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Abstract

This thesis focuses on the development of data-driven multivariate and multiscale meth-

ods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the

most convenient means to measure neurophysiological activity due to its noninvasive na-

ture, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its

multichannel recording nature require a new set of data-driven multivariate techniques to

estimate more accurately features for enhanced BCI operation. Also, a long term goal

is to enable an alternative EEG recording strategy for achieving long-term and portable

monitoring.

Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully

data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary

EEG signal into a set of components which are highly localised in time and frequency. It

is shown that the complex and multivariate extensions of EMD, which can exploit com-

mon oscillatory modes within multivariate (multichannel) data, can be used to accurately

estimate and compare the amplitude and phase information among multiple sources, a

key for the feature extraction of BCI system. A complex extension of local mean de-

composition is also introduced and its operation is illustrated on two channel neuronal

spike streams. Common spatial pattern (CSP), a standard feature extraction technique

for BCI application, is also extended to complex domain using the augmented complex

statistics. Depending on the circularity/noncircularity of a complex signal, one of the

complex CSP algorithms can be chosen to produce the best classification performance

between two different EEG classes.

Using these complex and multivariate algorithms, two cognitive brain studies are

investigated for more natural and intuitive design of advanced BCI systems. Firstly,
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a Yarbus-style auditory selective attention experiment is introduced to measure the user

attention to a sound source among a mixture of sound stimuli, which is aimed at improving

the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments

elicited by taste and taste recall are examined to determine the pleasure and displeasure

of a food for the implementation of affective computing. The separation between two

emotional responses is examined using real and complex-valued common spatial pattern

methods.

Finally, we introduce a novel approach to brain monitoring based on EEG record-

ings from within the ear canal, embedded on a custom made hearing aid earplug. The new

platform promises the possibility of both short- and long-term continuous use for standard

brain monitoring and interfacing applications.
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ṡ Order of spline

sf (t) Sinusoid of frequency f

v(t) Realisation of white Gaussian noise

var(·) Statistical variance

wj Row vector of a spatial filter

xchirp(t) Chirp signal

(·)−1 Matrix inverse operator

(·)∗ Conjugate operator

(·)H Conjugate transpose operator

(·)T Vector or matrix transpose operator

ℜ(·) Real part of a complex number

ℑ(·) Imaginery part of a complex number

ψ∗ Basic wavelet function

α(f1,f2) Degree of phase synchrony within the frequency range from f1 to f2

δ̇ Normalised power difference

γi(t) A set of M complex/bivariate IMFs

θi(t) Instantaneous phase function

ωi(t) Instantaneous frequency function

σ Standard deviation

σ̂(t) Evaluation function for the EMD stopping criterion

φi(t) Instantaneous phase difference

ρi(t) Degree of the phase synchrony

ρ̇ Noncircularity coefficient

Φ(t, f) Phase synchrony information at time t and frequency f

Γ(w1,w2) Asymmetry ratio within the frequency range from w1 to w2

Λ Diagonal matrix of eigenvalues

Φ Transfer matrix for augmented complex covariance matrix



27

Chapter 1

Introduction

1.1 Overview

Brain-computer interface (BCI) is a novel research paradigm that facilitates computer-

aided control using exclusively brain activity. The advances in neural devices and their

application across bioengineering fields have continuously developed BCI technology. The

main motivation has been to develop a neuroprosthetic system to give mobility and in-

dependence to severely paralysed patients owing to spinal cord injury, brainstem stroke

and neuromuscular disorders [12]. Often the paralysis is so severe that voluntary mus-

cle control, such as eye movement or respiration, is lost and thus conventional prosthetic

technologies which require voluntary muscle control are not suitable [13].

Recently several noninvasive methods have been used to monitor brain functions in-

cluding electroencephalography (EEG), magnetoencephalography (MEG), positron emis-

sion tomography (PET), and functional magnetic resonance imaging (fMRI) [13]. For a

portable BCI system which can operate in real-time, EEG is the most convenient means

to measure neurophysiological activity due to its high temporal resolution, and relatively

simple and affordable recording equipment compared to MEG, PET and fMRI [13,14]. Fig.

1.1 illustrates the EEG electrode positions in the standard 10-20 system [1]. A spectrum

of brain responses is observable using EEG which can enable BCI including the motor

action response, auditory/visual steady state responses and the auditory/visual oddball
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Figure 1.1: Electrode positions in the 10-20 system. Black circles denote positions of
the original 10-20 system and gray circles positions introduced in the 10-10 extension
(This figure is taken from [1].).

responses [15–22]. A block diagram of a BCI system is illustrated in Fig. 1.2, with four

components; signal acquisition, feature extraction, translation and BCI application [2].

The recorded EEG signal in the signal acquisition part is digitized to be processed in

the signal processing components - feature extraction and translation (or classification).

The translated (or classified) information is sent to a BCI application, for instance a

BCI-controlled wheelchair.

1.1.1 Design of BCI

The P300 (oddball paradigm) and steady-state visual evoked-potential (SSVEP) responses

have been widely used in BCI applications due to their high performance and minimal user-

training time [21,22]. However, both methods require an external repetitive stimulus which

can cause discomfort to the user, particularly when experienced for long periods of time.

Instead, it is desirable to maximise user comfort by exploiting more intuitive paradigms.

For example, BCI paradigms based on auditory stimuli allow greater user comfort and

user freedom, by which computer control is possible while the visual modality is occupied

(while the user is driving for instance). It has been shown that binary classification can be

accurately acquired when perceptually simple tones are used as auditory stimuli [23, 24].
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Figure 1.2: Block diagram of a basic BCI system (adopted from [2]).

Another approach for the intuitive and natural BCI system is motor imagery BCI,

which is based on the so-called sensorimotor rhythms (mu rhythms (8-12Hz) and beta

rhythms (18-25Hz)) observed when subjects plan and execute their hand or finger move-

ments [18, 25]. Without any external stimulus, a subject can be trained to change the

amplitude of his voluntary sensorimotor rhythms. Choi and Cichocki [19] successfully

built an EEG-based BCI system to control a wheelchair in real time using the motor

imagery response.

Studies which aim to detect and model human emotions have received considerable

attention in order to implement natural and reliable affective computing [26, 27]. EEG

signals originating from the central nervous system (CNS) are expected to contain true

information of emotional changes, which are caused at the unconscious level of the subject

even if the subject tries to control his/her affective state. It has been shown that emotions

elicited by video and voice caused consistent changes of observed EEG [28, 29]. The

emotional feedback, for instance satisfaction, confusion, frustration or amusement, then

provides interactive services to the users depending on their emotional states.
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1.1.2 Shortcomings of EEG-based BCI

Despite the clear potential of EEG to monitor brain activity, there are several shortcomings

which obstruct its widespread and practical use for BCI systems in real life:

• Standard signal processing techniques are sub-optimal for the nonlinear, nonstation-

ary and multichannel nature of EEG data;

• Existing EEG recording platforms are not suitable for achieving long-term and

portable monitoring in uncontrolled environments.

The above issues motivated us to investigate an alternative EEG analysis and recording

strategies in this thesis.

EEG Signal Processing

Most existing studies for EEG-based BCI systems have employed standard signal process-

ing techniques based on Fourier analysis [14,17,25,30–33]. The conventional methods are

based on a projection onto a predefined set of basis functions and thus inherit the problem

of poor time-frequency localisation associated with standard spectrum estimation [3]. Ad-

ditionally, the use of linear orthogonal basis functions assumes unrealistic data properties,

linearity and stationarity, which make them unsuitable for the analysis of real-world EEG

data which is often nonlinear and nonstationary [34]. Additionally, the short length EEG

epochs used to implement real-time BCI systems tend to be more nonstationary, and the

imperfection of the sensors can produce a nonlinear output even if the underlying system

is linear. Therefore alternative EEG processing techniques to Fourier-based ones are a

prerequisite to enable high performance BCI systems.

Data fusion describes the extraction of more accurate information by combining

data from multiple sensors than can be achieved from using only a single sensor [35].

Most EEG systems record from multiple electrodes to model brain activity from all over

the scalp, and features obtained by examining the relationship between these electrodes,

such as coherence, correlation, asymmetry and phase synchrony, can provide valuable
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Table 1.1: Signal frequency bands of EEG and corresponding consciousness levels and
distributions (adopted from [11]).

Frequency Band Frequency (Hz) Consciousness Level Distribution

Delta 0.5-4 Low-Level of Arousal Generally broad, diffused
Theta 4-8 Distracted Regional, involve many lobes
Alpha 8-13 Relaxed, meditation Regional, involve entire lobes

Low Beta 13-15 Relaxed yet focused By side and lobe (frontal, occipital)
Midrange Beta 15-18 Alert, active not agitated Localised, over various area

High Beta 18-30 Very focused, alertness Very localised, maybe very focused
Gamma 30-100+ High-level info processing Very localised

information [7, 34, 36]. In particular, the common oscillatory modes existing across the

channels define the change of those features corresponding to a mental activity since the

different frequency bands of EEG, for example delta, theta, alpha, beta and gamma bands,

reflect different brain activities [9,37–39]. The description of EEG bands corresponding to

consciousness levels are described in Table 1.1. Therefore, a robust multiscale decomposi-

tion technique for multichannel data is required to examine synchronised dynamics within

EEG.

Two real-valued EEG spatially symmetric signals x and y can be paired to form

a complex-valued data, z = x+jy. This complexification procedure allows for the cou-

pling between the two channels to be exploited. For instance, phase synchrony [7] and

asymmetry [34] can affect the level of noncircularity of the composed complex signal, and

thus complex-valued EEG data is mostly noncircular. By considering both the pseudo-

covariance E[xxT ] and the traditional covariance E[xxH ] matrix, enhanced modeling of

real-world noncircular complex signals is achieved [40, 41]. However, a conventional com-

plex algorithm to model the complex-valued EEG data, for example complex extension of

common spatial pattern (CSP) [42], only uses covariance matrix, which does not include

all information of the noncircular data.

Long-Term EEG Recording Device

Even if there are portable types of EEG recording systems, they are still bulky with

long leads connected between the head and amplifier for the use of long-term recording.

Instead, small unobtrusive devices are desirable to avoid influencing EEG response by user
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interference [43]. So-called wearable EEG devices are designed to be minimally intrusive,

comfortable and ergonomically acceptable and to perform long-term recordings over days

and weeks [43]. However, the existing wearable systems still require a cumbersome setup

process. It is impossible for a user to obtain reliable setup without an assistance of a

trained person using scalp-based recording devices. Correct placement of the electrodes is

essential to ensure inter-session repeatability of recordings with sufficient accuracy.

1.2 Research Objectives

Recent research on signal decomposition has been based on fully data driven techniques or

exploratory data analysis (EDA) [44]. One such technique is empirical mode decomposition

(EMD), which decomposes the signal into a finite set of AM (amplitude modulated)/FM

(frequency modulated) components [3]. EMD makes no prior assumptions about the data,

and thus it is a suitable solution for the analysis of nonlinear and nonstationary phenom-

ena, which will be explained in Chapter 2. Consequently, it has been successfully employed

in the analysis of intracortical signals and EEG [45–48], which are often nonlinear and non-

stationary. In this thesis, it is shown how EMD can be used to decompose EEG data into

multiscale components and produce more robust features corresponding to neurocognitive

responses compared to conventional Fourier analysis.

The real-valued EMD algorithm was extended to complex domain in [4, 49,50], by

which the complex data can be directly decomposed by taking into account interchannel

coupling domain. Chapters 3, 4 and 5 address that it is advantageous to apply complex

EMD to the complex data composed of a pair of real-valued data in real and imaginary

parts due to the improving stability and locality of decomposition by the shared infor-

mation between two data. The same advantage can be also obtained using multivariate

extension of EMD for multichannel data [5], which is a generic extension of the stan-

dard EMD and BEMD. Chapter 6 shows that multivariate EMD gives more localised

and accurate decompositions across time and frequency for multichannel data, when they

share common oscillatory components, than single channel analysis. Using the complex

and multivariate extensions of EMD, more accurate features about the amplitude and
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phase information for multichannel EEG data are estimated and are shown to improve

the performance of BCI system.

As a fundamental study for BCI development, new neurocognitive experiments us-

ing EEG are investigated and designed, and their significances are illustrated by applying

the multichannel/multivariate feature extraction techniques. The auditory Yarbus exper-

iment, motivated by the standard visual Yarbus experiment, was designed for auditory

selective attention by Kidmose et al. [9] and its experiment results using EMD algorithms

are presented in Chapter 5. BCI system developed by this study has the potential to

improve the usefulness of hearing instruments such as hearing aid by providing the infor-

mation of user attention to a sound source among a mixture of sound stimuli. The second

neurocognitive experiment is the estimation of human emotion to implement reliable af-

fective computing. In Chapter 7, the emotion elicited by taste is monitored using EEG

and the response is compared against the response to the recall of the same taste.

Additionally, common spatial patterns (CSP) algorithm, commonly used for current

BCI systems, is also extended to complex domain in Chapter 8. A class of complex-

valued CSP algorithms is introduced to cater for signals with noncircular probability

distributions, a typical case in multichannel EEG. The proposed complex-valued CSP

algorithms are derived for the generality of complex data, both circular and noncircular,

based on augmented complex statistics and the strong-uncorrelating transform (SUT).

Depending on the degree of correlation and power difference of complex signals, that is,

the degree of improperness, one of the complex CSP algorithms is shown to maximise the

difference between two mental tasks.

Chapter 9 introduces the complex extensions of another data-driven decomposition

algorithm, so called local mean decomposition (LMD). The smoothed local mean of the

LMD surpasses the problems with the cubic spline method used by the EMD to extract

amplitude and frequency modulated components. The successful application of complex

LMD to multichannel neuronal spike streams is demonstrated.
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Chapter 2

Empirical Mode Decomposition

E
MPIRICAL Mode Decomposition is a fully data-driven technique for decomposing

the signal into amplitude modulation (AM)/frequency modulation (FM) compo-

nents which reflect its natural oscillations. The EMD makes no prior assumptions on the

data and, as such, it is suitable for the analysis of nonlinear and nonstationary processes.

In this chapter, we shall explain the background of EMD algorithm in terms of its abil-

ity to operate at the level of instantaneous frequency and show an example of the EMD

decomposition on a electroencephalogram data.

2.1 Background

In pure science and practical engineering, data analysis is a indispensable part. When we

construct a numerical model to a real-world data, there are several problems in the data

to determine the parameters such as:

• the short length of the data span

• nonstationarity of the data

• nonlinearity of the data

Spectrum analysis, which is still used in most areas, becomes synonymous with

Fourier spectral analysis due to its simplicity and calculation speed. Even though Fourier
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analysis dominates most of the data analysis, it has critical restrictions when applied to a

real-world data since it is designed for linear systems, and periodic and stationary data.

The stationarity of a time series X(t) in the strict sense is defined if the joint

distributions of

[X(t1), X(t2), . . . , X(tn)] and [X(t1 + τ), X(t2 + τ), . . . , X(tn + τ)] (2.1)

are the same for all ti and τ . The definition of stationarity in the wide sense is

E(
∣

∣X(t)2
∣

∣) <∞,

E(X(t)) = m, (2.2)

C(X(t1), X(t2)) = C(X(t1 + τ), X(t2 + τ)) = C(t1 − t2)

where E(·) is the expected value operator and C(·) is the covariance operator. Due to the

limitation of data length, few data sets in real-world can satisfy this stationarity condition.

In addition, most of natural phenomena tend to be nonlinear, and the imperfection of the

sensors makes the final output signal nonlinear even if the system is perfectly linear.

There have been several efforts in order to deal with the nonstationary data, for

instance ‘spectrogram’ and ‘wavelet analysis’. The spectrogram is a Fourier spectral anal-

ysis for a time-windowed data sets. By sliding the window along all the time span, several

sets of frequency spectra can be obtained, which can be combined in a time-frequency

distribution. Due to its reliance on the traditional Fourier analysis, this cannot be the

best solution unless the signals in every window are stationary, which is hardly expected

in a real-world signal. Secondly, the wavelet analysis is basically a linear analysis and

provides a uniform resolution for all the scales, which is limited by the size of the basic

wavelet function [3]. The general definition of wavelet analysis is

W (a, b;X,ψ) = |a|−1/2
∫

∞

−∞

X(t)ψ∗(
t− b

a
)dt (2.3)

where ψ∗ is the basic wavelet function, a the dilation factor and b the translation of the

origin. The commonly used Morlet wavelet1 has the problem of leakage, which is generated

1The Morlet wavelet is the most commonly used wavelet transform, and had been used for the perfor-
mance comparison with EMD in [3] and [51].
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by the limitation of basic wavelet function length. Due to the problem, it is difficult to

define the energy-frequency-time distribution quantitatively.

In this chapter, the empirical mode decomposition (EMD) method will be presented

as an alternative to the conventional Fourier and wavelet analysis. The EMD is a fully

data-driven operation for obtaining a highly localised time-frequency estimation for a

nonlinear and nonstationary signal [3], by decomposing it into a finite set of AM/FM

components, intrinsic mode functions (IMFs).

2.2 Instantaneous Frequency using Intrinsic Mode Func-

tions

Instantaneous frequency provides a physically meaningful analysis for nonstationary data.

The instantaneous frequency can be obtained by making use of the Hilbert transform

Y (t) =
1

π
P

∫

∞

−∞

X(t′)

t− t′
dt′ (2.4)

and exploiting the concept of an analytic signal, where symbol P indicates the Cauchy

principal value and X(t) the data. Using the Cauchy principal value, eq. 2.4 can be

integrated by considering the discontinuity at t′ = t

Y (t) =
1

π
P

∫

∞

−∞

X(t′)

t− t′
dt′ =

1

π
lim
ǫ→0

{∫ t−ǫ

−∞

X(t′)

t− t′
dt′ +

∫

∞

t+ǫ

X(t′)

t− t′
dt′

}

(2.5)

Then, using the conjugate pair of X(t) and Y (t), an analytic signal Z(t) can be

obtained as
Z(t) = X(t) + jY (t) = a(t)ejθ(t), (2.6)

in which
a(t) = [X2(t) + Y 2(t)]1/2, θ(t) = arctan(

Y (t)

X(t)
) (2.7)

The instantaneous frequency can be defined as

ω(t) =
dθ(t)

dt
(2.8)
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For meaningful instantaneous frequency, there is a limitation on the data - in the

sense of a ‘monocomponent’ signal, which was introduced by Cohen [52], since there is

only one frequency value representing one component (monocomponent) at any given

time. However, there is no precise definition of the notion of ‘monocomponent’ and thus

the ‘narrowband’ assumption was adopted [53]. The narrowband signal is identified when

the expected number of extrema (N0) is equal to the expected number of zero crossings

(N1), such that

N0 =
1

π
(
m2

m0
)1/2 and N1 =

1

π
(
m4

m2
)1/2 (2.9)

N2
1 −N2

0 =
1

π2

m4m0 −m2
2

m2m0
= 0 (2.10)

where mi is the ith moment of the spectrum.

Huang et al. suggested one more condition on a signal to produce a meaningful

instantaneous frequency, that is, the signal ought be symmetric with respect to the local

zero mean [3]. This condition is necessary to prevent the unwanted fluctuations of instan-

taneous frequency caused by asymmetric wave forms. The asymmetric wave forms in a

signal produce unstable instantaneous frequencies and even negative frequencies [3]. With

this additional limitation on a data, Huang et al. introduced an intrinsic mode function

(IMF), which satisfies the following two conditions:

• the number of extrema and the number of zero crossings differ at most by one

• the mean of the envelopes associated respectively with the local maxima and local

minima must be approximately zero

The IMFs can be AM/FM components. Fig. 2.1 illustrates a typical intrinsic mode

function decomposed from the electroencephalogram (EEG), where the numbers of zero

crossings and extrema are the same and the upper and lower envelopes are symmetric with

respect to zero.

In the next section, it is shown that a signal can be decomposed into IMF com-

ponents using the empirical mode decomposition method and that an instantaneous fre-

quency can be calculated for each IMF components.
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Figure 2.1: A typical intrinsic mode function.

2.3 Empirical Mode Decomposition

Since more than one oscillatory mode may be included in data, we cannot directly apply

the Hilbert transform to a general data, as it would not produce the information about all

the oscillatory modes [54]. Therefore, EMD was introduced by Huang et al. to decompose

a signal into IMFs [3]. EMD is a fully data-driven operation for obtaining a highly localised

time-frequency estimation, which can deal with a nonlinear and nonstationary signal. In

the process of EMD, the intrinsic oscillatory modes are empirically identified by their own

time scales in a signal, and then used to decompose the signal subsequently. The principles

of the EMD operation are outlined in Algorithm 1.
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Algorithm 1. The standard EMD algorithm [3]

1) Let x̃(t) = x(t) (x(t) is original signal)

2) Identify all local maxima and minima of x̃(t)

3) Find a lower ‘envelope’, el(t), that interpolates all local minima by a cubic spline line

(the order of spline ṡ = 3)

4) Find an upper ‘envelope’, eu(t), that interpolates all local maxima by a cubic spline

line

5) Calculate the local mean value using the lower and upper envelopes

m(t) = (el(t) + eu(t))/2

6) Subtract the local mean value m(t) from the data x̃(t)

d(t) = x̃(t) −m(t)

7) Let x̃(t) = d(t) and go to step 2); repeat until d(t) becomes an IMF, controlled by

the stopping criterion

The first IMF is subtracted from the original data, r(t) = x(t) − d(t), and the procedure

is applied iteratively to the residue, r(t), until it becomes constant or contains no more

oscillations; this so called sifting process is controlled by the stopping criterion [55]. The

stopping criterion uses the mode amplitude a(t) := (eu(t) − el(t))/2 and the evaluation

function σ̂(t) := |m(t)/a(t)|, so that the sifting process is iterated until σ̂(t) < θ1 for

some prescribed fraction (1-α̇) of the total duration, while σ̂(t) < θ2 for the remaining

fraction [55]. The default value of [θ1, θ2, α̇] is [0.05, 0.5, 0.05]. The signal x(t) decomposed

by the EMD algorithm can thus be written as

x(t) =

M
∑

i=1

ci(t) + r(t) (2.11)

where ci(t), i = 1, . . . ,M , is the set of IMFs and r(t) the remaining residue. Due to the

narrowband nature of the IMFs, the Hilbert transform can be applied in order to obtain

a localised instantaneous frequency for a time-frequency spectrum. Using the Hilbert
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transform in eq. (2.4), an IMF ci(t) is represented as an analytic signal such that

X(t) =
M
∑

i=1

(ci(t) + jH(ci(t))) =
M
∑

i=1

ai(t)e
jθi(t) (2.12)

and the analytic form of the IMF is described by its amplitude and phase functions, ai(t)

and θi(t). Using eq. (2.8), the instantaneous frequency can be produced. A plot of the

amplitude ai(t) versus time t and instantaneous frequency wi(t), that is, amplitude con-

tours on the time-frequency plane, is called the Hilbert-Huang spectrum (HHS), H(w, t),

and represents a three dimensional time-frequency spectrum of the signal.

Fig. 2.2 shows all the decomposed IMFs of an EEG signal. Observe that the first

IMF, c1(t), contains the fastest oscillation and the last one, r(t), involves the slowest

oscillation of the EEG trend. The seven IMFs were defined adaptively from the data

without any predefined basis function like Fourier analysis, by which the nonstationary

and nonlinear EEG data was well decomposed. In order to investigate the power resolution

of the HHS, we considered frequency shift cosine waves shown in Fig. 2.3(a), where

the frequency of the cosine wave was changed from 5Hz to 10Hz at 1.5 s. The HHS

for the signal was compared with conventional time-frequency analysis methods, short-

time Fourier transform (STFT) and Morlet wavelet transform. As can be seen in Fig.

2.3(b)-(d), the shifting frequency components were well estimated using all three methods.

However, more time-frequency localised components using HHS can be noted, whereas the

other methods obtained the time-frequency components spread over a wide range.

2.4 Summary

Empirical mode decomposition is a solution to analyse a nonlinear and nonstationary

real-world data, by giving a highly localised time-frequency analysis, due to its data-

driven operation. In the following chapters, more examples will be presented to address

the advantages of EMD method.
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Figure 2.2: IMFs decomposed from an EEG signal.
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Chapter 3

Complex and Multivariate

Extensions of

Empirical Mode Decomposition

C
OMPLEX and multivariate extensions of empirical mode decomposition are pre-

sented in this chapter. By exploiting common oscillatory modes within complex or

N -variate data, EMD methods facilitate highly localised time-frequency estimation. This

chapter is based on the work in [34,56].

3.0.1 Background

Recent development of sensors in science and engineering emphasises the importance to

model and analyse multichannel dynamics [57]. When it comes to EMD analysis for

multichannel data, each channel data can be separately decomposed into IMFs and their

IMFs are analysed/compared with each other. However, there is a critical obstacle to

the standard EMD algorithm in performing an analysis/comparison of IMFs from data

sources, known as the problem of uniqueness. The uniqueness problem states that the

IMFs obtained for different sources can be different in a number and properties (frequency).

This can be illustrated by the different decompositions typically obtained for signals with

similar statistics, and the problem of mode-mixing. Mode mixing refers to the phenomenon
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whereby similar frequencies appear across different IMFs, which can be found in Fig. 3.2.

To address this problem, Wu et al. proposed a noise-assisted data analysis method, the

ensemble EMD (EEMD), which defines the IMF components as the mean of an ensemble

of IMF, each producing by decomposing the signal plus a white noise of finite amplitude

using standard EMD (see Algorithm 1) [58,59]. However, EEMD does not fully solve the

uniqueness problem and is further limited by its computational complexity. To this end,

complex and multivariate extensions of empirical mode decomposition are applied instead

of univariate EMD and facilitate an accurate high dimensional data analysis.

Algorithm 1. The ensemble EMD algorithm [58]

1) Add a white Gaussian noise time-series to the input data

2) Decompose the data into IMFs using standard EMD

3) Repeat step 1 and step 2 ñ times with different realisation of white Gaussian noise

4) Obtain the (ensemble) mean of the corresponding IMFs as a final result

3.1 Complex Extensions of Empirical Mode Decomposition

There were three different ways to extend the real-valued EMD to complex domain (C),

‘rotation invariant empirical mode decomposition (RIEMD)’ [49], ‘complex empirical mode

decomposition (CEMD)’ [50] and ‘bivariate empirical mode decomposition (BEMD)’ [4].

However, direct operation in C domain can be obtained using RIEMD and BEMD only

in practical applications [60]. In particular, the enhanced local mean is estimated using

BEMD compared to RIEMD [60] and thus we shall consider only BEMD in this thesis.

3.1.1 Bivariate Empirical Mode Decomposition

The complex data is considered as a composite rotating signal of real and imaginary parts

during the BEMD operation, as can be seen in Fig. 3.1(a), and its local mean (red line in

Fig. 3.1(a)) is defined as the intersection of two straight lines, the lines in the middle of the

horizontal and vertical tangents (see Fig. 3.1(b)). To obtain a set of M complex/bivariate

IMFs, γi(t), i = 1,. . . , M, from a complex signal z(t), the following procedure, Algorithm

2, is used [4].
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Algorithm 2. The bivariate EMD algorithm [4]

1) Let z̃(t) = z(t)

2) To obtain K signal projections, given by {pθk
}K

k=1, project the complex signal z̃(t),

by using a unit complex number e−jθk , in the direction of θk, as pθk
(t) = ℜ(e−jθk z̃(t)),

k = 1, . . . ,K where ℜ(·) denotes the real part of a complex number, and θk = 2kπ/K

3) Find the locations
{

tkj

}K

k=1
(j : time index) corresponding to the maxima of

{pθk
(t)}K

k=1

4) Interpolate (using spline interpolation) between the maxima points
[

tkj , z̃(t
k
j )

]

, to

obtain the envelope curves {eθk
(t)}K

k=1

5) Obtain the arithmetic mean of all the envelope curves, m(t), and subtract from the

input signal, that is, d(t) = z̃(t) −m(t). Let z̃(t) = d(t) and go to step 2)

6) Repeat until d(t) becomes an IMF

Similarly to real-valued EMD, once the first IMF, γ1(t), is obtained the procedure is

applied iteratively to the residual r(t) = z(t) − d(t) to extract all the complex IMFs,

which rotate around zero [4]. In our simulations, the sifting process was stopped once

the magnitude of d(t) satisfied the real-valued stopping criterion described in section 2.3,

and the number of projections for all BEMD decompositions, K, was 16.

The BEMD operation uses multiple projections of the complex signal; each projec-

tion is real-valued and is used to describe the amplitude/envelope of the signal in a given

direction. It is important to note that each projection is a function of both the real and

imaginary parts and will therefore yield improved instantaneous amplitude/frequency es-

timation if at a given scale the real and imaginary parts share the same oscillatory modes.

This is illustrated in more detail in Section 3.1.2.

Earlier results [60] illustrate that in applications involving a pair of real valued

sources, x1(t) and x2(t), it is advantageous to apply BEMD to the complex signal z =

x1(t) + jx2(t). The real and imaginary components of the decomposition can then be

viewed as two separate sets of IMFs, corresponding respectively to the real and imaginary

components of the input. The advantage of applying this bivariate approach, compared
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Figure 3.1: A rotating signal of complex data and the definition of mean of envelope
are presented (Figure (b) is adopted from [4]).

to two individual real valued EMD operations, is that by design it improves the stability

and locality of each set of IMFs with the following desired properties:

• the IMFs are matched in number and frequency; even if mode-mixing is present,

it occurs simultaneously in both the real and imaginary components and thus an

IMF-by-IMF comparison makes sense [7, 60];

• any shared activity, e.g. common oscillations at a given frequency, between the

channels is computed by the decomposition with giving two dimensional IMFs that

have the same oscillatory properties at every level and enhance robustness to noise.

3.1.2 Performance Comparison of EMD and BEMD

This section investigates the capacity of BEMD to achieve a more robust estimate of

the components in a complex signal compared to EMD. This is achieved by comparing

their performances at: 1) the level of the spectrum; and 2) the IMF level. It is shown

that BEMD produces more localised time-frequency components than EMD, and gives

advantage by simultaneously modeling joint oscillating modes at each IMF level.
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Spectrum Estimation

In this section, we compare the spectrum estimations of standard EMD and BEMD using

these two signals, x1(t) and x2(t),

f1 = 13Hz and f2 = 47Hz,

t = 1/fs, . . . , 2s and fs = 10kHz

x1(t) = cos(2πf1t) + cos(2πf2t+
π

6
) + v1(t) (3.1)

x2(t) = 1.7 cos(2πf1t+
π

4
) + 1.3 cos(2πf2t+

2π

3
) + v2(t) (3.2)

where v1(t) and v2(t) are different realisations of white Gaussian noises (WGN) at SNR of

0dB. Both signals contain two frequency sinusoids with different amplitudes and phases.

Each signal was decomposed separately using standard EMD, whereas BEMD decomposed

the complex signal composed of x1(t) and x2(t) in real and imaginary parts, x1(t)+jx2(t),

simultaneously. All the IMFs decomposed using EMD and BEMD are shown in Figs. 3.2

and 3.3. In particular, the IMFs containing the two frequency components, 13Hz and

47Hz sinusoids, can be observed in Fig. 3.4. The IMFs decomposed using BEMD contain

the sinusoids closer to the original signals with less mode-mixing.

The HHS from the IMFs decomposed using EMD and BEMD are illustrated in

Fig. 3.5. Similarly as the raw IMFs, the HHS using BEMD contains more localised time-

frequency components across time than EMD, where the frequency components around

13Hz and 47Hz in Fig. 3.5 (b) are more prominent than those in Fig. 3.5 (a).

IMF Estimation

In this section, we use the method in [61] and [62] for the performance comparison between

EMD and BEMD. The method was designed to enhance the capability of the EMD by

utilising linear weights for the IMFs, which were calculated in the minimum mean square

error sense. We decomposed the signal x(t) = sf (t) + v(t) using EMD, where sf (t) is

a sinusoid of frequency f and v(t) is a realisation of white Gaussian noise (WGN), and

subsequently applied the Wiener filter to the IMFs to obtain an estimate of the sinusoid,
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Figure 3.2: All the decomposed IMFs of the data in eq. (3.1) and (3.2) using EMD.
The left column illustrates the decomposition of x1(t) and right column shows those
of x2(t). Note the mode mixing problems across IMF7-IMF12 for both x1(t) and x2(t).
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Figure 3.3: All the decomposed IMFs of the data in eq. (3.1) and (3.2) using BEMD.
The left column illustrates the real parts of the complex IMFs, and the right col-
umn shows the imaginary parts of complex IMFs. Note the alleviated mode mixing
problems compared to EMD results in Fig. 3.2.
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ŝEMD(t).

ŝEMD(t) = W̆
T
C̆ (3.3)

where (·)T denotes the vector transpose and C̆ includes all the components of the IMFs

and the residue.

C̆ =

























c1(1) c1(2) . . . c1(t)

c2(1) c2(2) . . . c2(t)

...
...

. . .
...

cM (1) cM (2) . . . cM (t)

r(1) r(2) . . . r(2)

























(3.4)

Let

D = C̆C̆
T

(3.5)

the optimal weight vector W̆ is obtained as

W̆ = D−1C̆ST
f (3.6)

where Sf contains all the values of sf (t). The more accurate the estimate of sf (t), the

more accurately the IMFs represent the original input components. Additionally, BEMD

was performed on z(t) = sf (t)+vr(t)+j(sf (t)+vi(t)) where vr(t) and vi(t) denote different

realisations of WGN in both the real and imaginary parts of z(t). For comparison with

the EMD operation, the Wiener filter was applied to the real part only of the bivariate

IMFs to obtain an estimate for the sinusoid, ŝBEMD(t). This analysis was performed for

several frequencies, and over four signal-to-noise ratio (SNRinit.) levels. The analysis was

also extended to x(t) = fA(sf (t))+v(t) in the case of EMD and z(t) = fA(sf (t))+vr(t)+

j(fA(sf (t)) + vi(t)) in the case of BEMD where fA(·) denotes an amplitude modulation

operation (using 1 or 2Hz sinusoid) to illustrate component estimation for signals with

changing amplitudes. The sampling frequency was 256Hz and the signal length 10s.

The average SNR of the reconstructed uniform amplitude sinusoids over 50 simula-

tions using EMD and BEMD are given in Table 3.1. The superior performance of BEMD is

evident for all considered simulations. Component estimation results for sinusoids modu-
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Algorithm
P

P
P

P
P

P
PP

SNRinit.

Freq.
2Hz 6Hz 12Hz 25Hz 44Hz

EMD 5dB 17.2dB 13.3dB 11.1dB 9.0dB 6.5dB
BEMD 5dB 18.8dB 13.8dB 11.7dB 9.5dB 7.4dB
EMD 0dB 12.6dB 9.7dB 7.5dB 5.5dB 4.1dB

BEMD 0dB 14.2dB 10.9dB 9.0dB 6.8dB 5.6dB
EMD -5dB 9.2dB 6.0dB 4.3dB 3.0dB 2.2dB

BEMD -5dB 10.7dB 7.7dB 5.9dB 4.4dB 3.0dB
EMD -10dB 6.3dB 3.5dB 2.3dB 1.3dB 0.9dB

BEMD -10dB 7.6dB 4.2dB 3.0dB 2.1dB 1.3dB

Table 3.1: Sinusoid reconstruction (ŝEMD(t) and ŝBEMD(t)) results in SNR for different
frequencies and initial noise levels.

Algorithm
P

P
P

P
P

P
PP

SNRinit.

Freq.
2Hz 6Hz 12Hz 25Hz 44Hz

EMD 5dB 17.1dB 12.6dB 10.6dB 8.8dB 6.5dB
BEMD 5dB 18.1dB 13.8dB 11.6dB 9.5dB 6.9dB
EMD 0dB 12.7dB 9.5dB 7.5dB 5.4dB 3.8dB

BEMD 0dB 14.1dB 10.3dB 8.1dB 6.1dB 5.1dB
EMD -5dB 9.0dB 5.8dB 4.2dB 2.8dB 2.1dB

BEMD -5dB 10.0dB 7.5dB 5.9dB 4.3dB 3.0dB
EMD -10dB 5.8dB 3.3dB 2.2dB 1.3dB 0.9dB

BEMD -10dB 7.0dB 4.3dB 3.0dB 2.1dB 1.3dB

Table 3.2: Reconstruction results of a 1Hz amplitude modulated sinusoid (ŝEMD(t)
and ŝBEMD(t)) in SNR for different frequencies and initial noise levels.

lated at 1Hz and 2Hz are shown respectively in Tables. 3.2 and 3.3. The BEMD algorithm

consistently allowed for better component estimation.

For rigour, the simulations were performed over a range of parameters for the

stopping criterion, as BEMD and EMD often require different numbers of sifting operations

even when using the same stopping criterion. Component estimation performance for the

signal sf (t), for f=12Hz and f=44Hz and for 0dB and -10dB SNR, for different numbers

of sifting operations (by adjusting the stopping criterion) are shown in Fig. 3.6, where, as

before, BEMD consistently outperform EMD. These results illustrate that the enhanced

BEMD performance is caused by more accurate component estimation and not by virtue

of better sifting.

It can therefore be deduced that the shared information between the real and

the imaginary parts of the BEMD allowed for a more accurate estimate of the common
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Algorithm
P

P
P

P
P

P
PP

SNRinit.

Freq.
2Hz 6Hz 12Hz 25Hz 44Hz

EMD 5dB 16.8dB 13.0dB 11.0dB 8.7dB 6.5dB
BEMD 5dB 18.0dB 13.9dB 11.7dB 9.5dB 6.9dB
EMD 0dB 12.3dB 9.6dB 7.4dB 5.4dB 3.8dB

BEMD 0dB 13.9dB 10.4dB 8.4dB 6.2dB 5.1dB
EMD -5dB 9.0dB 6.0dB 4.4dB 2.8dB 2.1dB

BEMD -5dB 10.4dB 7.5dB 5.9dB 4.2dB 3.0dB
EMD -10dB 5.9dB 3.3dB 2.2dB 1.3dB 0.9dB

BEMD -10dB 7.0dB 4.1dB 3.0dB 2.1dB 1.3dB

Table 3.3: Reconstruction results of 2Hz Amplitude modulated sinusoid (ŝEMD(t) and
ŝBEMD(t)) in SNR for different frequencies and initial noise levels.

100 200 300 400 500

7.5

8

8.5

S
N

R
 [d

B
]

Average Number of Sifting Operations
200 400 600

2

2.5

3

3.5

S
N

R
 [d

B
]

Average Number of Sifting Operations

(a) f = 12Hz, SNR = 0dB (b) f = 12Hz, SNR = -10dB

200 400 600

4

4.5

5

S
N

R
 [d

B
]

Average Number of Sifting Operations
200 400 600

1

1.2

1.4

S
N

R
 [d

B
]

Average Number of Sifting Operations

(c) f = 44Hz, SNR = 0dB (d) f = 44Hz, SNR = -10dB

Figure 3.6: Reconstruction results of 1Hz amplitude modulated sinusoid for different
frequencies, average number of sifting operations and SNR (‘- - -’ EMD, ‘−’ BEMD).
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components at the IMF level. This is intuitive, as the performance of any EMD algorithm

is dependent on accurate local mean estimation which, in the case of BEMD, is enhanced

by two observations of any shared signal elements.

3.2 Multivariate Empirical Mode Decomposition

The bivariate EMD addressed in previous section can cater only for two channel data

sets. In this section, we extend two channel analysis to multichannel data sets using

the multivariate extension of EMD algorithm (MEMD) [5] and show that it enables the

matched-scale decomposition across multichannel data (two or more).

3.2.1 MEMD algorithm

The multivariate EMD, recently introduced by Rehman and Mandic [5], is a natural and

generic extension of the standard EMD and BEMD. Standard EMD computes the lo-

cal mean using the average of upper and lower envelopes. However, the local mean of

multivariate n-dimensional signals can not be defined directly,1 and thus the multiple n-

dimensional envelopes are generated by projecting the signal along different directions in

n-dimensional spaces, those projected signals are averaged to obtain the local mean. For

a suitable set of direction vectors to project the signal, low discrepancy Hammersley se-

quences are used to obtain quasi-uniform points on n high dimensional spheres [63]. When

we consider a 3-dimensional signal, the projection vectors for uniform angular sampling

do not provide a uniform sampling distribution as can be seen in Fig. 3.7(a) [5]. On the

other hand, Fig. 3.7(b) displays the uniform pointset on the sphere using the Hammersley

sequences.

A multivariate signal with N number of components represented by N -dimensional

vectors v(t) =
{

x1(t), x2(t), . . . , xN (t)
}

is projected onto the direction vectors, xθk
=

{

x1,k, x2,k, . . . , xN,k
}

, along the angles θk =
{

θ1,k, θ2,k, . . . , θN−1,k
}

on an (n-1) sphere

during the MEMD operation. The details of MEMD are outlined2 in Algorithm 3 [5].

1For example, it is impossible to order the complex signals.
2The MATLAB code of MEMD is available in ‘http://www.commsp.ee.ic.ac.uk/˜

mandic/research/emd.htm’.
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(a) Uniform angular sampling N = 3 (b) Hammersley sampling N = 3

Figure 3.7: Direction vectors to take projections of a 3-dimensional signal on spheres
by using uniform angular sampling (a) and Hammersley sampling (b) (The figures are
taken from [5].).

Algorithm 3. The multivariate EMD algorithm (MEMD) [5]

1) Choose a suitable point set for sampling on an (n-1) sphere

2) Calculate a projection, denoted by {pθk(t)}T
t=1, of the input signal {v(t)}T

t=1 along the

direction vector xθk , for all k (the whole set of direction vectors), giving {pθk(t)}K
k=1 as

the set of projections

3) Find the time instants tθk

j (j: time index) corresponding to the maxima of the set of

projected signals {pθk(t)}K
k=1

4) Interpolate [tθk

j ,v(tθk

j )] to obtain multivariate envelope curves {eθk(t)}K
k=1

5) For a set of K direction vectors, the mean m(t) of the envelope curves is calculated as

m(t) = 1
K

∑K
k=1 eθk(t)

6) Extract the ‘detail’ d(t) using d(t) = v(t) − m(t). If the ‘detail’ d(t) fulfills the

stopping criterion for a multivariate IMF, apply the above procedure to v(t) − d(t),

otherwise apply it to d(t)

It was found that MEMD acted as a dyadic filter bank on each channel in the

presence of white Gaussian noise (WGN) with better alignment of the corresponding

IMFs from different channels across the same frequency range than EMD [6]. Fig. 3.8



3.2 Multivariate Empirical Mode Decomposition 58

(a) Averaged spectra of WGNs using EMD

(b) Averaged spectra of WGNs using MEMD

Figure 3.8: Averaged spectra of IMF1-IMF9 decomposed from 500 realisations of 8-
channel white Gaussian noise using EMD (a) and MEMD (b) (The figures are taken
from [6].).

illustrates MEMD produced more aligned spectra of IMFs for 500 realisations of 8-channel

WGNs than EMD [6]. Using this property of MEMD, Rehman and Mandic [6] proposed a

noise-assisted MEMD (NA-MEMD) to alleviate the mode mixing problem, that is, MEMD

decomposition of multichannel data with additional noise channel data3. The details of

the NA-MEMD method are described in Algorithm 4.

3SNR 20dB WGN can be used.
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Algorithm 4. Noise-Assisted MEMD (NA-MEMD) [6]

1) Create an uncorrelated white Gaussian noise time-series (m-channel) of the same

length as that of the input

2) Add the noise channels (m-channel) created in Step 1 to the input multivariate

(n-channel) signal, obtaining an (n + m)-channel signal

3) Process the resulting (n + m)-channel multivariate signal using the MEMD algorithm

listed in Algorithm 3, to obtain multivariate IMFs

4) From the resulting (n + m)-variate IMFs, discard the m channels corresponding to

the noise, giving a set of n-channel IMFs corresponding to the original signal
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3.2.2 Common Oscillatory Modes of Multivariate IMFs

To illustrate its operation, we next show an example of multichannel data decomposition

using MEMD, where common scale appears in the common oscillatory modes in all the

variates within multivariate IMF [5]. A three channel synthetic signal, shown in the top

row of Fig. 3.9, was constructed from a(t), b(t), and c(t), which contain multiple common

oscillations governed by

a(t) =











sin(2πf1t) + v1(t) t= 1,. . . , 2048

sin(2πf2t) + v2(t) t= 2049,. . . , 4096

b(t) = sin(2πf1t) + sin(2πf2t) + v3(t), t = 1. . .4096

c(t) = sin(2πf2t) + sin(2πf3t) + v4(t), t = 1. . .4096

fs = 2048, f1 = 5/fs, f2 = 11/fs, f3 = 23/fs

where v1(t), v2(t), v3(t) and v4(t) denote realisations of SNR 30dB WGN. a(t) is the

concatenated signal of two sinusoids and the other signals are constructed from the sum of

two sinusoid components. MEMD was applied to this multivariate synthetic data and the

resulting three-variate IMFs are shown in Fig. 3.9. The common oscillatory modes are

aligned at the same IMF level, where the sums of the first four IMFs, ca1−4(t), . . . , cc1−4(t),

correspond to the input noise components, and the 11Hz sinusoid, common to the three

channel inputs, is presented in the sixth IMFs. However, unwanted mode mixing problem

is evident in the seventh and eighth IMFs as can be seen in Fig. 3.9. The NA-MEMD

method was applied to the same data including an additional noise channel, shown in the

top row of Fig. 3.10. Unlike for MEMD, the IMFs decomposed using the NA-MEMD

reduced the problem of mode mixing and the two different frequency components of a(t)

were extracted precisely. Other sinusoids were also accurately extracted in the respective

IMFs.

This simulation results show that the MEMD makes use of similar scales in different

data channels [64], and also NA-MEMD could help resolve the mode mixing problem by

including noise signal in an additional channel. Therefore, the MEMD algorithm can

guarantee an accurate component comparison across the channels [7, 60].
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Figure 3.9: Decomposition of a synthetic multivariate signal [a(t), b(t), c(t)], which
exhibits multiple frequency components. The common oscillatory modes are aligned
at the same IMF level. However, unwanted mode mixing problem is presented in the
seventh and eighth IMFs.
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Figure 3.10: Decomposition of a synthetic multivariate signal [a(t), b(t), c(t), n(t)],
where n(t) is an additional noise channel data. Note that each IMF contains a single
frequency mode without mode mixing problem.

3.2.3 Component Estimation using Multivariate IMFs

In this section, we examine how MEMD can be used to achieve more robust and localised

estimation of components at the IMF level compared to univariate EMD algorithms. The
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EEMD is also considered as a univariate EMD method in this simulation. We shall

illustrate, following the previous work in section 3.1.2, that the multivariate EMD can

extract IMFs that better reflect the components of interest and enhance robustness to

noise.

We decomposed the signal x(t) = sf (t) + v(t) using EMD and EEMD, where sf (t)

is a sinusoid of frequency f and v(t) a realisation of WGN, and subsequently applied

the Wiener filter to the IMFs to obtain estimates of the sinusoid, ŝEMD(t) and ŝEEMD(t),

which denote the estimates using EMD and EEMD respectively. As mentioned earlier,

the more accurate the estimate of sf (t), the more accurately the IMFs represent the

original oscillating components of the input. Additionally, MEMD was performed on a

multi-channel sinusoid data set, where all channels contained the same sinusoid, sf (t),

contaminated with different realisations of WGN, that is

x1(t) = sf (t) + v1(t), x2(t) = sf (t) + v2(t), x3(t) = sf (t) + v3(t), · · · ,

xn(t) = sf (t) + vn(t)

where vn(t) is a realisation of WGN in the nth channel. The performance of MEMD was

examined by increasing the number of channels from 4 to 12. This analysis was performed

for several frequencies (5Hz, 11Hz, 23Hz), and over three signal-to-noise ratios (SNRinit.)

(5dB, 0dB, -5dB). The sampling frequency was 256Hz and the signal length 5s. The

average SNRs of the reconstructed sinusoids over 20 simulations using the EMD, EEMD

and MEMD techniques are given in Table 3.4. In all the scenarios, MEMD outperformed

the single channel decomposition algorithms, EMD and EEMD. In most cases, an increase

in the number of MEMD channels resulted in an increase in performance. These results

illustrate that when common activity (oscillating components) exists between several data

channels, MEMD exploits this phenomenon during envelope estimation stage as described

in Algorithm 3, to obtain a more accurate estimate of the input components.
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Freq.
X

X
X

X
X

X
X

X
XX

SNRinit.

Method
EMD EEMD MEMD(4) MEMD(6) MEMD(8) MEMD(10) MEMD(12)

5dB 11.6 13.7 15.2 15.9 16.2 16.3 16.1
5Hz 0dB 7.9 9.9 11.4 12.0 12.2 12.3 12.2

-5dB 4.8 7.4 7.8 8.3 8.2 8.3 8.6
5dB 9.1 10.9 11.5 11.9 11.8 12.0 12.1

11Hz 0dB 5.8 7.5 9.0 9.4 9.4 9.5 9.8
-5dB 3.3 4.9 5.5 5.9 6.2 5.9 6.1
5dB 6.8 8.2 9.7 10.0 10.2 10.3 10.4

23Hz 0dB 4.1 5.5 6.0 6.1 6.4 6.5 6.7
-5dB 2.1 2.9 2.9 3.0 3.2 3.3 3.2

Table 3.4: Sinusoid reconstruction results in SNR for different frequencies and initial
noise levels. The number of ensembles for EEMD was 100. The number in the
bracket next to ‘MEMD’ denotes the channel number of the decomposed data. Note
the improved performance corresponding to the increasing number of channels.

3.3 Summary

It has been shown that complex and multivariate extensions of EMD facilitate more lo-

calised and robust time-frequency analysis than standard EMD. The N -dimensional IMFs

are matched in number and frequency, and any shared oscillatory mode across the chan-

nels gives the IMFs the same oscillatory properties at every level and enhanced robustness

to noise. Additionally, the noise-assisted MEMD alleviates the mode mixing problem and

shows a dyadic filter-bank property.
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Chapter 4

Application of Complex EMD for

Synchrony Estimation in EEG

T
HIS chapter introduces a framework for the robust assessment of phase synchrony

and power asymmetry between multichannel observations, important features for

brain computer interface systems, using bivariate EMD. The BEMD operation guarantees

the same decomposition levels for every pair of channels and facilitates enhanced spectrum

estimation for multichannel recordings that contain similar signal components. It is shown

how these properties can be used to obtain more accurate estimates of phase synchrony

and power asymmetry using simulations on synthetic data and feature estimation for a

BCI application. This chapter is based on the work in [7, 34].

4.1 Phase Synchrony

Coherence and cross-correlation, standard techniques to measure synchronisation between

two channels, are not suitable in practice since they assume linearity. However, brain

signals such as electroencephalogram (EEG) are often nonlinear and nonstationary [65]

and such techniques combine both phase and amplitude information. It was reported that

phase information alone produces better features corresponding to cognitive processes [66]

and therefore calculating the temporal locking of phases between two neural signals (phase
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synchrony) becomes important to be investigated in neurocognitive studies.

The phase synchrony has been calculated using wavelet transform [67] and Hilbert

transform [68]. However, the wavelet transform limits its time-frequency resolution and its

analysis of linear data due to the process of projection onto a fixed set of basis functions.

The Hilbert transform is only appropriate to be applied if the data is bandpass filtered to

satisfy narrowband criteria.

The EMD is a fully data-driven method to determine the oscillations inherent to

the data without any prior assumptions such as linearity. The IMFs using EMD are

narrowband and thus the Hilbert transform can be directly applied. In addition, the

bivariate EMD (BEMD) can guarantee the ‘matched’ IMFs between two channel data in

terms of the number and character of the IMFs [7]. Looney et al. showed that measuring

the phase synchrony using BEMD facilitates a scale by scale comparison between pairs of

sources allowing for a more localised estimate of phase synchrony than using the standard

EMD algorithm [7].

4.1.1 Phase Synchrony using BEMD

Given two channel data, x1(t) and x2(t), to measure their phase synchrony, a complex-

valued form x1(t)+ jx2(t) is composed for the decomposition using bivariate EMD. Using

the decomposed complex-valued IMFs, the instantaneous amplitudes for the real and

imaginary parts are obtained, ℜ{ai(t)} and ℑ{ai(t)} (i = 1 . . .M IMFs at each time

instant t = 1 . . . T ). When the instantaneous phase difference between each pair of IMF

is defined by φi(t), the Shannon entropy of the distribution of φi(t −
W
2 : t + W

2 ) in a

window of length W is given by

H̃ = −
N

∑

n=1

lnpn (4.1)

where N is the number of bins and pn the probability of φi(t −
W
2 : t + W

2 ) within the

nth bin [68]. In this thesis, the window length W is 100. Now the degree of the phase
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synchrony for a pair of IMF can be calculated by

ρi(t) =
H̃max − H̃

H̃max

(4.2)

so-called phase coherence value (PCV). H̃max is the maximum entropy calculated by

H̃max = 0.626 + 0.4ln(W − 1) (4.3)

The value of ρ is between 0 and 1 (1 : perfect synchrony, 0 : non-synchronous state). By

monitoring the instantaneous amplitude, phase information from meaningful components

is considered for the final phase synchrony.

ρi(t) = 0, if ℜ{ai(t)} < ǫPr or if ℑ{ai(t)} < ǫPi (4.4)

where Pr is the power of the original real component (similarly for Pi and ǫ is an appro-

priate threshold). Let Φ(t, f) be the phase synchrony information at time t and frequency

f . Then, the degree of phase synchrony within the frequency range f1 - f2 is represented

by

α(f1,f2) =
∑

t

f2
∑

f=f1

Φ(t, f) (4.5)

Once the phase synchrony information has been estimated, it can be plotted on a

synchrony spectrogram, which is a time-frequency spectrogram with amplitude informa-

tion replaced by phase coherence indices. Consider a signal pair, x1(t) = xchirp(t) + v1(t)

and x2(t) = xchirp(t) + v2(t), where xchirp(t) is a chirp signal obtained by

xchirp(t) = sin(2π(4 + 2.5t)t), t =
1

256
, . . . , 10 (4.6)

and v1(t) and v2(t) are different realisations of 20dB WGN. The window length W is 100.

Fig. 4.1 displays the synchrony spectrogram for the signal pair. Observe the linearly

changing phase coherence values corresponding to the frequency.
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Figure 4.1: Phase synchrony spectrogram obtained for a pair of chirp signals using
BEMD [7].

4.1.2 Simulations

In order to validate the performance of BEMD for synchrony estimation compared to

standard EMD, simulations were firstly conducted on synthetic sinusoidal components,

that is

x1(t) = s(t) + v1(t)

x2(t) = s(t) + v2(t)

where v1(t) and v2(t) are different realisations of white Gaussian noises and s(t) is a given

by

s(t) = sin(2πf0t), t =
1

256
, . . . , 10 (4.7)

The phase synchrony between the two signals was estimated by applying BEMD and

standard EMD, and the index, ρband

ρsepc
, was calculated to evaluate their performances, where

ρband is the mean of phase synchrony in the frequency (f0) and ρspec is the mean of phase

synchrony in the full spectrum. The closer to 1 the index is, the more accurate phase

synchrony is estimated. Table. 4.1 shows the results averaged over 50 trials for different

f0 and for different SNR levels. For every scenario, BEMD always outperforms standard

EMD.

The ability of BEMD to estimate phase synchrony was illustrated using real world

data with changing amplitude and frequency information, in which EEG data was recorded
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Algorithm
P

P
P

P
P

P
PP

SNRinit.

Freq.
3Hz 5Hz 10Hz 20Hz 40Hz

EMD 0dB 0.40 0.22 0.12 0.07 0.04
BEMD 0dB 0.78 0.64 0.35 0.17 0.08
EMD 2dB 0.63 0.35 0.15 0.08 0.05

BEMD 2dB 0.87 0.79 0.48 0.25 0.12
EMD 4dB 0.83 0.6 0.25 0.10 0.06

BEMD 4dB 0.90 0.87 0.56 0.28 0.14

Table 4.1: Performance indices, ρband

ρspec
, for the estimation of phase synchrony between

x1(t) and x2(t).

at 256Hz sampling rate and bandpass filtered using a Butterworth filter into five frequency

bands (delta : 0.5 − 4Hz, theta : 4 − 8Hz, alpha : 8 − 13Hz, beta : 13 − 30Hz, gamma

: 36− 44Hz). For two EEG data contaminated by additional noises, xEEG(t) + v1(t) and

xEEG(t) + v2(t) where xEEG(t) is bandpass filtered EEG and v1(t) and v2(t) are different

realisations of WGN, the phase synchrony was measured using the proposed framework.

According to the filter band, two EEG data are synchronised only within the frequency

band. The performance index, ρband

ρspec
, was used to evaluate the framework using BEMD

and EMD, where ρband represents the parameters in the frequency band.

Fig. 4.2 shows the time-frequency representation of phase synchrony between two

alpha band EEG signals, more localised and robust phase synchrony around alpha band

(8 − 13Hz) was estimated using BEMD compared to standard EMD algorithm. The

results for different frequency bands EEG with different levels of noise, averaged over 20

trials, are given in Table. 4.2. Even though both BEMD and EMD perform poorly for

high frequency content, BEMD clearly outperforms standard EMD in detecting phase

synchrony.
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(a) Phase Synchrony using EMD (b) Phase Synchrony using BEMD

Figure 4.2: The time-frequency representations of phase synchrony for a pair of alpha
band EEG signals. The phase synchrony around alpha band obtained using BEMD
(b) is more prominent than that in the EMD result (a).

Algorithm
P

P
P

P
P

P
PP

SNRinit.

Freq.
Delta Theta Alpha Beta Gamma

EMD 0dB 0.41 0.26 0.17 0.22 0.05
BEMD 0dB 0.49 0.49 0.35 0.31 0.09
EMD 2dB 0.38 0.36 0.25 0.34 0.09

BEMD 2dB 0.55 0.62 0.55 0.50 0.20
EMD 4dB 0.47 0.46 0.35 0.44 0.13

BEMD 4dB 0.69 0.71 0.71 0.62 0.31

Table 4.2: Performance indices, ρband

ρspec
, for the estimation of phase synchrony between

EEG channels.
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4.2 Power Asymmetry Modelling in EEG

The level of asymmetry observed in EEG, that is, the lateralization of activity between

left and right brain hemispheres, has been found to be of much interest in the detection

and estimation of brain electrical activity corresponding to cognitive processes [69, 70]

with phase synchrony. Asymmetry studies have been addressed for both the full EEG

spectrum [37,39,71] and also specific frequency bands of interest [38,72,73]. For instance,

recent work focused on detecting asymmetry in the alpha band [37, 38] as the suppres-

sion of EEG activity in low-frequency bands is associated with cognitive engagement. It

was established in [73] that the lateral asymmetries in contingent negative variation were

caused by cognitive activity of brain. Davidson found that verbal and spatial tasks were

characterized by different levels of EEG asymmetry in multiple frequency bands [37]. Fur-

thermore, neuropsychological tasks ‘Verbal Fluency’, ‘the Tower of London’ and ‘Corsi’s

Recurring Blocks’ produced specific asymmetry patterns in the delta and theta bands [39].

Although these results illustrate that asymmetry is a robust measure for classifying

different mental tasks [30, 74], existing studies have employed standard signal processing

techniques based on Fourier analysis [14, 30–32]. As mentioned earlier, standard tech-

niques project the data onto linear orthogonal basis functions and are thus suboptimal for

processing of EEG. In this chapter, we propose to estimate asymmetry using EMD and

BEMD and show BEMD is highly suitable for the asymmetry calculation. In Chapter

3, the BEMD produces enhanced spectrum estimation for multichannel recordings that

contain similar oscillating components [60], a realistic assumption in EEG. This, in turn,

yields a more accurate estimate of the marginalised spectra, critical issue in the localised

calculation of amplitude asymmetry in frequency.

4.2.1 BEMD based Asymmetry

For a complex data z(t) = x1(t) + jx2(t) composed of a pair of sources, x1(t) and x2(t),

BEMD is applied to extract the complex IMFs. Two sets of IMFs for the two sources are

obtained by separating the real and imaginary components of the complex IMFs. The in-
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stantaneous amplitudes (a1,i(t) and a2,i(t)) and instantaneous phases (θ1,i(t) and θ2,i(t)),

where ‘i’ and ‘t’ denote the order of IMF and the time index, are obtained by applying

the Hilbert transform for each set of IMFs using eq. (2.12). The instantaneous frequen-

cies, w1,i(t) and w2,i(t), are computed by differentiating θ1,i(t) and θ2,i(t), which can be

assumed to contain similar scales [60] since they are obtained from the real and imaginary

components of a single complex IMF. It is therefore feasible to compare two spectral mag-

nitudes a1,i(t) and a2,i(t), their common instantaneous frequency can be defined by the

average of their respective instantaneous frequencies as

w1,2,i(t) =
w1,i(t) + w2,i(t)

2
(4.8)

The corresponding marginal Hilbert spectra (MHS1) h1(w) and h2(w) for x1(t) and x2(t)

respectively are calculated according to

h(w) =

∫ T

0
H(w, t)dt, (4.9)

where H is the Hilbert-Huang spectrum (HHS) and T the total data length. The asym-

metry ratio within the frequency range from w1 to w2 can be represented as

Γ(w1,w2) =
|
∑w2

w1
h2

1(w) −
∑w2

w1
h2

2(w)|
∑w2

w1
h2

1(w) +
∑w2

w1
h2

2(w)
(4.10)

We shall now illustrate the calculation of asymmetry ratio on two signals containing

sinusoids at two frequencies

f1 = 13Hz and f2 = 47Hz

t = 1/fs, . . . , 2s and fs = 10kHz

x1 = cos(2πf1t) + cos(2πf2t) (4.11)

x2 = 1.7cos(2πf1t) + 1.3cos(2πf2t)

Fig. 4.3 shows the asymmetry ratio with the lateralization evident at frequencies f1 =

13Hz and f2 = 47Hz.

1The advantage of MHS for EEG applications has been addressed in [75–77].
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Figure 4.3: Asymmetry ratio obtained using BEMD, for two channel data in eq. (4.11)

4.2.2 Spectrum Estimation Comparison between EMD and BEMD

Accurate estimation of power spectrum is crucially important for asymmetry calculation.

In this section, we shall now illustrate that the superior performance of BEMD over EMD

supports a more accurate estimate of the marginal Hilbert spectrum (MHS) compared to

EMD. Both EMD and BEMD were applied to sinusoids with added WGN. The MHS using

BEMD was obtained from the real part of the bivariate IMFs for z(t) = sf (t) + vr(t) +

j(sf (t) + vi(t)), where sf (t) is a sinusoid of frequency f and vr(t) and vi(t) are different

realizations of WGN with identical statistics. On the other hand, the MHS using EMD

was estimated from the IMFs of sf (t) + vr(t) only. Fig. 4.4 compares the MHS of EMD

and BEMD for two frequencies and SNRs, showing a more localised result produced by

BEMD, particularly at low SNR.

To quantify the performance, the kurtosis of x(t), defined as

k =
E

{

(x(t) − µ)4
}

σ4
(4.12)

was used, where µ is the mean of x(t), σ the standard deviation of x(t) and E{·} the

expected value operation. Since kurtosis measures the peakedness of a distribution, a

high kurtosis value indicates an accurate MHS. This is illustrated in Fig. 4.5 for the

marginalised spectrum of a single sinusoid with added WGN; the graphs were calculated

for increasing levels of noise2. Fig. 4.6 shows average results over 100 trials where kurtosis

values were calculated for the MHS of EMD and BEMD for different frequencies and

different SNRs.

2Every plot was produced as an average of 50 realizations of WGN for the different frequency sinusoids
(64, 44, 32, 25, 16, 12, 8, 6, 4, 2 and 1Hz, with 256Hz sampling frequency), using periodogram.
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Figure 4.4: The marginal Hilbert spectrum of EMD and BEMD. In all scenarios, the
MHS of BEMD is more localised in frequency.
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Figure 4.5: The kurtosis of the periodogram based power spectrum for a sine wave
with increasing noise levels. Kurtosis increases for high SNR, indicating a spectrum
is more concentrated.

For rigour, the one-tailed t-test was used to determine the degree of separation

between the BEMD and EMD performance. The p-value, for each frequency and SNR, is

displayed in Fig. 4.6. The performance of the BEMD MHS was significantly better than

EMD (p-values < 0.05) in 27 of the 30 scenarios.
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Figure 4.6: The kurtosis for the MHS of the sinusoids of frequency f obtained using
EMD (cross) and BEMD (black squares) for the different SNR. Although the kurtosis
of the spectra obtained using EMD and BEMD are similar for -10dB, the results of
BEMD are mostly bigger than those of EMD. The values in the square boxes are
one-tailed p-values of the t-test for the kurtosis of EMD and BEMD results.
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4.2.3 Asymmetry Estimation Comparison

To illustrate the advantage of using BEMD for estimating asymmetry, we considered

its performance in a simulation using real-world EEG signal. In this simulation, EEG

was band-pass filtered to occupy a certain frequency band and the level of asymmetry is

calculated between noisy realisations of the conditioned signal.

Experimental Setting

EEG data with a sampling frequency of 250Hz was obtained from scalp electrode P3

according to the 10-20 system shown in Fig. 1.1 and filtered using a Butterworth filter

such that it occupied specific frequency bands. For an EEG signal occupying a frequency

band, xband(t), the asymmetry ratio was produced for a pair of the signal, xband(t) +

v1(t), xband(t) + v2(t), where v1(t) and v2(t) are different realisations of WGN. Thus, the

asymmetry in the frequency band should be zero whereas nonzero within the remainder

of the spectrum. Periodogram Pxx using Bartlett window, EMD and BEMD were used to

estimate the asymmetry ratios for xband(t) occupying five frequency bands (delta, theta,

alpha, beta and gamma bands) in four different levels of SNR (5, 0, -5, -10dB). The

index ρband

ρspec
× 100 was calculated to evaluate their performances, where ρband is the sum

of asymmetry in the frequency band which xband(t) is conditioned to occupy and ρspec

is the sum of asymmetry in the full spectrum. The index will give zero for an accurate

estimation of asymmetry whereas result approaching unity is for a poor estimation. Using

50 different realisations of white Gaussian noise v1(t) and v2(t), the index was calculated

and averaged.

Simulation Results

The calculated asymmetry ratio for the two signals xband(t) + v1(t), xband(t) + v2(t) at

intervals of 0.125Hz is displayed in Fig. 4.7, where xband contains the alpha band com-

ponents with 0dB SNR. As expected, all the three algorithms produced the asymmetry

ratios lower in the alpha band than in the other frequency regions. Observe the most

accurate asymmetry estimation obtained using BEMD among all the algorithms.
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Figure 4.7: Asymmetry estimations for the alpha band signals (between the dashed
lines) in 0dB WGN. These asymmetry ratios were computed at intervals of 0.125Hz.
Note that BEMD produces the lowest and most stable asymmetry in the alpha band
of all the considered algorithms.

Table 4.3 shows a comparison of the performance for all the three algorithms, peri-

odogram Pxx, EMD and BEMD, using the performance index ρband

ρspec
×100 for all considered

frequency bands and noise levels. The 16 considered simulations of 20 show BEMD out-

performs the periodogram and EMD, where the performance difference between BEMD

and the superior algorithm in the other 4 cases is not significant. In several instances the

periodogram outperformed the standard EMD algorithm, due to the linearity of the data,

for which the periodogram is ideally suited3.

3The linear filtering operations consequently produces the linearisation of nonlinear data [78].
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Band
X

X
X

X
X

X
XX

SNRinit.

Algorithm
Pxx EMD BEMD

5 1.4±0.6 2.7±1.1 1.3±1.2

Delta 0 1.4±0.8 2.2±0.6 1.3±0.5

-5 1.9±0.8 2.0±0.5 1.3±0.9

-10 1.6±0.8 2.0±0.3 1.7±0.4
5 0.5±0.2 1.4±0.3 0.4±0.1

Theta 0 0.8±0.3 1.6±0.2 0.6±0.2

-5 1.7±0.6 1.7±0.3 1.1±0.3

-10 2.2±0.9 1.6±0.4 1.7±0.4
5 1.4±0.6 2.0±0.4 1.0±0.3

Alpha 0 2.1±0.8 1.9±0.3 1.1±0.3

-5 2.4±0.9 1.8±0.3 1.6±0.5

-10 2.5±1.2 2.2±0.3 2.1±0.5

5 5.1±1.1 7.5±0.5 3.4±0.3

Beta 0 7.5±1.7 7.8±0.5 5.1±0.5

-5 9.9±2.0 8.0±0.5 5.2±0.7

-10 11.8±2.6 8.1±0.6 7.9±0.8

5 1.4±0.5 3.7±0.3 1.6±0.2
Gamma 0 2.4±0.7 3.9±0.4 2.6±0.3

-5 4.0±1.2 4.3±0.5 3.4±0.4

-10 5.3 ±1.6 4.5±0.5 4.4±0.5

Table 4.3: Performance evaluation, ρband

ρspec
× 100, for asymmetry estimation between

signals x1 and x2 at different frequencies and SNR.

4.2.4 Case Study: Classification for Mental Tasks

In this section, we show the superior performance of BEMD-based asymmetry estimation

by applying the asymmetry features to identify different mental tasks in a BCI application.

The performance of BEMD is compared with those of EMD and conventional method.

Experimental Setting

The EEG data was recorded by Keirn and Aunon [30], who conducted several mental task

experiments4. These tasks were specially chosen for their known hemispheric brainwave

asymmetry5.

Task 1 - Baseline Measurements (B)

No mental task was performed in this experiment. The subject was told just to relax and

think of nothing.

Task 2 - Complex Problem Solving (M)

The subject was required to solve a nontrivial multiplication problem without vocalizing.

4Publicly available from http://www.cs.colostate.edu/eeg/index.html.
5Keirn and Aunon classified the five mental tasks using the asymmetry ratio with power values [30].
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The problems were nonrepeating and were designed so that an immediate answer was not

apparent. The subject verified at the end of the task whether or not he had arrived at a

solution and no subject completed the task before the end of the 10s recording session.

Task 3 - Geometric Figure Rotation (R)

The subject was given a drawing of a complex three dimensional block figure to study.

After 30s, the figure was removed and the subject was instructed to visualize the object

being rotated about an axis.

Task 4 - Mental Letter Composing (L)

The subject composed a letter to a friend or relative without vocalizing.

Task 5 - Visual Counting (C)

The subject was instructed to imagine a blackboard and to visualize numbers being written

on the board. And the subject counted from the previous number and wrote it on the

board after erasing the previous number.

Electrodes P3 and P4 were selected to calculate the asymmetry ratio between left

and right hemisphere among all the recorded channels on the position O1, O2, P3, P4, C3

and C4 defined by the 10-20 system of electrode placement, at a 250Hz data rate. The

data were measured for 10 seconds during each task and each task was repeated five times

per session. Recordings were made with reference to electrically linked mastoids A1 and

A2. For more details about the experiments we refer to [30].

Asymmetry ratios in the delta, theta, alpha, beta and gamma bands,

Γ(1,3), Γ(4,7), Γ(8,13), Γ(14,30), Γ(36,44), calculated using the periodogram (Pxx), EMD and

BEMD were used in a classifier. A support vector machine (SVM) [79] with Gaussian

kernel, (the code obtained from [80]), was used to classify between two different mental

tasks. The different combinations of two mental tasks are shown in Table 4.4. Each com-

bination had 20 samples of 4 s segment data because in the original recording [30] each

subject had 5 trials for a task and the length of each EEG data was 8 s long discarding the

first and last 1 s concerned about noise. The numbers of training sets and test sets were

respectively 12 and 8. The classification was repeated 50 times while mixing the sample

order, and the final classification result was the average of these outcomes.
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Subject 1 Subject 2 Subject 3 Subject 4
BEMD EMD Pxx BEMD EMD Pxx BEMD EMD Pxx BEMD EMD Pxx

B, C 86.3 77.5 79.5 83.3 45 71.8 77.4 58.8 53.8 69 58.8 59.3
B, L 52.5 63.8 49.5 58.1 47.5 63.8 50.8 37.5 53.6 56 55 53.8
B, M 51.3 28.8 38 51.3 60 59.4 85.7 62.5 71.8 85.5 67.5 83.5

B, R 95.5 78.8 70 51.3 45 46 50.8 70 48 55.4 45 54
L, C 70.6 70 63.1 51.3 61.3 46 88 77.5 72.5 64 53.8 51.8
L, R 64.5 68.8 62.5 65 70 61.9 47 73.5 44 55.8 46.3 44.3
M, C 85 71.8 81.8 75.8 42.5 43 58.5 55 56.2 88.5 88.5 68.8
M, L 49.5 48.8 43.5 72 45 51 74.8 56.3 76.5 81.25 58.8 60.3
M, R 96 83.75 74 78 63.8 40.3 70.5 63.8 57.2 58 73.8 55.5
R, C 57.8 42.5 50.3 87.5 46.3 71.3 81.25 66.3 59.75 81 72.5 61.5

Average 70.9 63.8 61.2 67.3 52.6 55.5 68.5 62.1 59.3 69.5 62 59.3

Max 96 83.8 81.8 87.5 63.8 71.25 88 77.5 76.5 88.5 88.5 83.5

Best M,R M,R M,C R,C M,R B,C L,C L,C M,L M,C M,C B,M

Table 4.4: The classification rates obtained using periodogram (shown as ‘Pxx’), EMD
and BEMD based on asymmetry estimation for four subjects and multiple mental task
combinations (Baseline Measurement (B), Complex Problem Solving (M), Geometric
Figure Rotation (R), Mental Letter Composing (L) and Visual Counting (C)). For
classification, SVM with Gaussian kernel was used. Note the improved classification
by the asymmetry feature obtained using BEMD.

Simulation Results

Table 4.4 shows the classification performances for the four subjects using the BEMD,

EMD and periodogram. Of the 40 considered simulation scenarios, EMD and BEMD

asymmetry outperformed periodogram asymmetry for 36. On average, the BEMD-based

asymmetry calculation had a classification accuracy of 70%, a 10% improvement over

periodogram-based asymmetry and a 7% improvement over EMD-based asymmetry.

These results fully illustrate the advantage of EMD and its algorithms for asym-

metry estimation of real-world data. In simulations presented in previous sections, the

signals of interest were linear: band-pass filtered EEG data. Algorithms based on Fourier

theory such as the Periodogram are, by design, suitable for linear signal statistics and

its performance exceeded that of standard EMD, and BEMD to a lesser extent, in some

instances. However, for fully nonlinear and nonstationary data sources, the performance

of both EMD and BEMD facilitated an improvement over traditional linear asymmetry

estimates.

In practice, asymmetry features are often combined with spectral power features to
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achieve separation between mental tasks6 [74]. As our aim was to address only asymmetry

performance, it is shown that BEMD asymmetry achieved classification accuracy exceeding

85% in some instances. For a pair of mental tasks, 20 data samples were used to obtain the

classification performances of the algorithms. As a future work, more number of real-world

dataset will be employed to prove the advantage of BEMD-based asymmetry feature.

4.3 Summary

It has been shown that complex extension of the empirical mode decomposition algorithm

guarantees a matched set of decomposition for a pair of sources, and provides a robust

estimate of phase synchrony and power asymmetry. A statistical assessment of the pro-

posed framework has been presented for both synthetic signals and for EEG from a BCI

application. The BEMD-based phase synchrony and asymmetry results are shown to be

highly localised in time-frequency and robust to additive noise.

6In [74], the classification results were shown using the same dataset, and all the cases had separation
rates over 60% produced using asymmetry and power features.
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Chapter 5

BCI Experiment I:

Auditory Selective Attention

Experiment

T
HIS chapter presents an analysis of the merits of the original Yarbus experiment on

eye movements with respect to judgments on differences in cognitive layer processes.

The principles thus derived are applied to the development of an equivalent auditory

experiment where, instead of eye movements, the response of the subject is observed by

EEG measurements, which was designed by Kidmose et al. [9]. This initial auditory Yarbus

experiment shows the potential to implement an advanced brain computer interface system

improving the usefulness of hearing instruments. The synchrony and asymmetry features

introduced in previous chapter are applied to extract information from EEG response.

This work was conducted in collaboration with WIDEX, Denmark, and the experiment

results are based on the work in [9, 81]

5.1 Background

Modern hearing aids still suffer from a systemic shortcoming, that is, the intention of the

person wearing the hearing aid is not easy to be estimated by the advanced digital signal
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processing. Even if a user can adjust the hearing aid using remote control for fine-tunning,

the information is not provided to the hearing aid about which of several sound streams

from a mixture the user is currently attending. Without the information of the user

attention, the hearing aid could not decide which source or sources should be presented

and which should be discarded as noise.

As illustrated in Fig. 5.1, there is only one-way input from hearing aid to perceptual

system without any feedback which would aid their operation. Therefore, this research

will investigate whether we can use electroencephalogram (EEG) recordings as a feedback

connection from perceptual system to hearing aid.

Hearing
Layer

Cognitive
Pathway
Auditory

System
Sensory

Aid

Figure 5.1: Block diagram of the role of the hearing aid within the system of auditory
perception which consists of: Sensory System (outer ear, middle ear, cochlear); Au-
ditory Pathway (cochlear nucleus, auditory cortex); and Cognitive Layer (high level
auditory layer, cognitive layer).

In order to model the degree of auditory attention and auditory brain control inter-

face (BCI), Nager et al. have used EEG and showed the possibility to estimate the attended

stimulus for a dual stimulus environment [82]. They considered perceptually simple sound

sources such as frequency modulated tones and used features which is straightforward to

identify related activity in the EEG. However, we consider more complex sound source

and determine more robust features that are relevant to auditory attention in a real-world

auditory environment.

In a complex auditory environment, an EEG recording can be influenced by several

layers of brain functions: sensation, perception and cognition. However, an insight into the

relevant attention mechanisms can be provided only by the perception and cognition layers.

Therefore, we are going to design an experiment to isolate this cognitive information and

provide a framework for such investigations.

Based on the work by Yarbus [8] in which a fixed visual stimulus combined with

different instructions was used to induce different cognitive responses in the investigation
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of visual scene analysis, Kidmose et al. proposed a corresponding experiment for auditory

scene analysis [9]. During all trials of an experiment, the same auditory input and hence

processes at the layer of sensation are identical for all trials, but the cognitive instruction

is varied. This was achieved by instructing the subject to alternate their attention between

the sound streams. Thus, systematic differences in observable measurements of the brain

(EEG response) can be used to infer about changes at the cognitive layer.

The advanced data analysis, phase synchrony and asymmetry using bivariate em-

pirical mode decomposition (BEMD) addressed in Chapter 4, was performed on the EEG

recordings following evidence [83] [84] which suggests that the degree of neuronal synchro-

nisation within different cortical regions of the brain, specifically within the gamma band

(30-80Hz), reflects the level of cognitive processing and can convey selective attention.

5.2 Yarbus’ Experiment on Eye Movements

For the visual attention experiment, the Russian psychologist Alfred L. Yarbus designed an

experiment in which he showed the subjects a picture (The Unexpected Visitor) in Fig. 5.2

(This figure is taken from a website ‘http://en.wikipedia.org/wiki/Eye tracking#cite ref-

4’.) and asked the subjects different questions about the picture. At the same time, he

recorded their eye movements (see Fig. 5.2) and their eye movement patterns correspond-

ing to different questions were compared to investigate their cognitive changes.

As can be seen in Fig. 5.2, the eye movement patterns differed according to the

question posed. For these results, Yarbus concluded that the cognitive layers influenced

the patterns of eye movements, that is, the different instruction for the same input (the

picture) caused different cognitive responses.

A simplified model of the system of perception and movement using three layers,

sensation, perception and cognition was proposed in [9]. The block diagram of the brain

processes involved is drawn in Fig. 5.3. The “Unexpected Visitor” provides an input to

the layer of sensation, which is further processed through the layers of perception and

cognition. Processes at the two latter layers cause action units to initiate eye movements
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Figure 5.2: The Unexpected Visitor by Yarbus [8] (This figure is taken from a website
‘http://en.wikipedia.org/wiki/Eye tracking#cite ref-4’.). Notice the different pat-
terns of eye movements according to the different cognitive tasks.
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C

AM

visual
stimulus

S P

Figure 5.3: Simplified block diagram of brain processes in the Yarbus experiment.
Symbols M: motor, A: action, S: sensation, P: perception, and C: cognition.

by activating relevant motor units, influencing the sensory input to the eyes.

5.3 Auditory Equivalent of the Yarbus Experiment

For our purpose we wish to conduct an experiment to determine whether the auditory

attention of a subject in a complex acoustical environment can be gauged by means of EEG

measurements. A model for the brain processes involved in focusing auditory attention,

shown in simplified schematic form in Fig. 5.4 was produced as a conjecture in [9]. The

sound stream provides an input to the layer of sensation, which is further processed through

the layers of perception and cognition, whereas feedback from the cognitive layer to the

perceptual layer is involved in focusing the attention of the subject. Such a model is

supported by evidence that behavioral context, including attention and intention, affect

even basic perceptual processes [85].

auditory
stimulus

S P C

Figure 5.4: Simplified block diagram of brain processes involved in auditory attention.
Symbols S: sensation, P: perception, and C: cognition.

Applying this visual attention experiment to the auditory case, we constructed an
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experiment involving multiple trials where the auditory input and hence processes at the

layer of sensation are identical for all trials, but the instruction is varied in analogy to the

original Yarbus experiment. EEG was chosen to monitor the cognitive changes during each

trial and subsequently develop feature extraction and classification in order to distinguish

between instructions with a probability which is significant. This experiment design will

be referred to as an auditory Yarbus experiment due to the conceptual resemblance with

the original, visual Yarbus experiment. Table 5.1 summarizes the analogies between the

two experiments.

To justify the auditory Yarbus paradigm, the following experimental setup was used

for eight volunteers with healthy hearing (mean age 30 years, median age 25 years, five

male, three female). An auditory stimulus, a mixture of music and speech, was played to

the subject through two loudspeakers placed at approximately +/- 60 degrees from the

front of the subject. Speech was presented from the right speaker (relative to the subject)

and music from the left. The volumes of speech and music were loosely calibrated so that

both sources were loud and clear (60-80 dB SPL range) and so as to facilitate selective

attention to each.

As a proof of principle, a series of sub-experiments were performed on two subjects

only1. Three recording sessions of 20 trials were conducted2 in which the subject was

instructed to attend the speech or music only (10 music trials, 10 speech trials). In

between each trial, an additional recording was conducted to record baseline EEG activity

to be used in later analysis. These recordings were made with the g.USBamp biosignal

acquisition device at a sampling frequency of 4.8kHz.

The framework was extended to a larger number of subjects. For each subject, a

single recording session was conducted (10 trials) without baseline recordings. As before,

the subject was instructed to attend either the music or the speech3 for a given trial.

These recordings were made with the g.MOBIlab+ portable biosignal acquisition system

at a sampling frequency of 256Hz. EEG was recorded from electrode positions FC3, FC4,

1For the sub-experiments only, the language of the speech stimulus was that of the first language of the
subject.

2Each recording session was performed on different days.
3The speech stimulus used was identical for each subject.



5.3 Auditory Equivalent of the Yarbus Experiment 89

Visual experiment Auditory experiment

Eye movement determines the The low-level stimulus to the
stimulus to the sensory organ sensory organs is the same and
and hence the low-level response hence the low-level response of
in the brain differs with the the brain does not differ with
instruction. the instruction

The search for information in The search for information in
the picture is physical the audio stream is
(eye movement). psychological or cognitive.

The eye movement pattern depends Conjecture: A similar dependency
on the input (picture) as well exists for the feedback in the
as the instruction. auditory experiment.

Interpreted locally the eye No conjecture
movement pattern somehow reveals
the local information rate or
entropy of the input.

Interpreted globally the eye No conjecture
movements seem connected with
the subjects interpretation of
the input and the instruction.

The correlation between input and There is no conjecture of a
eye movement pattern and the correlation between input and
interpretation thereof indicate measurement or interpretation
that the response is governed also thereof.
on a cognitive level.

Repetitions across different test No expectation of cross-subject
subjects result in ‘similar’ correlation.
patterns. (Averaging over
different test subjects is
possible).

Conjecture: Repetitions of the Conjecture: Repetitions of the
experiment with the same test experiment with the same test
subject could cause a weaker subject will not to the same
response. degree result in a weakening of

the response.

Table 5.1: Analogy between the original visual Yarbus experiment and the auditory
Yarbus experiment [9].
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FC5, FC6, C3, C4, T7 and T8 with reference to the right ear lobe according to the 10-20

system (see Fig. 1.1).

5.4 Analysis

Sub-experiments

Analysis of the sub-experiments was achieved by calculating the percentage change in

spectrum power, induced by attending the relevant sound stream, relative to spectrum

activity in the absence of stimulus (the baseline recording) within the frequency range

35-45Hz. A percentage increase is defined as event related synchronisation (ERS) and a

decrease as event related desynchronisation (ERD) [86] such that

E =
(A−R)

R
× 100 (5.1)

where A is power within relevant frequency band during the stimulus and R power within

relevant frequency band in the absence of stimulus (baseline). Results that exceeded +/-

150% were disregarded as outliers.

Larger study

Analysis for the larger study was achieved by estimating the degree of neuronal synchro-

nisation, within the frequency range 30-45Hz and 60-80Hz, for pairs of electrodes using

the features:

• phase synchrony – the temporal locking of phase information between the electrodes,

α(30,45) and α(60,80) in eq. (4.5), and

• asymmetry – the lateralization of spectral power between the electrodes, Γ(30,45) and

Γ(60,80) in eq. (4.10).

The features were estimated within a unified bivariate empirical mode decomposition

(BEMD) [4] framework which facilitates a highly localised comparison, in time and fre-

quency, between two signals.
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The power feature was also included in the feature vector with the nonlinear fea-

tures. The normalised power spectrum, p(f), which characterises the spectrum shape of

a source x1 within the frequency range f1 to f2 is given by the vector

p(f1,f2,n)(f) =
log(P̂PER(f)) − µP̂

√

∑f2
f=f1

(log(P̂PER(f))−µ
P̂

)2

n

(5.2)

where

µP̂ =

∑f2

f=f1
log(P̂PER(f))

n
(5.3)

where P̂PER(f) denotes spectrum power obtained using a periodogram with a Bartlett

window, and n is the number of bins between f1 and f2.

Standard Fourier analysis was used to obtain the normalised spectrum because the

marginal Hilbert spectrum (MHS) in eq. (4.9) was found to be too sparse for short data

lengths and high frequencies, making it unsuitable for obtaining a continuous spectrum

shape at discrete frequency intervals within the frequency range 60-80Hz.

Feature classification was achieved using a Gaussian kernel SVM, the code of which

was obtained from [80].

For all subjects, trials and EEG electrodes, the 35s recorded data was segmented

into a set of 6 parts each of length4 4s. Thus, 60 (6 × 10) subsegments are available for

each subject and electrode. The analysis for all the subsegments was performed as follows.

For each corresponding electrode subsegment pair, e. g. FC5 and FC6 recorded during the

same time interval, four features, reflecting the level of higher order synchronisation, was

obtained as

ξ = [α(30,45),Γ(30, 45), α(60,80),Γ(60, 80)]T (5.4)

where (·)T denotes the matrix transpose. The 1 × 4 feature vector ξ contains synchro-

nisation only in the gamma band, discarding the frequency band contaminated by the

electronic interference (45-60Hz).

4The initial 5s and final 5s of each recording were removed due to the artifacts caused by the sudden
introduction/cessation of the stimulus.
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To compare the nonlinear feature with a conventional linear feature, a second order

synchronisation information (correlation) between two signals x1(t) and x2(t) within the

frequency range f1 and f2 was calculated as

r(f1,f2) = (5.5)

T
∑

t=1

(

hb{x1(t)} − hb{x1}
)(

hb{x2(t)} − hb{x2}
)

√

√

√

√

T
∑

t=1

(hb{x1(t)} − hb{x1})2

√

√

√

√

T
∑

t=1

(hb{x2(t)} − hb{x2})2

where hb{·} is an operation of bandpass Butterworth filter between f1 and f2 and hb{x1}

the average of hb{x1} (same for hb{x2} and hb{x2}). Then, a 1 × 2 feature vector was

obtained as

ζ = [r(30,45), r(60,80)]
T (5.6)

An additional feature, ρ
′
, relating to the normalised gamma band spectrum of one

of the electrodes in the electrode pair was also included in analysis. ρ
′

was obtained by

applying principal component analysis to reduce the dimensionality of the 1 × 37 vector

ρ = [p(30,45,16)(30, . . . , 45),p(60,80,21)(60, . . . , 80)]T to a 1 × 3 feature vector. Thus for a

given electrode subsegment pair, the 1×7 feature vector including normalised power5 and

nonlinear features (phase synchrony and asymmetry) is given by Fnonlin = [ξ, ρ
′
]T , and the

1 × 5 feature vector with the normalised power and correlation is given by Flin = [ζ, ρ
′
]T .

Features for 70% of data set were used to train the SVM and the remaining data

was classified as a test set. The SVM was retrained with different training set, which was

randomly selected from the data set, and performed classification 50 times. The averaged

classification performance of these 50 outcomes was taken. For other pairs of electrode

and subjects, the same analysis was conducted with a retraining of the SVM.

5The first electrode in the electrode pair was used to compute the normalised spectrum power.
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5.5 Results

ERD/ERS results for the proof of principle experiments are shown in Fig. 5.5. Each

subplot shows the average ERD/ERS values across time for 10 music trials and 10 speech

trials (disregarding some trials as outliers6). Each subplot shows that different degrees of

event related synchronisation/desynchronisation exist in the speech and music trials for

the two subjects.

In the case of the larger experimental study, classification performances for the

eight subjects using the BEMD synchronisation and linear correlation features combined

with normalised power spectrum features are given for various electrode pairs as shown

in Table 5.2. The highest classification performance was obtained with the electrode

pair FC5/FC6 using nonlinear features, which gave a mean classification performance

of 70.8%. The linear correlation gave 66.8% of mean classification performance for the

same electrode pair. On average for all the scenarios, the median/mean performance of

the nonlinear synchronisation features was 4.6%/3.5% higher than the linear correlation

features. The results provide insight into the degree of statistical separation between

speech and music trials. Observe that despite the lowest performance obtained with the

electrode pair T7/T8 (mean 66.8%), the classification performance for subject ‘H’ at 88.3%

represented an increase of approximately 28.6% compared to that obtained with the pair

FC5/T8. This can be also found in the results of subject ‘E’, 20.4% difference between

maximum and minimum mean values. These results suggest that the subjects have their

unique cortical locations of neuronal synchronisation corresponding to selective attention.

The results show that a test set could be classified with a probability which was

significant. Mirroring the original Yarbus experiment, we conclude that the recorded EEG

signals are influenced by the cognitive layers of the brain. The input (the sound mixture)

was the same across all trials, but the instruction was different which caused different

cognitive responses indicated in the EEG signals.

However, this has been an initial study which needs to be elaborated on with

6In the case of subject ‘A’, 1 trial was disregarded from rec. session 1. In the case of subject ‘B’, 2
trials were disregarded from rec. session 1, 1 trial from rec. session 2 and 1 trial from rec. session 3.
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Figure 5.5: ERD/ERS results for subjects ‘A’ and ‘B’ for three recording sessions
(denoted by Rec. #). For each session, the average results for the 10 speech trials are
shown in gray and the average for the 10 music trials in black. The distance between
the error bars denote two standard deviations [9].

further experiments. First of all, speech was always presented in the right speaker and

music in the left in all trials. A spatial difference between attending a sound source on

the left or right could cause the difference found in the data. Secondly, the significant

difference between two groups may be due to a difference in attentional load between

the two instructions, that is, the subjects can attend one source with less effort than the

other. Thirdly, It is possible that other subject activity during the act of attending the

stimuli (tapping feet, humming) has influenced the recordings. This source of error is also

mentioned in [23]. Finally, more number of subjects will be investigated to ensure the

auditory Yarbus paradigm.
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Electrode Pair
P

P
P

P
P

P
PP

Feature
Subject

A B C D E F G H MEDIAN MEAN

FC5/FC6 Fnonlin 77.4 64.7 66.1 70.6 61.7 76.7 82.0 67.2 68.9 70.8
Flin 81.3 55.9 67.3 61.9 58.1 81.4 70.3 58.5 64.6 66.8

FC5/FC4 Fnonlin 77.1 60.9 68.8 69.3 82.1 72.9 76.1 54.1 71.1 70.2
Flin 80.9 54.1 68.2 60.4 59.6 78.8 64.8 64.2 64.5 66.4

FC5/C4 Fnonlin 79.1 70.9 67.1 68.8 66.1 72.4 76.8 58.9 69.9 70.0
Flin 78.8 57.4 68.3 61.9 60.2 82.8 71.3 58.1 65.1 67.4

FC5/T8 Fnonlin 79.1 64.8 66.3 73.1 64.5 71.3 74.6 59.7 68.8 69.2
Flin 77.7 55.8 70.1 63.1 60.2 79.1 66.0 59.2 64.5 66.4

T7/T8 Fnonlin 68.1 57.2 54.2 68.2 66.7 53.9 77.4 88.3 67.4 66.8
Flin 64.4 55.5 52.4 65.8 65.8 58.5 73.0 64.1 64.3 62.4

Table 5.2: Classification rates for 8 subjects using BEMD syncronisation (nonlinear)
and correlation (linear) features. Note the better performance of nonlinear feature [9].

5.6 Summary

The auditory Yarbus-style experiment provides a formal methodology to assess if auditory

attention in a complex acoustical environment is observable. The measurement data ob-

tained within this framework shows that selective auditory attention to different sources

causes systematic changes in brain wave measurements. The novel framework for estimat-

ing synchronised neuronal activity, phase synchrony and asymmetry, has been shown to be

suitable for higher order synchronisation in EEG. We have achieved about 4% increase in

the classification performance compared to standard synchronisation measurement. Future

work is necessary to fully establish the full statistical significance of experiment findings

regarding selective attention, however, the proposed framework has showed clear potential

in the design of advanced BCI.
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Chapter 6

BCI Experiment II:

Motor Imagery Signal Processing

T
HIS chapter shows that the analysis of the motor imagery response, a key paradigm

in brain computer interface (BCI), is enhanced using the multivariate extension of

empirical mode decomposition (MEMD). The analysis highlights that MEMD is highly

suited to monitoring the changes in brain activity corresponding to motor imagery tasks

due to its localised and adaptive nature and, unlike the univariate algorithm, the exploita-

tion of common oscillatory modes within multivariate data.

6.1 Background

Recently BCI based on motor imagery response, that is, the imagination of a motor action

without any real motor output, has been subject of many studies [15]. The basis for motor

imagery BCI is that, the so-called mu rhythms (8-12Hz) or sensorimotor rhythms (SMR),

and beta rhythms (18-25Hz) [16] have been observed in the central region of the brain

using both EEG and magnetoencephalography (MEG), when subjects plan and execute

their hand or finger movements [18,25]. Nikouline et al. demonstrated that somatosensory

stimuli suppressed mu rhythms at both the contralateral and the ipsilateral somatosensory

cortex (SI) [17] and Pfurtscheller et al. described changes of EEG activity in the low-
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frequency bands, including mu and beta rhythms, caused by voluntary movements [18].

It has been suggested by H. Yuan et al. that such changes to the mu and beta rhythms

are due to the reflection of phase coherence in thalamocortical circuits1 [25]. The blocking

(ERD) of mu rhythm over the contralateral scalp, and the enhancement (ERS) over the

ipsilateral area during motor imagery were also demonstrated in [25].

The so observed changes to mu and beta rhythms are utilised by existing BCI

systems, however current studies have employed mostly standard signal processing tech-

niques based on Fourier analysis [17,25,33]. As we already addressed in previous chapter,

these are based on projection on a predefined set of basis functions and thus inherit the

well-known problem associated with standard spectrum estimation, poor time-frequency

localisation [3]. In addition, linear orthogonal basis functions used in standard spectrum

estimation are not suitable for processing nonlinear and nonstationary EEG [34].

In this chapter, we propose to analyse the EEG signals from the motor imagery

BCI task using empirical mode decomposition (EMD) and its multivariate extension al-

gorithms. Properties of their decomposition ensure that frequency and amplitude in-

formation can be analysed locally, which facilitates a highly accurate insight into signal

dynamics across time and frequency. As we have shown in Chapter 3, MEMD guaran-

tees the matched-scale decomposition across multichannel data and thus it enables the

accurate motor imagery signal processing, which is mostly recorded using multiple EEG

electrodes.

For rigour, we analyse the output of the EMD operation with a tool for discrimina-

tion between different classes of EEG activities based on their distinct spatial configura-

tion across several electrodes, the so-called common spatial pattern (CSP) algorithm. It

is shown that the combination of the EMD and CSP algorithms yields a powerful unified

tool for feature extraction across both space and frequency for nonlinear and nonstation-

ary data. Z. Wang et al. applied CSP algorithm to one IMF decomposed using standard

EMD for the classification of bistable perception [45]. However, the uniqueness problem

of standard EMD, which was explained in Chapter 3, makes it unfeasible to perform a

1A decrease in spectral power is called event-related desynchronisation (ERD) [87] while an increase is
defined as event-related synchronisation (ERS) [88].
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posteriori comparison, using the CSP algorithm for instance, at the IMF level. In Chap-

ter 3 and 4, it was shown that the complex and multivariate extensions of EMD could

be used to circumvent the problem of uniqueness. Furthermore, it was shown that both

approaches yielded a more accurate estimation of the IMFs when the narrowband oscilla-

tions of interest are common to each channel, giving enhanced spectrum estimates. In this

chapter, we have proposed to use multivariate extensions of EMD in combination with the

CSP algorithm to enhance the classification in motor imagery BCI in multichannel EEG

scenarios.

6.2 Analysis of Motor Imagery Data

A BCI Competition IV Dataset I was used to evaluate the MEMD performance.2 The

data was recorded from four healthy subjects using the BrainAmp MR plus EEG amplifier

with 59 electrodes sampled at 1000Hz [89]. For each subject two classes of motor imagery

were selected among the three classes, left hand, right hand and foot. Specifically,

subject a chose left hand and foot, subject b left hand and right hand, subject f

left hand and foot, and subject g left hand and right hand. There were two sessions

of collected data, calibration and evaluation sessions, and only the calibration session was

used in our simulations. In the calibration sessions, a visual cue was presented on the

computer screen. The cue was displayed for 4s to indicate the desired motor imagery

task during which time EEG was recorded. A 2 s blank screen and a 2 s fixed cross in

the center of the screen were followed after the 4 s motor imagery task. Each subject

performed 200 motor imagery tasks including both mental tasks. Only 11 electrodes were

selected for our simulations, ‘FC3’, ‘FC4’, ‘Cz’, ‘C3’, ‘C4’, ‘C5’, ‘C6’, ‘T7’, ‘T8’, ‘CCP3’

and ‘CCP4’ according to the 10-20 system (see Fig. 1.1). Those electrodes were selected

since motor imagery is primarily associated with the central area of the brain [18, 25].

The data was down sampled to a 100Hz sampling rate. In the following two sections,

it is shown how MEMD can outperform other methods in terms of spectrum analysis

2The BCI Competition IV Dataset I was recorded for both human and artificially-generated motor
imagery data and only the human-generated motor imagery data was considered in our simulations. The
data is available from ‘http://www.bbci.de/competition/iv/’.
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and feature estimation for classification. Additionally, the performance of noise-assisted

MEMD (NA-MEMD) introduced in Chapter 3 was also investigated for the classification

of the motor imagery data.

6.2.1 Spectrum Analysis of Motor Imagery Response using MEMD

We illustrate that the operation of MEMD over the short-time Fourier transform (STFT),

wavelet transform (Morlet) and single channel EMD techniques supports a more accu-

rate estimate of the Hilbert-Huang spectrum (HHS). Time-frequency spectra for the 5 s

left hand and right hand motor imagery datasets of subject g from electrode C3, C4,

C5 and C6 were estimated using the STFT, Morlet wavelet, standard EMD, EEMD and

MEMD. A 0.3 s sliding Hamming window with 29 data points overlap was applied to

create the STFT spectra. The wavelet transform, defined in eq. (2.3), was based on the

Morlet wavelet function. Standard EMD and EEMD were applied to the four channel

EEG data individually and their HHS were produced, while MEMD decomposed the four

channel data simultaneously and derived the individual HHS from the four variate IMFs.

To enable the EEMD decomposition,3 noise with a standard deviation of 0.4, ratio be-

tween noise and data, was added and the number of ensembles for each case was 100.

The average of C3 and C5 (left hemisphere electrodes) spectra and the average of C4 and

C6 (right hemisphere electrodes) spectra were calculated to examine the change of EEG

spectra corresponding to two different mental tasks.

Figs. 6.1, 6.2, 6.3, 6.4 and 6.5 show the spectra obtained using the five different

techniques, where the motor imagery task started from 0 s for 4 s. Subfigures in the first

row show the observed left hand motor imagery task while subfigures in the second row

display the right hand motor imagery task. As shown in [25], from the cue sign of motor

imagery task, ERD of mu rhythm for approximately 2 s over the contralateral scalp and

ERS of mu rhythm after 2 s over the ipsilateral scalp can be expected. According to the

spectra obtained using all five methods (Figs. 6.1 - 6.5), the left hand and right hand

motor imagery trials show the ERD between 1 s and 3 s over the contralateral hemi-

3The MATLAB code of EEMD is available from ‘http://rcada.ncu.edu.tw/research1 clip program.htm’.
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sphere and the ERS around 3 s over the ipsilateral hemisphere, where the subject began

to perform both mental tasks from 1 s. It is shown that STFT and wavelet transform ob-

tained less localised spectra than EMD-based algorithms. In particular, note that MEMD

produces the most prominent and accurate mu rhythm at approximately 10Hz among

the three EMD techniques. This demonstrates that MEMD performs a highly localised

time-frequency estimation by exploiting multi-channel information.
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Figure 6.1: STFT spectra for left hand and right hand motor imagery tasks. Left

hemisphere and right hemisphere denote the average of ‘C3’ and ‘C5’, and the average

of ‘C4’ and ‘C6’ respectively.
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Figure 6.2: Wavelet (Morlet) spectra for left hand and right hand motor imagery tasks.
Left hemisphere and right hemisphere denote the average of ‘C3’ and ‘C5’, and the
average of ‘C4’ and ‘C6’ respectively.
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Figure 6.3: EMD HHS for left hand and right hand motor imagery tasks. Left hemi-

sphere and right hemisphere denote the average of ‘C3’ and ‘C5’, and the average of

‘C4’ and ‘C6’ respectively.
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Figure 6.4: EEMD HHS for left hand and right hand motor imagery tasks. Left
hemisphere and right hemisphere denote the average of ‘C3’ and ‘C5’, and the average
of ‘C4’ and ‘C6’ respectively.
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Figure 6.5: MEMD HHS for left hand and right hand motor imagery tasks. Left

hemisphere and right hemisphere denote the average of ‘C3’ and ‘C5’, and the average

of ‘C4’ and ‘C6’ respectively.
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6.2.2 MEMD-based CSP Feature Estimation

Preprocessing

Using a fifth-order Butterworth filter, wavelet transform, EMD, EEMD, MEMD and NA-

MEMD (noise-assisted MEMD), the EEG signals were band-pass filtered into frequency

bands ranging from 8Hz to 30Hz, which contain mu and beta rhythms. Three scales

of Morlet wavelet which had components between 8Hz and 30Hz were reconstructed to

produce the band-pass filtered signals. Eleven channel EEG signals were decomposed si-

multaneously using MEMD whereas the single channel EMD algorithms were applied to

each individual channel. The NA-MEMD decomposed thirteen channel data simultane-

ously, including eleven channel EEG data and another two channel white Gaussian noises.

IMFs decomposed using standard EMD, EEMD, MEMD and NA-MEMD were retained or

omitted in an ad-hoc fashion to obtain the band-pass filtered signal, a sum of the selected

IMFs.

Common Spatial Patterns

Features relevant to motor imagery were extracted using the CSP algorithm, a standard

feature extraction technique used in BCI applications [33,90]. It determines spatial filters

that maximise the variance of signals in one class and simultaneously minimise the vari-

ance of signals in the other class. CSP filters are therefore also to discriminate between

differences in ERD/ERS caused by changing mental states as their operation is sensitive

to subtle changes in power of a band-pass filtered signal. A detailed description of the

CSP algorithm is below.

A single trial EEG data is represented as an N × T matrix X, where N is the

number of channels and T the number of samples per channel. The normalised spatial

covariance of X can be calculated from

C =
XX

T

tr(XX
T
)

(6.1)

where (·)T denotes the matrix transpose operator and tr(X) is the sum of the diagonal
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elements of X. The spatial covariance Cd∈[a,b] for a task, a or b, is obtained by the

averaged covariance matrix of the task trials. The CSP analysis seeks to find a matrix W

and diagonal matrices Λa and Λb (Λa+Λb = I, identity matrix) with elements d ∈ [a, b]

such that

WTCaW = Λa, WTCbW = Λb (6.2)

This can be achieved via the following process. The composite spatial covariance is given

as

Cc = Ca + Cb (6.3)

where Cc is factorized as Cc = UcΛcU
T
c , Uc is the matrix of eigenvectors, and Λc is

the diagonal matrix of eigenvalues. Using the whitening transformation, G̃ =
√

Λ−1
c UT

c ,

the variances in the space spanned by Uc are equalised, which makes all eigenvalues of

G̃CcG̃
T

equal to 1. Secondly, let Sa = G̃CaG̃
T

and Sb = G̃CbG̃
T
, and then Sa and Sb

share the common eigenvector matrix, i.e.,

BTSaB = Λa, BTSbB = Λb (6.4)

(Λa + Λb = I)

Since we assume the eigenvalues Λa are sorted in descending order, the final spatial filter

that satisfies (6.2) is given by

W = BT G̃ (6.5)

Using this, the EEG signals are projected as

Z = WX (6.6)

Each row vector wj (j = 1,. . .,N) of W is called spatial filter or simply a filter. For dis-

criminating between two motor imagery tasks, the variances of the spatial filtered signals

using eq. (6.6) were used as feature. The row vector zp (p = 1, . . . ,m andN−m+1, . . . , N)

from Z that maximise the difference of variance between two groups are associated with

the large eigenvalues in Λa and Λb. These signals are the m first and last rows of Z in eq.
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(6.6) due to the calculation of W and the feature can be obtained by

ḟp = log(
var(zp)

∑2m
i=1 var(zi)

) (6.7)

where var(·) denotes the variance.

Data Classification

The feature vector f = [ḟ1, ḟ11] (when m = 1) or f = [ḟ1, ḟ2, ḟ10, ḟ11] (when m = 2)

obtained by eq. (6.7) was applied to a classifier, an SVM [79] with Gaussian kernel.4 The

200 trial data sets for each subject were divided into 140 training and 60 testing sets.5

The classification procedure was repeated 100 times while mixing the sample order (100

× cross-validation), and the average of these outcomes was the final classification rate.

Experimental Results

Fig. 6.6 illustrates the average power spectra of the first four IMFs c1(t)-c4(t) across the

EEG electrodes for all 200 trials. Due to the nature of EMD operation, a high order

IMF contains a low frequency component as can be seen in the power spectra. Note that

the frequency distribution of each IMF using EEMD, MEMD and NA-MEMD are more

consistent across all the subjects and they are better aligned in the same frequency ranges

compared to EMD. An additional advantage of the MEMD and NA-MEMD approach is

that the mu and beta rhythms are identified as separate components (c2(t) and c3(t))

compared to the EEMD output where the rhythms have been extracted as a single IMF

(c2(t)). It is also shown that the different frequency ranges corresponding to the IMFs of

NA-MEMD are more consistently distributed across the subjects than those of MEMD.

In particular, c2(t) spectra in Figs. 6.6 (c), (k) and (o) are more overlapped with c3(t)

spectra compared to those in Figs. 6.6 (d), (l) and (p).

4The code can be downloaded from [80].
5The CSP filter was defined using only the training data set.
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Figure 6.6: Average power spectra of c1(t) - c4(t) for each subject decomposed using
EMD, EEMD, MEMD and NA-MEMD. Note that the c2(t) and c3(t) of MEMD and
NA-MEMD contain the frequency bands of mu and beta rhythms respectively.
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Table 6.1 shows the classification performances for the four subjects using the

Butterworth filter, Morlet wavelet, EMD, EEMD, MEMD and NA-MEMD, where IMFs

of EMD, EEMD, MEMD and NA-MEMD were manually chosen based on the IMF power

spectra in Fig. 6.6 and the classification performance. The classification performances were

calculated when m of eq. (6.7) was 1 and 2. The best results among 6 different methods

for each subject were indicated in bold. It is shown that MEMD-CSP or NA-MEMD-

CSP (on average, both have the similar performance.) features obtained by applying CSP

to sum of selected IMFs always outperformed the other methods for both cases of m =

1 and m = 2, where c2(t) and c3(t) were used for all subjects. The next best feature

was obtained using EEMD-CSP and the third was wavelet-CSP. Since c2(t) and c3(t) of

MEMD and NA-MEMD were already identified as the components including mu and beta

rhythms in Fig. 6.6, they are most likely to give the highest classification rates. In the case

of EEMD, it was found that the second IMF consistently contained mu and beta rhythm

activities and the best performance was obtained by using c2(t) only or c2(t) in combination

with other IMFs. In addition, different combinations of IMFs decomposed using EMD

were also used for its best performance. The wavelet method mostly outperformed DFT

due to its property for non-stationary data. However, it always obtained less accurate

separation than MEMD and NA-MEMD methods. In particular, the result of subject f

showed significant improvement by MEMD and NA-MEMD compared to other algorithms.

On average, the MEMD-CSP and NA-MEMD-CSP features had the best classification

performance of 82%, an 11% improvement over DFT, a 7% improvement over wavelet, a

19% improvement over EMD and a 6% improvement over EEMD.

Secondly, we examined how the number of processed channels affected the MEMD

performance using the same motor imagery data set. In Table 6.2, the four channel IMFs

(C3, C4, CCP3, CCP4) from the eleven channel MEMD decomposition were used to

obtain the classification rates in approach ‘IMF(4⊂11)’ while the four channel IMFs from

the four channel MEMD decomposition were used to produce the discrimination between

two classes in approach ‘IMF(4⊂4)’. The performance was also calculated when m was 1

and 2. The best performance for every subject except f was obtained using ‘IMF(4⊂11)’,

on average 2% improvement compared to ‘IMF(4⊂4)’. In particular, subject b obtained



6.2 Analysis of Motor Imagery Data 109

Subject Algorithm IMFs m = 1 m = 2
DFT 62.0 ± 11.2 82.3 ± 4.8

wavelet 66.2 ± 10.6 84.5 ± 5.5
a EMD c1(t) − c3(t) 57.0 ± 6.6 62.6 ± 6.0

EEMD c2(t) 63.0 ± 8.2 78.4 ± 5.1
MEMD c2(t) − c3(t) 70.5 ± 11.2 85.7 ± 4.0

NA-MEMD c2(t) − c3(t) 69.8 ± 10.6 85.9 ± 3.9
DFT 57.6 ± 7.5 58.6 ± 6.1

wavelet 71.4 ± 6.5 71.0 ± 5.7
b EMD c1(t) − c4(t) 52.1 ± 5.7 57.3 ± 5.5

EEMD c1(t) − c2(t) 67.9 ± 8.0 69.8 ± 5.5
MEMD c2(t) − c3(t) 75.6 ± 5.2 73.9 ± 5.8

NA-MEMD c2(t) − c3(t) 78.7 ± 3.7 77.6 ± 4.8
DFT 52.6 ± 6.9 60.2 ± 6.8

wavelet 52.9 ± 5.7 58.5 ± 7.3
f EMD c1(t) − c4(t) 52.2 ± 5.9 57.2 ± 6.0

EEMD c2(t) − c3(t) 53.5 ± 11.2 69.7 ± 7.2
MEMD c2(t) − c3(t) 57.5 ± 13.4 77.8 ± 4.3

NA-MEMD c2(t) − c3(t) 57.3 ± 14.2 78.8 ± 4.4
DFT 86.9 ± 7.4 85.6 ± 4.6

wavelet 78.8 ± 9.4 88.1 ± 4.6
g EMD c1(t) − c3(t) 65.5 ± 10.8 72.3 ± 7.5

EEMD c2(t) 89.4 ± 3.9 88.6 ± 3.7
MEMD c2(t) − c3(t) 91.9 ± 3.0 91.5 ± 3.5

NA-MEMD c2(t) − c3(t) 91.0 ± 3.3 90.9 ± 3.5

Table 6.1: Average classification rates of 48 different scenarios based on the different
filter and feature techniques for four subjects. Morlet wavelet was used for wavelet
decomposition, and the number of ensembles for EEMD was 100. Two noise channel
data was added to obtain the NA-MEMD decomposition. m from eq. (6.7) defines
the number of features. Note that MEMD-CSP or NA-MEMD using c2(t) and c3(t)
produced the best results for all subjects.

significant difference between two approaches, 6% improvement by the decomposition of

more number of channel data. This supports the simulation results in Chapter 3, that is,

the more channels are included in the MEMD decomposition, the more robustly the mu

and beta rhythms can be estimated by observations of shared signal components in the

multichannel data.

Even though choosing the best IMFs from the EMD decomposition is not performed

in an automated fashion, a more accurate ground truth for the motor imagery can be

well established using MEMD compared to other methods. In particular, MEMD/NA-

MEMD produced similar oscillatory components at the same level of IMF, making it

straightforward to choose the IMFs relevant to the mu and beta rhythms for all subjects.
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m = 1 m = 2
Subject IMFs IMF(4⊂11) IMF(4⊂4) IMF(4⊂11) IMF(4⊂4)

a c2(t) − c3(t) 75.6 ± 4.7 75.2 ± 5.4 81.3 ± 4.5 79.8 ± 5.3
b c2(t) − c3(t) 65.2 ± 5.0 57.7 ± 6.6 65.3 ± 6.0 60.6 ± 5.8
f c2(t) − c3(t) 69.1 ± 5.1 69.7 ± 5.2 68.0 ± 5.1 68.3 ± 4.8
g c2(t) − c3(t) 88.5 ± 3.8 87.3 ± 3.7 88.9 ± 3.3 88.1 ± 4.1

Table 6.2: Classification rates using four channel IMFs decomposed using MEMD.
‘IMF(4⊂11)’ denotes the four channel IMFs from eleven channel MEMD decomposition.
‘IMF(4⊂4)’ is the four channel IMFs from four channel MEMD decomposition. m from
eq. (6.7) defines the number of features.

For the fully nonlinear and nonstationary multichannel EEG data, MEMD facilitated an

improvement over the single channel EMD algorithms as well as the traditional linear

techniques.

6.3 Summary

This chapter has shown that the MEMD algorithm provides a robust time-frequency

analysis tool for the nonlinear and nonstationary multichannel EEG data. A BCI

study based on the motor imagery task has shown that MEMD facilitates an improved

time-frequency localisation of mu and beta rhythms corresponding to a motor imagery

trial. The classification performance of MEMD-based CSP algorithm has demonstrates

the accurate localisation in time and frequency, and its ability to simultaneously process

several EEG channels by exploitation of the common oscillatory modes across the

multichannel EEG data.
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Chapter 7

BCI Experiment III:

Estimating Human Response to

Taste

I
N this chapter, we establish that emotions elicited by taste can be monitored using

electroencephalogram (EEG), and, for rigour, compare the response to a taste stimulus

against the response to the recall of the same taste. The classification performance of EEG

responses shows excellent separability between the different emotions induced by different

tastes. This chapter is based on the work in [91].

7.1 Background

Recently, studies which aim to detect and model human emotions have received consider-

able attention in order to implement reliable affective computing [26, 27]. Affective com-

puting is a computer or computer-based technology which has the ability to understand

affective states of users, such as satisfaction, confusion, frustration or amusement [92].

Such feedback then provides interactive services to the users, depending on their emo-

tional states.

In an effort to model human communication, several studies to recognise emotions
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from facial expression and voice have been reported. For instance, speech signals which

contained emotional information were classified in [93] and they showed that a classification

performance close to human performance was possible. Chen et al. [94] reported 80-

90% classification accuracy for facial expressions using pattern recognition algorithms.

Another study reports that spontaneous reactions, when the affective states change, can be

detected using distinct facial electromyography (EMG) on emotion-relevant facial muscles

[95]. The changing autonomic nervous system (ANS) responses associated with emotions

were reported using several biosignals, for example skin temperature, skin conductance,

respiration and heart rate [96,97].

In recent years EEG signals originating from the central nervous system (CNS) has

interested the researchers of brain computer/machine interfaces (BCI/BMI) [98]. EEG

signals are expected to provide true emotional information, which is elicited at the un-

conscious level of the subject even if the subject tries to control his affective state. For

instance, Michela et al. [28] and Kislova et al. [29] showed a relationship between observed

EEG and emotions elicited by video and voice.

The hypothalamus in the brain is responsible for processing incoming signals and

triggering the corresponding ANS effects which can then be observed, for instance, as

increasing heart rate (HR) or galvanic skin response [99]. The hypothalamus passes the

stimuli information to the amygdala in the subcortical, which plays a primary role in

connecting stimuli to emotional reactions and to assess of the stimuli by matching them

with past experiences. These physiological phenomena reflect the relationship between

ANS and CNS for emotional states. There is neuroimaging evidence which shows a co-

occurrence of activation in cortical (frontal, insular and anterior temporal), subcortical

(amygdala, thalamus and hypothalamus), and midbrain structures and increased skin

conductance and HR during pleasant and unpleasant emotional states [100,101]. Waldstein

et al. [102] illustrated that positive correlations exist between left and right midfrontal

cortical activation and heart rate when subjects recalled angry experiences. Rutkowski

et al. [103] discriminated between patterns of neurophysiological signals, together with

electrophysiological data such as electrocardiogram (ECG) and electrooculogram (EOG),
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in response to emotional stimuli.

When we taste a food, a gustatory stimulus by sensing a taste evokes a response,

discriminative at the cortical level and affective (emotional) at the hypothalamo-limbic

level [104]. The affective or hedonic dimension corresponding to the amount of pleasure

or displeasure determines approach or avoidance to a food. Apart from the hedonic score

[105], there were several established methods to estimate this affective response. Rousmans

et al. [105] tried to monitor the periphery electrophysiological changes with primary tastes,

while Fox et al. [106] investigated CNS responses to tastes by monitoring EEG of newborn

infants when they were given sucrose and citric acid solution.

In this chapter, we expand the study of taste-elicited emotion by investigating its

effect on EEG. For rigour, we also analyse the strength of the response to the same taste

when recalled from memory. In the experiment, healthy subjects were asked to taste a

wide range of foods/liquids and asked to provide relevant emotional feedback on the taste.

Consistencies were observed between patterns in the EEG and responses to tastes. We

also found that the same EEG patterns were elicited when the subjects were asked to

recall their taste experiences.

7.2 Taste Experiments

7.2.1 Subjects

Seven volunteers (6 males and 1 female) were recruited to take part in the study. The

mean age was 30 years, ranging from 28 to 37, and no subjects reported any gustatory

disorder. They were requested to abstain from eating or drinking anything (except water)

2 hours prior to the experiment.

7.2.2 Taste stimuli

Taste stimuli were a solution of 0.3M sucrose and 4g of milk chocolate as pleasant stimuli

and a solution of 0.15M NaCl and 2g of mustard as unpleasant stimuli. Drinking water

(pH = 7.0) was used as a neutral stimulus (baseline) and was also used to rinse the mouth
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of subjects after each trial. Previously Rousmans et al. [105] also used the solutions of

sucrose and NaCl to elicit pleasant and unpleasant emotions. Milk chocolate was chosen

because of its high sugar content and because it is widely agreed that it is enjoyable to

eat. Mustard was chosen due to its bitter taste. The emotional reactions of the subjects

to all the taste stimuli were recorded in a questionnaire according to the hedonic scale

with a score varying from 0 to 10; 0 = ‘I like very much (highly pleasant)’, scale 5 =

‘neither pleasant nor unpleasant (neutral)’ through to scale 10 = ‘I don’t like at all (highly

unpleasant)’ [105].

7.2.3 Procedure

The subjects participated in a test session lasting about 1 hour. They were seated in a

comfortable chair and were verbally informed about the procedure. The subjects began the

test with drinking water followed by a NaCl solution, mustard, drinking water, sucrose

solution and milk chocolate. By considering the sensory stimuli of tastes, the neutral

session was conducted twice. During the trials, they did not swallow the liquid or food,

but kept them in their mouths for 8 s with their eyes closed. After 8 s of EEG recordings,

they spat the solution out and rinsed their mouths with drinking water. After each trial,

the subjects filled out the hedonic scale questionnaire to evaluate their emotional response.

This experimental procedure was repeated five times for the five different taste stimuli.

After the experiments, the subjects took a break for 10 minutes and began the

emotion recall test. In this session, the subjects opened their eyes and were shown the

taste stimulus for 8 s while their EEG response was recorded. During the 8 s recording,

they were requested to recall their feelings when they tasted the stimulus. This experiment

was also repeated five times for the five recalling tests in a sequence of drinking water,

NaCl solution, mustard, sucrose solution and milk chocolate.

7.2.4 Data Acquisition

The EEG data was recorded at positions AF7, AF8, F3, F4, T7 and T8 according to the

10-20 system (see Fig. 1.1) and was sampled at 256Hz. All emotions share the areas:
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prefrontal cortex, cingulate gyrus and temporal cortex [92, 107]. Recordings were made

with reference to the right earlobe, and amplified and bandpass filtered at 0.5-100Hz using

a g.MOBIlab+ portable biosignal acquisition system. The data were bandpass filtered

again to isolate the alpha (8-13Hz), beta (13-30Hz) and gamma (35-45Hz) bands, using

a fifth-order Butterworth band-pass filter. Delta (1-3Hz) and theta (4-7Hz) bands were

ignored [108].

7.2.5 Classification

Signal features relevant to the emotions were extracted using CSP, which was introduced

in 6.2.2. An 8 s EEG data from the training set was segmented into 2 s segments and the

data segments were used to produce the spatial filter W in eq. (6.5).

The classification performances for pairs of emotional tasks were examined and are

shown in Table 7.1 and 7.2. For discrimination between two responses, a small number

(m = 1) of variances from the spatial filtered signals using eq. (6.6) were used for feature

extraction. The signal zp (p = 1, . . . , m and N −m + 1, . . . , N) from Z that maximise

the difference of variance between two groups are the m first and last rows of Z due to

the calculation of W and the feature can be calculated as

ḟp = log(
var(zp)

∑2m
i=1 var(zi)

) (7.1)

The features ḟp were supplied to a classifier, an SVM [79] with Gaussian kernel (code

obtained from [80]). The combination of two emotion responses had 40 samples of 2 s

segment data because in the recording each subject had 5 trials for an emotion task and

the length of each EEG data was 8 s long. The numbers of training sets and test sets

were respectively 28 and 12. The classification was repeated 100 times while mixing the

sample order (100 × cross-validation), and the final classification result was the average

of these outcomes.
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`
`

`
`

`
`

`
`

`̀Stimulus

Subject
A B C D E F G MEAN MAX

SU-NC 73.8 59.8 64.6 59.8 86.0 81.7 67.1 70.4 86.0
SU-MT 76.6 88.2 68.8 77.6 100 65.6 81.8 79.8 100
MC-NC 72.8 98.7 59.7 79.3 76.8 71.9 76.9 76.6 98.7
MC-MT 80.6 61.8 69.7 51.4 100 80.3 65.3 72.7 100
SU-WT1 76.6 91.6 47.2 52.1 84.1 65.2 53.5 67.2 91.6
SU-WT2 79.3 44.8 64.0 46.8 57.2 64.3 78.8 62.2 79.3
MC-WT1 53.5 93.6 59.1 67.9 91.7 78.2 78.3 74.6 93.6
MC-WT2 67.9 90.4 69.3 68.8 79.9 58.8 81.5 73.8 90.4
MT-WT1 86.4 59.8 65.5 56.3 100 86.3 62.2 73.8 100
MT-WT2 95.9 78.3 59.6 94.4 100 78.7 72.5 82.8 100
NC-WT1 81.8 74.1 54.4 66.3 83.3 69.6 61.3 70.1 83.3
NC-WT2 89.2 54.2 59.1 78.8 88.4 75.7 85.1 75.8 89.2
MEAN 77.9 74.6 61.8 66.6 87.3 73.0 72.0
MAX 95.9 98.7 69.7 94.4 100 86.3 85.1

Table 7.1: The classification performance for the taste-elicited emotion combinations
(Sucrose (SU), NaCl (NC), Mustard (MT), Milk Chocolate (MC), Water 1 (WT1)
and Water 2 (WT2)). Note that the mean classification accuracies of five subjects
exceed 70%.

`
`

`
`

`
`

`
`

`̀Stimulus

Subject
A B C D E F G MEAN MAX

SU-NC 61.8 66.4 90.2 63.2 82.7 86.8 80.5 75.9 90.2
SU-MT 66.3 58.1 52.2 56.6 71.3 60.0 89.8 64.9 89.8
MC-NC 100 62.9 74.6 84.8 100 77.0 96.2 85.1 100
MC-MT 83.3 63.8 84.6 76.8 100 91.6 62.3 80.3 100
SU-WT 84.5 98.5 76.8 53.7 80.4 100.0 69.8 80.5 100
MC-WT 100 90.8 97.3 94.0 100 93.9 75.4 93.1 100
MT-WT 90.0 89.5 86.7 76.0 65.7 100.0 87.8 85.1 100
NC-WT 64.0 62.2 72.9 63.3 47.9 82.4 79.3 67.4 82.4
MEAN 81.2 74.0 79.4 71.1 81 87.5 80.1
MAX 100 98.5 97.3 94.0 100 100 96.2

Table 7.2: The classification performance for the recall-elicited emotion combinations
(Sucrose (SU), NaCl (NC), Mustard (MT), Milk Chocolate (MC) and Water (WT)).
Note that the mean classification accuracies of all subjects exceed 70% and five show
higher separation rates than those of taste-elicited emotion.
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(a) Taste-elicited emotion (b) Recall-elicited emotion

Figure 7.1: The classification performances for the taste-elicited and recall-elicited
emotion groups (Pleasure (P), Displeasure (D) and Neutral (N)). It is shown that a
group of emotional tastes can be classified from other emotional groups.

7.3 Classification Results

The subjective evaluations, using the mean hedonic scores (HS) across the subjects, were

different among the five tastes. The milk chocolate and sucrose solution were rated as the

most pleasant stimuli (HS = 0.49 ± 0.68 and HS = 2.09 ± 0.82 respectively). The NaCl

solution (HS = 8.03 ± 0.89) and mustard (HS = 8.43 ± 1.34) were rated as unpleasant and

very unpleasant respectively. Drinking water (HS = 5.03 ± 0.38) was rated neither pleasant

nor unpleasant. These subject feedbacks show the relationship between the emotional

status and the taste stimuli.

Table 7.1 shows the classification performances for 12 combinations of two different

tastes, which were grouped into three categories (pleasant, unpleasant and neutral tastes)

based on the hedonic score. On average, five subjects among seven achieved classification

accuracy exceeding 70%, and subject E obtained the highest average rate of 87.3%. The

mean performances across all subjects also showed 10 cases more than 70% among 12. The

classification results of the taste recall tests are shown in Table 7.2. All subjects obtained

average classification accuracies exceeding 70% and four were higher than 80%. Compared
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TASTE RECALL

P-D 65.0 66.9
P-N 66.8 82.0
D-N 69.8 79.2

MEAN 67.2 76.0

Table 7.3: Mean values of classification performances across subjects for taste-elicited
and recall-elicited emotion responses (Pleasure (P), Displeasure (D) and Neutral (N)).
Note the higher separation of recall-elicited emotions than taste-elicited emotions.

to the taste experiment results in Table 7.1, all subjects except B and E achieved higher

classification rates for these recall tests. It is also noted that seven cases of all considered

scenarios in Table 7.2 showed perfect separation between two classes with 100% accuracy.

In addition, the stronger stimuli according to the hedonic scores, for example mustard

and milk chocolate, had higher separation rates from the neutral stimulus than NaCl and

sucrose solution. This can be found in the average results across all subjects for both taste

and recall experiments in Table 7.1 and 7.2.

The classification accuracies were calculated among the groups of pleasant, un-

pleasant and neutral tastes in Fig. 7.1, that is, sucrose solution and milk chocolate were

combined in a pleasant group and NaCl solution and mustard were combined in an unpleas-

ant group. From this analysis, only the pleasant and unpleasant emotion responses from

the stimuli and recall, not an individual taste response, could be examined. Significant

classification performances for all subjects were obtained in Fig. 7.1 for both taste-elicited

and recall-elicited emotions, which implied the emotions from different tastes in a group

elicited similar responses corresponding to emotions. Fig. 7.2 shows the two features of

the recall test data of subject A obtained using CSP - with the first feature on the X-

axis and the second feature on the Y-axis. As can be seen, the features of two different

emotions make two separable groups even though each group is composed of two different

taste stimuli.
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(a) Pleasure (blue) vs (b) Pleasure (blue) vs (c) Displeasure (blue) vs

Displeasure (red) Neutral (red) Neutral (red)

Figure 7.2: Features of the recall test for subject A. Dots in the white circles are

support vectors. Note that two different emotional responses are separable in the

feature space.

The means of the classification performances across all subjects are shown in Table

7.3. Similar to the results in Table 7.1 and 7.2, the responses of recall tests had 8.8% higher

classification accuracy than taste tests. These results suggest that emotion responses

elicited by recalling tastes are stronger than those elicited by the actual taste in terms of

classification performance. Holmes and Mathews explained mental imagery1 could activate

brain systems underlying emotion directly [109]. Thus, the emotion responses by the recall

tests could be evoked more effectively than the responses by the taste tests.

The classification performances of ‘P-D’ were poorer than the other combinations

with neutral taste. Compared to the neutral taste, more number of taste stimuli for

pleasure and displeasure responses caused the poorer separation between them. As a

future work, more number of taste stimuli and subjects will be investigated to assert the

results.

1In our experiments, the subjects conducted taste recall trials with watching the food which they had
tried.
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7.4 Summary

We have investigated EEG responses to taste stimuli, and have established that it is

possible, with high accuracy, to differentiate between the responses using features based

on common spatial patterns. The brain responses to the taste stimulus corresponded to

the subject feedback - hedonic score. The emotions induced by memory recall to pleasant

and unpleasant taste stimuli were also analysed and results were consistent with those

based on the response to the actual taste.
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Chapter 8

Complex Common Spatial Pattern

Methods

T
HE real-valued common spatial pattern algorithm is extended to complex domain

in this chapter. A novel class of complex-valued common spatial pattern (CSP)

algorithms is introduced to cater for signals with noncircular probability distributions,

which is typical in multichannel electroencephalogram (EEG). The proposed complex-

valued CSP algorithms are derived for the generality of complex data, both circular and

noncircular, based on augmented complex statistics and the strong-uncorrelating trans-

form (SUT). Simulations on synthetic data and taste emotion data from Chapter 7 support

the approach.

8.1 Background

The common spatial pattern (CSP) algorithm is commonly used to extract relevant fea-

tures in brain activity [33,90]. It was first applied to EEG for abnormality detection [110]

and has been recently employed to discriminate between two groups of mental tasks, such

as movement-related tasks [33] and emotion estimation experiments [91]. It decomposes

multichannel EEG coming from two classes into spatial patterns, designed by simultane-

ous diagonalisation of the corresponding covariance matrices. In doing so, it maximises
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(a) Circular data - (b) Noncircular data - (c) Noncircular data -
uncorrelated noise (CD+UN) correlated noise (ND+CN) uncorrelated noise (ND+UN)

Figure 8.1: Geometric view of circularity via ‘real-imaginary’ scatter plots: (a)
circular data with uncorrelated (circular) noise; (b) noncircular data with correlated
(noncircular) noise; (c) noncircular data with uncorrelated (circular) noise

the variance of signals of one class while simultaneously minimising the variance of signals

of the other class, thus enhancing separability between the two classes.

Spatially symmetric two real-valued EEG signals x and y can be paired to form

a complex-valued data, z = x+jy. This complexification procedure allows for the cou-

pling between the two channels to be exploited. For instance, phase synchrony [7] and

asymmetry [34] can affect the level of noncircularity of the composed complex signal.

Fig. 8.1 shows the geometric view of circularity of circular data and noncircular data via

real-imaginary scatter plots. Note the strong correlation between the real and imaginary

parts of noncircular data in Fig. 8.1(b) compared to those of the other circular data in

Fig. 8.1(a).

Complex domain signal processing has been revived due to the advances in com-

plex statistics [57,111–113], where considering both the pseudocovariance E[xxT ] and the

traditional covariance E[xxH ] matrix, enhanced modeling of complex signals by utilising

full statistical information available is achieved [40, 41]. The complex extension of CSP

was introduced by Falzon et al. using the analytic signal in order to enhance modeling

by considering the phase information from EEG signal [42]. However, the analytic signal-

based CSP method has a critical problem of the absence of pseudocovariance information

in the modeling.
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Augmented complex statistics have been used to access the information contained

in the pseudocovariance, and have been exploited in supervised learning, including the aug-

mented complex least mean square (ACLMS) [114], widely linear (WL) affine projection

algorithm [115], WL infinite-impulse-response (IIR) filters [116] and augmented complex

matrix factorisation [117] - all demonstrated enhanced modeling of real-world data.

In this chapter, augmented complex statistics are applied to design the complex ex-

tensions of the common spatial pattern method. We also employ the strong-uncorrelating

transform (SUT) [118,119] to diagonalise the covariance and pseudocovariance matrix si-

multaneously. In particular, when the power difference between the real and imaginary

parts of complex data are significant, the SUT helps to maximise the difference of variance

between two groups.

We will show that the degree of noncircularity determines the best CSP method

for the data, that is, a complex CSP method using only covariance matrix for circular

complex data and augmented complex CSP and complex CSP with SUT for noncircular

complex data. Unlike the real-valued CSP and the existing analytic signal-based CSP,

these complex-valued methods exploit the full statistics between two channel EEG data

and improve the classification performance. The proposed class of methods is applied

on an emotion BCI paradigm, whereby subjects were tasting solutions of pleasant and

unpleasant food. The use of augmented methods is also supported by simulations.

8.2 Complex Common Spatial Pattern Methods

A complex extension of common spatial pattern algorithm was recently introduced by Fal-

zon et al. for the discrimination of mental tasks [42]. By combining Hilbert transform with

complex CSP, they exploited phase information from EEG data, leading to the algorithm

termed the analytic signal-based CSP (ACSP). However, statistics in C are not an analyt-

ical continuation of the corresponding statistics in R [57] since general complex random

variables can be noncircular1. In the domain of second order statistics, a circular signal

is called proper while second order noncircular signal is called improper. Circular signals

1A Hilbert transformed analytic signal is always circular.
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have rotation invariant distributions, whereas improper signals exhibit different power lev-

els in their real and imaginary parts. We aim to introduce rigorous complex extensions of

the CSP algorithm catering for complex noncircularity, complex common spatial pattern

(CCSP), augmented complex CSP (ACCSP) and complex CSP with strong-uncorrelating

transform (SUT-CCSP).

8.2.1 Complex Common Spatial Pattern (CCSP)

Complex common spatial pattern algorithm is based on the real-valued CSP algorithm

shown in Section 6.2.2. Consider complex-valued zero-mean data matrices, Za and Zb

∈ C
N×T , corresponding to class a and b, where N is the number of channels and T the

number of samples per channel. The covariance matrix of Za can be calculated as

Ca = cov(Za) = E[ZaZ
H
a ] (8.1)

where E[·] represents the expectation operator, and (·)H denotes the conjugate transpose.

The spatial covariance C̄d∈[a,b] for the class a or b is obtained by averaging the covariance

matrix of all the complex-valued data. Thus, C̄a and C̄b represent a pair of N ×N Her-

mitian positive-semidefinite matrices2 with real-valued elements along the main diagonal

and complex-valued off-diagonal elements. The composite spatial covariance is given as

Cc = C̄a + C̄b (8.2)

where Cc is factored as

Cc = UcΛcU
H
c (8.3)

The columns of Uc are the eigenvectors corresponding to the real-valued eigenvalues in

the diagonal matrix Λc. Now Cc can be whitened by multiplying with G = Λ
−

1
2

c UH
c such

that

I = GCcG
H = GC̄aG

H + GC̄bG
H (8.4)

2For any non-zero vector x (∈ C
n), a n × n Hermitian matrix M is called positive-semidefinite if

x∗Mx ≥ 0 [120].
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where the symbol I denotes an identity matrix. Secondly, let Sa = GC̄aG
H and Sb =

GC̄bG
H , and then Sa and Sb share the common eigenvector matrix, that is,

B−1SaB = Λa and B−1SbB = Λb (8.5)

(Λa + Λb = I)

By design, the eigenvalues in Λa are sorted in a descending order, this implies that the

eigenvalues of Λb are in ascending order. The final spatial filter that maximises the variance

for one class of data and minimises the variance for the other can thus be obtained as

W = B−1G (8.6)

This way, for a given data matrix Z, a new set of data V can be obtained from

V = WZ (8.7)

Each row vector wj (j = 1, . . . , N) of W is called spatial filter or simply a filter.

In order to discriminate between two classes, the variances of real and imaginary

parts of the spatial filtered complex data V in (8.7) were used as features. The row vectors

corresponding to the real and imaginary parts of V, that is, ℜ[vp] and ℑ[vp] (p = 1, . . . ,m

and N −m + 1, . . . , N) are associated with the largest eigenvalues in Λa and Λb. These

signals are the m first and last rows of V due to the filtering process of W and the features

from real and imaginary parts can be obtained by

ḟR
p = log(

var(ℜ[vp])
∑

var(ℜ[vi])
) (8.8)

ḟ I
p = log(

var(ℑ[vp])
∑

var(ℑ[vi])
) (8.9)

where var(·) denotes the variance of (·).
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8.2.2 Analytic Signal-based Common Spatial Pattern (ACSP)

In 2010, Falzon et al. proposed ACSP by transforming input signals into their analytic

representations and performing the joint diagonalisation process on the obtained complex-

valued covariance matrices [42]. When the signals are represented in their analytic forms,

the phase information in the data is used to distinguish between two classes of mental

processes.

For a signal x(t), the analytic representation z(t) is obtained using the Hilbert

transform in eq. (2.4) and (2.6), such that

z(t) = a(t)ejφ(t) (8.10)

z(t) is described by its amplitude and phase functions. Using the complex-valued analytic

signal z(t), the same procedure as in CCSP is used to obtain the ACSP features.

However, the Hilbert transform should be applied to a narrowband signal as men-

tioned in Chapter 2. Therefore, a bandwidth limitation on the Hilbert transform, using

Fourier transform or EMD [3,34], should be considered in conjunction with ACSP.

8.2.3 Augmented Complex Common Spatial Pattern (ACCSP)

The covariance matrix for a zero-mean complex random vector variable z is given by

C = E[zzH ] and is used in standard second-order statistical signal processing. However,

complex statistics are not a straightforward extension of real-valued statistics [57,121,122]

and thus C does not completely describe the second order statistics of z. A statistical

descriptor called the pseudocovariance, P = E[zzT ], also needs to be considered.

The covariance of a random variable z = zr + jzi is given by E[zz∗] = E[z2
r + z2

i ]

(>0, unless z = 0 + j0), where (·)∗ denotes the complex conjugate operation. The pseu-

docovariance E[zz] = E[z2
r ]−E[z2

i ] + 2jE[zrzi] vanishes only if zr and zi are uncorrelated

and with the same variance. Signals are called second-order circular or proper if their

pseudo-covariance is zero. Due to short window observations, anisotropic noises, unequal

powers of data channels and reflections, the pseudocovariance is often non-zero even if
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the data are circular [117]. Therefore, in order to cater for the noncircularity of complex

data, second order statistical modeling in C should examine joint statistical properties

of z and z∗, that is, it should be based on the augmented form of the complex variable

ẑ = [zT , zH ]T [57, 117,123]. Then, the augmented covariance matrix is

Ca = E[ẑẑH ] =

[

C P

P∗ C∗

]

(8.11)

contains complete second order statistics of both covariance and pseudo-covariance.

As mentioned earlier, CCSP and ACSP do not make provision for the noncircular-

ity in the data. To that end, we propose the augmented complex common spatial pattern

(ACCSP) algorithm, which produces second order practical spatial filters using the aug-

mented covariance matrix. Given complex-valued data matrices with zero-mean, Za and

Zb ∈ C
N×T (for class a and b), their augmented covariance matrices are calculated as

Ĉa = E[ẐaẐ
H
a ] =

[

Ca Pa

P∗
a C∗

a

]

(8.12)

Ĉb = E[ẐbẐ
H
b ] =

[

Cb Pb

P∗
b C∗

b

]

(8.13)

where Ẑa = [ZT
a ,Z

H
a ]T and Ẑb = [ZT

b ,Z
H
b ]T . The augmented spatial filter Ŵ can then be

calculated from the common eigenvector matrix between the whitened augmented covari-

ance matrices of the two classes, similar to (8.4) and (8.5). For a given augmented form

of data Ẑ, new set of signals V̂ can be obtained as

V̂ = ŴẐ (8.14)

The row vectors ℜ[v̂p] and ℑ[v̂p] (p = 1, . . . ,m and 2N −m+ 1, . . . , 2N) from V̂ can be

now used to extract features to distinguish between the two classes, using (8.8) and (8.9).
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8.2.4 Augmented Complex Common Spatial Pattern with the Strong-

Uncorrelating Transform (SUT-CCSP)

We next employ the strong-uncorrelating transform (SUT), an extension of the conven-

tional whitening transform for improper complex random variables [118, 119]. This way,

both the covariance and the pseudocovariance matrix are diagonalised, to guarantee that

the resulting complex data are uncorrelated. The SUT transform Q has the following

properties [119]

QCQH = I and QPQT = Λ (8.15)

where C is covariance matrix, P a pseudocovariance matrix and a Λ diagonal matrix of

eigenvalues {λi}, i ∈ {1, . . . , N}. In other words, by SUT both the covariance and the

pseudocovariance are diagonalised simultaneously.

Given zero-mean complex-valued data matrices Za and Zb, the composite covari-

ance and pseudocovariance matrices can be calculated from Cc = E[ZaZ
H
a ]+E[ZbZ

H
b ] and

Pc = Pa + Pb = E[ZaZ
T
a ] + E[ZbZ

T
b ]. After applying the whitening transformation ma-

trix G = Λ
−

1
2

c UH
c on the covariance Cc (Λc and Uc from Cc = UcΛcU

H
c ), the symmetric

pseudocovariance matrix can be decomposed as

P̄ = GPcG
T = YΛYT (8.16)

Note that it is Takagi’s factorisation, that enables such decomposition, which for symmetric

matrices yields Y and Λ [124]. Using Y and G, the SUT matrix Q can be defined as

Q = YHG (8.17)

The SUT can diagonalise both the covariance and pseudocovariance matrices such that

QCcQ
H = QCaQ

H + QCbQ
H = I (8.18)

QPcQ
T = QPaQ

T + QPbQ
T = Λ (8.19)

Let Sa = QCaQ
H and Sb = QCbQ

H , then the estimates of common eigenvectors from



8.2 Complex Common Spatial Pattern Methods 129

the covariance matrices are obtained as

B−1SaB = Λa and B−1SbB = Λb (8.20)

(Λa + Λb = I)

Similarly, if we want to estimate the common eigenvectors from the pseudocovariance

matrices, then

Q̂ = Λ−
1
2 YHG (8.21)

Ŝa = Q̂PaQ̂
T

and Ŝb = Q̂PbQ̂
T

(8.22)

Q̂PcQ̂
T

= Ŝa + Ŝb = I (8.23)

B̂
−1

ŜaB̂ = Λ̂a and B̂
−1

ŜbB̂ = Λ̂b (8.24)

(Λ̂a + Λ̂b = I)

In order to maximise the difference in variance between the two groups, we need to ensure

that the SUT of the pseudocovariance matrix is an identity matrix, like that of the covari-

ance matrix3. Now, two spatial filters for the covariance and pseudocovariance matrices

can be obtained from

W = B−1Q and Ŵ = B̂
−1

Q̂ (8.25)

and the new sets of data become

V = WZ and V̂ = ŴZ (8.26)

allowing us to calculate the two sets of features using (8.8) and (8.9).

Since the eigenvalues from the Takagi factorisation (see [125]) of the pseudocovari-

ance are guaranteed to be real-valued (from λ = E[zz] = E[z2
r ]−E[z2

i ]+ j2E[zrzi], when

z = zr +jzi), it demonstrates that the eigenvalue λ = E[z2
r ]−E[z2

i ] provides the additional

3When the diagonalised composite covariance and pseudocovariance are identity matrices, their eigen-
value matrices also become identity matrices, shown in (8.20) and (8.24). These properties make the
variances of the first rows of V and V̂ in (8.26) maximal for the trials of group ‘a’ and at the same time
minimal for the trials of group ‘b’. On the other hand, the variances of the last rows of V and V̂ are
minimal for the trials of group ‘a’, and at the same time maximal for the trials of group ‘b’.
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information of the power difference4 between real and imaginary parts of complex sources.

Therefore, the amount of power difference between real and imaginary parts of complex

sources is accounted for by SUT-CCSP, unlike the conventional CCSP.

8.3 Analysis of Augmented Complex Common Spatial Pat-

tern Methods

We are going to demonstrate that, as defined, the augmented complex CSP has the same

performance as the real-valued CSP. Given a zero-mean complex random signal, z(t) =

zr(t) + jzi(t), where zr(t) and zi(t) are real-valued random signals, an augmented form of

the complex signal is given by Za = [z(t); z∗(t)]. The augmented complex matrix Za can

be presented using zr(t) and zi(t) such that [57]

Za =







z(t)

z∗(t)






=







1 j

1 −j






×







zr(t)

zi(t)






(8.27)

Denote the transfer matrix and the real-valued matrix by

Φ =

[

1 j

1 −j

]

(8.28)

R =

[

zr(t)

zi(t)

]

(8.29)

then the covariance matrix of Za is

ZaZ
H
a = ΦRRHΦH = ΦRRTΦH (8.30)

After the whitening transformation of the covariance matrix, such that E
{

ZaZ
H
a

}

= I,

we have

I = ΦE
{

R̂R̂
T
}

ΦH (8.31)

4When pairs of symmetric electrodes are combined to form complex EEG signals, the power difference
(power asymmetry) is an important feature to estimate cognitive brain activities [34].
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Φ−1(ΦH)−1 = E
{

R̂R̂
T
}

(8.32)

1

2
I = E

{

R̂R̂
T
}

(8.33)

Therefore the real-valued covariance matrix E
{

R̂R̂
T
}

is also diagonalised when the aug-

mented complex covariance matrix ZaZ
H
a is diagonalised. This means that ACCSP and

CSP are almost identical, subject to a factor 1
2 , and their similar performances can be

expected.

8.4 Experiments

We now illustrate the performance of the proposed algorithms via simulations using both

synthetic data and real-world EEG data. A support vector machine (SVM) [79] with a

Gaussian kernel5 was used to obtain the classification performance for the features from

the algorithms. All the data sets were divided into 70% training and 30% testing sets.

The classification procedure was repeated 50 times while mixing the sample order (50 ×

cross-validation), and the average of these outcomes was the final classification rate. The

constant m in (8.8) and (8.9) was set to unity, defining the number of features for all CSP

algorithms.

8.4.1 Synthetic Data

Sinusoids were used in the design of synthetic datasets used to model different EEG-like

scenarios. Koles and Soong [126] employed sum of sinusoids as a synthetic EEG to validate

their source localization algorithm, and ACSP was also verified using sinusoids [42]. Three

types of synthetic datasets were examined: circular data with uncorrelated (circular)

random noise (CD+UN), noncircular data with correlated (noncircular) random noise

(ND+CN) and noncircular data with uncorrelated random noise (ND+UN). The uncorre-

lated doubly white random noise had no correlation between its real and imaginary parts.

The first synthetic data sets ‘CD+UN’ in Fig. 8.1(a) and were obtained from

5The code can be downloaded from [80].
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Class A

(50 data sets with different complex-valued noises)

[

sin(2πf1t) + jsin(2πf2t) + v1(t)

4sin(2πf1t) + j4sin(2πf2t) + v2(t)

]

Class B

(50 data sets with different complex-valued noises)

[

3sin(2πf1t) + j3sin(2πf2t) + v3(t)

8sin(2πf1t) + j8sin(2πf2t) + v4(t)

]

f1 = 10Hz and f2 = 13Hz

where v1(t), . . . , v4(t) are different realisations of uncorrelated random noises with a signal-

to-noise ratio (SNR) of -26dB. The averages of noncircularities6 (ρ̇) and power differences7

(δ̇) between real and imaginary parts of Class A and B data sets are calculated in Table

8.1. Owing to the uncorrelated random noise and the same amplitude of real and imag-

inary parts, Class A and Class B have both circular distributions with ρ̇a and ρ̇b close

to zero, indicating the redundancy of pseudocovariance information. Among five CSP

methods, CCSP and SUT-CCSP produced higher accuracies (over 80%) than the other

methods. Since there are significant power differences between real and imaginary parts of

the complex signals caused by the random noises, δ̇a = 0.635 and δ̇b = 0.638, SUT-CCSP

produced 2% higher performance than CCSP.

The second data sets considered, noncircular data with correlated random noise

‘ND+CN’, were obtained from

Class A

(50 data sets with different complex-valued noises)

[

2sin(2πf1t) + jsin(2πf2t) + v1(t)

3sin(2πf1t) + j4sin(2πf2t) + v2(t)

]

6The noncircularity of a zero-mean complex signal z(t) (t = 1 . . . T ), ρ̇, is defined as ρ̇ =
|E[

∑T
t=1 z(t)z(t)]|

E[
∑

T
t=1 z(t)z∗(t)]

(0 < ρ̇ < 1).
7The normalised power difference of a complex signal z(t) = zr(t) + jzi(t), δ̇, is defined as δ̇ =

E[
|z2

r(t)−z2
i (t)|

z2
r(t)+z2

i
(t)

] (0 < δ̇ < 1).
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Class B

(50 data sets with different complex-valued noises)

[

sin(2πf1t) + j3sin(2πf2t) + v3(t)

5sin(2πf1t) + j2sin(2πf2t) + v4(t)

]

f1 = 10Hz and f2 = 13Hz

where v1(t), . . . , v4(t) are different realisations of correlated complex random noises (cor-

relation between real and imaginary parts was 0.9) with a SNR of -26dB. Fig. 8.1 (b)

shows the obvious linear correlation between real and imaginary parts. For these high

noncircular data sets (ρ̇a = 0.891 and ρ̇b = 0.888), CSP and ACCSP obtained the best

results whereas CCSP and SUT-CCSP produced inferior performance.

The third data sets, noncircular data with uncorrelated random noise ‘ND+UN’,

were produced as

Class A

(50 data sets with different complex-valued noises)

[

5sin(2πf1t) + jsin(2πf2t) + v1(t)

sin(2πf1t) + j2sin(2πf2t) + v2(t)

]

Class B

(50 data sets with different complex-valued noises)

[

sin(2πf1t) + j2sin(2πf2t) + v3(t)

4sin(2πf1t) + j2sin(2πf2t) + v4(t)

]

f1 = 10Hz and f2 = 13Hz

where v1(t), . . . , v4(t) are different realisations of uncorrelated complex random noises with

a SNR of -26dB. These synthetic datasets were designed to examine the performance of

SUT-CCSP. As already discussed, the performance of SUT-CCSP is affected by the power

difference between real and imaginary parts of a complex signal. Within the high level of

uncorrelated random noises, the power differences are the only information that can assist

to distinguish between two classes (see Fig. 8.1 (c)). As expected, the best performance

was obtained using SUT-CCSP, 7% higher than the second best CSP algorithm.
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Note that the CSP and ACCSP always showed similar performances for the syn-

thetic data sets in Section 8.3. The high performance of CCSP for circular datasets is due

to all the information existing only in covariance matrix and also the lower amount of error

during the calculation, compared to CSP and ACCSP. It is also shown that SUT-CCSP

was always the best solution when the power differences δ̇a and δ̇b were high, for instance,

the performances of ‘CD+UN’ and ‘ND+UN’ with higher power differences than those

of ‘ND+CN’ as shown in Table 8.1. On average across the 3 different types of complex

data, the conventional method, CSP, performed better than the other approaches. How-

ever, if we have an accurate circularity information of the dataset, improved classification

performance can be obtained by selecting the best CSP algorithm.

CD+UN ND+CN ND+UN

ρ̇a 0.005 0.891 0.010
ρ̇b 0.010 0.888 0.007

δ̇a 0.635 0.462 0.636

δ̇b 0.638 0.464 0.636

CSP 74.867 84.467 79.067
ACSP 71.733 78.4 67.467

ACCSP 74.467 84.667 78.800
CCSP 83.067 52.867 74.333

SUT-CCSP 85.667 63.067 86.733

Table 8.1: ρ̇a and ρ̇b, and δ̇a and δ̇b denote respectively the noncircularities and power
differences between real and imaginary parts of complex data for Class A and B.
Note the varying performance of the strictly complex CSP methods depending on the
degree of circularity.

8.4.2 Taste Emotion Experiment Data

The complex CSP methods were next applied to EEG data sets recorded from taste

emotion experiments in Chapter 7. The EEG responses from four subjects (B, D, E and

F) produced significant results to demonstrate the performance of complex CSP methods.

Pairing spatially symmetric electrodes to form complex signals facilitates the use

of cross-information and a simultaneous estimation of the spatial amplitude relationships.

Thus, pairs of symmetric electrodes were combined to form three temporal complex EEG

signals as in [40]
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z1 = AF7 + jAF8

z2 = F3 + jF4

z3 = T7 + jT8

All the complex CSP methods were applied to these complex-valued signals to produce

the classification results.

The classification accuracies were calculated among the groups of pleasure (P),

displeasure (D) and neutral (N) tastes as shown in Fig. 8.2, 8.3, 8.4 and 8.5, that is,

sucrose solution and milk chocolate were combined in a pleasant group and NaCl solution

and mustard were combined in an unpleasant group. The analysis therefore examined

only the responses of pleasant and unpleasant emotions from the stimuli and recall, not

an individual taste response.

The classification accuracies estimated using real and complex CSP methods were

compared and, in order to examine the performances of complex algorithms correspond-

ing to noncircularity ρ̇ and power difference δ̇ between real and imaginary parts of com-

plex data, the averaged ρ̇ and δ̇ for all emotion data sets and channels were also calcu-

lated. The EEG responses of Subject E for taste and recall tests exhibited high degree of

noncircularity resulting the higher performances of CSP, ACSP and ACCSP compared

to CCSP, except for one case, ‘P/N’8 of the recall test. It was also shown that the perfor-

mance of SUT-CCSP for taste recall data was outperformed by CCSP owing to the low

power difference δ̇ of the data sets, whereas the higher δ̇ of taste experience data produced

higher SUT-CCSP performance than CCSP for ‘P/D’ and ‘P/N’. These results were con-

sistent with the outcomes of synthetic data experiments in Table 8.1. Subject F had low

noncircularity degree in the T7/T8 data channel for the taste experience trials and this

caused the higher classification accuracies of CCSP than CSP, ACSP and ACCSP. For

the recall datasets, the low noncircularity was seen in Fig. 8.3 (e), which made CCSP

performance of ‘P/D’ and ‘P/N’ higher than those of CSP, ACSP and ACCSP. In par-

ticular, the large δ̇ of recall test data caused the best performance of SUT-CCSP for all

three classification scenarios. For Subject B, taste recall data showed low ρ̇ and high δ̇

8Symbols ‘P/D’, ‘P/D’ and ‘D/N’ stand for classifications between pleasure and displeasure, pleasure
and displeasure, and displeasure and neutral.
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in AF7/AF8 and T7/T8 channels and consequently high CCSP and SUT-CCSP perfor-

mances were obtained in ‘P/N’ and ‘D/N’. It was difficult to define the best CSP methods

for the taste experience data of subject B. Those data sets seemed to have relatively less

pronounced noncircularity and power differences than other data sets. The data sets of

subject D demonstrated well the performance of SUT-CCSP corresponding to the index

of the power difference δ̇. The low values of δ̇ in AF7/AF8 and F3/F4 channel data of the

taste experience trials made the SUT-CCSP results worse than CCSP whereas SUT-CCSP

of ‘P/N’ and ‘D/N’ recall data sets outperformed CCSP owing to the high value of δ̇.

Due to the large number of data in the groups, the averaged ρ̇ and δ̇ could not

generalise the complex statistics for all the individual data. However, there was consider-

able evidence showing results consistent with the performances of synthetic data, that is,

better performances of CSP, ACSP and ACCSP for noncircular data, CCSP for circular

data, and SUT-CCSP for the noncircular data which had the power difference between

real and imaginary parts. For future work, more reliable index to represent the complex

statistics for all the data or feature selection technique need to be investigated to choose

the best CSP method for the maximum separation between two classes.

Finally, among the results of CSP, ACSP and ACCSP there were several cases

where the performance of ACSP was remarkably worse than those of CSP and ACCSP,

for instance taste recall test ‘D/N’ of subject B and E, taste experience test ‘P/N’ and

recall test ‘P/D’ of subject D. As mentioned earlier, the Hilbert transform without the

bandwidth limitation is the most likely cause of the poor performance of ACSP.
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Figure 8.2: Classification performances of all the CSP methods and the averaged

noncircularities and power differences for the corresponding data of Subject E. ‘P’, ‘D’

and ‘N’ denote the pleasure, displeasure and neutral tastes. ‘AF’ is anterior-frontal

channels, ‘F’ frontal channels and ‘T’ temporal channels.
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Figure 8.3: Classification performances of all the CSP methods and the averaged

noncircularities and power differences for the corresponding data of Subject F. ‘P’, ‘D’

and ‘N’ denote the pleasure, displeasure and neutral tastes. ‘AF’ is anterior-frontal

channels, ‘F’ frontal channels and ‘T’ temporal channels.
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Figure 8.4: Classification performances of all the CSP methods and the averaged

noncircularities and power differences for the corresponding data of Subject B. ‘P’, ‘D’

and ‘N’ denote the pleasure, displeasure and neutral tastes. ‘AF’ is anterior-frontal

channels, ‘F’ frontal channels and ‘T’ temporal channels.
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Figure 8.5: Classification performances of all the CSP methods and the averaged

noncircularities and power differences for the corresponding data of Subject D. ‘P’, ‘D’

and ‘N’ denote the pleasure, displeasure and neutral tastes. ‘AF’ is anterior-frontal

channels, ‘F’ frontal channels and ‘T’ temporal channels.



8.5 Summary 141

8.5 Summary

A new class of complex extensions of CSP has been introduced to deal with noncircular-

ity, a common feature of a complex signal. It has been shown that for signals with high

noncircularity, ACCSP takes advantage of information in the pseudocovariance matrix,

leading to ACCSP outperforming CCSP. However, for circular complex data, CCSP was

the best solution and even outperformed the real-valued CSP algorithm due to all the in-

formation existing only in covariance matrix and also the lower amount of error during the

calculation. In addition, SUT-CCSP can improve the classification performance between

two groups when there was significant power difference between real and imaginary parts

of complex data. The robustness of the proposed approaches has also been demonstrated

by the low SNR (-26dB) synthetic datasets. In the context of real-world EEG, we have

considered a comprehensive set of taste emotions experiments, where the best performance

in distinguishing between two emotional states was obtained by applying the complex CSP

methods to the complex-valued EEG composed of two real-valued EEG signals, based on

the indices of complex statistics.
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Chapter 9

Complex Local Mean

Decomposition

T
HE local mean decomposition (LMD) has been recently developed for the analysis

of time series which have nonlinearity and nonstationarity [127]. The smoothed

local mean of the LMD can surpass the cubic spline method used by the EMD to extract

amplitude and frequency modulated components. To process complex-valued data, we

propose complex LMD, a natural and generic extension to the complex domain of the

original LMD algorithm. It is shown that complex LMD can extract the frequency mod-

ulated rotation and envelope components of complex-valued data. Simulations on both

artificial and real-world complex-valued signals support the analysis. This chapter is based

on the work in [128].

9.1 Background

Recently, the local mean decomposition (LMD) has been developed by J. S. Smith [127],

which is also fully adaptive approach and has no prior assumptions on the data such as

EMD. The LMD decomposes a signal into a finite set of AM (amplitude modulated)/FM

(frequency modulated) components, each of which is the product of an envelope signal and

a FM signal from which a time-varying instantaneous frequency can be derived. Due to its
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fully data-driven approaches, LMD can be another solution for the analysis of nonlinear

and nonstationary data such as the EEG signal.

In order to obtain the instantaneous frequency (IF), EMD uses cubic splines to

estimate local mean values and applies the Hilbert transform for the intrinsic mode func-

tions (IMFs). However, the cubic spline method is computationally expensive and time-

consuming to produce and the Hilbert transform sometimes induce a loss of amplitude and

frequency information, as illustrated by an erratic or negative IF [127, 129–131]. On the

other hand, LMD uses smoothed local means to determine the instantaneous frequency

directly from the oscillations within the signal without the Hilbert transform, which pro-

duce more reliable IF more quickly. Its application has been originally illustrated on

EEG [127], and Wang et al. showed how LMD facilitated enhanced analysis compared to

EMD in rub-impact fault diagnosis [132,133].

Due to the advantages of complex algorithm for the processing of inherent complex

data and multichannel data, shown in Chapter 3 and 4 using the complex extension of

EMD, we propose the generic extension of LMD to complex and bivariate signals. The

projections of a complex signal onto multiple directions, which was used by bivariate EMD,

was applied to implement the complex-valued LMD.

9.2 Local Mean Decomposition

and Complex Local Mean Decomposition

The real-valued LMD algorithm is described in Table. 1. The main principle of LMD

is decomposing a given signal into pairs of frequency modulated signals and envelope

components known as local magnitude functions. Firstly, the local mean of the signal

is obtained by interpolating mean values of successive extrema using piecewise constant

interpolation and applying a moving average filter. It is this process of determining the

local mean function that makes LMD different from EMD [127]. In a similar fashion, the

local magnitude function is determined by interpolating the absolute value of differences

between successive extrema and smoothing using a moving average filter. The local mean
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is subtracted from the original signal and then the result is divided by the local magnitude

function in order to obtain the frequency modulated signal. This process is repeated on

the frequency modulated signal until its envelope is uniform. Multiplying all envelope

estimates during this process gives the local magnitude function. The product of this

local magnitude signal and the frequency modulated signal determines the first product

function (PF). The PF is subtracted from the original data, and the same process is

repeated so as to decompose the rest of the signal into a set of PFs and a monotonic

trend.

The local magnitude function represents the instantaneous amplitude (IA), and

the IF can be directly derived from the frequency modulated signal without the need for

applying the Hilbert transform and deriving an analytic representation. In this way, it

has been previously illustrated [127] how LMD gives a localised time-frequency estimate

for EEG.

To illustrate the advantages of standard real-valued LMD it was applied to a neu-

ronal spike stream used in neuronal spike modeling for Brain Computer Interface (BCI),

shown in Fig 9.1. This time series was generated by the tool described in [134]. Fig. 9.2(a)

shows the time-frequency representation (TFR) composed by the LMD PFs, whereas

Fig. 9.2(b) shows the Hilbert-Huang spectrum (HHS) generated by EMD. As seen in the

figures, both decomposition algorithms detect the considerable change in frequency sur-

rounding the spikes. However, the LMD spectrum is much sharper and concentrated in

time compared to the EMD spectrum. For this spike stream, the cubic spline approach of

EMD extracts poorer local means from the swift changing amplitude of the spike signal

than the smoothed local means of LMD and results in the loss of frequency and amplitude

information of the spikes.
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Algorithm 1. Local Mean Decomposition [127]

1. From the original signal x(t), determine the mean value, mi,k, by calculating the mean

of the successive maximum and minimum nk,c and nk,c+1, where c is the index of the

extrema. ‘i’ and ‘k’ denote the order of PF and the iteration number in a process of PF.

The local magnitude, ai,k is determined by the difference between the successive extrema.

mi,k,c =
nk,c+nk,c+1

2
,

ai,k,c =
|nk,c−nk,c+1|

2

2. Interpolate straight lines of local mean and local magnitude values between successive

extrema, mi,k(t) and ai,k(t).

3. Smooth the interpolated local mean and local magnitude using moving average filter,

m̃i,k(t) and ãi,k(t).

4. Subtract the smoothed mean signal from the original signal, x(t).

hi,k(t) = x(t) − m̃i,k(t)

5. Get the frequency modulated signal, s̄i,k(t), by dividing hi,k(t) by ãi,k(t).

s̄i,k(t) =
hi,k(t)

ãi,k(t)

6. Check whether s̄i,k(t) is a normalised frequency-modulated signal (ãi,k(t) is close to 1),

then go to step 9.

7. If not, multiply ãi,k(t) by ãi,k−1(t) and go back to the first step to repeat the same

procedure for s̄i,k.

8. Envelope function, ãi(t), can be derived by multiplying all ãi,k(t) until ãi,k(t) equals one.

ãi(t) = ãi,1(t) × ãi,2(t) × ãi,3(t) × ... × ãi,l(t) =
∏l

q=1 ãi,q(t)

(l : maximum iteration number)

9. Using the envelope function, ãi(t), and the final frequency modulated signal, s̄i,l(t),

derive PF by their multiplication

PFi = ãi(t) × s̄i,l(t)

10. Subtract PFi(t) from x(t)

ui(t) = x(t) − PFi

Then the smoothed data, ui, is treated as new input, x(t), and the procedure is repeated

from steps 1-9, until ui(t) becomes a monotonic function.

11. From the frequency modulated signal, an instantaneous phase can be calculated.

φi(t) = arccos(s̄i,l(t))

12. The phase data unwrapped and its differentiation defines the IF.

wi(t) = dφi

dt

In order to extend the original LMD to the complex domain, the basic steps of LMD

should operate directly in C. However, a significant obstacle is that there is no ordering

of numbers in C, which makes it difficult to define local extrema. Thus the framework of

BEMD was exploited to develop the complex version of LMD. In the three dimensional
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Figure 9.1: Neuronal spike stream. The spike signal is generated with 10kHz sampling
frequency for a duration of 1 second. This neuronal spike signal has nonlinearity, and
has substantial and abrupt changes of frequency at the locations of spikes.
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(a) Time-frequency representation using LMD (b) Time-frequency representation using EMD

Figure 9.2: Comparison of LMD and EMD in the analysis of the neuronal spike signals
shown in Fig. 9.1. LMD result contains shaper and more concentrated frequency
components around the spikes compared to EMD.

(3D) plane of Fig. 9.3, the extrema of the complex data are found based on the intersect

of the 3D tube in the top, bottom, left and right directions. The local mean and local

magnitude of the complex signal can be extracted from the extrema on the four sides.

To achieve this, the complex signal is projected into two directions, 0 and π
2 , so that the

projected result becomes a two-dimensional signal1. For each projection of the complex

1Since calculating the local mean and the local magnitude for complex LMD is based on projections in
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signal, the smoothed local mean and local magnitude of x and y are then calculated in

the same way as the original LMD. The smoothed local means for each projection are

multiplied by ej0 and ej
π
2 according to the direction in which they are obtained and

averaged, to construct a single complex local mean value. With the so obtained complex-

valued mean in C, the rest of procedure is the same as the original LMD. The complex

LMD algorithm is summarized in Algorithm. 2.

9.3 Simulations and Discussion

In order to illustrate the operation of the complex LMD, several simple rotational signals

were used, which were made by concatenating sinusoids with different frequencies. Fig. 9.3

shows four different complex signals created using

f1 = 1kHz, f2 = 3kHz, f3 = 7Hz

T1(t) = 3 × (cos(2πf1t) + jsin(2πf1t) + cos(2πf3t))

T2(t) = cos(2πf1t) + jsin(2πf1t) + cos(2πf3t)

T3(t) = 5 × (cos(2πf2t) + jsin(2πf2t) + cos(2πf3t))

T4(t) = cos(2πf2t) + jsin(2πf2t) + cos(2πf3t)

The thick gray line in the middle of the complex signals represents the smoothed mean

value calculated during the process of envelope estimation, and follows closely the actual

mean. Fig. 9.4 shows the result of applying the complex LMD to the signal shown in

Fig. 9.3. Fig. 9.4(a) shows the frequency modulated rotation of the first PF and Fig. 9.4(b)

shows its local magnitude function. It can be seen that the amplitude of the envelope in the

frequency modulated signal is approximately unity and it contains slow rotations and fast

rotations reflecting the rotations of the original data. The envelope signal in Fig. 9.4(b)

contains the same amplitude as Fig. 9.3. All PFs derived by complex LMD are shown

in Fig. 9.5. Before this simulation, only two or three PFs were anticipated because the

original signal was made by simple sinusoidal signals. However, due to the discontinuities

in the complex data, high frequency components were introduced, and LMD produced

nine PFs and a redundant function.

a 3D plane, increasing the number of projection directions, for example π
4

and 3π
4

, would provide a more
accurate estimate.
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Algorithm 2. Complex Local Mean Decomposition

1. Project the complex signal z(t) on direction 0. (t :time)

p0(t) = ℜ(e−j0 · z(t))

2. Find the extrema of po(t). With the extrema, calculate the smoothed mean, m̃0(i,k)(t), and

local magnitude, ã0(i,k)(t), like original LMD (Algorithm 1). (i : number of PF, k : iteration number)

3. Go back to the first process and project the complex signal z(t) on direction π
2
.

p π
2
(t) = ℜ(e−j π

2 · z(t))

4. Calculate the smoothed mean, m̃ π
2

(i,k)(t), and local magnitude, ã π
2

(i,k)(t).

5. Multiply the smoothed means by ej0 and ej π
2 according to their direction.

mc0(i,k)(t) = ej0 · m̃0(i,k)(t), mc π
2

(i,k)(t) = ej π
2 · m̃ π

2
(i,k)(t)

6. Compute the complex-valued mean using the smoothed means, mc0(i,k) and mc π
2

(i,k).

Mi,k(t) = mc0(i,k)(t) + mc π
2

(i,k)(t)

7. Subtract the mean, Mi,k, from z(t).

Hi,k(t) = z(t) − Mi,k(t)

8. Calculate the frequency modulated rotation, s̄0(i,k)(t) and s̄ π
2

(i,k)(t), using the local magnitudes.

s̄0(i,k)(t) =
ℜ(e−j0·Hi,k(t))

ã0(i,k)(t)
, s̄ π

2
(i,k)(t) =

ℜ(e
−j π

2 ·Hi,k(t))

ã π
2

(i,k)(t)

9. Check whether ã0(i,k)(t) and ã π
2

(i,k)(t) are equal to 1.

10. If one of them is not, multiply ã0(i,k)(t) and ã π
2

(i,k)(t) by ã0(i,k−1)(t) and ã π
2

(i,k−1)(t) and go

to the first step.

a0(i)(t) = ã0(i,1)(t) · ã0(i,2)(t) · ã0(i,3)(t) · ... · ã0(i,l)(t) =
∏l

q=1 ã0(i,q)(t)

a π
2

(i)(t) = ã π
2

(i,1)(t) · ã π
2

(i,2)(t) · ã π
2

(i,3)(t) · ... · ã π
2

(i,l)(t) =
∏l

q=1 ã π
2

(i,q)(t)

(l : maximum iteration number until ã0(i,k)(t) and ã π
2

(i,k)(t) become equal to 1)

11. Derive the complex PF.

cPFi(t) = a0(i)(t) · s̄0(i,l)(t) · e
j0 + a π

2
(i)(t) · s̄ π

2
(i,l)(t) · e

j π
2

12. Subtract cPFi(t) from z(t), and then go to step 1 with the remain.

The first PF represented the two high frequency rotations, 1 kHz and 3 kHz, whereas

the last PF, PF9, contained the low frequency component, that was the 7Hz sine signal.

This problem could be alleviated by increasing the number of projection directions used

to estimate the local mean.

The performance of complex LMD and BEMD are compared in the next simulation,

following observations made by [133] for the real-valued LMD. A complex signal was gen-

erated by combining two different Duffing wave signals with additional trend components,

s1(t) and s2(t), given by
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Figure 9.3: Complex signal composed of sine and cosine signals. The frequencies of
the first two complex signals are 1kHz and the frequencies of the other two tubes are
3kHz. In addition, all of the complex signals include a 7Hz low frequency component.
The grey line illustrates the local mean of the complex signal.

s1(t) = e−t/256cos[ π
64( t2

512 + 32) + 0.3sin( π
32( t2

512 + 32))] + 0.06e2t/1024

s2(t) = e−t/512cos[ π
64( t2

512 + 32) + 0.3sin( π
32( t2

512 + 32)) + π
8 ] + 0.03e2t/1024

Note that a phase difference of π
8 exists between the Duffing wave signals contained in

s1(t) and s2(t) each has an IF given by

f(t) = θ
′
(t)fs

2π = t
32768(1 + 0.6cos[ π

32( t2

512 + 32)])

When the complex-valued signal, s1(t) + js2(t) (shown in Fig. 9.6(a)), is decomposed

using complex LMD and BEMD, the pure Duffing waves without trend components are

extracted in the real and imaginary parts of the first PF and the first IMF, which are

shown in Fig. 9.6(b) and (c). The IF estimations calculated from the first PF and the

first IMF are compared with the true IF for the real and imaginary parts in Fig 9.8(a)

and Fig 9.8(c) respectively. Note the IFs of complex LMD are closer to the true IF and

the errors are smaller than those of BEMD for both the real and imaginary parts.
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(a) The frequency modulated rotation produced
by complex LMD.
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(b) The envelope signal for the complex signal.

Figure 9.4: A PF by complex LMD consists of a frequency modulated rotation and
local magnitude function.

For the last experiment, Fig. 9.7(a) shows two spiking neuron time series - the first

spike is the same signal as that shown in Fig. 9.1 and the other is also generated by the tool

described in [134]. The sampling frequency was 10 kHz and the duration was one second.

With the two real-valued time series (x1(t) and x2(t)), a complex signal was constructed

as z(t) = x1(t) + jx2(t) (see Fig. 9.7(b)). The complex signal z(t) was decomposed into

complex PFs using complex LMD, and the real and imaginary parts of the PFs were

separated from the results, as shown in Fig. 9.9. Fig. 9.9(a) and (b) show respectively

the real and imaginary parts of the PFs. Note that the real parts of PFs corresponded

to x1(t), the real part of z(t), and the imaginary parts of PFs were related to x2(t), the

imaginary part of z(t).

The component-wise TFRs were calculated for z(t) in order to illustrate the ad-

vantages of complex LMD over BEMD. Fig. 9.10 and Fig. 9.11 show the TFR comparison

between the complex LMD and the BEMD for the real and imaginary parts. The time-

frequency characteristics of the BEMD approach (Fig. 9.10(b) and Fig. 9.11(b)) were less

concentrated around the spikes than those of the complex LMD approach (Fig. 9.10(a)
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Figure 9.5: PFs of the complex data in Fig. 9.3. Note that PF1 has 1kHz and 3kHz
rotations contained in the original data and PF9 contains the 7Hz low frequency
component.

and Fig. 9.11(a)). In BEMD, the cubic splines and Hilbert transform were used, which

caused a loss of amplitude and frequency information of the spike streams. The complex

LMD provided a more robust estimate of IF owing to the smoothed local mean functions

for these spike streams.
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Figure 9.6: Decomposition of a complex signal generated by combining two Duffing

waves and an additional complex low frequency trend. The first PF and IMF in real

and imaginary parts contain pure Duffing waves without trend.
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(a) Two neuronal spike signals (b) Complex-valued representation

Figure 9.7: 1D and 2D representations of an artificial complex signal composed of two

neuronal spike signals.
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(b) Squared errors between true and estimated IFs from the real parts of PF1 and IMF1.
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(c) IFs from the imaginary parts of PF1 and IMF1
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(d) Squared errors between true and estimated IFs from the imaginary parts of PF1 and IMF1.

Figure 9.8: The comparison of IFs estimated by 1st PF and IMF of a complex signal

containing Duffing waves, Fig. 9.6(b) and (c). IFs derived by PF, in both the real and

imaginary parts, are always closer to true values than those obtained using BEMD.
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(a) PFs corresponding to the real part of z(t)
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(b) PFs corresponding to the imaginary part

of z(t).

Figure 9.9: The complex PFs of spikes, z(t) = x1(t) + jx2(t), using complex LMD.



9.3 Simulations and Discussion 156

0 200 400 600 800 1000
0   

0.5

1

1.5

2

2.5  

Time (ms)

 

F
re

q
u

e
n

c
y
 (

k
H

z
)

0 200 400 600 800 1000
0   

0.5

1

1.5

2

2.5  

Time (ms)

 

F
re

q
u

e
n

c
y
 (

k
H

z
)

(a) Time-frequency representation (b) Time-frequency representation

of the real part of complex LMD of the real part of BEMD

Figure 9.10: Comparison of the time-frequency representations obtained using the
real part of complex LMD and BEMD. The frequency components of the complex
LMD provide more localised results than those using BEMD.
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(a) Time-frequency representation (b) Time-frequency representation

of the imaginary part of complex LMD of the Imaginary part of BEMD

Figure 9.11: Comparison of the time-frequency representations obtained using the
imaginary part of complex LMD and BEMD. The frequency components of the com-
plex LMD provide more localised results than those using BEMD
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9.4 Summary

We have introduced the complex local mean decomposition (LMD) by extending the

original real-valued LMD algorithm to the complex domain. The proposed complex

LMD approach is a natural and generic extension of the real-valued LMD. This way, the

data are analyzed based on smoothed local means and local magnitudes rather than the

cubic spline approach of bivariate EMD. Another advantage of complex LMD is that the

IF from the frequency modulated rotation can be extracted directly without a Hilbert

transformation. Thus, the LMD has the potential to extract more accurate information

about amplitude and frequency from data than the EMD approach. Simulations on

neuronal spike trains illustrate how the proposed LMD extension retains the advantages

of the original real-valued algorithm in the complex domain, facilitating highly localised

time-frequency analysis.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

In this thesis, multivariate and multiscale methods are studied for the analysis of brain

signals, mainly based on the electroencephalogram (EEG), with the aim to provide en-

hanced signal processing framework for the development of brain computer interface (BCI)

systems. This has been achieved by the

• Development and application of complex and multivariate algorithms

• Development and application of neurocognitive experiments using EEG

To suit the nonlinearity and nonstationarity of EEG, the data-driven techniques,

empirical mode decomposition (EMD) and local mean decomposition (LMD), have been

investigated and their extensions to the complex and multivariate domains were addressed.

It has been shown that these multivariate algorithms exploit common oscillatory modes

across the channels, and can accurately estimate and compare the EEG features among

the sources such like phase synchrony and power asymmetry. The common spatial pattern

algorithm has also been extended to the complex domain by using the augmented complex

statistics, to exploit the property of noncircularity and provide enhanced modelling.

The auditory Yarbus-style experiment has been investigated to provide a method-

ology to assess the auditory attention in a complex acoustical environment; this paradigm
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allowed us to identify systematic changes in brain responses using phase synchrony and

asymmetry. We also designed taste- and taste recall-eliciting affective BCI experiments

to help understand human emotions, and showed the possibility to differentiate between

the taste responses with high accuracy using features based on real and complex-valued

common spatial pattern methods.

As far as the author is aware, the following aspects of the thesis are believed to be

original contributions and involvements in collaborative works:

Original Works

• Improvement of motor imagery signal processing using the multivariate

extension of EMD to exploit common oscillatory modes within multichan-

nel EEG data, given in Chapter 6, publication [56].

This work has shown that the multivariate empirical mode decomposition (MEMD)

algorithm provides a robust time-frequency analysis tool for the nonlinear and non-

stationary multichannel EEG data. MEMD facilitates an improved time-frequency

localisation of mu and beta rhythms corresponding to motor imagery trials by ex-

ploiting the common oscillatory modes across the multichannel EEG data.

• Design of a taste-eliciting emotion experiment including a comparison of

the response to a taste stimulus against the response to the recall of the

same taste, given in Chapter 7, publication [91].

In this work, we have designed taste- and taste recall-eliciting emotion experiments,

and established the possibility of differentiating between the emotional responses

with high accuracy.

• Development of a novel class of complex-valued common spatial pattern

algorithms based on the augmented complex statistics, given in Chapter

8, publication [135].

In this chapter, a new class of complex extensions of CSP has been introduced

to deal with noncircularity, a common feature of a complex signal. For signals with

high degree of noncircularity, augmented complex common spatial pattern (ACCSP)

method outperformed complex common spatial pattern (CCSP) method, whereas
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CCSP method outperformed the ACCSP for circular complex data. Additionally,

the strong uncorrelating transform-CCSP (SUT-CCSP) was shown to improve the

separation rate between two classes when there was a significant power difference

between real and imaginary parts of complex data (improperness - second order

noncircularity).

• Development of complex local mean decomposition by extending the real-

valued local mean decomposition, given in Chapter 9, publication [128].

The complex local mean decomposition was developed in this work by extending the

original real-valued LMD algorithm to the complex domain. LMD has the potential

to extract more accurate amplitude and frequency information than EMD by using

smoothed local mean and magnitude in the decomposition process. Simulations

on neuronal spike trains illustrate how the proposed LMD extension retains the

advantages of the original real-valued algorithm in the complex domain.

Collaborative Works

• Investigation into the robustness of complex EMD and multivariate EMD

for multichannel data fusion, by circumventing the uniqueness and mode-

mixing problems of univariate EMD, given in Chapter 3, publications

[34,56].

This work has shown that complex and multivariate extensions of EMD facilitate

more localised and robust time-frequency analysis than standard EMD.

• Development of a method for robust assessments of phase synchrony and

power asymmetry between multichannel observations, important features

for the brain computer interface system, given in Chapter 4, publica-

tions [7, 34].

It has been shown that the complex extension of EMD algorithm guarantees a

matched set of decomposition for a pair of sources, and provides a robust estimate

of phase synchrony and power asymmetry.

• Investigation of selective auditory attention in a complex acoustical envi-

ronment, which shows the potential in the design of intuitive and natural
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BCI, given in Chapter 5, publications [9, 81].

The auditory Yarbus-style experiment was investigated to provide a formal method-

ology to assess if auditory attention in a complex acoustical environment is ob-

servable. Using the novel framework for estimating synchronised neuronal activity,

phase synchrony and asymmetry, systematic changes in brain wave measurements

corresponding to the selective auditory attention could be measured with 4% im-

provement in the classification performance compared to standard synchronisation

measurement.

10.2 Future Work

The following three future directions of research and open problems include:

• Further development of novel signal processing for multichannel nonstationary data

and the identification of novel features using multivariate and multiscale methods

• Development and assessment of new experiment paradigms, within the framework

of multimodal responses and stimulation

• Assessment and application of new EEG electrode platforms for a wearable system

10.2.1 Further Development of Novel Features

Multivariate and multiscale methods, which were studied in this thesis, will be extended

to produce more accurate features for multichannel systems. Currently, the phase syn-

chrony and asymmetry features are calculated from a pair of EEG signals using bivariate

EMD, where the common oscillatory modes in only two channels were considered. If

we decompose the multichannel EEG data (more than two) simultaneously using MEMD,

more time-frequency localised amplitude and phase information can be estimated to model

the phase synchrony and asymmetry more accurately. Furthermore, phase synchrony and

asymmetry matrices from all the combinations of two channel EEG signals among multiple

electrodes can be composed1 to quantify the amount of synchronization in the multivariate

1Mutlu et al. [136] has shown the multivariate phase synchronisation using MEMD.
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data [136]. For an N -channel EEG data set, the phase synchrony matrix R can be formed

as

R =



















1 α1,2 . . . α1,N

α2,1 1 . . . α2,N

...
...

. . .
...

αN,1 αN,2 . . . 1



















(10.1)

where αa,b denotes the phase synchrony between channel a and b. By calculating e.g.

the eigenvalues of this matrix, the information of multivariate phase synchrony can be

obtained. For example, an S-estimator [137] can be applied to quantify the level of syn-

chronization within a N -variate data set as

S = 1 +

∑N
i=1 λilog(λi)

log(N)
(10.2)

where λi is the N -normalised eigenvalues [136]. In the same manner, the multivariate

asymmetry matrix can also be obtained and the amount of asymmetry in the multivariate

data set can be quantified using the eigenvalue method.

Secondly, intrinsic multi-correlation using MEMD will be considered, which is the

correlation matrix among all IMFs from multichannel data. Unlike simple correlation

between two signals, the intrinsic multi-correlation is obtained from the intrinsic modes of

the signals, which are accurately decomposed using MEMD. This can be represented as

Ŕi,j =



















r1,1 r1,2 . . . r1,M

r2,1 r2,2 . . . r2,M

...
...

. . .
...

rM,1 rM,2 . . . rM,M



















(10.3)

where Ŕi,j is intrinsic multi-correlation matrix between signal i and j, ra,b the correlation

between IMF a of signal i and IMF b of signal j and M the number of IMFs. The amount

of correlation can be calculated using the eigenvalue method e.g. eq. (10.2). Furthermore,
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the intrinsic multi-correlation for multivariate data set can be produced such that,

Ŕ =



















Ŕ1,1 Ŕ1,2 . . . Ŕ1,N

Ŕ2,1 Ŕ2,2 . . . Ŕ2,N

...
...

. . .
...

ŔN,1 ŔN,2 . . . ŔN,N



















(10.4)

Finally, we are going to apply MEMD to multivariate multiscale entropy (MSE),

recently developed by Ahmed et al., which measures the complexity of multivariate signal

by calculating the long range correlations over multiple time scales [138]. The complexity

of multivariate IMFs estimated using multivariate MSE will provide another scope to

investigate the statistical information in multivariate data.

10.2.2 New Experiment Paradigm

The auditory Yarbus experiment in Chapter 5 was an initial study which needs to be

elaborated on with further experiments. During the experiment, we always presented

speech in the right speaker and music in the left. A spatial difference between attending a

sound source on the left or right could cause the difference found in the data. Therefore,

we need to mix and vary the location of sound source, for example randomly change the

location of speaker or present several sound sources in a speaker. Secondly, the significant

difference between two groups may be due to a difference in attentional load between the

two instructions. In order to investigate the effect of the attentional load, we can adopt

more sound sources for a complex acoustical environment, for instance two different speech

sources without music, two different music sources without speech and sound sources which

subjects cannot understand (e.g. foreign language).

The emotion experiment in Chapter 7 only monitored the changes in central nervous

system (CNS) corresponding to the stimuli. For the future experiment, we will investi-

gate more various responses to the emotional changes in both central nervous system

and autonomic nervous system (ANS) by employing EEG with electrocardiogram (ECG),

electromyogram (EMG), galvanic skin response sensor and visual and thermal camera.
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Using these multimodal sensors and the corresponding algorithms2, more accurate human

emotions will be detected and modelled to implement reliable affective computing. Addi-

tionally, more stimuli modalities, not only taste but also audio and video, will be applied

to elicit natural human emotions.

10.2.3 New platform for recording EEG

In order to measure the EEG in a more efficient and practical way than conventional bulky

EEG systems, we are going to investigate and apply a new EEG platform, which was re-

cently developed3 by embedding EEG electrodes on a custom made hearing aid earplug to

record the brain response from the ear canal [10]. Besides the practical aim, the ITE plat-

form can provide solutions which can overcome the problems of conventional EEG systems

for its use in everyday life. Current systems require specialized hardware and operation

in a laboratory/clinical environment, where a trained person may take considerable time

to set up the recording session (electrode placement, electrode impedance check, startup

procedure for the biosignal amplifier). In addition, it is not possible to obtain correct

placement of the electrodes using standard EEG system without an assistance of a trained

person, which is crucial to guarantee perfect inter-session repeatability of the experiment.

The earplugs (CE approved) are personalised to fit tightly and are easy to insert and re-

move. Additionaly, the voltage attenuation between cortex and an ITE electrode would be

similar to the case of on-scalp electrodes, that is, from the milli-volt level voltages at the

cortex attenuated through the cerebrospinal fluid, skull, skin and hair, to the micro-volt

levels at the electrodes [140]. In this section, we are going to validate the ITE electrode

by comparing with standard on-scalp electrode and suggest the future applications.

ITE Electrode

A commercial hearing aid plug, shown in Fig. 10.1(a) and Fig. 10.1(b), illustrates the

layout of the ITE, which was manufactured by WIDEX using a 3D imprint of the ear

canal.

2Multivariate algorithm such like MEMD will be considered for the multimodal data processing.
3Imperial College London and WIDEX have applied for the patent [139].
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(a) The hearing aid (b) ITE electrodes on the left earplug

Figure 10.1: The commercial hearing aid and the in-the-ear electroencephalogram

recording system for the left ear (ITEL) (Figure (a) was provided by WIDEX.). Two

or more electrodes (ITEL1, ITEL2 and ITEL3 in this case), pointing in different

directions, are mounted on a standard custom made earplug, as shown on the three

projected planes. ITE electrodes were manufactured by WIDEX as a part of joint

project of Imperial College London and WIDEX [10].

Figure 10.2: ITE settings with the g.USBamp biosignal acquisition device. The ground

electrode is on the chin and reference electrode is on the right earlobe.
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Appealing characteristics of the ITE approach over the standard EEG system include:

1. Straightforward setup process. Since the ITE electrodes are embedded in the hearing

aid earplug, this needs less effort of the user for training and setup procedure.

2. Fixed electrode positions. Due to the tight fit and rigid spatial location of the

ITE electrodes, repeatability of the experiments can be enhanced, compared to the

standard on-scalp recording. In addition, skin stretching and electrode movement

artifacts are reduced.

Comparison with Scalp Recordings

To assess the ability of ITE electrodes to record EEG with high fidelity, we performed

all recordings simultaneously with on-scalp electrodes using the same amplifier, leads,

ground and reference electrodes. The experiments were performed on a subject, based on

the ITEL1, ITEL2, ITER1, and ITER2 in-the-ear positions, and mastoid (M1 and M2),

temporal (T7 and T8), and central (AFz and Cz) scalp electrodes (see Fig. 1.1). The

reference position was the right earlobe while the ground position used was the chin4.

Fig. 10.2.3 shows the settings for ITE recording with the g.USBamp biosignal acquisition

device.

The potential of the ITE system in a typical brain monitoring context is now

illustrated using a well known EEG response - the suppression of alpha activity when the

subject opens their eyes. The alpha attenuation test (AAT) is often used when testing

EEG recording equipment [141].

The subject was instructed to keep their eyes open until instructed by an auditory

stimulus to close their eyes after 15 s, eliciting a relative increase in alpha band power

in both scalp and ITE electrodes. The data was recorded at a sampling frequency of

512Hz and bandpass filtered so as to occupy the frequency range 2-45Hz. Time-frequency

spectrograms were obtained using the short time Fourier transform (STFT) with a sliding

Hamming window of length 2 s and an overlap of 50%.

The averaged spectrogram data obtained over 5 trials of length 35 s are shown in

4As the primary aim of these experiments was to establish the feasibility of recording EEG from within
the ear, for rigour we used a ground position that could not ‘aid’ the ITE recordings.
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(b) Electrode T8

Figure 10.3: Alpha attenuation study (AAT). The subject was instructed to keep
their eyes open until instructed by an auditory stimulus to close the eyes after 15 s,
eliciting an increase in alpha band power in both scalp and ITE electrodes [10].

Fig. 10.3 for both scalp and ITE electrode recordings. Note the increase in alpha band

power at 15 s and an excellent match between the ITE and on-scalp electrodes.

Expanding on these results, correlation analysis is provided for the ‘eyes open’ and

‘eyes closed’ cases. To obtain more accurate correlations, the frequency range considered

was wider - a 4th order Butterworth notch filter was applied to remove interference in the

frequency range 48-52Hz, and an additional 8th order Butterworth bandpass filter was

applied to retain frequencies in the range 2-200Hz. Table 10.1(a) shows the correlation

analysis for 15 s of recorded activity averaged over 5 trials where the eyes of the subject

were open and there were no EOG artifacts. The results show that, as desired, there was

high correlation between the ITE electrode pairs. As expected, the degree of correlation

decreased with distance, independent of whether the recordings were made in the ear canal

or on-scalp. Table 10.1(b) shows the correlation analysis for 15 s of recorded activity

averaged over 5 trials where the eyes of the subject were closed - the results follow the

same pattern as those in Table 10.1(a).

We have established that ITE electrodes can extract the key EEG activity in time

domain and have shown high correlation with on-scalp electrodes. This is all achieved

with great convenience for the user due to its non-intrusive and cosmetically acceptable

approach.
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Table 10.1: Correlation analysis between the ITE and on-scalp electrodes [10]

(a) Correlation results when the eyes of the subject were open

ITEL1 ITEL2 M1 T7 ITER1 ITER2 M2 T8 AFz Cz
ITEL1 1 0.99 0.95 0.83 0.81 0.81 0.79 0.76 0.60 0.60
ITEL2 0.99 1 0.95 0.83 0.81 0.81 0.80 0.77 0.60 0.61

M1 0.95 0.95 1 0.80 0.79 0.80 0.79 0.76 0.58 0.60
T7 0.83 0.83 0.80 1 0.75 0.75 0.73 0.82 0.79 0.81

ITER1 0.81 0.81 0.79 0.75 1 0.99 0.96 0.89 0.69 0.69
ITER2 0.81 0.81 0.80 0.75 0.99 1 0.96 0.89 0.69 0.69

M2 0.79 0.80 0.79 0.72 0.96 0.96 1 0.86 0.66 0.67
T8 0.76 0.77 0.76 0.82 0.89 0.89 0.86 1 0.85 0.86
AFz 0.60 0.60 0.58 0.79 0.69 0.69 0.66 0.85 1 0.94
Cz 0.60 0.61 0.60 0.81 0.69 0.69 0.67 0.86 0.94 1

(b) Correlation results when the eyes of the subject were closed

ITEL1 ITEL2 M1 T7 ITER1 ITER2 M2 T8 AFz Cz
ITEL1 1 0.99 0.93 0.80 0.77 0.77 0.75 0.71 0.50 0.50
ITEL2 0.99 1 0.93 0.80 0.78 0.78 0.76 0.72 0.51 0.51

M1 0.93 0.93 1 0.67 0.75 0.75 0.78 0.64 0.35 0.38
T7 0.80 0.80 0.67 1 0.68 0.68 0.61 0.84 0.82 0.84

ITER1 0.77 0.78 0.75 0.68 1 0.99 0.95 0.85 0.54 0.55
ITER2 0.77 0.78 0.75 0.68 0.99 1 0.96 0.86 0.55 0.56

M2 0.75 0.76 0.78 0.61 0.95 0.96 1 0.78 0.44 0.46
T8 0.71 0.72 0.64 0.84 0.85 0.86 0.78 1 0.81 0.84
AFz 0.50 0.51 0.35 0.82 0.54 0.55 0.44 0.81 1 0.96
Cz 0.50 0.51 0.38 0.84 0.55 0.56 0.46 0.84 0.96 1

Future Applications of ITE Electrode

These initial results to validate ITE electrode suggest the potential of both short- and

long-term continuous use for standard brain monitoring and interfacing applications such

like:

• Spatial audio and selective auditory attention

• Monitoring human emotion

• Long term monitoring for an epilepsy patient

• Sleep and microsleep study

• Brain computer interfaces for rehabilitation systems
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Epilogue

The class of algorithms developed in this thesis is global and enables the identification and

extraction of single order features from multichannel data, not only EEG, but also EMG

and heterogeneous physiological responses. In addition, the taste emotional experiments

and the auditory EEG study are alternative modalities, which in conjunction with visual

BCI have the potential to improve the capacity of BCI through multimodal stimulation.

The developed algorithms have also been shown to have advantage over standard algo-

rithms in cases when the signal is weak, such as the ITE electrodes. It is our hope that

in the future the results of this thesis will be made to operate in real time, and will find

application in clinical and commercial environments. Some of this work in these directions

is under way.
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