((t− τ) /a) /
√
a the

wavelet basis function, often called baby wavelets. By considering the following
change of variable at′ = t:

CWT (a, τ) =
√
a
∫ ∞
−∞

s (at′)ψ
(
t′ − τ
a

)
dt′ (2.46)

it is possible to observe the equivalence in scaling ψ (t) or s (t) in 2.45 or 2.46
respectively to get the wavelet transform.
The basic wavelet ψ (t) may be both real and complex. Therefore, the Wavelet
transform could be real or complex. If ψ (t) is complex, then its complex conju-
gate is employed in both equations 2.45 and 2.46. The difference is often related
to the requirements of the application of interest. Examples of ψ (t) are

• Modulated Gaussian (Morlet)

ψ (t) = efte−
t2
2 (2.47)

• Second derivative of a Gaussian

ψ (t) =
(
1− t2

)
e−

t2
2 (2.48)

• Haar

ψ (t) =


1, 0 ≤ t ≤ 1/2
−1, 1/2 ≤ t < 1
0, otherwise

(2.49)

• Shannon

ψ (t) = sin(πt/2)
πt/2 cos

(3πt
2

)
(2.50)

Note that, similarly to the spectrogram for the STFT, the scalogram of the
wavelet transform is defined as

|CWT (a, τ)|2 (2.51)

Given the above figures and the definition of the wavelet basis functions, the
following properties can be deduced:
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•
∫∞
−∞ ψ (t) dt = 0 i.e. they have zero dc components. Note that the dc
component stand for the “direct current” component which derives from
electrical engineering. In practice, the dc component, also referred to as dc
offset, corresponds to the zero-frequency component of a signal. This is in
contrast to the sinusoids, which “alternate”.

• They are bandpass signals.

• They decay rapidly towards zero with time (the original French word for
this property corresponds to “Ondelette”).

The first property directly derives from the admissibility condition of a wavelet,
which ensures the wavelet transform has an inverse. Consider s(t) ∈ L2(R) and
its the continuous wavelet transform given as in eq. 2.45. If ψ(t) is such that
this transform is invertible, then

s(t) = 1
cψ

∫ +∞

−∞

∫ +∞

a>0
CWT (a, τ) 1√

a
ψ
(
t− τ
a

) 1
a2dadτ (2.52)

where cψ is a constant that depends only on ψ(t) and a is positive. The constant
has value

cψ =
∫ ∞

0

|Ψ(f)|
f

df <∞ (2.53)

where Ψ(ω) is the Fourier transform of ψ(t). The above equation imposes an
admissibility condition on ψ(t). For cψ <∞, ψ(t) must be such that

|Ψ(ω)| <∞, for any f (2.54)

and Ψ(0) = 0 which implies ∫ +∞

−∞
ψ(t) = 0 (2.55)

As presented in Chan (1994), the introduced examples for ψ(t), they all satisfy
the admissibility condition. For the modulated Gaussian, Ψ(0) is not exactly
zero, although by selecting ω0 sufficiently large then Ψ(0) is approximately equal
to zero. Note that, within Appendix A of Chan (1994), the proof of the invert-
ibility of the CWT is provided. The proof exploits the resolution of the identity
theorem which states that the transformation of a one-dimensional signal s(t)
into the two-dimensional wavelet domain via 2.52 is invertible if the transforma-
tion is an isometry up to a constant factor cψ as in eqn. 2.53.
The second property follows from the first one. Regarding the third property,
the rapid decay of ψ(t) is not a requirement for ψ(t) to be a wavelet. In practice,
ψ(t) should have a compact support in order to have a good time localisation.
By comparing eqn. 2.31 with eqn 2.45, there is a similarity between ψ(t) of the
CWT and u(t)e−ωτ . As highlighted in Chan (1994), the integral in 2.45 could
be seen in four different ways. First, it computes the inner product, i.e. the
cross-correlation, of s(t) with ψ(t/a)

√
a at shit τ/a. Therefore, it computes the
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similarity between these two. Second, it is the output of a bandpass filter of
impulse response ψ(−t/a)/

√
a, of input s(t) at the instant τ/a. Third, since

2.46 is identical to 2.45, it also provides the similarity or the inner product of
a scaled signal s(at) and

√
aψ(t) at shift τ/a. Lastly, from 2.46, it follows that

the CWT is also the output of a bandpass filter of impulse response
√
aψ(−t),

of input s(at) at the instant τ/a.
The above different interpretations of the 2.45 give rise to different forms of this
transform. It might depend either on the available algorithm to compute it or
to the application of interest. Hence, one could consider the continuous wavelet
transform, the discrete parameter wavelet transform, the discrete time wavelet
transform or the discrete wavelet transform. These are well-presented in Chan
(1994).

2.3.3 The Wigner-Ville Distribution
There are two main categories used in the literature to describe a signal’s fre-
quency content: a linear representation such as the Fourier transform or a
quadratic representation such as the power spectrum, corresponding to the square
of the Fourier transform. The most used counterpart to the power spectrum is
a quadratic, or bilinear, joint time-frequency representation. Note that a linear
joint-time frequency representation corresponds to the STFT above described.
Several quadratic joint time-frequency representations have been introduced in
the past. However, the Wigner distribution is presented in this paragraph since
it is one of the most popular for its characteristics in being both very straightfor-
ward and powerful. The section firstly explains the motivations for this distribu-
tion and then its central properties. The uniqueness of the Wigner distribution
lies in its description of a signal’s time-varying nature more effectively compared
to many other existing methods such as the STFT. Furthermore, its properties
are highly beneficial for signal analysis in general. The Wigner distribution’s
main drawback is cross-term interference and limits such a transform in sev-
eral applications. Such an issue is described below (see Cohen (1995), Papoulis
(1977)).

Time-Dependent Power Spectrum

As highlighted above, the power spectrum is the Fourier transform’s square and
describes the signal’s energy distribution in the frequency domain. While the
Fourier transform is linear, the power spectrum is a quadratic function of fre-
quencies. An alternative way to detect such information is to employ the STFT
to describe the signal’s energy distribution in a joint time-frequency domain.
The aspect taken into account at this stage regards the Wiener-Khinchin theo-
rem (Papoulis (1977)), which states that the autocorrelation function of a wide-
sense-stationary random process has a spectral decomposition given by the power
spectrum of that process. Hence, the power spectrum can also be considered as
the Fourier Transform of the auto-correlation function ρ(τ) (as defined in defini-
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tion 2.1.5). Note that ρ(τ) also corresponds to

ρ(τ) =
∫
s(t) s∗(t− τ) dτ (2.56)

where s∗ denotes the complex conjugate of s. The power spectrum can then be
expressed as

P (t, ω) = |S(ω)|2 =
∫
ρ(τ) e−fτ dτ (2.57)

The above equation is not a function of time and, therefore, indicates how much
energy is present in frequency f over the entire time period of the signal. Hence,
it is not possible to deduce if the signal’s power spectrum changes over time. One
possible way to tackle this issue is to make the autocorrelation function time-
dependent ρ(t, τ). The resulting Fourier transform with respect to the variable
τ becomes a function of time as

P (t, ω) =
∫

ρ(t, τ) e−ωτ dτ (2.58)

where P (t, ω) is now a time-dependent power spectrum (Qian and Chen (1996)).
The choice of ρ(t, τ) is not arbitrary. For example the following should hold∫

P (t, ω) dt = |S(ω)|2 (2.59)

which is traditionally known as the frequency marginal condition, meaning that
by adding all the instantaneous-time power spectrum P (t0, ω) should yield to the
total power spectrum |S(ω)|2. Furthermore, the integration along the frequency
axis should be equal to the instantaneous energy, i.e.

1
2π

∫
P (t, ω) dω = |s(t)|2 (2.60)

which is commonly known as the time marginal condition (see Qian and Chen
(1996)). If P (t, ω) represents the signal energy distribution in the joint time-
frequency domain, then it is real valued, i.e. P (t, ω) = P ∗(t, ω). A further
desired property from the traditional energy concept is that the time-dependent
spectrum would be non-negative.

The Wigner Distribution

The Wigner distribution was developed in quantum mechanics in by Wigner in
Wigner (1997) and then introduced in signal analysis by Ville in Ville (1948).
It has been applied in several areas such as seismology, geography, electrical
engineering, speech analysis, EEG analysis. It uses a variation of the classical
autocorrelation function which is called instantaneous autocorrelation, which
omits the integration step. As a result, time remains in the main result. The
instantaneous autocorrelation function is therefore a two dimensional function
depending on t and the lag τ given as

ρ(t, τ) = s∗(t− 1
2τ) s(t+ 1

2τ) (2.61)
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Substituting the above equation into 2.58 yields to (Qian and Chen (1996), Pa-
poulis (1977))

W (t, ω) = 1
2π

∫
s∗(t− 1

2τ) s(t+ 1
2τ)e−ωτ dτ (2.62)

= 1
2π

∫
S∗(ω + 1

2θ) S(f − 1
2θ)e

−ωθ dθ (2.63)

Hence, the Wigner distribution calculates the frequency content for each time t
by taking the Fourier transform of the instantaneous autocorrelation across the
axis of the lag variable τ . The final result is real-valued. Such a calculation is
allowed since the Fourier spectrum of a signal equals the Fourier transform of its
autocorrelation function.
The Wigner distribution is said to be bilinear in the signal because the signal
enters the transformation twice. At a time t, this transform corresponds to the
product of pieces of the signal evaluated at past times with pieces of the signal
evaluated at future times, which are added up. The shifting time in the past
and the future is equivalent. Therefore, in order to determine properties of the
Wigner distribution at a time t, the left part of the signal is folded to the right to
see if there is any overlap. If there is, then tose properties will be present at time
t. Furthermore, the Wigner distribution weighs the far away times equally to
the near times, which means that is highly non-local. Eqn 2.63 is often referred
to as auto-Wigner distribution. Likewise, the cross-Wigner distribution is given
as

W (t, ω) = 1
2π

∫
s(t+ 1

2τ) g∗(t− 1
2τ)e−ωτ dτ (2.64)

In the following paragraphs, different properties of this distribution are presented.

Range of the Wigner Distribution

The Wigner distribution satisfies the finite support properties in time and fre-
quency (see Qian and Chen (1996))

W(t, ω) = 0 for t ouside (t1, t2) if s(t) is zero outside (t1, t2)
W(t, ω) = 0 for ω ouside (ω1, ω2) if S(ω) is zero outside (ω1, ω2)

(2.65)

The time and frequency support of the Wigner distribution are claimed desirable
properties. If the s(t) is non-zero in a certain range (t1, t2) and zero elsewhere,
then the Wigner distribution is also non-zero in this range (t1, t2) and zero else-
where. The time support property might be misleading. It should not be inferred
that any zero-valued region in the signal has a corresponding zero-valued region
in the Wigner distribution. This is true only if the zero-filled region extends to
±∞.
Further distributions have been proposed in the literature to tackle this chal-
lenge such as the Cone-Kernal (Zhao et al. (1990)) distribution as well as the
smoothed Pseudo Wigner Distribution (Hlawatsch et al. (1992)); however, a sec-
ond problem often occurs in this cases since the marginal properties of the Wigner
distribution are not respected.
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The Characteristic Function of the Wigner Distribution

As highlighted in Cohen (1995) and Thayaparan (2000), the characteristic func-
tion of the Wigner distribution is given as

M(θ, τ) =
∫ ∫

eθt+τωW(t, τ) dt dω

= 1
2π

∫ ∫ ∫
eθt+τω s∗(t− 1

2τ
′)s(t+ 1

2τ
′) e−τ ′ω dτ ′ dt dω

=
∫ ∫

eθt δ(τ − τ ′) s∗(t− 1
2τ
′)s(t+ 1

2h
′) dτ ′ dt

=
∫
s∗(t− 1

2τ)s(t+ 1
2τ) eθt dt

= A(θ, τ)

(2.66)

where A(θ, τ) corresponds to the symmetric ambiguity function defined in eqn.
2.34. Note that the characteristic function of the spectrogram was also intro-
duced with respect to this function. Reasons to consider such a function lie in
the fact that in viewing results of the Wigner distribution or the ambiguity func-
tion, the latter one would isolate the auto-terms from the cross-terms providing a
better interpretation. The reader should refer to Sandsten (2016) for further ex-
planation. In terms of the spectrum, the characteristic functions is given instead
as

M(θ, h) =
∫

S∗(ω + 1
2θ)S(ω − 1

2θ) e
hω dω (2.67)

General Properties

In this section, the general properties of the Wigner distribution are introduced.
The reader might refer toCohen (1995) and Thayaparan (2000) for further details.

• Nonpositivity
As highlighted in Cohen (1995) and Thayaparan (2000), a bilinear distri-
bution satisfying the marginals cannot be positive throughout the entire
time-frequency plane, i.e. it must be negative in some regions. The Wigner
distribution, however, satisfies the marginals and therefore it is expected
to be negative in certain regions. However, there is an exception presented
in Cohen (1995) which provides that the Wigner distribution is not really
bilinear and belongs to the class of positive distributions which are not
bilinear.

• Time and Frequency Shift Invariance
If the signal s(t) is time-shifted by t0 and/or spectrum-shifted by ω0, then
the Wigner distribution is shifted accordingly

if s(t) → eω0t s(t− t0) then W(t, ω) →W(t− t0, ω − ω0) (2.68)
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If the signal in the Wigner distribution is replaced by eω0t s(t − t0) and
Wsτ represents the shifted distribution then

Wsτ = 1
2π

∫
e−ω0(t−τ/2) s∗(t− t0 −

1
2τ) × e−ω0 (t+τ/2)s(t− t0 + 1

2τ)e−τω dτ

= 1
2π

∫
s∗(t− t0 −

1
2h)s(t− t0 + 1

2τ)e−τ(ω−ω0) dτ

=W(t− t0, ω − ω0)
(2.69)

• Reality
The Wigner distribution is always real, even if the signal is complex. As
shown in Cohen (1995), by considering the complex conjugate of W (t, f)

W∗(t, ω) = 1
2π

∫
s(t− 1

2τ)s∗(t+ 1
2τ) eτω dh

= 1
2π

∫ −∞
∞

s(t+ 1
2h)s∗(t− 1

2τ) e−τω dh

= 1
2π

∫ ∞
−∞

s(t+ 1
2τ)s∗(t− 1

2τ) e−τω dτ

=W(t, ω)

(2.70)

This fact can also be proved through the characteristic function. Recall
that M∗(−θ,−τ) = M(θ, τ) is the condition for a distribution to be real.
But the characteristic function of the Wigner distribution corresponds to
the ambiguity function which satisfies this property.

• Symmetry
By substituting −ω for ω into the Wigner distribution, it is possible to
observe that the identical form is obtained if the signal is real. Furthermore,
real signals have symmetric spectra. Hence, for symmetric spectra, the
Wigner distribution is symmetrical in the frequency domain. Similarly, for
real spectra the time waveform is symmetrical an, therefore, the Wigner
distribution is symmetric in the time domain. Therefore:

W(t, ω) =W(t,−ω) for real signals ≡ symmetrical spectra, S(ω) = S(−ω)
W(t, ω) =W(−t, ω) for real spectra ≡ symmetrical signals, s(t) = s(−t)

(2.71)

• Time and Frequency Marginals
The Wigner distribution satisfies the time-frequency marginals∫

W(t, ω) dω = |s(t)|2 (2.72)

∫
W(t, ω) dt = |S(f)|2 (2.73)
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Both this equations can be verified by considering M(θ, 0) and M(0, τ) as
follows

M(θ, 0) =
∫
|s(t)|2 eθtdt ; M(0, τ) =

∫
|S(ω)|2 eτfdω (2.74)

Note that these are the characteristic functions of the marginals and hence
the marginals are satisfied. Since the marginals are satisfied, the total
energy condition is also automatically satisfied.

• Instantaneous Frequency and Group Delay
Consider s(t) = a(t)eθ(t) where a(t) and θ(t) are amplitude and phase
function respectively, both real valued. Then

E[ω] =
∫
ω W(t, ω)dω∫
W(t, ω) dω = 1

|a(t)|2
∫
ω W(t, ω) dω = θ′(t) (2.75)

which states that, at a specific time t, the mean instantaneous frequency is
equal to the mean instantaneous frequency of the given signal (see Cohen
(1995)). Assume now that the Fourier transform of the signal s(t) is S(ω) =
B(ω)eψ(ω). Then the first derivative of the phase ψ′(ω) is called the group
delay function. For the Wigner distribution, the following holds:

E[ω]s =
∫
tW(t, ω)dt∫
W (t, ω) dt = 1

|S(ω)|2
∫
tW(t, ω) dt = −ψ′(ω) (2.76)

which states that the conditional mean time of the Wigner distribution
is equal to the group delay (Cohen (1995)). The above results are quite
relevant since they are always true for any given signal. This is not true in
the case of the STFT.

• Local Spread
According to the obtained result, the instantaneous frequency is the con-
ditional average for a particular time. Now, the spread of that average is
taken into account, corresponding to the conditional standard deviation.
Consider the second conditional moment in frequency

E[ω2]t = 1
|s(t)|2

∫
f 2 W(t, ω) dω

= 1
2

(a′(t)
a(t)

)2

−
(
a′′(t)
a(t)

)+ θ
′2(t)

(2.77)

where a(t) is the amplitude of the signal. The conditional spread frequency
is

σ2
ω|t = E[ω2]t − E[ω]2t

= 1
2

(da(t)/dt
a(t)

)2

− d2a(t)/dt
a(t)

 (2.78)
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Such an expression could be negative and hence cannot be properly inter-
preted. Therefore, while the Wigner distribution gives an excellent result
for the average conditional frequency, it gives a very poor one for the spread
of those frequencies.

• Cross-Terms
The Wigner distribution produces cross-terms representing significant os-
cillating terms located in the middle between the signal components. Fur-
thermore, they can be twice as large as the different signal components
regardless of how far apart are all the signal components. This makes the
Wigner distribution highly not suitable for non-toy signals. Consider a
two-component signal defined as s(t) = s1(t) + s2(t) for which the Wigner
distribution is

Ws(t, ω) =Ws1(t, ω) +Ws2(t, ω) + 2< [Ws1,s2(t, ω)] (2.79)

whereWs1(t, ω) andWs2(t, ω) are called auto-terms and corresponds to the
Wigner distributions of s1(t) and s2(t) respectively. The term

2< [Ws1,s2(t, f)] = 2<
[
F
[
s1(t+ 1

2τ)s∗2(t− 1
2τ)

]]
(2.80)

is called cross-term. This term will always be present, located midway
between the two auto-terms and oscillating proportionally to the distance
between the auto-terms. The direction of the oscillation is orthogonal to
the line connecting the auto-terms. Therefore, the Wigner distribution will
always produce a cross-term between each pair of component. Furthermore,
they might also adopt negative values which could also be misleading in
the interpretation.

Definitions and properties of the Wigner distribution have been presented in this
subsection. The main argument in favour of this transform over the spectro-
gram is that no window has to be chosen. However, it is essential to highlight
that the spectrogram is not one distribution. Instead, it is an infinite class of
distributions whose disadvantage is represented by selecting the “right” window,
which is not a non-trivial task. Therefore, the Wigner distribution is, in these
respects, better than any spectrogram. Furthermore, the Wigner distribution
gives a consistent picture of both the instantaneous frequency and the group
delay. This is never the case for the spectrogram, even if good approximations
could be achieved. Besides, the Wigner distribution satisfies the marginals and
always gives the correct answers for averages of functions of frequency or time
and always satisfies the uncertainty principle of the signal. The spectrogram,
instead, never gives correct answers for these averages and never satisfies the
signal’s uncertainty principle. The major drawback of the Wigner distribution
is identified as the cross-term interference. At each time, if there is more than
one frequency existing, then the Wigner distribution might generate undesired
terms. Nevertheless, these terms are localized and hence occur in the midway
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of the pair of corresponding auto-terms. On the other hand, the spectrogram
resolves the components in some instances and is also very easy to interpret.
In the following subsection, the introduced time-frequency methods are compared
in terms of their time-frequency resolution to better capture their different ap-
proaches and understand that many of the issues will be resolved through the
Empirical Mode Decomposition presented in the following Chapter.

2.4 The Time-Frequency Resolutions of the Dif-
ferent Transforms

If measured in time, a signal s(t) would describe its amplitude changes over the
domain of the variable time t. When the frequency becomes the variable of inter-
est instead, the Fourier transform can be applied. The obtained spectrum would
then contain complete information in the frequency domain in terms of magni-
tudes and phases of the frequency component at any given frequency. However,
the issue is that no explicit information would be available in the spectrum re-
garding temporal characteristics of the signal, i.e. when a specific frequency has
occurred.
One of the objectives of the introduced transforms is tackling this problem and
achieving a partition for the time-frequency plane that will most effectively cap-
ture the properties of the original signal in both domains, hence proposing an
optimal time-frequency resolution. What happens in practice is that it is impos-
sible to increase both temporal and frequency resolutions. When one is improved,
the other must suffer. This phenomenon, previously discussed in this thesis, is
known as the uncertainty principle and comes from the Heisenberg Uncertainty
Principle encountered in quantum physics. It states that it is impossible to pre-
cisely measure both the position and the momentum of a microscopic particle
simultaneously.
In Figure 2.1 taken from Scholl (2021), the time-frequency resolutions of the
different transforms are presented. The resolutions can be controlled by the
window length of the transform of interest. In general, a short window would
capture a short period and, therefore, has a precise time resolution. However,
the frequency resolution would be poor since the considered signal would contain
few samples corresponding to only a few frequency bins and would not provide
enough information in this respect.
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Figure 2.1: Figure showing a schematic overview of the time and frequency resolu-
tions of the different transforms introduced in comparison with an original time-series
dataset. The figure is taken from Scholl (2021). For the Smoothed Pseudo Wigner-Ville
distribution the reader might refer to this paper.

On the contrary, a long window would provide a poor time resolution but offers
precise frequency information due to the large number of samples that can be
captured. This corresponds indeed to the uncertainty principle stating that the
product of the resolution in time and frequency is limited such that BT ≥ 1/4
(with B being the bandwidth of one frequency bin). The size and orientation
of the blocks indicate how the windows of the transforms describe the time
and frequency domains. The original time-series has a high resolution in the
time-domain but zero resolution in the frequency one and the Fourier transform,
which instead has a high resolution in the frequency domain and zero resolution
in the frequency domain time-domain. By looking at the STFT, the trade-off
between the two resolution using either a long or small window is presented. The
continuous wavelet transform has for small frequency values a high resolution
in the frequency domain and a low resolution in the time domain. For large
frequency values instead has a low resolution in the frequency domain and high
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resolution in the time domain. Hence the CWT makes a trade-off overcoming
the STFT drawbacks. The idea behind that is that a great majority of the real-
world signals have slowly oscillating content occurring on long scales, while high-
frequency content tend to happen on a short scale. As an example, the human
auditory system works this way. However, if there were natural phenomena for
which the high-frequency events were long, then the CWT would not be an
appropriate choice.
The Wigner distribution instead overcomes the limited resolutions of the STFT
and the wavelet transform by offering a very high resolution in both time and
frequency domains. The problem is given by its cross-terms representing artifacts
occurring in the presence of multicomponent signals resulting from the Wigner
distribution being a quadratic transform.
The Wigner distribution appears to provide a finer time-frequency resolution
amongst the ones proposed in this Chapter. Nevertheless, if the analysed sig-
nal is multi-component, cross-terms might mislead its interpretation and present
unreliable results. As a response, several existing time-frequency methods have
been proposed to suppress the cross-terms and maintain the concentration of the
auto-terms. Hence, measurement criteria for concentration are required. One
way is to consider the definition of instantaneous frequency and instantaneous
phase for the analytic signal or any mono-component complex-valued signal.
Different solutions can be considered in this respect, exploring different princi-
ples as the reassignment principle (Kodera et al. (1976)) or synchrosqueezing
(Daubechies et al. (2011)). However, one of the most relevant and modern meth-
ods dealing with the computation of the instantaneous frequency is represented
by the Empirical Mode Decomposition (Huang et al. (1998)). At this stage, it
is essential to highlight that this technique provides an adaptive time-frequency
resolution strongly depending on the underlying data. This is the primary rea-
son for selecting such a methodology as the based method of this thesis. In
the following Chapters, statistical aspects of the EMD are studied along with a
stochastic embedding, further developing a more refined framework partitioning
the time-frequency plane through a novel methodology.
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Chapter 3

Methodology: The Empirical
Mode Decomposition

One of the common characteristics of all the methodologies mentioned so far is
using bases that are a priori defined. Most of them are built to analyse non-
stationary but linear data or non-linear but stationary data. The employment
of such decomposition methods highly often provides components that, even by
carrying a mathematical interpretation, lack physical meaning with the added
issue of harmonic distortions proper of the Fourier transform.
An alternative approach developed in data analysis by Huang et al. (1998) is
the Hilbert-Huang transform. It is an a posteriori, data-driven and adaptive
basis decomposition time-frequency methodology applied to many areas, such
as engineering, biomedical, financial or geophysical datasets. This transform
was initially introduced to analyse water surface wave evolution in Huang et al.
(1998); specifically, it has been employed to observe distorted waves and their
variations occurring over time. Therefore, the need for a time-frequency spectrum
dealing with both non-stationary and non-linear data was highly fundamental.
The EMD reproduces a signal along with its physical meaning by considering
the concept of instantaneous frequency. The main issues related to the definition
of such a notion have been introduced in section 1.2. By making data analytic,
the Hilbert transform is an efficient tool to compute the instantaneous frequency.
The idea behind such a transform is emphasizing local properties of a general
signal s(t) through its convolution with 1/t. However, as explained in section
1.2, some controversies linked to the concept of multi-component signals are
still found. The significant contribution of the Hilbert transform started to be
central only after the introduction of the Empirical Mode Decomposition Huang
et al. (1998). Along with the Hilbert transform, they were named Hilbert-Huang
Transform.
The EMD is a form of basis decomposition typically considered for spatial or tem-
poral signals, which has several advantages compared to the traditional Fourier
and wavelet decompositions. Firstly, it is more appropriate in the presence of
non-linear and non-stationary systems. Secondly, the specification of the basis
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functions does not require any a priori parametric formulation. Indeed, the fluc-
tuations are automatically and adaptively extracted from the signal, leading to
recursive resolution of the basis functions. This is both advantageous in that
basis functions are naturally adapted to a given signal but also disadvantageous
as the basis functions must be non-parametrically specified in a functional form.
Fortunately, there are numerous ways to achieve such representations based on
statistical penalised spline representations.
The essential principle of EMD is to decompose signals into a sum of certain
suitable oscillatory functions called intrinsic modes functions (IMFs). With com-
parison to wavelets or Fourier analysis, an IMF represents a simple oscillatory
mode, like the simple harmonic function. However, it is more general: instead
of constant amplitude and frequency, as in a simple harmonic component, the
IMF can have a time-varying amplitude and frequency. The significance of this
representation, therefore, lies in the ability to perform a locally adapted class of
basis functions that will be suitable even in the context of non-stationary signals.
It is important at this stage to distinguish between the concept of the EMD basis
decomposition and the ability to construct such a decomposition.
The EMD method is based on the simple assumption that any time-series signal
may have many different coexisting modes of oscillations that, when superim-
posed together, combine to reconstruct the original signal exactly. The particular
form of modes of oscillation deconstructed in an EMD decomposition aims to pro-
duce the oscillatory functions called IMFs. Each IMF has the property that it
contains the same number of extrema as zero-crossings. What is more, for each
IMF, the oscillation will also be symmetric with respect to the “ local mean”.
In other words, the classical definition of an IMF corresponds to any function
verifying the following properties:

1. The number of extrema and the number of zero-crossings must either equal
or differ at most by one.

2. The mean value of the envelope defined by the local maxima and the en-
velope defined by the local minima is zero.

It is also important to realize that the EMD decomposition produces a deter-
ministic decomposition of the signal and not a stochastic decomposition typically
considered in a time-series structure. This clearly has implications on the ability
to forecast and construct statistically meaningful confidence intervals for such a
decomposition.
The obtained IMFs have the property that they are ordered in their oscillatory
index. Therefore, the EMD algorithm aims to produce IMFs by recursively
reducing oscillation indices. The bases extraction procedure is an algorithm
named sifting. One of the main issue related to it is that it may never converge
to a proper IMF function at a given decomposition stage. This has led to a range
of heuristic rules being developed to specify algorithms for terminating the search
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for an IMF basis at a given stage, based on different forms of approximation. An
overview of these heuristic rules is provided in this Chapter.
No matter the type of sifting algorithm adopted, they all have two common goals:
eliminating riding waves and making the wave profiles (oscillations) more sym-
metric. While the first purpose serves the Hilbert transform to give a meaningful
instantaneous frequency, the second makes the neighbouring wave amplitudes
have a symmetric aspect, reducing the Hilbert transform envelope oscillation.
That is why the sifting process must be repeated as many times as possible to
reduce the extracted signal to an IMF.
Using the mean of envelopes is an alternative to calculating the signal’s local
mean, which is particularly suited to capture the structure of non-stationary
signals. In this last case, the local mean involves a local time scale which is
impossible to define a priori. Huang et al. (1998) suggested the use of the local
mean of the envelopes defined by the local maxima and the local minima to force
the local symmetry. This technique is empirical, but as it was highlighted by
Huang et al. (1999), Huang et al. (1998), it should always produce a consistent
instantaneous frequency.
The primary purpose of this Chapter is to present a formal mathematical defi-
nition of the EMD and the Hilbert transform when a cubic spline representation
is used as parametric interpolation of the discrete path s(t). The sifting proce-
dure comprises several steps at which different choices developed in the literature
could be taken. It is central to this Chapter to consider these proposed solutions
and discuss how they affect the obtained decomposition.
This Chapter is organised as follows: firstly, a formal definition of the EMD is
proposed. Afterwards, the extraction of the IMFs is described, where a proposi-
tion for the expression of the k-th identified IMF will be given with respect to the
original signal. The concept of the instantaneous frequency is then presented,
and the Hilbert transform of the IMF representation is formally introduced. A
section on how to interpret the EMD basis decomposition and the instantaneous
frequency is then provided to better understand the power of these basis func-
tions. A section on some unexpected situations that might occur during the
sifting procedure is then discussed. To this end, different steps of the sifting are
then examined, i.e. the envelope boundary construction, the spline considered
for the interpolation of the signal, the basis functions and the envelopes, the
stopping criteria and the extrema detection.

3.1 EMD Formal Definition
Assume a continuous non-stationary signal is partially or discretely observed in
time. The signal s(t) is observed at 0 = t1 < · · · < tN = T . For the EMD
to exists, the partially observed discrete signal s(t) needs is converted into a
continuous representation; therefore, the discrete signal s(t) is converted back
into a continuous analog signal denoted s̃(t); in this case a semi-parametric
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model known as a natural cubic spline is used, given in equation (3.1). As
a consequence, the EMD bases denoted as {γl(t)}Ll=1 will also be expressed as
natural cubic splines, derived from representation s̃(t) .

Definition 3.1.1. Given a set of l knots a = τ1 < τ2 < · · · < τl = b, a function
s̃ : [a, b]→ R is called a cubic polynomial spline if:

• s̃(·) is a polynomial of degree 3 on each interval (τj, τj+1) (j = 1, . . . , l− 1)

• s̃(·) is twice continuously differentiable

It is then a natural cubic spline when s̃′′(a) = s̃′′(b) = 0.

Hence, the signal representation s̃(t) is expressed in the class of truncated power
basis, where the knot points are placed at the sampling times (τi = ti)

s̃(t) = a0 + a1t+ a2t
2 + a3 (t− τ1)3

+ + · · ·+ a3+l−2 (t− τl−1)3
+ . (3.1)

The coefficients are estimated by standard penalised least squares

N−1∑
i=1

(s(ti)− s̃(ti))2 + λ
∫ ti+1

ti
s̃′′(t)2dt (3.2)

with natural cubic spline constraints s̃′′(0) = s̃′′(tN) = 0 and where λ > 0
controls smoothness of the representation. In this case, the number of total
convexity changes (oscillations) of the analog signal s̃(t) within the time domain
[0, tN ] is denoted by to L ∈ N. One may now define the EMD decomposition of
a speech signal s̃(t) as follows.

Definition 3.1.2. The Empirical Mode Decomposition of signal s̃(t) is repre-
sented by the finite number of non-stationary basis functions known as Intrinsic
Mode Functions (IMFs), denoted by {γl(t)}, such that

s̃(t) =
L∑
l=1

γl (t) + r (t) (3.3)

where r (t) represents the final residual (or final tendency) extracted, which has
only a single convexity. In general the γl basis will have l-convexity changes
throughout the domain (t1, tN) and each IMF satisfies:

• Oscillation The number of extrema and zero-crossing must either equal
or differ at most by one:

abs
(∣∣∣∣∣
{
dγl(t)
dt

= 0 : t ∈ (t1, tN)
}∣∣∣∣∣− |{γl(t) = 0 :

t ∈ (t1, tN)}|) ∈ {0, 1}
(3.4)
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• Local Symmetry The local mean value of the envelope defined by a spline
through the local maxima denoted s̃Ul(t) and the envelope defined by a spline
through the local minima denoted by s̃Ll(t) is equal to zero pointwise i.e.

ml(t) =
(
s̃Ul(t) + s̃Ll(t)

2

)
I (t ∈ [t1, tN ]) = 0 (3.5)

The minimum requirements of the upper and lower envelopes are:

s̃Ul(t) = γl(t), if
dγl(t)
dt

= 0 & d2γl(t)
dt2

< 0,

s̃Ul(t) ≥ γl(t) ∀t ∈ (t1, tN)

s̃Ll(t) = γl(t), if
dγl(t)
dt

= 0 & d2γk(t)
dt2

> 0,

s̃Ll(t) ≤ γl(t) ∀t ∈ (t1, tN).

(3.6)

Note that each IMF carries a unique number of convexity changes that can
occur on any time spacings and not cyclically with a definite period as in a
Fourier basis unless that signal is indeed stationary. Typically, the times of
convexity change are irregularly spaced and reflect non-stationarity in a local
bandwidth of the frequencies, that characterise the signal at that time instant.
As a result of this property, one can still order the basis IMFs naturally according
to the unique number of total convexity changes they produce in (t1, tN). As
underlined in Huang et al. (1998), the construction of an IMF basis is directly
linked to the concept of local symmetry, required to handle non-stationary data.
This notion is enclosed by the mean envelope that captures a local time scale
and the definition of a local averaging time scale is hence bypassed. Such a
requirement is fundamental to avoid asymmetric waves affecting the concept of
instantaneous frequency, of which, we mathematically formalise the definition
for below. Further, note that, in the above representation, γl(t) is not explicitly
expressed in a functional form, as opposed to classical stationary methods where
a parametric family of basis functions are stated, such as a cosine basis or a
wavelet basis function. Here, the basis can take any functional form so long as
it satisfies the decomposition relationship and the properties stated for an IMF.
A natural way to proceed to represent an IMF is to utilise a smooth, flexible
characterisation that can adapt to local non-stationary time structures; the one
selected in this work to represent γl(t) is the cubic spline.

3.2 Extraction of EMD Basis Functions (IMFs)
Given a mathematical representation for the IMFs, the process applied to extract
recursively the IMF spline representations is now outlined. This procedure is
known as sifting. The first step consists of computing extrema of s̃(t); this can
be done based on observations or on the interpolated signal, s̃(t). Note, if there
is noise in the signal it may also be advantageous to apply a penalised spline
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to obtain s̃(t). In terms of determining the maximum and minimum convexity
changes of s(t), the use of s̃(t) is advocated. Using s̃(t), the roots of the first
derivative s̃′(t) produce the sequence of time points for successive maxima and
minima:

{
t∗j
}L
l=1

=
{
t ∈ [t1, tN ]a1 + 2a2t+ 3

3+l−2∑
i=3

ai (t− τ1)2
+ = 0

}
. (3.7)

Without loss of generality, the maxima occur at odd intervals, i.e. t∗2j+1, and
minima occur at even intervals, i.e. t∗2j. The second step of sifting builds an
upper (s̃Ul(t)) and lower (s̃Ll(t)) envelope of s̃(t) using two natural cubic splines
through the sequence of maxima and the sequence of minima respectively:

s̃Ul(t) = aUl0 + aUl1 t+ aUk2 t2 +
bL/2c∑
i=0

aUki+3

(
t− t∗2i+1

)3

+
,

s̃Ll(t) = aLl0 + aLl1 t+ aLl2 t
2 +

bL/2c∑
i=0

aLli+3 (t− t∗2i)
3
+ ,

(3.8)

such that s̃Ul(t∗2j+1) = s̃(t∗2j+1) for all odd t∗j and s̃Ul(t) ≥ s̃(t) and equivalently
s̃Ll(t∗2j) = s̃(t∗2j) for all even t∗j and s̃Ll ≤ s̃(t). One then utilises these envelopes
to construct the mean signal denoted by ml(t) given in equation (3.5), which will
then be used to compensate the original speech signal s̃(t) in a recursive fashion,
until an IMF is obtained. These bases are recursively extracted, this means
that, once the l-th IMF is computed, it is subtracted from the main signal and
the sifting procedure is applied to the residual signal to obtain the next IMF
which will have one less convexity changes than the previously extracted IMF
on (t1, tN). The procedure is detailed in the following sections of this Chapters
along with the stopping criteria (details are also discussed in Dalpiaz, Rubini,
D’Elia, Cocconcelli, Chaari, Zimroz, Bartelmus, Haddar et al. (2013)). Next, an
illustration of the sifting process for IMF basis extraction is given in Figure 3.1.
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(f) Computing s̃Ul(t),s̃Ll(t), mk(t).

Figure 3.1: Initial steps of the sifting procedure. This procedure continues until an
IMF γl(t) is identified.

It is often the case that such an algorithm does not reach a mean level equal
to 0, which would indicate the termination of sifting for a given IMF. Multiple
solutions in the literature have been proposed as stopping criteria of the sift-
ing procedure (Dalpiaz, Rubini, D’Elia, Cocconcelli, Chaari, Zimroz, Bartelmus,
Haddar et al., 2013) dealing with this computational aspect. From the sifting
process, it is clear that these bases are recursively extracted; this means that,
once the l-th IMF is computed, it is subtracted from the main signal, and the
sifting procedure is applied to the residual signal to obtain the subsequent IMF
which will have one less convexity change than the previously extracted IMF
on (t1, tN). Hence, it is useful to develop recursive parameter estimation ap-
proaches to understand the linking relationship between the coefficients of two
successive extracted IMFs. By exploiting the definition of cubic spline used in
the representation of the analog speech signal s̃(t) and the IMF basis functions,
one can obtain a mathematical connection between the coefficients of s̃(t) and
the coefficients of γl(t) detailed as follows:
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Proposition 3.2.1. The l-th extracted IMF denoted as γl(t) can be expressed as
a cubic spline whose coefficients are a linear combination of the spline coefficients
of s̃(t) and the coefficients of the l−1 IMFs extracted until such point of the sifting
procedure and the coefficients of its mean envelopes, i.e.

γl(t) = s̃(t)−
l−1∑
j=1

γj(t)−ml(t) =
N−1∑
i=1

(
alit

3 + blit
2 + clit+ dli

)
1 (t ∈ [ti−1, ti]) (3.9)

where the spline coefficients are given as follows:

ali = ai −
∑l−1
j=1 a

j
i − 1

2(aUli + aLli )

bli = bi −
∑l−1
j=1 b

j
i − 1

2(bUli + bLli )

cli = ci −
∑l−1
j=1 c

j
i − 1

2(cUli + cLli )

dli = di −
∑l−1
j=1 d

j
i − 1

2(dUli + dLli )

Such a proposition expresses the EMD construction of an IMF by considering
the outer loop steps of the described algorithm. This means that, by looking at
Algorithm 8, the proposition considers steps 1-3 to prove the statement. The
proof is given in Appendix A. Remark: it is important to highlight at this stage
that in the above representation N points of segmentation ha been considered
to evaluate each γl(t); however, the segmentation considered for the envelopes is
given by the number of oscillations points L (L << N), which reduces by one
for each IMF. Such segmentation is a subset of the t sequence of points {ti}i=1:N
considered to construct each IMF (which correspond to the t of the original spline
s̃(t)) and will be denoted as {τi}i=1:L so that it will be directly related to each
IMF. Note that t1 = τ1 and tN = τL.

3.3 Instantaneous Frequency
This section provides an understanding of the concept of instantaneous frequency
related to each of the IMF’s obtained from the EMD methodology. Classical
Fourier methods require stationarity, where the frequencies of basis components
are pure harmonics that are static over time Huang et al. (1998). Nevertherless,
signals are often non-stationary and non-linear and, therefore, carry time-varying
frequency components, which will be reflected in their IMFs. Though it is possible
to have time-varying coefficients Fourier methods (Cohen, 1995) which tend to
capture non-stationarity with fix basis, the EMD provides more flexibility. By
being a data-driven, a posteriori method, its basis, i.e. the IMFs, are indeed
more flexible in their ability to capture both non-stationary amplitudes and
frequencies. Hence, IMFs will admit a time-varying frequency structure that can
be characterized by instantaneous frequencies (IFs).
The IF of a given IMF basis is extracted in the following stages. First one takes
the Hilbert Transform of each γl(t), so that an analytic extension of the given
IMF can be constructed. The Hilbert Transform can be computed in closed form
readily if γl(t) respects the restrictions defined in (3.6). Define zl(t) = γl(t) +
γ̌l(t) = al(t)eθl(t) the analytic extension of γl(t) with time varying amplitude
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al(t) =
√
γ2
l (t) + γ̌2

l (t) and time varying phase θl(t) = arctan γ̃l(t)
γl(t)

. Then γ̌l(t) is
obtained via Hilbert Transform as follows:

γ̌l(t) = 1
π

lim
ε→∞

∫ +ε

−ε

γl(τ)
t− τ

dτ (3.10)

The instantaneous frequency ωl(t) for IMF l is then found from zl(t):

ωl(t) = 1
2π

dθl(t)
dt

= 1
2π

γ̌′l(t)γl(t)− γ̌l(t)γ′l(t)
γ2
l (t) + γ̌2

l (t)
. (3.11)

We see that Huang et al. (1998) imposed the conditions (3.6) characterizing
the IMFs properties to then ensure that the instantaneous frequency remains
positive and therefore admits a meaningful physical interpretation. It will be
advantageous to obtain the Hilbert transform of the l-th IMF by considering
the natural cubic spline representation per knot segmentation as a local cubic
polynomial for t ∈ [τi−1, τi]. Then the Hilbert transform is constructed as the
following sum of local cubic polynomial transforms, see for details el Malek and
Hanna (2020):

γ̌l(t) = HT [γl(τ)] = 1
π

N−1∑
i=1

γ̌li(t) τi−1 < t ≤ τi (3.12)

where 4i = τi − τi−1 and γ̌li(t) is the Hilbert transform of the i-th polynomial:

γ̌li(t) =
(
alit

3 + blit
2 + clit+ dli

)
log

(
t

t−4i

)

+ ali

(
42
i t

2 −4it
2 − 4

3
i

3

)
+ bli

(
−4it−

42
i

2

)
− cli4i.

(3.13)

The instantaneous frequency is performed per IMF so that it is possible to under-
stand the local frequency and how it varies over time with each basis. To provide
such concept in the context of non-stationary signals, Huang et al. (1998) needed
to detect local structures of the data by assuming eqns. 3.6. If such conditions
of the IMFs are not satisfied, the instantaneous frequency often assumes neg-
ative values which lack physical meaning. As in the Fourier methods, where
a natural ordering of the static frequency (phase) for each basis exists, in this
case, although the frequencies are time-varying, the extraction of the IMFs and
property of the IMFs will still preserve the ordering in time of the instantaneous
frequency, where the ordering is obtained from the number of oscillations (con-
vexity changes) in each IMF basis begin decreasing with IMF index. In the case
of a periodic signal, this would be analogous to strict ordering on frequency of the
basis components, however, interestingly here we observe that IMFs may have
some time intervals in (t1, tN) where a high order IMF may have lower instan-
taneous frequency than a lower order IMF. Assume that the interpolated signal
s̃(t) can be decomposed into components respecting eqns. 3.6. After the EMD
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and the HHT of the IMFs are computed, s̃(t) can be expressed in a “Fourier-like”
expansion as:

s̃(t) = Re

{
L+1∑
l=1

al(t) exp{ θl(t)}
}

= Re

{
L+1∑
l=1

al(t) exp{
∫ tN

t1
2πωl(t)dt}

} (3.14)

in which the residual r(t) is included (L + 1). The index l refers to each IMF
and Re{.} denotes the real part of a complex quantity. This expansion was
proposed in Huang et al. (1998). Note that the differences with the classical
Fourier expansion are the amplitude al and the frequency ωl which are time-
varying. Under the classical Fourier expansion the signal representation takes
the form for a truncated infinite series as in equation (3.15) given by:

s̃(t) = Re

{
L+1∑
l=1

al exp{
∫ tN

t1
2πωldt}

}
(3.15)

The figures below show the difference between the Argand diagrams of the HHT
of first IMF of a simulated signal and the the 10-th harmonic of the Fourier series
of the same signal (capturing the equivalent frequency). It is possible to observe
how the IMF captures amplitudes and frequencies over time while, in the case
of the classical Fourier Transform, this non-stationary variation is not detected.
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Figure 3.2: Argand diagrams of γ1(t) (left) and the 10-th harmonic (right) of the of
the signal y(t) = cos(2πt) with t ∈ (0, 10).
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3.4 Interpreting EMD Basis Decomposition
In the case that the target signal is made of a finite number of pure stationary
harmonics, the IMF decomposition will match the finite collection of Fourier
bases as shown in the example in Figure 3.3. When the signal is not comprised
of a finite number of pure harmonics or is non-stationary then the instantaneous
frequencies for the IMF bases are not pure harmonics. However, the IMF bases
that are extracted from EMD sifting decomposition can still be naturally ordered,
but in a different manner to classical notions of frequency orders in Fourier anal-
ysis. They are ordered by oscillation count (total convexity changes), rather
than frequency, this is not equivalent as the IMF bases are not in general strictly
periodic. Due to this interesting difference, one may observe that IMFs may have
some time intervals in (t1, tN) where a high order IMF may have lower instanta-
neous frequency than a lower order IMF, so long as over the entire interval it has
greater number of convexity changes. Figure 3.4 presents an example of such a
fact.

Figure 3.3: Top panels panels represent s̃(t) = sin(4πt) + sin(10πt) . Bottom panels
provide the two IMFs basis functions.

Figure 3.4: Top panel: signal s̃(t) = sin(4πt)I [t ≤ t1] + sin(15πt)I [t > t1]. Middle
panel: IMF extracted to represent s(t) and Bottom panel: instantaneous frequency for
IMF.

3.5 Some unexpected situations
Even though the EMD is more suitable in several applications than classical
time-frequency analysis techniques, there are situations inherently linked to the
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sifting procedure that have to be studied at a statistical level. By doing so, the
stability of the decomposition should be more reliably achieved. This section aims
to present some of these challenges and further motivate the following sections
dealing with different aspects of the sifting procedure.
The first step of the sifting process is computing the envelopes through the
extrema of the signal. Since the endpoints cannot be classified as maxima or
minima, the resulting envelopes will present some distortions. This problem
affecting the decomposition is well-known as the end effects. The following figure
shows what happens to the borders when this problem comes into play.

Figure 3.5: Example of the end effect problem.

What happens in practice is that the first and last samples have to be categorised
as maxima or minima. They could be considered as such simultaneously or
evaluated according to the nearest extremum to guarantee alternation. A third
option would be leaving them as free (Huang et al., 1998). Several solutions have
been implemented in the literature corresponding to signal expansion techniques
based on symmetry or linear approximation that improves this issue (Massouleh
and Kordkheili, 2019). The most common adopted are Rilling’s mirror method
(Rilling et al., 2003), Coughlin’s method (Coughlin and Tung, 2004) and slope
based method (Dätig and Schlurmann, 2004).
The mirror method adds a certain number of extrema before and after the border
samples by mirroring the signal with respect to them. This technique is widely
employed and maintain envelopes ends from divergence. Coughlin’s method adds
two sinusoids at the beginning and the end of the signal, whose amplitude and
period correspond to the transverse difference and twice the longitudinal distance
of the two neighbourhood extrema of each border, respectively. In the slope based
method, two positive and negative line slopes between the first three extrema are
computed (and the last three extrema equivalently). The method relies on the
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fact that the distance between a new maximum and the first maximum equals
the distance between the first two maxima, and the same reasoning applies to
the minima. However, this method often leads to an error during the signal
decomposition and border data loss (see Xiong et al. (2014) for further details).
The experiments conducted in this thesis relies on the EMD R package (Kim
and Oh, 2009). This package has multiple possibilities for the boundary con-
ditions affecting the envelope constructions and hence the final decomposition.
Particularly, it considers the idea proposed by Huang et al. (1998) extending
the original signal by adding artificial waves repeatedly on both sides of the
boundaries. These waves are usually referred to as “characteristic waves” and
are obtained by repeating the implicit mode formed from extreme values nearest
to the boundary. The three solutions considered in this thesis refer to the argu-
ments named “wave”, “periodic” and “symmetric” of the emd function of such
a package. The first argument constructs a wave defined by two consecutive
extrema at either boundary and adds four waves at either end. The periodic
and the symmetric ones instead extend both boundaries periodically or symmet-
rically, respectively. Figure 3.6 shows the interpolated signal s̃(t) in subfigure
a) and then, subfigures b), c) and d) provides the envelopes obtained through
these three solutions. Furthermore, Figure 3.7 presents the steps of the sifting
procedure extracting the first IMF from the given signal. While the periodic
solution seems to fail and provide undershoots and overshoots of the envelopes,
the wave and symmetric boundary conditions perform efficiently in constructing
the envelopes and extracting the first IMF. Given similar performances, the wave
boundary condition has been selected for all the decomposition extracted in part
III for all the experiments.
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(a) Natural cubic spline s̃(t) interpolating s(t) =
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(d) Method “symmetric” for the boundary condition of
the EMD R package.

Figure 3.6: Different methods used for the boundary conditions affecting the end
effects and the decomposition.
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(b) Method “periodic” for the boundary condition of the EMD R package.
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(c) Method “symmetric” for the boundary condition of the EMD R package.

Figure 3.7: First steps of the sifting procedure applied to the signal provided in
Figure 3.6 with the three solutions considered by the EMD R package for the boundary
conditions named as wave, periodic and symmetric. Each subplots represents a sifting
iteration done to extract the first IMF of the given signal.

The second main difficulty is the cubic spline fitting; its drawback is the pro-
duction of overshoot or undershoot phenomena evidencing the incompleteness of
the envelopes and so the unreliability of the IMFs. The following figure presents
an example of this issue; it is possible to observe that the interpolated envelopes
miss some part of the underlying signal at some points.
This issue also relates to the parametric representation selected to interpolate
the original discrete samples s(t) used to define s̃(t) . Section 3.7 presents differ-
ent solutions which have been provided in the main literature for the EMD. In
this thesis, the natural cubic spline is the one taken into account since optimal.
Further discussion will be given below.
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Figure 3.8: Undershoot and overshoot phenomena are shown by circles.

A further issue provided by the sifting technique is the following: after the
averaging operation of the extrema envelopes, the resulting function may not
be an IMF; this mainly depends on the fact that, according to the slope of the
curve, some negative maxima and positive minima can appear after sifting. These
unwanted phenomena are attenuated by repeating the procedure until having a
satisfactory IMF.
As it was discussed in Huang et al. (1999), the time spacing of the extrema offers
a better measure of time scale because it measures wide-band data with multiple
riding waves. However, by examining data more closely, it can be observed that
even the spacing of the extrema can miss some subtle time-scale variations, given
weak oscillations that can cause a local change in curvature but cannot create a
local extremum; this phenomenon is known as hidden scales.
Another critical issue is that the EMD only detects functions oscillating around
the zero mean axis but fails with signals oscillating around a given shape. Figure
3.9 presents this problem: after the first extraction, the envelopes cannot embed
the first IMF with the result that the sifting procedure stops and identifies a
non-real residual. This kind of behaviour can be encountered in many natural
phenomena, especially with non-stationary data.
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(a) First IMF extraction. (b) Second IMF extraction.

Figure 3.9: Figure presenting an example of a function that does not oscillate around
the zero mean, given in black. In green, the first two extracted IMFs are plotted. Note
that the envelopes for the last iteration of the sifting procedure are also represented in
each subplot.

After having introduced the central problems related to the sifting procedure
of the Empirical Mode decomposition and having shown its main drawbacks,
the following sections describe some alternatives affecting the procedure and the
choice adopted within this thesis.

3.6 Stopping Criteria
The EMD decomposes a signal into the sum of IMFs. It is the sifting process
that extracts the basis, and, by definition, it “ sifts” many times to obtain a basis
function. Its two primary purposes are eliminating riding waves and making the
wave profile more symmetric with respect to zero. The mean of the upper and
lower envelopes has to be zero by default. However, the average of the IMFs
envelopes separated by the signal cannot be zero. Therefore, the more repeated
the sifting process is, the closer to zero the average will be. At the same time, too
many steps will make IMFs constant amplitude frequency-modulated functions.
In that case, they would not embed any physical meaning, and, most likely, they
would mix different frequencies.
Several authors proposed different solutions in the literature based on different
principles. However, the obtained results end up failing, given the lack of a
mathematical formulation for all of them. The main issue of these criteria is
that they all use heuristic rules, and they are not related to the IMF definition.
Therefore, it might stop too early with some frequencies that could be missed or
too late, producing IMFs without any physical meaning.
The goals of this section are, firstly, describing some of the most used stopping
criteria of the literature; secondly, showing how they affect the stability of the
algorithm and, therefore, the final extraction of the IMFs.
The following stopping criteria are presented in Dalpiaz, Rubini, D’Elia, Coc-
concelli, Chaari, Zimroz, Bartelmus, Haddar et al. (2013).
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3.6.1 Cauchy-Type Convergence (SD)
The first stopping criterion that has been proposed is given by Huang et al.
(1996). The idea is limiting amplitude and frequency modulations to obtain
meaningful IMFs through a certain threshold for the standard deviation of two
consecutive sifting results.

SD =
T∑
t=0


∣∣∣(γl(h−1) (t)− γlh (t)

)∣∣∣2
γ2
l(h−1) (t)

 (3.16)

where h indicates the number of times that the sifting procedure has been re-
peated, γlh = γl is an IMF. Huang et al. (1998) provide 0.2 and 0.3 as suitable
thresholds for this criterion; however, this method does not take into account
the idea of IMF as a monocomponent function: its produced IMFs usually tend
not to have such a property, and so mix different time scales.

3.6.2 Mean Fluctuations Threshold
To improve the above, the following criterion based on three different thresholds
aimed to provide small fluctuations of the mean and, at the same time, consid-
ering locally large variations is taken into account. Three thresholds are defined
: α, θ1 and θ2. For (1− α) data, the criterion keeps sifting if σ (t) < θ1, while
for the remaining fraction σ (t) < θ2. The definition of σ (t) is the “evaluation
function" and is given by:

σ (t) := a (t)
m (t) (3.17)

where a (t) is the mode amplitude defined as:

a (t) :=

(
s̃Ul (t)− s̃Ll (t)

)
2 (3.18)

and s̃Ul (t) and s̃Ll (t) represents the upper and lower envelopes respectively. The
usual number for these thresholds are θ1 = 0.05, θ2 = 10θ1 and α = 0.05. The
main issue in this case is that the thresholds do not adapt the signal, i.e. it is
an heuristic rule that can or cannot fit the signal depending on its own features.

3.6.3 Energy Difference Tracking
This criterion assumes that the Empirical Mode Decomposition provides IMFs
and residue mutually orthogonal. By considering a non-stationary signal s̃ (t)
comprised of mutually irrelevant components as follows:

s̃ (t) = s̃1 (t) + s2 (t) + ...+ s̃L (t) =
L∑
i=1

s̃i (t) (3.19)
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By taking into account the total energy of the signal computed as

Es̃ =
∫ ∞
−∞

s̃2 (t) dt =
∫ ∞
−∞

L∑
i=1

s̃i (t)2 dt (3.20)

By assuming orthogonality between them:∫ ∞
−∞

s̃i (t) s̃j (t) dt = 0 (3.21)

where i and j represent two different components. Therefore the total energy of
the signal becomes:

Es̃ =
∫ ∞
−∞

L∑
i=1

s̃i (t)2 dt

=
∫ ∞
−∞

s̃2
1 (t) dt+

∫ ∞
−∞

s̃2
2 (t) dt+ ...+

∫ ∞
−∞

s̃2
L (t) dt

= E1 + E2 + ...+ EL

(3.22)

where Ei refers to the energy of the i-th components of the signal s̃ (t). By
recalling that the EMD decomposition is given by:

s̃ (t) =
L∑
l=1

γk(t) + r(t) (3.23)

where γl(t) is an IMF and r(t) the residue or the mean trend of s̃ (t). Different
IMFs γ1, γ2, γ3...γL incorporate different frequencies from high to low. If the
EMD considers mutually orthogonal components, after having removed the first
one, the energy of the residual signal is given by:

E2,..,L =
∫ ∞
−∞

[
L∑
i=2

s̃i (t)
]2

dt (3.24)

It is then possible to observe the following:

Etot = E1 + E2,..,L = Es (3.25)

This is the sum of the energy of the first component separated by the signal
together with the energy of the residual signal. Within its work, Junsheng et al.
(2006) considers the case where a component γ1 (t) (or IMF) is not orthogonal
to the others. Then, when it is separated by the signal, the sum of its energy
along with the residual signal will be given by:

Etot =
∫ ∞
−∞

γ2
1 (t) dt+

∫ ∞
−∞

(s̃ (t)− γ1 (t))2 dt

= Eγ1 +
∫ ∞
−∞

(
s̃2 (t)− 2s̃ (t) γ1 (t) + γ2

1 (t)
)2
dt

= 2Eγ1 + Es̃ − 2
∫ ∞
−∞

s̃ (t) γ1 (t) dt

(3.26)
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By supposing the following:

γ1 (t) = As̃i (t) + e (t) (3.27)

where A is constant and e (t) has been defined as the error component of γ1 (t),
then:

Etot = Ex + 2
(
A2 − A

)
Ei + 2Ee 6= Ex (3.28)

where
Ee =

∫ ∞
−∞

e2 (t) dt (3.29)

Therefore, it is worth noting that if the decomposed signal is comprised of or-
thogonal components, then the energy of the original signal (Es̃) equals the sum
of the energy of the components (Etot). In the case of a component that is not
orthogonal there is going to be an error term defined as:

Eerr = Etot − Es̃ = 2
(
A2 − A

)
Ei + 2Ee (3.30)

Within their paper, Junsheng et al. (2006) explain that the sifting procedure will
stop when |Eerr| reaches a certain minimum together with the mean value of the
envelops that has to be small enough. However, the main issue of this criterion is
given by the fact that IMFs generated by nonstationary and nonlinear signals are
not orthogonal. Therefore, the identification of a threshold for |Eerr| is heuristic
and strictly depending on the signal.

3.6.4 Orthogonality Criterion
Another method that exploits the concept that IMFs should be mutually orthog-
onal has been proposed by Lin and Hongbing (2009). They underline the fact
that generally an IMF should satisfy the following;

N∑
t=1

γl (t) (s̃ (t)− γl (t)) = 0 (3.31)

which states the orthogonality of the IMFs. As stopping criterion they determine
the following index and the sifting procedure will stop once that it reaches a
certain-value:

OC =
∣∣∣∣∣
N∑
t=1

ml (t) s̃ (t)
ml (t) (s̃ (t)−ml (t))

∣∣∣∣∣ (3.32)

where s̃ (t) is the original signal and ml (t) is the mean envelop. As for the pre-
vious methods, the main problem is that the value to stop the sifting procedure
is pre-defined and is highly related to the signal features. A general threshold
for this criterion is stopping the sifting procedure when OC > 1.05. Moreover,
non-stationary and non-linear data do not produce orthogonal IMFs.
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3.6.5 A Simple Example
These stopping criteria are the most used within the literature. They shared the
problem of being heuristic without a mathematical formulation that determines
a general rule for every kind of signal. The last two methods are based on the
theoretical concept that IMFs are mutually orthogonal. It has been proved that
IMFs of non-stationary and non-linear signals are not orthogonal, leading to
energy leakage. On relevant alternative is proposed in Huang et al. (2008) who
determined the orthogonal empirical mode decomposition or OEMD based on
the Gram-Schmidt orthogonalization. However, they demonstrate that even this
decomposition presents some issues, i.e. mixing higher frequency components
with lower frequency one; as a result, some instantaneous frequencies turn to be
negative and so lacking any physical meaning. Moreover, the residue seems to
be not orthogonal to any other components, and therefore, there is always some
energy leakage.
Several stopping criteria have been introduced within the literature of Empirical
Mode Decomposition. The problem of the identification of the right number of
IMFs without any scale mixing problems or the convergence of the algorithm
are still issues that have to be solved. Within this section a toy example that
supports the above evidence is being included.
In order to demonstrate what has been stated above, the following signal has
been taken into account and then interpolated with a natural cubic spline:

s(t) = sin(πt) + sin(6πt) + sin(8πt) + 0.5t, for t ∈ [0, 2.6] (3.33)
Within this section, four main stopping criteria have been discussed: the Cauchy-
Type Convergence (SD) method, the Mean Fluctuations Threshold method,
the Energy Difference Tracking method and finally the Orthogonality Criterion.
Each of them has been implemented on R and applied to the above signal. The
results are aimed to show that every criterion provides a different number of
IMFs based on heuristic rules strictly depending on the studied signal. There-
fore, every method should be carefully used over different kind of signals since the
obtained IMFs may be not a meaningful representation of original one. Figure
3.10 presents the identified IMFs by using these four criteria.
The top panel shows the interpolated signal s̃(t). The four subpanels show in-
stead the decompositions obtained through the different stopping criteria. The
top-left panel is the result provided by the Cauchy-Type Convergence criterion;
it utilises a threshold equal to 0.3 of the standard deviation of two consecutive
sifting steps. In this specific case, it extracts five different IMFs and a resid-
ual component. The top-right panel shows the result of the EMD exploiting
the criterion exploiting the mean fluctuations threshold. The idea behind it is
indeed providing small fluctuations of the mean and emphasising locally large
variations. It identifies five IMFs and a residue. The bottom-left panel presents
the result of the Energy Difference Tracking criterion. Note that, when applied,
it was done in combination with the Mean Fluctuations Threshold one. It iden-
tifies two IMFs only. This reflects the problem of heuristic rules that have been
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previously discussed. Lastly, the bottom-right panel shows the orthogonality cri-
terion applied to the considered signal. As for the former case, it has been used
in combination with the Mean Fluctuation Threshold criterion. It extracts two
IMFs since another threshold, the index of orthogonality, has been taken into
account within the algorithm.
By observing this simple example, it is possible to notice that the first two
stopping criteria extract more IMFs than the third and the fourth ones. However,
in the latter ones, the first IMF seems to capture most of the frequency content
compared to the second and the third IMFs identified. Furthermore, in the
decompositions relying on the SD and the MFD stopping criteria, the IMFs
show a more regular profile without riding waves or mixing frequencies between
the basis functions. The studied signal includes three different sinusoids carrying
three distinct frequencies and a trend component. The EMD using the first two
stopping criteria identifies 5 IMFs and a residual. Hence, two extra components
are identified. While the EMD applied with the last two stopping criteria (the
energy and the OC ones) extracts two IMFs and a residual only. Hence, the
first two are more sensitive to riding waves and over-extract extra components;
however, the last two tend to concentrate most of the frequency content within
the highest basis function causing the phenomenon known as mode-mixing since
it also detects more than just one frequency.
Given this evidence, the SD and the MFD stopping criteria are the ones that
provide more stable results and, therefore, are the ones adopted for the decom-
position obtained in the experiments in part III. Within these experiments, more
challenging tasks are required, and the MFD stopping criterion will be selected.
The fact that multiple thresholds are used instead of only one of the SD stopping
criterion will provide more stable results.

3.7 Spline Interpolation and Alternative Enve-
lope Algorithms

The parametric representation interpolating the maxima and minima envelopes
plays a central role within the sifting procedure. Many solutions have been
proposed in the literature. Some of them are presented within this section to
provide a general overview. They represent alternative solutions to the classical
EMD algorithm and tackle the main issues affecting the sifting above introduced,
i.e. end effects, hidden scale, mode mixing and boundary conditions.
The experiments conducted in this thesis in part III will rely on the natural cubic
spline since its combination with the “wave” boundary condition above described
offer the most stable solution in terms of the sifting procedure.
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Figure 3.10: Stopping Criteria. The top panel shows the original signal s̃(t)
derived by interpolation using a natural cubic spline of the discrete samples of
s(t) = sin(πt) + sin(6πt) + sin(8πt) + 0.5t for t ∈ [0, 2.6]. The other four sub-figures
present the decompositions obtained through the different stopping criteria. It is possi-
ble to observe that different number of IMFs are found as well as they present different
shapes.

In the following subsections, firstly, the concept of cubic spline is introduced
with the primary motivation to use such a specific class of fitting curves. This
corresponds to the most common approach in constructing the EMD envelopes.
Afterwards, the alternative methods used in the literature to solve such a task
are presented. Particularly, they are the B-spline combined with an alternative
technique exploiting the binomial operator; the natural and the clamped cubic
splines; the Akima spline, which is the basis for a segment power function method
introduced in the EMD literature.

3.7.1 Basis Functions: Cubic splines
The first step of the EMD foresees fitting a spline trough the discrete path-
realization s(t). After that, the same spline will be used for the envelope con-
struction. One solution is offered by smoothing splines. Consider the discrete
path-realization s(t). The following linear relationship is assumed:

s(ti) = g(ti) + εi for i = 1, . . . , N (3.34)

102



M. Campi 3. Methodology: The Empirical Mode Decomposition

where g is a smooth function equal to the conditional mean of si given ti and εi
are independent, mean zero errors with constant variance σ2. Instead of relying
on the classical Least Squares estimator, O’ Sullivan (see O’Sullivan (1986))
proposed the notion of smooth function by introducing a roughness penalty over
the usual sum of squares, i.e. penalized sum of squares, as follows:

n∑
i=1

(si −
m+k+1∑
j=1

βj ĝ (ti))2 + λ
∫ m+k+1∑

j=1
βj(ĝ

′′ (ti))dt (3.35)

Integrating the squared second order derivative represents the penalty and is
controlled by the tuning parameter λ. The main issue featuring splines is the
identification of the optimal number of knots along with their locations. Few
knots may generate underfitting, while many of them could cause overfitting.
Here, knots are placed at data points and overfitting is highly monitored. There
is only one solution to the minimization problem 3.35 given by:

argmin
ĝ

L(ĝ, λ) (3.36)

which is a function of t0 < t1 < · · · < tN called smoothing spline function. This
function will be chosen as sensing basis function within the EMD section. A
specific class of smoothing spline, named cubic spline, will be selected. The rea-
soning behind such choice can be justified through the following two statements.

Definition 3.7.1 (Smoothness). The smoothness measure of a function f on
interval [a, b] is given by its integrated second derivative over that interval:∫ b

a
(f ′′(t))2dx. (3.37)

It is possible to show that the following theorem applies, under such a measure
of smoothness.

Theorm 3.7.2 (Optimality of Natural Cubic Spline). Given interpolation data
{(ti, si)}ni=1, then among all functions f ∈ C2[a, b] which interoplate (go exactly
through the observed points), the natural cubic spline is the smoothest as quanti-
fied through measure in Equation 3.37.

Such theorem justifies the employment of natural cubic splines approximating
our IMF basis function s̃(t). It will also be exploited to approximate the starting
signal denoted by s(t). These statements are shown in section 3.1. This is highly
central from an EMD perspective: cubic splines are very popular given their
smoothness. Within the EMD section, each basis function is defined as a cubic
spline and denoted as s̃(t). In the following subsections, the different alternatives
that have been studied in thel literature with respect to the EMD are introduced.
Note that an algorithm to compute each spline is provided in Appendix B.
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3.7.2 B-Splines and the Binomial Operator
One solution often adopted when interpolation is the task of interest is repre-
sented by B-splines. This class of parametric interpolators has been introduced
by de Boor (2001) and is below presented. The critical reason for adopting
such a spline is its efficiency in terms of computational cost. Furthermore, their
recursive formulation allows for great flexibility.
In an EMD context, B-splines have been used by Chen et al. (2006), who proposed
an alternative EMD by deriving recursive formulation of the Hilbert transform.
The reader should refer to such work for further open mathematical discussion
related to the EMD. A general framework for B-splines is now introduced.
Let τ := (τi) be a non-decreasing sequence of m scalars. The i − th B-spline of
order k for the knots sequence τ is denoted by Bi,k,τ and defined as:

Bi,k,τ (t) := (τi+k − τi)D[τi+k − τi](.− t)k−1
+ , t ∈ R (3.38)

where the operator D [τ1, τ2, . . . , τn] {f} applied to any function f represents the
k-th order divided difference of function f at values τ1, τ2, . . . , τn. The argument{

(.− t)k−1
+

}
is zero if τ < t and equals (τ − t)k−1 if τ ≥ t. They form a basis for

the space of splines of order k with knots τi, i ∈ Z. According to the recurrence
relation (see de Boor (2001)), after k − 1 applications of such property, Bi,k,τ

assumes the following form:

Bi,k,τ =
i+k−1∑
τ=i

ατ,kBτ,1 (3.39)

This property is defined as the DeBoor-Cox recursion formula and offers more
flexibility compared to other configuration of splines.
A precise mathematical representation for the envelopes still lacks within the
literature. The definition of such element could be a keystone in the sifting
procedure. By exploiting the B-spline approach introduced, Chen et al. (2006)
construct a function, named the compensating function, which replaces the mean
value. Consider the B-splines definition. Within a classical EMD context, Chen
et al. (2006) defines the set of knots t := {tj : j ∈ Z} as the extreme points of
s̃(t). Inside the support of Bj,k,t, the next linear functional is defined:

λj,k,t : s̃ 7−→ 1
2k−2

k−1∑
l=1

(
k − 1
l

)
s̃(tj+l) (3.40)

which is a binomial average of the extrema within the support of Bj,k,t. This
representation is needed in order to define the operator that replaces the mean
envelope of the classic EMD as:

Vth,kx :=
∑
j∈Z

λj,k,t(x)Bj,k,t (3.41)

The good reason in employing such approach is given by a natural convergence
of the sifting algorithm; it results from the variation diminishing property of
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B-spline series. However, one of its drawbacks that still have to be investigated
is the uniqueness of the provided IMFs.

3.7.3 Akima Splines and The Segment Power Function
Akima splines are first-order smooth splines introduced by Salomon (2011). The
idea is computing the slope of a point (ti, si) according to its two predecessors
((ti−1, si−1), (ti−2, si−2)) and its two successors ((ti+1, si+1), (ti+2, si+2)) as follows:

s̃′(ti) = |mi+2 −mi+1|(mi−1) + |mi−1 −mi−2|(mi+1)
|mi+2 −mi+1|+ |mi−1 −mi−2|

(3.42)

where mi−2 = si−1−si−2
ti−1−ti−2

. For each splines, endpoints are estimated through the
employment of two quadratic polynomials and by assuming that t4 − t2 = t3 −
t1 − t2 − t0 and tN − tN−2 = tN−1 − tN−3 = tN−2 − tN−4. It is then possible
to compute m0 = 2m1 − m2, m1 = 2m2 − m3, mN−1 = 2mN−2 − mN−2 and
mN = 2mN−1 −mN−2. By considering the last equations, the whole dataset is
then covered.
If cubic spline provides a too smooth interpolation, the Akima one offers a too
flexible approximation, meaning that its interpolations is not smooth enough.
Qin and Zhong (2006) proposed the segment power function algorithm to address
this issue. The idea involves the use of a power function method to interpolate
adjacent points Pi−1, Pi, Pi+1 and Pi, Pi+1, Pi+2 and then splice the two curves.
For instance, consider the generic interpolation points denoted P1, P2, P3 and
P2, P3, P4. The functional curve for this splicing takes the form:

s̃(t) = t3 − t
t3 − t2

s̃2(t) + t− t2
t3 − t2

s̃3(t) (3.43)

where s̃2(t), s̃3(t) are single valued smooth curves (first order continuous and dif-
ferentiable) interpolated over points P1, P2, P3 and P2, P3, P4 respectively. They
considered the use of a power functional form, given for the interpolation of
three generic points in the (t, s)-plane denoted by P1(t1, x1), P2(t2, x2), P3(t3, x3)
according to:

s̃2(t) =


(
t−t2
t1−t2

)β [ (t3−t2)s1−(t2−t1)s3
t3−t1

]
+ s3−s1

t3−t1 (t− t2) + x2, t ≤ t2,(
t−t2
t3−t2

)β [ (t3−t2)x1−(t2−t1)s3
t3−t1

]
+ x3−s1

t3−t1 (t− t2) + s2, t ≥ t2,
(3.44)

The value of β ∈ R should be considered carefully. These authors recommended
a value of around β = 2.5 by declaring it robust for their applications.
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Machine Learning Techniques
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Chapter 4

Characterisation of
Time-Frequency Domain

One of the purposes of this thesis is solving classifications tasks testing different
EMD based features. A statistical approach often considered to develop such a
framework requires the definition of a decision function, often referred to as a
classifier. The problem can then be formulated as a learning procedure aimed to
identify the optimal classifier. Two classification methods will be used in later
Chapters (i.e. Chapters 5, 6 respectively) utilising the Support Vector Machine
and Gaussian Processes within a decision-theoretic framework of Generalised
Likelihood Ratio testing. Details and extensions related to these statistical tech-
niques will be then presented.
A common issue encountered when analysing real-world data-sets is the nonlinear
and nonstationary properties of the of the data. As a result, traditional linear
methods cannot be applied, and nonlinear procedures are required instead. A
technique that has become highly popular within both machine learning and
statistical signal processing to overcome such a challenge is represented by kernel
methods. The idea is to map the existing data-set in the input space, into a
new space known as the features space where linear algorithms apply again.
The mapping is usually unknown explicitly, and the so-called kernel trick comes
into play. In such a way, a family of kernel functions can then be employed to
synthesise information regarding the unknown mapping. These methods rely on
the notion that a nonlinear data transformation into a higher dimensional feature
space increases the probability of the linear separability of the transformed data.
This is accomplished by exploiting properties of dot products in the high or
infinite-dimensional feature space in terms of kernel functions of the input space.
Therefore, formally introducing such spaces and their attributes is imperative.
In this work, kernel methods are required to characterise EMD based features
used to carry the classification tasks of interest. Such features result from the
spectral decomposition of observed path realisations of stochastic processes or
deterministic functions. The selected space for the tasks mentioned above is
the space of continuous functions in R with d derivatives denoted as Cd(R),
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where d is some integer. This class of functions will admit classical calculus
expansions such as the Taylor series or Maclaurin series. The ability to derive
monomial basis representations comes from the restriction on the regularity of the
underlying function, which could be, for example, C∞. In this case, the expansion
coefficients can be obtained if the function is differentiable in an infinite number
of times at some points. If these assumptions do not hold and attributes such as
non-stationarity and non-linearity come into play, ad hoc spaces are required.
The following steps of this Chapter are firstly to review kernel learning pro-
cedures. In this respect, several aspects are considered as the feature vectors
employed to summarise the data, the kernel proximity and the kernel choice. Af-
ter, a review of the kernel families employed in part III for different experiments
relying on the Support Vector Machine framework introduced in Chapter 5 is
provided. In this regard, multi-kernel learning techniques will also be taken into
account. In Chapter 6, other kernel representations within a Gaussian Process
setting will be considered. Therefore, a section describing such kernels is also
provided.

4.1 Kernel Learning
The assumption made in the presented settings of this Chapter consists of con-
sidering data which are vectors, i.e. x1, . . . ,xN ∈ RD. Denote X ∈ RN×D the
matrix whose i-th row is xi. Consider the input data x1, . . . ,xN ∈ RD and the
associated matrix X ∈ RN×D such that

X =


x1
...
xN


N×D

=


x1,1 · · · x1,D
... . . . ...

xN,1 · · · xN,D


N×D

(4.1)

What happens when kernel methods come into play is that a set of “features”
can be chosen and define a space H. Such features are “performed” (implicitly or
explicitly) in the hope that relevant structure will be revealed by the mapping of
the data to a much higher dimensional space. The dataX are therefore mapped
to the feature space H using a mapping

ϕ : RD → H (4.2)

and then the task of interest, i.e. classification or regression or clustering, is
performed in H using ad hoc methods belonging to supervised or unsupervised
learning, for example. Note that the feature space is directly denoted as H,
hence a dot product space. Consider the feature space H ⊂ RP , with P >> D.
For each data point xi, with i = 1, . . . , N the following is applied

ϕ(xi) = [ϕ1(xi), . . . , ϕP (xi)]1×P (4.3)
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and, therefore, ϕ(xi) ∈ H ⊂ RP represents the i-th input vector projected into
the feature space of higher dimension P . In matrix form this is given as

Φ = ϕ(X) =


ϕ(x1)

...
ϕ(xN)


N×P

=


ϕ1(x1) · · · ϕP (x1)

... . . . ...
ϕ1(xN) · · · ϕP (xN)


N×P

(4.4)

Consider now the covariance matrix of Φ given as

CP×P = ΦᵀΦ =


ϕ1(x1) · · · ϕ1(xN)

... . . . ...
ϕp(x1) · · · ϕP (xN)


P×N


ϕ1(x1) · · · ϕP (x1)

... . . . ...
ϕ1(xN) · · · ϕP (xN)


N×P

(4.5)
whose element Cn,m is given as

Cn,m = [ϕn(x1), . . . , ϕn(xN)]


ϕm(x1)

...
ϕm(xN)

 =
N∑
i=1

ϕn(xi)ϕm(xi) = Cov(ϕn(X), ϕm(X))

(4.6)
and which represents the covariance between the n-th feature function ϕn and
the m-th feature function ϕm in the feature space H ⊂ RP with n,m = 1, . . . , P
across the given input data samples.
Having chosen a dot product space for the feature space, i.e. H ⊂ RP , associated
with it is a kernel along with a kernel matrix, also known as Gram Matrix,
K ∈ RN×N according to elements:

Ki,j = k(xi,xj) = 〈ϕ(xi), ϕ(xj)〉

= ϕ(xi)ϕ(xj)ᵀ = [ϕ1(xi), . . . , ϕP (xi)]


ϕ1(xj)

...
ϕP (xj)

 =
P∑
p=1

ϕp(xi)ϕp(xj)
(4.7)

for i, j = 1, . . . , N . This corresponds to an inner product between the samples
projected in the feature space since it is possible to write ϕ(xi) = ϕi ∈ H ⊂ RP

which is a P dimensional vector in the feature space. In matrix form, this is
given as

KN×N = ϕ(X)ϕ(X)ᵀ =


ϕ1(x1) · · ·ϕP (x1)

... . . . ...
ϕ1(xN) · · ·ϕp(xN)


N×P


ϕ1(x1) · · ·ϕ1(xN)

... . . . ...
ϕP (x1) · · ·ϕP (xN)


P×N

(4.8)
Then any algorithm whose operations can be expressed in the input space in
terms of dot products can be generalised to an algorithm which operates in the
feature space by substituting a kernel function for the inner product.
In practice, the study of the Gram matrix K is in place of the input covariance
matrix XTX. Therefore, the choice of kernel for whichever selected task can be
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highly influential on the outcome achieved. There are three main considerations
that might affect the solution:

• The choice of the functional kernel (Mercer kernel, see examples in Schölkopf
et al. (2002), Zhang et al. (2007), and Nguyen and Ho (2007).

• The choice of the feature vector used to summarise the data, for a detailed
review see Guyon and Elisseeff (2006).

• The hyperparameters settings of the kernel utilized, hence the procedure
to estimate and select them.

The aim of this section, and the following subsections, is to deal with these three
aspects by first presenting the main components introduced in the prior section.
Subsequently, the solutions adopted in this work will be shown. The procedure
of interest at this stage is often referred to as Kernel Learning and foresees the
learning of the kernel function structure, which is unknown a priori. The selected
choice for the class of functional kernels is presented.
The following theorem introduces a class of kernel called the Mercer kernels

Theorm 4.1.1 (Characterization of Kernels). A function k : X×X → R which
is either continuous or has a finite domain, can be decomposed as

k(x,x′) = 〈ϕ(x), ϕ(x′)〉H (4.9)

into a feature map ϕ into a Hilbert space H applied to both its arguments, followed
by an inner product in H if and only if (iff) it is finitely positive semi-definite.
A Mercer kernel.

For a detailed proof see Shawe-Taylor et al. (2004). Mercer kernels are often
employed since satisfying the following rules. Consider a space X of sample and
two Mercer kernels k1(·, ·) and k2(·, ·) over X ×X. Then k(·, ·) is also a Mercer
kernel under the following constructions:

• Addition: k(x,x′) = k1(x,x′) + k2(x,x′)

• Positive scaling: k(x,x′) = αk1(x,x′) for α > 0

• Multiplication: k(x,x′) = k1(x,x′)k2(x,x′)

• Dot product (inner product): k(x,x′) = ϕ(x) ·ϕ(x′) for any function ϕ(x)
on x ∈ X.

• Standardization: k(x,x′) = k1(x,x′)√
k1(x,x′)k1(x,x′)

It is then advantageous to adopt this class of kernels given these properties and
the presented framework of this Chapter.
Formally, once the kernel is selected, the Gram Matrix can be defined as follows.
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Definition 4.1.2 (Gram Matrix or Kernel Matrix). The Gram Matrix is a posi-
tive semi-definite matrix constructed for a given kernel function k(x,x′) for data
xi ∈ X with i ∈ {1, . . . , N} given by

K =


k11 k12 k13 · · · k1N
k21 k22 k23 · · · k2N
... ... ... ... ...
kN1 kN2 kN3 · · · kNN



=


k(x1,x1) k(x1,x2) k(x1,x3) · · · k(x1,xN)
k(x2,x1) k(x2,x2) k(x2,x3) · · · k(x2,xN)

... ... ... ... ...
k(xN ,x1) k(xN ,x2) k(xN ,x3) · · · k(xN ,xN)


(4.10)

k(x1,x1)X12 .... ... X1P

X21 X22 ... ... X2P

X31 X32 ... ... X3P

... ... ... ... ...

... ... ... ... ...

XN1 XN2 ... ... XNP

X11 X21 X31 ... ...

X12 X22 X32 ... ...

... ... ... ... ...

... ... ... ... ...

X1P X2P X3P ... ...

X1N

XN2

...

...

XNP

k(xN,x1) ... ... ...

...

...

...

k(x1,xN)

...

...

...

...

...

...

...

...

...

k(xN,x2)

...

...
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k(x2,XN)
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......
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...

k(x3,x1)

k(x2,x2)
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k(xN,xN)

Figure 4.1: The two matrices ϕ(x) and ϕ(x)ᵀ are shown in white. On the right,
the Gram Matrix resulting from the inner product is presented. Note that the Gram
Matrix colour provides symmetry, and on each cell, the resulting entry is printed.
Furthermore, for the first cell, k(x1,x1), the two vectors used to obtained such result
are highlighted.

The structure of the Gram matrix will determine the association between the
pair of data points and model hidden information required for the classification
tasks presented in later Chapters.
The rest of this section deals with the remaining two aspects affecting the kernel
choice that comes into play in this work. Firstly, the feature vectors used to
summarise the data in part III are introduced. Keeping in mind that the central
goal is to describe EMD based features behaviour and, therefore, the kernel
choice would offer a way to characterise their structural time-varying properties.
The last aspect corresponding to the methods chosen for the hyperparameters
setting and learning algorithms are described.
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4.1.1 Feature Vector to Summarise the Data: EMD Fea-
tures

In this subsection, the EMD based features employed to represent the original
data signals are presented. The EMD extracts basis functions carrying ordered
spectral frequency content information of the interpolated signal s̃(t), as intro-
duce in equation 3.1 of Chapter 3. The classification task considering the IMFs or
features engineered on them, aims to characterise such information through the
use of kernels detecting structural changes related to differences in their spectral
content. In the time domain this is given as the number of oscillations, whilst
in the frequency domain this will be captured by the calculated instantaneous
frequencies obtained with the Hilbert transform. Such ordering should also be
reflected in the other extracted features based on the IMFs and would affect the
performances of the classification task. High-frequency features tend to capture
most of the spectral content of the original signal and, therefore, are expected to
provide better performances. Furthermore, these are also carrying most of the
non-stationary traits of s̃(t), which, if efficiently identified and properly handled
through an ad hoc kernel structure, would provide a great deal of discrimination
power.
At this stage, it is essential to highlight that within this thesis a method of
partitioning the time-frequency plane with a posteriori basis functions is utilized,
since the location of the spectral information cannot be known a priori. Once
this step is achieved, the main focus is construction of a classification framework
relying on kernel learning procedures that describe the regions of the partitioned
time-frequency plane through different hyperparameter structural sets. In such
a way, a more effective discrimination power can be produced. To achieve this,
it is critical to formally define the EMD based features that will be used to
characterise such frequency content information within different feature space
domains, since this can highly affect the kernel choice selection process.
The following table provides a summary of the multiple representations con-
sidered for each IMF basis function. The time mesh defined to summarise
the features is denoted by t

′
i such that t′i ∈ {0 = t

′
1, . . . , t

′
N = N}. Part III

presents several experiments, synthetic and speech applied, where the EMD is
performed either over the interpolated synthetic samples or the interpolated
voice samples, and five IMFs will are stored: the first three with the highest
frequency; the lowest; and the residual. Afterwards, both instantaneous fre-
quencies and coefficients of the cubic spline of each IMF are calculated. Clas-
sical statistics are also extracted by a sliding window of fixed length over an
IMF, such that, W [τ1, τj+1] = W [τj+1, τj+2] = · · · = W [τj+N−1, τj+N ], where
τj ∈ {0 = τ1, . . . , τV = N}. The considered classical statistics are, in order from
top to bottom, are: mean, variance, minimum, maximum, kurtosis, skewness
and root mean square (RMS). Note that the residual r(t′i) is included in the
decomposition and denoted as γk+1(t′i).
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EMD Feature Label Window

IMFs γ1(t′i), γ2(t′i), γ3(t′i), γk(t′i), γk+1(t′i) NA
Instantaneous Frequencies f1(t′i), f2(t′i), f3(t′i), fk(t′i), fk+1(t′i) NA

Cubic Spline Coefficients
b1(t′i), b2(t′i), b3(t′i), bk(t′i), bk+1(t′i) NA
c1(t′i), c2(t′i), c3(t′i), ck(t′i), ck+1(t′i) NA

d1(t′i), d2(t′i), d3(t′i), dk(t′i), dk+1(t′i) NA

Classical Statistics

µ̂1, µ̂2, µ̂3, µ̂k, µ̂k+1 W [τj , τj+1]
σ̂2

1 , σ̂2
2 , σ̂2

3 , σ̂2
k, σ̂

2
k+1 W [τj , τj+1]

c̃1, c̃2, c̃3, c̃k, c̃k+1
c∗1, c∗2, c∗3, c∗k, c

∗
k+1 W [τj , τj+1]

β̂21 , β̂22 , β̂23 , β̂2k , β̂2k+1 W [τj , τj+1]
k̂1, k̂2, k̂3, k̂k, k̂k+1 W [τj , τj+1]

RMS1, RMS2, RMS3, RMSk, RMSk+1 W [τj , τj+1]

Table 4.1: Table describing the extracted EMD based features used within part III
for the synthetic and the speech experiments. The IMFs are firstly extracted and then
the IFs, the Spline Coefficients and the Classical Statistics were extracted for each of
the considered basis functions (i.e. the first five IMFs). Note that c̃i = min [τi, τi+1),
c∗i = max [τi, τi+1)

This set of features is used throughout the synthetic and speech experiments.
One of this thesis’s main goals is to explore their discrimination power in different
classification tasks. Results, along with details of their use, will be given in part
III, Chapters 8, 9, respectively.
The third aspect influencing the kernel choice learning process corresponds to the
method employed for the hyperparameter selection. The techniques considered
in this thesis are the Kernel Target Alignment and cross-validation methods for
the classifier Support Vector Machine. In the following subsection, an overview
of these methods is presented.

4.2 Families of Kernel for Support Vector Ma-
chine

In this subsection, the kernel function families considered in the experiments
related to the framework developed in Chapter 5 are presented.
Six kernels have been explored: the radial basis; the Laplace radial basis; the
polynomial; the sigmoid; the Bessel and the linear functions. Each of them has
specific parameters that need to be optimized to obtain accurate performances
of the SVM algorithm.
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Kernel Formula Optimisation Parameter

RBF k(xi, xj) = exp(−γ‖xi − xj‖2) γ
Laplace RBF k(xi, xj) = exp(−γ‖xi − xj‖) γ
Polynomial k(xi, xj) = (γ〈xi, xj〉+ r)d γ, r and d
Sigmoid k(xi, xj) = tanh(γ〈xi, xj〉+ r) γ and r

Bessel k(xi, xj) = Besseldν+1(γ‖xi−xj‖)
(‖xi−xj‖)(−d(ν+1)) γ, ν and d

Linear k(xi, xj) = 〈xi, xj〉 −

Table 4.2: Kernel functions employed in Chapter 5. Note: γ gamma or scale; r offset; d degree and ν order.
The optimisation of this kernel functions is conducted within a Support Vector Machine framework, hence,
there will also be a C cost optimisation parameter which is introduced in Chapter 5.

SVMs are strictly dependent on the selected hyperparameters of the kernel func-
tions. Optimal selections can be made for performance measurements evalu-
ated through a cross-validation score of the training set. Several methods are
available for the search of optimal hyperparameters. The selected grid-search
method is the most numerically stable and easy to implement. In the SVM
settings, the hyperparameters regions are set as follows: C ∈ {2−2, 2−1, . . . , 26};
r ∈ {2−5, 2−4, . . . , 2−2}; d ∈ {1, 2, 3}; and ν ∈ {1, 2}. Note that C corresponds to
the cost parameter introduced in Chapter 5. Regarding the grid for γ, the kern-
lab package approach for R, which uses the sigest function to obtain the grid
range for this parameter, was adopted. The selected values for γ corresponds
to a trimmed mean of its grid. The experiments related to this framework are
implemented with 2-fold cross-validation of the training set to tune the hyper-
parameters for classification.
Figure 4.2 presents a set of constructed Gram matrices for the kernel functions
presented in Table 4.2. The chosen hyperparameters are presented in the caption
of the Figure. The linear kernel is repeated across the six subplots of its column
since it is evaluated on the same data grid. Different structures of the underlying
data can be captured through these kernels. The linear and the polynomial
kernel, also presented in Rasmussen and Williams (2005), are not stationary
kernels and, therefore, might provide more powerful insights if the underlying
dataset does not carry such a property.
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Figure 4.2: Figure presenting the Gram Matrices for the presented kernel in table
4.2. The selected grid of hyperparameters follows: for the radial basis function kernel
γ = [0.01, 0.1, 0.5, 1, 4, 10]; for the laplace kernel γ = [0.01, 0.1, 0.5, 1, 4, 10]; for the
polynomial kernel γ = [0.5, 1], r = [0.5, 7], d = 0.1; for the sigmoid kernel γ = [0.5, 1, 2]
and r = [0.5, 7]; and for the Bessel kernel γ = [0.5, 1], ν = [0.5, 7] and d = 0.1.

4.3 Multi-Kernel Learning Combining
The framework presented involves classical kernel-based learning algorithms based
on a single kernel to define similarity between pairs of points. A more recent ap-
proach that is progressively growing within various literature, particularly within
the machine learning community, corresponds to multiple kernel learning (MKL).
Gönen and Alpaydın (2011b) provides a detailed review of this concept. The rea-
soning behind such approaches involves two central aspects: first, different ker-
nels correspond to different types of similarities across the data and, instead of
choosing the one that works best, a combination of those allows for an added level
of flexibility and a more efficient solution. Secondly, typical learning problems
often involve multiple, heterogeneous data sources that carry diverse represen-
tations and require different kernels. In this case, multiple information sources
can be achieved.
A second review of these approaches regarding multiple kernel learning algo-
rithms is given in Peters (2017). It is noted that several strategies could affect
different actions of the learning algorithms, i.e. one-stage versus two-stage kernel
combining rules, kernel combination objectives and optimal solutions, boosted
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kernel learners, and ensemble learners of multiple kernels. Furthermore, MKL
methods could combine the kernel functions in several manners (Gönen and Al-
paydın (2011b)), which can be both linear or non-linear functions. Two main
approaches are usually found, one which only learns the combination function,
or combination weights, for fixed kernels. The second option would instead learn
both the kernel hyperparameters along with the optimal combination, i.e. the
optimal weights.
The resulting multiple kernel combination is aligned with theorem 4.1.1 in the
sense that a kernel function can be constructed from an inner product of a feature
map and will still be a kernel as follows

kη(xi,xj) = kη (〈ϕ̃m(xi), ϕ̃m(xj)〉) = fη

({
kn
(
xmi ,x

m
j

)}M
m=1

)
(4.11)

where ϕ̃m(xi) = (ϕm ◦ ϕm−1 ◦ · · · ◦ ϕ1) (xi) or, analogously, combinations of ker-
nels and fη : RM → R represents the combination function and could be linear
or non-linear (multiplication, power, exponentiation). Therefore, the formula-
tion of different kernels families characterising the discrimination boundary in
the data (or state-space) can be easily obtained. The desired outcome consists
of achieving linear discrimination through the kernel space embedding, with the
selection of either features and kernels being critical to the performance of this
method. In this work, a variety of such choices that involve different aspects of
the EMD is explored. Particularly, combinations of different EMD features em-
bedded through different kernel functions will be explored in Chapter 5 within
the SVM framework, and in Chapter 6 within the stochastic embedding set-
ting. Results will be given in part III, Chapters 8 and 9 for multiple speech
experiments.
In this work, the use of a convex weighted combining rule will be employed and
is defined as follows

kη(xi,xj) =
M∑
m=1

ηmkm(xmi ,xmj ) (4.12)

where the kernel weights may be selected in different ways. Within such con-
struction, each km(xmi ,xmj ) characterizes a distinct sub-set of features of the
data. It is then possible to interpret the contribution of each individual compo-
nent to the learning process. The η coefficients can be interpreted to understand
which features are more relevant for discrimination. In order to estimate such η
weights, the approach of Tanabe et al. (2008) is adopted in this thesis. This uses
the performance obtained by each kernel separately, by selecting

ηm = πm − δ∑M
m=1(πm − δ)

(4.13)

where πm is the accuracy of km used individually and δ is the threshold that
should be less than or equal to the minimum of the accuracies obtained from
single-kernel learners.
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The above framework will be exploited in Chapter 5 to construct a more powerful
SVM framework. The same approach will also be exploited in the case of the
stochastic embedding presented in Chapter 6. In preparation, a review of MKL
procedure in the context of Gaussian processes will be further discussed below
in subsection 4.4.

4.4 Families of Kernel for Gaussian Processes
This section will present the kernel functions often used as a default choice related
to the Gaussian process framework. This work provides the necessary building
blocks required for Chapter 6, which proposes a stochastic embedding of the
EMD basis functions, achieved through the use of Gaussian processes. The
choice of the kernel strongly affects the inference performance of the Gaussian
process on the given task. This section will present the properties characterising
such a stochastic process, given and controlled by their covariance operator,
corresponding to a definite positive covariance kernel function.
Gaussian processes were introduced in the machine learning community as an
alternative inference method when Neal (2012) observed that Bayesian neural
networks became Gaussian processes if the number of hidden units approached
infinity. A Gaussian process constructs a prior over functions rather than over
parameters (Wilson and Adams, 2013, Rasmussen and Williams, 2005). A more
detailed discussion about Gaussian processes will be provided in Chapter 6.
The first set of kernel functions corresponds to the standard stationary kernels
often encountered in the Gaussian process literature and reviewed in Rasmussen
and Williams (2005, Chapter 4). These correspond to kernel functions which
are a function of the distance between points of the input domain X , but not of
the points themselves, hence not of x. The ones considered in this work are the
square exponential, the rational quadratic, the periodic and the locally periodic.
Gaussian processes are often used as a tool for pattern discovery, with parametric
kernels employed by default. As highlighted in Wilson and Adams (2013), even
the square exponential kernel, which is the most used in practice, merely acts
as an effective smoothing interpolator that cannot easily reproduce the non-
stationarity and non-linearity properties of the underlying system. Therefore,
these kernels partly weaken the Gaussian process framework if applied to such
challenging data structure settings. Various approaches have been proposed in
the literature to resolve this issue.
To detect such complex, hidden data structures, one of the proposed solutions is
combining Gaussian processes with different types of Bayesian neural networks
and shape an alternative way to construct more expressive covariance kernel
functions. See amongst other Salakhutdinov and Hinton (2007), Wilson et al.
(2011), Damianou and Lawrence (2013). These methods present limitations as
they are usually defined to tackle a specific kind of structure, i.e. input-dependent
correlations between different tasks, and rely on a combination of simple kernels.
Furthermore, the interpretation of the obtained results is often challenging, and
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the computational cost associated with the implemented inference procedures is
highly demanding.
The second procedure proposed in the literature pursues the idea that more re-
fined kernel structures can be achieved by adding, multiplying or composing a few
standard existing kernels and still obtain other positive definite kernel functions.
These kernel designs set up the basis for the concept of multiple kernel learn-
ing (MKL) which was introduced above (see Gönen and Alpaydın (2011a) for a
good review). The aim is to obtain a richer representation of the data with the
combination of predefined kernels. This can be achieved through several strate-
gies, for example, hierarchical kernel learning (HKL) (Bach, 2008, Jawanpuria
et al., 2015), which learns from a set of base kernels assumed to be embed-
ded on a directed acyclic graph. Bach et al. (2004) based on Lanckriet et al.
(2004) proposed a dual formulation of the quadratically constrained quadratic
program associated with the learning optimisation procedure of the coefficients
of the kernel combination as a second-order cone programming problem. Ar-
chambeau and Bach (2011) selected a convex combination of kernel matrices
with sparsity of the kernel weights by exploiting a hierarchical Bayesian ap-
proach. Durrande et al. (2016) utilized an additive GPs with additivity within
the kernel function through a parsimonious numerical method for data-driven
parameter estimation. The critical point of these methods is imposing diverse
kinds of restrictions, making them less flexible or general for various applications.
Without these constraints, however, the proposed kernel function constructions
of these methodologies would easily lead to overfitting and, therefore, cannot be
relaxed. As highlighted in Wilson and Adams (2013), some combinations have
direct interpretable results while others do not. Hence, the task of construct-
ing an effective inductive bias for kernel compositions leading to the discovery
of the statistical structure of a Gaussian process is indeed arduous. In general,
any stochastic process covariance function study faces a challenge, if no further
assumptions or restrictions are made.
Another line of multiple kernel learning approaches considers the assumption
that it is possible to model Gaussian processes covariance function by acting on
their power spectral density and then convert it back with the inverse Fourier
transform. This concept relies on Bochner’s theorem (later introduced) and on
the fact that it is much easier to reach the positivity requirement of the power
spectral density, rather than the positive definiteness of the covariance kernel
function. These ideas have been introduced by Wilson and Adams (2013) and
refined or exploited in Remes et al. (2017), Samo and Roberts (2015), Tobar et al.
(2015), Lázaro-Gredilla et al. (2010) and Tompkins and Ramos (2018) They have
been shown to achieve complex kernel compositions carrying a more expressive
way of modelling. Some of these approaches have been used for the classification
tasks developed in later Chapters and are presented below.
Another class of kernels for Gaussian processes can be considered in this settings
is the one proposed by Sauer et al. (2021) Volodina and Williamson (2020) Ming
et al. (2021). These approaches rely on the use deep learning procedures that
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can be used to produce Gaussian Processes emulators. Volodina and Williamson
(2020) proposed to fit nonstationary GP emulators in response to the restrictions
imposed by weak stationary GP by specifying finite mixtures of region-specific
covariance kernels. In general, the method firstly fits a stationary GP. If nonsta-
tionarity is detected through traditional diagnostics, those diagnostics are then
used to fit suitable mixing functions capturing such a property. Another approach
dealing with nonstationarity of the underlying signal is the one given in Sauer
et al. (2021). Deep Gaussian Processes (DGPs) are employed in this work so to
reproduce abrupt regime changes in training data. The approach of this work
relies on active learning (AL) strategies that distribute runs non-uniformly in the
input space, which is something that a standard GP would not achieve. Even
though this kind of approach appears to be successful to handle nonstationarity
in general, DGPs are actually affected by the problem that variational distribu-
tions could be poor representations of the true posterior distributions, especially
when multi-modality is present in the dataset. Ming et al. (2021) proposed a
novel DGP inference method using stochastic imputation. This introduces a
simple while efficient DGP training procedure which considers optimisations of
conventional stationary GPs. These approaches represent alternative methods to
fit nonstationary GPs efficiently and are relevant in this work, given the interest
in nonstationary signals applications.
An alternative way to construct a kernel falls into the category of data-driven
kernel functions. As highlighted in this review, Abbasnejad et al. (2012), there
are three types of kernel learning procedures: parametric, non-parametric and
data-driven. The presented framework and the methods considered in this work
include parametric approaches, the most used methodology in practice within
kernel algorithms. This kind of procedure uses an optimisation process that
seeks the parameters of a predefined model. Following what was introduced
above, there are two main categories of parametric methods: single base kernel
and multiple base kernel. This thesis investigates both approaches in the context
of Gaussian processes.
The second type of kernel learning algorithm is known as the non-parametric
kernel learning, (Hoi and Jin, 2008, Hoi et al., 2007, Raina et al., 2007) and
considers no prior model for the kernel. Consequently, the algorithm objective
function is formulated with criteria to find an optimal kernel. The main short-
coming of this class of methods is that the optimal kernel has to be built from
the training and test data during testing, since there is no further model to be
used for testing.
The third family of methods that could be considered in kernel learning is the
data-driven or data-dependent approach. Examples of these kernels are the
Fisher kernel (Jaakkola, Haussler et al., 1999) and the marginalisation kernel
(Herbster et al., 2005). The advantage of these methods is that they carry
parameters directly defined on the underlying data rather than a priori given
by the kernel method. The significance of these methods lies in the fact that
their optimisation step is related to estimating the data-driven model parameters
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through relatively simple solutions. In this work, the fisher kernel, as proposed in
Jaakkola, Haussler et al. (1999), is exploited in the Gaussian process stochastic
embedding proposed in Chapter 6 and below presented and discussed.
This section begins with a review of the traditional stationary kernel functions,
presenting their corresponding Gram Matrices. A review of Bochner’s theorem
and the spectral mixture kernels relying on this theorem are discussed. Finally,
the Fisher Kernel and its construction will be described. Note that for con-
sistency within the subsections, the input variable for the kernel functions is
denoted by x. However, the real experiments are applied to speech signals and
therefore, will be a function of time instead with the input variable corresponding
to t.

4.4.1 Stationary Kernels
Stationary kernels are an important and highly studied subset of kernels. A
stationary kernel is a kernel whose value is a function of x−x′, i.e. it is invariant
to translation of the inputs:

k(x,x′) = k(x− x′)
k(x+ z,x′ + z′) = k(x,x′)

(4.14)

In this work, the following stationary kernels, whose utilisation with GPs is fully
described in Rasmussen and Williams (2005), are employed for classification
purposes.

Kernel Formula θk

Square Exponential (SE) kSE(x,x′) = exp
(
− (x−x′)2

2l2

)
l

Rational Quadratic (RQ) kRQ(x,x′) =
(

1 + (x−x′)2

2αl2

)−α
α, l

Periodic (PR) kPR(x,x′) = exp
(
− 2 sin2(π|x−t′|/p)

l2

)
l, p

Locally Periodic (locPR) klocPR(x,x′) = kSE(x,x′)kPR(x,x′) l1, l2, p

Table 4.3: Description of the stationariy kernel functions employed in in Chapter 6 to study a stochastic
embedding of the EMD. Note that θk represents the set of hyperparameters used in the formula (given in the
table). l represents the length scale; α represents the relative weighting of scale variations; p represents the
period within both the periodic and locally periodic kernel; l1 and l2 are the two different length scales of the
locally periodic kernel. Further details about the hyperparameters are provided in the text below.

This class of kernels are parametric functions specified by a set of hyperparame-
ters controlling the structural power of the kernel on the underlying data. Each
function carries specific hyperparameters, and each hyperparameter covers a par-
ticular role in shaping the kernel. Note that l represents the length scale and
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determines the length of the oscillations of the underlying signal. α within the
rational quadratic kernel, corresponds to a relative weighting of large-scale and
small-scale length variations. This kernel is equivalent to adding together many
SE kernels. p within the periodic and locally periodic kernels represents the pe-
riod parameter and determines the distance between repetitions of the underlying
signal. l1 and l2 are parameters for the two different length scales of the locally
periodic kernel, where l1 corresponds to the length scale of the exponentiated
quadratic, while l2 corresponds to the length of the periodic function.
Given its flexibility, the square exponential kernel (also known as the radial ba-
sis function kernel) is the most used in practice. It has the property of being
a universal kernel (Micchelli et al., 2006) and it can be integrated against most
functions. Furthermore, Rasmussen and Williams (2005) show that it is infinitely
differentiable, which means that a Gaussian process using this kernel structure
for its covariance function will have mean square derivatives of all orders and,
therefore, will be highly smooth. The rational quadratic represents an alternative
to the square exponential since it corresponds to the superimposition of many
square exponential kernels. When a Gaussian process comes into play, one often
employs these two kernels as the first choice. However, as underlined in Wilson
and Adams (2013), these are no more than smooth interpolators. If the under-
lying signal has discontinuities, is discontinuous in its first derivative or shows a
high level of non-stationarity or non-linearity, the length scale of these kernels
will be usually learnt according to the shortest oscillation of the signal. As a
result, it would fail to fit different time-varying data regions. On the other hand,
one could use the periodic or the locally periodic kernel functions. These provide
additional flexibility to model periodic signals over time, or signals which are pe-
riodic at a local level by multiplying a periodic kernel with a square exponential
one.
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Figure 4.3: The different Gram Matrices for the presented kernel in table 4.3. Note
that the selected grid of hyperparameters is given as follows: for the square exponential,
l = [0.25, 1, 3]. For the rational quadratic l = [0.25, 1, 3] and α = [0.5, 7]. For the
periodic kernel l = [0.25, 1, 3] and p = [0.5, 7]. For the locally periodic kernels l1 =
l2 = [0.25, 1, 3] and p = [0.5, 7].

Figure 4.3 shows different Gram matrices for the introduced kernels. Note that
for the square exponential, the three Gram matrices repeats since only three
cases are taken into account, i.e. l = [0.25, 1, 3]. These plots show how the
selected hyperparameters strongly change the shape of the Gram matrix and,
therefore, greatly affect the task of interest. This demonstrates the importance
of the chosen kernel as a keystone in the Gaussian process literature.
Next, Bochner’s theorem is introduced. Such theorem is presented to equip
this thesis framework in the development of the spectral mixture kernel given in
Wilson and Adams (2013). In this work, the authors design the power spectral
density of a stationary scalar-valued Gaussian process by a mixture of square
exponential functions. By then exploiting Bochner’s theorem (Bochner, 1953,
Bochner et al., 1959), the spectral mixture kernel can be computed via the inverse
Fourier transform of the obtained power spectral density.

4.4.2 Bochner’s theorem
It is standard practice to represent a stationary kernel as function of a single
argument given as k(τ ), where τ = x− x′.
The covariance function of a stationary process, or simply, a stationary kernel can
be fully characterised by its spectral representation derived by Bochner (1953).
Bochner’s theorem defines a one-to-one mapping from stationary kernels to finite
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measures via Fourier transform.

Theorm 4.4.1 (Bochner). A complex-valued function k on RP is the covariance
function of a weakly stationary mean square continuous complex-valued random
process on RP if and only if it can be represented as

k(τ ) =
∫
RD
e2πsᵀτψk(ds) (4.15)

where ψk is a positive finite measure.

If ψk has a density S(s), then S is called the spectral density or power spectrum
of k, and k and S are Fourier duals :

k(τ ) =
∫
S(s)e2πsᵀτds

S(s) =
∫
k(τ )e−2πsᵀτdτ

(4.16)

For a proof see Yaglom (2012).
Therefore, the properties of a stationary kernel can be entirely described by its
spectral density. This theorem, and the duality implied by it, are employed in
the Gaussian process literature to circumvent the difficulty often affecting this
community in defining positive-definite functions to design stationary covariance
kernels. The central motivation is that the positivity requirement of the power
spectral density might be more easily achieved than the positive definiteness
requirement of the covariance kernel.
In the following subsection, the work proposed in Wilson and Adams (2013)
exploiting Bochner’s theorem is presented.

4.4.3 Spectral Mixture Kernels
The above duality has been exploited in Sinha and Duchi (2016), Yang et al.
(2015) to design stationary kernel representations. Lázaro-Gredilla et al. (2010)
utlized the duality to learn the spectral density as a mixture of Dirac delta
functions leading to a sparse spectrum kernel. It has also being used for large-
scale inference in Rahimi et al. (2007). The interest in such duality in this work
arises when considering the approach proposed in Wilson and Adams (2013), who
derived a stationary spectral mixture (SM) kernel by formulating any stationary
Gaussian process covariance kernel function with spectral densities corresponding
to scale-location mixture of Gaussians. Such a construction is achieved through
two main facts:

1. The square exponential kernels and a mixture of those provides Gaussian
spectral densities are centered around the origin. Therefore, having non-
zero mean Gaussians would offer much more flexible spectral densities.

2. Mixtures of Gaussians are dense in the set of all distribution functions.
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The formulation for the obtained SSM(s) and kSM(τ ) are derived and given
as follows:

kSM(τ ) =
Q∑
q=1

wq
P∏
p=1

exp(−2π2τ 2
p v

(p)
q ) cos(2πτpµ(p)

q )

SSM(s) =
Q∑
q=1

wq [N (s|µq,Mq) + (−s|µq,Mq)] /2
(4.17)

where SSM(s) is a mixture of Q Gaussians on RP , where the qth component has
mean vector µq = (µ(1)

q , . . . , µ(P )
q ) and covariance matrixM = diag(v(1)

q , . . . , v(P )
q )

and τp is the pth component of the P dimensional vector τ = x− x′. Note that
the spectral densities are symmetric.
This class of kernel has been exploited in Parra and Tobar (2017), who con-
structed a spectral mixture kernel for multi-output Gaussian processes and it
was extended to large scale multidimensional pattern extrapolation in Wilson
et al. (2014). In general, spectral kernels work highly efficiently in expressing
kernels with long-range, non-monotonic or periodic structures (see for example
Tompkins and Ramos (2018)). There have also been extensions to handle non-
stationarity as given in Remes et al. (2017) and Wilson (2014), and Samo and
Roberts (2015). These are beyond the main scope of this thesis and will not be
considered.
For simplicity and without loss of generality, Q = 1 is chosen, and, therefore the
kernel will be given as follows:

k(τ ) = k(x,x′) = exp(−2π2(x− x′)2σ2) cos(2π(x− x′)µ) (4.18)

Figure 4.4 represents the Gram matrices for the spectral kernel presented in
equation 4.18, with hyperparameters µ = 10, σ2 = 0.5 for the left panel and
µ = 30, σ2 = 00.5 for the right panel of the top row. In the bottom row the
Gram matrices are generated with µ = 100, σ2 = 1 and µ = 2, σ2 = 0.0005 in
the left and right panels, respectively. It is possible to observe that even with a
unique Gaussian component, such Gram matrices express a great deal more of
structural changes compared to the ones provided by the stationary kernels.
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Figure 4.4: Figure presenting the Gram Matrices for the presented kernel in equation
4.18. Note that the hyperparameters values for µ and σ2 are given above the plots.

4.4.4 The Fisher Kernel
following kernel structure considered in the speech application experiments is
the Fisher kernel. As introduced above, this kernel function falls into the class
of data-driven kernel functions and has been widely used since fully data adap-
tive. This means that it relies completely on the data rather than adopting any
parametric form or nonparametric solution.
To understand the idea behind such kernel function, the two main approaches
when dealing with classifications problems of a complex dataset will be discussed.
The first is data engineering into sequences of variable-sized arrays combined
with a generative model, and then the classification is carried with a Bayes
Rule. The second employs a discriminative method, directly estimating either
the posterior probability or the discriminant function for the class label and
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appears to offer better solutions in the classification task. Jaakkola, Haussler
et al. (1999) proposed the Fisher kernel as a link between these two approaches
to obtain a more robust classifier and map a variable length sequence onto a
new fixed dimension feature vector space. The mapping is determined by the
gradient of the log-likelihood of the parameters of an underlying generative model
and defines a new feature space called the Fisher score space. It describes how
that parameter contributes to the process of generating a particular input data.
The gradient maintains all the structural assumptions that the model encodes
about the generation process.
Its primary aim is to provide a generic mechanism incorporating generative prob-
ability models into discriminative classifiers. It has been further extended by
Jaakkola and Haussler (1999b) who proposed a general class of probabilistic re-
gression models and a parameter estimation technique that uses arbitrary kernel
functions. The main reason for introducing such a kernel function is to classify
complex data types such as speech, text or bio sequence data. The examples that
follow demonstrate the successful application of this method. Jaakkola, Diekhans
and Haussler (1999) applied the Fisher kernel method to detect remote protein
homologies, which performed well in classifying protein domains by SCOP (Struc-
tural Classification of Proteins) superfamily. Jaakkola et al. (2000) found that
using the Fisher kernel significantly improved previous methods for the classifica-
tion of protein domains based on remote homologies. Moreno and Rifkin (2000)
used the Fisher kernel method for large scale Web audio classification. Smith
and Niranjan (2000) presented experimental justification for the Fisher kernel,
explaining that it limits the dimension of the feature space by giving some bene-
ficial regularisation, especially when the two classes are inseparable. Vinokourov
and Girolami (2001) successfully employed the Fisher kernel for document classi-
fication. Fine et al. (2001) used SVMs for speaker verification and identification
tasks. The reader might refer to Sewell (2011) for a well-presented summary of
the kernel.
One of the applications of this thesis concerns the classification task involving
patients affected by Parkinson’s disease. The stochastic embedding proposed in
Chapter 6 will be utlized in this application in later Chapters, with motivations
and reasonings provided in part III.
The Fisher kernel has been successfully employed within speech verification, and
recognition tasks by Fine et al. (2001) and Smith and Gales (2001). The selected
role for this work consists of detecting voice disturbances in displacement, di-
rection and velocity to differentiate voices of healthy patients and voices of ill
subjects affected by Parkinson’s disease. Differences in the trend or magnitude of
the scoring vectors should reflect different features of the underlying generative
model and hence provide the desired discrimination power. The main strength of
this method is given by the kernel rather than by the employed time-series model.
Particularly, a voice affected by Parkinson’s’ disease versus one of a healthy sub-
ject should provide variations in terms of the considered scoring method since
the two generative models are intrinsically different.
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To introduce such a kernel function, note that a change of the input variable is in
place. Hence, while the rest of the Chapter ha been introduced by using x, this
time the input variable becomes t. The reasons to do so is to avoid confusion
when the applications Chapters will be introduced. The derivation of the Fisher
kernel will be done in the setting of speech signals where one usually works with a
function of time, hence t. Therefore, the author decided to stick to the notation
of the applied section rather than using x.
Consider the signal s̃(t) as given in equation 3.1, in Chapter 3. Consider now
a probability model for s̃(t) whose probability density function is denoted as
f(s̃(t)|θk), where θk is a vector of the model parameters. Define ∇θk as the
gradient operator with respect to θk and loge f(s̃(t)|θk) is the log-likelihood with
respect to the model with a given set of parameters θk. Then the Fisher score,
Uθk(t) , is the gradient of the log-likelihood with respect to the model with a
given set of parameters θk.

Uθk(t) = ∇θk loge f(s̃(t)|θk) (4.19)

It provides an embedding into the feature space. The Fisher kernel refers to the
inner product in this space, and is defined as

k(t, t′) = Uθk(t)ᵀ I−1 Uθk(t′) (4.20)

where I is the Fisher Information Matrix and is defined as I = E [Uθk(t) Uθk(t)ᵀ].
Remark that the Fisher Information Matrix measures the amount of information
that S(t), i.e. the random process whose realisation corresponds to s̃(t), carries
about θk. In practice, the Fisher score Uθk(t) maps s̃(t) into a feature vector
that is a point in the gradient space of the manifold MΘk

. This mapping is re-
ferred to as Fisher score mapping (Jaakkola, Haussler et al., 1999). The gradient
Uθk(t) can be used to define the direction δ which maximizes loge f(s̃(t)|θk) while
traversing the minimum distance in the manifold, as defined by D(θk,θk + δ),
where D(x,y) = ‖x − y‖. This latter gradient is usually known as natural gra-
dient and is obtained from the ordinary gradient via φθk(t) = I−1Uθk(t). Hence,
the mapping s̃(t)→ φθk(t) is called the natural mapping and the natural kernel
associated to it corresponds to the inner product between these feature vectors
relative to the local Riemannian metric as given in Equation. 4.20. Note that
the information matrix is asymptotically immaterial and that the simpler kernel
that can be taken into account and it will be the one employed in this work is

k(t, t′) = Uθk(t)ᵀ Uθk(t′) (4.21)

This kernel will be employed in Chapter 9 to develop an ad hoc methodology for
the given classification task.
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Chapter 5

SVM Classifier and Statistical
Interpretation

The first step in classification tasks is to summarise the underlying signals
through feature extraction. The EMD captures several non-stationary attributes
of the considered time-series through different spaces such as parameter space,
basis space, and instantaneous frequencies. These representations were reviewed
in Chapter 4, subsection 4.1.1, as they correspond to a relevant and important
step for kernel learning procedures. Table 4.1 shows the EMD based features
that will be used in the synthetic and speech experiments of part III. When
working with kernel methods and large hyperplane classifiers to ensure that the
resulting numerical procedures are robust, a normalisation step is applied before
every classification exercise to each feature.
The framework of this Chapter relies on the Support Vector Machine as the pre-
ferred classifier. Such a technique corresponds to a supervised machine learning
method widely employed to solve both classification or regression problems. In
classification tasks, the problem solved is the identification of a hyperplane able
to separate the given data points into two (the problem is usually a binary classi-
fication problem) classes. Intuitively, a good hyperplane maximises the distance
between the nearest training data point of any class. Further discussion will be
provided in the sections below. It is essential to highlight that such a machine
learning technique is often far from the statistical interpretation required when
solving data analysis. It is, therefore, of the primary aim of this Chapter to
provide a statistical interpretation of such a classifier by relying on two critical
approaches introduced in the literature. The discussion is below provided.
One issue often affecting the machine learning community is to visualise high-
dimensional datasets through an efficient and computationally fast technique.
Several solutions have been proposed in the last few decades (the reader might
refer to Maaten and Hinton (2008) and references within for further details) as
Chernoff faces, pixel-based techniques and techniques that represent the dimen-
sions in the data as vertices in a graph. The main drawback of these methods
is that they represent tools that can display multiple data dimensions and leave
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the interpretation to the human eye. This represents a hazardous procedure and,
indeed, a subjective one. Instead, dimensionality reduction techniques could rep-
resent the alternative approach, providing a low dimensional data set that can
be plotted in a scatterplot. A dimensionality reduction method aims to retain
as much information as possible of the high dimensional data by mapping it into
a low dimensional one. Traditional examples are represented by the Principal
Component Analysis (Hotelling, 1933) or the classical multidimensional scaling
(Torgerson, 1952) corresponding to linear methodologies aiming to obtain a low
dimensional representation of dissimilar data points far apart. The central is-
sue with such methods is their linearity assumption, producing unreliable results
when non-stationary and non-linear real data plays the central role. As a re-
sponse to such an issue, numerous non-linear solutions have been implemented
(Demartines and Hérault, 1997, Sammon, 1969, Hinton and Roweis, 2002). In
this thesis, the t-SNE proposed by Maaten and Hinton (2008) is employed. This
technique will not only provide a good solution for data visualisation in Chapter
8, but it also provides a tool for the interpretation of the optimal hyperplane
often found into a high dimensional space obtained through a kernel function.
Further discussion is provided in the sections below.

5.1 Classification framework: EMD-Support Vec-
tor Machine

Support Vector Machine (SVM) is a method of supervised machine learning
which allows for classification and regression based on structural risk minimiza-
tion (see Cortes and Vapnik (1995)). The goal is determining a hyperplane of
separation with the maximum distance to the closest points of the identified
classes. These points are called Support Vectors. By considering a training set
{(xi, yi)}Ni=1, a feature vector xi ∈ RD and class labels yi ∈ {−1,+1}, the hyper-
plane of separation can be defined as d(xi,w, b) = wᵀ ·xi+b = 0, where w ∈ RD

represents the weight vector and b a scalar. The optimal hyperplane that sep-
arates data into two classes is the one that minimises the following objective
function: [

1
n

n∑
i=1

max (0, 1− yi(w · xi − b))
]

+ λ‖w‖2 (5.1)

This corresponds to a quadratic optimisation problem (Manjula et al., 2011)
and can be solved in the parameter space with respect to w and b. There are
several solutions to solve this problem as the sub-gradient descend and coordinate
descend. In this work, we adopt the quadratic optimisation problem which can
be given by its primal form. For all i ∈ {1, . . . , n}, the so called slack variable
ξi = max (0, 1− yi(w · xi − b)) are firstly introduced, measuring the distances ξi
of the points crossing their margin and incorporated in the optimisation; each
ξi is the smallest non-negative number satisfying yi(w · xi − b) ≥ 1 − ξi. The
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optimization problem is then given by:

minimize 1
n
C

n∑
i=1

ξi + λ‖w‖2 (5.2)

subject to yi(w ·xi−b) ≥ 1−ξi and ξi ≥ 0, for all i. Note that C is the trade-off
factor, compromising between the maximization of the margin and the minimiza-
tion of the misclassification error. The primal problem is typically reformulated
to as a dual problem through a Lagrangian and the solution is guaranteed if the
Karush-Kuhn-Tucker conditions (Boyd and Vandenberghe, 2004) are verified.
By solving for the Lagrangian dual, the problem then becomes:

maximize f(α1 . . . αn) =
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiαi(xi · xj)yjαj (5.3)

subject to ∑n
i=1 αiyi = 0, and 0 ≤ αi ≤ 1

2nλ for all i. Since the dual maximization
problem is a quadratic function of the αi subject to linear constraints, it is
efficiently solvable by quadratic programming algorithms. Here, the variables αi
are defined such that w = ∑n

i=1 αiyixi. Moreover, αi = 0 exactly when xi lies
on the correct side of the margin, and 0 < αi < (2nλ)−1 when xi lies on the
margin’s boundary. It follows that w can be written as a linear combination
of the support vectors. The offset, b, can be recovered by finding an xi on the
margin’s boundary and solving yi(w · xi − b) = 1 ⇐⇒ b = w · xi − yi. (Note
that y−1

i = yi since yi = ±1.)
The presented framework provide a linear classifier assuming linear separability
of the data which is, in practice, rare to observe. The solution tackling this
problem is known as kernel trick and extends such method to non-linear settings
by projecting the data into the so called feature space through a non-linear
map φ(xi). φ(x,Ψ), parametrised by Ψ ∈ Rd, where data is linearly separable
again. What is needed in the feature space is the definition of the inner product
operation. A traditional way to do so is considering kernel function defined as
k(xi, xj) = 〈φ(xi,Ψ), φ(xj ,Ψ)〉. In general, the definition of a kernel function is
given as in Chapter 4 with theorem 4.1.1.
The classification vector w in the transformed space satisfies w = ∑n

i=1 αiyiφ(xi)
where, the αi are obtained by solving the optimization problem:

maximizef(α1 . . . αn) =
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiαi〈φ(xi), φ(xj)〉yjαj

=
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiαik(xi,xj)yjαj
(5.4)

subject to ∑n
i=1 αiyi = 0, and 0 ≤ αi ≤ 1

2nλ for all i. The coefficients αi can
be solved for using quadratic programming, as before. Again, we can find some
index i such that 0 < αi < (2nλ)−1, so that φ(xi) lies on the boundary of the
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margin in the transformed space, and then solve

b = w · φ(xi)− yi =
 n∑
j=1

αjyj〈φ(xj), φ(xi)〉
− yi

=
 n∑
j=1

αjyjk(xj,xi)
− yi

(5.5)

Finally, the optimal decision function of a classifier is z 7→ sgn(w · φ(z) − b) =
sgn ([∑n

i=1 αiyik(xi, z)]− b), producing non-linear classification decision bound-
aries dependent on the kernel choice.

5.2 Interpreting the kernel space linear-decision
boundary in sub-spaces of the state space

In the SVM, the separating linear hyperplane has direct interpretation in the
kernel space but finding its functional form in the state space or feature space is
a highly non-linear inverse problem in general. Hence, interpreting the decision
boundary in the data state-space for the SVM classification problem can be a
challenging task. One way to assess and interpret the accuracy of the discrim-
ination is by employing a projection method. In this work, the dimensionality
reduction technique proposed by Maaten and Hinton (2008) and known as the
t-Distributed Stochastic Neighbor Embedding is considered. It which converts a
high-dimensional data set X = {x1,x2, . . . ,xn} into a two or three-dimensional
data set Y = {y1,y2, . . . ,yn} which is easier to observe. Compared to other
methods, t-SNE can detect both global and local structures in the data. It mod-
els the Euclidean distance between two high-dimensional data points xi and xj
according to the joint probabilities pij; such probabilities measure the pairwise
similarity between xi and xj by symmetrizing two conditional probabilities as:

pj|i = exp (−‖xi − xj‖2/2σ2
i )∑

k 6=i exp (−‖xi − xk‖2/2σ2
i )

pi|i = 0 (5.6)

pij = pj|i + pi|j
2N (5.7)

The variance σi of the Gaussian centered over xi is set such that the perplexity
of the conditional distribution Pi equals a given perplexity Perp(Pi), where
the perplexity is an entropy measure defined as Perp(Pi) = H(Pi) and H(Pi)
represents the Shannon entropy of Pi, i.e. H(Pi) = −∑j pj|i log2 pj|i, and can
be interpreted as a smooth measure of the number of neighbours. The optimal
value σi differs for each xi and is provided by a binary search. To measure the
similarity between two corresponding points yi and yj in the low-dimensional
space Y , a heavy-tailed distribution is considered:

qij = (1 + ‖yi − yj‖2)−1∑
k 6=l (1 + ‖yk − yl‖2)−1 qii = 0. (5.8)
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A t-Student distribution with one degree of freedom (Cauchy distribution) in-
stead of a Gaussian is used in the low dimension so that difference in volume
between high- and low-dimensional spaces is considered. The identification of
the points in the low dimension Y is given by minimizing the Kullback-Leibler
divergence between the two joint distribution P and Q:

C = KL(P ||Q) =
∑
i

∑
j

pij log pij
qij

(5.9)

Such cost function is minimized by applying the gradient-descent technique. The
gradient is given by:

∂C

∂yi
= 4

∑
j

(pij − qij)
(
1 + ‖yi − yj‖2

)−1
(yi − yj) (5.10)

As for the classic Stochastic Neighbor Embedding Hinton and Roweis (2003), the
gradient descent is initialized at sampling map points coming from an isotropic
Gaussian centered around zero with small variance. To speed up the optimization
and also avoid poor local minima identification, the gradient is updated by a
momentum term given by:

Y(t) = Y(t−1) + η
∂C

∂Y
+ α(t)(Y(t−1) − Y(t−2)) (5.11)

where Y(t) represents the solution at iteration t, η is the learning rate and α(t)
is the momentum at iteration t. For the t-Distributed Stochastic Neighbor Em-
bedding, such momentum term works if it is small until the map points have
become moderately well-organized. Another way used to improve the optimiza-
tion is called “early exaggeration” Maaten and Hinton (2008), which consists
of multiplying all the pij’s by a factor (i.e. 4 or 12) during the first steps of
the optimization so that clusters present in the original dataset X will tightly
group in the map Y . All the experiments are run with a perplexity set equal to
20, an early exaggeration factor of 12 for the first 250 iterations, the maximum
number of iteration T is 1000 and the momentum term α(t) = 0.5 for t < 250
and α(t) = 0.8 for t ≥ 250. The learning rate η is set initially equal to 200 and
then updated according to the scheme described in Jacobs (1988). In all the
experiments using t-SNE to represent some of the considered features, used a
first PCA step is used to reduce the dimensionality of the dataset; this is due to
faster computation of the pairwise distances.
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Chapter 6

A Stochastic Embedding For The
EMD

This Chapter presents a stochastic embedding for the Empirical Mode Decompo-
sition. As introduced in Chapter 1, the EMD has been employed within several
fields and to solve various tasks. The most valuable property is that unlike many
other time-frequency decomposition methods mapping the original signal onto a
space spanned by a priori selected bases, the EMD defines the set of IMFs en-
tirely derived from the data and deals with both non-stationary and non-linear
systems. However, the essential, often unnoticed, assumption in applying this
method is that the considered underlying signal is deterministic, foreseeing a
pathwise decomposition method. If granted, this fact weakens the method per
se and does not account for the natural randomness associated with the studied
phenomenon. The first action embodied by this Chapter is to consider this com-
ment and propose an embedding that preserves the EMD inherent construction
but accounts for the stochastic nature of the underlying data system.
The goal is to take the sample path realisation of a process and achieve a stochas-
tic representation of the EMD, hence turning it into an adequate stochastic
model. The extraction procedure produces a set of IMFs whose sum will re-
produce the original realised signal path. Therefore the interest is to seek a
stochastic embedding that preserves the additive nature of the EMD. This will
be achieved in the sense of infinite divisibility of the representation. Accordingly,
the employment of convolutional stochastic representations that will preserve this
additive property in a distributional and process sense is considered.
The concept of infinite-divisible distributions has been widely discussed and can
be appointed to several works developed by Levy, Gnedenko-Kolmogorov, Feller,
Sat, Steutel and van Harn. However, the pioneer is considered to be Bruno De
Finetti, an Italian probabilist statistician and actuary whose work on infinite-
divisible distributions was published in 1929. A review of these works is given
in Mainardi and Rogosin (2008) and the references within. For more techni-
cal texts, the reader might refer to Steutel et al. (1979), Steutel and Van Harn
(2003), Domínguez-Molina and Rocha-Arteaga (2007). The interest in this con-
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cept within this work is represented by the need for an infinite-divisible stochastic
process that can be decomposed into a finite number of stochastic processes car-
rying the same distribution as the original one. In this regard, several choices
could be taken into account since different distributions carry the property of
infinite divisibility. The other property that has to be carried by the convolu-
tional decomposition obtained in this proposed stochastic embedding is that the
resulting stochastic process has to be a second-order process having finite first
and second moments that will fully characterise it.
The proposed embedding will then consider one GP for every IMF. The overall
signal path will be characterised by the sum of GPs corresponding to the model
that arises since one sums the IMFs to get the signal. As a result, one con-
volves the GPs for each IMF to obtain the signal stochastic embedding. Such an
approach is equivalent to a multi-kernel representation of the signal where the
number of kernel components is selected by the EMD sifting extraction proce-
dure and is therefore signal adaptive. Furthermore, since each IMF has its GP
representation, the kernel is tailored (to this local frequency component); this is
akin to a multi-kernel representation that is frequency adaptive in non-stationary
signals. Standard practices for a multi-kernel GP framework have been reviewed
in Chapter 4, such as Duvenaud et al. (2011), Durrande et al. (2012), Van der
Wilk et al. (2017) that propose either an additive kernel function or a convolu-
tional kernel construction procedure, or Wilson and Adams (2013) and Lázaro-
Gredilla et al. (2010) who suggested a multi-kernel frequency approach acting
on the power spectral density of the kernel. These methods differ from the one
explained as, this time, an additive kernel will sum over every input dimension
(the IMFs) to derive a final representation of the original inferred function (the
given signal). It is more advanced since fully data-adaptive by considering the
non-stationarity of each sample at multiple frequencies with the number of kernel
components linked to the obtained IMFs, rather than the use of a heuristic rule.
There will be two solutions for constructing the desired stochastic embedding.
The first one, above discussed, considers one GP for each IMF. The second one
will instead be based on a different intuition, i.e. on the idea that there should
be one stochastic model for each frequency band rather than for every IMF. The
covariance function operator considered in this case will provide information on
the frequency content of the different frequency regions or, more formally, fre-
quency bandwidths characterising the stochastic process of the original signal.
This model will be achieved by constructing an optimal partition of the in-
stantaneous frequency samples based on the cross-entropy optimisation method
(introduced in Chapter 7). Remark that the instantaneous frequencies should
be ordered according to the IMF index, given that the highest IMFs carry the
highest frequencies and the lowest IMFs carry the lowest frequencies. In prac-
tice, the sifting procedure might produce mixed frequency IMFs, and the IFs will
reflect such a fact by carrying multiple frequency contents. This phenomenon,
usually called mode-mixing, might affect the EMD sifting procedure and provide
unreliable results. However, suppose the IFs plane is partitioned according to a
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newly defined grid (whose definition will be later introduced) which is optimal in
the sense that it efficiently separates the instantaneous frequency values within
frequency bandwidths that are highly concentrated. In that case, the existing
IMF values can be aggregated according to the location of their correspondent
IFs within specific frequency bandwidths. A stochastic embedding over these
newly aggregate quasi-IMFs (QIMFs) will be proposed. The power of this model
is that it provides a new redefined EMD decomposition method that is fully
data-adaptive, also from a frequency domain perspective.
There are several points for which the stochastic embedding of the EMD is
relevant. Firstly, this multi-kernel GP stochastic embedding allows one to impose
a stochastic ordering between the IMF embeddings. The IMFs already preserve
the notional oscillatory ordering captured during their construction, given that
each IMF has one less convexity change than the previous. A stochastic ordering
can be achieved by imposing a common covariance operator, such as a universal
square exponential radial basis function kernel, across the IMFs. Then, for each
successive IMF, ensure that the hyperparameters are strictly ordered relative to
those of the previous IMFs to guarantee that the representation achieves either
first order or second order stochastic dominance. Such an approach is superior to
the one proposed in the literature since the added feature of stochastic ordering in
a multi-kernel GP setting will better capture multiple frequencies superimposed
in the original signal.
Secondly, as discussed in Chapter 2, traditional methods as the Fourier transform
or the Wavelet transform are affected by the so-called Uncertainty principle and
need to compromise in time-frequency resolutions. This stochastic embedding
allows for a fully adaptive solution that implements an optimal frequency domain
partition and provides a more refined time-frequency resolution.
As discussed in Chapter 1, the Hilbert transform requires the underlying signal
to be a narrow-band signal (i.e. an IMF) to compute a meaningful instantaneous
frequency. If this is not the case, the obtained values of the IF can often be neg-
ative, and a lack of physical meaning will be in place. Wahlberg and Schreier
(2010) proposed a method tackling this problem and suggested modelling the
stochastic process associated with the instantaneous frequency; however, this is
an arduous problem to solve since the IF is highly non-stationary, lies in the com-
plex domain of the real part, i.e. the IMF, and the distribution of its stochastic
process is highly intractable and difficult to derive in closed form. The second
line of approaches in this field defines the complex analytic extension of the real
part by exploiting the setting of kernel methods and Gaussian Processes. These
works, provided by Bouboulis and Theodoridis (2010). Ambrogioni and Maris
(2019), rely on the use of the complex Gaussian kernel and the general technique
of kernel complexification used to obtain a complex-valued kernel from an arbi-
trary real-valued one. Other alternatives suggesting different approaches relying
on the Hilbert transform instead are given by Girolami and Vakman (2002),
Le Van Quyen et al. (2001), Turner and Sahani (2011). The second stochas-
tic embedding proposed in this thesis tries to tackle this issue from a different
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perspective and aims to solve it in a more straightforward and interpretable way.
Following the above discussion, this Chapter introduces three models that will be
used within a speech application scenario to show evidence of their endowment.
The first one will represent a benchmark comparison and model the stochastic
process characterising the original signal s̃(t). The second model acts on the
IMFs and will propose a multi-kernel combining solution defining the stochastic
process of the original signal as the sum of the stochastic processes defined over
the IMFs and will capture the temporal modes determined by the IMFs. The last
model aims to achieve more representative time basis functions and provides a
more sophisticated solution. Instead of imposing a model characterising the IFs
stochastic processes or following a kernel complexification approach, the novelty
lies in the definition of a stochastic process for the original signal given as the
sum of stochastic processes defined over a new set of time basis functions. These
new basis functions will be called band-limited IMFs and are obtained according
to the location of their instantaneous frequency values within a pre-computed
grid of the frequency domain.
This Chapter is organised as follows: firstly, a review of the Gaussian Processes
is provided. Secondly, the EMD stochastic representation developed within a
Gaussian Process framework is presented. Afterwards, the stochastic embedding
models are described. The last section introduces the Generelasid Likelihood
Ratio Test exploited in this context and employed for the classification task
performed in part III.

6.1 Introduction to Gaussian Processes
The origin of Gaussian processes are partly linked to neural networks (Bishop
et al. (1995)), widely used in regression or classification problems which are these
days the go to method when seeking to represent a flexible procedure to model a
large variety of functions, regardless of the application. However, the flexibility
of neural networks is accompanied by a very high computational cost required to
identify many parameters determined from the data and can often produce sig-
nificant overfitting. As a result, the statistical problem of weight regularisation
comes into play with the difficulty of selecting the weight regularisation parame-
ters. Such an issue can be tackled through a Bayesian approach, which specifies
a hierarchical model with a prior distribution over the hyperparameters of the
weights and then provides the prior distribution of the weights relative to the hy-
perparameters through an observations model. Inducing a posterior distribution
over the weights and the hyperparameters is the final step of such a procedure.
In the case of neural networks, a prior distribution over the weights of the net-
work induces a prior distribution over functions. This prior over functions has a
complex form which is often analytically intractable and whose implementations
makes use of approximations (MacKay (1992)), or Monte Carlo approaches to
evaluating integrals (Neal (1993)).
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Neal (1996) observed that in real-world applications, neural networks should not
be limited to nets containing only a small number of hidden units. Indeed, he
showed that good predictions could be achieved if a net where the number of
units tends to infinity is taken into account along with the Bayesian machinery.
Furthermore, he proved that several classes of neural network models become
Gaussian processes over functions as the number of hidden units approached
infinity. Hence, the equivalence between the Bayesian approach to neural net-
works and Gaussian processes lies in the fact that in the former case, a prior
on the network weights induces a prior over functions, while, in the latter, the
alternative is putting Gaussian processes prior over functions. Note that a re-
lated idea has been used in spatial statistics under the name “kriging”. Gaussian
processes as a tool for regression or classification provides a much simpler infer-
ence technique with a more straightforward interpretation. Hence, they became
the cornerstone of supervised machine learning techniques for inference proce-
dures applied in non-linear regressions or classification problems (Rasmussen and
Williams (2005)).
As highlighted in Rasmussen and Williams (2005), there are multiple ways to
interpret Gaussian processes, and one can be found more straightforward than
the other. Two main perspective can be considered, i.e. the weight-space view
or the function-space view. In this work, the former one is the one taken into
account. In practice, a Gaussian process is a nonparametric probabilistic infer-
ence tool that can be deemed a distribution over functions whose inference takes
place within the function space. The properties of likely functions under a GP,
e.g. periodicity, smoothness, tractability, non-linearity, robustness to overfitting,
scalability, etc. (see Rasmussen and Williams (2005)), are controlled by the pos-
itive definite covariance function often referred to as kernel. A kernel function
shapes the architecture of these properties by controlling the similarity between
pairs of points in the random function domain. Therefore, selecting the most de-
sirable kernel is a hardly delicate challenge primarily discussed in the literature.
A review of the employed kernel for our application is given in Chapter 4. For-
mally, a Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution, which is entirely described by its
mean and kernel covariance function. A more rigorous definition is introduced.
Definition 6.1.1 (Gaussian Process (GP)). Denote by f(x) : X → R a stochas-
tic process, parametrised with state-space {x} ∈ X , where X ⊆ Rd. The random
function f(x) is a Gaussian Process if all finite dimensional distributions are
Gaussian, where for any n ∈ N, the random vector (f(x1), f(x2), . . . , f(xn)) is
jointly normally distributed. A GP can be therefore interpreted formally as de-
fined by the following class of random functions:

f := {f(·) : X → R : f(·) ∼ GP (µ(·,θµ), k(·,θk))} (6.1)

with µ(·,θµ) : X → R, k(·,θk) : X × X → R+,

µ(·,θµ) = E [f(·)]
k(·,θk) = E [(f(·)− µ(·,θµ)) (f(·)− µ(·,θµ))]

(6.2)

137



M. Campi 6. A Stochastic Embedding For The EMD

In most applications, lack of information about the mean function m(x) is a
challenge. For simplicity and without loss of generality, since Gaussian processes
are a linear combination of Normal distributed random variables by definition,
the mean function is commonly assumed to be zero (Bishop et al. (1995)). A more
general case in which m(x) is instead modelled according to some data function
can be easily considered. The covariance function k(x, x′) can be, in general,
any function that takes two arguments, i.e. x, x′, such that k(x, x′) generates a
nonnegative n×n covariance matrix K over a set of values in the state space xi ∈
{x1, . . . , xn}. The covariance kernel function is characterised by hyperparameters
unknown a priori, and a learning procedure is required to identify them. The
output of the Gaussian process model is a normal distribution, expressed in terms
of the mean and variance. The mean value presents the most likely output, and
the variance represents a measure of its confidence.
In this work, Gaussian processes are exploited to define the distribution of the
basis functions of the Empirical Mode Decomposition and hence construct the
desired stochastic embedding. Particularly, in the speech experiments presented
in part III of this thesis, Gaussian processes will be exploited in the context of
time-series and, therefore, the scenario of interest will be the one of Gaussian
process regression. The following subsection provides a review of this setting,
and a brief section on the hyperparameters learning problem is presented. Note
that procedure for kernel learning have been already widely discussed in Chapter
4, in section 4.1.

6.1.1 Prediction with Gaussian Processes
In this subsection, a review of the prediction problem, which is often the one
encountered in a time-series setting, is presented. Consider a set of observation
{y1, y2, . . . , yn} representing the dependent variable subject to noise at certain
time instant points {t1, t2, . . . , tN}, hence one has yi = y(ti) for i = 1, . . . , N .
The question of interest in prediction settings is to identify the estimate of the
dependent variable at a new time instant t?. In a Gaussian process regression
framework, t = t1, t2, . . . , tN represents the input vector and the final goal is to
predict y(t) at the new value input value t?, i.e. y(t?) given the observations set.
Consider the observations being the sum of a function of the input vector t plus
an additive Gaussian noise as follows

y(t) = f(t) + ε (6.3)

Hence, one has a set of observations yi, i = 1, . . . , N on which each element is a
sample from a Gaussian distribution representing the real value of the observation
affected by some independent Gaussian noise ε with variance σ2

n. A Gaussian
Process is a set of random variables modelled by a multivariate Gaussian as

p(f |t) = N (f |µ,K) (6.4)

where f = f(t) = (f(t1), . . . , f(tN)), µ = µ(t) = (µ(t1), . . . , µ(tN)) and Kij =
k(ti, tj). The mean function is often assumed as µ = µ(t) = 0. Hence, the
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resulting Gaussian process is then a distribution over these function whose shape
is defined by K. If two points ti and tj are are considered to be similar by the
kernel function taken into account, then f(ti) and f(tj) can be expected to
be similar. At this stage, there are a set of input observations t and one has
estimated functions f with these observations. Assume a new instant point, or
test input, denoted as t? comes into play. The objective is to predict f?, expected
value given t?. The joint distribution of f and f? can be modelled as[

f
f?

]
∼ N

(
0,
[

K K?

Kᵀ
? K?,?

])
(6.5)

where K = k(t, t), K? = k(t, t?) and K?,? = k(t?, t?) and k(·, ·) is a pre-selected
kernel function able to reproduce a covariance function. This is modelling the
joint distribution p(f , f?|t, t?) but the goal is to identify the conditional distribu-
tion over f? only, which is denote as p(f?|f , t, t?). The derivation of this quantity
uses the Marginal and Conditional distributions of a Multivariate Normal (Tong
(2012)) given as follows

Theorm 6.1.2 (Marginals and conditionals of an MVN). Suppose X = (x1,x2)
is jointly Gaussian with parameters

µ =
[
µ1
µ2

]
, Σ =

[
Σ11 Σ12
Σ21 Σ22

]
, Λ = Σ−1 =

[
Λ11 Λ12
Λ21 Λ22

]
(6.6)

Then the marginals are given by

p(x1) = N (x1|µ1,Σ11)
p(x2) = N (x2|µ2,Σ22)

(6.7)

and the posterior condition is given by

p(x1|x2) = N
(
x1|µ1|2,Σ1|2

)
µ1|2 = µ1 + Σ12Σ

−1
22 (x2 − µ2)

= µ1 −Λ−1
11 Λ12 (x2 − µ2)

= Σ1|2 (Λ11µ1 −Λ12 (x2 − µ2))
Σ1|2 = Σ11 −Σ12Σ

−1
22 Σ21 = Λ−1

11

(6.8)

By exploiting the above it is then possible to obtain:

f?|f , t, t? ∼ N
(
Kᵀ
?Kf , K?? −Kᵀ

?K−1K?

)
(6.9)

However, given the assumed model in (6.3) and assuming additive independent
identically distributed Gaussian noise with variance σ2

n, the prior on the noisy
observations becomes

Cov(y) = K + σ2
nI (6.10)

Therefore, the prediction step corresponds to estimate the mean value and the
variance for f?. Considering equation 6.5, then the joint distribution of the
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observed target values and the function value at the test location under the prior
is (Rasmussen and Williams (2005))[

y
f?

]
∼
(

0,
[
K + σ2

nI K?

Kᵀ
? K??

])
(6.11)

It becomes therefore obvious that the desired quantity is the conditional distri-
bution of f? given y. By deriving the conditional distribution as done in equation
(6.9) it is then possible to obtain the predictive equations for Gaussian process
regression as

f̄?|t,y, t? ∼ N
(
f̄?,Cov(f?)

)
(6.12)

where

f̄? := E
[
f̄?|t,y, t?

]
= Kᵀ

?

[
K + σ2

yI
]−1
y

Cov(f?) = K?? −Kᵀ
?

[
K + σ2

yI
]

K?

(6.13)

Note that equation (6.12) might also be referred to as the distribution of y?|y
given the considered model in equation (6.3). The mean value f̄? is also known
as the matrix of regression coefficients and provides the best estimate for y?. The
variance Cov(f?) is also known as the Schur complement and provides a measure
of uncertainty regarding the computed estimation. It is important to highlight
that the mean function f̄? is a linear combination of the observations y and that
the variance Cov(f?) does not depend on the observations y but only on the
input t.
A quantity that must be introduced since then studied in the following paragraph
for the hyperparameter learning is the marginal likelihood denoted as p(y|t). The
marginalisation can be interpreted as an integral over the function values f . The
marginal likelihood is hence the integral of the likelihood times the prior given
as

p(y|t) =
∫
p(y|f , t)p(f |t)df (6.14)

Under the Gaussian process model, the prior is Gaussian, i.e. f |t ∼ N (0,K)
and the likelihood is also Gaussian, y|f ∼ N (f , σ2

nI). Using the logarithmic
to simplify the calculation, it is common practice to consider the log marginal
likelihood given as

log p(y|t) = −1
2y

ᵀC−1y − 1
2 log |C| − n

2 log 2π (6.15)

This inference is exact and can be derived in closed form since both the prior
and the posterior are Gaussian, otherwise the shape of the likelihood would
be analytically intractable. Each term of the log-likelihood provide a specific
information for the model. The first one, which involves the observations y cor-
responds to the data-fit term. The second depends only on the covariance matrix
C and works as the regularisation term in standard linear regression, adding a
penalty as the complexity of the data increases. The third term corresponds to
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a normalising constant. Williams (1998) offers a careful analysis of the effects of
the hyperparameters in the log-marginal likelihood. There are multiple compu-
tational aspects that need to be considered when this quantity is optimised to
derive the optimal set of hyperparameters. For example, the inversion of the co-
variance matrix is not always possible or if it is ill-conditioned then the inversion
cannot be achieved or it is not trivial. Details about this issues can be found
in Williams (1998), Gibbs and MacKay (1997) and Huhle et al. (2010). A brief
review of these concept is also provided in this tutorial Melo (2012).

6.2 The EMD Stochastic Representation by Gaus-
sian Processes

As presented in Chapter 3, within section 3.1, a signal s(t) for t ∈ [0,∞] is a
continuous true signal which is observed on discrete grid of points in the interval
[0, T ], t = (t1 < · · · < tN) = {ti}i=1:N , where the subscripts represent the
sampling index times. The observed values of the true signal s(t) might be exact
or be perturbed. Note that noisy observations are not uncommon situation
in real-world application. The perturbation of the true signal can be either
deterministic (i.e. given by a chaotic system, not stable) or stochastic. If the
realisations of the signal s(t) are corrupted with some stochastic error term, the
observed process is represented as follows

y(t) = s(t) + ε, with ε ∼ N (0, σ2). (6.16)

Therefore, the observation set consists of pairs
{
tn, yn

}
where yi = y(ti) for

ti ∈ [0, T ]. The first step is to find the EMD decomposition of the signal s(t).
Remark that, for the EMD to exists, the input signal needs to be approximated
by a continuous representation. Hence, the discrete signal s(t) is converted back
into a continuous analog signal as presented in section 3.1 of Chapter 3 and
denoted as s̃(t) given in Equation (3.1). Afterwards, the EMD is applied and
the set of basis functions γl(t) with l = 1, . . . , L along with the residual r(t) is
obtained as in Equation (3.3) given in Chapter 3. The final goal is to obtain a
stochastic representation of the continuous signal s̃(t) by exploiting the Gaus-
sian Process framework along with the Empirical Mode Decomposition. In the
following subsections, the process assumption for the IMFs are firstly taken into
account and then the one for the residual is provided. Afterwards, the multi-
kernel formulation for a stochastic embedding of the EMD is presented.

6.2.1 The IMFs as Gaussian Processes
To achieve the desired embedding, consider first the stochastic process associated
with the deterministic path s(t) of the continuous signal s̃(t) and denote that as
S(t). When the EMD is applied to the approximating signal s̃(t), and the set of
basis functions are extracted, each IMF γl(t) can be considered as the realised
path of the stochastic process denoted as Γl(t) and the one for the residual r(t)
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denoted as R(t). The obtained reconstructed stochastic process will then be
the one of the continuous signal s̃(t) denoted as S̃(t). The two processes, S(t)
and S̃(t), are equal in the interval [0, T ] at the knot points of the interpolated
continuous signal s̃(t); however, at all the the other points, this will not be
the case and, therefore, this will result into a residual error ε(t), that could be
interpreted as a regression error, and that is given as

S(t) d= S̃(t) + ε(t) (6.17)

At an observed process level, this corresponds to s(t) = s̃(t) + e(t), where e(t)
represents the observed error at t ∈ [0, T ] and t is not a knot point. This strictly
relates to the interpolation representation selected; in the case of a penalised
spline, for example, this will not be the case and an observed error e(t) will be
present at every t ∈ [0, T ]. Note that the further assumption that is considered
in the above Equation is the equality in distribution, with

S̃(t) d=
L∑
l=1

Γl(t) +R(t) (6.18)

where Γl(t) represents the GP for IMF l and there are l = 1, . . . , L of them. R(t)
represents instead the GP on the residual tendency component. Hence, in the
remaining sections, the stochastic process will be constructed for the stochastic
process of the approximated signal given as S̃(t). If S̃(t) was a stationary process
and comprised of L underlying stationary processes, then its distribution could
be given as a Gaussian Process defined as

S̃(t) ∼ GP (µ(t;θµ); k(t, t′;θk)) (6.19)

where µ(t;θµ) and k(t, t′;θk) represent the mean and kernel functions respectively
and are stationary over time. In this setting, S̃(t) could be decomposed into a
set of L stochastic processes characterising the L harmonics of the observed s̃(t).
Hence, the mean and the kernel functions will be given as µ(t;θµ) = ∑L

l=1 µ(t;θµl)
and k(t, t′;θk) = ∑L

l=1 kl(t, t′;θl). However, the assumption made in this work
is that S̃(t) is highly non-stationary, and,can be decomposed into the sum of
a finite number L non-stationary basis functions which are the IMFs. This is
equivalent to say that S̃(t) has a formulation given as

S̃(t) ∼ GP (µ(t;θµ(t)); k(t, t′;θk(t))) (6.20)

where µ(t;θµ(t)) and k(t, t′;θk(t)) are both non-stationary hence depending on
t. The structure of these time-varying functions is unknown a priori, and the
approach of this thesis is to model them as the sum of the individual L equivalent
static functions (i.e. the mean and the covariance ones) of the IMFs obtained
by decomposing the original observed approximated signal. At this point, the
intuition for the requirement of the multi-kernel representation comes into play
and shows its relevance. The novel contribution of this work will be indeed
modelling S̃(t) as the sum of multiple stochastic processes whose structure can
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be derived with the EMD rather than trying to model the time-varying mean
and kernel functions through a complex and difficult o interpret multi-kernel
representation. Since equality in distribution is assumed in Equation (6.18),
then the next assumption required to define the desired stochastic embedding is
that each process Γl(t) will also be represented as a Gaussian process such that,

Γl(t) ∼ GP
(
µ(t,θµl); kl(t, t′;θl)

)
, (6.21)

where µ(t,θµl) represents the mean function parametrised by θµl and kl(t, t′;θl) is
a positive definite covariance kernel which is parametrized by a set of parameters
θl. In the following paragraph, the prediction distribution of the stochastic pro-
cess Γl(t) distributed as a Gaussian Process given in Equation (6.21) is provided.
Then, the assumption for the distribution of the residual tendency stochastic
process R(t) is derived.

Prediction with IMFs as Gaussian Processes

Assume that both the processes S̃(t) and Γl(t) for l = 1, . . . , L are observed
at the N time points t1 < . . . < tN . Denote by t the vector of points tn for
n = 1, . . . , N . In a Gaussian process regression setting, given the observations
γl(t) =

[
γl(t1), . . . , γl(tN)

]
, the goal is to predict the values of γl(t) at the new

input argument u, i.e. γl(u), given the collected information in the observation
set. Since Γl(t) is a Gaussian Process, the random variable Γl(u)|Γl(t) is a
Gaussian Process with the conditional mean

µl(u) := Eγl(t)|γl(t)
[
γl(u)

]
= kl

(
u, t

)
Kl

(
t, t
)−1

γl(t)

and the conditional covariance matrix given by

k̃l(u, u′) := Eγl(t)|γl(t)

[
(γl(u)− µl(u))(γl(u′)− µl(u′))

]

= kl
(
u, u′

)
− kl

(
u, t

)
Kl

(
t, t
)−1

kl
(
t, u′

)T
where

Kl(t, t) :=


kl(t1, t1) kl(t1, t2) · · · kl(t1, tN)
kl(t2, t1) kl(t2, t2) · · · kl(t2, tN)

... ... . . . ...
kl(t(i)N , t1) kl(tN , t2) · · · kl(tN , tN)


N×N

and

kl(u, t) :=
[
kl(u, t1) kl(u, t2) · · · kl(u, tN)

]
1×N

.

In practice, it can be advantageous to regularise the Gram matrix for a GP in
order to improve the numerical properties of the inverse of this matrix, often
encountered when working with such a model. To do so, the mean function and
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kernel of the conditional distribution would be adjusted by a ridge regularisation
as follows:

µl(s) := Eγl(t)|γl(t),t
[
γl(u)

]
= kl

(
u, t

)(
Kl

(
t, t
)

+ σ2
k

)−1
γl(t)

and the conditional covariance matrix given by

k̃l(u, u′) := Eγl(t)|γl(t),t

[
(γl(u)− µl(u))(γl(u′)− µl(u′))

]

= kl
(
u, u′

)
− kl

(
u, t

)(
Kl

(
t, t
)

+ σ2
k

)−1
kl
(
t, u′

)T
that is equivalent to the accounting for the artificial noise component in the model
in Equation (6.21). The following subsection provides the stochastic process
assumption made for the residual r(t).

6.2.2 The Assumption for the Residual Tendency r(t)
The last component extracted by the EMD corresponds to the residual or ten-
dency component r(t). By definition, this last component has only one convexity
within the domain [0, T ]. A Gaussian Process would not achieve such a restric-
tion and, therefore, two solutions could be considered. The first considers a
monotonic Gaussian Process, as suggested in Lin and Dunson (2014), which rep-
resents an isotonic Gaussian Process. Such representation is, in practice, hard
to construct since a shape constrained estimation procedure is required, and it
will be computationally involving to construct.
Alternatively, to reduce the computational cost associated with the construction
of the EMD, it is common practice to apply it on non-overlapping windows
of the approximated signal s̃(t). Then, the obtained segmented IMFs will be
concatenated back to the original dimension and used to perform the task of
interest. Once concatenated back into its original shape, the residual r(t) will
no longer carry a unique convexity change since multiple local tendencies would
be joined into the same vector. Therefore, the Gaussian Process framework
developed so far will apply again. Then, as for the IMF case, given the equality
in distribution assumed in Equation (6.18), one can model the stochastic process
of r(t) as a Gaussian Process itself, providing

R(t) ∼ GP
(
µ(t;θµl+1); kl+1(t, t′;θl+1)

)
(6.22)

where θµl+1 and θl+1 represent the set of hyperparameters of the mean function
µ(t;θµl+1) and the kernel function kl+1(t, t′;θl+1) respectively.
Once the assumption on the stochastic process distribution of the residual is
made, the following step correspond to the assumption on the distribution of the
stochastic process of the reconstructed signal, i.e. S̃(t). To achieve that, the
multi-kernel representation for the EMD is firstly introduced.

144



M. Campi 6. A Stochastic Embedding For The EMD

6.2.3 A Multi-Kernel Representation for the EMD
The goal of this section is to introduce the framework for a novel multi-kernel rep-
resentation of the non-stationary stochastic process S̃(t) given in Equation (6.20).
As before presented, multiple approaches could be considered covering this task
(see Chapter 4 for further references). Regardless of the selected method, this
could be, in practice, challenging to achieve since the level of non-stationarity
affecting the approximated signal s̃(t) is unknown a priori and identifying both
a suitable kernel function representation and a set of hyperparameters capturing
such a feature is a difficult task. The solution of this Chapter relies on the EMD
basis functions capturing non-stationarity of the underlying signal and aims to
formulate a stochastic embedding able to reproduce a multi-kernel representa-
tion which is more reliable than existing machine learning multi-kernel methods
solving such a task. The derived stochastic process representation for S̃(t) could
carry a distribution that is either unconditional or conditional. The statements
required for these definitions are presented in these sections and show different
statistical perspectives that could be considered in this setting.
So far, a model for every component required to develop the EMD stochastic
emebedding have been proposed. Each IMFs and the residual will be a Gaussian
Process as given in Equations (6.19), (6.21) and (6.22). To model the time-
varying mean and kernel functions of the non-stationary stochastic process S̃(t)
given in Equation (6.20), the formulation of an additive GP multi-kernel repre-
sentation is given as follows:

S̃(t) ∼ GP
(
L+1∑
l=1

µl(t,θµl);
L+1∑
l=1

kl(t, t′;θkl)
)

(6.23)

where the mean and the kernel functions will be given as the sum of the L
mean and kernel functions of the stochastic processes modelling the IMFs and
the residual tendency. Multiple settings could be considered depending on the
distributional assumptions made on the stochastic processes of Γl(t) for l =
1, . . . L and R(t) producing an unconditional or a conditional distributions for
S̃(t). These settings are below presented.

The Unconditional Distribution of S̃(t)

The most straightforward case considers a multi-kernel representation of S̃(t)
with uncodintional distribution since both IMFs and the residual stochastic pro-
cesses will be modelled individually and is given as

S̃(t) ∼ GP
(
L+1∑
l=1

µ(t;θµl);
L+1∑
l=1

kl(t, t′;θl)
)

(6.24)

L is the number of extracted IMFs and, therefore, the stochastic process of S̃(t)
corresponds to a stochastic process that has mean equal to the sum of the means
of the IMFs and the residual stochastic processes and an additive structure for

145



M. Campi 6. A Stochastic Embedding For The EMD

the kernel corresponding to the sum of the individual kernels of the IMFs and
residual stochastic processes. The models for the stochastic process of the IMFs
and the residual given as

Γl(t) ∼ GP
(
µ(t,θµl); kl(t, t′;θl)

)
for l = 1, . . . , L

R(t) ∼ GP
(
µ(t;θµl+1); kl+1(t, t′;θl+1)

) (6.25)

In practice, in this work, centered Gaussian processes will always be taken into
account, and, therefore, the proposed model for S̃(t) will consider an uncondi-
tional stochastic representation which will have zero mean as

S̃(t) ∼ GP
(

0;
L+1∑
l=1

kl(t, t′;θl)
)

(6.26)

The same reasoning applies to the unconditional distributions of the stochastic
processes Γl(t), for l = 1, . . . , L− 1 and R(t), given as

Γl(t) ∼ GP
(

0; kl(t, t′;θl)
)

for l = 1, . . . , L

R(t) ∼ GP
(

0; kl+1(t, t′;θl+1)
) (6.27)

Furthermore, the stochastic processes between the IMFs and the residual will be
considered independent, and no correlation structure amongst them is studied.
This is the most statistical flexible solution and the one developed in the con-
struction of the proposed stochastic embedding models below presented, while,
the following two paragraphs presents alternative constructions for a multi-kernel
stochastic EMD.

The First Conditional Distribution of S̃(t)

In these two paragraphs, the assumption of centered Gaussian Processes above
presented will be considered for the formulated results. Hence, the unconditional
distributions will be the one with zero means introduced in Equations (6.26) and
(6.27). The second solution that could be considered in these settings proposes
a conditional distribution for S̃(t) and reviews Equation (6.24) as follows

S̃(t)|R(t) = r(t) ∼ GP
(
r(t);

L∑
l=1

kl(t, t′;θl)
)

(6.28)

where this time a conditional distribution for S̃(t) is assumed, conditioned on the
stochastic process of the tendency R(t). The observed r(t) is incorporated into
the mean of this newly constructed multi-kernel representation. Specifically, the
conditional distribution comes from the fact that the stochastic process of the
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last IMF denoted as ΓL(t) is the one conditioned on R(t). Hence, the multi-kernel
formulation will consider the following distributions for the IMFs

Γl(t) ∼ GP
(

0; kl(t, t′;θl)
)

for l = 1, . . . , L− 1

ΓL(t)|R(t) ∼ GP
(
r(t); kL(t, t′;θL)

) (6.29)

Hence, the distribution of the stochastic process of the last IMF is the one that
is conditioned on the stochastic process of the residual and this will be reflected
within the multi-kernel EMD as given in Equation (6.30).

The Second Conditional Distribution of S̃(t)

The second conditional distribution that could be considered in formulating a
multi-kernel representation of the stochastic EMD focus on individual stochastic
processes of the IMFs and condition them all (individually) on the stochastic
process of the residual R(t). Hence, when aggregated to form the representation
of the original approximated signal stochastic process this will be given as follows

S̃(t)|R(t) = r(t) ∼ GP
(

1
L

L∑
l=1

r(t);
L∑
l=1

kl(t, t′;θl))
)

(6.30)

where the mean function is given as the sum of r(t) an L number of times given
that each IMF stochastic process Γl(t) will be conditioned on R(t) and therefore
will have mean equal to r(t). This formulation will then consider the following
distributions for the IMFs

Γl(t)|R(t) = r(t) ∼ GP
(
r(t); kl(t, t′;θl)

)
for l = 1, . . . , L (6.31)

The different formulations for a multi-kernel stochastic EMD representation have
been presented. These are not the only solutions, and other alternatives could be
considered. The first solution considering an unconditional distribution of S̃(t)
will be the one adopted in the proposed models in the section below. Note that
the stochastic embeddings have been presented for the first type of stochastic
embedding developed, which models the IMFs directly. The second embedding
will construct an alternative model defining a new set of quasi-IMFs based on the
location of their instantaneous frequencies. The above formulations still apply.
The proposed stochastic model embeddings studied in part III are now formally
introduced and presented.
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6.3 Construction of Stochastic Embedding for
the EMD

In this section, the three core models that act as different stochastic embeddings
of the signal s(t) characterised by approximation s̃(t) used to extract the EMD
basis decomposition. The first model embeds the approximated signal s̃(t) and
works as a reference guide or benchmark model since the most straightforward
proposal within this context. In this regard, the advantage of modelling each
spectral component characterising the signal rather than the signal itself is the
sought objective since time-variation features are phenomena often heavily pro-
nounced in real-data applications. Furthermore, it could be possible to apply a
multi-kernel approach directly on s̃(t) as the great deal of methods reviewed in
the introduction of this Chapter and the one reviewed in Chapter 4 (see section
4.4). However, these methods often require stationarity of the underlying data
system and this is not the case in various applications in practice and would
result in poor performances.
To tackle these issues, the second model proposes the embedding of the IMFs
basis functions γl(t) with l = 1, . . . , L. Each component is characterised by a
specific number of convexity changes that detect a temporal mode of the original
signal. This embedding aims to capture this concept to model the underlying
basis through an ad hoc kernel function and then reproduce the kernel of the
original signal as the sum of the ones individually modelled. Remark that the
stochastic ordering captured by the IMFs will be preserved through the additive
kernel structure. Furthermore, the relevance of the GP as the stochastic process
will provide a representation of the IMFs through a smooth function.
The third stochastic embedding propose a more involved solution and foresees
the definition of new quasi-IMFs denoted as γ(BL)

m , where the upper script stays
for “band-limited” IMFs. This is because the model aims to capture specific fre-
quency bandwidths information. These new bases are obtained by aggregating
existing IMFs whose instantaneous frequencies lie in the same frequency band-
widths. Such newly engineered bases are then summed up together to obtain
s̃(t). This embedding aims to refine the solution proposed with the second model,
characterise IMFs with instantaneous frequency functions belonging to the same
frequency bands, and, therefore, model them according to a unique kernel func-
tion. The accomplishment of such construction requires the estimation of an
optimal grid, or optimal partition, of the instantaneous frequency domain in the
sense that highly populated bandwidths should be defined. Such a partition will
be identified through the cross-entropy method presented in Chapter 7 and de-
noted as Π̂. For this Chapter, it is important to comprehend that an optimal
partition will be found, and through that, the model will be derived. Then the
following Chapter will present the methodology employed. Note that this system
model is conditional on estimating this partition and differs in this sense from
the first two above proposed.
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6.3.1 System Model 1: Gaussian Process on s̃(t)
The first model assumes that the original observed signal s̃(t) is obtained from
a stochastic process S̃(t) which is a GP given as follows:

S̃(t) ∼ GP (µ(t;θµ); k(t, t′;θk)) (6.32)

where µ(t;θµ) and k(t, t′;θk) represent the mean and kernel functions respec-
tively, θµ and θk are the sets of hyperparameters of the mean and the kernel
respectively. Note that the zero mean assumption is considered and, therefore,
one has µ(t;θµ) = 0.

6.3.2 System Model 2: Time Domain Stochastic Embed-
ding of the IMFs

Consider s̃(t) decomposed into IMFs basis functions denoted as {γl(t)}Ll=1 (intro-
duced in section 3.2). The second model assumes that each γl(t) is observed from
a Gaussian Process Γl(t) and then reconstructs the original s̃(t) by summing up
the IMFs. Each process Γi(t) is assumed to be independent of all the other GPs
Γj(t) for i 6= j. A diagram of the model is presented below:

γ1(t) Γ1(t) ∼ GP(µ1(t;θµ1); k1(t, t′;θ1))

s̃(t) . . .

γL(t) ΓL(t) ∼ GP(µL(t;θµL); kL(t, t′;θL))

Given the above construction, the original GP S̃(t) can be expressed as a sum of
GPs, one for each observed IMF γl(t). The tool to achieve such a reconstruction
is a multi-kernel representation of S̃(t) given by

S̃(t) d=
L∑
l=1

Γl(t) ∼ GP (µ(t;θµ), k(t, t′;θk)) , (6.33)

where µ(t;θµ) = ∑L
l=1 µl(t;θµl) and k(t, t′;θk) = ∑L

l=1 kl(t, t′;θl).

6.3.3 SystemModel 3: Frequency Domain Stochastic Em-
bedding via Band-limited Mixture IMF-IF Model

Consider the extracted instantaneous frequencies {ωl}Ll=1. Ideally, these functions
are ordered, in a decreasing fashion, according to the oscillation index of their
IMFs, i.e. ω1(t) > ω2(t) > · · · > ωL(t). The reason to develop such a model
is that, in practice, one may wish to have a stochastic representation of an
EMD signal decomposition that is guaranteed to be characteristic of a particular
frequency band. This third system model is formulated based on the idea of
aggregating the IMFs samples whose IFs lie within the same frequency band.
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Such IMFs are then modelled according to the same GP. To define the model, one
needs first to introduce a partition rule which identifies different local frequency
bandwidths. Such a rule is introduced in Chapter 7 and exploits the Cross-
Entropy method. System Model 3 is now formally introduced. The diagram
provides the main idea behind it.

γ1(t) ω1(t) Γ(BL)
1 (t)|Π = Π̂ ∼GP(µBL1 (t;θµBL1

), kBL1 (t, t′;θkBL1
))

s̃(t) . . . Π̂ . . . . . .

γL(t) ωL(t) Γ(BL)
M (t)|Π = Π̂ ∼GP(µBLM (t;θµBLM ), kBLM (t, t′;θkBLM ))

System Model 3 can be constructed once the partition Π̂ is obtained. The model
is given by the IF being in a certain interval frequency band. The partition
Π̂ is estimated by a realisation of the stochastic process S̃(t) and, therefore,
is conditioned upon it. This is stated in the distributional assumption of the
different processes Γ(BL)

m which are indeed given as Γ(BL)
m |Π = Π̂.

Formally, by considering {γl(t)}Ll=1, {ωl(t)}Ll=1 and the partition Π, we will obtain
the following set of aggregated IMFs:



γ
(BL)
1 (t) = γ1(t)1{ω1(t)∈

⋃D

d=1 Π1,d} + . . .+ γK(t)1{ωL(t)∈
⋃D

d=1 Π1,d}
γ

(BL)
2 (t) = γ1(t)1{ω1(t)∈

⋃D

d=1 Π2,d} + . . .+ γK(t)1{ωL(t)∈
⋃D

d=1 Π2,d}
...
γ

(BL)
M (t) = γ1(t)1{ω1(t)∈

⋃D

d=1 ΠM,d} + . . .+ γK(t)1{ωL(t)∈
⋃D

d=1 ΠM,d}

which results in construction of γ(BL)
m (t) for m = 1, . . . ,M such that

∀m γ(BL)
m (t) =

L∑
l=1

γl(t)1{ωl(t)∈⋃D

d=1 Πm,d} (6.34)

The idea is to reconstruct the original signal s̃(t) through the above model so
that no information is dispersed or lost since it groups the original IMFs in an
alternative way. Hence, it is equivalent to the original IMFs decomposition. Each
γ(BL)
m (t) will be embedded within a Gaussian Process, ΓBLm . Given the concept of

stochastic ordering, we will firstly model Γ(BL)
m (t) according to the same kernel

family. Therefore, the original signal will then correspond to

s̃(t) =
M−1∑
m=1

γ(BL)
m (t) =

L∑
l=1

γl(t) (6.35)

and the stochastic process S̃(t) is represented via multi-kernel representation
exploiting ΓBLm (t), that is

S̃(t) d=
M∑
m=1

ΓBLm (t) ∼ GP (µs(t;θµs), ks(t, t′;θks)) , (6.36)
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where µs(t;θµs) = ∑M
m=1 µ

BL
m (t) and ks(t, t′;θks) = ∑M

m=1 k
BL
m (t, t′;θkBLM ).

The following figure compares the original IMFs extracted on the speech signal
shown in Figure 6.2 and the obtained IMFs Band Limited.

Figure 6.1: Comparison of the original extracted IMFs and the obtained Band Lim-
ited IMFs..
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SYSTEM MODEL 3 - CONSTRUCTION PROCEDURE

Figure 6.2: Figure presenting the steps required for the implementation of System Model 3. Note that, the fourth step represent the
initial partition Π0 used to initialised the cross-entropy procedure, while the fifth step is instead the estimated Π̂.
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6.4 Model Validation with the Generalised Like-
lihood Ratio Test

In this section, the model validation framework for the presented Gaussian pro-
cesses is presented. Note that this setting will be developed for Chapter 9 where
the conducted experiments will refer to speech voice signals. Particularly, the
tested models will aim to differentiate between two populations of utterances,
one affected by Parkinson’s disease and the second describing healthy subject.
The complete set of experiments and the attached results are fully provided in
Chapter 9. At this stage, the focus is on the validation of the Gaussian process
whose hyperparameters are identified in the estimation section.
Denote two family of Gaussian process that will be tested, namely Ŝ(t)0 and
Ŝ(t)1. Then the two models that will be compared are:

Model0 : S(t)0 ∼ GP (0, k0(t, t′)) ∀t ∈ [t1, tN ]
Model1 : S(t)0 ∼ GP (0, k1(t, t′)) ∀t ∈ [t1, tN ]

(6.37)

These are, by definition, Gaussian Processes with null mean function and co-
variance function constructed with one of the presented kernel function given in
Chapter 4. The test comparing the the models given in 6.37 is a test comparing
two distributions. This can be translated as

H0 : GP (0, k0(t, t′)) = GP (0, k1(t, t′)) ∀t ∈ [t1, tN ]
H1 : GP (0, k0(t, t′)) 6= GP (0, k1(t, t′)) ∀t ∈ [t1, tN ]

(6.38)

Since a GP is also specified by its sufficient mean and covariance functions, testing
for equality of distributions will be equivalent to testing for equality of the mean
functions and the covariance functions. Hence, the distributional statements
about population quantities in the null and alternative hypothesis are equivalent
to the following population statements on the covariance functions only (note
that the part related to mean function is omitted since the considered GPs will
be all zero-mean GPs):

H0 : k0(t, t′) = k1(t, t′) ∀t ∈ [t1, tN ]
H1 : k0(t, t′) 6= k1(t, t′) ∀t ∈ [t1, tN ]

(6.39)

Note that both covariance functions needs to be in the class of the Mercel Kernels
(see Zaremba and Peters (2020), Garthwaite et al. (2002)). If the classes of co-
variance functions are restricted so that the Model0 is nested in the Model1, then
the above hypotheses can be tested with the Generalised Likelihood Ratio Test
(GLRT). Remark that the GLRT (see Garthwaite et al. (2002)) is a composite
hypothesis test that can be used if the parameters are unknown and need to be
estimated. It uses asymptotic distribution of the test statistic but it requires
that the hypotheses are nested, that can be expressed in terms of restriction on
mean and covariance formulations. For a review of the GLRT see Garthwaite
et al. (2002). Under the test given in Eqn. 6.39, the null hypothesis is that there
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is no difference between the model Model0 and the model Model1. This means
that the employed GPs structure will not differentiate the two families. Hence,
one wishes to test H0 : θ ∈ Θ0 and H1 : θ ∈ Θ−Θ0. For any S(t) distributed ac-
cording to a GP with zero mean and covariance function k(t, t′;θk), it is possible
to write:

log f(s̃(t)| θk) =− 1
2 (s̃(t)− 0)ᵀ

(
k(t, t′;θk)

)−1
(s̃(t)− 0) (6.40)

− 1
2 log |k(t, t′;θk)| −

n

2 log(2π) ∀t ∈ [t1, tN ] (6.41)

where a constant variance of 1 is assumed for the error term. This leads to the
definition of the test statistic corresponding to

L = max
θ0

[
log f(s̃(t)|θ0)

]
−max

θ1

[
log f(s̃(t)|θ1)

]
(6.42)

For some constant A the test statistic makes use of critical region L ≤ A. By
defining d the difference in dimensionality of H0 and H0 ∪H1, then one has that
under the null hypothesis the asymptotic distribution of the test statistic is given
according to

−2 logL ∼ X 2
d (6.43)

By using the vectorial notation and a set of signals selected for the validation
procedure and denoted as s̃(t)ts, then the test statistic is given by:

L̂1 = −(s̃(t)ts)ᵀ
(
K̂0
)−1

(s̃(t)ts)− log
(
det

[
K̂0
])

+(s̃(t)ts)ᵀ
(
K̂1
)−1

(s̃(t)ts) + log
(
det

[
K̂1
]) (6.44)

The above test is defined for the original signal s̃(t). Given the introduced system
models in section 6.3, it refers to system model one, hence the subscript L̂1. An
equivalent test will be also conducted for the Gaussian process estimated for
system model two and for system model three. Therefore, by considering a set
of selected IMFs for the validation procedure and denoted as γl(t)ts for system
model two and γm(t)(BL),ts for system model three, the following test will be
defined and conducted

L̂2 =− (γl(t)ts)ᵀ
(
K̂0,l

)−1
(γl(t)ts)− log

(
det

[
K̂0,l

])
+ (γl(t)ts)ᵀ

(
K̂1,l

)−1
(γl(t)ts) + log

(
det

[
K̂1,l

])
∀l = 1, . . . , L

L̂3 =− (γm(t)(BL),ts)ᵀ
(
K̂0,m

)−1
(γm(t)(BL),ts)− log

(
det

[
K̂0,m

])
+ (γm(t)(BL),ts)ᵀ

(
K̂1,m

)−1
(γm(t)(BL),ts) + log

(
det

[
K̂1,m

])
∀m = 1, . . . ,M

The above tests will be carried to identify the discrimination power associated
with the different IMFs stochastic embedding proposed. In this way, each em-
bedded IMF and band limited IMFs will be individually tested.
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Chapter 7

The Cross-Entropy Method

This Chapter provides an overview of the cross-Entropy method employed to
solve a combinatorial search defining the partition problem required for the con-
struction of system model 3 given in Chapter 6. The combinatorial search looks
for suitable frequency partitions of the IFs samples, optimal for constructing a
set of bases for EMD stochastic embedding based on band-limited representa-
tions. Remark that the proposed model aims to reassign the IFs samples within
pre-selected frequency bandwidths and then construct this new set of basis func-
tions based on such relocated IFs. At each specific time ti, a new IMF, called
band-limited IMF, is defined as the sum of the samples of the original IMFs
whose IFs fell into the common identified frequency bandwidth (see model in
subsection 6.3.3 in Chapter 6). Hence, the model has been ideally presented as
one had achieved the notion of optimal frequency partition separating the exist-
ing IF samples. The term optimality in this regard has to be interpreted with
the understanding of the cross-entropy method. Such a term is related to the
idea of isolating core partitions in the frequency domain to produce a family of
frequency band-limited bases that allow the user to focus on localised frequency
contents. These can then be used to either reconstruct the entire stochastic sig-
nal representation or represent the non-stationary signal on a fixed time-scale
related to the selected frequency band.
If the underlying process were comprised of stationary components, then classical
Fourier methods would efficiently identify the frequency band-limited represen-
tations over time. However, the challenge faced in the developed settings of this
thesis is that the considered signal is a realisation of a non-stationary stochastic
process. Hence, the requirement of a method to produce an efficient partition of
the time-frequency domain dealing with such a setting is of high priority. What
is more, the frequency representation of the IMFs is the instantaneous frequency.
Such a representation does not behave as standard stationary harmonics derived
from Fourier decompositions. Therefore, it is a much more challenging task to
identify what partitions of the frequency plane efficiently capture the time loca-
tions of energy concentration present in the signal.
In forming a band-limited representation, different criteria could be chosen. The
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criterion of interest in this work is that one would have a finite fixed number
of frequency partitions and, for each of these partitions, the energy content is
equal. The optimality concept addressed above relates to the consideration of
this criterion in the definition of the band-limited basis functions. Hence, the
obtained time-frequency partition will be optimal because the derived band-
limited basis functions will be defined as close as possible to a set of bases carrying
equal frequency content.
According to such a criterion of optimality, a reference frequency partition for the
time-frequency plane is given. In practice, one has an empirical representation
obtained from the instantaneous frequencies derived from the existing IMFs. For
both partitions, it is possible to compute a distribution describing it, where
a uniform distribution (for each frequency bandwidth) will be defined for the
reference frequency partition, and an empirical distribution will be given for the
one obtained from the IFs. To derive the optimal partition for the given IFs
sample, the discrepancy between the two distributions will be measured with the
Kullback-Leibler (KL) distance. By considering such a measure, it is natural to
consider the cross-entropy method to define the optimal partition and reformulate
this optimisation problem as a cross-entropy problem.
One could think about the problem of choosing partitions being equivalent to
choosing points on a mesh of the 2-d time-frequency plane that will form the
desired partition. Mathematically, this is equivalent to a quantisation problem
of the 2-d time-frequency plane that one has to set up to define the optimal
partition through the minimisation problem between the empirical distribution
obtained over the IFs in the 2-d time-frequency plane and the target distribution
which has been selected to be uniform within each frequency band in time. This
problem then becomes a combinatorial search problem that cannot be easily
solved, given that there are too many possible choices. Consequently, the cross-
entropy is employed since it offers a stochastic optimal combinatorial solution
The cross-entropy method (CEM) is a stochastic optimisation technique that was
first presented by Rubinstein in 1999 (see Rubinstein (1999) Rubinstein (1997),
Kroese et al. (2011), Rubinstein and Kroese (2004), De Boer et al. (2005)) em-
ployed for solving estimation and optimisation problems in general. It represents
an efficient solution to solve NP-hard combinatorial optimisation problems by
translating the deterministic search problem into a stochastic optimisation pro-
cedure. A core component of the CEM is that it exploits an Importance Sam-
pling (IS) framework (see Homem-de Mello and Rubinstein (2002), Asmussen
et al. (2005)) to approximate the optimal solution and will be later introduced.
Furthermore, note that, in the main literature of CEM minimising the Kull-
back–Leibler (KL) divergence, the distributions are commonly referred to as the
target (true) distribution treated as an ideal model for the data (in this case,
a uniform distribution) and an empirical distribution (an approximation of the
true distribution), which refers to the given sample observations (the IFs samples
in this case).
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The sought problem is the construction of a fully data-adaptive partition, since
relying on the observed instantaneous frequencies, providing band-limited fre-
quency components whose location is unknown a priori. The first element re-
quired to develop such a procedure is the definition of a partitioning rule for the
frequency domain able to separate the sample points contained in it optimally.
Afterwards, the optimisation problem that needs to be solved to find such a
partition will be introduced. The first part of the chapter will present such com-
ponents. The following step is represented by formally introducing the CEM for
the previously formulated optimisation problem, and two different solutions will
be provided. It is essential to highlight that certain zones of the frequency do-
main might present empty parts during the optimisation procedure, i.e. with no
sample points; this could cause an issue and produce misleading results. A kernel
density estimator will be employed to ensure an efficient optimisation procedure
to avoid such an issue. Then the two formulations of the CEM are presented.
The first one will consider the optimisation problem as a continuous one, while
the second formulation will instead consider a discrete distribution.

7.1 Optimal Partition by Cross Entropy Method
for Frequency and Time Domains

This section introduces the random search optimal partition rule describing the
frequency domain and the optimisation problem formulation used to find such a
partition.

7.1.1 Defining Partitioning Rule
To define the model, assume havingNL two dimensional points pl,n = (tn, ωl(tn))
for l = 1, . . . , L and n = 1, . . . , N . The points are given by a point-wise eval-
uation of the original instantaneous frequencies corresponding to L IMFs on N
ordered times t0 < t1 < . . . < tn < . . . < tN−1 < tN when IMFs values are
observed.
Denote T = [t0, tN ] the time interval and I = [ω0, ωM ] the frequency interval,
where ω0 = minn,l ωl(tn) and ωM = maxn,l ωl(tn). Hence tN ωM will be given and
obtained from the data, where tN represents the length of the given signal and
ωM the maximum frequency achieved by the set of instantaneous frequencies.
Define the two-dimensional rectangle Π = I × T , which total area is given as
follows:

|Π| := |I| × |T | = (ωM − ω0)(tN − t0). (7.1)
Recall that pnl = (tn, ωl(tn)) ∈ Π. The final interest is in representing the area
|Π| via an optimal partition Π∗ defined through a discretised representation over
a grid of M × D smaller rectangles. Particularly, assume that the frequency
domain is partitioned into M subintervals, Im := [ωm−1, ωm] for m = 1, . . . ,M
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such that
I =

M⋃
m=1
Im, s.t.

M⋂
m=1
Im = ∅ and |I| =

M∑
m=1
|Im|. (7.2)

The rectangle Im× [t0, tN ] is further divided into D smaller rectangles that have
the same width, by partitioning the time interval T = [t0, tN ] into D intervals
Tm,d = [sm,d−1, sm,d] for d = 1, . . . , D such that t0 = s0 < sm,d−1 < sm,d ≤ sm,D =
tN

T =
D⋃
d=1
Tm,d, s.t.

D⋂
d=1
Tm,d = ∅ and |T | =

D∑
d=1
|Tm,d| (7.3)

Remark that it is not necessary that |Tm,d| = |Tm′,d| for m 6= m′ and m,m′ =
1, . . . ,M .
Given the above, the main rectangle Π is partitioned by defining MD rectangles
Πm,d = Im × Tm,d for m = 1, . . . ,M and d = 1, . . . , D. The rectangles that are
defined by this partition are assumed to not overlap and as a result they satisfy

Π =
D⋃
m,d

Πm,d, s.t.
⋂
m,d

Πm,d = ∅ and |Π| =
∑
m,d

|Πm,d| (7.4)

Remark that by this construction, the rectangles Πm,d that have the same index
m share the same subinterval of I on the frequency axis, Im. However, the
rectangles Πm,d and Πm′,d, when m 6= m′, m,m′ = 1, . . . ,M , that have the same
index d do not share the same subintervals on the time axis since Tm,d 6= Tm′,d.
Assume one has a collection of L distinct IFs for the L IMFs obtained from the
EMD procedure applied to signal s̃(t). Now assume that one has the discrete
outputs of the HHT for these IFs represented by the point set P = ⋃Pm,d, where
Pm,d are defined as follows. Then one can consider the subset of such points per
partition region which will be denoted by Pm,d =

{
pl,n : pl,n ∈ Πm,d

}
the set

of points pl,n that are located in a partition Πm,d. The cardinality of this set
is denoted by |Pm,d|. Note, the total number of samples representing the IFs
will be controlled by the user when approximating the Hilbert transform for the
IMFs. As discussed previously, in some cases, the Hilbert transform is known
in closed form for some IMF representations. Here, it is presented in a general
setting when one may utilise an IMF representation of any form and as such
would require a discrete approximation of the Cauchy Principal Value integral
for the Hilbert transform.
Hence, the challenge becomes how to define a notion of optimal partition, in
what sense it will be optimal and then how to solve for the optimal solution.
The notion of optimality is selected here to reflect a concept of equi-energy
partition in the time-frequency plane, which when one has a non-stationary signal
comprised not of a finite collection of constant in time pure harmonics, one
will have an IMF finite collection of basis functions which for the IFs will be
time-varying signals in the time-frequency plane. The samples obtained of these
signals from the transform will produce a 2-d histogram, and therefore to achieve
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an equi-energy partition rule, the problem becomes equivalent to solving a density
optimisation problem to produce an empirical ECDF as close as possible to a
uniform distribution in 2d for a given number of partitions in time and frequency.
This can be reposed in a discrete quantised framework as a combinatorial search
problem.

7.1.2 Formulation of the Optimisation Problem for the
Random Partition

The optimal partition Π∗ is specified for the available sample set pl,n given the
problem statement described below. Suppose one takes the area Π and partition
it according to M − 1 horizontal partitions for the frequency axis and D verti-
cal partitions for the time axis. Remark that, for the framework introduced in
the above section, the horizontal frequency partitions are assumed constant over
time, while, the vertical time partitions might vary within each band. There-
fore, the problem will be restricted to only consider horizontal partitions of the
frequency plane which are fixed across time in order to maintain interpretation
of the band-limited basis function representation obtained. On the contrary,
adaptivity on the time domain on the 2-d plane will be considered. Hence,the
partition is parametrised according to increasing sequence of the frequency pa-
rameters ω1, . . . , ωM−1, defining subintervals of I, and D increasing sequences
of time parameters sm,1, . . . , sm,D−1, which defines subintervals of T for different
m. The set of parameters that are to be estimated is denoted by:

ψ = [ω1, . . . , ωM−1, s1,1, . . . , s1,D−1, . . . , sm,1, . . . , sm,D−1, . . . , sM,1, . . . , sM,D−1] .
(7.5)

The objective is to learn an optimal partition Π∗ that will produce an empirical
distribution function for the IFs in each sub-rectangle Πm,d which is as close to
uniform distribution across the domain area Π as possible. To achieve this, the
CEM relies on Importance Sampling and the definition of its distribution called
the Importance distribution. To introduce such a distribution, assume one has
a discrete random variable X that would represent the boundaries defining the
sought, optimal partition Π∗, hence the tuples (m, d). This random variable X
is characterised by the Importance distribution.
Hence, to estimate the elements of the vector ψ that define the optimal partition
Π∗, consider such a discrete random variable X defined on the the indexes of the
sub-rectangles Πm,d, therefore, on the tuples (m, d) with corresponding probabil-
ities that sum to 1. As a result, the set of possible values taken by X consists
of DM tuples (m, d), for m = 1, . . . ,M and d = 1, . . . , D. Therefore, X controls
assignments of a points to sub-rectangles Πm,d.
Ideally, the target distribution of X will be uniform and characterized by a
probability density function π(x) defined as

π(x) =
∏
m,d

π
1{x=(m,d)}
m,d for πm,d = P

(
X = (m, d)

)
= |Πm,d|
|Π| . (7.6)
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Therefore, the target distribution associates the probability of drawing tuple
(m, d) to the proportion of the area of rectangle Πm,d to the overall area of Π.
However, what one actually has is an empirical distribution for X, as it directly
depends on the points pk,n, and is denoted as π̂(x). It is associated with the
measure P̂ on the sample pn,k defined as

π̂(x) =
∏
m,d

π̂
1{x=(m,d)}
m,d for π̂m,d = P̂

(
X = (m, d)

)
= |Pm,d|

LN
, (7.7)

Therefore, the probability of drawing tuple (m, d) reflects the proportion of the
number of points pn,l that lay within the rectangle Πm,d to the overall sample
size. Remark that both πm,d and π̂m,d satisfy∑

m,d

πm,d = 1 and
∑
m,d

π̂m,d = 1. (7.8)

The final goal is to select the support of X in such a way that the Kullback-
Leibler divergence, measuring similarity between the two proposed distributions,
is minimised. The Kullback-Leibler divergence defined as

KL(π, π̂) =
∫
x∈X

π(x) log
(
π(x)
π̂(x)

)
dx. (7.9)

Since X is a discrete random variable that ranges of values is countable and takes
values in the set of tuples X = {(m, d)}m,d, the integration problem in (7.9) can

160



M. Campi 7. The Cross-Entropy Method

be rewritten as a sum over the elements of the set X , that is

KL(π, π̂;ψ) =
M∑
m=1

d∑
d=1

π (x = (m, d)) log
(
π (x = (m, d))
π̂ (x = (m, d))

)

=
M∑
m=1

d∑
d=1

{
π (x = (m, d))

(
log π (x = (m, d))− log π̂ (x = (m, d))

)}

=
M∑
m=1

d∑
d=1

{
|Πm,d|
|Π|

(
log |Πm,d|

|Π| − log |Pm,d|
KN

)}

= 1
|Π|

M∑
m=1

d∑
d=1

{
|Πm,d|

(
log |Πm,d| − log |Π| − log |Pm,d|+ logKN

)}

= 1
|Π|

M∑
m=1

d∑
d=1

{
|Πm,d|

(
log |Πm,d| − log |Pm,d|

)}

+ 1
|Π|

M∑
m=1

d∑
d=1

{
|Πm,d|

(
logKN − log |Π|

)}

= 1
|Π|

M∑
m=1

d∑
d=1

{
|Πm,d|

(
log |Πm,d| − log |Pm,d|

)}

+
(

logKN − log |Π|
) 1
|Π|

M∑
m=1

d∑
d=1
|Πm,d|

= logKN − log |Π|+ 1
|Π|

M∑
m=1

d∑
d=1

{
|Πm,d|

(
log |Πm,d| − log |Pm,d|

)}
(7.10)

The vector of parameters belong to the multidimensional parameters space Ψ
defined by the following constraints on its elements

Ψ =



ω1, . . . , ωM−1 ∈ (ω0, ωM) such that ω0 < ω1 < . . . < ωM−1 < ωM ,

s1,1, . . . , s1,N1−1 ∈ (t0, tN) such that t0 < s1,1 < . . . < s1,D−1 < tN ,
...
sm,1, . . . , sm,Nm−1 ∈ (t0, tN) such that t0 < sm,1 < . . . < sm,D−1 < tN ,
...
sM,1, . . . , sM,NM−1 ∈ (t0, tN) such that t0 < sM,1 < . . . < sM,D−1 < tN .

(7.11)
Therefore, the objective function of the constrained optimisation problem that
finds optimal partitioning of Π that minimizes distance between the empirical
and target distributions is specified by

ψ∗ = argmin
ψ∈Ψ

KL(π, π̂;ψ) = argmax
ψ∈Ψ

−KL(π, π̂;ψ) (7.12)
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7.2 The Cross-Entropy Method for Maximising
Equation (7.12)

The objective function of the random partitioning problem defined in (7.12)
employs KL(·) as a similarity measure between two distributions, the empirical
and the target ones. The objective function is optimised with respect to the
vector of parameters ψ that belongs to the parameter space Ψ and, consequently,
is the domain of the objective function. Hence, the optimal partition Π∗ will
be treated as a parameter that have to be learnt in the optimal Importance
Distribution denoted by ψ.
Next, the goal is to present how to estimate ψ by employing the cross-entropy
method. For convenience, the notation for the KL divergence from now on will
be KL(π, π̂;ψ) = KL(ψ). The optimisation problem is solved by considering
the level sets of the objective function {ψ : KL(ψ) ≥ γ} for γ ∈ R. When
γ = K̂L = argmaxψ∈ΨKL(ψ), then {ψ : KL(ψ) ≥ γ} = {ψ?}. Next, define a
family of probability measure {Pϕ′ : ϕ′ ∈ Φ} on Ψ with densities {fϕ′ : ϕ′ ∈ Φ}
that are parametrised by ϕ′ ∈ Φ. Let Eϕ′ denote the expectation taken with
respect to Pϕ′ . Fix ϕ′ and γ and define a rare event probability problem:

Pϕ′ [KL(ψ) ≥ γ] = Eϕ′
[
I{KL(ψ)≤γ}

]
=
∫

Ψ
I{KL(ψ)≤γ}fϕ′(ψ)dψ (7.13)

Instead of approximating this probability naively by sampling from fϕ′ , the im-
portance sampling method is used. Let gϕ′′ denote the importance sampler,
where ϕ′′ ∈ Φ. Importance sampling approximates the rare event probability by

Pϕ′ [KL(ψ) ≥ γ] =
∫

Ψ
I{KL(ψ)≤γ}fϕ′(ψ)dψ =

∫
Ψ
I{KL(ψ)≤γ}

fϕ′(ψ)
gϕ′′(ψ)gϕ

′′(ψ)dψ

= Eϕ′′
[
I{KL(ψ)≤γ}

fϕ′(ψ)
gϕ′′(ψ)

]
≈ 1
S

S∑
i=1

{
I{KL(ψi)≤γ}

fϕ′(ψi)
gϕ′′(ψi)

}
(7.14)

where vectors ψi for i = 1, . . . , S are iid samples generated from gϕ′′(ψ). The
optimal importance sampler gϕ′′ is selected through the cross-entropy criterion:

ϕ? = argmax
ϕ′′∈Φ

∫
Ψ
I{KL(ψ)≤γ}fϕ′(ψ) log fϕ

′(ψ)
gϕ′′(ψ)dψ

≈ argmax
ϕ′′∈Φ

1
S

S∑
i=1

I{KL(ψ)≤γ} log gϕ′′(ψi)
(7.15)

where vectors ψi for i = 1, . . . , S are iid samples generated from fϕ′(ψ). Notice
that the last line of 7.15 corresponds to the maximum likelihood estimation
(MLE) of ϕ′′ when the samples are {ψi : KL(ψi) ≥ γ}. The CEM starts from an
initial sampling distribution gϕ?0 and iteratively updates the threshold γ̂ and the
sampling distribution gϕ′′ . For further details on the cross-entropy, the reader
should refer to De Boer et al. (2005).
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7.2.1 Utilising Kernel Density Estimator in Kullback-Leibler
Divergence of the Partitioning Problem

It can happen that during the estimation process specifying the optimal par-
tition Π, certain sub-rectangles Πm,d do not contain any of the sample points
pl,n = (tn, ωl(tn)) ∈ Π for Π = I × T for n = 1, . . . N and l = 1, . . . , L. As
a result, the corresponding set Pm,d is empty, that is Pm,d = ∅. Consequently,
the probabilities πem,d(x) = |Pm,d|

LN
equal zero and their logarithms used to calcu-

late KL(π, π̂;ψ) in (7.10) tend to infinity. To avoid these numerical difficulties
πem,d(x) is approximated by a kernel density estimator π̂em,d(x; k, h) parametrised
by kernel k : Π× Π→ R and bandwidth h > 0 such that

π̂em,d(x; k, h) =
∫

Πm,d
π̂(p; k;h)dp =

∫ ωm

ωm−1

∫ sm,d

sm,d−1
π̂(p; k;h)dp,

where π̂(p; k;h) : Π→ [0, 1] is a kernel density estimator of points p = (t, ω(t)) ∈
Π specified on a sample set pl,n

π̂(p; k;h) = 1
Nh

N∏
n=1

K∏
k=1

k
(p− pn,k

h

)
such that

∫
Π
π̂(p; k, h)dp = 1.

The objective function of the partitioning problem in (7.9) or (7.10) is reformu-
lated to be the Kullback-Leibler divergence between π(x) and

π̂e(x; k, h) =
∏
m,d

(
π̂em,d(x; k, h)

)1{x=(m,d)}
, (7.16)

that is

KL(π, π̂e;ψ) =
∫
x∈X

π(x) log
(

π(x)
π̂e (x; k, h)

)
dx

=
M∑
m=1

d∑
d=1

π (x = (m, d)) log
(

π (x = (m, d))
π̂e(x = (m, d); k, h)

)

=
M∑
m=1

d∑
d=1

{
|Πm,d|
|Π|

(
log |Πm,d| − log |Π| − log π̂e(x = (m, d); k, h)

)}

= 1
|Π|

M∑
m=1

d∑
d=1

{
|Πm,d|

(
log |Πm,d| − log π̂e(x = (m, d); k, h)

)}

− log |Π|
|Π|

M∑
m=1

D∑
d=1
|Πm,d|

= − log |Π|+ 1
|Π|

M∑
m=1

d∑
d=1
|Πm,d|

(
log |Πm,d| − log π̂e(x = (m, d); k, h)

)
(7.17)
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and with a numerical trick, for C > 0 being a very small number, i.e. C = 10−100

KL(π̂e, π;ψ) =
∫
x∈X

π(x) log
(

π(x)
π̂e (x; k, h)

)
dx

=
M∑
m=1

d∑
d=1

π (x = (m, d)) log
(

π (x = (m, d))
π̂e(x = (m, d); k, h)

)

=
M∑
m=1

d∑
d=1

{
|Πm,d|
|Π|

(
log |Πm,d| − log |Π| − logC π̂

e(x = (m, d); k, h)
C

)}

=
M∑
m=1

d∑
d=1

{
|Πm,d|
|Π|

(
log |Πm,d| − log |Π| − logC − log π̂

e(x = (m, d); k, h)
C

)}

= 1
|Π|

M∑
m=1

d∑
d=1

{
|Πm,d|

(
log |Πm,d| − log π̂

e(x = (m, d); k, h)
C

)}

− log |Π|+ logC
|Π|

M∑
m=1

D∑
d=1
|Πm,d|

= − log |Π| − logC + 1
|Π|

M∑
m=1

d∑
d=1
|Πm,d|

(
log |Πm,d| − log π̂

e(x = (m, d); k, h)
C

)
(7.18)

In the below subsections, the importance distribution to solve the optimisation
problems are introduced. Note that they are introduced for optimising Equation
(7.15) but could be easily adapted to the case considering the KL divergence
derived in this subsection.

7.2.2 Cross-Entropy Method Selection of Importance Dis-
tribution: Continuous Case via Truncated Normal

The optimisation problem in (7.15) can be approached as a continuous optimi-
sation problem. The vectors ψi for i = 1, . . . , S are iid realisations from g(ψ;ϕ).
The elements of the random vector ψ are assumed to be independent random
variables such that their joint distribution can be factorised as

g(ψ;ϕ) =
M∏
m=1

{
gωm(ωm;ϕm)

D∏
d=1

gsm,d(sm,d;ϕm,d)
}

(7.19)

Assume that each probability distribution gx(x;ϕx) corresponds a truncated uni-
variate normal distribution parametrised by mean µx and standard deviation σ2

x.
Hence, ϕx = [µx, σ2

x], the truncation for each ωm corresponds to the fixed ends
ω0 and ωM and the truncation for each Sm,d corresponds to the fixed ends t0 and
tN that are specified by the available sample sets in frequency and time domains,
respectively. Therefore, the following distributions are proposed

Wm ∼ N[ω0,ωM ]
(
µm, σ

2
m

)
and Sm,d ∼ N[t0,tN ]

(
µm,d, σ

2
m,d

)
(7.20)
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where the probability density function of X ∼ N[a,b]
(
µ, σ2

)
such that a ≤ X ≤ b

is given as follows

gx(x;µ, σ2, a, b) = 1
σ

φ
(
x−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) ,
with φ(x) being the probability density function of a standard normal random
variable and Φ(x) is the corresponding cumulative distribution function, given
as

φ(x) = 1√
2π
e−0.5x2

, Φ(x) = 1
2

(
1 + erf

(
x√
2

))
, erf(x) = 2√

π

∫ x

0
e−t

2
dt (7.21)

The described importance sampling distributions of Wm and Sm,d with the trun-
cation ensure that the realisation of Wm and Sm,d are admissible and stay in
the constrained space of the optimisation problem. Consequently, the estimates
µm and µm,d satisfy the conditions of the feasible set Ψ. On the other hand,
non-linearities are introduced to the estimation of µm and µm,d due to the pres-
ence of the cumulative distribution function erf(x). These non-linearities in the
estimation equations for µm, µm,d, σ2

m and σ2
m,d may lead to numerical instability

of the CEM algorithm. Given such a practical consideration, the estimation of
µm and µm,d are proposed to be obtained in a less optimal way. By removing
the truncation and assuming a fixed value for σ2

m and σ2
m,d, the updated rule of

the parameters is given as

µ̂m,d = min

max

t0 + aσ2
m,d;

∑S
i=1 1{KL(π̂,π;ψ(s))≤γ}s

(s)
m,d∑S

i=1 1{KL(π̂,π;ψ(s))≤γ}

 ; tN − aσ2
m,d


µ̂m = min

max
ω0 + aσ2

m;
∑S
i=1 1{KL(π̂,π;ψ(s))≤γ}ω

(s)
m∑S

i=1 1{KL(π̂,π;ψ(s))≤γ}

 ;ωM − aσ2
m

 (7.22)

which correspond to a truncated MLE estimator of the expected value under the
assumption of a normal distribution of both Sm,d and Wm, respectively, derived
in Appendix H. The truncated estimators always satisfy the conditions of the
feasible set Ψ. The scalars a > 0, σ2

m and σ2
m,d are chosen in such a way that

the values aσ2
m and aσ2

m,d are much smaller than |Im| and |Im,d|, respectively.
Consequently, the location of first and last partitions close to the boundaries are
controlled. Remark that for sufficiently small scalars σ2

m and σ2
m,d, the truncation

may not be needed.
The following window proposed the algorithm implemented to develop the con-
tinuous CEM generating the desired random partition for the frequency domain.
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Algorithm 1: Random Partition via CEM for Continuous Optimisation
Input: Set M,D,S > 0
Input: Set hyperparameters: σ2

1 , . . . , σ
2
M , σ

2
1,1, . . . , σ

2
M,D > 0, a > 0, ρ > 0,β > 0,

Input: Set initial parameters ω0 + aσ2
m < µ

[0]
m < ωM − aσ2

m and
t0 + aσ2

m,d < µ
[0]
m,d < tN − aσ2

m,d

for i > 0 do
1. Generate S sets of realisations ψ(s)[i] =

[
W

(s)[i]
1 , . . . ,W

(s)[i]
M−1 ], S(s)[i]

1,1 , . . . , S
(s)[i]
M,D−1

]
W

(s)[i]
m ∼ N

(
µ

[i−1]
m ;σ2

m

)
, S

(s)[i]
m,d

∼ N
(
µ

[i−1]
m,d

;σ2
m,d

)
;

2. Set
ω

(s)[k]
m = min

{
max
{
ω0 + aσ2

m;ω(s)[k]
m

}
;ωM − aσ2

m

}
,

s
(s)[k]
m,d

= min
{
max
{
t0 + aσ2

m,d
; s(s)[k]
m,d

}
; tN − aσ2

m,d

}
;

3. Calculate KL(π̂, π;ψ(s)[i]) for s = 1, . . . , S and specify γ[i] being 1− ρ empirical
quantile of their values;

4. Calculate

µ̂m =

∑S

s=1
1{

KL(π̂,π;ψ(s)[i])≤γ[i]
}w(s)[i]

m∑S

s=1
1{

KL(π̂,π;ψ(s)[i])≤γ[i]
} , µ̂m,d =

∑S

s=1
1{

KL(π̂,π;ψ(s)[i])≤γ[i]
}s(s)[i]

m,d∑S

s=1
1{

KL(π̂,π;ψ(s)[i])≤γ[i]
}

5. Smooth update of the parameters

µ[i]
m = βµ[i−1]

m + (1− β)µ̂m, µ[i]
m,d = βµ

[i−1]
m,d + (1− β)µ̂m,d

i = i+ 1

until a convergence criterion is satisfied
After convergence, specify points of partition ωm = µ

[i]
m and sm,t = µ

[i]
m,d.

7.2.3 Cross-Entropy Method Selection of Importance Dis-
tribution: Discrete Case via Multinomial Distribu-
tion

The optimisation problem in (7.15) is also solved through a discretisation of the
intervals I and T . In such a way, a CEM method with an IS distribution reflect-
ing the distribution of discrete random variables that determine the partitioning
of the rectangle Π is taken into account. Consider regular dense grids of I and
T constructed as follows:

1. Partition I into small Nω intervals of size ∆ω = ωM−ω0
Nω

, and define Igridnω =
ω0 + [nω − 1, nω]∆ω for nω = 1, . . . , Nω , therefore |Igrida | = ∆ω;

2. Partition T into small Nτ intervals of size ∆τ = tN−t0
Nτ

, and define T gridnτ =
ω0 + [nτ − 1, nτ ]∆τ for nτ = 1, . . . , Nτ , therefore, |T gridτ | = ∆τ .

Then, define a probabilistic model to partition I into M subintervals, Im for
m = 1, . . . ,M . Define (M)-dimensional multinomial random vector X whose
entries Xm on the support of {0, . . . , Nω} indicates how many subsequent grids
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Igridnω are connected to construct partitions Im and corresponding break points
ωm−1, ωm ∈ I. Therefore, the multinomial random vector X models the number
of grid points out of Nω that belong to each of M intervals with probabilities of
being in an interval being 0 ≤ p1, . . . , pM ≤ 1 for ∑M

m=1 pm = 1. The distribution
function of X is formulated as

π(x; p) = π(x1, . . . , xM ; p1, . . . , pM) = Nω!∏M
m=1 xm!

M∏
m=1

pxmm . (7.23)

for p = [p1, . . . , pM ]. Recall that ∑M
m=1Xm = Nω since X divides Nω points into

M subsets. For instance, for realisations of X1, X2 such that x1 = 2 and x2 = 5,
the partitions I1 = [ω0, ω1] and I2 = [ω1, ω2] are given by

ω1 = ω0 + ∆ωx1 and ω1 = ω1 + ∆ωx2 = ω0 + ∆ω(x1 + x2)

This example gives an intuition for the general rule

ωm = ω0 + ∆ω

m∑
m′=1

xm′ for m = 1, . . .M − 1.

and defines the approach to sample W1, . . . ,WM−1 via change of variables such
that Wm = ω0 + ∆ω

∑m
m′=1Xm′ for m = 1, . . .M − 1. The realisation of

W1, . . . ,WM−1, denoted by ω1, . . . , ωM−1, represent the break points defining
partitions I1, . . . , IM . Also, recall that ω0 and WM = ωM are fixed.
ModelM independent not identical partitions of the time-domain interval T into
D subintervals by following the same steps as before. Define M independent
multinomial random variables that are D-dimensional, each, denoted by X′m
for m = 1, . . . ,M , whose entries X ′m,d on the support of {0, . . . , Nτ}, for d =
1, . . . , D, specify how many subsequent grids T gridnτ are connected to construct
partitions Tm,d of T and determine break points sm,d−1, sm,d ∈ T . Denote their
distributions by π(x′m; p′m) for p′m = [p′m,1, . . . , p′m,D] such that ∑D

d=1 p
′
m,d = 1.

For every m = 1, . . . ,M this construction satisfies ∑D
d=1X

′
m,d = Nτ and

sm,d = t0 + ∆τ

d∑
d′=1

x′m,d′ for d = 1, . . . , D − 1, m = 1, . . .M.

where x′m,d is a realisation ofX ′m,d. Therefore, the random variables Sm,1, . . . , Sm,D−1
for m = 1, . . . ,M are defined via change of variables such that Sm,d = t0 +
∆τ

∑d
d′=1X

′
m,d′ for d = 1, . . . D − 1 with realisations sm,1, . . . , sm,D−1 represent-

ing the break points of the partitions Tm,1, . . . , Tm,D. Again, recall that t0 and
Sm,D = tN are fixed for every m = 1, . . . ,M .
Given this model, the joint distribution of Ψ = [W1, . . . ,WM−1, S1,1, . . . , SM,D−1
can we written as

g(ψ;ϕ) = C π(xm; p)
M∏
m=1

π(x′m; p′m), (7.24)
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and

log g(ψ;ϕ) = logC + log(Nω!) +
M∑
m=1
{log(xm!) + xm log(pm)}

+M log(Nω!) +
M∑
m=1

D∑
d=1

{
log(x′m,d!) + x′m,d log(p′m,d)

}
.

The objective function of the estimation problem with constraint imposed on
P = [p,p′1, . . . ,p′M ] ∈ [0, 1] is then formulated as

Λ(P, λ) =
S∑
s=1

1{KL(π̂,π;ψ(s))≤γ}

(
logC + log(Nω!) +

M∑
m=1

{
log(x(s)

m !) + x(s)
m log(pm)

}

+M log(Nω!) +
M∑
m=1

D∑
d=1

{
log(x

′(s)
m,d!) + x

′(s)
m,d log(p′m,d)

}
.

)
+ λ

(
1−

M∑
m=1

pm

)
+

M∑
m=1

λm

(
1−

D∑
d=1

p′m,d

)
. (7.25)

Consequently 

∂Λ(P,λ)
∂p1

= ∑S
s=1

{
1{KL(π̂,π;ψ(s))≤γ}

x
(s)
1
p1

}
− λ = 0

...
∂Λ(P,λ)
∂pM

= ∑S
s=1

{
1{KL(π̂,π;ψ(s))≤γ}

x
(s)
M

pM

}
− λ = 0

1−∑M
m=1 pm = 0

⇒



p∗1 = 1
λ

∑S
s=1

{
1{KL(π̂,π;ψ(s))≤γ}x

(s)
1

}
...

p∗M = 1
λ

∑S
s=1

{
1{KL(π̂,π;ψ(s))≤γ}x

(s)
M

}
∑M
m=1 pm = 1.

Since ∑M
m=1 pm = 1 and ∑M

m=1 x
(s)
m = Nω

1
λ

S∑
s=1

{
1{KL(π̂,π;ψ(s))≤γ}

M∑
m=1

x(s)
m

}
= 1⇒ λ = Nω

S∑
s=1

1{KL(π̂,π;ψ(s))≤γ}

and finally

p̂m =

∑S
s=1

{
1{KL(π̂,π;ψ(s))≤γ}

x
(s)
m

Nω

}
∑S
s=1 1{KL(π̂,π;ψ(s))≤γ}

(7.26)
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Following the same steps, then

p̂′m,d =

∑S
s=1

{
1{KL(π̂,π;ψ(s))≤γ}

x
′(s)
m,d

Nτ

}
∑S
s=1 1{KL(π̂,π;ψ(s))≤γ}

(7.27)

As for the continuous case, the algorithm used to implement the CEM method
with a discrete IS distribution is presented.
Algorithm 2: Random Partition via CEM for Discrete Optimisation
Input: Set M,D,S > 0, Nω ≥M, Nτ ≥ D;
Input: Set hyperparameters: ρ > 0,β > 0,
Input: Set initial parameters p[0],p,[0]

1 , . . . ,p,[0]
M

for i > 0 do
1. Generate S sets of realisations [X(s)[i],X,(s)[i]

1 , . . . ,X,(s)[i]
M

],

X(s)[i] ∼ π
(

(x,p[i]
)
, X,(s)[i]

m ∼ π
(

x′m,p,[i−1]
)
, ;

2. Calculate ψ(s)[i] =
[
ω

(s)[i]
1 , . . . , ω

(s)[i]
M−1, s

(s)[i]
1,1 , . . . , s

(s)[i]
M,D−1

]
ω

(s)[i]
m = ω0 + ∆ω

∑m

m′=1
x

(s)[i]
m′

, s
(s)[i]
m,d

= t0 + ∆τ
∑d

d′=1
x
,(s)[i]
m,d′

;

3. Calculate KL(π̂, π;ψ(s)[i]) for s = 1, . . . , S and specify γ[i] being 1− ρ empirical
quantile of their values;

4. Calculate

p̂m =

∑S

s=1
1{

KL(π̂,π;ψ(s)[i])≤γ[i]
} x(s)[i]

m
Nω∑S

s=1
1{

KL(π̂,π;ψ(s)[i])≤γ[i]
} , p̂

′
m,d =

∑S

s=1
1{

KL(π̂,π;ψ(s)[i])≤γ[i]
} x′(s)[i]

m,d
Nτ∑S

s=1
1{

KL(π̂,π;ψ(s)[i])≤γ[i]
}

5. Smooth update of the parameters

p[i]
m = βp[i−1]

m + (1− β)p̂m, p,[i]m,d = βp
,[i−1]
m,d + (1− β)p̂′m,d;

i = i+ 1

until a convergence criterion is satisfied
After convergence, specify points of partition
ωm = ω0 + |I|

∑m
m′=1 p

[i]
m′ , sm,d = t0 + |T |

∑d
d′=1 p

,[i]
m,d′ ;.

It is important to note at this stage that, the optimisation problem solved in this
thesis it is a constrained optimisation problem since the parameters that have
to be estimated to define the optimal partition Π∗ are constrained according to
the restrictions given in (7.11). Hence, any solution which does not respect such
a condition will be discarded. If one wanted to solve the uncostrained optimi-
sation problem then the support of the random variables introduced includes
zero, which may lead to the situation that some partitions are of zero length. If
that happens, the breakpoints ω1, . . . , ωM and s1,1, . . . , sM,D−1 may not form an
increasing sequence. Consequently, they would not belong to the feasible set Ψ.
To address this difficulty, two procedures could be considered
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1. sample directly from the conditional distribution
X1, . . . , XM |X1 6= 0, . . . , XM 6= 0
X ′1,1, . . . , X

′
M,D|X ′1,1 6= 0, . . . , X ′M,D 6= 0.

2. sampling from the multinomial distribution and and force non zero re-
alisation by removing any realisations that contain 0 entry to meet the
conditions of the feasible set.

7.2.4 Some Toy Examples
In this section, two toy example are proposed to observe the performances of
the Cross-Entropy technique. In each toy example, four instantaneous frequency
functions are simulated, i.e. one will have ω1(t), ω2(t), ω3(t), ω4(t). Two scenarios
are proposed: the first one considers four constant instantaneous frequency which
do not vary over time. The second will instead take into account frequency
variation over time. Both examples consider a time domain of 10 seconds and
will employ the case of the Multinomial distribution for the importance sampling
distribution. The first case consider IFs which cover a frequency domain betwnee
0Hz and 30 Hz. The second example instead will be only limited between 0Hz
and 10Hz.
By taking into account the first example, Figure 7.1 describes the simulated
instantaneous frequencies ω1(t), ω2(t), ω3(t), ω4(t) in the first scenario. These
represent four constant functions over time, located at different frequencies being
3Hz, 7Hz, 10Hz and 30Hz. The idea is to observe how the CEM will perform
in the case of constant frequency functions and if it will be able to identify such
a scenario. Remark that the final goal is being able to fit a GP on specific
frequency bandwidths, which will be the ones relevant for solving the given task
within the application of interest. Therefore, the CEM has to “isolate” and
identify those frequency regions that are populated by IFs. The challenge in this
example will be to identify that the functions are not time-varying and for the
CEM to be efficient a high number of initial bandwidths must be selected. This
means that the initial M should be a high number with respect to the frequency
range 0-30Hz.

Figure 7.1: Simulated Instantaneous Frequencies ω1(t), ω2(t), ω3(t), ω4(t) for the first
scenario. The x-axis represents the time and the y-axis the frequency.
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Afterwards, a grid for the initialisation of the cross-entropy is selected. In this
case,M = 10 for the frequency axis (the y-axis) andD = 10 for the time axis (the
x-axis). The choice of the initial number of rectangles that should be considered
for the CEM is selected by the user. This is usually linked to the problem
or the application of interest. In here, this example is shown only. However,
multiple initialisations have been taken into account so for this example to work
properly. Reasons behind that were that if M was small, then the CEM would
not efficiently identify the different functions. With M big the computational
cost could become too heavy. In this respect, this example appears to work
efficiently and will be below presented.
The next step consists of implementing a kernel density estimator avoiding the
problem of the estimated probability of some empirical partitions being infinity
when there are no points present in those rectangle partitions. Figure 7.3 provides
a display of the results of such estimator. It is possible to see that the provided
estimates lie around the given frequencies and well perform.

Figure 7.2: Initial partition Π for the first scenario. Note that M = 10 and D = 10.

Hence, the following step is to perform the cross-entropy method. The final
resulting partition is provided in Figure 7.4. Note that such a final result has
been identified in 7 steps of th CEM optimisazion technique.
The obtained partition shows that the four different instantaneous frequencies
are well separated. Hence, the relevant partitions will be the horizontal ones. In
this particular scenario where the challenge is having constant instantaneous fre-
quencies, the objective of cross-entropy is to identify narrow bandwidths around
such constant functions. Figure 7.4 show the obtained result. It is indeed pos-
sible to observe how the the cross-entropy method separates and achieves the
desired results. One could argue that the bandwidths in between are empty and
that the number of optimisation steps could be further reduced since the number
of estimated parameters would be smaller. The main issue with that would be
not being able to efficiently identify an optimal partition separating the different
bandwidths since the number of pre-selected ones would be enough. However,
more research is required in this regard with a computation of the optimal num-
ber of M and D with respect to the computational cost of the algorithm.
Figure 7.5 shows the second case of simulated instantaneous frequencies. This
time, two constant functions are considered over time along with two time-
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varying ones. Depending on the number of bandwidths pre-selected by the user,
then instantaneous frequencies lying in the same bands will be considered as
generated from to the same stochastic process .
The same procedure is followed as for the above toy example. The selected
parameter for the number of required rectangles are M = 4 and D = 4 as given
in Figure 7.6. In this case, the frequency axis varies between 0Hz and 10Hz,
hence a smaller range compared to the one of the above example. Furthermore,
the simulated number of IFs are indeed 4. Multiple solutions have been tried.
The successful one is the one reported in this thesis. The initial selected number
of bandwidths isM = 4 since the modelled IF are indeed four different functions.
Refining the index D, i.e. increasing the number of rectangles with respect to
time did not improve the final obtained partitions and, therefore, this has been
kept with D = 4. Reducing it, however, provided poorer performance of the
CEM. Further research is needed in this direction since the performances will be
highly affected by the duration of the underlying IFs.
Figure 7.7 presents the kernel density estimator, which as for the previous case,
provides a good representation of the underlying empirical instantaneous frequen-
cies. This scenario is much more interesting since the variation of the underlying
instantaneous frequencies is multiple and the kernel density estimator appear to
work well for each of the frequency function.
Figure 7.8 presents the final optimal partition required to then construct the
third system model. Note that this has been identified in 13 steps of the CEM.
As shown, the cross-entropy algorithm captures the instantaneous frequencies
falling in the same frequency bandwidth in a data-adaptive fashion. Indeed,
close IFs or, in a better way, the ones that fall close to each other belong to the
same frequency bandwidth. This is indeed the final goal of this methodology.
In the case of the speech applications, the CEM will perform well as shown by
the resulting performances of the system model 3. It is important to highlight
that, in this case, the CEM will consider the first three IMFs basis functions only.
Reasons behind that is that, in speech analysis, the first three IMFs capture the
majority of the formant frequencies, i.e. the frequencies at which the vocal folds
vibrate, and identify biometric features required for the taks of interest (speech
recognition, speech verification, etc.). Therefore, the CEM requires to aggregates
IFs living in similar bandwidths which might be computed from different IMFs
and so will efficiently compute the new Quasi-IMFs of the third system model.
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Figure 7.3: Kernel density estimator for the first scenario.
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Figure 7.4: Optimal, final partition Π∗ for the first scenario.

Figure 7.5: Simulated Instantaneous Frequencies ω1(t), ω2(t), ω3(t), ω4(t) for the sec-
ond scenario. The x-axis represents the time and the y-axis the frequency.

Figure 7.6: Initial partition Π for the second scenario. Note that M = 4 and D = 4
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Figure 7.7: Kernel density estimator for the second scenario.

Figure 7.8: Optimal, final partition Π∗ for the second scenario.
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Speech applications
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Chapter 8

A Cyber Security Application for
Automatic Speech Verification

The prevalence of biometric authentication systems is increasing in many data
access points in smart devices and remote data access settings. This has led
to a new machine learning based approach to address the resulting biometric
challenge of Automatic Speaker Verification (ASV). Modern machine learning
approaches are recently tackling the study of ASV, see Faisal and Suyanto (2019)
and Salah and Halim (2020). In this Chapter, a novel machine learning solution
for ASV is explored and designed around feature extraction for speech signals; the
challenge of biometric cyber-attack mitigation is addressed by seeking to detect
when data access is attempted through a deep fake artificial speech generation
rather than a human speaker. In the same vein as the biometric verification
work for fingerprints of Kachiashvili and Prangishvili (2018), identification and
verification speech biometrics will be performed.
The key statistical component of the proposed speech signature representation
is based upon the non-stationary functional basis characterisation for speech
signal via the Empirical Mode Decomposition. The EMD is used to identify
which voice signal components provide discriminatory power in mitigating the
risk associated with biometric cyber attacks in Automatic Speaker Verification
technology (ASV) frameworks, where the extracted IMF basis functions act as an
individual’s vocal signature allowing for discrimination of the human voice from
synthetic attacks using replicated artificial voice. The EMD has been employed
within speech analysis in Sharma et al. (2017a); while Wu and Chen (2010)
made use of the EMD for the noise-robustness of automatic speech recognition
systems. Sethu et al. (2008) focuses on speech-based emotion classification util-
ising acoustic data and successfully employed the EMD basis functions and the
instantaneous frequencies derived through the Hilbert transform. Furthermore,
Schlotthauer et al. (2009) used the EMD algorithm to extract the fundamental
frequency F0.
ASV technologies are gaining widespread utilization in contexts of call centers,
human-computer interfaces, secure access control for commercial and retail bank-
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ing, see Sriskandaraja et al. (2016), and Wu et al. (2017). An ASV system typ-
ically extracts speaker characteristics from utterances and compares them to a
given speaker synthetic voice model, estimated from its identity. In this context,
one may distinguish between text-dependent and text-independent frameworks.
The former uses a fixed collection of reference sentences, while the latter ex-
ploits purely arbitrarily selected speech utterances. These are usually referred
to as Text-Dependent Speaker Verification systems, or TD-SV, versus Text-
Independent systems, or TI-SV, see discussions in Sriskandaraja et al. (2016). A
further differentiation might be given by speaker-dependent verification systems
(SD-SV) or speaker-independent verification systems (SI-SV), where the former
are trained by the individual who uses the system, while the latter trained as a
system-agnostic to who is then using it. As with any biometric system, ASV is
subject to spoofing or presentation attacks, which mimic a target speaker’s voice
in person or remotely via artificial tools such as voice conversion (VC) or speech
synthesis (SS) algorithms. The study of such attacks is of growing significance
in areas of the services industry, particularly the financial services sector, where
clients’ personal data access is increasingly reliant on biometric identification.
Spoofing attacks on banking records may be classed as a form of cyber attack.
The provided machine learning classifier solution of this Chapter seeks to detect
and mitigate losses to data integrity and sensitive information by detecting and
preventing such synthetic voice access attacks.
Consequently, a range of approaches is emerging to produce specific countermea-
sures to mitigate against different types of cyber spoofing attacks (see Wu et al.
(2017), Patel and Patil (2017) for ASV and Kabir et al. (2021) for a survey focus-
ing on speaker recognition presenting several countermeasures). The standard
approach in many of these countermeasures is to identify speech parametrisations
carrying discriminative power to differentiate between spoofed and real voices.
The designed techniques make use of a classifier that attempts to distinguish be-
tween samples from two distinct populations of utterance, those from authentic
voice and those from a synthetic generation of voice, derived from the two classes
of speech signals Ramachandran et al. (2002). The raw speech time-domain sig-
nals are often transformed into lower-dimensional sets of summary statistics or
engineered feature representations for such classifiers, see Wu, Evans, Kinnunen,
Yamagishi, Alegre and Li (2015). Furthermore, such countermeasures often rely
on standard time-frequency techniques constrained by assumptions such as sta-
tionarity or linearity of the underlying speech signal. The speech community has
proposed multiple variations of these classical methods to overcome the afore-
mentioned issues (see for example Fan and Hansen (2009), ur Rehman et al.
(2017), Jeevan et al. (2017), Chakroborty and Saha (2009), Tapkir et al. (2018),
Zouhir and Ouni (2016)) and so dealing with different aspects faced by ASV sys-
tems in discriminating spoofed and real voices. The traditional practice foresees
the extraction or engineering of the raw speech data features and then conducts
the classification task by stacking them within a vector. In this way, the clas-
sifier is often polluted by multi-frequency content information all contained in
the proposed unique vector. The approach proposed in this Chapter aims to
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tackle such a problem by constructing a parsimonious model that separates this
frequency information content instead and selects the most discriminant areas of
the time-frequency plane regarding the speech scenario analysed.
A recently developed approach dealing with ASV challenges is given by Deep
Learning (DL). The reader should refer to Ohi et al. (2021) for an overview of
deep learning based speaker recognition approaches that could also be extended
to speaker verification tasks. These include multi-stage networks, end-to-end net-
works, generative networks or meta-learning. As highlighted in Ohi et al. (2021),
these techniques are at a stage of minimal investigation with no asserted guidance
on how to perform them efficiently and compare them to existing methodologies.
Furthermore, DL requires, in general, high computational costs associated with
big data training sets, often making them difficult to use in practice, and, there-
fore, further research is required to establish this direction. In the specific setting
of ASV challenges, the idea behind DL methods, particularly the one of Deep
Neural Network (DNN) quickly becoming the “new-state-of-the-art” methods, is
to identify the formants structure with the complex function using many layers
of perceptrons. This procedure is a high-cost learning procedure that will be re-
placed in this Chapter by the EMD technique, able to capture formant structure
with the requirement of much fewer parameters and can be applied to small and
large datasets providing a uniform method in this regard. Hence, a sparse archi-
tecture in the placement of DNNs is promoted by this work. Afterwards, a much
simpler classifier relying on the recent method known as multi-kernel Learning
(Gönen and Alpaydın (2011b)) combined with the Support Vector Machine is
proposed.
Another critical aspect is that not only speech is highly non-stationary and non-
linear per se, but when ASV challenges are solved, adverse environments might
be the one of interest, making the task even more difficult. For example, the
presence of noise affecting human speech during the recording or the need for
a very long speech signal to be recorded by the user to train the system or
reverberation affecting the system. These challenges are discussed in Jung et al.
(2020), where the authors propose a method for short fragments of speech signals
tackling the issues above described.
Given the great variety of approaches introduced in the literature and the several
databases built and considered by researchers, it is hard to identify a uniform,
standard technique unifying the presented framework and tackling the explained
issues. The desired and sought technique should carry three main properties:
first, non-stationarity and non-linearity should be heavily considered since speech
is highly affected by these two characteristics. Often, real-world settings can be
further corrupted by adverse environments such as noise, which can cause clas-
sical Fourier methods to fail to provide reliable and consistent results across dif-
ferent experiments and noise environments. Secondly, the discrimination power
of the classifier should be the centre of attention, and new classification method-
ologies should be proposed and studied. Third, several benchmark ASV features
have been proved to be successful in multiple cases. The focus should be on the
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statistical interpretability of the ones able to identify discriminating insights in
solving the ASV challenge.
The approach given in this Chapter follows along the familiar line of attack miti-
gation adopting a classifier framework, and the novelty lies in three components:
the ability to treat the feature extraction in a non-stationary formulation; sec-
ondly, an ensemble learning multi-kernel classification framework is developed,
see Gönen and Alpaydın (2011b); thirdly, the interpretability of the given fea-
ture extraction framework in terms of formant structures differentiating real and
spoofed speech is provided. In this Chapter, it is demonstrated that it can im-
prove the ability to detect attacks when compared to current state-of-the-art
methods.
Furthermore, three datasets will be considered for the conducted experiments
setting up multiple speech scenarios as text-dependent or text-independent and
speaker-dependent and speaker-independent. Among these datasets, two of them
are constructed explicitly by the author without a recording laboratory or partic-
ular microphones providing the setting encountered in ASV challenges of adverse
environments. Therefore, the obtained results will provide robustness in these
settings.
The Chapter relies on the framework developed in Chapter 5, making use of the
Support Vector Machine (SVM) to solve the problem of biometric speech identi-
fication and spoofing detection of synthesised voice more effectively. In a speech
environment, the Support Vector Machine has been largely used for speaker
recognition and verification, see Campbell et al. (2006), Campbell (1997), Ra-
machandran et al. (2002), Jaakkola and Haussler (1999a). As highlighted in
Kinnunen and Li (2010), the SVM is a discriminative classifier, which models
the boundary between speakers, in speaker recognition, or speakers and impos-
tors (related to any spoofing attack), in speaker verification. The final object
of the learning process is minimising the classifier’s probability of error, i.e. the
probability of incorrectly labelling a sample point given that sample point and
its label. Furthermore, the method known as multiple kernel learning (MKL)
replacing single kernels for a combination of them will also be employed, pro-
viding outstanding performances in the task of interest. Such a technique has
been introduced in Chapter 4, section 4.3. In speaker verification, Longworth
and Gales (2008) apply this method through the study of dynamic kernels.
The first section of the Chapter presents the main contribution provided at a sta-
tistical level and within a speech framework. Afterwards, a statistical background
for the general characterisation of speech signals, focusing on the engineered fea-
tures and explaining their interpretation. The set of EMD features used to solve
the classification task of interest is provided in Chapter 4, subsection 4.1.1. Upon
these, and as above explained, a new set of features will be engineered combin-
ing the EMD basis and the Mel Frequency Cepstral Coefficients. Hence, the
derivation of such a method is introduced in the following sections, and the new
features, i.e. the EMD-MFCCs features, are then presented.
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The final section of the Chapter presents the case studies conducted to identify
the discriminatory power of the proposed features and methodology.

8.0.1 Contributions and Novelty
The contributions of this Chapter involve several core elements: firstly, enhanced
non-stationary time-frequency methods applied to perform novel feature extrac-
tion techniques for the capture of speech signatures or vocal fingerprints. Sec-
ondly, using these new feature extraction methods to formulate a multi-kernel
classifier based on Support Vector Machine techniques. This is highly beneficial
in the classification tasks depending on the speech system considered: the ex-
tracted featured are often combined in a unique vector, and the SVM is then
performed. Such a practice should be avoided since it will add noise to the
classification problem mixing the formant structure depending on both the in-
dividual and the gender. Therefore, if the analysed scenario is text-dependent
or text-independent or, for example, speaker-dependent or speaker-independent,
the standard operation of considering a unique feature vector characterising the
entire time-frequency plane would pollute the classification learning procedure.
The third contribution foresees the performance comparisons between bench-
mark ASV features extracted on the raw data and on the EMD basis functions
to highlight that speech is highly non-stationary and that multiple situations
generate adverse environments that require the use of an adaptive method rely-
ing on the given data system. Afterwards, the proposed methodology is tested
through the use of various TTS algorithms within different speech scenarios. To
achieve such a goal, the following components has been developed:

1. The existing speech engineering techniques have been extended to non-
stationary basis extraction methods and re-express them within a statisti-
cal framework. This is achieved via Empirical Mode Decomposition meth-
ods, which is used to extract time-domain intrinsic mode basis functions,
represented via semi-parametric spline model characterizations.

2. The combination of time-domain non-stationary basis characterisation of
the speech signals and the instantaneous frequency characterisations are
combined to form a complete time-frequency signature of a person’s vocal
and speech characteristics. Such basis functions are more amenable to
classical speech feature extraction methods in the transformed cepstral
domain. This allows for the development of new approaches to EMD-
Mel Cepstral speech signature characterisation that is highly effective in
capturing individual speakers vocal tract specificities that arise given a
speakers glottal airflow shaped by the vocal tract filter as it passes through
it to produce speech. These features are then used to distinguish between
real speech and artificial computer-generated spoofed synthetic speech by
capturing these signature features.
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Figure 8.1: Proposed biometric speech cyber risk mitigation system.

3. The resulting speech signature feature characterisations allow to solve im-
portant new biometric tasks related to detecting cyber intrusion attempts
to access biometrically multi-factor secured data or systems where speech
is one of the security factors. A class of multi-kernel support vector ma-
chine classifier solutions has been developed to detect such cyber attacks,
attempted through synthetically generated speech.

These contributions then form a complete system, summarised in Figure 8.1,
for a cyber threat detection framework capable of accurately detecting synthetic
spoofed voice attacks on a speech based biometric system secure access.

8.1 Background on Statistical Characterization
of Speech Signals

According to the source-filter model Huang et al. (2001), a speech signal is the
result of the glottal airflow shaped by the vocal tract filter as it passes through it
Kinnunen and Alku (2009). Under such a representation, it is common to con-
sider two main classes of features for an ASV system: voice source features or
vocal tract features. The former are indeed related to the source of voiced sounds
deriving from the glottal flow; however, numerous studies provide evidence show-
ing that vocal folds features are not as discriminatory as vocal tract features
Zheng et al. (2007). In this Chapter, therefore, the focus will be on the vocal
tract features and, in particular, on representations that contain information
about the resonance properties of the vocal tract, also known as formants. An
individual’s speech formant structures are analogous to that individual’s speech
fingerprint, thereby characterizing unique traits of the filter model specific to a
human. Such features are, therefore, highly discriminatory, as it is challenging
for a synthetic voice model to capture these individual-specific characteristics, see
Kinnunen and Li (2010). Considering features that can capture information on
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formant structures is crucial to mitigate biometric speech attacks on ASV-based
security systems successfully.
In this Chapter, the use of non-stationary basis representations for speech en-
hances the ability to identify formant structures. This will be achieved by em-
ploying the EMD basis representations. A novel framework is developed to define
adaptive non-stationary features which efficiently detect highly frequent tempo-
ral variations characterising the original speech time-series. The EMD features
are further combined with MFCCs so that summaries of speech capturing in-
trinsic non-stationarity and formants structure are contemporaneously detected.
Related approaches have been considered mixing these concepts; we cite amongst
other Tapkir and Patil (2018) and Hasan and Hansen (2011). In the former, the
authors propose the EMD as a dyadic filter in substitution to the mel-filter banks
commonly used for the MFCCs. The extracted coefficients were therefore filtered
according to the EMD basis. In Hasan and Hansen (2011), authors compute the
MFCCs for the speech signal, and, after, the EMD is calculated for each coef-
ficient. The approach of this thesis differs from both since the Mel Frequency
Cepstral Coefficients are performed to represent the extracted non-stationary
EMD basis themselves. The argument is that this will outperform alternative
methods since it removes the requirement of local stationary assumptions that
the methods mentioned above required for the first stage of the MFCC trans-
forms. The traditional assumption made in speech is that speech signals should
be approximately stationary at 25/30 milliseconds sampling rate under ideal
background noise conditions. However, ASV systems would often operate within
non-ideal environments affected by background noise or interference, which will
be captured along with voices (see Mazaira-Fernandez et al. (2015) and Wu et al.
(2008)). Instead, the EMD basis functions will accommodate non-stationarity of
any level and so produce more robust features.

8.2 EMD-MFCC Speech Signatures via Pitch
and Vocal Resonance

In speech analysis, the formant frequencies act like a characteristic signature of a
given speakers vocal tract, like a speech fingerprint that is characteristic of given
speakers vocal tract physiology, see Huber et al. (1999), Bashar et al. (2014).
Formants are a concentration of speech acoustic energy, usually occurring at
approximately each 1,000Hz frequency band, directly related to the oscillatory
modes of resonance of an individual vocal tract structure. They are often indexed
by F1, F2, F3, etc., where F0 is termed the fundamental frequency and represents
the rate at which the vocal folds vibrate. This quantity corresponds to the
pitch and coincides with the first harmonic, H1; harmonics are multiple of the
fundamental frequency F0 characterizing the glottal source. Suppose one can
extract these features from non-stationary voiced speech created by a human
vocal, physical, physiological system. In that case, they may have the potential
to be highly discriminatory factors to distinguish a human versus a synthetic
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Figure 8.2: Diagram of the proposed methodology characterising EMD-MFCC fea-
tures for formant detection.

voice as they represent how vocal tracts shape sound sources which therefore
have representations unique to an individual.
These formant features are often approximated by a Mel Cepstral basis pro-
jection, where the functional coefficients form the MFCC representation of the
speech signal that approximate the formants. Such a characterization is work-
ing well in capturing formant structure in ideal speech recording environments
with sufficient sampling rates to capture local stationary approximations of the
non-stationary speech signal. However, in real-world ASV systems that are con-
sidered in this thesis, speech is recorded in noisy real-world environments with
more compressive sampling rates and background non-stationary noise and dis-
tortions. The presence of background noise and distortion have been shown in
Mazaira-Fernandez et al. (2015) to render the MFCC estimated coefficients as
highly sensitive and not statistically robust to a variety of potential types of
background noise and distortions. Furthermore, the compression of the signal
prior to transmission to the ASV for comparison in the biometric signal analysis
can further create aliasing distortions.
These challenges will be overcome by merging EMD with MFCC, where rather
than passing the raw speech signal into the MFCC representation, we will first
decompose the speech signal into IMF basis representations, then MFCC repre-
sentations of each IMF basis will be performed as illustrated in Figure 8.2. This
can be shown to robustly estimate the formant structures even in the presence of
different speech signal recording distortions and background noise environments.
There are existing works that have explored the development of EMD methods
to characterize formant structures, see Bouzid and Ellouze (2004). However, as
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explained in Sharma et al. (2017b) they suffer from an identification complication
known as mode-mixing, which is the inability to align formant structures and
IMFs. This occurs since these previous works apply the EMD method to signals
already based on stationary Fourier transforms of the non-stationary speech sig-
nal. In this thesis, the problem of mode-mixing is avoided by first performing the
EMD basis decomposition of the speech signal, then the Mel Frequency Cepstral
Coefficients (MFCCs) of each IMF basis is studied. In this way, the formants
can be exactly aligned with the ordering of the IMF bases represented through a
second stage MFCC family of coefficient functions. The MFCC acts as a warped
linear filter for each IMF expressed through a functional coefficient in time and
fixed local frequency selective basis. The resulting coefficients of the filter will
be non-linearly spaced in their spectral energy so that they can be estimated
to align with standing wave patterns of pitch and harmonics of human speech
formants.
The MFCC representation is defined as follows, starting from the base Mel-scale:

φ = 2595 log10

(
1 + ω̌

700

)
, (8.1)

where φ is the subjective pitch in Mels corresponding to the original frequency ω̌
in Hz Sigurdsson et al. (2006). Consider the l-th IMF γl(t) extracted from speech
signal representation s̃(t). Next, a representation of the proposed EMD-MFCC
characterisation is provided, followed by a brief numerically stable approximation
that also works well in practice. Note that γl(t) is pre-emphasised and Hamming-
windowed, to get γ∗l (t) to guard against issues of aliasing in discrete sample
MFCC representations of each IMF basis.
The continuous signal γ∗l (t) is then decimated to a set of Ts evaluated “sam-
ple” values in the local window frame. A discrete vector representation is then
obtained γ∗l =

{
γ∗l
(
hω̌s
Ts

)}Ts−1

h=1
for ω̌s sampling frequency in Hz. Then perform

the spectral transform of the l-th IMF representation γ∗l to obtain local Fourier
representation Γ∗l given by DFT as:

Γ∗l (h) =
Ts−1∑
n=0

γ∗l (t) exp (−2πhnω̌s/Ts) (8.2)

The magnitude of spectrum
∣∣∣Γ∗l (h)

∣∣∣ is then scaled in both frequency and
magnitude. The frequency is scaled through convolution with a linear Mel filter
bank H(h,m), a multiplicative transfer function in the frequency domain, and
then the logarithm of the result is taken to stretch or time-dilate the resulting
signal. The output of this process is a collection of functional Mel Cepstral
Coefficients for the l-th IMF given in the frequency domain by,

Ml(m) = log10

( Ts−1∑
h=0

PM∗
l (h)

)

= log10

( Ts−1∑
h=0
|Γ∗l (h)| ·H(h,m)

) (8.3)
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Figure 8.3: The Mel filter bank structure for 40 filters. Each peak represents the
center frequency of the filters.

for m = 1, 2, . . . ,M , where M is the number of Mel bases used (or order of the
filter bank). The Mel filter bank is a sequence of triangular basis defined by the
center frequencies ω̌c(m) as follows:

H(h,m)=



0 ω̌(h) < ω̌c(m− 1),
ω̌(h)−ω̌c(m−1)
ω̌c(m)−ω̌c(m−1) ω̌c(m− 1) ≤ ω̌(h) < ω̌c(m),
ω̌(h)−ω̌c(m+1)
ω̌c(m)−ω̌c(m+1) ω̌c(m) ≤ ω̌(h) < ω̌c(m+ 1),
0 ω̌(h) ≥ ω̌c(m+ 1),

(8.4)

which satisfies ∑M
m=1H(h,m) = 1. The center frequencies of the basis are com-

puted through equation (8.1) to approximate the Mel scale. Afterwards, a fixed
frequency resolution of the Mel scale is computed, which is a logarithmic scaling
of the repetition frequency, obtained by ∆φ = (φmax − φmin)/(M + 1), where
φmax and φmin are computed with equation (8.1) by using ω̌max and ω̌min respec-
tively and M is the number of basis (filter banks). The center frequencies on the
Mel scale are given by φc(m) = m ·∆φ for m = 1, 2, . . . ,M . In order to obtain
such center frequencies, the inverse of equation (8.1) is used and then they are
substituted in 8.4 to obtain the Mel filter banks. The Mel Basis is illustrated in
Figure 8.3 for 40 filter banks with a sampling frequency of 44.1 kHz giving 1102
samples, which is the one used in our real speech data case study. Note that the
higher is the frequency, the wider the filter banks become.
The frequency domain Mel Cepstral functional coefficients are then converted
back to the time domain via Discrete Fourier transform which simplifies to a
simple Discrete Cosine Transform (DCT) ofMk(m) to obtain:

ml(r) =
M∑
s=1
Ml(s) cos

[
r
π

M

(
s− 1

2

)]
(8.5)

for r = 1, 2, . . . ,M , where ml(l) is the r-th MFCC of the l-th IMF.
Typical values forM in speech applications involve selecting the first 10-30 lowest
center frequency cepstral coefficients. In this theses 12 coefficients (the lowest)
are therefore retained to model the individual speakers and the synthetic voice.
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8.3 Real data study: biometric security for syn-
thetic vs real voice discrimination

In this section, the experiment carried to provide reliable features for ASV system
in speaker verification subject to SS spoofing attacks is presented. The final
purposes of this analysis: (1) studying the discriminatory power of EMD basis
and features directly derived from this decomposition; (2) improving the EMD by
combining it with Mel Frequency Cepstral Coefficients. The contribution of this
action is to examine how each IMF captures resonance frequencies (formants) of
the original speech signal. (3) Studying combinations of these features through
a Multi Kernel Learning approach.
The first step in classification tasks using SVM consists of training the hyperpa-
rameters of the selected kernels through an in-sample analysis. The second part
consists of an out-of-sample analysis to observe the prediction power of the same
features. Note that three different datasets are employed in the experiments and
will be below described. Appendix F presents some of the in-sample results.
Particularly, the individual SVMs of the female and male voices making use of
the first dataset of the statistics extracted on the IFs, the Spline Coefficients and
the IMFs are given in Tables 1 and 2 of Appendix F, respectively. Furthermore,
individual in-sample SVMs results of the IMFs, the Spline Coefficients and the
IFs are also given for both voices, using dataset one, in Tables 4 and 5 of this
appendix. Last, for dataset one only, the in-sample results of individual SVMs
using the EMD-MFCCs features for both sets of voices are provided in Table 3
of Appendix F. Details about the out-of-sample results and Appendix G will be
later provided throughout the description of the findings in this section.
The features employed in the experiments are described within the appendix D.
Figure 1 of this appendix shows IMFs and IFs for the first dataset of one sentence
randomly selected. Furthermore, Figure 2 and Figure 3 of the same appendix
presents the results for the t-SNE (see Chapter 5, section 5.2 for details) applied
on the statistics extracted on the IMFs and the Spline Coefficients of the IMFs
for Speaker 1 and Speaker 2 versus the correspondent synthetic voices (male and
female) using dataset one. An equivalent plot for the EMD-MFCCs feature is
provided in sections below (see Figure 8.6 ).
The section is organised as follows: firstly, the experimental set up is described.
There are three main experiments conducted to study the discrimination power
of the presented methodology making use of three different datasets. Therefore,
each experiment is presented. Note that, for the first experiment, a more detailed
analysis is provided using wide-band spectrograms, further plots presenting the
results and justifying the need for the EMD-MFCCs in this settings.
It is highly relevant at this stage to highlight the following discussion. The pri-
mary argument motivating the study of the combinations of EMD and MFCCs is
the assumption of stationarity of speech signals. In general, speech is considered
stationary at 25 milliseconds sampling rate. If this were the case, the application
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of the MFCCs would efficiently capture the harmonics (Fourier basis) of that
signal and would have equal discrimination of the cepstral coefficients applied to
the IMFs (EMD-MFCCs features). These two methods are indeed able to well-
capturing stationarity. However, if the stationarity assumption does not hold
anymore, non-stationarity is likely to be non-uniform across all the frequency
bands; it may be, for example, increasing, or decreasing, with the frequency
range taken into account. Therefore, by merely assuming stationarity at 25 mil-
liseconds rate, equal discrimination of MFCCs and the EMD-MFCCs features
should be expected, given that the latter ones consist of a different formulation
of a representation accommodating non-stationarity (the IMFs). In the presence
of non-stationarity instead, the EMD-MFCCs should better perform. Neverthe-
less, this is strictly related to the speech signal taken into account. To further
explore such a discussion, another experiment is conducted within this Chapter
and explained as follows: (1) a bandpass filter is applied to each speech signal at
several frequencies. (2) The frequency range taken into account for the bandpass
filter corresponds to 1kHz range and is applied from 0 to 5kHz to select differ-
ent formants. (3) The question at this stage is whether non-stationarity is more
prevalent in specific bandwidths than other ones. What is expected from such an
experiment is that low-frequency bandwidths would be less problematic in terms
of relative performances between MFCCs and EMD-MFCCs features. Reasons
behind this would be the presence of the fundamental frequency F0 which corre-
spond to a stationary component, and, therefore, would carry less discriminatory
power. The majority of the difference with respect to performances of MFCCs
versus EMD-MFCCs features is therefore expected to be at higher frequencies
where is less likely to observe the same stationarity feature

8.3.1 Experimental set up
There are three classes of experiments shown in table 8.2 that foresee the use of
three datasets, which are described in table 8.1. The three datasets are firstly
described, and then the different types of experiments are presented.
Consider firstly dataset one and dataset two since they rely on two specific classes
of sentences, respectively. These two sets are used to test the novel methodology
within a text-dependent and a speaker-dependent verification system (TD-SD-
SV) relevant to ASV challenges characterised by these conditions. The first
dataset involves a set of sentences constructed to be challenging and reflect a
real ASV setting in which sentences are not phonetically balanced. These are
obtained them from the first text (Inferno) that makes up Dante Alighieri “The
Divine Comedy”. The second dataset is a reference set based on the IEEE Rec-
ommended Practices for Speech Quality Measurements, as described in of Elec-
trical and Engineers (1969), extensively used in speech analysis testing of speaker
verification. It sets out seventy-two lists of ten phrases described as the 1965 Re-
vised List of Phonetically Balanced Sentences, otherwise known as the ‘Harvard
Sentences’. These are widely used in telecommunications, speech, and acoustics
research, where standardised and repeatable speech sequences are needed.
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Datasets Description

Dataset # of Speakers # of Utterances System

Natural Spoof Training Testing

1 Not Phonetically Balanced 2 6 800 160 TD-SD-SV
2 Phonetically Balanced 2 6 576 576 TD-SD-SV
3 Subset of ASVspoof 2019 28 84 10160 2464 TI-SI-SV

Table 8.1: Description of the datasets employed throughout the various sets of ex-
periments. The number of utterances for each speaker is balanced across each dataset.
For example, in dataset one, training set, there are 800 utterances; given that the
number of speakers is 8, this means 100 utterances per speaker. This is valid for every
other set. For the classification tasks, gender has been taken into account. Hence, the
speakers have been divided between male and female voices. The considered method-
ology aims to detect the energy concentration of the formant structure, which heavily
differs amongst these two categories. Each dataset is further described within the text.
The procedure applied to extract a subset of the ASVspoof 2019 challenge dataset is
presented in 8.3.4.

In both datasets, two real-language sources were used from a female (speaker
1) and a male (speaker 2); for the synthetic speech, five correspondent sources
(T1, T2, T3, T4, T5 described in table 8.8) were employed for the female case
and one source (T1) for the male one. The synthetic speech voices of all TTS
algorithms were selected to have an English accent. The voice recordings were
sampled at 44.1kHz without significant channel or background noise to develop a
text-dependent scenario relevant for speaker verification tasks Rosenberg (1992).
Recording environments of both training and testing voice samples were identical
to avoid mismatched conditions (see Ramachandran et al. (2002), and Rosenberg
(1992)). Common sentences were used for each speaker and the synthetic voice.
Note that no recording laboratory or specialised microphone was used, and the
utterances were recorded in noisy, reverberant environments. This is particularly
relevant since it sets up the setting for adverse environments commonly encoun-
tered in ASV challenges. Therefore, the obtained results will carry the added
feature of robustness to these kinds of speech settings.
The duration of each sentences speech recording was approximately 15sec to 1min
maximum producing between 661k and 2,646k samples per spoken sentence. The
start and end of each sample were trimmed to remove any non-speech segments
and decimated to a set of 60k total samples. Regarding the IMFs extraction
procedure, each set of 60k samples for one sentence was then windowed into non-
overlapping collections of 5,000 samples and passed to the EMD sifting procedure.
Afterwards, the features presented in Table 4.1 were extracted. Note that in some
cases, for high-frequency instantaneous frequency features, it is advantageous also
to apply a median filter (a window of 2ms was used).
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In the first dataset, the total number of recorded sentences was 960, equally
proportioned samples of the same sentences across all voice recordings, with 80%
randomly selected for training and the rest for testing. In the second dataset,
the first sentence from each of the seventy-two lists of the Harvard Sentences
was used to construct the training dataset. The testing dataset was given by
the second sentence from each of the seventy-two lists of the Harvard Sentences.
This led to 1,152 utterances split equally between training and testing sets.
The third dataset corresponds to a subset of the ASVspoof 2019 challenge database
described in Todisco et al. (2019). Details on the extracted sets of sentences are
given in subsection 8.3.4. The importance of the settings provided by this dataset
are remarked: they will tackle text-independent and speaker-independent verifi-
cation systems (TI-SI-SV) to test the proposed novel methodology in the most
general environment encountered in ASV challenges.
Table 8.2 presents the set of experiments considered. With experiment one, it is
firstly presented a discussion showing how the EMD-MFCC approach provides
more powerful discrimination in detecting individual vocal tracts required in ASV
systems compare to other sets of EMD features (IMFs, IFs, Spline Coefficients,
etc.). The benchmark model comparison of the traditional MFCC extraction
on the raw speech signals is also provided and presented in table 8.4. Further-
more, given the wide variety of features often employed in Speaker Verification or
Speaker Recognition tasks (see Sahidullah et al. (2015)), additional benchmark
features applied both on the raw data and on the IMFs are performed. Table 8.3
provide a detailed description of such features, with the used configuration and
references required for further understanding. Results of these features run on
the IMFs are provided in table 8.5.Results for the individual speech features are
discussed and then the EMD-MFCC-MKL framework is introduced.
Experiment two focuses on a different aspect often faced by ASV systems: the
different TTS algorithms. Several techniques produce a spoofing attack: imper-
sonation, synthetic speech or TTS, voice conversion, and replay. In this Chapter,
TTS spoofing attacks are considered only. As highlighted in their work, Kamble
et al. (2020) explains how TTS algorithms can nowadays produce high-quality
voice through several kinds of methods as concatenative TTS unit selection Hunt
and Black (1996), statistical parametric TTS Zen et al. (2009), formant synthesis
Tabet and Boughazi (2011) and Deep Learning-based procedures (see Saito et al.
(2017), van den Oord et al. (2016), Wang et al. (2017), Partila et al. (2020)).
Each of these procedures carries specific pros and cons, highlighted in Figure 8.9.
The best performing features for dataset one and dataset two for the female voice
only obtained in Experiment one are selected an a similar exercise by consider-
ing the different TTS algorithms presented in table 8.8 is repeated. The best
performance are provided while the additional results within the Supplement
Materials.
Experiment three runs the EMD-MFCC-MKL solution for ASV systems on a
selected subset of the ASVspoof 2019 challenge dataset. In this way, a text-
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independent and speaker-independent environment is tested. Results will be
presented for a range of different TTS algorithms and male and female voices.
The focus will be on the best performing cases and the additional results are
given in the Supplement Materials.
In each experiment, the focus is on presenting key aspects of the out-of-sample
analysis that represent the most challenging cases for assessing the proposed
EMD-MFCC methodology. All additional results are provided in the Supplement
Materials, all code and data sets, including user guides, are provided at https:
//github.com/mcampi111/Speech-Experiment.
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Experiments Description

Experiment Objective System Dataset Features Techniques TTS Algorithm Gender

Raw Data IMFs Others

1 Formant Detection Method Validation TD-SD-SV
1 Benchmark Benchmark IFs, SCs, Cl. Stats. EMD-SVM, EMD-MFCC-MKL-SVM T1 M, F
2 MFCCs MFCCs − EMD-MFCC-MKL-SVM T1 F

2 TTS Algorithms Alternative Spoofing Attacks TD-SD-SV 1,2 MFCCs MFCCs − EMD-MFCC-SVM T2, T3, T4, T5 F
3 Comparable Dataset Existing Datasets TI-SI-SV 3 MFCCs MFCCs − EMD-MFCC-SVM A01, A02, A04 M, F

Table 8.2: Table describing the three experiments conducted. Note that, in experiment one, both dataset one and dataset two are
employed. Note that all the proposed sets of features have been extracted on dataset one and are widely discussed. For the second dataset,
the MFCCs on the raw data and the EMD-MFCCs for the female voice only were considered. In experiment two, both datasets are used,
and the MFCCs on the raw data and the IMFs basis functions are employed to assess the discrimination power of the EMD-MFCC-MKL-
SVM in detecting different types of TTS algorithms. Experiment three provides results for the EMD-MFCC-MKL-SVM applied to a
subset of the ASVspoof 2019 challenge dataset considering both the male and the female cases and multiple TTS algorithms. Details are
provided within each section related to the different experiments.



Benchmark ASV Features

Feature Acronym Reference Spectrum Filter Type Filterbank Shape Filterbank Dimension Compression/Other

Mel-Freq. Cep. Coeff. MFCCs Thaine and Penn (2019) Freq. Magn. Mel-Scale Triangular 40 Log.
Linear-Freq. Cep. Coeff. LFCCs Fan and Hansen (2009) Freq. Magn. Linear Freq. Scale Triangular 40 Log.
Bark-Freq. Cep. Coeff. BFCCs ur Rehman et al. (2017) Freq. Magn. Bark-Scale Trapezoidal 40 Log.

Gammatone-Freq. Cep. Coeff. GFCCs Jeevan et al. (2017) Freq. Magn. ERB Scale (Gammatone) Approx. Log. 40 Cubic Root
Inverse Mel-Freq. Cep. Coeff. IMFCCs Chakroborty and Saha (2009) Freq. Magn. Inverted Mel-Scale Triangular 40 Log.
Linear Predictive Cep. Coeff. LPCCs Kumar and Lahudkar (2015) − Linear Prediction Linear 40 LP + Cep. Analysis

Magnitude-based Spectral Root Cep. Coeff. MSRCCs Tapkir et al. (2018) Freq. Magn. Mel-Scale Triangular 40 Exponent α
Normalized Gammachirp Cep. Coeff. NGCCs Zouhir and Ouni (2016) Freq. Magn. Normalized Gammachirp Triangular 40 Logarithm
Phase-based Spectral Root Cep. Coeff. PSRCCs Tapkir et al. (2018) Freq. Phase Mel-Scale Triangular 40 Exponent α

Linear Predictive Coeff. LPCs Chougala and Kuntoji (2016) − Linear Prediction Linear 26 LP Analysis
Perceptual Linear Prediction Coeff. PLPs Alam et al. (2013) Freq. Magn. Bark-Scale Trapezoidal 26 LP + Cep. Analysis

Rasta Perceptual Linear Prediction Coeff. RPLPs Hermansky et al. (1991) Freq. Magn. Mel-scale Triangular 26 LP + Cep. Analysis

Table 8.3: Table describing the selected benchmark ASV features extracted on the raw data and the IMFs for dataset 1. Note that results
for the raw data are provided in table 8.4. The results of the IMFs are provided in table 8.5. The number of retained coefficients for every
feature is 12. The pre-emphasis used for each feature corresponds to 0.97. When cepstral coefficients are computed, a window of 1024
samples is the length of the FFT, with an overlap of 128 samples, and hamming window is the one applied. Note that all the filters are
filterbanks type except for the LPCs and the LPCCS. In these cases, no FFT and, hence, frequency magnitude is passed through the filter.
Instead, after the preliminary phase, including pre-emphasis, framing and windowing, a digital all-pole filter is taken into account, and
the autocorrelation method is employed to estimate the LPCs. For the LPCCs, a further step is taken to compute the cepstral coefficients
directly from the LPCs in a recursive fashion. The reader might refer to Kabir et al. (2021) and Gulzar et al. (2014) for a more detailed
description of such a procedure and the presented features. This is the conventional procedure also applied to PLPs and RPLPs; the last
column of these two features shows LP + Cep. Analysis indeed, precisely referring to this process.
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8.3.2 Experiment One: Biometric Cyber Risk Mitigation
via Synthetic vs Real Voice Discrimination

Throughout these sections, the focus will be on the female voice examples to
present the results.They generally presented the more challenging task in TD-
SD-SV scenarios given the wider variation in spectral energy in the speech signals
and higher non-stationary generally present in the formant structures in the 5kHz
to 20kHz range. Note that results for the individual SVMs of the male voice are
presented in the Supplement Materials.
Firstly, the ability of the benchmark ASV features to classify real and synthetic
voices is considered. Such features for the female voice versus the synthetic
voice generated with TTS algorithm T1 for dataset one are extracted. This is
done firstly on the raw speech data, and then the features are extracted not
on the raw speech but rather on the IMF basis function representations of the
speech. This combined EMD-feature representation is advocated as a framework
able to significantly enhance the discriminatory power of each of the familiar
spectral, temporal speech features. Performances are improved universally by
adopting this proposed approach of EMD-feature compared to just features on
raw speech. Indeed, applying gold standard (Short-Time Scale Discrete Fourier
Transform) ST-DFT based feature on the EMD functions produces greater dis-
criminatory power since the EMD non-stationary bases are better adapted to
the speech recording environment and the non-stationary nature of the speech
signal. Amongst the selected benchmark ASV features, the MFCCs are the best
performing and hence selected those to construct the new methodology combin-
ing EMD-MFCCs. Further evidence is provided by showing how this method
better captures the formant structure of a given speaker through spectrograms,
and other plots below presented.
Hence, the baseline reference to the proposed methodology will be the benchmark
ASV features and, in particular, the MFCCS constructed from the raw speech
data. This contrasts with the proposed methodology of first extracting the IMF
bases and applying MFCC to each IMF to produce more significant discrimina-
tion. The argument is that the non-stationarity of higher frequency components
in speech is more pronounced than lower-frequency components. Consequently,
low-frequency bandwidths should be more comparable in terms of relative per-
formances between MFCCs and EMD-MFCCs features. At these frequencies,
the fundamental frequency F0 more closely reflects a stationary component, and,
therefore, MFCCs should be equally performing over either method. The ma-
jority of the difference is expected at higher frequencies, where it is more likely
that non-stationarity will be non-uniformly distributed. It is important to high-
light that, in this first experiment, the setting foresees a text-dependent and a
speaker-dependent scenario. Hence, only one speaker at a time is considered for
the classification task, and speakers use the same sentences. This is highly rel-
evant since when multiple speakers and utterances are considered, the expected
results will change. This will be presented in experiment three.
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SVM with Speech Benchmark ASV Features

The first results considered are the benchmark comparison, based on applying
the benchmark ASV features to the raw speech signal. Table 8.4 presents the
results. Note that, for this task, the focus is on the female voice discrimination
task with TTS algorithm T1 for dataset one. The configuration applied to obtain
such coefficients are presented in table 8.3. One SVM per individual coefficient
is performed. M = 12 is selected, as is the standard recommendation when
utilizing these features in speech analysis. Results for the radial basis function
kernel are presented. Other kernels have been employed and produced similar
results.
The features are divided into cepstral coefficients or linear prediction coefficients,
and they use various filter banks when the former are considered, or different
transforms are applied once the linear prediction coefficients are obtained when it
comes to the latter ones. These variants find their roots within different purposes.
MFCCs, for example, try to capture formants by mimicking the human cochlear
auditory capacity; the LFCCs are a similar feature, making use of a linear filter
bank rather than the mel-filter bank to obtain a higher frequency resolution
at high frequency (Campbell et al. (2018)). BFCCs represents an alternative
to MFCCs (Shannon and Paliwal (2003)) whose filter banks should replicate
the basilar membrane placed inside the cochlea that contains sensory receptors
for hearing and performs spectral analysis for speech intelligibility perception.
GFCCs (Liu (2018)) make use of the Gammatone filter bank for their cepstral
analysis and model physiological changes in the inner ear and external, middle
ear. IMFCCs consider the inverted-mel-filter bank and give a high-frequency
resolution to low frequencies rather than high frequencies. We also consider
MSRCCs and PSRCCs proposed in Tapkir et al. (2018) whose final goal is to
model the human auditory system by the functional relationship between the
onset firing rate of auditory neurons and sound pressure level. The former ones
capture information about the magnitude spectrum while the latter ones about
the phase spectrum. The NGCCs (Zouhir and Ouni (2016)) use a Normalized
Gammachirp filter bank and incorporate the properties of the peripheral auditory
system aimed to improve robustness in noisy speech settings. Another class
of proposed features are the linear prediction coefficients and variations as the
LPCCs, the PLPs and the RPLPs. These features rely on the stationarity of the
underlying system, and even framing the speech signal into batches at which it
turns stationary does not tackle the issue, especially when adverse environments
are present. The highest accuracy is achieved by the NGCCs and the PLPs
with an accuracy score of 0.850. Next, an equivalent procedure is performed,
and these features are extracted on the IMF basis functions of the correspondent
dataset. Results are in table 8.5. The proposed methodology relies on this new
approach for which, instead of the raw speech, each IMF basis is passed one by
one through an individual transformation of the selected features (i.e. MFCCs,
LFCCs, BFCCs, etc.) to form adaptive features for the classification of real and
synthetic voice. The standard practice of classification problems for this kind
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of setting is constructing a vector collecting all the coefficients for the feature
of interest or multiple features and then carrying the learning procedure. Since
voice is highly biometric, highly non-stationary and adverse environments might
arise, such standard procedures tend to create noise in the classification tasks
rather than provide discriminant information. Therefore, the idea is to partition
the time-frequency plane through a non-stationary and non-linear decomposition
method and quantify energy generated by the formant structure. Furthermore,
depending on the targeted task, i.e. TD-SD-SV or TI-SI-SV, the discriminant
areas might differ given the use of the same utterances or not or the presence
of multiple speakers or not or the consideration of gender. All features (except
for the LPCs and the PSRCCs) achieve higher accuracy scores on the IMFs,
particularly on the highest bases as IMF1 or IMF2, suggesting higher formants
of the female speaker voices in a TD-SD-SV environment should provide most of
the discriminant power. The MFCCs and the IMFCCs gave the highest accuracy
scores. Given these performances, their interpretability and their wide use within
SV tasks, we selected the MFCCs to construct new features combined with the
EMD. Hence, the focus is on the individual speech features MFCCs extracted on
the IMFs and will be further discussed in the following sections. They will be used
to construct the EMD-MFCC MKL. Before that, further evidence is provided
to show how the EMD-MFCCs better capture formant structures compared to
standard MFCCs on the raw speech data.

Formant Detection for Real and Synthetic Voice

In Figure 8.4 the wide-band spectrograms are provided to visualise the formant
structure of a given speech signal. The four panels represent the same sentence
for Speaker 1, Speaker 2, and the female synthetic and the male synthetic voices.
Each spectrogram has been performed on a window of 1024 samples (correspond-
ing approximately to 23 milliseconds), with an overlap of 128 samples, the same
pre-emphasis factor and windowing applied for the MFCCs (0.97 and hamming
window), a dynamic range of 50dB and frequency range set of 0-10 kHz so that
five formants should be visible (one at around each 1 kHz spaced carrier fre-
quency). In Huang et al. (2001) it is noted that the first five formants are the
ones necessary for speaker verification. Black lines highlight the five detected
formants over time in each sub-figure, which line up with the EMD decomposed
IMFs after transformation to IFs.
The top panel corresponds to the female speaker. The first four formants are
within 0-5 kHz. This confirms that female speakers tend to have higher formant
frequencies due to smaller vocal tracts (see Huber et al. (1999)) and a higher
fundamental frequency F0 compared to males. The second panel shows five for-
mants in the interval 0-5 kHz, typical for a male voice. Furthermore, a lower
fundamental frequency generates a smaller interval between voice harmonics re-
sulting in a strengthened formants definition. This shows that for male voice
EMD decomposition versus female voice, the IMFs obtained will have energy
concentration in different spectrum regions. Consequently, the resulting EMD-
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MFCC coefficients, if the Mel Cepstrum bases are kept constant in both cases,
will have the coefficients for lower order IMFs being more influential than higher
order IMFs. The opposite will be valid for the female voice. Note how the first
two spectrograms show how human voices enunciate individual words much more
than the last two spectrograms, where the separation between them seems dissi-
pated. Furthermore, the formant structures referring to female voices (the first
and the third plots) appear to behave much more alike than those characterising
the male voices (the second and the fourth plots). This fact strongly depends
on the synthetic voice generation algorithm, which will spread energy across a
significant range of frequencies even by synthesising a male voice. Such a fact
will result in a less challenging task for detecting synthetic and real male voices
than the female case, and it justifies the choice to focus on the female case.

Figure 8.4: Spectrograms of the same sentence for Speaker 1 (top panel), Speaker 2
(second panel), the synthetic female voice (third panel) and the synthetic male voice
(bottom panel). Black lines represent formants aimed to be detected by the IMF-Mel
Cepstral basis representations. Colour scale in dB.
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Figure 8.5: The top panel show one of the original sentences considered for Speaker
1; the bottom panel presents its related spectrogram. Colour scale in dB. The sentence
corresponds to “When halfway through the journey of our life ”.

Next, to illustrate the EMD-MFCC method versus the classical MFCC on the
raw speech, a sentence randomly from the real female voice recordings is selected,
and the speech signal in the time domain and the spectrogram in Figure 8.5 are
presented.
Then the results of the PM∗

l (h) = |Γ∗l (h)| · H(h,m) are plotted and represent
the PSD weighted Mel Cepstral bases for indexes m ∈ {1, . . . , 12} in Figure 8.7.
The classical situation in which one applies the MFCC directly to the speech
signal (Figure 8.7, panel a) is compared to the cases in which the MFCC are
instead applied to each IMF individually, precisely the first three IMFs (Figure
8.7, panels b,c,d). In each case, this is done over the entire time interval of the
recording, followed by a sequence of local MFCC applications on 200ms windows
with no overlap. This demonstrates that the resulting MFCC summary features
captured by PM∗

l (h) applied to the raw data signal are not overly responsive,
although, in adjacent 200ms windows, there are significant differences in the
spectrogram energy signatures, as also demonstrated in Figure 8.5.
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(a) PM∗ computed on one of the orig-
inal sentences s̃(t) and PM∗ computed
over batches of s̃(t).

(b) PM∗1 computed on γ1(t) and PM∗1
computed over batches of γ1(t).

(c) PM∗2 computed on γ2(t) and PM∗2
computed over batches of γ2(t).

(d) PM∗3 computed on γ3(t) and PM∗3
computed over batches of γ3(t).

Figure 8.7: This Figure shows four panels. By looking at panel (a), seven subplots
can be found. The first and biggest subplot represents the PM∗ component of the
MFCC decomposition presented in Eqn. 8.3 for one of the original speech signals
of Speaker 1 (the female voice). Afterwards, the same quantity is extracted over
batches of t as shown in the subfigures below such biggest plot. Panel (b), (c) and
(d) take instead into account the correspondent PM∗1 , PM∗2 and PM∗3 components of
the MFCC decomposition of γ1(t), γ2(t) and γ3(t), i.e. the first, the second and the
third IMFs respectively of the original speech signal considered in panel (a). The time
unit of the batches is in ms, and the frequency on the x-axis is in Hz. The y-axes of
PM∗1 , PM∗2 and PM∗3 differ from the y-axis of PM∗ since the IMFs do not include
the residual or tendency.
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Figure 8.6: The panels represent the coefficient functions Mk(s) given in Eqn. 8.3
computed on a sliding window for one sentence of Speaker 1. Note that panel (a)
refers to the original signal, and the correspondent quantity is denoted asM(s) with
no sub-index. We split the sentence 200ms windows and calculated M(s) for every
window.The procedure is then repeated on the IMFs basis of the same sentence of
Speaker 1 and showed the results in the remaining panels obtaining M1(s), M2(s),
M3(s), ML(s) and ML+1(s). Remark that K is the last IMF and, in this specific
case, equals 14 and L+ 1 corresponds to the residual. The different colours denote the
associated window over which the extraction has occurred. Remark that the x-axes
differ amongst the panels since the IMFs do not take into account the residual.

Following this discussion, the proposed methodology considers the EMD de-
composition followed by the MFCC. The MFCC decomposition is performed
under the same set-up for each IMF basis extracted, first for the entire IMF
signal, then on successive 200ms windows. This analysis shows that since the
IMF-MFCC features adapt to local non-stationarity better than the ST-DFT
MFCC analysis, it is possible to capture more responsively the energy variation
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in bands of the formants to a greater degree. The subsequent classification of
the biometric speech attack analysis leads to demonstrably better performance
in the proposed method over the state of the art methods.
Figure 8.6 further presents the MFCC M(s) coefficients of the original signal
and the EMD-MFCCMl(s) coefficients for each IMF (see Eqn. 17). The entire
time-domain signal is split into 200ms windows. The coefficient weight function
variation of the MFCC is shown, and, importantly, its improved responsivity and
selectivity for formants based on the IMF-MFCC framework are also presented.
Figure 8.8 shows the IMF-MFCC discriminatory potential of features between
real and synthetic voice via application of the t-SNE projection method, see de-
tails in Maaten and Hinton (2008). The details of the t-SNE technique and its
utilisation within the case analysis are summarised in the Supplement Materials.
The plots demonstrate the discriminatory power of the IMF-MFCC coefficient
representations when applied on local windows of length 50ms, producing fea-
tures vectors in dimension d = 1068, after decimation for dimension reduction.
One can see that there is evident potential for these IMF-MFCC features to have
strong discriminatory power in all IMFs for the male case and hin several IMFs
for female ones. As expected, the female lower frequency IMF-MFCC features
have less discriminatory power than the higher frequency signatures, and the
IMF-MFCC captures this clearly in all sentences as discriminatory between the
real and synthetic voice. This indicates that the IMF-MFCC should act very well
as spectral signatures to capture an individual’s particular vocal tract structure
and therefore have a solid performance to mitigate attacks from the synthetic
voice.
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Figure 8.8: Results of t-SNE for the MFCCs of Speaker 1 (top panels) and Speaker
2 (bottom panels). Note that the t-SNE algorithm is presented in the Supplement
Materials. For each speaker, five sub-plots are provided related to each IMF taken
into account. A PCA step was applied to reduce the initial data dimensionality, 90%
of explained variation was retained. The axes represent the two dimensions identified
by the t-SNE algorithm denoted as X̄1 and X̄2.
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SVM-Speech Feature Library Construction: Classification Performance
for Individual Speech Features

Note that the focus is on the female voice examples to present the main findings,
whereas similar results for the male voice are provided in the supplementary ap-
pendix. In table 8.4, it can be seen that applying MFCC to raw speech produces
an accuracy of discrimination between real female voice and synthetic female at-
tack spoofed voices, out of sample for the same sentences, which did not exceed
77.5%. This type of accuracy score is often not acceptable for real-world applica-
tions where sensitive private data is seeking to be accessed via voice biometrics.

Experiment 1

Dataset 1

OFS Benchmark ASV Features - Raw Data - Dataset 1 - Speaker 1 vs Female Synthetic Voice TTS T1

Coeff. number MFCCs LFCCs BFCCs GFCCs IMFCCs LPCs LPCCs MSRCCs NGCCs PLPs PSRCs RPLPs
1 0.775 0.500 0.500 0.425 0.500 0.425 0.750 0.500 0.500 0.700 0.525 0.800
2 0.675 0.500 0.575 0.725 0.775 0.750 0.700 0.350 0.700 0.700 0.550 0.750
3 0.550 0.500 0.550 0.775 0.400 0.725 0.725 0.500 0.725 0.725 0.650 0.725
4 0.475 0.500 0.700 0.525 0.075 0.725 0.700 0.475 0.850 0.850 0.375 0.450
5 0.475 0.500 0.650 0.475 0.775 0.425 0.775 0.500 0.775 0.775 0.450 0.450
6 0.650 0.500 0.700 0.775 0.725 0.325 0.700 0.450 0.700 0.450 0.425 0.475
7 0.150 0.475 0.700 0.725 0.725 0.325 0.700 0.500 0.750 0.700 0.525 0.700
8 0.375 0.500 0.700 0.525 0.725 0.700 0.675 0.425 0.800 0.700 0.475 0.675
9 0.375 0.500 0.775 0.725 0.750 0.725 0.225 0.500 0.750 0.400 0.650 0.700
10 0.675 0.550 0.825 0.800 0.700 0.725 0.700 0.500 0.750 0.750 0.450 0.475
11 0.770 0.500 0.700 0.800 0.775 0.725 0.750 0.500 0.775 0.500 0.225 0.500
12 0.775 0.500 0.700 0.725 0.750 0.725 0.725 0.500 0.775 0.500 0.550 0.500

Table 8.4: Out-of-sample results of the SVMs carried with the standard features used
in ASV tasks applied to the raw data. The features description is given in table 8.3.
Equivalent results for these features applied to the IMFs are provided in table 8.5.
Note that each value corresponds to the accuracy achieved by the SVM carried with
the coefficient given in the row of the feature given in the column.

The benchmark MFCCs on raw speech is further compared to two sets of features
individually trained and tested. The first set corresponds to summary statistics
obtained from the EMD applied to the raw speech signal. This produces the
summary statistics of the IMF bases, the Instantaneous Frequency signals and
the spline coefficients that characterize the IMF bases. These three signals are
summarised using the summary statistics described in Table 4.1. These results
are in Tables 1 and 2 in the Supplement Materials and demonstrate the out-of-
sample classification results for dataset one for Speaker 1 versus synthetic voice
attacker and Speaker 2 versus synthetic voice attacker.
One SVM training and then out-of-sample testing per feature component are
performed, where, for instance, each sentence was taken, and then each IMF was
taken. After, given each IMF, the summary statistics were extracted, and then
the SVM training and out-of-sample testing were run for various kernel families.
This allows building a library of individual features and their performance in
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the real vs synthetic voice discrimination over the voice recordings database. It
forms the basis for the multiple kernel learning framework that ultimately creates
our proposed EMD-MFCC multi-kernel classification solution. All performances
greater than 90% accuracy are bolded when presenting the results, which is a
realistic minimum accuracy required for many real-world biometric applications.
In general, individual features from the summary statistics of the IMFs and IFs
(for a range of kernel choices) outperform the standard comparison of MFCC
applied to raw speech in both in-sample out-of-sample analyses. This indicates
that the approach employed for constructing IMF-MFCC rather than just MFCC
on raw speech signals will outperform the current standard approach in this type
of cyber mitigation ASV classification context.

Experiment 1

Dataset 1

OFS Benchmark ASV Features - IMFs - Dataset 1 - Speaker 1 vs Female Synthetic Voice TTS T1

Coeff. MFCCs LFCCs BFCCs GFCCs

number IMF 1 IMF 2 IMF 3 IMF L IMF L+1 IMF 1 IMF 2 IMF 3 IMF L IMF L+1 IMF 1 IMF 2 IMF 3 IMF L IMF L+1 IMF 1 IMF 2 IMF 3 IMF L IMF L+1
1 0.150 0.425 0.500 0.300 0.750 0.775 0.725 0.500 0.500 0.550 0.825 0.850 0.800 0.425 0.525 0.750 0.825 0.750 0.575 0.500
2 0.325 0.425 0.350 0.575 0.425 0.050 0.350 0.550 0.550 0.375 0.300 0.400 0.725 0.550 0.225 0.750 0.575 0.350 0.500 0.500
3 0.475 0.550 0.350 0.550 0.375 0.650 0.600 0.625 0.625 0.375 0.200 0.900 0.250 0.575 0.400 0.225 0.725 0.250 0.475 0.525
4 0.475 0.700 0.350 0.525 0.375 0.550 0.300 0.625 0.625 0.425 0.175 0.200 0.625 0.600 0.350 0.075 0.575 0.750 0.525 0.525
5 0.500 0.700 0.775 0.575 0.325 0.450 0.225 0.600 0.600 0.375 0.125 0.425 0.575 0.525 0.275 0.125 0.200 0.475 0.475 0.525
6 0.500 0.550 0.325 0.650 0.350 0.600 0.200 0.625 0.625 0.375 0.025 0.325 0.400 0.550 0.300 0.450 0.775 0.450 0.525 0.475
7 0.950 0.400 0.400 0.575 0.450 0.200 0.325 0.575 0.575 0.375 0.525 0.800 0.250 0.550 0.500 0.375 0.325 0.150 0.475 0.475
8 1.000 1.000 0.425 0.525 0.450 0.500 0.550 0.525 0.525 0.425 0.800 0.525 0.500 0.500 0.275 0.175 0.350 0.425 0.575 0.500
9 1.000 0.850 0.725 0.650 0.725 0.725 0.450 0.600 0.600 0.400 0.500 0.350 0.200 0.575 0.425 0.475 0.875 0.450 0.550 0.450
10 1.000 1.000 0.825 0.675 0. 450 0.800 0.475 0.550 0.550 0.400 0.500 0.600 0.525 0.600 0.450 0.775 0.550 0.200 0.475 0.450
11 0.950 0.925 0.625 0.550 0.350 0.850 0.600 0.600 0.600 0.375 0.500 0.800 0.800 0.500 0.325 0.625 0.525 0.375 0.550 0.475
12 0.800 0.650 0.775 0.475 0.350 0.575 0.600 0.575 0.575 0.375 1.000 0.750 0.725 0.550 0.550 0.500 0.725 0.875 0.550 0.525

Coeff. IMFCCs LPCs LPCCs MSRCCs

number IMF 1 IMF 2 IMF 3 IMF K IMF K+1 IMF 1 IMF 2 IMF 3 IMF K IMF K+1 IMF 1 IMF 2 IMF 3 IMF K IMF K+1 IMF 1 IMF 2 IMF 3 IMF K IMF K+1
1 0.675 0.775 0.725 0.425 0.600 0.575 0.625 0.575 0.550 0.550 0.775 0.300 0.800 0.425 0.475 0.625 0.775 0.375 0.600 0.425
2 1.000 0.750 0.275 0.550 0.525 0.750 0.475 0.575 0.475 0.575 0.900 0.300 0.775 0.450 0.555 0.425 0.600 0.750 0.450 0.375
3 0.450 0.750 0.325 0.625 0.450 0.375 0.425 0.600 0.500 0.475 0.400 0.625 0.800 0.450 0.525 0.550 0.775 0.550 0.450 0.425
4 0.750 0.575 0.550 0.550 0.475 0.450 0.575 0.600 0.550 0.625 0.200 0.525 0.750 0.525 0.430 0.150 0.675 0.475 0.550 0.400
5 0.500 0.050 0.725 0.575 0.475 0.325 0.600 0.650 0.475 0.550 0.725 0.250 0.800 0.500 0.565 0.575 0.350 0.825 0.550 0.400
6 1.000 0.375 0.725 0.575 0.400 0.675 0.500 0.650 0.450 0.500 0.750 0.350 0.825 0.475 0.475 0.925 0.650 0.325 0.575 0.425
7 0.850 0.475 0.750 0.600 0.450 0.575 0.475 0.650 0.525 0.550 0.650 0.475 0.800 0.475 0.375 0.775 0.525 0.225 0.500 0.425
8 1.000 0.475 0.825 0.425 0.350 0.375 0.375 0.725 0.425 0.525 0.725 0.450 0.850 0.475 0.500 0.800 0.500 0.800 0.600 0.425
9 0.500 0.650 0.650 0.625 0.400 0.350 0.425 0.750 0.550 0.550 0.900 0.375 0.800 0.425 0.500 0.575 0.425 0.400 0.525 0.400
10 0.750 0.575 0.425 0.500 0.375 0.500 0.475 0.750 0.475 0.550 0.750 0.350 0.750 0.525 0.545 0.600 0.350 0.725 0.575 0.450
11 0.525 0.625 0.200 0.675 0.475 0.600 0.575 0.750 0.525 0.575 0.750 0.350 0.725 0.550 0.454 0.750 0.450 0.800 0.550 0.400
12 0.750 0.625 0.125 0.550 0.500 0.675 0.525 0.750 0.475 0.575 0.700 0.450 0.575 0.475 0.525 0.875 0.500 0.650 0.450 0.425

Coeff. NGCCs PLPs PSRCs RPLPs

number IMF 1 IMF 2 IMF 3 IMF K IMF K+1 IMF 1 IMF 2 IMF 3 IMF K IMF K+1 IMF 1 IMF 2 IMF 3 IMF K IMF K+1 IMF 1 IMF 2 IMF 3 IMF K IMF K+1
1 0.825 0.900 0.825 0.500 0.500 0.505 0.590 0.450 0.300 0.420 0.575 0.350 0.300 0.525 0.450 0.510 0.500 0.600 0.420 0.565
2 0.550 0.475 0.300 0.575 0.600 0.585 0.450 0.455 0.550 0.430 0.500 0.425 0.600 0.525 0.425 0.505 0.505 0.589 0.630 0.400
3 0.175 1.000 0.350 0.525 0.525 0.605 0.515 0.650 0.525 0.555 0.450 0.625 0.350 0.400 0.450 0.600 0.432 0.575 0.600 0.475
4 0.125 0.700 0.225 0.525 0.675 0.515 0.575 0.450 0.475 0.565 0.450 0.575 0.450 0.525 0.425 0.420 0.690 0.355 0.515 0.500
5 0.275 0.275 0.450 0.575 0.450 0.775 0.595 0.550 0.555 0.375 0.625 0.525 0.525 0.550 0.450 0.700 0.500 0.450 0.575 0.595
6 0.550 0.800 0.550 0.550 0.525 0.545 0.675 0.655 0.500 0.500 0.625 0.550 0.425 0.500 0.450 0.700 0.685 0.500 0.500 0.450
7 0.475 0.500 0.125 0.600 0.475 0.690 0.500 0.750 0.600 0.454 0.575 0.625 0.550 0.500 0.575 0.625 0.430 0.560 0.525 0.575
8 0.400 0.325 0.425 0.575 0.625 0.850 0.600 0.750 0.600 0.525 0.500 0.450 0.575 0.500 0.425 0.855 0.740 0.675 0.675 0.605
9 0.250 0.875 0.375 0.625 0.475 1.000 0.770 0.675 0.675 0.550 0.475 0.375 0.575 0.500 0.600 0.935 0.885 0.565 0.600 0.470
10 0.300 0.575 0.300 0.675 0.500 0.925 0.650 0.725 0.525 0.500 0.350 0.425 0.475 0.425 0.500 0.920 0.780 0.500 0.410 0.525
11 0.925 0.500 0.300 0.550 0.500 0.890 0.725 0.725 0.475 0.475 0.400 0.600 0.475 0.550 0.575 0.890 0.700 0.505 0.675 0.550
12 0.625 0.625 0.825 0.600 0.475 0.710 0.685 0.750 0.475 0.425 0.525 0.575 0.400 0.575 0.525 0.785 0.675 0.550 0.525 0.425

Table 8.5: Out-of-sample results of the SVMs carried with the standard features
used in ASV tasks applied to the IMFs. The features description is given in table
8.3. Results for these features applied to the raw data are provided in table 8.4. Note
thate each value corresponds to the accuracy achieved by the SVM carried with the
coefficient given in the row of the IMF basis in the column referring to the feature
provided.
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The second set of features is obtained from an EMD applied to speech to get
IMF bases, then the MFCCs are extracted from each IMF. This is the newly
proposed methodology that utilised EMD-MFCC. Table 8.4 shows the out-of-
sample results for the EMD-MFCCs of the female voice for dataset one, and
table 3 in the Supplement Materials presents the correspondent results for the
male voice. The results are presented for the radial basis function kernel choice,
and the remaining results for other kernel choices are not presented to reduce
space. The way to interpret these results is as part of a stage of constructing a
library of individual feature sets to pass to a multiple-kernel learning solution.

EMD-MFCC Multi Kernel Learning SVM Performance

The next step corresponds to presenting the proposed solution by combining the
selection of the best-performing features from the EMD along with the EMD-
MFCC SVM feature libraries constructed for various kernel choices and individ-
ual features above described (note that the results for the individual features are
within the Supplement Material). The combination is achieved through the Multi
Kernel Learning (MKL) introduced in 4.2. By being the best performing within
the individual features studies, the EMD-MFCCs are selected in this task and
demonstrated for the female case as the most challenging. Each of these chosen
features (individually trained in previous experiments) will be combined accord-
ing to Eqn. 4.13. The procedure consists of selecting the best kernel amongst the
best feature for each feature. As a consequence, the final combined kernel should
be more representative of the classification problem. Table 8.6 displays results
for Speaker 1 out-of-sample performance for dataset 1. Since the best performing
EMD-MFCC features amongst several kernels are selected, the header of table
8.6 is organised as follows: the top row shows which is the basis of interest, i.e.
γ1(t′), γ2(t′), γ3(t′), γL(t′) and γL+1(t′). The index following MFCC- gives this
information. The second row highlights the best individually performing coef-
ficient and, therefore, the one selected for the MKL formulation. The last row
shows which kernel offers the best performance for that feature; for example, for
column one of the table, for the first IMF γ1(t′) (MFCC-1), the best performing
coefficient was the 7-th one when a Laplace kernel was used. The rest of the
columns can be interpreted equivalently. The header referring to the weights ηm
for m = 1, . . . , 5 is then entered. Each row represents a new model and shows the
weights ηm defined in Eqn. 26, which are associated with features given at the
head of the table. When considered individually, they reflect their out-of-sample
performances and, therefore, reflect which feature provides more significant dis-
crimination. Thus, the rows provide the new models’ characterisation obtained
through the combination rule given in Eqn. 4.12 with related performance in the
last column provided by the accuracy score. Note that performances are ordered
according to the level of accuracy achieved.
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Experiment 1

Dataset 1

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice TTS T1

MFCC-1 MFCC-2 MFCC-3 MFCC-L MFCC-L+1
Accuracy7th coeff. 8th coeff. 5th coeff. 10th coeff. 5th coeff.

Laplace RBF RBF RBF Linear
η1 η2 η3 η4 η5

0.295 0.295 0.222 0.188 − 1.000
0.364 0.364 0.272 − − 1.000
0.380 0.380 − 0.240 − 1.000
0.422 − 0.311 0.267 − 1.000
− 0.416 0.314 0.269 − 1.000

0.500 0.500 − − − 1.000
0.572 − 0.428 − − 1.000
0.610 − − 0.390 − 1.000
− 0.611 − 0.389 − 0.990
− − 0.537 0.463 − 0.950

0.246 0.246 0.184 0.157 0.167 0.900
0.292 0.292 0.216 − 0.200 0.900
− 0.328 0.246 0.208 0.218 0.900

0.418 0.048 − 0.262 0.272 0.890
0.325 − 0.242 0.214 0.219 0.890
0.374 0.374 − − 0.252 0.890
0.415 − 0.309 − 0.276 0.890
− − 0.362 0.309 0.329 0.890
− 0.436 − 0.277 0.287 0.890
− 0.413 0.310 − 0.277 0.890
− 0.573 0.427 − − 0.890
− 0.602 − − 0.398 0.890
− − 0.529 − 0.471 0.890

0.435 − − 0.274 0.291 0.880
0.600 − − − 0.400 0.880
− − − 0.486 0.514 0.870

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice TTS T1

MFCC MFCC MFCC MFCC MFCC
Accuracy8th coeff. 9th coeff. 11th coeff. 12th coeff. 8th coeff.

Laplace Laplace RBF RBF Linear
η1 η2 η3 η4 η5

0.195 0.209 0.200 0.197 0.197 0.678

Table 8.6: Multi Kernel Learning SVMs results of the synthetic voice generated with
TTS T1 versus Speaker 1 for dataset 1. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample accuracy). The
first line indicates the considered features, which is always an IMF-MFCC. The IMF
indices are given in each MFCC component as -1,-2,-3,-L,-L+1. The second line refers
to the coefficient number, and the third line to the selected kernel for that feature.
The table represents a model selection comparison in which each row corresponds to
a different MKL model combining different sets of features. The numbers in each row
refer to the ηm weights as expressed in Eqn. 26. The highlighted accuracy scores
correspond to those combinations of features and kernel models greater than 90%.
The first portion of the table demonstrates the EMD-MFCC-MKL solutions, while the
second portion is the state-of-the-art reference of the classical MFCC-MKL.

Perfect discrimination is achieved when the MFCCs of γ1(t′) or γ2(t′) are in-
cluded within the combined kernel. Such findings reinforce the initial analysis of
the t-SNE that most of the discrimination between a real female voice and a syn-
thetic female voice lies in the high-frequency MFCC coefficients of the first IMF.
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Indeed, the selected coefficients for this case corresponds to the 7-th. Different
combinations have been tried, and similar excellent performance was observed.
These results are far higher than those of the current state-of-the-art reference
of MFCC applied to raw speech when also placed in an MKL-SVM framework.
This demonstrates the superior performance of the IMF-MFCC feature class
when combined with an MKL-SVM classifier framework. Note that each EMD-
MFCC-MKL table will follow the structure described in this section. Note that
the individual performances related to the MFCCs on the raw speech signals are
not presented for other datasets.

Harvard Phonetically Balanced Sentences Example: Real Speech vs
Synthetic Speech Classification

As performed for dataset one, a similar analysis was confirmed by dataset two
on the gold standard speech data set given by the Harvard phonetically balanced
sentences. Table 8.7 shows results related to Speaker 1, hence the female discrim-
ination case study (as per the above study one). A summary of the EMD-MFCC
features is only provided and MKL-SVM classifier compared to the MFCC on
raw speech in an MKL-SVM classifier. In this example, a Radial basis function
kernel is employed, and the feature set was based upon the EMD-MFCCs that
best performed in individual feature classifiers in the out-of-sample analysis.

8.3.3 Experiment Two: Other TTS Algorithms
In this subsection, we replicate the EMD-MFCC-MKL conducted in experiment
one by taking into account different Text-To-Speech (TTS) algorithms, presented
in Table 8.8. Note that the experiment is replicated for the female voice only, but
both dataset one and dataset two are considered. The first TTS algorithm corre-
sponds to the interface of the Google-Text-to-Speech API interface provided by
the Python library gTTS. It relies on WaveNet (van den Oord et al. (2016)) and
hence uses a Deep Learning procedure. It offers 120 languages and dialects (see
https://cloud.google.com/speech-to-text/docs/languages). The second
TTS algorithm corresponds to Espeak (online at http://espeak.sourceforge.
net/) that instead employs a formant synthesis procedure. It also provides sev-
eral languages (the complete list is given online). Afterwards, the Python li-
brary Pyttsx is used, a cross-platform text-to-speech wrapper providing access
to different TTS tools. Amongst others, the Microsoft Speech Engine SAPI5 is
selected (online at https://docs.microsoft.com/en-us/previous-versions/
windows/desktop/ms723627(v=vs.85)), making use of a concatenative algo-
rithm. The last TTS algorithm is the IBM Watson TTS (whose documentation
can be found online at https://cloud.ibm.com/docs/text-to-speech), which
also provides access to its API through a Python interface and relies on neural
voice technologies, hence making use of Deep Neural Network (DNN). The TTS
service is in the IBM Watson Cloud and supports a large number of languages,
from which we selected the option of UK English.
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Experiment 1

Dataset 2

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice TTS T1

MFCC-1 MFCC-2 MFCC-3 MFCC-L MFCC-L+1
Accuracy8th coeff. 2nd coeff. 7th coeff. 2nd coeff. 1st coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.170 0.170 0.235 0.268 0.157 0.944
0.201 0.201 0.274 0.324 − 0.944
0.233 0.241 0.318 − 0.208 0.923
− 0.208 0.280 0.328 0.184 0.923

0.397 0.409 0.194 − − 0.923
− 0.253 0.341 0.406 − 0.923
− 0.308 0.416 − 0.276 0.909

0.218 0.226 − 0.352 0.204 0.902
0.203 − 0.281 0.328 0.188 0.895
0.275 0.283 − 0.442 − 0.861
− 0.289 − 0.454 0.257 0.861

0.336 0.355 − − 0.309 0.861
0.491 0.509 − − − 0.861
− 0.426 0.574 − − 0.861
− 0.388 − 0.612 − 0.861
− 0.531 − − 0.469 0.861

0.250 − 0.348 0.402 − 0.833
0.301 − 0.420 − 0.279 0.833
− − 0.353 0.413 0.234 0.833

0.285 − − 0.460 0.255 0.500
0.418 − 0.582 − − 0.500
0.382 − − 0.618 − 0.500
0.521 − − − 0.479 0.500
− − 0.463 0.537 − 0.500
− − 0.603 − 0.397 0.500
− − − 0.638 0.362 0.500

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice TTS T1

MFCC MFCC MFCC MFCC MFCC
Accuracy7h coeff. 8th coeff. 9th coeff. 10th coeff. 11th coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.202 0.199 0.199 0.199 0.199 0.712

Table 8.7: Multi Kernel Learning SVMs results of the synthetic voice generated with
TTS T1 versus Speaker 1 for dataset 2. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample accuracy). The
first line indicates the considered features, which is always an IMF-MFCC. The IMF
indices are given in each MFCC component as -1,-2,-3,-L,-L+1. The second line refers
to the coefficient number, and the third line to the selected kernel for that feature.
The table represents a model selection comparison in which each row corresponds to
a different MKL model combining different sets of features. The numbers in each row
refer to the ηm weights as expressed in Eqn. 26. The highlighted accuracy scores
correspond to those combinations of features and kernel models greater than 90%.
The first portion of the table demonstrates the EMD-MFCC-MKL solutions, while the
second portion is the state-of-the-art reference of the classical MFCC-MKL.
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Concatenative TTS

Text-To-Speech Algorithms

Formant Synthesis Statistical Parametric Deep Learning

PROS:                                               
(1)  High quality of audio in terms 

of intelligibility.                              
(2)  Possibility to preserve the 

original actor's voice.

PROS:                                               
(1)  Highly intlelligible synthetized 

speech even at high speed 
avoiding acoustic glitches.                                     

(2)  Less dependant on a speech 
corpus to produce the output 

speech.                                          
(3)  Well-suited for  embedded 
systems, where memory  and 

microprocessor power are limited.

CONS:                                              
(1)  Time-Consumimg Systems 
requiring large databases and 
hard-coding the comination to 

form the words.                            
(2)  The resulting speech may 

sound less natural  and 
emotionless since it is hard to 
get the audio recordings of all 
possible words spoken in all 

possible combinations of 
emotions, prosody, etc.

CONS:                                              
(1)  Low naturaless since the 

technique produces 
artificial/robotic  sounding 

speech spoken by a human.       
(2)  Difficult to desing rules that 
specify the timing of the source 
and the dynamic values of  all 

filter parameters for even simple 
words.

PROS:                                               
(1) Increased naturalness of the 
audio.  However, the technology 
to create emotional voices is not 

yet perfected. It has myc potential 
in areas as speaker adaptation 

and speaker interpolation.              
(2)  Flexibility, since it is easier to 

modify pitch or use MLLR 
adaptation to change  voice 

characteristics.                             
(3)  Lower development cost: it 
only requires 2/3 hours actor 

recording time.

CONS:                                               
(1) Lower audio quality in terms of 

intelligibility: there are many 
artifacts resulting in muffled 
speech with buzzing sound.              

(2)  The voice can sound robotic: 
in the TTS based on statistical 

model, the muffled sound makes 
the voice sound stable but 

unnatural and robotic.

CONS:                                                
(1) Recent technique which still 

requires further research.

PROS:                                               
(1) A huge improvement both in 

terms of intelligibility and 
naturalness.                                  

(2)  Do not require extensive 
human  pre-processing and 

development of features.                    

Figure 8.9: Pros and Cons of TTS algorithms.

As in experiment one, individual feature SVMs are firstly carried, hence one for
each mel-frequency cepstral coefficient of the obtained IMFs. Results concerning
these SVMs are provided in the Supplement Materials in tables 4 and 5 for
dataset one and tables 6 and 7 for dataset two. The best performing cepstral
coefficients per IMF basis function are selected, and then the EMD-MFCC-MKL
procedure as presented in experiment one is carried out. Results for the IBM TTS
algorithm are provided in tables 8.10 and 8.11 for dataset one and dataset two,
respectively. Results for the remaining algorithms are in Supplement Materials
in tables 8, 9, 10 and 11. As in the previous experiments, the best performing
MFCCs for the first three IMFs are high-frequency ones confirming our initial
claim that most of the discrimination power for female voices should come from
these regions of the time-frequency plane. Furthermore, the achieved accuracy
levels are consistent with experiment one across both datasets and all the TTS
algorithms, with the EMD-MFCCs outperforming the traditional MFCCs on
the raw data in each case study. This highlights that the EMD-MFCC-MKL
within a TD-SD-SV system is robust to different types of TTS spoofing attacks.
Tables 8.10 and 8.11 show that when using the combination of five and four
EMD-MFFCs features, a level of accuracy greater than 90% is attained, hence
providing the necessary countermeasure for an ASV system.
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Experiment 2

# TTS Tool Algorithm Gender Accent

T1 Online TTS Stat. Par. Male British En., Harry
T1 Online TTS Stat. Par. Female British En., Emma
T2 Google TTS Deep Learning Female British En., en-GB-Wavenet-A
T3 Espeak Formant Synthesis Female British En., Hazel
T4 IBM Watson TTS Deep Learning Female British En., Charlotte
T5 SAPI5 Concatenative Female British En., Mary

Table 8.8: Table describing the Text-To-Speech (TTS) Tools employed in exper-
iment two for comparisons of different Speech Synthesis algorithms producing dif-
ferent synthetic voices and generating different types of attacks. Note that speech
generated through TTS T1, corresponding to the online TTS, was obtained from
http://www.fromtexttospeech.com/.

8.3.4 Experiment Three: Application on the ASVspoof
2019 challenge Dataset

One of the biggest problems affecting ASV studies is the comparison of vari-
ous techniques evaluated over different datasets. As a result, since 2015, the
research community (Yamagishi et al. (2017), Wu, Kinnunen, Evans, Yamag-
ishi, Hanilçi, Sahidullah and Sizov (2015), Kinnunen et al. (2017), Kinnunen
et al. (2018)) has started to release evaluation databases as SAS, ASVspoof
2015, ASVspoof 2017, ASVspoof 2019 challenge, AVspoof, RedDots Replayed
databases. Consistently with these purposes, this thesis investigates the new
technique combining EMD-MFCCs by employing the ASVspoof 2019 challenge
database (Todisco et al. (2019)). Table 8.9 (also at https://www.asvspoof.
org/asvspoof2019/asvspoof2019_evaluation_plan.pdf) describes the struc-
ture of such a dataset. It subdivides into two different scenarios: logical access
(LA) and physical access (PA). The former involves spoofing attacks directly
injected into the ASV system. Such attacks are generated using text-to-speech
synthesis (TTS) and voice conversion (VC) technologies. In the PA scenario,
speech is assumed to be captured by a microphone in a physical, reverberant
space. Hence, replay spoofing attacks are recordings of bonafide speech assumed
to be captured and then represented to the microphone of an ASV system us-
ing a replay device. In this Chapter, the Logical Access scenario only is taken
into account to target the TTS algorithms used within this database. The LA
database contains bonafide speech and spoofed speech data obtained using 17
different TTS and VC systems. Figure 8.10 shows its spoofing attacks structure
and the ones extracted for the given experiments. Note that data for the train-
ing of TTS and VC systems partly comes from the VCKT database (online at
http://dx.doi.org/10.7488/ds/1994), but there is no overlap with the data
contained in the 2019 database. Among the 17 spoofing voice generation sys-
tems, 6 are known attacks, while 11 are unknown. The training and development
sets contain known attacks only, while the evaluation set contains 2 known and
11 unknown spoofing attacks. Regarding the 6 known attacks, there are 2 VC
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systems and 4 TTS systems. Particularly, VC systems use neural-network-based
and spectral-filtering-based approaches (Matrouf et al. (2006)). TTS use either
waveform concatenation or neural-network-based speech synthesis using a con-
ventional source-filter vocoder Morise et al. (2016) or a WaveNet-based vocoder
van den Oord et al. (2016). We extract three of the TTS spoofing attacks for
the training and development sets.

Experiment 3

ASVSpoof 2019 Challenge database

# of Speakers # of Utterances

Logical Access Physical Access

Subset Male Female Natural Spoof Natural Spoof
Training 8 12 2580 22800 5400 48600

Development 8 12 2548 22296 5400 24300
Evaluation - - 71747 137457

Table 8.9: Summary of the ASVspoof 2019 Challenge database as highlighted at
https://www.asvspoof.org/index2019.html.

Subset
# of 

Attacks
Known / Unknown Type of Attack

Training 6 Known VC and TTS

Development 6 Known VC and TTS

Evaluation 13 2 Known /  11 Unknown VC, TTS, hybrid

LOGICAL ACCESS - SPOOFING ATTACKS

Subset
# of 

Attacks
Known / Unknown Type of Attack Algorithm

Training 3 Known TTS Deep Learning, 
Concatenative

Development 3 Known TTS Deep Learning, 
Concatenative

EXTRACTED SPOOFING ATTACKS

Figure 8.10: Extracted spooging attacks for experiment three from the ASVSpoof
2019 challenge database from the Logical Access set.
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Experiment 2

Dataset 1

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice IBM

MFCC-1 MFCC-2 MFCC-3 MFCC-L MFCC-L+1
Accuracy8th coeff. 8th coeff. 9th coeff. 9th coeff. 11th coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.260 0.250 0.220 0.135 0.135 1.000
0.305 0.297 0.228 0.170 − 1.000
− 0.409 0.397 0.194 − 1.000
− 0.331 0.291 0.189 0.189 1.000

0.341 0.281 − 0.189 0.189 0.998
0.361 0.351 0.288 − − 0.998
0.422 0.410 − 0.168 − 0.998
0.412 0.401 − − 0.187 0.997
− 0.400 0.389 − 0.211 0.997

0.301 0.292 0.284 − 0.123 0.996
0.424 − 0.400 − 0.176 0.996
0.433 − 0.409 0.158 − 0.995
0.436 − − 0.282 0.282 0.993
0.537 0.463 − − − 0.992
0.556 − 0.444 − − 0.991
0.349 − 0.329 0.161 0.161 0.990
0.605 − − 0.395 − 0.990
− 0.454 − 0.273 0.273 0.899
− − 0.436 0.282 0.282 0.898
− − 0.620 − 0.380 0.796
− 0.623 − 0.377 − 0.795
− 0.636 − − 0.364 0.794
− − 0.669 0.331 − 0.793
− 0.520 0.480 − − 0792
− − − 0.500 0.500 0.789

0.686 − − − 0.314 0.600

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice IBM

MFCC MFCC MFCC MFCC MFCC
Accuracy8th coeff. 9th coeff. 9th coeff. 6th coeff. 7th coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.202 0.200 0.200 0.200 0.198 0.675

Table 8.10: Multi Kernel Learning SVMs results of the synthetic voice generated
with the IBM TTS algorithm versus Speaker 1 for dataset 1. We select the best
features according to their performances when individually tested (i.e. through the
out-of-sample accuracy). The first line indicates the considered features, which is
always an IMF-MFCC. The IMF indices are given in each MFCC component as -1,-
2,-3,-L,-L+1. The second line refers to the coefficient number, and the third line to
the selected kernel for that feature. The table represents a model selection comparison
in which each row corresponds to a different MKL model combining different sets
of features. The numbers in each row refer to the ηm weights as expressed in Eqn.
26. The highlighted accuracy scores correspond to those combinations of features and
kernel models greater than 90%. The first portion of the table demonstrates the EMD-
MFCC-MKL solutions, while the second portion is the state-of-the-art reference of the
classical MFCC-MKL.
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Experiment 2

Dataset 2

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice IBM

MFCC-1 MFCC-2 MFCC-3 MFCC-L MFCC-L+1
Accuracy8th coeff. 9th coeff. 9th coeff. 6h coeff. 1st coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.239 0.230 0.233 0.101 0.197 1.000
0.275 0.265 0.269 0.191 − 1.000
0.273 0.262 0.267 − 0.198 1.000
0.377 0.309 0.314 − − 1.000
0.380 0.365 − 0.255 − 1.000
0.412 0.302 − 0.132 0.154 0.999
− 0.397 0.312 0.134 0.157 0.998

0.455 0.361 − − 0.184 0.998
0.401 − 0.312 0.135 0.157 0.986
0.457 − 0.379 0.164 − 0.986
0.437 − 0.375 − 0.188 0.979
0.544 0.456 − − − 0.899
− 0.458 0.379 0.163 − 0.898
− 0.573 − 0.197 0.230 0.896
− 0.438 0.374 − 0.188 0.889

0.524 − 0.476 − − 0.879
0.571 − − 0.198 0.231 0.868
0.733 − − 0.267 − 0.868
− 0.525 0.475 − − 0.799
− 0.609 − 0.391 − 0.799
− 0.695 − − 0.305 0.799
− − 0.591 0.203 0.236 0.786
− − 0.642 0.358 − 0.786
− − 0.629 − 0.371 0.779
− − − 0.544 0.456 0.768

0.623 − − − 0.377 0.706

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice IBM

MFCC MFCC MFCC MFCC MFCC
Accuracy8th coeff. 8th coeff. 9th coeff. 7th coeff. 8th coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.198 0.210 0.197 0.197 0.197 0.715

Table 8.11: Multi Kernel Learning SVMs results of the synthetic voice generated
with the IBM TTS algorithm versus Speaker 1 for dataset 2. We select the best
features according to their performances when individually tested (i.e. through the
out-of-sample accuracy). The first line indicates the considered features, which is
always an IMF-MFCC. The IMF indices are given in each MFCC component as -1,-
2,-3,-L,-L+1. The second line refers to the coefficient number and the third line to
the selected kernel for that feature. The table represents a model selection comparison
in which each row corresponds to a different MKL model combining different sets
of features. The numbers in each row refer to the ηm weights as expressed in Eqn.
26. The highlighted accuracy scores correspond to those combinations of features and
kernel models greater than 90%. The first portion of the table demonstrates the EMD-
MFCC-MKL solutions, while the second portion is the state-of-the-art reference of the
classical MFCC-MKL.

The generation algorithms for the spoof voices fall into either Deep Learning
or Concatenative types and can be compared to the previous results (see table
8.8). In particular, the chosen algorithms are decoded in the LA protocol of the
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ASVspoof 2019 challenge as “A01”, “A02” and “A04”, respectively. The TTS
“A01” algorithm is obtained with a neural waveform model, while the TTS “A02”
algorithm is generated through a vocoder. Lastly, the TTS “A04” algorithm is a
waveform concatenation. There are 8 male and 12 female speakers for bonafide
speech utterances and the selected TTS algorithms in the training set. However,
there are 12 female and 8 male voices for the bonafide speech in the development
set, but 6 female and 4 male voices for the selected synthetic ones. Note that the
speakers differ between the training and the development sets, and the utterances
differ amongst the speakers. Hence, a text-independent and speaker-independent
scenario is the one of interest in this experiment (TI-SI-SV). Furthermore, the
number of utterances per speaker and type of speech (i.e. bonafide or synthetic)
differ.
Therefore, the selected subset is unbalanced in terms of the number of utter-
ances in the bonafide or natural set versus the spoof groups. This results from
a different number of speakers’ utterances (this information is not evident in
the proposed tables). As a result both the training and development subsets
have been balanced. For the training set, the minimum number of utterances
available for one speaker is selected and then the same number from each of the
other available speakers in every group (bonafide and spoofed) is randomly ex-
tracted. This corresponds to 127 utterances for every speaker, 2,540 utterances
for every group (i.e. natural, A01, A02, A04), with a total of 10,160 utterances.
Regarding the development subset, the number of speakers within each gender is
firstly balanced and then the minimum number between the two, giving 4 male
and 4 female voices in each group (bonafide, A01, A02 and A04) is randomly
selected. Furthermore, the same procedure that has been applied for the training
set is also followed and the minimum number of utterances available per speaker
within each group has been randomly selected, corresponding to 77. Therefore,
each group will have 616 utterances leading to 2464 utterances for the develop-
ment set. For the experiments, the training set is used to train the individual
features required to develop the EMD-MFCC-MKL and the development set for
testing such a procedure with the added trait of gender, hence dividing the ut-
terances according to it. Table 8.12 provides a summary of such a dataset. Each
utterances speech recording duration was approximately 1sec to 3sec maximum
sampled at 16kHz producing between 25k and 150k samples per spoken utter-
ance. The start and end of each sample were trimmed to remove any non-speech
segments and decimated to a set of 40k total samples. The procedure concerning
the EMD extraction followed the same applied to the other datasets, i.e. each
set of 40k samples for one sentence was then windowed into non-overlapping
collections of 5,000 samples and passed to the EMD sifting procedure. Then,
for each IMFs, M = 12 cepstral coefficients were extracted, similarly to experi-
ments one and two. One individual SVM per coefficient per IMF is carried for
the female and male cases by considering the three different TTS algorithms.
Results of the individual features are provided in the Supplement Materials in
tables 14 and 15. For both genders, better performances are achieved by the
MFCCs of the second or the third IMF basis function detecting lower speech
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Experiment 3

Dataset 3 - Extracted from LA

# of Speakers # of Utterances

Subset Male Female Natural A01 A02 A04
Training 8 12 2540 2540 2540 2540

Development 4 4 616 616 616 616

Table 8.12: Summary of the extracted database from the ASVspoof 2019 challenge
database to conduct our experiment three. Note that we selected two subsets, i.e. the
training and the development. Furthermore, for the spoofed speech, we considered
three of the TTS voices only. Note that the datasets is balanced in terms of number of
utterances per speaker. We make use of the training set to train our SVMs proposed
models and the development set for the testing.

formants and the fundamental frequency. In this context, multiple speakers are
trained together through a unique model, and, particularly at high-frequencies of
female voices, the non-stationarity of each speaker might be strongly biometric,
resulting in out-of-sample accuracy levels of 70% for high cepstral coefficients
of IMF1. What is instead detected more efficiently in a TI-SI-SV environment
are lower formants and the fundamental frequency depicted by lower cepstral
coefficients of IMF3. Therefore, the EMD-MFCCs provide interpretable high-
performing features for this kind of speaker verification system. The following
step corresponds to the EMD-MFCC-MKL analysis. Results for the female case
versus the A01 and A02 TTS algorithms and the male case versus the same TTS
algorithms are provided in tables 8.13, 8.14, 8.15 and 8.16. The other results
considering the TTS algorithms A04 are in the Supplement Materials in tables
14 and 15. The MKL performances reinforce the findings related to the individ-
ual SVMs. In both female and male SVMs, highest accuracy levels (>90%) are
shown when the cepstral coefficients of IMF2 and IMF3 have been included in
the MKL model. Furthermore, the male EMD-MFCC-MKL performances ap-
pear overall higher than the female ones; most of the formants lie, in male voices,
at the lower frequency bandwidths and, compared to female formants, present in
general lower non-stationarity levels. Hence, better performances are achieved
if low cepstral coefficients of IMF2 and IMF3 are considered. Furthermore, the
EMD-MFCC-MKL framework provides a higher level of accuracy in every case
compared to the individually trained EMD-MFCC. Indeed, in the latter case, no
feature achieves an accuracy level greater than 90% (these are in tables 12 and
13 of the Supplement Materials). This strongly supports the proposed method-
ology. Regarding the TTS algorithms, A04, hence the concatenative approach,
represents a more challenging spoofing attack than the A01 and A02.
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Experiment 3

Dataset 3

OFS EMD-MFCC-MKL - Female Case vs A01 TTS Algorithm

MFCC-1 MFCC-2 MFCC-3 MFCC-L MFCC-L+1
Accuracy3rd coeff. 2nd coeff. 3rd coeff. 1st coeff. 1st coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

− 0.553 − 0.447 − 0.982
− 0.516 0.484 − − 0.981
− 0.557 − − 0.443 0.977
− 0.364 0.342 0.294 − 0.977

0.481 0.519 − − − 0.974
− 0.366 0.343 − 0.291 0.972

0.324 0.349 0.327 − − 0.971
− 0.282 0.265 0.228 0.225 0.969

0.253 0.272 0.256 0.220 − 0.966
− 0.384 − 0.310 0.306 0.966

0.339 0.366 − 0.295 − 0.964
0.253 0.273 0.256 − 0.217 0.959
0.208 0.224 0.210 0.181 0.178 0.956
0.263 0.283 − 0.229 0.226 0.953
0.341 0.367 − − 0.292 0.953
− − 0.538 0.462 − 0.914

0.267 − 0.270 0.233 0.230 0.877
0.347 − 0.351 0.302 − 0.896
0.348 − 0.352 − 0.299 0.870
0.366 − − 0.319 0.315 0.731
− − 0.369 0.318 0.313 0.896

0.497 − 0.503 − − 0.883
0.535 − − 0.465 − 0.739
0.538 − − − 0.462 0.515
− − 0.541 − 0.459 0.885
− − − 0.503 0.497 0.740

OFS Raw Data MFCC-MKL - Female Case vs A01 TTS Algorithm

MFCC MFCC MFCC MFCC MFCC
Accuracy3rd coeff. 3rd coeff. 1st coeff. 1st coeff. 2nd coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.210 0.210 0.210 0.180 0.180 0.601

Table 8.13: Multi Kernel Learning SVMs results of the female case versus the syn-
thetic voice generated with the A0 TTS algorithm of the ASVspoof challenge dataset.
We select the best features according to their performances when individually tested
(i.e. through the out-of-sample accuracy).
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Experiment 3

Dataset 3

OFS EMD-MFCC-MKL - Female Case vs A02 TTS Algorithm

MFCC-1 MFCC-2 MFCC-3 MFCC-L MFCC-L+1
Accuracy1st coeff. 1st coeff. 1st coeff. 1st coeff. 1st coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

− 0.487 0.513 − − 0.976
− 0.350 0.368 0.283 − 0.972
− 0.275 0.289 0.223 0.213 0.963
− 0.354 0.372 − 0.274 0.959

0.251 0.262 0.275 0.212 − 0.956
− 0.553 − 0.447 − 0.956

0.319 0.332 0.349 − − 0.955
0.209 0.218 0.229 0.176 0.168 0.950
− − 0.565 0.435 − 0.950

0.254 0.264 0.278 − 0.204 0.938
− 0.387 − 0.313 0.300 0.933
− 0.564 − − 0.436 0.932

0.347 0.361 − 0.292 − 0.932
− − 0.399 0.307 0.294 0.929
− − 0.576 − 0.424 0.927

0.341 − 0.373 0.287 − 0.925
0.490 0.510 − − − 0.925
0.477 − 0.523 − − 0.922
0.351 0.366 − − 0.283 0.914
0.271 0.282 − 0.228 0.218 0.911
0.345 − 0.377 − 0.278 0.906
0.267 − 0.293 0.225 0.215 0.901
− − − 0.511 0.489 0.724

0.543 − − 0.457 − 0.724
0.378 − − 0.318 0.304 0.718
0.554 − − − 0.446 0.505

OFS Raw Data MFCC-MKL - Female Case vs A02 TTS Algorithm

MFCC MFCC MFCC MFCC MFCC
Accuracy1st coeff. 3rd coeff. 4th coeff. 5th coeff. 2nd coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.210 0.198 0.247 0.172 0.172 0.585

Table 8.14: Multi Kernel Learning SVMs results of the female case versus the syn-
thetic voice generated with the A02 TTS algorithm of the ASVspoof challenge dataset.
We select the best features according to their performances when individually tested
(i.e. through the out-of-sample accuracy).
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Experiment 3

Dataset 3

OFS EMD-MFCC-MKL - Male Case vs A01 TTS Algorithm

MFCC-1 MFCC-2 MFCC-3 MFCC-L MFCC-L+1
Accuracy3rd coeff. 1st coeff. 1st coeff. 1st coeff. 1st coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

− 0.589 − 0.411 − 0.972
− 0.375 0.364 0.261 − 0.961
− 0.507 0.493 − − 0.953
− 0.414 − 0.289 0.297 0.951
− 0.583 − − 0.417 0.950

0.269 0.274 0.266 0.191 − 0.948
− 0.295 0.287 0.206 0.212 0.948

0.366 0.373 − 0.260 − 0.946
− 0.372 0.361 − 0.267 0.945

0.332 0.339 0.329 − − 0.943
0.495 0.505 − − − 0.942
0.225 0.229 0.222 0.160 0.164 0.942
0.289 0.295 − 0.205 0.211 0.935
0.267 0.273 0.265 − 0.195 0.933
0.364 0.371 − − 0.266 0.924
− − 0.582 0.418 − 0.883

0.370 − 0.367 0.263 − 0.865
− − 0.407 0.292 0.300 0.865

0.291 − 0.289 0.207 0.213 0.859
− − 0.575 − 0.425 0.838

0.502 − 0.498 − − 0.831
0.368 − 0.364 − 0.269 0.823
− − − 0.493 0.507 0.735

0.584 − − 0.416 − 0.722
0.410 − − 0.291 0.299 0.708
0.578 − − − 0.422 0.500

OFS Raw Data MFCC-MKL - Male Case vs A01 TTS Algorithm

MFCC MFCC MFCC MFCC MFCC
Accuracy1st coeff. 2nd coeff. 1st coeff. 2nd coeff. 1st coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.160 0.160 0.260 0.260 0.160 0.699

Table 8.15: Multi Kernel Learning SVMs results of the male case versus the synthetic
voice generated with the A1 TTS algorithm of the ASVspoof challenge dataset.
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Experiment 3

Dataset 3

OFS EMD-MFCC-MKL - Male Case vs A02 TTS Algorithm

MFCC-1 MFCC-2 MFCC-3 MFCC-L MFCC-L+1
Accuracy3rd coeff. 1st coeff. 3rd coeff. 1st coeff. 1st coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

− 0.495 0.505 − − 0.992
− 0.348 0.356 − 0.295 0.981

0.318 0.337 0.344 − − 0.981
− 0.347 0.354 0.299 − 0.979
− 0.268 0.274 0.231 0.227 0.976
− 0.537 − 0.463 − 0.974

0.247 0.261 0.267 0.225 − 0.972
0.248 0.262 0.268 − 0.222 0.969
0.202 0.214 0.218 0.185 0.181 0.964
− 0.541 − − 0.459 0.963

0.486 0.514 − − − 0.961
− 0.369 − 0.318 0.313 0.955

0.336 0.356 − 0.307 − 0.953
0.338 0.358 − − 0.304 0.943
− − 0.542 0.458 − 0.942

0.258 0.274 − 0.236 0.232 0.942
0.334 − 0.361 0.305 − 0.922
− − 0.374 0.316 0.310 0.922

0.257 − 0.278 0.235 0.231 0.917
0.480 − 0.520 − − 0.903
0.336 − 0.363 − 0.301 0.901
− − 0.547 − 0.453 0.901

0.356 − − 0.325 0.319 0.815
0.523 − − 0.477 − 0.830
0.527 − − − 0.473 0.505
− − − 0.505 0.495 0.831

OFS Raw Data MFCC-MKL - Male Case vs A02 TTS Algorithm

MFCC MFCC MFCC MFCC MFCC
Accuracy1st coeff. 1st coeff. 2nd coeff. 1st coeff. 1st coeff.

RBF RBF RBF RBF RBF
η1 η2 η3 η4 η5

0.201 0.201 0.198 0.201 0.198 0.699

Table 8.16: Multi Kernel Learning SVMs results of the male case versus the synthetic
voice generated with the A02 TTS algorithm of the ASVspoof challenge dataset.

8.4 Discussion
A new class of speech biometric cyber-attack mitigation framework was devel-
oped in the class of ASV systems. This allowed addressing the challenge of the
classification of synthetic and real voices. Such a biometric security task needs
to account for three main factors: firstly, speech is highly non-stationary and,
therefore, methods that can depict such a property are required. Secondly, the
fundamental characteristic of a speech signal is its formants structure. Since
each individual has distinct vocal tracts, observing formants structure is the
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keystone in speech applications. Furthermore, measuring energy concentration
around such frequencies should provide the discriminatory power required to dif-
ferentiate spoofed and bonafide voices. Thirdly, the speech scenario considered
provides different settings affecting the interpretation of the identified discrimi-
nation power. Hence, the flexibility of the classification technique in this respect
is highly required. The method should be adaptive and interpretable, hence de-
pendent on the given speech dataset but relying on a robust technique whose
interpretation can be derived according to the scenario of interest (i.e. TD-SD-
SV, TD-SI-SV, etc.).
The proposed solution of this Chapter is achieved by building upon existing
methodologies and adapting them to work with non-stationary signals more ef-
fectively. In this way, more robust features reducing sensitivity and enhancing
performance in attack mitigation are achieved. This robust method for speech
synthesis spoofing attacks combines EMD and MFCCs with a multi-kernel learn-
ing SVM classifier framework. The new formulated feature libraries called EMD-
MFCCs are explored and compared in various real data studies of different com-
plexities. Since the IMFs separate frequency bands of the original signals, the
employment of the MFCCs relying on the mel-filter allows to observe how fre-
quency formants are concentrated in each IMF. The out-of-sample analysis of-
fers better performances than the current state-of-the-art MFCC based solutions
when applied directly to speech signals. Note that the current methodology of
MFCC features applied directly to speech and utilised in a multi-kernel learn-
ing SVM could not achieve the minimum required standard for classification of
90% typical of biometric security. The new proposed methodology had many
instances of out-of-sample performance with accuracies well above this threshold
for all experiments taken into account.
The standard practice in these settings is to consider the MFCCs applied to the
raw data and then construct a feature vector containing the entire set of coef-
ficients. In this regard, the claim of this work is that the discrimination power
identified by the classifier would be reduced and polluted by the different fre-
quency bandwidths, and hence the different formants captured within a unique
feature representation. The time-frequency plane must be partitioned with an
a posteriori technique since the location of the formants is strictly individual-
related and cannot be known a priori. Once this step is achieved, a parsimo-
nious model trained with the computationally efficient classifier SVM-MKL is
proposed. At this stage, it is worth noting to highlight that the “new-state-of-
art” methods for speech classification tasks highly rely on Deep neural networks
(DNNs). This class of methodologies requires a massive amount of data and
high computational capacity due to the large volume of training required. The
posed objective for a DNN applied in ASV settings, or equivalently in Automatic
Speaker Recognition framework, is to learn individual or multiple speakers for-
mants structure (depending on the selected speech scenarios) by training many
layers of perceptrons. This procedure is replaced with the proposed methodology
through a functional characterisation of the EMD and its basis functions. There-
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fore, rather than learning the formants through piece-wise functions using DNN
complex layer structures, the procedure it to extract them through the EMD
and construct a simpler classifier. This idea proposes a sparse architecture that
replaces the DNN learning the formants with an EMD basis representation re-
quiring far fewer parameters and can be applied to small and large datasets. It is
computationally very efficient and, through an MKL ensemble method, achieves
high accuracy levels in performances similar to the ones often achieved by the
DNN when combined.
From a speech scenario perspective, text-dependent, speaker-dependent and text-
independent, speaker-independent speaker verification systems have been tested.
The proposed EMD-MFCC-MKL performed better than the standard bench-
mark features applied to the raw speech data in both cases. Furthermore, the
created features have proven to produce interpretable machine learning solu-
tions that provide flexibility for the targeted system. Several Text-To-Speech
algorithms have been considered for the spoofing attacks in both the proposed
scenarios and the studied features capture the synthetic voice better than stan-
dard ones. In the case of TI-SI-SV, the concatenative TTS algorithm appears to
be the most difficult to capture in both female and male cases.
We showed that the EMD-MFCCs features offer the advantage of more reliable
and robust MKL-SVM classifiers. As a result, they can be generalised in dif-
ferent non-stationary and noisy environments. This is particularly important
in real-world situations usually associated with speech biometric access ASV
technologies where a speaker may be providing a recording of speech through a
non-ideal background noise mobile environment. Hence, the signal transmission
will not be subject to distortions, and the receiving device would then process
reliable speech features to determine if access should be granted to sensitive data.
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Chapter 9

Detection of Parkinson’s Disease
with Speech Signals

This Chapter develops the application framework testing the methodology de-
veloped in Chapters 6 and 7. The three system models will be constructed
to propose three alternative models explored in the field of health diagnostic,
specifically in detecting Parkinson’s disease through voice speech signals. This
topic has become highly relevant in recent years, given that the standard routine
daily life of a patient affected by Parkinson is highly challenged by recurrent
visits at the clinic for a periodic assessment to monitor the disease. This is an
invasive practice since the patient needs to undertake it quite often to control
the progression of Parkinson. Furthermore, the evaluation methods are subjec-
tive and based on standard surveys where the patient has to answer a set of
pre-established questions. The ideal tool would detect and surveil the disease
through telemonitoring solutions. Significant research has been moving towards
this direction, and this Chapter intends to take a similar step. The final objective
is identifying a model able to detect the presence or absence of the disease by
discriminating voice speech samples.
Chapter 6 presented three system models for the stochastic process of the ap-
proximated non-stationary signal, denoted as S̃(t), which is assumed to be dis-
tributed according to a Gaussian Process. Every model offers a different solution
capturing the non-linearity and non-stationarity of the observed interpolated sig-
nal s̃(t), which, in this case, is represented by a healthy or a sick voice speech
sample.
The critical component that needs to be selected now is the kernel function for
this classification task. Chapter 4 discussed different classes of kernel method for
Gaussian Process. One traditional choice would be to use the class of stationary
kernels (see subsection 4.4.1). However, what is needed in this Chapter is to char-
acterise fast pace changes of the speech signal of a sick patient, and these kernels
would not perform efficiently. Hence, the requirement for a kernel function that
is data-adaptive and data-driven is instead the one of interest so that the strong
non-stationary nature of the data generating mechanism that must be described
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can be well represented. The chosen kernel function taking care of such a task
is the Fisher kernel introduced in Chapter 4, subsection 4.4.4. To construct the
settings for such a kernel, the specification of a model describing the underlying
signal is firstly required. Indeed, the Fisher kernel relies on the Fisher score de-
fined as the gradient with respect to each parameter of the log-likelihood of the
selected model. Then the kernel function is then obtained as the dot product of
the Fisher vector. The selected models used to incorporate the different under-
lying data structures will be the class of ARIMA time-series models. Therefore,
the Fisher vector will be computed on the log-likelihood of this model class. The
critical point is that the fit of these models will be computed over mini-batches
of the original signals. The idea is to characterise local structures of the speech
time-series, and therefore, a local fit is required. The innovation will then lie in
the formulation of a unique Fisher score vector characterising the given speech
population, i.e. healthy or sick. The procedure to achieve such a result will be
carefully described in the fitting and testing procedure.
The final goal is to correctly classify a sample speech affected by Parkinson’s
disease or not. The tool employed to conduct such a task is a statistical Gen-
eralised Likelihood Ratio Test as provided in Chapter 6, section 6.39. This test
will be further reformulated and defined with the Fisher score vector constructed
in through fitting and testing procedures.
The Chapters is organised as follows: firstly, the existing benchmark model for
Parkinson Classification are presented. Secondly, the experimental set up is
described. This section highlights the settings developed for the experiments
and further subsections describing the required evidence to construct the given
methodology components. Afterwards, the fitting procedure for the model esti-
mation phase is presented. The following section will instead show the testing
procedure for the model validation phase. Results and discussion sections are
then provided.

9.1 Novelty and Contribution
This Chapter introduces several contributions. Firstly, it provides a novel frame-
work for the detection of Parkinson’s disease testing multiple models. The models
take into account a novel methodology promoting a stochastic embedding of the
EMD, as presented in Chapter 6. The first system model can be considered the
benchmark model of the three and directly embeds the original signal. With
speech signals, where non-stationarity, non-linearity and time-varying features
are the primary property that one should consider, the standard practice of
working with the raw data provide poor performances. Evidence for such a fact
is provided within the case study. System model 2 considers the embedding of
the original IMFs and, therefore, will provide a tool incorporating non-stationary
and non-linear temporal modes of the underlying signal. The case study shows
that such information provides good discrimination power. System model 3 in-
stead relies on the background also proposed in 7, which constructs an optimal
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partition of the frequency content from which band-limited basis functions are
constructed. This time, the idea is to characterise the stochastic processes of the
signal’s frequency domain by incorporating them within specific bandwidths that
should carry different frequency contents over time. The extracted band-limited
components of this system model provide high discrimination power in the case
study shown below. The introduction of System model 3 to the detection of
Parkinson’s provide the most significant contribution. The reasons for it is that
such a disease could be detected at very early stages through speech. However,
the lack of an objective tool rather than a subjective assessment is the biggest
issue in this field. The critical problem is that presence of Parkinson’s within
specific frequency regions cannot be detected at early stages by the judgment of
a human being simply hearing it. Therefore, a tool searching these regions and
identifying an objective feature able to discriminate it is highly required. The
third system model fits such an argument highly, and the author believes that
this is only the first step taken in this direction. Isolating distinct frequency
bands and searching for discriminating features is the final desired tool that this
model should construct. Further research is still required to investigate the best
configuration for the models, but the obtained result provides a solid case study.
The second relevant contribution is introducing a methodological voting system
to detect Parkinson’s disease relying on aggregated signal information computed
through the Fisher score vector to form an informative kernel function for Gaus-
sian Processes. This research is ongoing, and further work is still required in this
part. The central idea is to provide Gaussian Processes with an adaptive kernel
that considers fast changes proper of speech affected by Parkinson’s. The selected
tool to achieve such a task is the Fisher score vector and then the Fisher kernel.
This kernel function is indeed formulated as the gradient of the log-likelihood
with respect to its parameter of a given model of the data and, therefore, by
definition, efficiently detects structural changes of the underlying data system.
The research question at this stage is how to formulate a data-adaptive system
characterising a specific population by characterising multiple structural changes
as a whole. The fitting and testing procedure developed in this Chapter answer
this question and provides a flexible tool for non-stationary and non-linear signal
in general. The application of this system to the detection of Parkinson’s com-
bined with the EMD stochastic embedding shows promising performances that
could be further robustified. The voting system comes into play since a partic-
ular data- adaptive decision rule for the classification problem must be defined
based on the detected structural changes.
The third relevant component is the definition of a statistical test based on such
kernel construction. The GLRT is indeed derived by using the constructed Fisher
vectors for the original signal, the IMFs and the IMF-BLs. This produces a novel
framework for the detection of Parkinson’s disease that relies on a data-adaptive
statistical test based on structural changes relying on three different solutions.
Further research is required since the GLRT is done on the individual IMFs or
band-limited IMFs, but it would be interesting to observe how it behaves when
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the IMFs are aggregated back together in a composite weighted fashion, whose
weights are assigned according to fitting performances.
These novelties and contribution are now discussed and presented along the
Chapter.

9.2 Existing Benchmark Model for Parkinson
Classification

The application of this Chapter framework builds upon the background proposed
in Kashyap et al. (2020). In this work, the authors introduce an alternative
method to detect speech abnormalities caused by Cerebellar Ataxia. This corre-
sponds to impaired coordination due to a dysfunction of the cerebellum, charac-
terised by movements abnormalities as dysmetria, dysdiadochokinesia, dyssyn-
ergia and many others. These abnormalities affect all kinds of movements, in-
cluding speech, and hence defining “ataxic speech”. Signs of ataxic speech could
be scanning speech (“excess and equal stress”), a reduced speech rate and de-
viant prosodic (i.e. rhythmical and melodic), modulation of verbal utterances,
rhythmical irregularities during (fast) repetitive productions of single or multi-
ple syllables (known as “oral dysdiadochokinesis”), a more significant variation in
pitch and loudness and disturbed articulation of both consonants and vowels with
reduced intelligibility (see Ackermann and Hertrich (1994), Brendel et al. (2015),
Kent et al. (2000)). Several medical conditions could generate ataxic speech; in
this Chapter, speech impairment movements caused by Parkinson’s disease (PD)
(see Ho et al. (1998)) are the ones of interest. PD is a degenerative disorder of
the central nervous system resulting from the death of dopamine-containing cells
in the substantia nigra, a region of the midbrain. It is the second most common
neurodegenerative disorder after Alzheimer’s disease Lang and Lozano (1998),
Pompili et al. (2020), Bocklet et al. (2013) and includes both motor (tremor,
rigidity, bradykinesia, and impairment of postural reflexes) and non-motor signs
(cognitive disorders and sleep ande sensory abnormalities). Several studies re-
ported a 70-90% prevalence of speech impairments once the disease makes its
appearance (see Ho et al. (1998)). Moreover, it might be one of the earliest
PD indicators (see Harel et al. (2004),) with research showing that 29% of pa-
tients consider it one of their greatest obstacles (Hartelius and Svensson (1994)).
Both motor symptoms and speech movements abnormalities worsen with the
progression of the disease in a nonlinear fashion (Harel et al. (2004), Skodda
et al. (2009)]. At the final stage of the disease, articulation is frequently the
most impaired feature (see Ho et al. (1998), Sapir et al. (1999), Logemann et al.
(1978)). Medical treatments or surgical intervention can alleviate the course of
the disease; however, there is no definite cure, and, therefore, an early diagnosis
is highly critical to lengthen and improve the patient’s life (Singh et al. (2007),
Tsanas et al. (2009)).
Among the various empirical tests considered for PD dysfunctions evaluation,
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there are also speech and voice tests, where an expert is subjectively assessing
the patient’s ability to perform a range of tasks with a perceptual judgement
relying on standardised clinical scales. The standard metric specifically designed
to follow PD progression is called the “Unified Parkinson’s Disease Rating Scale”
(UPDRS) and corresponds to a questionnaire which combines several sections to
produce a comprehensive and flexible tool to monitor the course of Parkinson’s
and the degree of disability. Such a scale was introduced in 1987 and the reader
might refer to on Rating Scales for Parkinson’s Disease (2003), Martínez-Martín
et al. (1994) for further details. The result corresponds to an integer number
providing information about the stage of symptoms. Speech has two explicit
labels in this questionnaire, namely UPDRS II-5 and UPDRS III-18, ranging
between 0-4, with 0 representing the less severe stage given as “Normal speech”
and 4 being the most severe stage given as “Unintelligible most of the time”.
Nevertheless, the requirement for developing an objective uniform tool assessing
PD ataxic speech is highly needed; ideally, it would identify acoustic distur-
bances in displacement, direction and rate (or velocity) (Kashyap et al. (2020)).
As highlighted in Bocklet et al. (2013), the final goal of such a tool would be
to detect the presence of the disease and, afterwards, to surveil it revealing its
advancement through the different stages. In Tsanas et al. (2009), a noninvasive
telemonitoring solution is constructed by exploiting linear and nonlinear signal
processing algorithms to extract useful clinically features. The authors propose a
mapping between dysphonia measures and stages of UPRDS. In these works and,
in general, different tasks have been used to evaluate PD speech progressions:
voice sustained phonation, rapid syllable repetition, variable reading of short sen-
tence, longer passages and freely spoken spontaneous speech. Moreover, multiple
speech features referring to different voice characteristics (as acoustic, prosodic,
glottal features) have been considered. The reader might refer to Pompili et al.
(2020), Bocklet et al. (2013) and Tsanas et al. (2009) as main references for
further description of both tasks and features.
The main contribution of Kashyap et al. (2020) is to consider phase-based cep-
stral features combined with the magnitude cepstrum as a human signature to
detect speech abnormalities of ataxic speech. While the magnitude cepstrum
has been widely used in the analysis of ataxic speech (see Jannetts and Lowit
(2014), Luna-Webb (2015)), the phase cepstrum has often been discarded for
two main reasons: the difficulty in phase wrapping and the conventional view
of the human auditory system as “phase deaf”. This perspective has recently
changed, with several studies testifying that the change of sound phase has an
instead significant impact on auditory perception (Laitinen et al. (2013), Paliwal
and Alsteris (2003), Schroeder (1959)). Specifically, Kashyap et al. (2020) made
use of the modified group delay function (MGD) (Hegde et al. (2007)) to derive
phase-based cepstral coefficients (MGDCCs) and combines them with magnitude
cepstrum based features known as Mel Frequency Cepstral Coefficients (MFCCs)
(Frail et al. (2009), Vikram and Umarani (2013)). A Random Forest and an SVM
framework are used to assess the discrimination power of these features in de-
tecting ataxic speech. Furthermore, as a surveillant tool of CA in ataxic speech,
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they employed the MGDCCs and grade the severity of ataxia speech, exhibit-
ing a strong correlation with one of the standard clinical rating scale, as the
Scale for the Assessment and Rating of Ataxia, SARA (Schmitz-Hübsch et al.
(2006)). Another recent approach considering standard voice source information
features is developed by Np et al. (2021). Glottal features are estimated by the
authors through iterative adaptive inverse filtering and quasi-closed phase glottal
inverse filtering methods. This works relies on different classification techniques
to solve the problem of Parkinson’s detection, namely standard pipeline methods
as the Support Vector Machine and and end-to-end approach making use of deep
learning architectures instead.
Following the above discussions, the advancements provided in Kashyap et al.
(2020), the developments provided in Chapter 8 relying on the MFCCs method
and the idea proposed by Np et al. (2021), this Chapter is set as follows: an
SVM relying on the gold-standard MFCCs is set as the benchmark classification
guideline model and is compared to the three system models through a Likelihood
Ratio test to their SVM. The considered dataset, described in subsection 9.3.1,
leads to a text-dependent environment where both controls (healthy subjects)
and sick patients read a given text. The reasons to employ such a specific set of
sentences using the reading text task are clarified below.
One of the features often used in the above works, (see Kashyap et al. (2020)
for example) corresponds to the MGDCCs, exploiting the modified group delay
function. As studied in Boashash (1992a), Boashash and Jones (1992), Boashash
(2015), the instantaneous frequency (IF) is a function assigning a frequency to
a given time, whereas the group delay (GD) is a function assigning a time to
a given frequency and, therefore, the question of interest here is whether the
two functions are inverses of each other. In practice, this is not always the
case because the IF function may not be invertible. Two conditions need to
be verified for the laws of the two functions to be inverse of one another: (1)
the variations in time of the IF is monotonic, and (2) the bandwidth-duration
(BT) product is sufficiently large. This restricts the signals of interest to be a
monocomponent signal whose IF is a monotonic function of time. Furthermore,
when this is the case, the laws carry an enclosed physical meaning being the IF
describes the frequency modulation of the signal while the GD represents the
time delay of the signal. Thus, a monocomponent signal when studying features
based on such functions is highly required, or the interpretability of the results
might be misleading. Two of the proposed system models introduced in Chapter
6 strongly rely on this discussion and propose stochastic embeddings based on
the IMFs, which are, by definition, monocomponent functions. Furthermore,
system model 3 is built upon the IFs of the IMFs. The constructed experimental
design, presented in subsection 9.3.3, aims to detect the presence or absence of
the disease.
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9.3 Experimental Set Up
This section presents the case study to illustrate the performances of the three
system models introduced in Chapter 6, section 6.3. The proposed application
falls into speech analysis with the final goal of discrimination of presence or
absence of Parkinson’s’ disease (PD). The existing benchmark methodologies for
classifying PD patients through voice samples have been reviewed. The suggested
framework builds upon the work recently introduced byKashyap et al. (2020) and
considers the MFCCs as the benchmark feature. These features will be trained
and tested within an SVM environment whose performances will be compared
to the ones of the three system models proposed in this thesis.
The organization of the section goes as follows: firstly, the selected dataset and its
experimental setup are described. Afterwards, a section explaining the required
pre-processing and a procedure employed to balance the dataset are presented.
The construction of training and testing sets with the experimental design taken
into account are then given. The next part compares Gram Matrices of the
standard radial basis functions with generated empirical covariance matrices of
some real data segments and demonstrates how the standard class of stationary
kernel functions cannot detect the complex data structures of the considered
problem.

9.3.1 Data Description
The speech dataset employed to develop the introduced methodology is presented
in Mobile Device Voice Recordings at King’s College London(MDVR-KCL) from
both early and advanced Parkinson’s disease patients and healthy controls (2019).
It contains recordings from participants that are healthy or affected by Parkin-
son’s disease. The recording environment use a typical examination room with
ten square meters area and a reverberation tome of approximately 500ms to per-
form the voice recordings. The voice recordings are performed in the realistic
situation of doing a phone call and have been performed within the reverber-
ation radius, hence, can be considered as “clean”. The reader might refer to
Arau-Puchades and Berardi (2013) for further understanding. Such a database
was specifically selected given the quality of the recordings but, mostly, for its
recording procedure. This could be of high relevance in the development of
telemonitoring solutions for PD disease. The authors developed an application
making use of the same functionalities as the voice recording module used within
the i-PROGNOSIS Smartphone application. The idea behind this is that the
voice capturing service runs as a standalone background service on the recording
device and triggers voice recordings via on-and-off-hook signals of the Smart-
phone. The procedure foresees the recording of the microphone signal (instead
of the Global System for Mobile Communication or GSM compressed stream)
and, therefore, providing a high quality recording with a sample rate of 44.1 kHz
and a bit depth of 16 Bit (audio CD quality). The dataset is split between two
sets of recordings: in the first one, the selected participants are asked to make
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a phone call and then read out two tests: “The North Wind and the Sun” and
“Tech. Engin. Computer applications in geography snippet”. In the second set
of recordings the participants starts a spontaneous dialog with the test execu-
tor which starts asking random questions. Details of the recording procedures
are further provided within Mobile Device Voice Recordings at King’s College
London(MDVR-KCL) from both early and advanced Parkinson’s disease patients
and healthy controls (2019).
In the explored case studies the first set of recordings is considered. Hence,
the used task to assess ataxic speech in PD disease is reading a given text. The
second set of recordings corresponding to spontaneous dialog is considered highly
challenging for this assessment. However, it could be employed in further research
and used to study surveillance of the disease and its progression. Further details
about this are given in subsection 9.3.1.
There are 37 participants in total of which 21 are healthy and 16 are sick, affected
by Parkinson’s disease at different stage levels. Amongst the 21 healthy partici-
pants, 19 are female while 2 are male. For the 16 sick participants, 4 are female
and 12 are male. The dataset looks highly unbalanced within both classes, i.e.
healthy versus sick and male versus female.
Furthermore, the Parkinson participants are labelled according to the following
scores: the HYR score,the UPDRS II-5 score and the UPDRS III-18 score intro-
duced in 9.2. By considering the UPDRS II-5 score, the Parkinson’s participants
are classified in a range between 0 and 3 at maximum, particularly for the female
patients, 2 are at a 0 stage level and 2 are at a 1 stage level. In the case of the
sick male patients, 5 male patients are at a 0 stage level, 4 patients at 1 stage
level, 2 patients at 2 stage level and 1 patient at a 3 stage level. The HYR score
is known as the The Hoehn and Yahr Scale and was firstly published in 1967
(see Hoehn et al. (1998)) and is used to measure how Parkinson’s symptoms
progress and the level of disability. Stage 0 corresponds to less severe labelled
as “ No signs of disease”, while stage 5 the most severe given as “Needing a
wheelchair or bedridden unless assisted”. By considering the UPDRS II-5 score,
the Parkinson’s participants are classified in a range between 0 and 3 at maxi-
mum, particularly for the female patients, 2 are at a 0 stage level and 2 are at
a 1 stage level. In the case of the sick male patients, 5 male patients are at a 0
stage level, 4 patients at 1 stage level, 2 patients at 2 stage level and 1 patient
at a 3 stage level. Figure 9.1 represents a summary of the described database.
Two histograms are provided, both separated by gender which is shown on the
x-axis. Note that the left one provides information about the healthy patients
while the right one about sick patients.
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Figure 9.1: Barplots describing the participants of the considered case study. The
left show the number of healthy participants of the datataset (controls) and the right
one shows the number of sick patients. The x-axis is split within both barplots between
gender and the y-axis shows the counts of the patients.

The dataset looks highly unbalanced within both classes, i.e. healthy versus
sick and male versus female. By focusing on the PD participants only, Figure
9.2 shows the number of ill patients split according to their UPDRS II-5 score
(which goes from 0 to 3 in this dataset). The patients are ordered according
to their scores, i.e. the left barplot refers to female and male patients with a
UPDRS II-5 score of 0, then the second one show the patients with a UPDRS
II-5 score of 1 and so on. Barplots of the other given scores (i.e. UPDRS II-18
and the HYR) have been observed, and no significant differences were found.

M F

gender

0

1

2

3

4

5

C
o
u
n
t

UPDRS_II_5 = 0.0

M F

gender

UPDRS_II_5 = 1.0

M F

gender

UPDRS_II_5 = 2.0

M F

gender

UPDRS_II_5 = 3.0

UPDRS_II_5

0.0

1.0

2.0

3.0

Figure 9.2: Barplots describing the sick patients divided by UPDRS II-5 score. The
left barplot shows the sick patients split by gender with UPDRS II-5 score equal to 0.
Then, from left to right, equivalent barplots are presented with the UPDRS II-5 score
increasing from 0 to 3, which is the maximum assigned score for only one male patient.
The x-axis is split between gender and the y-axis shows the count of the patients.

A further level of unbalancedness is therefore introduced. Remark that the ulti-
mate goal is to test the performance of the proposed methodology finalised to the
classification of ataxic speech for Parkinson’s disease presence detection. Hence,
the relevant point is to differentiate between sick patients and controls without
considering the sickness stadium of the patients. Therefore, sick patients will
be considered as such regardless of their stadiums. However, given the strong
unbalancedness identified, the procedures to balance the dataset and pre-process
it are presented in the following subsection.
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9.3.2 Pre-Processing and Balancing the Dataset
In this subsection, the procedures for pre-processing and balancing the data are
presented. The recordings taken into account are the read text only for each
subject. Within the recording procedure, each participant was asked to make
a phone call and then read two different texts above mentioned. Each audio
file corresponds to a continuous, unsegmented recording of the read text at the
sampling rate of 44.1kHz. Therefore, there will be one audio file for each patient
denoted as s(t). Depending on the patient, the reading order might change,
and the recording lengths (due to different reading paces) vary between 73s and
203s. The silence at the beginning and end of the recordings was removed along
with the initial participant’s dialogue with the interlocutor. For the EMD to
be applied, the underlying signal needs to be continuous. Therefore, a cubic
spline with knots points placed at the sample points was fit through each of the
recordings and denoted as s̃(t). Afterwards, each recording was split into batches
of 5000 samples for computational reasons, which approximately corresponds to
0.113 seconds (given a sample rate of 44.1kHz). Given that the audio files have
different lengths, then the number of segments for each patient differs. Figure
9.3 shows the number of segments for each patient divided by the scores of the
UPDRS II-5 for both female (left panel) and male (right panel) patients. The
contained information is highly unbalanced for the number of male and female
patients, the different categories of the UPDRS II-5 score and the number of
sick and healthy patients. To balance the representation of each patient, the
minimum number of segments for each patient by gender was computed, and
then, that minimum number of segments was randomly extracted from each
other patient. The minima are denoted as Nf and Nm, and, in particular, one
has that Nm = 372 and Nf = 442. Therefore, there will be Nm × 14 segments
for the male patients and Nf × 23 segments for the female patients.

9.3.3 Construction of Training and Testing Segments Sets
Once a balanced representation of each patient with respect to the number of
segments is obtained, the following step consists of constructing training and
testing sets for the classification tasks,i.e. model estimation and model vali-
dation. Consider the female case as an example and note that an equivalent
procedure is applied to the male case. To construct the training set, one pa-
tient is firstly left out for the testing set. Then from the remaining number of
patients segments, i.e. Nf × 18 for the healthy case and Nf × 3 for the sick
case, 80% of Nf is randomly extracted corresponding to 354 segments. Hence,
354 segments will represent the class of healthy patients, and 354 will represent
the class of sick patients, randomly extracted from 18 and 3 equally represented
patients. For the testing set instead, 20% of Nf was randomly selected from the
two left out patients segments, one for the healthy and one for the sick classes,
corresponding to 89 segments. Therefore, there will be 89 segments for the
healthy patient left out and 89 segments for the sick patient left out. Then, the
left out patients are rotated, and the procedure repeats. Note that, s̃(t)tr0 and
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s̃(t)tr1 with tr = 1, . . . , Ntr denote the training set and to s̃(t)ts0 and s̃(t)ts1 with
tr = 1, . . . , Nts denote the testing set. For the male case, there are Ntr = 298
and Nts = 75.
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Figure 9.3: Barplots for the number of segments of length 5000 samples (approxi-
mately 0.113 seconds) for the female patients (left panels) and the male patients (right
panels). The x-axis represents the different stages of the UPDRS II-5 where we also
included the healthy patients. The y-axis represents the counts of the segments divided
by patient.

9.3.4 The Need for the Fisher Kernel
The goal of this subsection is to provide an example that justifies the use of the
Fisher kernel in the developed Gaussian Process framework for Parkinson’s de-
tection through speech samples. When Gaussian Processes are the selected tool
for classification (or regression), standard kernel functions are usually adopted
as the default solution to capture the similarity of the underlying signal. In
practice, this is not always an efficient choice, particularly not when the stud-
ied phenomenon is affected by non-stationarity and non-linearity. The kernel
is a stationary function and, therefore, would not reproduce the sought data
structures.
Figure 9.4 shows four different panels presenting two randomly selected segments
for the raw data of two male voices (the top ones) with their associated empirical
covariance matrices (the bottom ones). Remark that each segment is made of
5000 sample points. The top left panel corresponds to a male, healthy patient
segment, while the top right panel represents a segment of a male, sick patient.
Hence, the bottom left panel is the covariance matrix for the top left panel, the
healthy male voice, and the bottom right panel represents the covariance matrix
for the sick, male voice.
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Figure 9.4: Original signals and related empirical covariance matrices of two seg-
ments of length 5000 samples of the original speech segments. The left panel (purple)
represents the segment of an healthy patient, while, the right panel (red) represents
the segment of a sick patient.
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Figure 9.5: Gram Matrices of the radial basis function kernel evaluated on a uniform
grid of points of length 5000 with two hyperparameters for the length scale. The left
panel represent a Gram Matrix with l = 0.1. The right panel represent a Gram Matrix
with l = 2.

The plots for the covariance matrices show that the underlying structures of
the original data are not trivial and that any classical stationary kernel as the
radial basis function would fail in detecting it efficiently. As a result, the data-
driven kernel, known as the Fisher Kernel (see Chapter 4 for further references,
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subsection 4.4.4), was the one employed in this work. As supporting evidence,
Figure 9.5 shows two Gram matrices obtained by using a radial basis kernel
function. The left Gram matrix has the length hyperparameter l = 0.01, while
the right one is generated with l = 2. By looking at these Gram matrices and the
empirical covariance matrices of the randomly selected segments, it is possible to
observe how the generated structure of the kernel functions cannot reproduce the
non-stationarity carried by the segments. The GPs generated with such Gram
matrices would not fit the given signal and, more importantly, would not be able
to detect the discrimination factors that provide the classifier with the power to
differentiate between sick and healthy patients. The sought discrimination power
lies in differences of time-varying velocity, phase and frequency of the speech
signals. Therefore, it cannot be captured by these classes of kernel functions.
As a result, an ad hoc procedure characterising local structures of the speech
signals is constructed. The idea is to propose a kernel function that detects local
changes in the data generating process by being adaptive and data-driven. In
this way, refined and fast structural changes characterising a voice affected by
Parkinson’s disease can be identified more easily. Given these needs, the data-
driven Fisher kernel appears to be a reasonable choice. In order to incorporate
such a choice in the presented stochastic embedding models, the fitting procedure
and testing procedure have explicitly been developed and are described in the
following sections.

9.4 The Fitting Procedure for The Estimation
Model Phase

In subsections 9.3.2 and 9.3.3, the pre-processing applied to the original signals
and the procedures used to extract the training and testing sets were introduced.
In this section, the fitting procedure of the time-series models is presented. Con-
sider the female case, for example. Denote the interpolated signals through a
cubic spline for a female Parkinsons’s voice as s̃(t)1 and for a healthy female
voice as s̃(t)0, with t ∈ [t0, . . . , tN ]. Hence, the 0 index refers to a female voice
not affected by Parkinson, while the 1 index refers to a female voice affected by
it. An equivalent notation can be considered for a male patient. The original
voices are firstly split into segments of length 5000. Therefore, the notation for
one segment will become s̃(ti)0 and s̃(ti)1, where i = 1, . . . , Nf are the indices re-
ferring to the segment number for one of the two groups, i.e healthy or Parkinson
female patients, respectively, and ti corresponds to an input vector belonging to
the following mesh

T =
[
t1, t2, . . . , tNf

]
= [[t1, . . . , t5000] , [t5001, . . . , t10000] , . . . , [tN−4999, . . . , tN ]]

(9.1)
Note that, as described in subsection 9.3.3, the same number of segments were
randomly selected for the two classes of healthy and sick patients. Select now the
segments for the healthy female voice denoted as s̃(ti)0, i = 1, . . . , Nf . The goal
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is to characterise their local structure through a collection of scorings directly
depending on the generative model inducing the data generating process of such
a speech type, i.e. healthy and female. To achieve this result, one further splits
each segment s̃(ti)0 into mini-batches of length 100 sample points (corresponding
to 2.2 ms). Therefore, one will have s̃(tji )0 with j = 1, . . . , 50 and i = 1, . . . , Nf .
We further redefine the mesh for the input variable set T referring to a segment
s̃(ti)0 as

ti = [t1i , . . . , t50
i ] = [[t1, . . . , t100]i, [t101, . . . , t200]i, . . . , [t4901, . . . , t5000]i] for i = 1, . . . , Nf

(9.2)
Note that, for each mini-batch s̃(tji )0, a set of ARIMA models given in Table
9.1 will be fit without an intercept. Instead, for each mini-batch s̃(tji )1, only an
ARIMA(3,1,3) with intercept included will be fit. The main reason to do so is
that a mini-batch belonging to the sick patients hence s̃(tji )1 will have a much
more complex structure due to faster changes of the speech and, therefore, will
require more parameters to be efficiently detected. For a healthy mini-batch
instead, all the models given in the table will be fit. Remark that a general
ARIMA model with parameters p for the auto-regressive model order, q for
the moving-average model order and d representing the number of differencing
required to make the time series stationary, is given as follows

α(B) (1−B)d s̃(tji )0 = β(B) w(tji )0 (9.3)

where B is a lag operator such that α(B) = 1 − α1B − · · · − αpB
p, β(B) =

1 + β1B + · · · + βqB
q and w(tji )0 is white noise. The fitting procedure aims to

extract the Fisher score vector and hence deriving the Fisher kernel.

235



M. Campi 9. Detection of Parkinson’s Disease with Speech Signals

ARIMA Model p q
M1 0 0
M2 1 0
M3 0 1
M4 1 1
M5 2 0
M6 2 1
M7 0 2
M8 1 2
M9 2 2
M10 3 0
M11 3 1
M11 3 2
M13 0 3
M14 1 3
M15 2 3

Table 9.1: Fitted ARIMA model for every sub-batch s̃(t)i,b0 with b = 1, . . . , 50. Note
that the sub-indices i and j corresponds to number of segments for the healthy and
sick patients, respectively, regardless the gender. Hence, for example, for the female
case, i, j = 1, . . . , Nf . The parameter d is omitted since it was set equal to 1 for each
of the model.

One has 15 × 50 × Nf fitted models in total for the healthy mini-batches, and
the intent is to identify the one that best describes the considered populations of
segments, hence the healthy female one. Note that an equivalent procedure will
be carried for the healthy male mini-batches. Instead, for the sick mini-batches,
one will have 1 × 50 × Nf fitted models. The same procedure is applied in the
male case.
The fitting procedure for the healthy mini-batches is now introduced. Denote
the winning model as Mh?,i,j

0 , where h? is the h-th winning model across the 15
given in Table 9.1 for each segment s̃(tji )0. To identify it, consider the Akaike
information criterion (AIC). Define AIC for every fitted model on every mini-
batch s̃(tji )0 as follows

AICi,j,h
0 = 2κi,j,h0 − 2L̂i,j,h0 ∀i, ∀j (9.4)

where κi,j,h0 is the number of estimated parameters in the model and L̂i,j,h0 repre-
sents the log-likelihood for model h computed for the mini-batch s̃(tji )0 over the
input vector tji defined as

L̂i,j,h0 = L(s̃(tji )0, t
j
i ; θ̂0) =

100∑
j=1

log `tji (s̃(t
j
i )0, t

j
i ; θ̂0) (9.5)

Table 9.2 shows the AICs scores computed from the model fits obtained on all the
mini-batches for the healthy female population. The following step is to extract
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the best model on every mini-batch amongst the 15 fitted models. By referring
to Table 9.2, this means that one model per row will be selected.

Mini-batch M1 M2 .... M15

s̃(t)1,1
0 AIC1,1,1

0 AIC1,1,2
0 ... AIC1,1,15

0

s̃(t)1,2
0 AIC1,2,1

0 AIC1,2,2
0 ... AIC1,2,15

0

... ... ... ... ...

s̃(t)1,50
0 AIC1,50,1

0 AIC1,50,1
0 ... AIC1,50,15

0

s(t)2,1
0 AIC2,1,1

0 AIC2,1,2
0 ... AIC2,1,15

0

... ... ... ... ...

s̃(t)2,50
0 AIC2,50,1

0 AIC2,50,2
0 ... AIC2,50,15

0

... ... ... ... ...

s̃(t)Nf ,10 AICNf ,1,10 AICNf ,1,10 ... AICNf ,1,15
0

... ... ... ... ...

s̃(t)Nf ,50
0 AICNf ,50,1

0 AICNm,50,2
0 ... AICNm,50,15

0

Table 9.2: Table summarising all the scorings collected for the mini-batches of the
female healthy population of patients, i.e. s̃(t)0. Note that an equivalent procedure
will be applied for the male case.

The best model Mh?
0 will be the one minimising the AIC and hence showing

AICh?,i,j
0 = min

h
AICi,j,h

0 ∀ i, j (9.6)

where h = 1, . . . , 15. Afterwards, the set of winners models for each s̃(tji )0 is
identified and given as{

Mh?,1,1
0 , . . . ,Mh?,1,50

0 ,Mh?,2,1
0 , . . . ,Mh?,2,50

0 , . . . ,M
h?,Nf ,1
0 , . . . ,M

h?,Nf ,50
0

}
(9.7)

The next step consists of selectingNf winner models, hence one for every segment
s̃(ti)0 amongst its mini-batches s̃(tji )0 with j = 1, . . . , 50, and, therefore, the ones
that provides

AICh?,i,j
0 = min

j
AICh?,i,j

0 ∀ i (9.8)

where i = 1, . . . , Nf . Hence, Nf winning models are selected fitted over the
mini-batches s̃(tji )0 as {

Mh?,1
0 ,Mh?,2

0 , . . . ,M
h?,Nf
0

}
(9.9)

Note that, in the above notation, the index of the mini-batches j is dropped since
the best model with respect to each segment i is selected. However, the reader
should remember that each selected model corresponds to the one fitted over the
mini-batches of length 100 samples. Hence, the best model for the segments i
was selected amongst the fitted models over the mini-batches j = 1, . . . , 50. In
order to construct a weighted Fisher score for the population of healthy female
patients proposed in the texting procedure, compute the proportion ρi0 reflecting
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the number of times a model Mh?,i
0 appeared within the set of winning models

over the mini-batches as

ρi0 =

∣∣∣{Mh?,1,1
0 ,Mh?,1,2

0 , . . . ,Mh?,1,50
0 ,Mh?,2,1

0 , . . . ,M
h?,Nf ,50
0 ,

}
= Mh?,i

0

∣∣∣
Nf

∀ i

(9.10)
Note that 0 ≤ ρi0 ≤ 1 for i = 1, . . . , Nf and ∑Nf

i=1 ρ
i
0 = 1.

Therefore, from this fitting model procedure, a set of Nf winning models and
their associated proportion computed as given above will be computed for the
female healthy subjects. Remark that the same practice will be applied for the
case of the male healthy participants and a set of Nm winning models will be
extracted.
For the case of the sick female patients, the procedure goes exactly as the one
presented so far. However, the reader should bear in mind that, given the more
complexity of the speech signals associated with the presence of Parkison’s dis-
ease, then only time-series ARIMA model fitted to the mini-batches given as
s̃(tij)1 for j = 1, . . . , 50 and i = 1, . . . , Nf is a (3,1,3) ARIMA model with an
intercept. Hence the first step of model selection over the mini-batches will not
be required. Furthermore, by following such a procedure, the models for sick and
healthy population will be nested, and the reference model will be the one of the
sick patients indeed. In such a way, the GLRT test will provide reliable results
given the requirements of nested models.
Note that, the presented procedures consider the observed approximated original
signal, i.e. s̃(tij)0 and s̃(tij)1 with varying indices i and j depending on the
different families. The same procedures will be repeated on the IMFs, and the
band-limited IMFs and Fisher score vectors will be equivalently derived.
Figure 9.6 provides an overview of the fitting procedure proposed for the healthy
subjects. It starts with the healthy patient voices on the left, presents the proce-
dure to obtain the segments and then the mini-batches. Afterwards, 15 ARIMA
models as given in Table 9.1 are fitted to each mini-batch. The following step se-
lects the winning model over each mini-batch, and then three solutions have been
proposed for the model selection stage to then construct the Fisher score vectors
used in the testing procedure. Indeed, the take out of the fitting procedure will
be the winning models for each population and their associated proportions.
Amongst the three proposed solution, the one proposed in this thesis is solution
1, in which the best model is chosen over the 50 mini-batches of a segment
for every segment of the healthy population (i.e. male or female). Then a
collection of Fisher scores defined in the following section will be given. The
same procedure applies to the case of sick patients; however, at the stage of the
fit, there will be only one model considered. The other two solutions propose a
more flexible solution in which all the mini-batches are retained and, for solution
2, the best model is selected and then re-fitted across all the mini-batches of that
segment and, for solution 3, all the models are retained. The first one resulted
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in being optimal and provided more powerful performances. Furthermore, the
computational cost of the second and the third solution is a lot higher.
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Figure 9.6: Figure showing a diagram for the steps required for the testing procedure
of the model validation phase for the healthy subjects (controls).

The next step foresees the description of the testing procedure for the validation
model phase which will construct the GLRT test implemented with Fisher vectors
for detecting Parkinson’s disease. This is presented in the following sections.

9.5 The Testing Procedure for The Validation
Model Phase

In this section, the testing procedure employed for the validation model phase is
presented. Once the Fisher scores for the population of segments are obtained, a
new set of data, the testing set, will be used to validate the discrimination power
of the three system models in detecting the presence or absence of Parkinson’s
disease. In practice, the test will affect the evaluation test statistic given in Eqn.
6.44 since it will evaluate the Fisher scores for the testing data and, then, the test
will be directly carried on the obtained scores rather than on the segments. The
objective of this section is to present the procedure required to obtain a unique
Fisher score computed by aggregating information coming from the set of Nf

models for the female case or Nm for the male case and then conduct a GLRT
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test with such a derived quantity. This will be done over the test mini-batches
for each participant that have been left over. This procedure has been described
in the above sections. To present the procedure and for consistency with the
fitting procedures, consider the female case as an example.
Consider a test segment denoted as s̃(ti)ts, where, as in the fitting procedure,
the input variable ti corresponds to a segment of the interpolated speech of
length 5000 samples. As above, each s̃(ti)ts is split into mini-batches of length
100 sample points (corresponding to 2.2ms) and then obtain mini-batches s̃(tji )ts
with j = 1, . . . , 50 and i = 1, . . . , Nf,test. An equivalent procedure will be carried
for the male case This procedures makes use of the set of parameters belonging
to each of the identified winning models for each population, hence there will
be Nf models for the sick and Nf models for the healthy patients that will be
evaluated on the testing data.
The are Nf fitted models obtained from the fitting procedure for both families,
i.e. sick and healthy, and each model is evaluated on the test mini-batches. Note
that there is no re-fitting at this stage but the evaluation of the testing data.
Once that is obtained, then the extraction of the Fisher score vectors is required.
The procedure for the computation of the Fisher score vector is given as follows.
Consider a test mini-batch denoted as s̃(tji )ts. For simplicity of the notation
and without loss of generality, the index of the segment is dropped since the
testing procedure will be conducted at a mini-batch level. Hence, define the
set of testing mini-batches as s̃(tj)ts. Note that, there will Nf,t = Nf,test × 50
mini-batches per participant in the female case. Hence the index j will vary as
j = 1, . . . , Nf,t = 4450. An equivalent reasoning apply to the male case where
one will have Nm,t = Nm,test × 50. The index for the extracted model from the
fitting procedure will be denoted as h0

? = 1, . . . , Nf and h1
? = 1, . . . , Nf , for the

healthy and sick families, respectively. Once evaluated the log-likelihood on the
set of mini-batches of length 100 samples, then the Fisher scores for each model
h0
? and h1

? will be computed for every mini-batch j and will be given as follows:

U j

θ0 (100×κj,h
0
?

0 )
= ∇θ0(Lj,h

0
?

0 ) ∀ j, ∀h0
?

U j

θ1 (100×κj,h
1
?

1 )
= ∇θ0(Lj,h

1
?

1 ) ∀ j, ∀h1
?

(9.11)

Since the testing procedure will proceed equally on these two introduced Fisher
scores, the following notation is introduced

U j

θv (100×κj,h
v
?

v )
= ∇θv(Lj,h

v
?

v ) ∀ j, ∀hv? (9.12)

where the index v = 0, 1. Note that the index j is in the right-hand side of the
above equation since the log-likelihood considered refers to model hv? evaluated
on the mini-batch j. Furthermore, the Fisher score is evaluated at each point of
the sample, i.e. the mini-batch j, This score is a matrix, indeed it dimension is
(100× κi,j,h?0 ), where 100 is the number of samples of the mini-batch and κj,h

v
?

0 is

240



M. Campi 9. Detection of Parkinson’s Disease with Speech Signals

the number of parameters of the model evaluated on that mini-batch given as

κ
j,hv?
0 = p+ d+ 2 (9.13)

To construct the Gram matrices required for the GLRT test, firstly the Fisher
score is centred as follows:

U j C

θv (100×κj,h
v
?

v )
= Vᵀdiag


σ̂1,1 .. ..
.. σ̂1,1 ..
.. .. ..
.. .. σ̂κ,κ


−1

V ∀ j, ∀hv? (9.14)

where

V =
[
U j

θv (100×κj,h
v
?

v )
(t)− µ̂Uj

θv
(t)

]

µ̂Uj
θv

=
100∑
t=1
U j

θv (100×κj,h
v
?

0 )
(t, :) ∀ j, ∀hv?

[
σ̂Uj

θv

]
s

=

√(
U i

θ0 (100×κi,h
v
?

v )
(t, :) − µ̂Uj

θ0
(t, :)

)2

100 ∀ j, ∀hv?

(9.15)

Note that µ̂Uj
θv

represents the sample mean and
[
σ̂Uj

θv

]
s
represent sample stan-

dard deviation estimates of the Fisher score, respectively and are computed over
the 100 samples of the mini-batch j linked to its log-likelihood Lj,hv?v , for every
MLE estimate. For simplicity, in the notation of the sample mean and sample
standard deviation estimates, the dimensionality of the Fisher score is dropped.
To avoid ambiguity, within the standard deviation formulation, done over the
columns of the Fisher score, i.e. on the 100 samples for each MLE estimate,
and highlight that this calculus is done over the column and not over the entire
matrix, t(:) has been introduced. The following step consists of summing up
the evaluated Fisher score over the 100 samples for each parameter and hence
obtaining

U j, C

θv (1×κj,h
v
?

v )
=

100∑
t=1
U j C

θv (100×κj,h
v
?

v )
(t) ∀ j, ∀hv? (9.16)

The left-hand side of the above Fisher score is now of dimension (1 × κ
j,hv?
b )

and does not depend on t anymore. This is because the gradients previously
evaluated for each parameter at the values t of the given mini-batch s̃(tij)test are
now summed up together over the vector t and, therefore, a Fisher score vector
evaluated at the MLE estimates is now obtained. However, the important step
in this construction is that these Fisher scores are centered across the dimension
t. Also, the centring indicator has been dropped on the left-hand side, but the
reader should bear in mind that these Fisher vectors have been centered for
computational stability reasons. Remark now that each mode hv? corresponds
to a winning model extracted from the fitting procedure and that the models
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differs amongst them. They carry the same order in the case of sick patients,
i.e. always a (3,1,3) ARIMA model but, in the case of the healthy patients
these models different between them. Each Fisher score vector has, therefore,
a different dimension. To construct a unique Fisher score, the obtained Fisher
score vectors are modified by padding zeros within the vector up to the number
of maximum possible parameters, being 3 + 3 + 2 = 8. However, the vector will
be ordered in terms of the comprised parameter and formally given as

T = [δ, α1, α2, α3, β1, β2, β3] (9.17)

where, in order, δ is the intercept of the ARIMA fitted model, α1, α2, α3 are the
AR parameters and β1, β2, β3 the MA paramters. Define now a padding operator
given as O given as

U
j,hv?
θv (1×κ) = O

[
U j, C

θv (1×κj,h
v
?

v )

]
∀ j, ∀hv? (9.18)

such that it will return a Fisher vector zero-padded for the elements of T in
U i

θv (1×κj,h
v
?

v )
that are not present. Hence, this new Fisher vector and will always

be of dimension (1 × κ) with κ = 8. Note that, for the healthy category, the
intercept position will always be zero by construction. Note that the index for the
model hv is now on the left-hand side. Now, at this point, one will have one Fisher
score vector of dimension (1×κ) for every population v = 0, 1, every mini-batch
j = 1, . . . , Nf,t, every model hv?. To aggregate the information related to every
model evaluated on the testing data and hence capturing structural properties
provided by the Fisher vector, for every mini-batch, all the Fisher vectors from
every model will be summed up together as

Ũ j
θv

=
Nf∑
hv?=1

ρh
v
?
v U

j,hv?
θv (1×κ) ∀j (9.19)

where ρhv?v is the proportion computed in Equation 9.10 since each Fisher score is
weighted according to the proportion of the winning times of that model. Note
that in the fitting procedure explanation this was denoted as ρiv and i = 1, . . . , Nf

corresponded to the number of models extracted on a mini-batch which provided
the best fit and, therefore, i and h indicates the same quantity.
Next, the Gram matrix for the mini-batch s̃(tji )v will be defined as

K̃j
v (κ×κ) = Ũ j ᵀ

θv
Ũ j
θv

for j = 1, . . . , Nf,t (9.20)

To regularise the above matrix due to computational instability that could lead
to issues encountered with the inversion of such a matrix or the log-determinant,
a covariance shrinkage estimator was considered. The covariance shrinkage esti-
mator of K̃j

v (κ×κ) is given by

K̃j S
v (κ×κ) = (1− γ) K̃j

v (κ×κ) + γ Q Iκ κ (9.21)
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where γ is some shrinkage factor, Iκ is the identity matrix of dimension κ and
the matrix Q is given as

Q =
tr
[
K̃j
v (κ×κ)

]
κ

(9.22)

Once this is derived, then the GLRT test can be computed for every testing
mini-batch j for female case (as for the male ones) as follows:

L̂ = −(Ũ j
θ0)

(
K̃j S

0

)−1
(Ũ j

θ0)ᵀ − log
(
det

[
K̃j S

0

])
+(Ũ j

θ1)
(
K̃j S

1

)−1
(U j

θ1)ᵀ + log
(
det

[
K̃j S

1

]) (9.23)

In practice, the Generalised Likelihood Ratio Test is evaluated for Fisher score
vectors derived from the winning models of the testing set segments with the
constructed Gram matrices obtained through the fitting procedure. Figure 9.7
provides a diagram summarising the steps required for the testing procedure. It
is applied to one testing mini-batch and then will be repeated on each of the re-
maining testing mini-batches. As presented, each model for the two category of
participants will be evaluated on the given mini-batch. Afterwards, according to
the steps introduced above, the two Fisher score vectors will be derive by aggre-
gating the individual Fisher scores evaluated with the different model parameters
and will provide Ũ j

0 and Ũ j
1 . At that point the Gram Matrices evaluated on that

mini-batch can be computed and the GLRT test will be then calculated. This
process will be repeated for each mini-batch and every patient. Results will be
provided in the following section, where, the proportion of mini-batches failing
to reject the null hypothesis, i.e. being sick, will be shown.
As presented in Chapter 6, section 6.4, the GLRT test will be evaluated for
system model one on the approximated signal, while, for the other two system
models, the same procedure will be conducted on the first three IMFs. Results
are provide in the section below.
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Figure 9.7: Figure showing a diagram for the steps required for the testing procedure
of the model estimation phase.

9.6 Results and Discussion
In this section, some results of the presented settings are presented and discussed.
The reader should bear in mind that this is ongoing research and, therefore, only
partial results are presented.
This set of results shows the performance of 31 randomly selected patients of the
37 of the introduced dataset, of which 19 are healthy patients and 12 are affected
by Parkinson’s. Hence, the testing set is reduced, and only 31 patients have been
rotated when individual performances are provided or employed if more global
results testing them all together is provided. Among the 19 healthy subjects, 18
are female, and one is male, while for the 12 affected by Parkinson’s disease, 2
of them are female subjects, and 10 are male patients. At this stage, gender is
ignored for the classification, but it will be considered for future results since the
author believes it will add critical insights useful for the selected application. The
pre-processing and balancing of the dataset and the fitting and testing procedures
have been applied as presented. Remark that the number of segments which
are left out for every patients are Nf,test = 89 for the female subjects and
Nm,test = 75 for the male ones. However, these results are presented at a mini-
batch lever. Hence there will be Nf × 50 = 4450 mini-batches for the female
patients and Nm × 50 = 3750 mini-batches for the male speech samples.
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The first set of results refer to two confusion matrices presented in Figure 9.8.
The left confusion matrix refers to the gold standard features selected as bench-
mark model comparison. These are the MFCCs extracted from the raw data.
The adopted procedure for this experiment follows the setting that has been pre-
viously introduced in Chapter 5 for the SVM configuration, while the MFCCs
have been extracted with the same pre-emphasis and hamming windowed given
in Chapter 8. It goes as follows. For the training segments, a set of MFCCs is
extracted, and an SVM is trained. Hence, this analysis is conducted at a segment
level since the MFCCs are extracted on a segment of length 5000 samples rather
than on a mini-batch. The SVM consider the radial basis function only, and
cross-validation with 5-k folds has been applied. Once trained, the set of testing
segments are passed through the same feature extraction procedure where the
set of MFCCs are computed on the testing segments of length 5000 samples.
Afterwards, the built SVM has been tested with all the patients together hence
with no added difference for female or male patients. Results are provided in
the left confusion matrix of Figure 9.8. Remark that 0 corresponds to the class
of healthy subjects while 1 to one of the sick patients. The performances for
the detection of both classes appear low, particularly for detecting Parkinson’s
disease.
The right panel of Figure 9.8 represents the performances of system model one
presented in Chapter 6. Hence, this aims to test detecting sick and healthy
patients by fitting a GP over the original approximated signal. The Fisher scores
are computed over the 31 patients considered, and then the GLRT is conducted
per mini-batch. Afterwards, the confusion matrix considering all the 31 patients
has been constructed, and the results are shown in Figure 9.8. Performances
appear to be low again in the detection of both classes.
As expected, the first system model considering a GP on the raw data does
not provide good performances for this task. Indeed, the studied signals are
highly non-stationary, and the discriminatory power that the classification should
provide cannot be depicted by merely considering the raw data. The information
that this exercise tries to capture is highly refined, time-varying and strictly
relates to the energy change and frequency of the signal. Therefore a method
considering the raw data is not powerful enough in this setting. When it comes to
the gold standard MFCCs, it is interesting to note that such a feature have been
employed as it is common practice in the main literature. Hence the coefficients
are extracted and then stacked into a unique vector instead of considering them
one by one for the classification task. As suggested in Chapter 8, such a procedure
tends to mix the detected energy contents, particularly when affected by non-
stationarity, and the classifier yields unreliable results. Further research will
be conducted on such models by also improving the performance of the MFCCs
with EMD-MFCCs as suggested in Chapter 8. The performance should improve,
and it would be interesting to observe which frequency regions detected with
the EMD-MFCCs will provide discriminatory power in detecting Parkinson’s
depending on gender.
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Figure 9.8: Plots representing the confusion matrices for the benchmark model (left
panel) using the MFCCs and system model 1 (right panel).

The second part of this initial set of results consider a comparison of the per-
formances of the three system models introduced in Chapter 6. Each model has
been trained according to the fitting procedure above described. Note that for
system model 2 and system model 3, the procedure has been applied on each
of the considered basis functions. Furthermore, it is important to highlight that
in this case study, system model 2 considers the first three IMFs only, hence
the ones carrying the highest frequency content. As highlighted in Chapter 8,
the first three IMFs tend to capture the great majority of formants present in
a speech signal and, therefore, these are studied at an initial state. Further re-
search will be conducted to consider all of them. Similar reasoning applies to
the IMFs-BL hence the band-limited IMFs. The cross-entropy method has been
applied to the first three IFs only. This will be extended to study the behaviour
of these basis functions if more IFs are considered for their construction. Note
that the cross-entropy method considered is the discrete one using a multinomial
importance distribution. Three frequency band-limited bands have been selected
as the desired one, but more sophisticated solutions will be later explored.
Results are provided per patient. Hence, for each tested patient, the proportion
of the mini-batches that fail to reject H0 is plotted in Figure 9.9. Remark that
H0 states equality in distribution, and the null hypothesis uses the healthy as
the base model. Hence the test will provide equality with respect to healthy
subjects. The plot presents three panels. The x-axis shows the patients ordered
from the left to the right according to their status, i.e., the 19 healthy subjects
and 12 sick ones. The y-axis shows the proportion of mini-batches that fail to
reject H0. The top panel refers to the performances of system model 1, and it
is possible to observe that there is not much differentiation across the patients
and does not detect any difference in distribution regardless of the status of
the given patient. This confirms the finding provided by the confusion matrix
presented above, where system model one tested with all the patients at once
performs poorly. The second panel presents results for the second system model.
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Note that, for every patient, the proportions will be given for the first three IMFs
where IMF1 represents the first highest IMF, IMF2 the second-highest and IMF3
the third-highest. This time the test appears to perform more efficiently since
for the healthy subjects, a low proportion of mini-batches fails to reject H0, on
average 0.2 across all the healthy patients and with similar performances across
the three IMF basis functions. For the sick patients instead, a 50% proportion
of the mini-batches for approximately every patient does not appear to fail to
reject H0. Similar behaviours are shown by the three IMFs, consistently as for
the healthy patients. These findings are encouraging in the sense that the test
appears to be sensible to differentiate between healthy and sick patients when
the test is conducted at a patient level. However, a proportion of 50% might
not be highly accurate, and more research is required in this direction. The
third panel presents the proportion of mini-batches that fails to reject H0 when
system model 3 is the selected model. The test appears to provide more powerful
performances than the ones of system model 2 with respect to both classes, i.e.
healthy and sick. For the healthy patients, 20% of the mini-batches fail to reject
H0 when the first band-limited IMF is selected. More discriminant performances
are achieved by the second and third band-limited IMFs, which appears to fail
to reject H0 at a percentage of 10% or lower. Hence the second and the third
band-limited IMFs show more powerful behaviours in detecting healthy subjects.
When it comes to sick patients, the test appears to provide more discrimination
power compared to the one of system model 2.
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Figure 9.9: Plots representing the proportion of mini-batches that fails to reject H0
for the three system models introduce in Chapter 6. Note that H0 tests equality with
the healthy population. The x-axis represents the patients ordered according to their
status, while the y-axis is the proportion.
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Indeed, particularly for IMF3-BL, the proportion of mini-batches that does not
fail to reject H0 is on average 90% for almost every patient. IMF1-BL and
IMF2-BL also provide high performances, around 80% on average. While for the
healthy subjects, the second and the third band-limited IMFs appear to carry
the majority of discrimination power, in the case of detecting a sick patient,
IMF1-BL and IMF3-BL are the ones best performing.
Overall, the performance of system model 3 appears to be the most powerful.
The detection of both healthy and sick patients conducted per patient and at a
level of the mini-batches provides encouraging performances that need further
investigation. The same reasoning applies to system model 2, but the perfor-
mances appear to be lower than system model 3. This study considers 3 IMFs
and 3 IMF-BL only. Further research will explore the entire set of IMFs. Fur-
thermore, a more general setting which will be speaker or patient independent
providing the most general settings found in practice will be explored. This will
also be done by considering the difference in gender given that, as provided in
Chapter 8, the location of the formants changes of a great deal between males and
females, and therefore, to identify which frequency regions are more affected by
the disease and hence will provide strong discrimination power, the classification
task must take into account this differentiation.
What has not been explained so far is how, if a speaker-dependent environment is
considered, like the one of interest in the second part of this case study, is how to
decide if a patient is correctly classified or not. A voting-rule system considering
the proportion of mini-batches could be a good solution. Another possibility is
going back to the segments from which the mini-batches were extracted, and
doing a voting rule on the segments rather than on the mini-batches. More
advance solutions could be considered in this will be object of further research.

9.7 Spectrograms of the Segments with GLRT
Performances

To further clarify the last comment in the above section presenting the idea of
a voting rule for the decision of correctly classifying a patient or not, Figure
9.10 has been provided. This figure presents 6 panels. Particularly, there are
three spectrograms, one for every IMF-BL (considered in the above case study)
extracted for patient 5, that is an healthy subject, and for a specific test segment
(number 25) of length 5000 samples. It is possible to observe how the frequency
content is spread across the three IMF-BL. This is an healthy patient and, ac-
cording to the findings provided in the above section, the second band-limited
IMF and the third one should carry the majority of the discrimination power.
Each of the spectrograms has a second band plot that is associated with it. This
represents a vector of 0 and 1 of length 50 providing the results of the GLRT
conducted on the 50 mini-batches of that specific IMF-BL of that particular
segment. Note that black represents 0 and white represents 1.
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Figure 9.10: Spectrograms of the three band-limited IMFs for segment number 25 for
patient 5, whose status is 0 hence is healthy. The top panel represents th spectrogram
for IMF1-BL (hence the one carrying the highest frequency content), IMF2-BL is in
the middle spectrogram and the last one represents IMF3-BL. Each spectrograms has
a further band associated with it, representing the results of the GLRT test carried
over the mini-batches of that segment. Note that white corresponds to 1 and black to
0.
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It is possible to observe how the band plots of the second and the third spectro-
grams are indeed providing zeros and hence failure to reject H0 over the great
majority of that IMF-BL suggesting good performances of the GLRT test since
detecting the correct class, i.e. healthy.
It might be interesting to study different voting rule, as suggested above, one at
a mini-batch level and the other one considering the segments rather than the
mini-batch. Further research will be taken in this direction.
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Chapter 10

Conclusion and Future Research

This final Chapter provides a review of the main findings of this thesis and
highlights some of the open questions with the future research that will be un-
dertaken.

10.1 Summary of the Main Findings
This thesis promotes a statistical background for the non-stationary decomposi-
tion method known as the Empirical Mode Decomposition. The first part of the
thesis focuses on a review of traditional time-frequency methods and their prop-
erties and an explanation of why a non-stationary and non-linear time-frequency
method is required. This is highly needed at an applied level within multiple
applied areas. Real-world phenomena are strongly affected by time-varying data
system generation and a tool able to deal with both domains, the time and the
frequency, with an optimised data-adaptive solution is one of the sought objec-
tives of this work.
The EMD is a data-adaptive method whose main criticism is based on the lack
of a mathematical basis that allows for a definition in closed form of its basis
functions. One of the achievements proposed in this thesis and published in
Campi et al. (2021) is a formal definition of the EMD provided in Chapter 3.
The definition of its basis functions in closed form can be achieved once a specific
representation is selected. The one selected in this work, given its optimality,
as presented in Chapter 3, is the cubic spline interpolation. If selected, this
representation allows one to derive the coefficients of each IMF basis function
recursively as a linear combination of the spline coefficients of the original signal
and the coefficients of the previous IMFs. The proof of such a proposition is pro-
vided in Appendix A. The recursive property could be advantageous if studying
the relationship between the signal and its bases or the contribution of those
specific bases to the entire signal. Chapter 3 also deal with the definition in
closed form of the IF and its interpretation. This is of particular interest since
the IF might provide precious insights into the underlying time-varying signal
when used as a statistical feature. Multiple toy examples are provided to explain
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different aspects of the sifting procedure used to extract the basis and how the
wrong choices at this stage might lead to unreliable results. The author believes
that this is highly critical when setting a data analysis exercise relying on this
method.
The understanding of the different aspects of the sifting procedure combined with
the formal definition of the EMD led to the definition of multiple classes of fea-
tures defining a time-varying non-stationary library that could then be employed
in challenging classification tasks as speech. In Chapter 8, this EMD library has
been tested in solving the task of speech verification in various environments and
provides robust results in all of them. This is highly encouraging, and further
research will be undertaken to define new features based on the EMD to study
structural changes of the underlying process to provide a statistical interpreta-
tion.
The second part of the thesis introduces three main core components tested in
the part III within speech applications.
The first core component is the introduction of different kernel methods and
multi-kernel learning procedures, which will be combined with the classification
framework of Support Vector Machine to solve challenging speech verification
tasks. These tools will allow the development of a statistical framework for
non-stationary time-frequency methods to capture speech signatures and vocal
fingerprints more efficiently than gold standard exiting speech features. The great
advantage provided by multi-kernel methods given in Chapter 4 combined with
the SVM of Chapter 5 is to enhance the performance of the classifier that by using
different kernels combined and based on multiple time-varying features achieves
more accurate discrimination. Such a fact is proved through the Automatic
Speaker Verification framework provided in Chapter 8.
The second component represents the most significant contribution of the thesis
and defines a stochastic version of the EMD. Such a representation is highly rele-
vant since it allows to formulate proabilistic distributional statements of the IMF
basis functions, providing more reliable classification and forecasting solutions.
Numerous assumptions are considered, leading to unconditional and conditional
distributions of the basis functions developing different sets up. The constructed
framework challenges the existing multi-kernel machine learning technique via
the proposition of a multi-kernel formulation based on a stochastic process char-
acterised as the convolution of the stochastic processes of the IMFs, which re-
lies on multi-kernel Gaussian Process with an additive structure for the kernel
function. This technique is more advanced compared to existing multi-kernel
formulation since it allows one to deal with highly non-stationary and non-linear
data systems by relying on the IMF basis function and will capture temporal
time-varying content of the underlying signal
The third component of part II of this thesis is represented by the definition of
an EMD stochastic embedding whose aim is to capture specific bandwidths of
the given signal. This is the second most significant contribution of the thesis. It
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provides a fully data-adaptive technique dealing with time-varying bases in both
time and frequency since it develops an optimal partition of the time-frequency
plane based on a discrete quantisation of the instantaneous frequencies. This
solves one of the biggest issues affecting time-frequency methods represented by
the time-resolution trade-off encountered when non-stationary data comes into
play. Indeed, understanding the frequency evolution over time of a signal is one
of the biggest challenges for time-frequency methods. The optimisation method
proposed in this thesis tackles such an issue.
This thesis has two main applications which are documented in part III. Both
of them are in the area of speech analysis.
The first application tackles Automatic Speaker Verification technologies and
aims to solve the problem of differentiating an authentic voice from a syn-
thetic one. There are numerous contributions in this part which have been
highly reviewed in Chapter 8. The EMD features are tested in this challeng-
ing non-stationary setting and are combined with the standard golden method
called the Mel-Frequency Cepstral Coefficients. This combination provides the
great advantage of shaping a new feature library useful in speech since it allows
partitioning the time-frequency plane in an a posteriori fashion and identifying
which areas are more discriminant to solve this classification task. Results show
that this feature outperforms standard speech methodologies in multiple speech
settings, as speaker-dependent or speaker-independent and text-dependent and
text-independent.
The second application is relevant for health diagnostics and aims to identify
through speech the presence or absence of Parkinson’s disease. The stochastic
embedding EMD framework is tested in this setting and introduces a novel sta-
tistical methodology relying on the use of the Fisher score vector to detect local
structural changes of the underlying speech signals. Standard practice in using
the Fisher kernel would be using one model over the signal, and the computation
of the kernel is carried. The novelty at this stage is that the model of interest
will be fitted on mini-batches of the speech signal, with the results that multiple
models describe one population of signals (sick or healthy). The Fisher vector
used to detect local structure will be an aggregation of multiple Fisher scores that
better perform when it comes to detecting fast, local changes proper of patients
affected by Parkinson’s disease. The results show that adopting such a data-
adaptive kernel with the proposed EMD embedding outperforms the traditional
methodologies employed.

10.2 Open Questions and Further Research
Multiple research questions could be considered as future research. In this sec-
tion, some of the most relevant are presented.
The first methodological question that will be covered in the near future concerns
the construction of the stochastic embedding. A relevant point to raise is that this

254



M. Campi 10. Conclusion and Future Research

additive multi-kernel stochastic embedding assumes that every input dimension,
hence every IMF, is independent of each other. There is no structure modelling
the interactions between the IMF basis functions. This is an initial research step
taken towards a much more structured model which considers a multi-output
Gaussian Process (see Alvarez and Lawrence (2011)) in which the structural
dependence present between IMF stochastic processes will also be taken into
account. Multiple solutions could be considered, and this is ongoing research.
One of the problems tackled by the third system model given in Chapter 6 is
the definition of basis functions which are based on the locations of the instanta-
neous frequencies. Indirectly, one associated issue with this argument is that the
estimation of the instantaneous frequency is a complex problem that has been
widely discussed in multiple pieces of literature. In practice, characterising the
instantaneous frequency’s stochastic process and achieving it in closed form is a
non-trivial problem. Further research could also consider this issue.
At an applied level, Chapter 9 aims to detect the presence or absence of Parkin-
son’s disease through speech. Another relevant issue affecting a patient would
be monitoring the advancement of the disease. Hence, the objectives of further
research will involve the development of a surveillance tool.
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Appendix A
Consider D iteration of the sifting process (i.e. producing D IMFs). The D− th
IMF can be represented by a spline whose coefficients are a linear combination of
the coefficients of S(t) and the coefficients of the mean envelopes of the previous
extracted IMFs. By taking into account the first sifting process, we show the
above statement and then extend it to the D − th case.

Consider the spline interpolating the original set of data x(t), i.e. S(t). By being
at the initial step of the sifting procedure, i.e. step 0, we modify such equation:

S(t) =
n−1∑
i=1

(
a0
i t

3 + b0
i t

2 + c0
i t+ d0

i

)
1 (t ∈ [ti−1, ti]) (1)

where the upper indices of the coefficients state the step at which the sifting
procedure is. Consider the upper and lower envelope of S(t). Such splines are
evaluated at times of the original spline S(t), i.e. at t, as:

S
(
eS1
)

=
N−1∑
j=1

(
ae1j,0t

3 + be1j,0t
2 + ce1j,0t+ de1j,0

)
1 (t ∈ [tj−1, tj]) (2)

S
(
eS2
)

=
n−1∑
j=0

(
ae2j,0t

3 + be2j,0t
2 + ce2j,0t+ de2j,0

)
1 (t ∈ [tj−1, tj]) (3)

Let us put S(t) = c0 and m1,0 = S(eS1 )+S(eS2 )
2 its mean envelope, where the first

index corresponds to the number of the IMF that the sifting procedure is ex-
tracting (the first one here) and the second one the step of this sifting. Consider
a simple example where n = 3 and the number of steps of the sifting equal to 2.
The above definitions can be represented by:

c0 = S(t) =
N−1∑
i=1

(
a0
i t

3 + b0
i t

2 + c0
i t+ d0

i

)
1 (t ∈ [ti−1, ti]) =

a0
1t

3
1 + b0

1t
2
1 + c0

1t1 + d0
1 + a0

2t
3
2 + b0

2t
2
2 + c0

2t2 + d0
2

(4)

m1,0 = S(eS1 ) + S(eS2 )
2 = 1

2
[
ae11,0t

3
1 + be11,0t

2
1 + ce11,0t1 + de11,0 + ae12,0t

3
2 + be12,0t

2
2 + ce12,0t2 + de12,0

]
+[

ae21,0t
3
1 + be21,0t

2
1 + ce21,0t1 + de21,0 + ae22,0t

3
2 + be22,0t

2
2 + ce22,0t2 + de22,0

]
(5)

We look at the first step of the first sifting procedure computed by c0−m1,0. By
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rearranging and grouping we obtain:

c0 −m1,0 =
[
a1,0 −

1
2
(
ae11,0 + ae21,0

)]
t31 +

[
a2,0 −

1
2
(
ae12,0 + ae22,0

)]
t32+[

b1,0 −
1
2
(
be11,0 + be21,0

)]
t21 +

[
b2,0 −

1
2
(
be12,0 + be22,0

)]
t22+[

c1,0 −
1
2
(
ce11,0 + ce21,0

)]
t1 +

[
c2,0 −

1
2
(
ce12,0 + ce22,0

)]
t2+[

d1,0 −
1
2
(
de11,0 + de21,0

)]
+
[
d2,0 −

1
2
(
de12,0 + de22,0

)]
(6)

To then consider the second (and last in this simple case) step of the sifting
extracting the first IMF, consider the following equalities:

• a1
1 = a1,0 − 1

2

(
ae11,0 + ae21,0

)
• a1

2 = a2,0 − 1
2

(
ae12,0 + ae22,0

)
• b1

1 = b1,0 − 1
2

(
be11,0 + be21,0

)
• b1

2 = b2,0 − 1
2

(
be12,0 + be22,0

)

• c1
1 = c1,0 − 1

2

(
ce11,0 + ce21,0

)
• c1

2 = c2,0 − 1
2

(
ce12,0 + ce22,0

)
• d1

1 = d1,0 − 1
2

(
de11,0 + de21,0

)
• d1

2 = d2,0 − 1
2

(
de12,0 + de22,0

)
By substituting the above equalities in 6, the next result is obtained:

c0 −m0,0 = a1
1t

3
1 + a1

2t
3
2 + b1

1t
2
1 + b1

2t
2
2 + c1

1t1 + c1
2t2 + d1

1 + d1
2 (7)

Define this intermediate step as h1,1 = c0−m1,0 where the extracted component
h1,1 is not a final IMF yet. Therefore, the algorithm keeps running. At this
stage, the mean envelope is given by m1,1 = S(e

h1,1
1 )+S(e

h1,1
2 )

2 . The second step of
the sifting is:

h1,2 = h1,1 −m1,1 =
[
a1,1 −

1
2
(
ae11,1 + ae21,1

)]
t31 +

[
a2,1 −

1
2
(
ae12,1 + ae22,1

)]
t32+[

b1,1 −
1
2
(
be11,1 + be21,1

)]
t21 +

[
b2,1 −

1
2
(
be12,1 + be22,1

)]
t22+[

c1,1 −
1
2
(
ce11,1 + ce21,1

)]
t1 +

[
c2,1 −

1
2
(
ce12,1 + ce22,1

)]
t2+[

d1,1 −
1
2
(
de11,1 + de21,1

)]
+
[
d2,1 −

1
2
(
de12,1 + de22,1

)]
(8)

Define the following equalities:

• a2
1 = a1,1 − 1

2

(
ae11,1 + ae21,1

)
• a2

2 = a2,1 − 1
2

(
ae12,1 + ae22,1

)
• b2

1 = b1,1 − 1
2

(
be11,1 + be21,1

)

• b2
2 = b2,1 − 1

2

(
be12,1 + be22,1

)
• c2

1 = c1,1 − 1
2

(
ce11,1 + ce21,1

)
• c2

2 = c2,1 − 1
2

(
ce12,1 + ce22,1

)
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• d2
1 = d1,1 − 1

2

(
de11,1 + de21,1

)
• d2

2 = d2,1 − 1
2

(
de12,1 + de22,1

)
Substituting them within 8 provides the next equation:

h1,2 = h1,1 −m1,1 = a2
1t

3
1 + a2

2t
3
2 + b2

1t
2
1 + b2

2t
2
2 + c2

1t1 + c2
2t2 + d2

1 + d2
2 (9)

This corresponds to the first extracted IMF, i.e. c1 = h1,2. By considering
the above equation and substituting all the equalities that we have taken into
account, we get:

c1 =
[
a1,0 −

1
2
(
ae11,0 + ae21,0

)
− 1

2
(
ae11,1 + ae21,1

)]
t31 +

[
a2,0 −

1
2
(
ae12,0 + ae22,0

)
− 1

2
(
ae12,1 + ae22,1

)]
t32

+
[
b1,0 −

1
2
(
be11,0 + be21,0

)
− 1

2
(
be11,1 + be21,1

)]
t21 +

[
b2,0 −

1
2
(
be12,0 + be22,0

)
− 1

2
(
be12,1 + be22,1

)]
t22

+
[
c1,0 −

1
2
(
ce11,0 + ce21,0

)
− 1

2
(
ce11,1 + ce21,1

)]
t1 +

[
c2,0 −

1
2
(
ce12,0 + ce22,0

)
− 1

2
(
ce12,1 + ce22,1

)]
t2

+
[
d1,0 −

1
2
(
de11,0 + de21,0

)
− 1

2
(
de11,1 + de21,1

)]
+
[
d2,0 −

1
2
(
de12,0 + de22,0

)
− 1

2
(
de12,1 + de22,1

)]
(10)

A more general way to express 10 is given by:

c1 =
{
N−1∑
n=1

ai,0 − G−1∑
j=0

1
2
(
ae1i,j + ae2i,j

) t3 +
N−1∑
n=1

bi,0 − G−1∑
j=0

1
2
(
be1i,j + be2i,j

) t2
+

N−1∑
n=1

ci,0 − G−1∑
j=0

1
2
(
ce1i,j + ce2i,j

) t+
N−1∑
n=1

di,0 − G−1∑
j=0

1
2
(
de1i,j + de2i,j

)}1 (t ∈ [ti−1, ti])

(11)

where G are the number of sifting steps to stop the sifting procedure and hence,
identify the first IMF. Here G = 2.
Define now cD as the D− th extracted IMF. The number of sifting steps required
to extract this IMF is the sum of all the previous ones and the ones necessary to
extract it. We define it as Q. Therefore, the D − th IMF can be expressed as:

cD = c0 −
Q−1∑
i=0

mD,i =
{
N−1∑
i=1

ai,0 − Q−1∑
j=0

1
2
(
ae1i,j + ae2i,j

) t3 +
N−1∑
i=1

bi,0 − Q−1∑
j=0

1
2
(
be1i,j + be2i,j

) t2
N−1∑
i=1

ci,0 − Q−1∑
j=0

1
2
(
ce1i,j + ce2i,j

) t+
N−1∑
i=1

di,0 − Q−1∑
j=0

1
2
(
de1i,j + de2i,j

)}1 (t ∈ [ti−1, ti])

(12)

By considering the following equalities:

• aQi = ai,0 −
∑Q−1
j=0

1
2

(
ae1i,j + ae2i,j

)
• bQi = bi,0 −

∑Q−1
j=0

1
2

(
be1i,j + be2i,j

) • cQi = ci,0 −
∑Q−1
j=0

1
2

(
ce1i,j + ce2i,j

)
• dQi = di,0 −

∑Q−1
j=0

1
2

(
de1i,j + de2i,j

)
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The equation 12 can be written as:

cD = c0 −
Q−1∑
i=0

mD,i =
n−1∑
i=1

(
aQi t

3 + bQi t
2 + cQi t+ dQi

)
1 (t ∈ [ti−1, ti]) (13)

Appendix B
The algorithm for each spline is provided in this appendix.

• B-Spline
The notation slightly changes within due to consistency with respect to the
set of knots defined as t := (ti).

Algorithm 3: B-spline
Input: Discrete points (ti, xi)i=1:n on the interval [t0, tn]
Output: Cubic B-Spline
Define k = 3 to obtain a cubic B-spline.

Set Bi,1,t =
{

1 if ti ≤ t ≤ ti+1

0 otherwise

foreach i = 0, . . . n− k − 1 do
foreach j = i, . . . , i+ k − 1 do

Compute αt,kBt,1
Compute

S(t) =
(n−k−1)∑
i=0

Bi,k,t =
(n−k−1)∑
i=0

(i+k−1)∑
j=i

αt,kBt,1

• Natural and clamped cubic spline
The algorithms for a natural cubic spline and a clamped cubic spline are
given by:

Algorithm 4: Natural cubic spline
Input: Discrete points (ti, xi)i=1:n on the interval [t0, tn]
Output: (ai, bi, ci, di)i=0:n−1 spline coefficients
foreach i = 0 . . . n− 1 do

hi = ti+1 − ti; li = 1
hi

(xi+1 − xi)
vi = 2 (hi−1 + hi); ui = 6 (li − li−1); zi = S′′(ti)
to get: ui = hi−1z−1 + vizi + hizi+1

Set z0 = zn = 0 - natural cubic spline boundary condition.
Compute the zi coefficients given by the system above described.
foreach i = n− 1, n− 2, . . . 0 do

ai = zi+1−zi
6hi ;

bi = zi
2 ;

ci = xi+1−xi
hi

− hi 2z−i+zi+1
6 ;

di = xi
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Algorithm 5: Clamped cubic spline
Input: Discrete points (ti, xi)i=1:n on the interval [t0, tn]
Output: (ai, bi, ci, di)i=0:n−1 spline coefficients
foreach i = 0 . . . n− 1 do

hi = ti+1 − ti; li = 1
hi

(xi+1 − xi)
vi = 2 (hi−1 + hi); ui = 6 (li − li−1); zi = S′′(xi)
to get: ui = hi−1z−1 + vizi + hizi+1

Set z0 = 3l0
h0
− 3x′0

h0
− z1

2 and zn = 3x′n
hn−1

− 3bn−1
hn−1

− zn−1
2 - clamped cubic spline

boundary condition.
Compute the zi coefficients through a tridiagonal system.
foreach i = n− 1, n− 2, . . . 0 do

ai = zi+1−zi
6hi ;

bi = zi
2 ;

ci = xi+1−xi
hi

− hi 2z−i+zi+1
6 ;

di = xi

• Akima Splines

Algorithm 6: Akima spline
Input: Discrete points (ti, xi)i=1:n on the interval [t0, tn]
Output: (ai, bi, ci, di)i=0:n−1 spline coefficients
Set m0 = 2m1 −m2, m1 = 2m2 −m3, mN−1 = 2mN−2 −mN−2 and
mN = 2mN−1 −mN−2.
foreach i = 2 . . . n− 2 do

Compute the quantities: mi−2 = xi−1−xi−2
ti−1−ti−2

S′(ti) = |mi+2−mi+1|(mi−1)+|mi−1−mi−2|(mi+1)
|mi+2−mi+1|+|mi−1−mi−2|

foreach i = 0 . . . n− 1 do
di = xi
ci = S′(ti)
bi = [3(xi+1−xi)/(ti+1−ti )−2S′(ti)−S′(ti+1)]

ti+1−ti
ai = [S′(ti)+S′(ti+1)−2(xi+1−xi)/(ti+1−ti)]

(ti+1−ti)2

• The segment power function
The algorithm used to implement this spline is the following:
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Algorithm 7: Segment power function algorithm
Input: Discrete points (ti, xi)i=1:n on the interval [t0, tn]
Output: S(t) spline
foreach i = 0 . . . n− 1 do

– interpolate Pi−1, Pi, Pi+1 according to 3.44 as follows:

Si(t) =


(

t−ti
ti−1−ti

)β [ (ti+1−ti)xi−1−(ti−ti−1)xi+1
ti+1−ti−1

]
+ xi+1−xi−1

ti+1−ti−1
(t− ti) + xi, t ≤ ti,(

t−ti
ti+1−ti

)β [ (ti+1−ti)xi−1−(ti−ti−1)xi+1
ti+1−ti−1

]
+ xi+1−xi−1

ti+1−ti−1
(t− ti) + xi, t ≥ ti,

with β = 2.5 and Si(t) single valued smooth curve.

– interpolate Pi, Pi+1, Pi+2 according to the above representation to obtain
Si+1(t)

– Splice the two curves Si(t) and Si+1(t) as:

S(t) = ti+1 − t
ti+1 − ti

Si(t) + t− ti
ti+1 − ti

Si+1(t)

After having spliced every Si(t), the final result is S(t) over [t0, tn]

• Binomial Operator
The algorithm of this alternative procedure to decompose a signal is pre-
sented below:
Algorithm 8: EMD sifting procedure through B-spline
Input: Discrete points (ti, x(ti))i=1:n on the interval [0, T ]
Output: IMF’s basis functions
repeat

repeat
– Identify all the local extrema of x(t)

– Apply the operator Vth,k to the signal x

– Compute h = s− Vth,k

until an IMF c(t) is obtained;
Update the initial data by subtracting the obtained IMF,
x(t)← x(t)− c(t).

until Having obtained a tendency r(t) (a curve with at most one extremum)
from the updated data;
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●

●
●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

−10

−5

0

5

10

−10 0 10
Y1

Y
2

Stat.−1

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−20

−10

0

10

20

−10 0 10
Y1

Y
2

Stat.−2

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

● ●
●

●●

●
●

●

●

●

●

−10

−5

0

5

10

15

−10 −5 0 5 10
Y1

Y
2

Stat.−3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−10

0

10

−10 0 10 20
Y1

Y
2

Stat.−K

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

−10

0

10

−10 0 10
Y1

Y
2

Stat.−K+1

Voice ● Speaker1 Synthetic female

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●● ●

●

●

●

●●

●

●

●●

−10

−5

0

5

10

−10 0 10
Y1

Y
2

Stat.−1

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

● ●●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●●

●

●

●

●●

−10

−5

0

5

10

−10 −5 0 5 10
Y1

Y
2

Stat.−2

●
● ●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●
● ● ●

●●

●

●

●

●

●
●

●

●
●●

−15

−10

−5

0

5

10

−10 −5 0 5 10
Y1

Y
2

Stat.−3

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●●
● ●

● ●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●

−10

−5

0

5

10

−10 −5 0 5 10
Y1

Y
2

Stat.−K

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●
● ●

●

●●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●●

−10

0

10

−10 0 10
Y1

Y
2

Stat.−K+1

Voice ● Speaker2 Synthetic male

Figure 1: Results of t-SNE for the statistics of Speaker 1 (top panels) and Speaker
2 (bottom panels) versus the two different synthetic voices respectively. In each case,
a PCA step was applied in each case to reduce the initial data dimensionality (from
70 to 50). The axes represent the two dimensions identified by the t-SNE algorithm
denoted as Y 1 and Y 2. 285
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Figure 2: Results of t-SNE for the spline coefficients of Speaker 1 (top panels) and
Speaker 2 (bottom panels) versus the two different synthetic voices respectively. For
each speakers, 5 sub-plots are given related to each IMF taken into account. A PCA
step was applied to reduce the initial data dimensionality (from 180000 to 200). The
axes represent the two dimensions identified by the t-SNE algorithm denoted as Y 1
and Y 2.

Appendix D
In this document, we present further spectrograms for the same voice samples
of Figure 5 of the main paper with a wider frequency interval and the spectro-
grams of the corresponding IMFs in Figure 4. Since we recorded each signal at a
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sampling frequency of 44.1 kHz, we check a higher range of frequencies. What it
is possible to observe is that for a female voice, formants seem to be spread out
between 0 to 20 kHz; for a male voice instead, the majority of the formants are
all concentrated at the very low frequencies. In the third panel, related to the
Synthetic Voice, energy seems to be cut at a certain threshold; by being gener-
ated as the sum of past coefficients, a natural threshold is always given for the
synthetic voice. To provide further evidence of our aim in taking MFCCs of the
IMFs, we also compute spectrograms of the extracted IMFs of the signals shown
in Figure 5. Figure 4 presents the results in three panels related to Speaker 1,
Speaker 2 and the Synthetic voice. Same frequency range and measure of time
(milliseconds) are considered. In each panel, there are five sub-figures showing
spectrograms of the IMFs. It can be observed that no formants are detected
by the last last IMF γk−1(t′) and the residual γk(t′). By looking at Speaker 1,
most of the formant frequencies are identified by the first three IMFs. Higher
formants seem to be recognised by both γ1(t′) and γ2(t′), as they contain the
highest frequency content. While γ3(t′) seems to detect the first formant along
with the glottal source or fundamental frequency F0. Such findings can be better
visible in the spectrograms for Speaker 2; here, most of the formants are in γ1(t′).
Differently, γ2(t′) seems to detect only the first formant, while γ3(t′) seems bet-
ter to catch the fundamental frequency. For the spectrograms of the Synthetic
voice, γ1(t′) appears to detect much less frequency formants information; indeed,
most of it seems to appear later in γ2(t′) and γ3(t′). This differences could be
of particular relevance when it comes to the computation of the MFCCs of the
IMFs and their discriminatory power.

Figure 3: From the top to the bottom: spectrograms of one the sentences for Speaker
1, Speaker 2 and Synthetic voice respectively . The x-axis represents the time in
milliseconds while the y-axis is the frequency in Hz (range from 0 to 25000Hz).
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Figure 4: Spectrograms of the IMFs extracted by signals represented in 8.4. They
refer to Speaker 1, Speaker 2 and the synthetic voice. There are five sub-figures for
each panel showing in order γ1(t′), γ2(t′), γ3(t′), γk(t′) and γk+1(t′).
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Appendix E
In this section, we describe the results obtained in the in-sample analysis given
in appendix 10.2. Given the low performances of IMFs and instantaneous fre-
quencies for both speakers across all the other kernels, their excellent results for
the Laplace and the Bessel functions are ignored. This is likely an overfit due
to different training of the hyperparameters above remarked. By focusing on
the statistics, high results of the ones extracted on instantaneous frequency and
spline coefficients are provided within both Speakers. Performances seem to de-
crease with IMF index, which supports evidence that most of the discriminatory
power, even for this specific feature should lie in higher frequency components.
By focusing on the statistics of the IMFs instead, they provide good separation
for Speaker 1 and Speaker 2. While for the former only the statistics of γ3(t′) are
well-performing, when it comes to the male voice instead, this feature gives good
result for the first three IMFs in the majority of the kernels. Regarding spline
coefficients, they appear to overfit in most of the investigated cases. In general,
the scores of Speaker 2 appear to be overall higher than the ones of Speaker 1.
The next step is the study of the EMD-MFCC features. Within 10.2, table 3
shows results related to the SVMs of both speakers. By looking at Speaker 1,
the MFCCs of the first IMF provide, overall, excellent separation and, in some
cases, overfit. By moving across the IMFs, performances decrease with the IMF
index, as observed in figure 8.8. Focusing on the index of the coefficients within
the first two IMFs, all of them provide high accuracies. MFCCs of γ3(t′) are high
in general with only a few exceptions. Results concerning γk(t′) and γk+1(t′)
are instead constant around a score of 0.500. SVMs for Speaker 2 against the
synthetic voice show similar performances, with γ1(t′) giving fewer coefficients
with perfect discrimination. In general, all the coefficients of the first three IMFs
perform well, whereas, the last IMF and the residual perform poorly for the
majority of the coefficients.

289



M
.C

am
pi

Kernel IMF Index Statistics IF Statistics Spline Coefficients Statistics IMFs

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

Radial Basis

1 0.990 0.990 0.980 1.000 0.980 0.980 0.980 0.961 1.000 0.960 0.670 0.673 0.666 0.680 0.660
2 0.970 0.970 0.943 1.000 0.940 0.990 0.990 0.980 1.000 0.980 0.670 0.685 0.654 0.720 0.620
3 0.970 0.969 0.979 0.960 0.980 0.970 0.970 0.943 1.000 0.940 0.750 0.736 0.777 0.700 0.800

K-1 0.610 0.561 0.641 0.500 0.720 0.990 0.990 0.980 1.000 0.980 0.540 0.616 0.528 0.740 0.340
K 0.580 0.588 0.576 0.600 0.560 0.970 0.970 0.943 1.000 0.940 0.570 0.605 0.559 0.660 0.480

Laplace

1 1.000 1.000 1.000 1.000 1.000 0.990 0.990 0.980 1.000 0.980 0.650 0.623 0.674 0.580 0.720
2 0.970 0.970 0.960 0.980 0.960 0.990 0.990 0.980 1.000 0.98 0.570 0.565 0.571 0.560 0.580
3 0.960 0.959 0.979 0.940 0.980 0.980 0.980 0.961 1.000 0.960 0.710 0.723 0.690 0.760 0.660

K-1 0.610 0.589 0.622 0.560 0.660 0.980 0.979 1.000 0.960 1.000 0.500 0.218 0.500 0.140 0.860
K 0.550 0.526 0.555 0.500 0.600 0.970 0.970 0.943 1.000 0.940 0.500 0.264 0.500 0.180 0.820

Polynomial

1 0.990 0.990 0.980 1.000 0.980 1.000 1.000 1.000 1.000 1.000 0.620 0.406 0.928 0.260 0.980
2 0.970 0.970 0.943 1.000 0.940 0.980 0.980 0.9800 0.980 0.980 0.670 0.702 0.639 0.780 0.560
3 0.970 0.969 0.979 0.960 0.980 1.000 1.000 1.000 1.000 1.000 0.530 0.675 0.515 0.980 0.080

K-1 0.610 0.561 0.641 0.500 0.720 0.990 0.990 0.980 1.000 0.980 0.480 0.490 0.480 0.500 0.460
K 0.580 0.588 0.576 0.600 0.560 0.980 0.980 0.961 1.000 0.960 0.440 0.416 0.434 0.400 0.480

Sigmoid

1 0.990 0.989 1.000 0.980 1.000 0.980 0.980 0.961 1.000 0.960 0.610 0.530 0.666 0.440 0.780
2 0.980 0.980 0.980 0.980 0.980 0.990 0.990 0.980 1.000 0.980 0.595 0.735 0.500 0.820
3 0.940 0.938 0.958 0.920 0.960 0.990 0.990 0.980 1.000 0.980 0.757 0.735 0.780 0.720 1.000

K-1 0.610 0.613 0.607 0.620 0.600 0.980 0.980 0.961 1.000 0.960 0.530 0.525 0.530 0.520 0.540
K 0.530 0.543 0.528 0.560 0.500 0.980 0.980 0.961 1.000 0.960 0.440 0.440 0.440 0.440 0.440

Bessel

1 0.990 0.989 1.000 0.980 1.000 0.990 0.990 0.980 1.000 0.980 0.511 0.611 0.440 0.720 0.975
2 0.980 0.980 0.961 1.000 0.960 1.000 1.000 1.000 1.000 1.000 0.560 0.333 0.687 0.220 0.900
3 0.950 0.950 0.941 0.960 0.940 0.980 0.979 1.000 0.960 1.000 0.810 0.800 0.844 0.760 0.860

K-1 0.550 0.457 0.575 0.380 0.720 0.940 0.937 0.978 0.900 0.980 0.500 0.479 0.500 0.460 0.540
K 0.520 0.529 0.519 0.540 0.500 0.990 0.990 0.980 1.000 0.980 0.630 0.626 0.632 0.620 0.640

Vanilla

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.630 0.633 0.627 0.640 0.620
2 0.980 0.980 0.961 1.000 0.960 0.970 0.970 0.943 1.000 0.940 0.710 0.701 0.723 0.68 0.740
3 0.940 0.938 0.958 0.920 0.960 1.000 1.000 1.000 1.000 1.000 0.660 0.711 0.617 0.840 0.480

K-1 0.550 0.536 0.553 0.520 0.580 0.970 0.969 1.000 0.940 1.000 0.460 0.460 0.460 0.460 0.460
K 0.610 0.597 0.617 0.580 0.640 0.980 0.980 0.961 1.000 0.960 0.560 0.551 0.562 0.540 0.580

Table 1: In-sample results of SVMs of Synthetic female voice versus Speaker 1
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Kernel IMF Index Statistics IF Statistics Spline Coefficients Statistics IMFs

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

Radial Basis

1 0.980 0.980 0.961 1.000 0.960 0.980 0.980 0.961 1.000 0.960 0.900 0.900 0.900 0.900 0.900
2 0.840 0.829 0.886 0.780 0.900 0.990 0.989 1.000 0.980 1.000 0.800 0.814 0.758 0.880 0.720
3 0.800 0.800 0.800 0.800 0.800 0.980 0.979 1.000 0.960 1.000 0.840 0.840 0.840 0.840 0.840

K-1 0.850 0.854 0.830 0.880 0.820 0.980 0.979 1.000 0.960 1.000 0.860 0.875 0.790 0.980 0.740
K 0.710 0.681 0.756 0.620 0.800 0.990 0.989 1.000 0.980 1.000 0.880 0.886 0.839 0.940 0.820

Laplace

1 0.990 0.990 0.980 1.000 0.980 0.990 0.989 1.000 0.980 1.00 0.920 0.921 0.903 0.940 0.900
2 0.870 0.863 0.911 0.820 0.920 0.970 0.970 0.943 1.000 0.940 0.810 0.825 0.762 0.900 0.720
3 0.770 0.792 0.721 0.880 0.660 0.980 0.979 1.000 0.960 1.000 0.920 0.923 0.888 0.960 0.880

K-1 0.860 0.872 0.800 0.960 0.760 0.990 0.990 0.980 1.000 0.980 0.830 0.841 0.789 0.900 0.760
K 0.660 0.738 0.600 0.960 0.360 0.980 0.980 0.961 1.000 0.960 0.910 0.914 0.872 0.960 0.860

Polynomial

1 0.960 0.961 0.925 1.000 0.920 1.000 1.000 1.000 1.000 1.000 0.750 0.796 0.671 0.980 0.520
2 0.690 0.755 0.623 0.960 0.420 1.000 1.000 1.000 1.000 1.000 0.670 0.751 0.602 1.000 0.340
3 0.59 0.709 0.549 1.000 0.180 1.000 1.000 1.000 1.000 1.000 0.610 0.719 0.561 1.000 0.220

K-1 0.900 0.909 0.833 1.000 0.800 0.990 0.990 0.980 1.000 0.980 0.840 0.862 0.757 1.000 0.680
K 0.600 0.714 0.555 1.000 0.200 1.000 1.000 1.000 1.000 1.000 0.720 0.781 0.641 1.000 0.440

Sigmoid

1 0.990 0.990 0.980 1.000 0.980 1.000 1.000 1.000 1.000 1.000 0.840 0.862 0.757 1.000 0.680
2 0.830 0.841 0.789 0.900 0.760 0.990 0.989 1.000 0.980 1.000 0.740 0.786 0.666 0.960 0.520
3 0.760 0.785 0.709 0.880 0.640 1.000 1.000 1.000 1.000 1.000 0.800 0.814 0.758 0.880 0.720

K-1 0.850 0.859 0.807 0.920 0.780 1.000 1.000 1.000 1.000 1.000 0.830 0.824 0.851 0.800 0.860
K 0.760 0.769 0.740 0.800 0.720 1.000 1.000 1.000 1.000 1.000 0.780 0.819 0.694 1.000 0.560

Bessel

1 1.000 1.000 1.000 1.000 1.000 0.510 0.671 0.505 1.000 0.020 0.760 0.806 0.675 1.000 0.520
2 0.790 0.774 0.837 0.720 0.860 0.980 0.979 1.000 0.960 1.000 0.640 0.735 0.581 1.000 0.280
3 0.710 0.728 0.684 0.780 0.640 0.500 0.666 0.500 1.000 0.000 0.550 0.181 1.000 0.1000 1.000

K-1 0.860 0.865 0.833 0.900 0.820 1.000 1.000 1.000 1.000 1.000 0.720 0.781 0.641 1.000 0.440
K 0.620 0.720 0.569 0.980 0.260 0.520 0.675 0.510 1.000 0.040 0.730 0.787 0.649 1.000 0.460

Vanilla

1 0.980 0.980 0.961 1.000 0.960 0.990 0.990 0.980 1.000 0.980 0.850 0.869 0.769 1.000 0.700
2 0.780 0.780 0.780 0.780 0.780 1.000 1.000 1.000 1.000 1.000 0.750 0.770 0.711 0.840 0.660
3 0.700 0.693 0.708 0.680 0.720 0.980 0.979 1.000 0.960 1.000 0.800 0.803 0.788 0.820 0.780

K-1 0.810 0.825 0.762 0.900 0.720 0.990 0.990 0.980 1.000 0.980 0.860 0.872 0.800 0.960 0.760
K 0.730 0.732 0.725 0.740 0.720 1.000 1.000 1.000 1.000 1.000 0.910 0.909 0.918 0.900 0.920

Table 2: In-sample results of SVMs of Speaker 2 vs synthetic male voice
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Speaker1 - In sample

MELFCC IMF 1 IMF 2 IMF 3 IMF K-1 IMF K

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.890 0.886 0.914 0.860 0.920 0.830 0.821 0.866 0.780 0.880 0.810 0.800 0.844 0.760 0.860 0.510 0.363 0.518 0.280 0.740 0.560 0.576 0.555 0.600 0.520
2 0.960 0.958 1.000 0.920 1.000 0.900 0.895 0.934 0.860 0.940 0.950 0.949 0.959 0.940 0.960 0.580 0.588 0.576 0.600 0.560 0.460 0.470 0.461 0.480 0.440
3 0.980 0.979 1.000 0.960 1.000 0.880 0.875 0.913 0.840 0.920 0.900 0.901 0.884 0.920 0.880 0.420 0.408 0.416 0.400 0.440 0.470 0.522 0.475 0.580 0.360
4 1.000 1.000 1.000 1.000 1.000 0.920 0.923 0.888 0.960 0.880 0.820 0.826 0.796 0.860 0.780 0.560 0.541 0.565 0.520 0.600 0.560 0.614 0.546 0.700 0.420
5 1.000 1.000 1.000 1.000 1.000 0.660 0.666 0.653 0.680 0.640 0.630 0.584 0.666 0.520 0.740 0.550 0.563 0.547 0.580 0.520 0.470 0.430 0.465 0.400 0.540
6 1.000 1.000 1.000 1.000 1.000 0.850 0.851 0.843 0.860 0.840 0.700 0.716 0.678 0.760 0.640 0.520 0.586 0.515 0.680 0.360 0.500 0.489 0.500 0.480 0.520
7 0.900 0.897 0.916 0.880 0.920 0.980 0.980 0.980 0.980 0.980 0.490 0.474 0.489 0.460 0.520 0.610 0.635 0.596 0.680 0.540 0.510 0.524 0.509 0.540 0.480
8 1.000 1.000 1.000 1.000 1.000 0.880 0.882 0.865 0.900 0.860 1.000 1.000 1.000 1.000 1.000 0.610 0.628 0.600 0.660 0.560 0.590 0.601 0.584 0.620 0.560
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.81 0.800 0.844 0.760 0.860 0.530 0.515 0.531 0.500 0.560 0.530 0.543 0.528 0.560 0.500

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.810 0.795 0.860 0.740 0.880 0.560 0.551 0.562 0.540 0.580 0.540 0.566 0.535 0.600 0.480
11 1.000 1.000 1.000 1.000 1.000 0.990 0.989 1.000 0.980 1.000 0.600 0.565 0.619 0.520 0.680 0.560 0.500 0.578 0.440 0.680 0.560 0.560 0.560 0.560 0.560
12 1.000 1.000 1.000 1.000 1.000 0.950 0.951 0.924 0.980 0.920 0.555 0.545 0.551 0.540 0.560 0.600 0.600 0.600 0.600 0.600 0.510 0.423 0.514 0.360 0.660

Speaker2 - In sample

MELFCC IMF 1 IMF 2 IMF 3 IMF K-1 IMF K

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.840 0.843 0.826 0.860 0.820 0.890 0.888 0.897 0.880 0.900 0.870 0.873 0.849 0.900 0.840 0.940 0.940 0.923 0.960 0.920 0.940 0.940 0.940 0.940 0.940
2 0.850 0.854 0.830 0.880 0.820 0.740 0.734 0.750 0.720 0.760 0.750 0.774 0.704 0.860 0.640 0.780 0.800 0.733 0.880 0.680 0.750 0.747 0.755 0.740 0.760
3 0.900 0.905 0.857 0.960 0.840 0.720 0.740 0.689 0.800 0.640 0.700 0.736 0.656 0.840 0.560 0.810 0.815 0.792 0.840 0.780 0.660 0.673 0.648 0.700 0.620
4 0.680 0.659 0.704 0.620 0.740 0.780 0.796 0.741 0.860 0.700 0.740 0.745 0.730 0.760 0.720 0.780 0.800 0.733 0.880 0.680 0.680 0.673 0.687 0.660 0.700
5 0.920 0.924 0.875 0.980 0.860 0.620 0.641 0.607 0.680 0.560 0.770 0.772 0.764 0.780 0.760 0.810 0.811 0.803 0.820 0.800 0.600 0.642 0.580 0.720 0.480
6 0.980 0.980 0.980 0.980 0.980 0.730 0.737 0.716 0.760 0.700 0.650 0.653 0.647 0.660 0.640 0.780 0.796 0.741 0.860 0.700 0.610 0.666 0.582 0.780 0.440
7 0.970 0.970 0.943 1.000 0.940 0.830 0.821 0.866 0.78 0.88 0.640 0.653 0.629 0.680 0.600 0.800 0.795 0.812 0.780 0.820 0.640 0.700 0.600 0.840 0.440
8 0.870 0.865 0.893 0.840 0.900 0.880 0.882 0.865 0.900 0.860 0.80 0.811 0.767 0.860 0.740 0.800 0.800 0.800 0.800 0.800 0.630 0.666 0.606 0.740 0.520
9 1.000 1.000 1.000 1.000 1.000 0.920 0.924 0.875 0.98 0.860 0.730 0.737 0.716 0.760 0.700 0.810 0.800 0.844 0.760 0.860 0.630 0.593 0.658 0.540 0.720

10 1.000 1.000 1.000 1.000 1.000 0.850 0.854 0.830 0.880 0.820 0.780 0.800 0.733 0.880 0.680 0.780 0.796 0.741 0.860 0.700 0.660 0.679 0.642 0.720 0.600
11 1.00 1.000 1.000 1.000 1.000 0.850 0.854 0.830 0.880 0.820 0.770 0.762 0.787 0.740 0.800 0.840 0.836 0.854 0.820 0.860 0.680 0.666 0.695 0.640 0.720
12 0.990 0.990 0.980 1.000 0.980 0.910 0.912 0.886 0.940 0.880 0.580 0.655 0.555 0.800 0.360 0.800 0.814 0.758 0.880 0.720 0.680 0.709 0.650 0.780 0.580

Table 3: In-sample results of SVMs for both Speakers versus same gender synthetic voices.
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Kernel IMF Index Instantaneous Frequency IMFs Spline Coefficients

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

Radial Basis

1 0.620 0.568 0.657 0.500 0.740 0.520 0.538 0.518 0.560 0.480 1.000 1.000 1.000 1.000 1.000
2 0.670 0.645 0.697 0.600 0.740 0.470 0.158 0.384 0.100 0.840 0.960 0.958 1.000 0.920 1.000
3 0.580 0.511 0.611 0.440 0.720 0.430 0.359 0.410 0.320 0.540 0.980 0.980 0.980 0.980 0.980

K-1 0.520 0.612 0.513 0.760 0.280 0.560 0.476 0.588 0.400 0.720 0.980 0.979 1.000 0.960 1.000
K 0.520 0.314 0.550 0.220 0.820 0.520 0.489 0.522 0.460 0.580 1.000 1.000 1.000 1.000 1.000

Laplace

1 0.935 0.930 1.000 0.870 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.990 1.000 0.990
2 0.875 0.861 0.962 0.780 0.970 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.940 0.936 0.988 0.890 0.990 1.000 1.000 1.000 1.000 1.000 0.990 0.989 1.000 0.980 1.000

K-1 0.965 0.963 1.000 0.930 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.990 1.000 0.990
K 0.930 0.928 0.947 0.910 0.950 0.880 0.892 0.806 1.000 0.760 0.995 0.995 0.990 1.000 0.990

Polynomial

1 0.630 0.654 0.614 0.700 0.560 0.450 0.466 0.452 0.480 0.420 1.000 1.000 1.000 1.000 1.000
2 0.640 0.689 0.606 0.800 0.480 0.500 NA NA 0.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.680 0.692 0.666 0.720 0.640 0.500 NA NA 0.000 1.000 1.000 1.000 1.000 1.000 1.000

K-1 0.570 0.547 0.577 0.520 0.620 0.490 0.504 0.490 0.520 0.460 1.000 1.000 1.000 1.000 1.000
K 0.460 0.602 0.476 0.820 0.100 0.580 0.618 0.566 0.680 0.480 1.000 1.000 1.000 1.000 1.000

Sigmoid

1 0.610 0.589 0.622 0.560 0.66 0.450 0.537 0.463 0.640 0.260 1.000 1.000 1.000 1.000 1.000
2 0.620 0.558 0.666 0.480 0.760 0.530 0.459 0.540 0.400 0.660 1.000 1.000 1.000 1.000 1.000
3 0.710 0.632 0.862 0.500 0.920 0.480 0.518 0.482 0.560 0.400 1.000 1.000 1.000 1.000 1.000

K-1 0.530 0.338 0.571 0.240 0.820 0.480 0.458 0.478 0.440 0.520 1.000 1.000 1.000 1.000 1.000
K 0.450 0.552 0.465 0.680 0.220 0.570 0.612 0.557 0.680 0.460 1.000 1.000 1.000 1.000 1.000

Bessel

1 0.805 0.784 0.876 0.710 0.900 1.000 1.000 1.000 1.000 1.000 0.975 0.974 0.989 0.960 0.990
2 0.755 0.723 0.831 0.640 0.870 0.870 0.884 0.793 1.000 0.740 0.960 0.958 1.000 0.920 1.000
3 0.785 0.777 0.806 0.750 0.820 0.975 0.975 0.961 0.990 0.960 0.965 0.965 0.951 0.980 0.950

K-1 0.535 0.130 1.000 0.070 1.000 0.985 0.984 1.000 0.970 1.000 0.970 0.969 0.989 0.950 0.990
K 0.585 0.314 0.904 0.190 0.980 0.820 0.833 0.775 0.900 0.740 0.990 0.990 0.990 0.990 0.990

Vanilla

1 0.620 0.641 0.607 0.680 0.560 0.380 0.392 0.384 0.400 0.360 0.990 0.990 0.980 1.000 0.980
2 0.590 0.568 0.600 0.540 0.640 0.520 0.428 0.529 0.360 0.680 1.000 1.000 1.000 1.000 1.000
3 0.610 0.606 0.612 0.600 0.620 0.440 0.404 0.431 0.380 0.500 0.980 0.980 0.980 0.980 0.980

K-1 0.53 0.543 0.528 0.560 0.500 0.530 0.505 0.533 0.480 0.580 1.000 1.000 1.000 1.000 1.000
K 0.390 0.429 0.403 0.460 0.320 0.530 0.560 0.526 0.600 0.460 1.000 1.000 1.000 1.000 1.000

Table 4: In-sample results of SVMs of Synthetic voice vs Speaker 1.
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Kernel IMF Index Instantaneous Frequency IMFs Spline Coefficients

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

Radial Basis

1 0.600 0.583 0.608 0.560 0.640 0.500 0.603 0.500 0.760 0.240 0.990 0.990 0.980 1.000 0.980
2 0.550 0.545 0.551 0.540 0.560 0.520 0.500 0.521 0.480 0.560 1.000 1.000 1.000 1.000 1.000
3 0.560 0.592 0.551 0.640 0.480 0.470 0.629 0.483 0.900 0.040 1.000 1.000 1.000 1.000 1.000

K-1 0.630 0.713 0.582 0.920 0.340 0.690 0.710 0.666 0.760 0.620 0.980 0.980 0.961 1.000 0.960
K 0.540 0.656 0.523 0.880 0.200 0.730 0.703 0.780 0.640 0.820 0.980 0.980 0.961 1.000 0.960

Laplace

1 0.920 0.923 0.881 0.970 0.870 0.565 0.230 1.000 0.130 1.000 0.955 0.953 0.978 0.930 0.980
2 0.960 0.960 0.942 0.980 0.940 0.985 0.984 1.000 0.970 1.000 0.845 0.824 0.948 0.730 0.960
3 0.955 0.955 0.950 0.960 0.950 0.995 0.994 1.000 0.990 1.000 0.930 0.931 0.913 0.950 0.910

K-1 0.980 0.980 0.970 0.990 0.970 1.000 1.000 1.000 1.000 1.000 0.955 0.955 0.941 0.970 0.940
K 0.980 0.980 0.970 0.990 0.970 0.910 0.901 1.000 0.820 1.000 0.975 0.975 0.970 0.980 0.970

Polynomial

1 0.580 0.543 0.595 0.500 0.660 0.570 0.690 0.539 0.960 0.180 1.000 1.0000 1.000 1.000 1.000
2 0.560 0.450 0.600 0.360 0.760 0.530 0.113 1.000 0.06 1.000 0.990 0.990 0.980 1.000 0.980
3 0.620 0.577 0.650 0.520 0.720 0.510 0.039 1.000 0.020 1.000 1.000 1.000 1.000 1.000 1.000

K-1 0.740 0.697 0.833 0.600 0.880 0.660 0.645 0.673 0.620 0.700 1.000 1.000 1.000 1.000 1.000
K 0.670 0.611 0.742 0.520 0.820 0.760 0.777 0.724 0.840 0.680 1.000 1.000 1.000 1.000 1.000

Sigmoid

1 0.620 0.641 0.607 0.680 0.560 0.530 0.447 0.542 0.38 0.68 0.980 0.979 1.000 0.960 1.000
2 0.530 0.515 0.531 0.500 0.560 0.530 0.534 0.529 0.540 0.520 0.99 0.989 1.000 0.980 1.000
3 0.520 0.520 0.520 0.520 0.520 0.420 0.452 0.428 0.480 0.360 0.980 0.979 1.000 0.960 1.000

K-1 0.760 0.773 0.732 0.820 0.700 0.600 0.545 0.631 0.480 0.720 1.000 1.000 1.000 1.000 1.000
K 0.590 0.577 0.595 0.560 0.620 0.550 0.545 0.551 0.540 0.560 1.000 1.000 1.000 1.000 1.000

Bessel

1 0.765 0.772 0.747 0.800 0.730 0.745 0.657 1.000 0.490 1.000 0.655 0.729 0.600 0.930 0.380
2 0.795 0.748 0.968 0.610 0.980 0.915 0.907 1.000 0.830 1.000 0.505 0.595 0.503 0.730 0.280
3 0.795 0.748 0.968 0.610 0.980 0.580 0.391 0.710 0.270 0.890 0.765 0.801 0.693 0.950 0.580

K-1 0.795 0.822 0.725 0.950 0.640 0.980 0.979 1.000 0.960 1.000 0.605 0.710 0.560 0.970 0.240
K 0.795 0.822 0.725 0.950 0.640 0.530 0.113 1.000 0.060 1.000 0.745 0.791 0.668 0.970 0.520

Vanilla

1 0.590 0.577 0.595 0.560 0.620 0.540 0.465 0.555 0.400 0.680 1.000 1.000 1.000 1.000 1.000
2 0.530 0.459 0.540 0.400 0.660 0.500 0.537 0.500 0.580 0.420 1.000 1.000 1.000 1.000 1.000
3 0.620 0.641 0.607 0.680 0.560 0.510 0.449 0.512 0.400 0.620 1.000 1.000 1.000 1.000 1.000

K-1 0.770 0.776 0.754 0.800 0.740 0.560 0.521 0.571 0.480 0.640 1.000 1.000 1.000 1.000 1.000
K 0.620 0.568 0.657 0.500 0.740 0.530 0.543 0.528 0.560 0.500 1.000 1.000 1.000 1.000 1.000

Table 5: In-sample results of SVMs of Speaker 2 vs synthetic male voice.
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Appendix F
Results of the out-of-sample analysis are provided in tables 15 for Speaker 1 and
2 and 5 for Speaker 2. The statistics of the IMFs confirm similar behaviour as in
the in-sample analysis. Such feature performs highly well in the first three IMFs
across all the kernels for the female voice. For the male ones instead, within
the radial basis function and the Laplace kernel, the statistics of the first three
IMFs present high scores; while, within the sigmoid kernel, the ones related to
γk(t′) provides better performances. In the case of Bessel function only γ3(t′)
gives good results and for the linear kernels, statistics of γ1(t′) and γ2(t′) are
the best performing. When it comes to the statistic of the spline coefficients,
several aspects can be found. In the case of Speaker 1 versus female synthetic
voice, low accuracies can be seen in most kernels apart from the Laplace and the
Sigmoid ones. In these two cases, all the statistics present good performances.
For Speaker 2 versus male synthetic voice, only γ3(t′) shows good performances
of these two kernels. Contrasting behaviours of the statistics of the I.F. are also
found: while in the case of Speaker 1 all the cases show low scores of the perfor-
mances, for Speaker 2 instead, this feature seem to carry a good discriminatory
power with respect to γ1(t′), γ2(t′) and γ3(t′) in the case of Radial Basis, Laplace
and Bessel kernels.
The spline coefficients, the IMFs and the instantaneous frequencies do no provide
good performances (some exceptions for Speaker 1 within the spline coefficients).
Table 17 presents the out-of-sample analysis for the EMD-MFCC features. Per-
formances of Speaker 1 versus the synthetic voice related to γ1(t′) are low for the
first half of the coefficients, while, MFCCs 7, 8, 9 and 10 provide high scores. For
γ2(t′), only two coefficients perform well: the fourth one and the eighth one. Re-
garding the coefficients of γ3(t′), high performances are provided by coefficients
5, 9 and 12; whereas γk(t′) does not provide any coefficient with performances
scores higher than 0.700. Only two coefficients of γk+1(t′) show a prediction
power: the first and eighth ones. Compared to the in-sample analysis, γ1(t′)
presents most of its prediction power in coefficients of higher frequencies; mov-
ing across the IMFs reduces the performances scores. SVMs for Speaker 2 versus
the male synthetic voice look different; for γ1(t′), higher MFCCs coefficients carry
a stronger prediction power. Same for γ2(t′), even if coefficients 8 and 12 also
perform well. For γ3(t′) instead, both highest and lowest coefficients provide high
accuracies scores. Regarding γk(t′) and γk+1(t′), while for the in-sample analysis
no coefficients seem to carry a discriminatory power, table 17 shows that several
coefficients in both IMFs provide high performances.
Discrepancies of accuracy found in favour of Speaker 2 across both sets of fea-
tures may be addressed by the spreading of the energy of the synthetic male voice
across a higher range of frequencies compared to classical male voices. Such a
fact may be strictly related to the synthetic voice generator taken into account.
By focusing on the statistics first, the one related to the instantaneous frequen-
cies may further justified the above fact: what is indeed found is that statistics
of I.F. for the male case, especially the one related to higher frequencies, carry
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discriminatory power for some of the kernels. While in the case of a female voice,
this result is not found. Therefore, the frequency domain may be a more power-
ful tool for male voices. Regarding the statistics of the spline coefficients, these
show low performances in both speakers apart for some kernels within the female
case. Further investigation with this respect is required. The IMFs statistics of
γ1(t′), γ2(t′) and γ3(t′) better classify different signal sources in the female case;
while, for Speaker 2 versus the male voice the statistics of γ1(t′) are providing
better performances.
Failures or poor achievements of the IMFs and instantaneous frequencies are pos-
sibly due to major computational issues; whereas, the spline coefficients overfit
in almost all the explored cases. One objective of future research consists in se-
lecting the optimal number of points so that coefficients which are more efficient
in this classification task can be generated.
Overall, the EMD-MFCC features show the best results. Table 17 provides that
MFCCs of Speaker 1 versus the synthetic voice concerning γ1(t′) provide bet-
ter performances. In particular, MFCCs of high frequencies carry the majority
of the prediction power. This may be due to more intense formants of a real
voice compared to a spoofed one, resulting in less energy concentration at higher
MFCCs; another reason may be a different location of the formants of an au-
thentic female voice and a synthetic female one. Therefore, if we have a female
voice and a female attack, the highest MFCCs of the first IMF represent the
discriminative feature. Spectrograms in 10.2 further highlight such a fact: γ1(t′)
captures most of the formants of Speaker 1, which, compared to the synthetic
voice ones, seem highly stronger. Moreover, spectrograms with higher frequency
ranges show that the artificial voice is cut at a certain threshold, and the MFCCs
may detect such a fact. According to Mendoza et al. (1996), higher frequencies
in female voices at the level of the third formant are affected by aspiration noise,
producing “breathiness”; our finding are in line to such work in the sense that this
aspiration noise is probably not present within a synthesised voice and MFCCs
of γ1(t′) captures this trait.
In the case of a male voice and a male attack instead, a slightly different analysis
is required. Most of the prediction power seems to be found within higher coeffi-
cients of both γ1(t′) and γ2(t′), which further justifies the finding of the statistics
extracted on the instantaneous frequencies. Such a fact provide additional evi-
dence that a synthetic male voice may, in practice, show similar behaviour to a
synthetic female one and, therefore, coefficients of IMF2 catching other formants
which are not aligned as in the female case provide further power to differentiate
bonafide and spoofed male voices.
To further motivate the use of the EMD basis functions against the use of the
same engineered features applied to the original signal, a baseline reference study
is provided in 10.2. Statistics of the IMFs extracted on the raw data provide
perfect discrimination in the case of Speaker 1 versus the synthetic female voice
for all kernels; while, in the male case, low performances are achieved in almost all
kernels. To further investigate the female case, a frequency alignment changing
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the tone or pitch of Speaker is carried simulating the use of a specific machine in
Speech Spoofing attacks which equalise voices to perform a more sophisticated
attack. Table 9.4 shows the results. From perfect discrimination, some of the
results dropped down. However, high scores are still obtained by only employing
statistics of the raw data. Therefore, another interesting finding is provided: by
removing the skewness, which results to be positive in a real female voice and
negative for a synthetic female one, then the results decreased steeply to 0.5
scores of accuracy. Therefore, the skewness may be a useful feature in terms of
discriminatory power between female synthetic and real voices. Further evidence
of such a fact would be explored.
When it comes to the same analysis of the raw data on the MFCCs, perfect
discrimination is achieved within the male case, while in the female one only
the first and the last coefficient seems to perform well. By applying the same
reasoning and conducting an alignment in the pitch or tone for the male voice, the
performances drop-down, as shown in table 9.8. To further justifies such results,
which seem to be non-consistent with the IMFs, the study of the bandpass filter
is carried. Results are printed in 10.2 only for the case affecting the frequency
range of 4kHz to 5kHz, hence higher formants, and only for the first three IMFs.
Further investigation is required since other formants, i.e. frequency ranges have
to be taken into account.
By bearing in mind the discussion provided at the beginning of this section
which regards the assumption of stationarity of speech, the bandpass filter study
is provided to offer a clearer insight of the speaker verification problem in the two
settings of male and female attacks. By firstly focusing on the performance of
the MFCCs on the original signal with a bandpass filter affecting 4kHz to 5kHz
in table 9.14, the following considerations need to be made. In comparison to the
ones given in table 9.6, performances increase overall. Reasons behind this are
enclosed by the use of a bandpass filter; it highlights formants at those frequencies
and, by doing so, the resulting new formant will be strongly more stationary. As a
result, the MFCCs, which exploit the use of a stationary transform as the Discrete
Fourier Transform, better detect the underlying structure of the harmonics of the
speech. Therefore, higher performances can be obtained. This is also reflected
within the IMFs, which in general, show better performances (in the case of the
bandpass filter, results of only the first three IMFs are considered).
In the case of the male voice, by comparing results of table 9.7 and table 9.18,
adding a bandpass filter at high frequencies strongly affects the performances
causing them to decrease much lower. Motivations behind this that has to be
further explored are the followings: (1) as previously observed through the statis-
tics on the IF or through the spectrograms, formants of the synthetic male voice
seem to lie at a much higher frequencies than real male voice Speaker 2. (2)
Compared to female formants, male formants are much more stationary. There-
fore the MFCCs of the original signal performs perfectly. By adding additional
stationarity at a specific frequency makes them much less difficult to distinguish,
and the MFCCs applied on the bandpass filtered raw data poorly fail. However,
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the MFCCs of the second and the third IMFs are still able to capture differences
of the signals. Further investigations are required to motivate such a finding. A
male voice is more stationary compared to female ones, and therefore different
strategies have to be considered.
In the case of cross-cases, identifying guidelines concerning the intensity or
strength of the voices with respect genders seem to be an unresolved issue (Sto-
larski, 2017, Gelfer and Young, 1997). In general, however, no significant differ-
ence is revealed between men and women in voice loudness (resulting in different
intensity of the formants) and, therefore, providing recommendations in our con-
text to distinguish real and synthetic signals with the added contrast of genders
remains a challenging task requiring more investigations.
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Experiment 1

Dataset 1

Kernel IMF Index Statistics IF (median filtered) Statistics Spline Coefficients Statistics IMFs

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

Radial Basis

1 0.420 0.440 0.430 0.450 0.400 0.500 0.666 0.500 1.000 0.000 0.925 0.918 1.000 0.850 1.000
2 0.820 0.840 0.760 0.950 0.650 0.500 0.666 0.500 1.000 0.000 0.975 0.974 1.000 0.950 1.000
3 0.650 0.630 0.670 0.600 0.850 0.500 0.666 0.500 1.000 0.000 0.975 0.974 1.000 0.950 1.000

K-1 0.520 0.420 0.540 0.350 0.750 0.525 0.677 0.512 1.000 0.050 0.550 0.470 0.571 0.400 0.700
K 0.320 0.340 0.330 0.350 0.300 0.500 0.666 0.500 1.000 0.000 0.425 0.439 0.428 0.450 0.400

Laplace

1 0.170 NA 0.000 0.000 0.400 0.850 0.869 0.769 1.000 0.700 0.850 0.823 1.000 0.700 1.000
2 0.350 0.070 0.120 0.050 0.650 0.850 0.869 0.769 1.000 0.700 0.975 0.974 1.000 0.950 1.000
3 0.320 NA 0.00 0.00 0.85 0.800 0.833 0.714 1.000 0.600 0.975 0.974 1.000 0.950 1.000

K-1 0.500 0.330 0.500 0.250 0.750 0.500 NA NA 0.000 1.000 0.500 NA NA 0.000 1.000
K 0.350 0.350 0.350 0.350 0.300 1.000 1.000 1.000 1.000 1.000 0.600 0.529 0.642 0.450 0.750

Polynomial

1 0.500 NA NA 0.000 0.400 0.450 NA 0.000 0.000 0.900 0.600 0.333 1.000 0.200 1.000
2 0.380 NA 0.000 0.000 0.650 0.500 NA NA 0.000 1.000 0.975 0.974 1.000 0.950 1.000
3 0.420 NA 0.000 0.000 0.850 0.950 0.952 0.909 1.000 0.900 1.000 1.000 1.000 1.000 1.000

K-1 0.600 0.530 0.640 0.450 0.750 0.500 NA NA 0.000 1.000 0.425 0.488 0.440 0.550 0.300
K 0.420 NA 0.000 0.000 0.300 0.500 NA NA 0.000 1.000 0.550 0.470 0.571 0.4000 0.700

Sigmoid

1 0.170 NA 0.000 0.000 0.400 0.925 0.926 0.904 0.950 0.900 0.875 0.857 1.000 0.750 1.000
2 0.350 NA 0.000 0.000 0.650 1.000 1.000 1.000 1.000 1.000 0.850 0.823 1.000 0.700 1.000
3 0.350 NA 0.000 0.000 0.850 1.000 1.000 1.000 1.000 1.000 0.950 0.947 1.000 0.900 1.000

K-1 0.500 0.330 0.500 0.250 0.750 1.000 1.000 1.000 1.000 1.000 0.525 0.486 0.529 0.450 0.600
K 0.470 0.460 0.470 0.450 0.300 1.000 1.000 1.000 1.000 1.000 0.375 0.358 0.368 0.350 0.400

Bessel

1 0.100 NA 0.000 0.000 0.400 0.500 NA NA 0.000 1.000 0.875 0.857 1.000 0.750 1.000
2 0.320 NA 0.000 0.000 0.650 0.500 NA NA 0.000 1.000 0.650 0.461 1.000 0.300 1.000
3 0.320 NA 0.000 0.000 0.850 0.500 NA NA 0.000 1.000 0.875 0.857 1.000 0.750 1.000

K-1 0.600 0.600 0.600 0.600 0.750 0.500 NA NA 0.000 1.000 0.375 0.324 0.352 0.300 0.450
K 0.450 0.520 0.460 0.600 0.300 0.500 NA NA 0.000 1.000 0.450 0.560 0.466 0.700 0.200

Linear

1 0.170 NA 0.000 0.000 0.400 0.500 NA NA 0.000 1.000 0.950 0.947 1.000 0.900 1.000
2 0.400 0.080 0.170 0.050 0.650 1.000 1.000 1.000 1.000 1.000 0.950 0.947 1.000 0.900 1.000
3 0.380 NA 0.000 0.000 0.850 0.950 0.952 0.909 1.000 0.900 0.975 0.974 1.000 0.950 1.000

K-1 0.500 0.440 0.500 0.400 0.750 1.000 1.000 1.000 1.000 1.000 0.450 0.312 0.416 0.250 0.650
K 0.520 0.560 0.520 0.600 0.300 1.000 0.947 1.000 0.900 1.000 0.475 0.432 0.470 0.400 0.550

Table 6: Out-of-sample SVMs results of statistics of EMD features of Speaker 1 versus the synthetic female voice with dataset 1.



Experiment 1

Dataset 1

Kernel IMF Index Statistics IF Statistics Spline Coefficients Statistics IMFs

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

Radial Basis

1 1.000 1.000 1.000 1.000 1.000 0.500 NA NA 0.000 1.000 0.825 0.800 0.933 0.700 0.950
2 0.650 0.562 0.750 0.450 0.850 0.500 NA NA 0.000 1.000 0.550 0.571 0.545 0.600 0.500
3 0.650 0.562 0.750 0.450 0.850 0.650 0.461 1.000 0.300 1.000 0.400 0.250 0.333 0.200 0.600

K-1 0.625 0.482 0.777 0.350 0.900 0.525 0.095 1.000 0.050 1.000 0.425 0.080 0.200 0.050 0.800
K 0.550 0.500 0.562 0.450 0.650 0.425 0.080 0.200 0.050 0.800 0.450 0.214 0.375 0.150 0.750

Laplace

1 1.000 1.000 1.000 1.000 1.000 0.500 NA NA 0.000 1.000 0.750 0.722 0.812 0.650 0.850
2 0.750 0.705 0.857 0.600 0.900 0.825 0.787 1.000 0.650 1.000 0.550 0.590 0.541 0.650 0.450
3 0.750 0.722 0.812 0.650 0.850 0.625 0.705 0.580 0.900 0.350 0.375 0.285 0.333 0.250 0.500

K-1 0.600 0.500 0.666 0.400 0.800 0.725 0.784 0.645 1.000 0.450 0.400 0.076 0.166 0.050 0.750
K 0.575 0.653 0.551 0.800 0.350 0.450 0.560 0.466 0.700 0.200 0.475 0.275 0.444 0.200 0.750

Polynomial

1 0.625 0.716 0.575 0.950 0.300 0.550 0.400 0.600 0.300 0.800 0.625 0.716 0.575 0.950 0.300
2 0.575 0.701 0.540 1.000 0.150 0.850 0.823 1.000 0.700 1.000 0.575 0.701 0.540 1.000 0.150
3 0.525 0.641 0.515 0.850 0.200 0.500 0.666 0.500 1.000 0.000 0.525 0.641 0.515 0.850 0.200

K-1 0.375 0.137 0.222 0.100 0.650 0.500 0.666 0.500 1.000 0.000 0.375 0.137 0.222 0.100 0.650
K 0.425 0.378 0.411 0.350 0.500 0.425 0.596 0.459 0.850 0.000 0.425 0.378 0.411 0.350 0.500

Sigmoid

1 0.600 0.652 0.576 0.750 0.450 0.525 0.296 0.571 0.200 0.850 0.600 0.652 0.576 0.750 0.450
2 0.375 0.489 0.413 0.600 0.150 0.675 0.518 1.000 0.350 1.000 0.375 0.489 0.413 0.600 0.150
3 0.400 0.368 0.388 0.350 0.450 0.825 0.787 1.000 0.650 1.000 0.400 0.368 0.388 0.350 0.450

K-1 0.450 0.153 0.333 0.100 0.800 0.500 0.666 0.500 1.000 0.000 0.450 0.153 0.333 0.100 0.800
K 0.475 0.400 0.466 0.350 0.600 0.450 0.620 0.473 0.900 0.000 0.475 0.400 0.466 0.350 0.600

Bessel

1 1.000 1.000 1.000 1.000 1.000 0.500 0.666 0.500 1.000 0.000 0.525 0.666 0.513 0.950 0.100
2 0.725 0.685 0.800 0.60 0.85 0.650 0.461 1.000 0.300 1.000 0.475 0.631 0.486 0.900 0.050
3 0.850 0.842 0.888 0.800 0.900 0.500 0.666 0.500 1.000 0.000 0.475 NaN 0.000 0.000 0.950

K-1 0.600 0.466 0.700 0.350 0.850 0.500 0.666 0.500 1.000 0.000 0.500 0.615 0.500 0.800 0.200
K 0.600 0.714 0.555 1.000 0.200 0.450 0.620 0.473 0.900 0.000 0.450 0.476 0.454 0.500 0.400

Linear

1 0.575 0.604 0.565 0.650 0.500 0.500 0.285 0.500 0.200 0.800 0.575 0.604 0.565 0.650 0.500
2 0.625 0.693 0.586 0.850 0.400 0.850 0.823 1.000 0.700 1.000 0.625 0.693 0.586 0.850 0.400
3 0.500 0.523 0.500 0.550 0.450 0.500 0.666 0.500 1.000 0.000 0.500 0.523 0.500 0.550 0.450

K-1 0.400 0.076 0.166 0.050 0.750 0.500 0.666 0.500 1.000 0.000 0.400 0.076 0.166 0.050 0.750
K 0.475 0.222 0.428 0.150 0.800 0.425 0.596 0.459 0.850 0.000 0.475 0.222 0.428 0.150 0.800

Table 7: Out-of-sample SVMs results of median filtered statistics of EMD features of Speaker 2 versus the synthetic male voice with
dataset 1.
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Baseline References: Statistics and MFCCs of the Original
Voice Recordings

Speaker1 vs synthetic female voice
Kernel Family Accuracy F1-score Precision Sens. Spec.

RBF 1.000 1.000 1.000 1.000 1.000
Laplace 1.000 1.000 1.000 1.000 1.000

Polynomial 1.000 1.000 1.000 1.000 1.000
Sigmoid 1.000 1.000 1.000 1.000 1.000
Bessel 1.000 1.000 1.000 1.000 1.000
Vanilla 1.000 1.000 1.000 1.000 1.000

Table 8: Out-of-sample SVMs with statistics extracted on the original voice record-
ings.

Speaker2 vs synthetic male voice
Kernel Family Accuracy F1-score Precision Sens. Spec.

RBF 0.675 0.628 0.733 0.550 0.800
Laplace 0.625 0.594 0.647 0.550 0.700

Polynomial 0.500 0.666 0.500 1.000 0.000
Sigmoid 0.475 0.511 0.478 0.550 0.400
Bessel 0.525 0.536 0.523 0.550 0.500
Vanilla 0.800 0.809 0.772 0.850 0.750

Table 9: Out-of-sample SVMs with statistics extracted on the original voice record-
ings.

Speaker1 with frequency alignment vs synthetic female voice
Kernel Family Accuracy F1-score Precision Sens. Spec.

RBF 0.525 0.677 0.512 1 0.050
Laplace 0.900 0.909 0.833 1 0.800

Polynomial 1.000 1.000 1.000 1 1.000
Sigmoid 0.725 0.784 0.645 1 0.450
Bessel 0.975 0.975 0.952 1 0.950
Vanilla 1.000 1.000 1.000 1 1.000

Table 10: Out-of-sample SVMs with statistics extracted on the original voice record-
ings. For this experiment, a frequency alignment have been carried before applying
the SVM.

Speaker1 with frequency alignment vs synthetic female voice
Kernel Family Accuracy F1-score Precision Sens. Spec.

RBF 0.500 0.666 0.500 1.000 0.000
Laplace 0.500 0.666 0.500 1.000 0.000

Polynomial 0.400 0.454 0.416 0.500 0.300
Sigmoid 0.450 0.541 0.464 0.650 0.250
Bessel 0.500 0.666 0.500 1.000 0.000
Vanilla 0.625 0.693 0.586 0.850 0.400

Table 11: Out-of-sample SVMs with statistics extracted on the original voice record-
ings. For this experiment, a frequency alignment have been carried before applying
the SVM.
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Speaker1 vs synthetic female voice
Coeff. number Accuracy F1-score Precision Sens. Spec.

1 0.775 0.709 1.000 0.550 1.000
2 0.675 0.628 0.733 0.550 0.800
3 0.550 0.470 0.571 0.400 0.700
4 0.475 0.553 0.481 0.650 0.300
5 0.475 0.553 0.481 0.650 0.300
6 0.650 0.461 1.000 0.300 1.000
7 0.150 0.227 0.208 0.250 0.050
8 0.075 0.051 0.052 0.050 0.100
9 0.075 NaN 0.000 0.000 0.150
10 0.350 0.187 0.250 0.150 0.550
11 0.575 0.370 0.714 0.250 0.900
12 0.750 0.666 1.000 0.500 1.000

Table 12: Out-of-sample SVMs with MFCCs extracted on the original voice record-
ings.

Speaker2 vs synthetic male voice
Coeff. number Accuracy F1-score Precision Sens. Spec.

1 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000
6 1.000 1.000 1.000 1.000 1.000
7 1.000 1.000 1.000 1.000 1.000
8 1.000 1.000 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000 1.000
10 1.000 1.000 1.000 1.000 1.000
11 1.000 1.000 1.000 1.000 1.000
12 1.000 1.000 1.000 1.000 1.000

Table 13: Out-of-sample SVMs with MFCCs extracted on the original voice record-
ings.

Speaker 2 with frequency alignment vs synthetic male voice
Coeff. number Accuracy F1-score Precision Sens. Spec.

1 0.600 0.466 0.700 0.350 0.850
2 0.775 0.808 0.703 0.950 0.600
3 0.750 0.687 0.916 0.550 0.950
4 0.525 0.095 1.000 0.050 1.000
5 0.650 0.562 0.750 0.450 0.850
6 0.525 0.344 0.555 0.250 0.800
7 0.675 0.648 0.705 0.600 0.750
8 0.675 0.754 0.606 1.000 0.350
9 0.550 0.250 0.750 0.150 0.950
10 0.550 0.181 1.000 0.100 1.000
11 0.750 0.722 0.812 0.650 0.850
12 0.800 0.777 0.875 0.700 0.900

Table 14: Out-of-sample SVMs with MFCCs extracted on the original voice record-
ings. For this experiment, a frequency alignment have been carried before applying
the SVM.
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IMFs and IFs and Spline Coefficients of IMFs

Kernel IMF Index Instantaneous Frequency IMFs Spline Coefficients

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

Radial Basis

1 0.600 0.578 0.611 0.550 0.650 0.375 0.242 0.307 0.200 0.550 0.50 NA NA 0.000 1.000
2 0.500 0.500 0.500 0.500 0.500 0.400 0.200 0.300 0.150 0.650 0.500 NA NA 0.000 1.000
3 0.625 0.634 0.619 0.650 0.600 0.425 0.080 0.200 0.050 0.800 0.500 NA NA 0.000 1.000

K-1 0.550 0.357 0.625 0.250 0.850 0.475 0.400 0.466 0.350 0.600 0.500 NA NA 0.000 1.000
K 0.400 0.333 0.375 0.300 0.500 0.550 0.590 0.541 0.650 0.450 0.500 NA NA 0.000 1.000

Laplace

1 0.550 0.500 0.562 0.450 0.650 0.400 0.200 0.300 0.150 0.650 0.800 0.833 0.714 1.000 0.600
2 0.550 0.590 0.541 0.650 0.450 0.425 0.549 0.451 0.700 0.150 0.550 0.689 0.526 1.000 0.1000
3 0.650 0.708 0.607 0.850 0.450 0.425 0.510 0.444 0.600 0.250 0.475 NaN 0.000 0.000 0.950

K-1 0.525 0.641 0.515 0.850 0.200 0.375 0.137 0.222 0.100 0.650 0.500 0.666 0.500 1.000 0.000
K 0.475 0.631 0.486 0.900 0.050 0.400 NaN 0.000 0.000 0.800 0.375 0.390 0.380 0.400 0.350

Polynomial

1 0.575 0.585 0.571 0.600 0.550 0.500 0.500 0.500 0.500 0.500 0.600 0.619 0.590 0.650 0.550
2 0.600 0.636 0.583 0.700 0.500 0.500 NA NA 0.000 1.000 0.700 0.750 0.642 0.900 0.500
3 0.550 0.550 0.550 0.550 0.550 0.500 NA NA 0.000 1.000 0.650 0.720 0.600 0.900 0.400

K-1 0.625 0.634 0.619 0.650 0.600 0.450 0.476 0.454 0.500 0.400 0.500 0.666 0.500 1.000 0.000
K 0.275 0.256 0.263 0.250 0.300 0.475 0.222 0.428 0.150 0.800 0.500 0.655 0.500 0.950 0.050

Sigmoid

1 0.600 0.578 0.611 0.550 0.650 0.600 0.652 0.576 0.750 0.450 0.575 0.585 0.571 0.600 0.550
2 0.600 0.555 0.625 0.500 0.700 0.625 0.651 0.608 0.700 0.550 0.750 0.782 0.692 0.900 0.600
3 0.575 0.540 0.588 0.500 0.650 0.475 0.571 0.482 0.700 0.250 0.650 0.720 0.600 0.900 0.400

K-1 0.450 0.352 0.428 0.300 0.600 0.450 0.450 0.450 0.450 0.450 0.500 0.666 0.500 1.000 0.000
K 0.325 0.425 0.370 0.500 0.150 0.450 0.521 0.461 0.600 0.300 0.500 0.655 0.500 0.950 0.050

Bessel

1 0.550 0.500 0.562 0.450 0.650 0.475 0.487 0.476 0.500 0.450 0.350 0.071 0.125 0.050 0.650
2 0.575 0.604 0.565 0.650 0.500 0.400 0.368 0.388 0.350 0.450 0.375 0.074 0.142 0.050 0.700
3 0.625 0.693 0.586 0.850 0.400 0.400 0.428 0.409 0.450 0.350 0.550 0.250 0.750 0.150 0.950

K-1 0.525 0.641 0.515 0.850 0.200 0.500 0.545 0.500 0.600 0.400 0.500 NA NA 0.000 1.000
K 0.500 0.666 0.500 1.000 0.000 0.525 0.612 0.517 0.750 0.300 0.500 NA NA 0.000 1.000

Vanilla

1 0.550 0.550 0.550 0.550 0.550 0.500 0.500 0.500 0.500 0.500 0.625 0.680 0.592 0.800 0.450
2 0.500 0.523 0.500 0.550 0.450 0.650 0.666 0.636 0.700 0.600 0.650 0.708 0.607 0.850 0.450
3 0.500 0.500 0.500 0.500 0.500 0.475 0.571 0.482 0.700 0.250 0.600 0.384 0.833 0.250 0.950

K-1 0.475 0.432 0.470 0.400 0.550 0.475 0.511 0.478 0.550 0.400 0.500 0.666 0.500 1.000 0.000
K 0.450 0.388 0.437 0.350 0.550 0.475 0.461 0.473 0.450 0.500 0.500 0.655 0.500 0.950 0.050

Table 15: Out-of-sample SVMs of Speaker 1 versus the synthetic female voice.
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Kernel IMF Index Instantaneous Frequency IMFs Spline Coefficients

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

Radial Basis

1 0.300 0.222 0.250 0.200 0.400 0.675 0.711 0.640 0.800 0.550 0.500 0.666 0.500 1.000 0.000
2 0.425 0.410 0.421 0.400 0.450 0.625 0.444 0.857 0.300 0.950 0.500 0.666 0.500 1.000 0.000
3 0.625 0.615 0.631 0.600 0.650 0.475 0.631 0.486 0.900 0.050 0.500 0.666 0.500 1.000 0.000

K-1 0.475 0.461 0.473 0.450 0.500 0.575 0.484 0.615 0.400 0.750 0.500 0.666 0.500 1.000 0.000
K 0.575 0.653 0.551 0.800 0.350 0.500 0.166 0.500 0.100 0.900 0.500 0.666 0.500 1.000 0.000

Laplace

1 0.575 0.540 0.588 0.500 0.650 0.625 0.705 0.580 0.900 0.350 0.575 0.690 0.542 0.950 0.200
2 0.625 0.651 0.608 0.700 0.550 0.575 0.679 0.545 0.900 0.250 0.475 0.461 0.473 0.450 0.500
3 0.650 0.740 0.588 1.000 0.300 0.500 0.629 0.500 0.850 0.150 0.600 0.703 0.558 0.950 0.250

K-1 0.525 0.627 0.516 0.800 0.250 0.500 0.642 0.500 0.900 0.100 0.525 0.677 0.512 1.000 0.050
K 0.525 0.595 0.518 0.700 0.350 0.500 0.666 0.500 1.000 0.000 0.500 0.666 0.500 1.000 0.000

Polynomial

1 0.300 0.176 0.214 0.150 0.450 0.500 NA NA 0.000 1.000 0.575 0.585 0.571 0.600 0.550
2 0.450 0.352 0.428 0.300 0.600 0.500 NA NA 0.000 1.000 0.500 0.583 0.500 0.700 0.300
3 0.575 0.451 0.636 0.350 0.800 0.500 NA NA 0.000 1.000 0.625 0.651 0.608 0.700 0.550

K-1 0.525 0.344 0.555 0.250 0.800 0.475 0.222 0.428 0.150 0.800 0.450 0.607 0.472 0.850 0.050
K 0.550 0.400 0.600 0.300 0.800 0.550 0.400 0.600 0.300 0.800 0.500 0.642 0.500 0.900 0.100

Sigmoid

1 0.300 0.125 0.166 0.100 0.500 0.700 0.700 0.700 0.700 0.700 0.550 0.571 0.545 0.600 0.500
2 0.475 0.432 0.470 0.400 0.550 0.725 0.645 0.909 0.500 0.950 0.475 0.571 0.482 0.700 0.250
3 0.500 0.500 0.500 0.500 0.500 0.500 0.523 0.500 0.550 0.450 0.600 0.636 0.583 0.700 0.500

K-1 0.625 0.516 0.727 0.400 0.850 0.550 0.437 0.583 0.350 0.750 0.475 0.631 0.486 0.900 0.050
K 0.675 0.648 0.705 0.600 0.750 0.575 0.540 0.588 0.500 0.650 0.475 0.631 0.486 0.900 0.050

Bessel

1 0.575 0.540 0.588 0.500 0.650 0.525 0.641 0.515 0.850 0.20 0.525 0.536 0.523 0.550 0.500
2 0.625 0.651 0.608 0.700 0.550 0.525 0.654 0.514 0.900 0.150 0.400 0.454 0.416 0.500 0.300
3 0.650 0.740 0.588 1.000 0.300 0.550 0.678 0.527 0.950 0.150 0.525 0.558 0.521 0.600 0.450

K-1 0.500 0.600 0.500 0.750 0.250 0.500 0.642 0.500 0.900 0.100 0.550 0.625 0.535 0.750 0.350
K 0.525 0.595 0.518 0.700 0.350 0.500 0.666 0.500 1.000 0.000 0.575 0.679 0.545 0.900 0.250

Vanilla

1 0.300 0.125 0.166 0.100 0.500 0.750 0.736 0.777 0.700 0.800 0.575 0.585 0.571 0.600 0.550
2 0.425 0.410 0.421 0.400 0.450 0.725 0.645 0.909 0.500 0.950 0.500 0.583 0.500 0.700 0.300
3 0.475 0.461 0.473 0.450 0.500 0.525 0.536 0.523 0.550 0.500 0.625 0.651 0.608 0.70 0.55

K-1 0.500 0.285 0.500 0.200 0.800 0.550 0.470 0.571 0.400 0.700 0.425 0.581 0.457 0.800 0.050
K 0.525 0.512 0.526 0.500 0.550 0.500 0.500 0.500 0.500 0.50 0 0.500 0.655 0.500 0.950 0.050

Table 16: Out-of-sample SVMs of Speaker 2 versus the synthetic male voice.
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EMD-MFCCs

Speaker1 - out of sample

MFCC IMF 1 IMF 2 IMF 3 IMF K-1 IMF K

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.150 0.260 0.230 0.300 0.000 0.425 0.596 0.459 0.850 0.000 0.500 0.666 0.500 1.000 0.000 0.300 0.461 0.375 0.600 0.000 0.750 0.666 1.000 0.500 1.000
2 0.325 NaN 0.000 0.000 0.650 0.425 NaN 0.000 0.000 0.850 0.350 0.071 0.125 0.050 0.650 0.575 0.638 0.555 0.750 0.400 0.425 0.258 0.363 0.200 0.650
3 0.225 NaN 0.000 0.000 0.450 0.550 0.653 0.531 0.850 0.250 0.350 0.071 0.125 0.050 0.650 0.550 0.590 0.541 0.650 0.450 0.375 0.468 0.407 0.550 0.200
4 0.075 NaN 0.000 0.000 0.150 0.700 0.647 0.785 0.550 0.850 0.350 0.071 0.125 0.050 0.650 0.525 0.558 0.521 0.600 0.450 0.375 0.242 0.307 0.200 0.550
5 0.050 NaN 0.000 0.000 0.100 0.150 NaN 0.000 0.000 0.300 0.775 0.808 0.703 0.950 0.600 0.575 0.540 0.588 0.500 0.650 0.325 0.228 0.266 0.200 0.450
6 0.050 0.050 0.050 0.050 0.050 0.375 0.285 0.333 0.250 0.500 0.125 NaN 0.000 0.000 0.250 0.650 0.681 0.625 0.750 0.550 0.350 0.277 0.312 0.250 0.450
7 0.775 0.816 0.689 1.000 0.550 0.200 0.058 0.071 0.050 0.350 0.400 0.400 0.400 0.400 0.400 0.575 0.622 0.560 0.700 0.450 0.350 0.277 0.312 0.250 0.450
8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.425 0.148 0.285 0.100 0.750 0.525 0.424 0.538 0.350 0.700 0.725 0.731 0.714 0.750 0.700
9 1.000 1.000 1.000 1.000 1.000 0.550 0.181 1.000 0.100 1.000 0.725 0.775 0.655 0.950 0.500 0.650 0.666 0.636 0.700 0.600 0.300 0.263 0.277 0.250 0.350

10 0.750 0.666 1.000 0.500 1.000 0.400 NaN 0.000 0.000 0.800 0.175 NaN 0.000 0.000 0.350 0.675 0.697 0.652 0.750 0.600 0.250 0.318 0.291 0.350 0.150
11 0.600 0.333 1.000 0.200 1.000 0.350 NaN 0.000 0.000 0.700 0.325 0.181 0.230 0.150 0.500 0.550 0.571 0.545 0.600 0.500 0.325 0.307 0.315 0.300 0.350
12 0.625 0.400 1.000 0.250 1.000 0.325 0.372 0.347 0.400 0.250 0.700 0.769 0.625 1.000 0.400 0.475 0.487 0.476 0.500 0.450 0.325 0.341 0.333 0.350 0.300

Speaker2 - out of sample

MFCC IMF 1 IMF 2 IMF 3 IMF K-1 IMF K

Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.450 0.153 0.333 0.100 0.800 0.375 NaN 0.000 0.000 0.750 0.500 0.333 0.500 0.250 0.750 0.425 NaN 0.000 0.000 0.850 0.500 0.166 0.500 0.100 0.900
2 0.725 0.685 0.800 0.600 0.850 0.700 0.625 0.833 0.500 0.900 0.925 0.923 0.947 0.900 0.950 0.550 0.400 0.600 0.300 0.800 0.500 0.523 0.500 0.550 0.450
3 0.675 0.580 0.818 0.450 0.900 0.625 0.571 0.666 0.500 0.750 0.575 0.484 0.615 0.400 0.750 0.525 0.344 0.555 0.250 0.800 0.500 0.523 0.500 0.550 0.450
4 0.825 0.810 0.882 0.750 0.900 0.650 0.681 0.625 0.750 0.550 0.750 0.791 0.678 0.950 0.550 0.600 0.500 0.666 0.400 0.800 0.475 0.487 0.476 0.500 0.450
5 1.000 1.000 1.000 1.000 1.000 0.775 0.756 0.823 0.700 0.850 0.625 0.634 0.619 0.650 0.600 0.575 0.451 0.636 0.350 0.800 0.475 0.511 0.478 0.550 0.400
6 1.000 1.000 1.000 1.000 1.000 0.850 0.850 0.850 0.850 0.850 0.500 0.473 0.500 0.450 0.550 0.450 0.153 0.333 0.100 0.800 0.500 0.523 0.500 0.550 0.450
7 0.850 0.863 0.791 0.950 0.750 0.700 0.727 0.666 0.800 0.600 0.500 0.473 0.500 0.450 0.550 0.450 0.266 0.400 0.200 0.700 0.475 0.487 0.476 0.500 0.450
8 0.775 0.742 0.866 0.650 0.900 0.900 0.904 0.863 0.950 0.850 0.475 0.511 0.478 0.550 0.400 0.525 0.387 0.545 0.300 0.750 0.500 0.523 0.500 0.550 0.450
9 1.000 1.000 1.000 1.000 1.000 0.975 0.974 1.000 0.950 1.000 0.750 0.772 0.708 0.850 0.650 0.425 0.258 0.363 0.200 0.650 0.450 0.476 0.454 0.500 0.400

10 1.000 1.000 1.000 1.000 1.000 0.975 0.974 1.000 0.950 1.000 0.850 0.842 0.888 0.800 0.900 0.425 0.148 0.285 0.100 0.750 0.525 0.558 0.521 0.600 0.450
11 1.000 1.000 1.000 1.000 1.000 0.900 0.904 0.863 0.950 0.850 0.675 0.580 0.818 0.450 0.900 0.400 0.142 0.250 0.100 0.700 0.475 0.461 0.473 0.450 0.500
12 1.000 1.000 1.000 1.000 1.000 0.900 0.909 0.833 1.000 0.800 0.525 0.387 0.545 0.300 0.750 0.400 0.142 0.250 0.100 0.700 0.525 0.558 0.521 0.600 0.450

Table 17: Out-of-sample SVMs of Speaker 1 versus the synthetic female voice (top table) and Speaker 2 versus the male synthetic
(bottom table) with kernel corresponding to the Radial Basis Function.
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Bandpass filter on formant between 4000Hz and 5000Hz

Speaker1 vs synthetic female voice
Coeff. number Accuracy F1-score Precision Sens. Spec.

1 0.850 0.823 1.000 0.700 1.000
2 0.575 0.622 0.560 0.700 0.450
3 0.400 0.076 0.166 0.050 0.750
4 0.750 0.736 0.777 0.700 0.800
5 0.650 0.611 0.687 0.550 0.750
6 0.650 0.681 0.625 0.750 0.550
7 0.425 0.148 0.285 0.100 0.750
8 0.675 0.628 0.733 0.550 0.800
9 0.675 0.697 0.652 0.750 0.600
10 0.425 0.303 0.384 0.250 0.600
11 0.650 0.611 0.687 0.550 0.750
12 0.450 0.266 0.400 0.200 0.700

Table 18: Out-of-sample results of SVMs of the MFCCs of the raw data.
Speaker1 vs synthetic female voice

Coeff. number Accuracy F1-score Precision Sens. Spec.
1 0.900 0.888 1.000 0.800 1.000
2 0.375 0.358 0.368 0.350 0.400
3 0.600 0.466 0.700 0.350 0.850
4 0.550 0.500 0.562 0.450 0.650
5 0.700 0.714 0.681 0.750 0.650
6 0.700 0.700 0.700 0.700 0.700
7 0.750 0.772 0.708 0.850 0.650
8 0.625 0.594 0.647 0.550 0.700
9 0.500 0.444 0.500 0.400 0.600
10 0.775 0.790 0.739 0.850 0.700
11 0.725 0.717 0.736 0.700 0.750
12 0.675 0.682 0.666 0.700 0.650

Table 19: Out-of-sample results of SVMs of the MFCCs of IMF1
Speaker1 vs synthetic female voice

Coeff. number Accuracy F1-score Precision Sens. Spec.
1 0.825 0.787 1.000 0.650 1.000
2 0.325 0.490 0.393 0.650 0.000
3 0.500 0.285 0.500 0.200 0.800
4 0.750 0.791 0.678 0.950 0.550
5 0.375 0.358 0.368 0.350 0.400
6 0.650 0.611 0.687 0.550 0.750
7 0.825 0.787 1.000 0.650 1.000
8 0.350 0.277 0.312 0.250 0.450
9 0.800 0.750 1.000 0.600 1.000
10 0.550 0.500 0.562 0.450 0.650
11 0.550 0.470 0.571 0.400 0.700
12 0.775 0.709 1.000 0.550 1.000

Table 20: Out-of-sample results of SVMs of the MFCCs of IMF2
Speaker1 vs synthetic female voice

Coeff. number Accuracy F1-score Precision Sens. Spec.
1 1.000 1.000 1.000 1.000 1.000
2 0.700 0.571 1.000 0.400 1.000
3 0.475 0.086 0.333 0.050 0.900
4 0.575 0.260 1.000 0.150 1.000
5 0.600 0.384 0.833 0.250 0.950
6 0.600 0.333 1.000 0.200 1.000
7 0.500 0.090 0.500 0.050 0.950
8 0.475 0.086 0.333 0.050 0.900
9 0.525 0.095 1.000 0.050 1.000
10 0.650 0.500 0.875 0.350 0.950
11 0.475 0.086 0.333 0.050 0.900
12 0.500 0.090 0.500 0.050 0.950

Table 21: Out-of-sample results of SVMs of the MFCCs of IMF3
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Figure 5: Speaker1 vs female voice - ideal case a), b), c). The other are the one convoluted signals with bandpass filter affecting 4,000Hz
to 5,000 Hz.
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Speaker2 vs synthetic male voice
Coeff. number Accuracy F1-score Precision Sens. Spec.

1 0.975 0.975 0.952 1.000 0.950
2 0.525 0.536 0.523 0.550 0.500
3 0.525 0.240 0.600 0.150 0.900
4 0.575 0.540 0.588 0.500 0.650
5 0.550 0.500 0.562 0.450 0.650
6 0.550 0.437 0.583 0.350 0.750
7 0.600 0.578 0.611 0.550 0.650
8 0.625 0.545 0.692 0.450 0.800
9 0.650 0.650 0.650 0.650 0.650
10 0.700 0.625 0.833 0.500 0.900
11 0.575 0.370 0.714 0.250 0.900
12 0.650 0.588 0.714 0.500 0.800

Table 22: Out-of-sample results of SVMs of the MFCCs of Raw data
Speaker2 vs synthetic male voice

Coeff. number Accuracy F1-score Precision Sens. Spec.
1 0.500 NA NA 0.000 1.00
2 0.500 NA NA 0.000 1.00
3 0.500 NA NA 0.000 1.00
4 0.500 0.666 0.500 1.000 0.000
5 0.500 0.666 0.500 1.000 0.000
6 0.500 0.666 0.500 1.000 0.000
7 0.500 0.666 0.500 1.000 0.000
8 0.500 0.666 0.500 1.000 0.000
9 0.500 0.666 0.500 1.000 0.000
10 0.625 0.716 0.575 0.950 0.300
11 0.500 0.666 0.500 1.000 0.000
12 0.500 0.655 0.500 0.950 0.050

Table 23: Out-of-sample results of SVMs of the MFCCs of IMF1
Speaker2 vs synthetic male voice

Coeff. number Accuracy F1-score Precision Sens. Spec.
1 0.450 NaN 0.000 0.000 0.900
2 0.400 NaN 0.000 0.000 0.800
3 0.425 NaN 0.000 0.000 0.850
4 0.500 NA NA 0.00 1.000
5 0.600 0.333 1.000 0.20 1.000
6 1.000 1.000 1.000 1.00 1.000
7 1.000 1.000 1.000 1.000 1.000
8 0.000 NaN 0.000 0.000 0.000
9 1.000 1.000 1.000 1.00 1.000
10 0.925 0.918 1.000 0.85 1.000
11 0.900 0.909 0.833 1.00 0.800
12 1.000 1.000 1.000 1.00 1.000

Table 24: Out-of-sample results of SVMs of the MFCCs of IMF2
Speaker2 vs synthetic male voice

Coeff. number Accuracy F1-score Precision Sens. Spec.
1 0.500 NA NA 0.000 1.000
2 1.000 1.000 1.000 1.000 1.000
3 0.900 0.909 0.833 1.000 0.800
4 0.950 0.952 0.909 1.000 0.900
5 1.000 1.000 1.000 1.000 1.000
6 0.950 0.952 0.909 1.000 0.900
7 0.000 NaN 0.000 0.000 0.000
8 0.900 0.909 0.833 1.000 0.800
9 0.000 NaN 0.000 0.000 0.000
10 0.825 0.787 1.000 0.650 1.000
11 0.600 0.714 0.555 1.000 0.200
12 0.500 NA NA 0.000 1.000

Table 25: Out-of-sample results of SVMs of the MFCCs of IMF3
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Figure 6: Speaker2 vs male voice - ideal case a), b), c). The other are the one convoluted signals with bandpass filter affecting 4,000Hz
to 5,000 Hz.



Experiment 2

Dataset 1

Speaker1 vs Female synthetic voice generated with Espeak TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.450 0.620 0.473 0.900 0.000 0.500 0.666 0.5000 1.000 0.000 0.500 0.666 0.500 1.000 0.000 0.825 0.787 1.000 0.650 1.000 0.950 0.947 1.000 0.900 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.000 1.000 0.925 0.930 0.869 1.000 0.850 0.550 0.571 0.545 0.600 0.500 0.750 0.750 0.750 0.750 0.750
3 0.975 0.975 0.952 1.000 0.950 1.000 1.000 1.000 1.000 1.000 0.975 0.975 0.952 1.000 0.950 0.450 0.421 0.444 0.400 0.500 0.800 0.800 0.800 0.800 0.800
4 0.600 0.714 0.555 1.000 0.200 0.950 0.950 0.950 0.950 0.950 1.000 1.000 1.000 1.000 1.000 0.450 0.476 0.454 0.500 0.400 0.825 0.820 0.842 0.800 0.850
5 0.525 0.677 0.512 1.000 0.050 0.900 0.904 0.863 0.950 0.850 0.675 0.697 0.652 0.750 0.600 0.475 0.511 0.478 0.550 0.400 0.825 0.820 0.842 0.800 0.850
6 0.500 0.642 0.500 0.900 0.100 0.850 0.857 0.818 0.900 0.800 0.775 0.808 0.703 0.950 0.600 0.375 0.358 0.368 0.350 0.400 0.800 0.800 0.800 0.800 0.800
7 1.000 1.000 1.000 1.000 1.000 0.925 0.918 1.000 0.850 1.000 1.000 1.000 1.000 1.000 1.000 0.425 0.439 0.428 0.450 0.400 0.825 0.820 0.8421 0.800 0.850
8 1.000 1.000 1.000 1.000 1.000 0.975 0.975 0.952 1.000 0.950 0.675 0.745 0.612 0.950 0.400 0.375 0.358 0.368 0.350 0.400 0.800 0.789 0.833 0.750 0.850
9 1.000 1.000 1.000 1.000 1.000 0.925 0.926 0.904 0.950 0.900 0.925 0.923 0.947 0.900 0.950 0.475 0.400 0.466 0.350 0.600 0.850 0.842 0.888 0.800 0.900
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.825 0.837 0.782 0.900 0.750 0.575 0.564 0.578 0.550 0.600 0.850 0.842 0.888 0.800 0.900
11 0.675 0.734 0.620 0.900 0.450 0.975 0.975 0.952 1.000 0.950 0.850 0.842 0.888 0.800 0.900 0.325 0.4000 0.360 0.450 0.200 0.850 0.842 0.888 0.800 0.900
12 0.775 0.808 0.703 0.950 0.600 0.975 0.975 0.952 1.000 0.950 0.825 0.820 0.842 0.800 0.850 0.475 0.461 0.473 0.450 0.500 0.825 0.820 0.842 0.800 0.850

Speaker1 vs Female synthetic voice with Google TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.400 0.571 0.444 0.800 0.000 0.450 0.621 0.474 0.900 0.000 0.500 0.667 0.500 1.000 0.000 0.275 0.431 0.355 0.550 0.000 0.175 0.298 0.259 0.350 0.00
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.825 0.851 0.741 1.000 0.650 0.375 0.324 0.353 0.300 0.450 0.500 0.545 0.500 0.600 0.400
3 0.775 0.816 0.690 1.000 0.550 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.350 0.133 0.200 0.100 0.600 0.575 0.564 0.579 0.550 0.600
4 0.825 0.851 0.741 1.000 0.650 0.925 0.927 0.905 0.950 0.900 0.975 0.974 1.000 0.950 1.000 0.350 0.187 0.250 0.150 0.550 0.550 0.438 0.583 0.350 0.750
5 0.725 0.776 0.655 0.950 0.500 0.775 0.816 0.690 1.000 0.550 0.725 0.766 0.667 0.900 0.550 0.375 0.359 0.368 0.350 0.400 0.550 0.500 0.562 0.450 0.650
6 0.600 0.714 0.556 1.000 0.200 0.550 0.640 0.533 0.800 0.300 0.800 0.833 0.714 1.000 0.600 0.350 0.316 0.333 0.300 0.400 0.550 0.500 0.562 0.450 0.650
7 0.975 0.976 0.952 1.000 0.950 0.975 0.974 1.000 0.950 1.000 0.850 0.842 0.889 0.800 0.900 0.350 0.316 0.333 0.300 0.400 0.525 0.457 0.533 0.400 0.650
8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 0.775 0.816 0.690 1.000 0.550 0.425 0.439 0.429 0.450 0.400 0.550 0.471 0.571 0.400 0.700
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950 0.950 0.950 0.950 0.950 0.650 0.650 0.650 0.650 0.650 0.550 0.500 0.562 0.450 0.650
10 1.000 1.000 1.000 1.000 1.000 0.975 0.976 0.952 1.000 0.950 0.900 0.909 0.833 1.000 0.800 0.450 0.500 0.458 0.550 0.350 0.550 0.500 0.562 0.450 0.650
11 0.950 0.952 0.909 1.000 0.900 0.900 0.909 0.833 1.000 0.800 0.925 0.923 0.947 0.900 0.950 0.550 0.526 0.556 0.500 0.600 0.575 0.514 0.600 0.450 0.700
12 0.700 0.769 0.625 1.000 0.400 1.000 1.000 1.000 1.000 1.000 0.800 0.789 0.833 0.750 0.850 0.5000 0.524 0.5000 0.550 0.450 0.625 0.571 0.667 0.500 0.750

Table 26: Out-of-sample SVMs results of EMD-MFCCs features conducted with Radial Basis function as kernel with dataset 1.



Experiment 2

Dataset 1

Speaker1 vs Female synthetic voice generated with IBM TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.475 0.644 0.487 0.950 0.000 0.475 0.644 0.487 0.950 0.000 0.500 0.667 0.500 1.000 0.000 0.100 0.182 0.167 0.200 0.000 0.175 0.298 0.259 0.350 0.000
2 0.875 0.889 0.800 1.000 0.750 0.975 0.974 1.000 0.950 1.000 0.900 0.905 0.864 0.950 0.850 0.425 0.378 0.412 0.350 0.500 0.600 0.600 0.600 0.600 0.600
3 0.625 0.727 0.571 1.000 0.250 1.000 1.000 1.000 1.000 1.000 0.950 0.952 0.909 1.000 0.900 0.450 0.312 0.417 0.250 0.650 0.400 0.429 0.409 0.450 0.350
4 0.575 0.691 0.543 0.950 0.200 0.875 0.878 0.857 0.900 0.850 0.925 0.927 0.905 0.950 0.900 0.450 0.312 0.417 0.250 0.650 0.650 0.632 0.667 0.600 0.700
5 0.500 0.667 0.500 1.000 0.000 0.625 0.667 0.600 0.750 0.500 0.775 0.800 0.720 0.900 0.650 0.550 0.500 0.562 0.450 0.650 0.600 0.579 0.611 0.550 0.650
6 0.500 0.667 0.500 1.000 0.000 0.825 0.837 0.783 0.900 0.750 0.550 0.654 0.531 0.850 0.250 0.475 0.364 0.462 0.300 0.650 0.600 0.600 0.600 0.600 0.600
7 0.750 0.800 0.667 1.000 0.500 0.975 0.976 0.952 1.000 0.950 0.900 0.900 0.900 0.900 0.900 0.500 0.412 0.500 0.350 0.650 0.525 0.558 0.522 0.600 0.45
8 1.000 1.000 1.000 1.000 1.000 0.975 0.976 0.952 1.000 0.950 0.725 0.776 0.655 0.950 0.500 0.500 0.375 0.500 0.300 0.700 0.575 0.585 0.571 0.600 0.550
9 1.000 1.000 1.000 1.000 1.000 0.950 0.952 0.909 1.000 0.900 0.950 0.950 0.950 0.950 0.950 0.600 0.556 0.625 0.500 0.70 0.375 0.390 0.381 0.400 0.350
10 1.000 1.000 1.000 1.000 1.000 0.825 0.844 0.760 0.950 0.700 0.625 0.694 0.586 0.850 0.400 0.575 0.541 0.588 0.500 0.650 0.575 0.564 0.579 0.550 0.600
11 1.000 1.000 1.000 1.000 1.000 0.775 0.816 0.690 1.000 0.550 0.675 0.667 0.684 0.650 0.700 0.550 0.471 0.571 0.400 0.700 0.600 0.579 0.611 0.550 0.650
12 0.975 0.976 0.952 1.000 0.950 0.625 0.727 0.571 1.00 0.25 0.850 0.864 0.792 0.950 0.750 0.600 0.556 0.625 0.500 0.700 0.575 0.585 0.571 0.600 0.550

Speaker1 vs Female synthetic voice with Sapi5 TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.150 0.261 0.231 0.30 0.000 0.250 0.400 0.333 0.500 0.000 0.475 0.644 0.487 0.950 0.000 0.550 0.182 1.000 0.100 1.000 0.825 0.788 1.000 0.650 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.875 0.872 0.895 0.850 0.900 0.425 0.343 0.400 0.300 0.550 0.725 0.703 0.765 0.650 0.800
3 0.950 0.952 0.909 1.000 0.900 1.000 1.000 1.000 1.000 1.000 0.950 0.952 0.909 1.000 0.900 0.425 0.303 0.385 0.250 0.600 0.725 0.686 0.800 0.600 0.850
4 0.825 0.851 0.741 1.000 0.650 0.925 0.927 0.905 0.950 0.900 0.975 0.974 1.000 0.950 1.000 0.450 0.312 0.417 0.250 0.650 0.825 0.811 0.882 0.750 0.900
5 0.700 0.760 0.633 0.950 0.450 0.775 0.791 0.739 0.850 0.700 0.475 0.222 0.429 0.150 0.800 0.500 0.333 0.500 0.250 0.750 0.825 0.811 0.882 0.750 0.900
6 0.975 0.974 1.000 0.950 1.000 0.725 0.686 0.800 0.600 0.850 0.775 0.809 0.704 0.950 0.600 0.500 0.333 0.500 0.250 0.750 0.750 0.722 0.812 0.650 0.850
7 1.000 1.000 1.000 1.000 1.000 0.900 0.895 0.944 0.850 0.950 0.975 0.974 1.000 0.950 1.000 0.525 0.424 0.538 0.350 0.700 0.750 0.706 0.857 0.600 0.900
8 1.000 1.000 1.000 1.000 1.000 0.825 0.788 1.000 0.650 1.000 0.700 0.769 0.625 1.000 0.400 0.500 0.333 0.500 0.250 0.750 0.775 0.743 0.867 0.650 0.900
9 1.000 1.000 1.000 1.000 1.000 0.975 0.976 0.952 1.000 0.950 0.925 0.923 0.947 0.900 0.950 0.500 0.231 0.500 0.150 0.850 0.725 0.703 0.765 0.650 0.800
10 1.000 1.000 1.000 1.000 1.000 0.925 0.930 0.870 1.000 0.850 0.725 0.784 0.645 1.000 0.450 0.525 0.424 0.538 0.350 0.700 0.800 0.778 0.875 0.700 0.900
11 0.950 0.947 1.000 0.900 1.000 0.850 0.870 0.769 1.000 0.700 0.425 0.148 0.286 0.100 0.750 0.500 0.412 0.500 0.350 0.650 0.750 0.722 0.812 0.650 0.850
12 0.700 0.727 0.667 0.800 0.600 0.875 0.889 0.800 1.000 0.750 0.750 0.706 0.857 0.60 0.90 0.500 0.412 0.500 0.35 0.65 0.800 0.778 0.875 0.700 0.900

Table 27: Out-of-sample SVMs results of EMD-MFCCs features conducted with Radial Basis function as kernel with dataset 1.



Experiment 2

Dataset 2

Speaker1 vs Female synthetic voice generated with Espeak TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.986 0.986 1.000 0.972 1.000
2 0.694 0.676 0.719 0.639 0.750 0.833 0.836 0.824 0.847 0.819 0.882 0.881 0.887 0.875 0.889 0.479 0.444 0.476 0.417 0.542 0.986 0.986 1.000 0.972 1.000
3 1.000 1.000 1.000 1.000 1.000 0.993 0.993 1.000 0.986 1.000 0.896 0.892 0.925 0.861 0.931 0.458 0.451 0.457 0.444 0.472 0.986 0.986 1.000 0.972 1.000
4 1.000 1.000 1.000 1.000 1.000 0.833 0.833 0.833 0.833 0.833 0.743 0.726 0.778 0.681 0.806 0.514 0.407 0.522 0.333 0.694 0.979 0.979 1.000 0.958 1.000
5 0.993 0.993 1.000 0.986 1.000 0.826 0.806 0.912 0.722 0.931 0.694 0.681 0.712 0.653 0.736 0.486 0.448 0.484 0.417 0.556 0.986 0.986 1.000 0.972 1.000
6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.639 0.623 0.652 0.597 0.681 0.500 0.455 0.500 0.417 0.583 0.986 0.986 1.000 0.972 1.000
7 1.000 1.000 1.000 1.000 1.000 0.938 0.936 0.957 0.917 0.958 0.875 0.870 0.909 0.833 0.917 0.500 0.438 0.500 0.389 0.611 0.958 0.957 1.000 0.917 1.000
8 1.000 1.000 1.000 1.000 1.000 0.875 0.862 0.966 0.778 0.972 0.785 0.786 0.781 0.792 0.778 0.472 0.513 0.476 0.556 0.389 0.979 0.979 1.000 0.958 1.000
9 1.000 1.000 1.000 1.000 1.000 0.889 0.889 0.889 0.889 0.889 0.938 0.935 0.970 0.903 0.972 0.493 0.523 0.494 0.556 0.431 0.958 0.957 1.000 0.917 1.000
10 0.646 0.724 0.593 0.931 0.361 0.792 0.803 0.762 0.847 0.736 0.882 0.878 0.910 0.847 0.917 0.514 0.493 0.515 0.472 0.556 0.972 0.971 1.000 0.944 1.000
11 0.806 0.791 0.855 0.736 0.875 0.618 0.636 0.608 0.667 0.569 0.764 0.730 0.852 0.639 0.889 0.472 0.519 0.477 0.569 0.375 0.951 0.949 1.000 0.903 1.000
12 0.847 0.820 1.000 0.694 1.000 0.708 0.720 0.692 0.750 0.667 0.875 0.864 0.950 0.792 0.958 0.472 0.513 0.476 0.556 0.389 0.965 0.964 1.000 0.931 1.000

Speaker1 vs Female synthetic voice with Google TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.917 0.915 0.929 0.903 0.931 0.944 0.946 0.921 0.972 0.917 0.979 0.979 1.000 0.958 1.000 0.465 0.483 0.468 0.500 0.431 0.493 0.529 0.494 0.569 0.417
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.938 0.939 0.920 0.958 0.917 0.549 0.539 0.551 0.528 0.569 0.549 0.545 0.549 0.542 0.556
3 0.896 0.904 0.835 0.986 0.806 1.000 1.000 1.000 1.000 1.000 0.993 0.993 1.000 0.986 1.000 0.542 0.500 0.550 0.458 0.625 0.604 0.623 0.595 0.653 0.556
4 1.000 1.000 1.000 1.000 1.000 0.979 0.979 0.986 0.972 0.986 0.861 0.851 0.919 0.792 0.931 0.562 0.519 0.576 0.472 0.653 0.375 0.348 0.364 0.333 0.417
5 0.979 0.979 1.000 0.958 1.000 0.847 0.857 0.805 0.917 0.778 0.764 0.754 0.788 0.722 0.806 0.562 0.496 0.585 0.431 0.694 0.604 0.601 0.606 0.597 0.611
6 0.986 0.986 1.000 0.972 1.000 0.889 0.882 0.938 0.833 0.944 0.708 0.708 0.708 0.708 0.708 0.424 0.450 0.430 0.472 0.375 0.611 0.646 0.593 0.708 0.514
7 1.000 1.000 1.000 1.000 1.000 0.979 0.979 0.986 0.972 0.986 0.819 0.803 0.883 0.736 0.903 0.458 0.473 0.461 0.486 0.431 0.618 0.641 0.605 0.681 0.556
8 1.000 1.000 1.000 1.000 1.000 0.979 0.980 0.960 1.000 0.958 0.924 0.921 0.955 0.889 0.958 0.542 0.515 0.547 0.486 0.597 0.604 0.612 0.600 0.625 0.583
9 1.000 1.000 1.000 1.000 1.000 0.993 0.993 1.000 0.986 1.000 0.944 0.942 0.985 0.903 0.986 0.542 0.476 0.556 0.417 0.667 0.618 0.641 0.605 0.681 0.556
10 1.000 1.000 1.000 1.000 1.000 0.972 0.971 1.000 0.944 1.000 0.868 0.872 0.844 0.903 0.833 0.521 0.489 0.524 0.458 0.583 0.625 0.635 0.618 0.653 0.597
11 0.542 0.653 0.525 0.861 0.222 0.958 0.957 1.000 0.917 1.000 0.812 0.780 0.941 0.667 0.958 0.542 0.468 0.558 0.403 0.681 0.604 0.632 0.590 0.681 0.528
12 0.542 0.641 0.527 0.819 0.264 0.986 0.986 1.000 0.972 1.000 0.861 0.846 0.948 0.764 0.958 0.528 0.534 0.527 0.542 0.514 0.611 0.632 0.600 0.667 0.556

Table 28: Out-of-sample SVMs results of EMD-MFCCs features conducted with Radial Basis function as kernel with dataset 2.



Experiment 2

Dataset 2

Speaker1 vs Female synthetic voice generated with IBM TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.986 0.986 1.000 0.972 1.000 0.958 0.959 0.946 0.972 0.944 0.931 0.933 0.897 0.972 0.889 0.521 0.481 0.525 0.444 0.597 0.542 0.577 0.536 0.625 0.458
2 0.951 0.953 0.922 0.986 0.917 0.972 0.972 0.972 0.972 0.972 0.875 0.871 0.897 0.847 0.903 0.521 0.543 0.519 0.569 0.472 0.493 0.510 0.494 0.528 0.458
3 0.694 0.732 0.652 0.833 0.556 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.507 0.536 0.506 0.569 0.444 0.521 0.517 0.521 0.514 0.528
4 0.903 0.897 0.953 0.847 0.958 0.833 0.829 0.853 0.806 0.861 0.924 0.923 0.930 0.917 0.931 0.500 0.471 0.500 0.444 0.556 0.521 0.524 0.521 0.528 0.514
5 0.778 0.789 0.750 0.833 0.722 0.736 0.732 0.743 0.722 0.750 0.799 0.794 0.812 0.778 0.819 0.479 0.497 0.481 0.514 0.444 0.514 0.533 0.513 0.556 0.472
6 0.806 0.831 0.734 0.958 0.653 0.951 0.951 0.958 0.944 0.958 0.604 0.623 0.595 0.653 0.556 0.479 0.503 0.481 0.528 0.431 0.521 0.549 0.519 0.583 0.458
7 0.986 0.986 0.986 0.986 0.986 0.944 0.944 0.957 0.931 0.958 0.861 0.846 0.948 0.764 0.958 0.479 0.483 0.479 0.486 0.472 0.451 0.423 0.446 0.403 0.500
8 1.000 1.000 1.000 1.000 1.000 0.861 0.863 0.851 0.875 0.847 0.944 0.944 0.944 0.944 0.944 0.458 0.466 0.459 0.472 0.444 0.535 0.568 0.530 0.611 0.458
9 1.000 1.000 1.000 1.000 1.000 0.965 0.965 0.972 0.958 0.972 0.979 0.979 1.000 0.958 1.000 0.486 0.532 0.488 0.583 0.389 0.472 0.433 0.468 0.403 0.542
10 1.000 1.000 1.000 1.000 1.000 0.938 0.936 0.957 0.917 0.958 0.729 0.702 0.780 0.639 0.819 0.521 0.504 0.522 0.486 0.556 0.549 0.575 0.543 0.611 0.486
11 1.000 1.000 1.000 1.000 1.000 0.792 0.795 0.784 0.806 0.778 0.674 0.689 0.658 0.722 0.625 0.472 0.479 0.473 0.486 0.458 0.535 0.579 0.529 0.639 0.431
12 0.569 0.699 0.537 1.000 0.139 0.764 0.795 0.702 0.917 0.611 0.882 0.874 0.937 0.819 0.944 0.479 0.476 0.479 0.472 0.486 0.528 0.564 0.524 0.611 0.444

Speaker1 vs Female synthetic voice with Sapi5 TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.924 0.924 0.918 0.931 0.917 0.931 0.934 0.887 0.986 0.875 0.972 0.973 0.959 0.986 0.958 0.618 0.621 0.616 0.625 0.611 0.910 0.910 0.904 0.917 0.903
2 0.993 0.993 1.000 0.986 1.000 0.993 0.993 0.986 1.000 0.986 0.965 0.965 0.972 0.958 0.972 0.521 0.561 0.518 0.611 0.431 0.701 0.703 0.699 0.708 0.694
3 0.875 0.885 0.821 0.958 0.792 0.993 0.993 1.000 0.986 1.000 1.000 1.000 1.000 1.000 1.000 0.465 0.476 0.467 0.486 0.444 0.743 0.745 0.740 0.750 0.736
4 0.993 0.993 1.000 0.986 1.000 0.958 0.958 0.958 0.958 0.958 0.903 0.901 0.914 0.889 0.917 0.528 0.534 0.527 0.542 0.514 0.778 0.784 0.763 0.806 0.750
5 0.944 0.942 0.985 0.903 0.986 0.854 0.844 0.905 0.792 0.917 0.778 0.775 0.786 0.764 0.792 0.514 0.485 0.516 0.458 0.569 0.792 0.792 0.792 0.792 0.792
6 1.000 1.000 1.000 1.000 1.000 0.944 0.941 1.000 0.889 1.000 0.736 0.721 0.766 0.681 0.792 0.514 0.507 0.514 0.500 0.528 0.812 0.797 0.869 0.736 0.889
7 1.000 1.000 1.000 1.000 1.000 0.979 0.979 0.986 0.972 0.986 0.944 0.942 0.985 0.903 0.986 0.556 0.429 0.600 0.333 0.778 0.806 0.800 0.824 0.778 0.833
8 1.000 1.000 1.000 1.000 1.000 0.903 0.903 0.903 0.903 0.903 0.910 0.909 0.915 0.903 0.917 0.479 0.503 0.481 0.528 0.431 0.799 0.803 0.787 0.819 0.778
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.965 0.964 1.000 0.931 1.000 0.486 0.519 0.488 0.556 0.417 0.826 0.825 0.831 0.819 0.833
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.847 0.841 0.879 0.806 0.889 0.500 0.493 0.500 0.486 0.514 0.806 0.806 0.806 0.806 0.806
11 0.618 0.721 0.568 0.986 0.250 0.986 0.986 1.000 0.972 1.000 0.757 0.729 0.825 0.653 0.861 0.500 0.507 0.500 0.514 0.486 0.812 0.800 0.857 0.750 0.875
12 0.542 0.670 0.523 0.931 0.153 0.972 0.971 1.000 0.944 1.000 0.924 0.920 0.969 0.875 0.972 0.472 0.486 0.474 0.500 0.444 0.792 0.795 0.784 0.806 0.778

Table 29: Out-of-sample SVMs results of EMD-MFCCs features conducted with Radial Basis function as kernel with dataset 2.



M. Campi

Experiment 2

Dataset 1

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice Espeak

MFCC-1 MFCC-2 MFCC-3 MFCC-K MFCC-K+1
Accuracy8th coeff. 10th coeff. 7th coeff. 1st coeff. 1st coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.211 0.211 0.211 0.170 0.199 1.000
0.263 0.263 0.263 0.212 − 1.000
− 0.267 0.267 0.215 0.252 1.000

0.267 − 0.267 0.215 0.252 0.999
0.267 0.267 − 0.215 0.252 0.998
0.254 0.254 0.254 − 0.239 0.997
0.333 0.333 0.333 − − 0.997
0.356 0.356 − 0.287 − 0.995
0.340 0.340 − − 0.321 0.995
− − 0.364 0.293 0.343 0.899

0.500 0.500 − − − 0.899
0.356 − 0.356 0.287 − 0.899
0.340 − 0.340 − 0.321 0.899
− 0.356 0.356 0.287 − 0.898
− 0.340 0.340 − 0.321 0.898
− 0.500 0.500 − − 0.897

0.364 − − 0.293 0.343 0.895
− 0.554 − 0.446 − 0.895

0.500 − 0.500 − − 0.893
− 0.364 − 0.293 0.343 0.892
− 0.514 − − 0.486 0.890

0.554 − − 0.446 − 0.891
− − − 0.460 0.540 0.888
− − 0.554 0.446 − 0.888
− − 0.514 − 0.486 0.887

0.514 − − − 0.486 0.700

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice Espeak

MFCC MFCC MFCC MFCC MFCC
Accuracy8th coeff. 8th coeff. 9th coeff. 10th coeff. 10th coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.197 0.210 0. 199 0.197 0.197 0.685

Table 30: MKL-SVMs results of the synthetic voice generated with the Espeak TTS
algorithm versus Speaker 1 for dataset 1. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample accuracy).
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Experiment 2

Dataset 1

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice GTTs

MFCC-1 MFCC-2 MFCC-3 MFCC-K MFCC-K+1
Accuracy8th coeff. 8th coeff. 3rd coeff. 9th coeff. 2nd coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.247 0.247 0.247 0.151 0.110 1.000
0.277 0.277 0.277 0.169 − 1.000
0.290 0.290 0.290 − 0.129 1.000
0.327 0.327 − 0.200 0.145 1.000
− 0.327 0.327 0.200 0.145 1.000

0.327 − 0.327 0.200 0.145 0.999
0.333 0.333 0.333 − − 0.998
0.383 0.383 − 0.234 − 0.997
0.409 0.409 − − 0.182 0.996
0.383 − 0.383 0.234 − 0.995
0.500 0.500 − − − 0.899
− 0.500 0.500 − − 0.899

0.500 − 0.500 − − 0.899
0.409 − 0.409 − 0.182 0.898
− 0.486 − 0.297 0.216 0.898
− 0.383 0.383 0.234 − 0.898
− 0.692 − − 0.308 0.898
− − 0.486 0.297 0.216 0.898
− 0.621 − 0.379 − 0.897

0.621 − − 0.379 − 0.896
0.486 − − 0.297 0.216 0.893
− 0.409 0.409 − 0.182 0.890

0.692 − − − 0.308 0.803
− − 0.692 − 0.308 0.797
− − − 0.579 0.421 0.795
− − 0.621 0.379 − 0.795

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice GTTs

MFCC MFCC MFCC MFCC MFCC
Accuracy9th coeff. 8th coeff. 8th coeff. 7th coeff. 6th coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.197 0.207 0.201 0.197 0.197 0.705

Table 31: MKL-SVMs results of the synthetic voice generated with the GTTs TTS
algorithm versus Speaker 1 for dataset 1. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample accuracy).
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Experiment 2

Dataset 1

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice SAPI5

MFCC-1 MFCC-2 MFCC-3 MFCC-K MFCC-K+1
Accuracy8th coeff. 9th coeff. 4th coeff. 10th coeff. 1st coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.237 0.230 0.230 0.112 0.191 1.000
0.293 0.285 0.285 0.138 − 1.000
0.267 0.259 0.259 − 0.215 1.000
0.308 0.299 − 0.145 0.248 1.000
− 0.302 0.302 0.147 0.250 0.998

0.340 0.330 0.330 − − 0.998
0.308 − 0.299 0.145 0.248 0.975
0.409 0.398 − 0.193 − 0.995
0.439 − − 0.207 0.354 0.899
0.409 − 0.398 0.193 − 0.899
0.360 0.350 − − 0.290 0.889
− − 0.432 0.210 0.358 0.899

0.507 0.493 − − − 0.899
0.360 − 0.350 − 0.290 0.898
− 0.500 0.500 − − 0.888
− 0.402 0.402 0.195 − 0.897
− 0.354 0.354 − 0.293 0.897
− 0.432 − 0.210 0.358 0.885

0.507 − 0.493 − − 0.875
0.679 − − 0.321 − 0.865
0.554 − − − 0.446 0.845
− 0.673 − 0.327 − 0.807
− 0.547 − − 0.453 0.800
− − 0.673 0.327 − 0.799
− − 0.547 − 0.453 0.799
− − − 0.370 0.630 0.787

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice SAPI5

MFCC MFCC MFCC MFCC MFCC
Accuracy9th coeff. 9th coeff. 10th coeff. 10th coeff. 5th coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.198 0.208 0.209 0.192 0.192 0.745

Table 32: MKL-SVMs results of the synthetic voice generated with the SAPI5 TTS
algorithm versus Speaker 1 for dataset 1. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample accuracy).
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Experiment 2

Dataset 2

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice Espeak

MFCC-1 MFCC-2 MFCC-3 MFCC-K MFCC-K+1
Accuracy8th coeff. 7th coeff. 9th coeff. 1st coeff. 3rd coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.206 0.192 0.192 0.206 0.203 1.000
0.259 0.241 0.241 0.259 − 1.000
0.260 0.242 0.242 − 0.256 1.000
0.255 0.238 − 0.255 0.251 0.999
0.255 − 0.238 0.255 0.251 0.999
− 0.242 0.242 0.260 0.256 0.997

0.350 0.325 0.325 − − 0.999
0.341 0.318 − 0.341 − 0.997
0.343 0.319 − − 0.338 0.994
0.341 − 0.318 0.341 − 0.994
0.343 − 0.319 − 0.338 0.993
0.518 0.482 − − − 0.990
− 0.327 0.327 − 0.346 0.990

0.335 − − 0.335 0.330 0.908
− 0.325 0.325 0.350 − 0.907
− 0.319 − 0.343 0.338 0.900
− 0.500 0.500 − − 0.888

0.518 − 0.482 − − 0.886
0.500 − − 0.500 − 0.885
− 0.486 − − 0.514 0.866
− 0.482 − 0.518 − 0.850
− − 0.319 0.343 0.338 0.798
− − 0.486 − 0.514 0.788
− − 0.482 0.518 − 0.789

0.504 − − − 0.496 0.700
− − − 0.504 0.496 0.708

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice Espeak

MFCC MFCC MFCC MFCC MFCC
Accuracy8th coeff. 9th coeff. 7th coeff. 8th coeff. 11th coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.210 0.197 0.197 0.197 0.197 0.710

Table 33: MKL-SVMs results of the synthetic voice generated with the Espeak TTS
algorithm versus Speaker 1 for dataset 2. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample accuracy).
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Experiment 2

Dataset 2

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice GTTs

MFCC-1 MFCC-2 MFCC-3 MFCC-K MFCC-K+1
Accuracy7th coeff. 8th coeff. 9th coeff. 2nd coeff. 10th coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.250 0.244 0.235 0.125 0.146 1.000
0.293 0.286 0.275 0.146 − 1.000
0.286 0.279 0.268 − 0.167 1.000
0.327 0.319 − 0.163 0.191 1.000
− 0.326 0.313 0.166 0.195 1.000

0.343 0.335 0.322 − − 1.000
0.404 0.395 − 0.201 − 1.000
0.391 0.382 − − 0.228 1.000
− 0.405 0.389 0.207 − 1.000
− 0.391 0.376 − 0.233 1.000
− 0.475 − 0.242 0.283 1.000

0.506 0.494 − − − 1.000
− 0.662 − 0.338 − 1.000
− 0.626 − − 0.374 1.000
− − 0.653 0.347 − 0.993
− − 0.617 − 0.383 0.993
− 0.510 0.490 − − 0.993

0.331 − 0.311 0.165 0.193 0.993
0.410 − 0.385 0.205 − 0.993
− − 0.464 0.247 0.289 0.993

0.397 − 0.372 − 0.231 0.979
0.516 − 0.484 − − 0.986
0.480 − − 0.239 0.280 0.889
0.667 − − 0.333 − 0.889
− − − 0.461 0.539 0.889

0.632 − − − 0.368 0.600

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice GTTs

MFCC MFCC MFCC MFCC MFCC
Accuracy8th coeff. 8th coeff. 9th coeff. 11th coeff. 10th coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.208 0.198 0.198 0.198 0.198 0.778

Table 34: MKL-SVMs results of the synthetic voice generated with the GTTs TTS
algorithm versus Speaker 1 for dataset 2. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample accuracy).
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Experiment 2

Dataset 2

OFS EMD-MFCC-MKL - Speaker 1 vs Female Synthetic Voice SAPI5

MFCC-1 MFCC-2 MFCC-3 MFCC-K MFCC-K+1
Accuracy8th coeff. 9th coeff. 4th coeff. 10th coeff. 1st coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.234 0.229 0.225 0.101 0.211 1.000
0.297 0.290 0.286 0.127 − 1.000
0.261 0.255 0.251 − 0.234 1.000
0.303 0.296 − 0.130 0.272 0.999
0.304 − 0.292 0.130 0.273 0.986
− 0.299 0.294 0.131 0.275 0.972

0.340 0.332 0.327 − − 0.952
0.416 0.406 − 0.178 − 0.952
0.348 0.340 − − 0.313 0.949
0.418 − 0.402 0.179 − 0.902
0.350 − 0.336 − 0.314 0.902
0.506 0.494 − − − 0.900
− 0.413 0.406 0.181 − 0.899
− 0.344 0.339 − 0.317 0.899
− 0.424 − 0.186 0.390 .890
− − 0.420 0.187 0.393 0.890

0.510 − 0.490 − − 0.886
− 0.504 0.496 − − 0.886
− 0.695 − 0.305 − 0.883
− 0.521 − − 0.479 0.883
− − 0.691 0.309 − 0.883
− − 0.517 − 0.483 0.880
− − − 0.323 0.677 0.743

0.700 − − 0.300 − 0.743
0.429 − − 0.184 0.386 0.729
0.526 − − − 0.474 0.700

OFS Raw Data MFCC-MKL - Speaker 1 vs Female Synthetic Voice SAPI5

MFCC MFCC MFCC MFCC MFCC
Accuracy10th coeff. 10th coeff. 8th coeff. 9th coeff. 8th coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.210 0.210 0.198 0.191 0.191 0.785

Table 35: MKL-SVMs results of the synthetic voice generated with the SAPI5 TTS
algorithm versus Speaker 1 for dataset 2. We select the best features according to their
performances when individually tested (i.e. through the out-of-sample accuracy).
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Experiment 3

Dataset 3

Female Case versus A01 TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.789 0.810 0.735 0.903 0.675 0.843 0.855 0.791 0.932 0.753 0.797 0.814 0.752 0.886 0.708 0.700 0.746 0.647 0.880 0.519 0.692 0.734 0.645 0.851 0.532
2 0.893 0.897 0.864 0.932 0.854 0.847 0.858 0.802 0.922 0.773 0.740 0.754 0.716 0.795 0.685 0.532 0.541 0.531 0.552 0.513 0.536 0.552 0.533 0.571 0.500
3 0.847 0.851 0.830 0.873 0.821 0.864 0.878 0.795 0.981 0.747 0.852 0.866 0.791 0.958 0.747 0.545 0.571 0.541 0.604 0.487 0.575 0.585 0.571 0.601 0.549
4 0.823 0.818 0.842 0.795 0.851 0.756 0.771 0.727 0.821 0.692 0.831 0.849 0.767 0.951 0.711 0.558 0.582 0.553 0.614 0.503 0.549 0.563 0.546 0.581 0.516
5 0.706 0.680 0.747 0.623 0.789 0.763 0.772 0.744 0.802 0.724 0.830 0.845 0.774 0.932 0.727 0.562 0.587 0.555 0.623 0.500 0.547 0.562 0.544 0.581 0.513
6 0.651 0.662 0.641 0.685 0.617 0.766 0.788 0.722 0.867 0.666 0.792 0.802 0.765 0.844 0.740 0.563 0.587 0.557 0.620 0.506 0.541 0.554 0.538 0.571 0.510
7 0.703 0.708 0.696 0.721 0.685 0.760 0.784 0.712 0.873 0.646 0.794 0.803 0.769 0.841 0.747 0.565 0.580 0.561 0.601 0.529 0.545 0.558 0.543 0.575 0.516
8 0.795 0.822 0.729 0.942 0.649 0.664 0.698 0.634 0.776 0.552 0.753 0.748 0.765 0.731 0.776 0.555 0.569 0.552 0.588 0.523 0.550 0.567 0.547 0.588 0.513
9 0.685 0.680 0.691 0.669 0.701 0.571 0.593 0.565 0.623 0.519 0.726 0.740 0.703 0.782 0.669 0.570 0.589 0.564 0.617 0.523 0.555 0.581 0.549 0.617 0.494
10 0.677 0.690 0.664 0.718 0.636 0.682 0.666 0.701 0.633 0.731 0.726 0.738 0.706 0.773 0.679 0.565 0.579 0.561 0.597 0.532 0.544 0.556 0.542 0.571 0.516
11 0.708 0.720 0.692 0.750 0.666 0.571 0.567 0.573 0.562 0.581 0.661 0.693 0.633 0.766 0.555 0.562 0.571 0.559 0.584 0.539 0.552 0.571 0.548 0.597 0.506
12 0.755 0.748 0.770 0.727 0.782 0.560 0.573 0.557 0.591 0.529 0.698 0.721 0.670 0.779 0.617 0.565 0.573 0.562 0.584 0.545 0.550 0.581 0.544 0.623 0.477

Female Case versus A02 TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.818 0.830 0.780 0.886 0.750 0.847 0.861 0.792 0.942 0.753 0.886 0.891 0.856 0.929 0.844 0.705 0.751 0.649 0.893 0.516 0.679 0.723 0.635 0.841 0.516
2 0.756 0.752 0.765 0.740 0.773 0.745 0.767 0.707 0.838 0.653 0.800 0.813 0.765 0.867 0.734 0.508 0.523 0.508 0.539 0.477 0.562 0.554 0.564 0.545 0.578
3 0.727 0.711 0.755 0.672 0.782 0.722 0.744 0.691 0.805 0.640 0.852 0.854 0.842 0.867 0.838 0.528 0.531 0.527 0.536 0.519 0.589 0.600 0.585 0.617 0.562
4 0.703 0.688 0.724 0.656 0.750 0.672 0.681 0.663 0.701 0.643 0.813 0.832 0.756 0.925 0.701 0.539 0.546 0.538 0.555 0.523 0.570 0.581 0.566 0.597 0.542
5 0.677 0.612 0.766 0.510 0.844 0.675 0.688 0.662 0.718 0.633 0.792 0.810 0.747 0.883 0.701 0.531 0.546 0.529 0.565 0.497 0.575 0.581 0.572 0.591 0.558
6 0.628 0.615 0.638 0.594 0.662 0.690 0.720 0.656 0.799 0.581 0.654 0.657 0.652 0.662 0.646 0.542 0.552 0.540 0.565 0.519 0.583 0.589 0.580 0.597 0.568
7 0.711 0.708 0.715 0.701 0.721 0.709 0.732 0.680 0.792 0.627 0.662 0.697 0.632 0.776 0.549 0.529 0.540 0.528 0.552 0.506 0.576 0.588 0.572 0.604 0.549
8 0.737 0.755 0.706 0.812 0.662 0.718 0.708 0.733 0.685 0.750 0.727 0.744 0.701 0.792 0.662 0.541 0.557 0.538 0.578 0.503 0.584 0.586 0.584 0.588 0.581
9 0.593 0.485 0.659 0.383 0.802 0.662 0.692 0.636 0.760 0.565 0.729 0.722 0.741 0.705 0.753 0.544 0.557 0.541 0.575 0.513 0.576 0.585 0.573 0.597 0.555
10 0.685 0.650 0.732 0.584 0.786 0.610 0.576 0.632 0.529 0.692 0.774 0.767 0.792 0.744 0.805 0.547 0.559 0.545 0.575 0.519 0.575 0.583 0.572 0.594 0.555
11 0.812 0.814 0.806 0.821 0.802 0.661 0.663 0.658 0.669 0.653 0.739 0.750 0.718 0.786 0.692 0.544 0.557 0.541 0.575 0.513 0.576 0.580 0.575 0.584 0.568
12 0.732 0.724 0.747 0.701 0.763 0.674 0.678 0.669 0.688 0.659 0.706 0.711 0.699 0.724 0.688 0.545 0.562 0.542 0.584 0.506 0.575 0.576 0.574 0.578 0.571

Female Case versus A04 TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.701 0.727 0.669 0.795 0.607 0.713 0.740 0.676 0.818 0.607 0.726 0.755 0.681 0.847 0.604 0.683 0.739 0.629 0.896 0.471 0.690 0.743 0.634 0.896 0.484
2 0.664 0.670 0.658 0.682 0.646 0.677 0.709 0.645 0.786 0.568 0.649 0.683 0.623 0.756 0.542 0.516 0.515 0.516 0.513 0.519 0.542 0.548 0.541 0.555 0.529
3 0.589 0.599 0.585 0.614 0.565 0.688 0.731 0.643 0.847 0.529 0.698 0.733 0.657 0.828 0.568 0.550 0.564 0.547 0.581 0.519 0.565 0.571 0.563 0.578 0.552
4 0.615 0.639 0.602 0.682 0.549 0.643 0.664 0.627 0.705 0.581 0.669 0.717 0.626 0.841 0.497 0.544 0.559 0.541 0.578 0.510 0.563 0.564 0.563 0.565 0.562
5 0.541 0.543 0.540 0.545 0.536 0.578 0.577 0.578 0.575 0.581 0.679 0.718 0.640 0.818 0.539 0.539 0.548 0.537 0.558 0.519 0.573 0.581 0.571 0.591 0.555
6 0.573 0.592 0.567 0.620 0.526 0.575 0.624 0.559 0.705 0.445 0.651 0.669 0.636 0.705 0.597 0.532 0.541 0.531 0.552 0.513 0.571 0.577 0.570 0.584 0.558
7 0.614 0.614 0.614 0.614 0.614 0.664 0.698 0.634 0.776 0.552 0.542 0.567 0.538 0.601 0.484 0.545 0.561 0.542 0.581 0.510 0.578 0.583 0.576 0.591 0.565
8 0.620 0.634 0.611 0.659 0.581 0.664 0.692 0.638 0.756 0.571 0.576 0.590 0.571 0.610 0.542 0.547 0.556 0.545 0.568 0.526 0.573 0.581 0.571 0.591 0.555
9 0.662 0.667 0.658 0.675 0.649 0.623 0.645 0.610 0.685 0.562 0.544 0.537 0.545 0.529 0.558 0.537 0.540 0.537 0.542 0.532 0.571 0.578 0.569 0.588 0.555
10 0.578 0.574 0.579 0.568 0.588 0.562 0.533 0.570 0.500 0.623 0.589 0.580 0.593 0.568 0.610 0.541 0.540 0.541 0.539 0.542 0.570 0.575 0.568 0.581 0.558
11 0.581 0.596 0.576 0.617 0.545 0.581 0.584 0.580 0.588 0.575 0.547 0.569 0.543 0.597 0.497 0.552 0.563 0.549 0.578 0.526 0.571 0.578 0.569 0.588 0.555
12 0.604 0.631 0.590 0.679 0.529 0.523 0.539 0.521 0.558 0.487 0.597 0.611 0.591 0.633 0.562 0.541 0.547 0.539 0.555 0.526 0.571 0.581 0.568 0.594 0.549

Table 36: Out-of-sample SVMs results of EMD-MFCCs features for the female case conducted with Radial Basis function as kernel with
Dataset 3.



Experiment 3

Dataset 3

Male Case versus A01 TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.729 0.752 0.693 0.821 0.636 0.776 0.792 0.740 0.851 0.701 0.756 0.782 0.708 0.873 0.640 0.571 0.676 0.543 0.896 0.247 0.584 0.691 0.550 0.929 0.240
2 0.729 0.766 0.673 0.890 0.568 0.631 0.667 0.609 0.737 0.526 0.679 0.693 0.664 0.724 0.633 0.510 0.481 0.511 0.455 0.565 0.490 0.502 0.491 0.513 0.468
3 0.763 0.776 0.735 0.821 0.705 0.588 0.657 0.562 0.789 0.386 0.727 0.765 0.672 0.886 0.568 0.518 0.496 0.520 0.474 0.562 0.503 0.522 0.503 0.542 0.464
4 0.735 0.731 0.744 0.718 0.753 0.532 0.573 0.527 0.627 0.438 0.599 0.680 0.566 0.854 0.344 0.521 0.514 0.522 0.506 0.536 0.518 0.547 0.516 0.581 0.455
5 0.666 0.683 0.649 0.721 0.610 0.675 0.708 0.643 0.789 0.562 0.581 0.670 0.553 0.851 0.312 0.541 0.549 0.539 0.558 0.523 0.506 0.521 0.506 0.536 0.477
6 0.597 0.565 0.615 0.523 0.672 0.576 0.584 0.574 0.594 0.558 0.549 0.635 0.533 0.786 0.312 0.513 0.505 0.513 0.497 0.529 0.505 0.512 0.505 0.519 0.490
7 0.701 0.698 0.705 0.692 0.711 0.633 0.623 0.640 0.607 0.659 0.609 0.655 0.586 0.744 0.474 0.519 0.518 0.520 0.516 0.523 0.505 0.504 0.505 0.503 0.506
8 0.761 0.763 0.759 0.766 0.756 0.472 0.510 0.476 0.549 0.396 0.659 0.679 0.642 0.721 0.597 0.539 0.555 0.536 0.575 0.503 0.539 0.549 0.537 0.562 0.516
9 0.539 0.570 0.534 0.610 0.468 0.537 0.544 0.536 0.552 0.523 0.537 0.574 0.532 0.623 0.451 0.534 0.533 0.534 0.532 0.536 0.503 0.513 0.503 0.523 0.484
10 0.649 0.672 0.631 0.718 0.581 0.597 0.624 0.585 0.669 0.526 0.619 0.637 0.608 0.669 0.568 0.541 0.554 0.538 0.571 0.510 0.524 0.536 0.523 0.549 0.500
11 0.672 0.664 0.680 0.649 0.695 0.555 0.597 0.546 0.659 0.451 0.524 0.567 0.520 0.623 0.425 0.537 0.540 0.537 0.542 0.532 0.502 0.510 0.502 0.519 0.484
12 0.677 0.660 0.697 0.627 0.727 0.586 0.649 0.563 0.766 0.406 0.519 0.591 0.514 0.695 0.344 0.532 0.543 0.531 0.555 0.510 0.500 0.511 0.500 0.523 0.477

Male Case versus A02 TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.792 0.805 0.757 0.860 0.724 0.836 0.845 0.802 0.893 0.779 0.771 0.789 0.733 0.854 0.688 0.735 0.763 0.691 0.851 0.620 0.724 0.763 0.669 0.886 0.562
2 0.651 0.678 0.630 0.734 0.568 0.661 0.682 0.642 0.727 0.594 0.851 0.850 0.855 0.844 0.857 0.531 0.552 0.528 0.578 0.484 0.542 0.548 0.541 0.555 0.529
3 0.795 0.792 0.805 0.779 0.812 0.615 0.650 0.596 0.714 0.516 0.852 0.854 0.842 0.867 0.838 0.531 0.533 0.531 0.536 0.526 0.526 0.534 0.525 0.542 0.510
4 0.735 0.736 0.735 0.737 0.734 0.523 0.576 0.518 0.649 0.396 0.744 0.766 0.705 0.838 0.649 0.529 0.520 0.530 0.510 0.549 0.536 0.557 0.533 0.584 0.487
5 0.656 0.661 0.651 0.672 0.640 0.596 0.599 0.594 0.604 0.588 0.666 0.715 0.623 0.838 0.494 0.539 0.530 0.541 0.519 0.558 0.544 0.557 0.541 0.575 0.513
6 0.599 0.592 0.603 0.581 0.617 0.545 0.532 0.548 0.516 0.575 0.610 0.634 0.598 0.675 0.545 0.536 0.545 0.534 0.555 0.516 0.542 0.559 0.539 0.581 0.503
7 0.685 0.683 0.688 0.679 0.692 0.625 0.632 0.621 0.643 0.607 0.752 0.745 0.766 0.724 0.779 0.541 0.534 0.542 0.526 0.555 0.547 0.561 0.544 0.578 0.516
8 0.688 0.687 0.690 0.685 0.692 0.567 0.595 0.558 0.636 0.497 0.838 0.825 0.894 0.766 0.909 0.526 0.531 0.525 0.536 0.516 0.541 0.556 0.538 0.575 0.506
9 0.563 0.603 0.553 0.662 0.464 0.610 0.632 0.599 0.669 0.552 0.753 0.723 0.825 0.643 0.864 0.528 0.537 0.526 0.549 0.506 0.532 0.541 0.531 0.552 0.513
10 0.679 0.689 0.668 0.711 0.646 0.606 0.623 0.596 0.653 0.558 0.737 0.733 0.745 0.721 0.753 0.529 0.540 0.528 0.552 0.506 0.532 0.547 0.530 0.565 0.500
11 0.700 0.706 0.692 0.721 0.679 0.557 0.546 0.560 0.532 0.581 0.659 0.671 0.648 0.695 0.623 0.541 0.543 0.540 0.545 0.536 0.528 0.540 0.526 0.555 0.500
12 0.719 0.717 0.723 0.711 0.727 0.638 0.658 0.623 0.698 0.578 0.617 0.650 0.598 0.711 0.523 0.536 0.553 0.533 0.575 0.497 0.531 0.541 0.530 0.552 0.510

Male Case versus A04 TTS Algorithm

MELFCC IMF 1 IMF 2 IMF 3 IMF K IMF K+1
Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec. Accuracy F1-score Prec. Sens. Spec.

1 0.627 0.677 0.597 0.782 0.471 0.638 0.698 0.599 0.838 0.438 0.614 0.678 0.581 0.812 0.416 0.555 0.662 0.534 0.870 0.240 0.558 0.669 0.535 0.893 0.224
2 0.547 0.613 0.535 0.718 0.377 0.552 0.630 0.537 0.763 0.341 0.567 0.617 0.553 0.698 0.435 0.529 0.526 0.530 0.523 0.536 0.485 0.478 0.485 0.471 0.500
3 0.568 0.591 0.561 0.623 0.513 0.521 0.616 0.514 0.769 0.273 0.591 0.679 0.559 0.864 0.318 0.519 0.523 0.519 0.526 0.513 0.518 0.506 0.519 0.494 0.542
4 0.581 0.594 0.576 0.614 0.549 0.511 0.590 0.508 0.705 0.318 0.558 0.646 0.539 0.805 0.312 0.528 0.524 0.528 0.519 0.536 0.513 0.510 0.513 0.506 0.519
5 0.545 0.581 0.539 0.630 0.461 0.539 0.585 0.532 0.649 0.429 0.541 0.662 0.524 0.899 0.182 0.526 0.518 0.527 0.510 0.542 0.487 0.485 0.487 0.484 0.490
6 0.463 0.504 0.468 0.545 0.380 0.528 0.554 0.525 0.588 0.468 0.524 0.636 0.515 0.831 0.218 0.536 0.536 0.536 0.536 0.536 0.489 0.489 0.489 0.490 0.487
7 0.539 0.540 0.539 0.542 0.536 0.567 0.594 0.559 0.633 0.500 0.489 0.588 0.492 0.731 0.247 0.524 0.511 0.526 0.497 0.552 0.495 0.488 0.495 0.481 0.510
8 0.505 0.506 0.505 0.506 0.503 0.536 0.604 0.527 0.708 0.364 0.567 0.606 0.556 0.666 0.468 0.532 0.534 0.532 0.536 0.529 0.487 0.485 0.487 0.484 0.490
9 0.479 0.498 0.480 0.516 0.442 0.549 0.590 0.541 0.649 0.448 0.547 0.595 0.538 0.666 0.429 0.531 0.533 0.531 0.536 0.526 0.484 0.489 0.484 0.494 0.474
10 0.549 0.574 0.544 0.607 0.490 0.576 0.621 0.562 0.695 0.458 0.610 0.636 0.597 0.682 0.539 0.532 0.540 0.531 0.549 0.516 0.482 0.488 0.483 0.494 0.471
11 0.567 0.582 0.562 0.604 0.529 0.547 0.605 0.536 0.695 0.399 0.599 0.649 0.577 0.740 0.458 0.531 0.533 0.531 0.536 0.526 0.487 0.494 0.487 0.500 0.474
12 0.482 0.474 0.482 0.468 0.497 0.562 0.626 0.546 0.734 0.390 0.552 0.642 0.535 0.802 0.302 0.532 0.549 0.530 0.568 0.497 0.482 0.483 0.482 0.484 0.481

Table 37: Out-of-sample SVMs results of EMD-MFCCs features for the male case conducted with Radial Basis function as kernel with
Dataset 3.
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Appendix I
The third algorithm shows the procedure adopted in the Multi Kernel Learning
section to compute MKL-SVM out-of-sample results. Remark that πm is the
accuracy of each SVM and the index m refers to the feature taken into account.
The process can be synthesized as follows: (1) by only considering the out of
sample performance, compute for each kernel in each feature πm − δ; (2) take
the average over all the IMFs index within each kernel corresponding to sm =∑5
i=1 (πi,m − δ) /5, where the index i relates to the IMF index. (3) Choose the

kernel with the higher score computed in (2) for each feature. (4) Select the
features that have to be considered in the multi-kernel learning process and then
standardise according to 4.13, so that each ηm can be obtained. (5) Run a final
SVM with the new computed kernel on the testing set.
Algorithm 9: MKL algorithm
Input: Out of sample accuracies πm for each selected feature and kernel
Test training (20 sentences)
Output: MKL-SVM out-of-sample
begin

Set δ = 0.1
For each kernel and for each feature
for i = 1 to 5 do

compute sm =
∑5
i=1 (πi,m − δ) /5

Select the best kernel for each feature according to the scores sm
Compute the final weights as ηm = sm/

∑M
m=1 sm where M can vary

depending on the SVM
Compute a final out of sample SVM by using the new computed kernel
according to 4.12.
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Experiment 3

Dataset 3

OFS EMD-MFCC-MKL - Female Case vs A04 TTS Algorithm

MFCC-1 MFCC-2 MFCC-3 MFCC-K MFCC-K+1
Accuracy1st coeff. 1st coeff. 1st coeff. 1st coeff. 1st coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

− 0.495 0.505 − − 0.925
− 0.512 − 0.488 − 0.917
− 0.336 0.343 0.320 − 0.911
− 0.335 0.342 − 0.323 0.891

0.327 0.333 0.340 − − 0.890
− 0.509 − − 0.491 0.886

0.495 0.505 − − − 0.883
0.248 0.253 0.258 0.241 − 0.881
− 0.254 0.259 0.242 0.245 0.881

0.335 0.341 − 0.325 − 0.860
− 0.343 − 0.327 0.330 0.860

0.247 0.252 0.258 − 0.243 0.847
0.200 0.203 0.208 0.194 0.196 0.846
− − 0.517 0.483 − 0.839

0.252 0.257 − 0.244 0.247 0.823
0.333 0.340 − − 0.327 0.813
− − 0.348 0.324 0.328 0.773

0.332 − 0.346 0.322 − 0.771
0.251 − 0.261 0.243 0.246 0.750
− − 0.515 − 0.485 0.744

0.490 − 0.510 − − 0.742
0.508 − − 0.492 − 0.727
− − − 0.497 0.503 0.726

0.331 − 0.344 − 0.325 0.721
0.339 − − 0.329 0.332 0.716
0.505 − − − 0.495 0.500

OFS Raw Data MFCC-MKL - Female Case vs A04 TTS Algorithm

MFCC MFCC MFCC MFCC MFCC
Accuracy1st coeff. 1st coeff. 2nd coeff. 4th coeff. 2nd coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.240 0.238 0.166 0.189 0.166 0.680

Table 38: Multi Kernel Learning SVMs results of the female case versus the synthetic
voice generated with the A04 TTS algorithm of the ASVspoof challenge dataset.
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Experiment 3

Dataset 3

OFS EMD-MFCC-MKL - Male Case vs A04 TTS Algorithm

MFCC-1 MFCC-2 MFCC-3 MFCC-K MFCC-K+1
Accuracy1st coeff. 1st coeff. 1st coeff. 1st coeff. 1st coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

− 0.542 − 0.458 − 0.912
− 0.512 0.488 − − 0.904
− 0.357 0.341 0.302 − 0.896
− 0.540 − − 0.460 0.880

0.495 0.505 − − − 0.878
− 0.371 − 0.314 0.316 0.878

0.347 0.354 − 0.300 − 0.877
− 0.356 0.340 − 0.304 0.872

0.334 0.341 0.325 − − 0.862
− 0.274 0.261 0.232 0.233 0.862

0.259 0.265 0.253 0.224 − 0.856
0.346 0.353 − − 0.301 0.852
0.266 0.272 − 0.230 0.232 0.851
0.259 0.264 0.252 − 0.225 0.846
0.211 0.216 0.206 0.183 0.184 0.844
− − 0.530 0.470 − 0.825
− − 0.360 0.319 0.321 0.781

0.352 − 0.343 0.304 − 0.779
0.270 − 0.263 0.233 0.235 0.766
− − 0.528 − 0.472 0.763

0.506 − 0.494 − − 0.758
0.351 − 0.343 − 0.306 0.739
− − − 0.498 0.502 0.718

0.536 − − 0.464 − 0.705
0.366 − − 0.316 0.318 0.693
0.535 − − − 0.465 0.500

OFS Raw Data MFCC-MKL - Male Case vs A04 TTS Algorithm

MFCC MFCC MFCC MFCC MFCC
Accuracy1st coeff. 2nd coeff. 2nd coeff. 5th coeff. 1st coeff.

RBF RBF RBF RBF RBF

η1 η2 η3 η4 η5

0.189 0.198 0.212 0.212 0.189 0.662

Table 39: Multi Kernel Learning SVMs results of the male case versus the synthetic
voice generated with the A04 TTS algorithm of the ASVspoof challenge dataset.
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Appendix H
We assume that the vectors ψi for i = 1, . . . , S are iid realisations from g(ψ;ϕ).
We assume that the elements of the random vector ψ are independent random
variables such that their joint distribution can be factorised as

g(ψ;ϕ) =
∏
m=1

gωm(ωm;ϕm)
D∏
d=1

gsm,d(sm,d;ϕm,d) (14)

We assume that each probability distribution gx(x;ϕx) corresponds a univariate
normal distribution parametrized by mean µx and a standard divination σ2

x.
Hence, ϕx = [µx, σ2

x]. We expect that the iterative updates of the importance
sampling distribution shrink σ2

x towards zero and consequently, the sampling
distribution become a degenerate one and the µx would correspond to optimal
partition of I and T . Therefore, we propose

Wm ∼ N
(
µm, σ

2
m

)
and Sm,d ∼ N

(
µm,d, σ

2
m,d

)
(15)

where for the probability density function of X ∼ N
(
µ, σ2

)
such that a ≤ X ≤ b

is the following

gx(x, µ, σ2) = 1
σ
φ
(
x− µ
σ

)
,

where φ(x) is the probability density function of a standard normal random
variable

φ(x) = 1√
2π
e−0.5x2

. (16)

In order for the sampled ψ to belong to the feasible set Ψ, we need ω0 ≤ Wm ≤ ωM
and t0 ≤ Sm,d ≤ tN . The objective function of the estimation problem is then
formulated as

Λ(φ) =
S∑
i=1

1{KL(π̂,π;ψ(s))≤γ}
M∑
m=1

D∑
d=1

{
log gωm(ω(s)

m ;ϕm) + log gsm,d(s
(s)
m,d;ϕm,d)

}
(17)

with maximizers with respect to φ given by

∂Λ(φ)
∂µm

= D
∑S
i=1

{
1{KL(π̂,π;ψ(s))≤γ}

ω
(s)
m −µm
σ2
m

}
= 0

∂Λ(φ)
∂σ2
m

= D
2
∑S
i=1

1{KL(π̂,π;ψ(s))≤γ}

(
− 1

σ2
m

+ (ω(s)
m −µm)2

(σ2
m)2

) = 0

∂Λ(φ)
∂µm,d

= ∑S
i=1

{
1{KL(π̂,π;ψ(s))≤γ}

s
(s)
m,d
−µm,d
σ2
m,d

}
= 0

∂Λ(φ)
∂σ2
m,d

= D
2
∑S
i=1

1{KL(π̂,π;ψ(s))≤γ}

(
− 1

σ2
m,d

+ (s(s)
m,d
−µm,d)2

(σ2
m,d

)2

) = 0
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and consequently

µ̂m =
∑S
i=1 1{KL(π̂,π;ψ(s))≤γ}ω

(s)
m∑S

i=1 1{KL(π̂,π;ψ(s))≤γ}
, σ̂2

m =
∑S
i=1 1{KL(π̂,π;ψ(s))≤γ}(ω

(s)
m − µm)2∑S

i=1 1{KL(π̂,π;ψ(s))≤γ}
,

µ̂m,d =
∑S
i=1 1{KL(π̂,π;ψ(s))≤γ}s

(s)
m,d∑S

i=1 1{KL(π̂,π;ψ(s))≤γ}
, σ̂2

m,d =
∑S
i=1 1{KL(π̂,π;ψ(s))≤γ}(s

(s)
m,d − µm,d)2∑S

i=1 1{KL(π̂,π;ψ(s))≤γ}
.
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